WorldWideScience

Sample records for estrogen specific ligands

  1. Ligands specify estrogen receptor alpha nuclear localization and degradation

    Directory of Open Access Journals (Sweden)

    Caze-Subra Stéphanie

    2010-12-01

    Full Text Available Abstract Background The estrogen receptor alpha (ERα is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. Results A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα. Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2, and pure antagonists (selective estrogen regulator disruptor; SERD, ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM, 4-hydroxytamoxifen (OHT or RU39,411, diffuse nuclear staining persisted. Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. Conclusions Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on

  2. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  3. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  4. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  5. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  6. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    . Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The results showed that the promoter is predominantly hypomethylated (with 0–3.3% methylcytosines) regardless of sgER mRNA levels. Overall, our investigations suggest that the estrogen responsiveness of sgER is regulated by a novel ligand-dependent receptor, presumably via a non-genomic pathway(s) of estrogen signalling.

  7. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    Science.gov (United States)

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  8. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA......, and cytosolic progesterone receptors (PR) measured by LBA were also studied. While ERc concentrations determined by LBA and EIA were highly correlated (r: 0.94), ERc values detected by LBA were approximately twice those found by EIA (median values of ERc: 155 vs. 64 fmol/mg cytosol protein, DCC vs. EIA......). The percentages of ERc positive tumors were 89% by LBA and 77% by EIA. The median fraction of total ER present as ERn was 63%. PR levels correlated positively with ERn concentrations (r: 0.73). We explore possible reasons why greater concentrations of ERc are determined by estradiol binding than by the ER-EIA kit...

  9. Estrogens of multiple classes and their role in mental health disease mechanisms

    Directory of Open Access Journals (Sweden)

    Cheryl S Watson

    2010-06-01

    Full Text Available Cheryl S Watson1, Rebecca A Alyea1, Kathryn A Cunningham2, Yow-Jiun Jeng11Department of Biochemistry and Molecular Biology, 2Department of Pharmacology and Toxicology, Univ of Texas Medical Branch, Galveston, TX, USAAbstract: Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not. Here we review evidence for how different estrogens (physiological and environmental/dietary, acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.Keywords: estrogen receptor α, estrogen receptor β, GPR30, GPER, xenoestrogens, phytoestrogens, transporters, brain function, neurotransmitter receptors

  10. Estrogen and progesterone receptor assay using I-125 estradiol and H-3 promegestone as ligands: Results in female mammary carcinoma

    International Nuclear Information System (INIS)

    Glaubitt, D.; Hienz, H.A.; Bettges, G.; Carmanns, B.; Lichtenberg, T.; Akademisches Lehrkrankenhaus, Krefeld

    1984-01-01

    The determination of estrogen and progesterone receptors in the cytosol of carcinoma of the female breast has predictive value as to the success treatment of the patient. An improved estrogen and progesterone receptor assay using 1-125 labelled estradiol and a H-3 tagged synthetic gestagen (H-3 promegestone) as ligands proved to be highly praticable, especially time-saving. (orig.)

  11. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics.

    Science.gov (United States)

    Dull, Angie; Goncharova, Ekaterina; Hager, Gordon; McMahon, James B

    2010-11-01

    We have developed a robust high-content assay to screen for novel estrogen receptor alpha (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen utilizes a green fluorescent protein tagged-glucocorticoid/estrogen receptor (GFP-GRER) chimera which consisted of the N-terminus of the glucocorticoid receptor fused to the human ER ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands, and translocated to the nucleus in response to stimulation with ERα agonists or antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. The assay was validated with known ERα agonists and antagonists, and the Library of Pharmacologically Active Compounds (LOPAC 1280). Additionally, screening of crude natural product extracts demonstrated the robustness of the assay, and the ability to quantitate the effects of toxicity on nuclear translocation dynamics. The GFP-GRER nuclear translocation assay was very robust, with z' values >0.7, CVs screening of natural product extracts. This assay has been developed for future primary screening of synthetic, pure natural products, and natural product extracts libraries available at the National Cancer Institute at Frederick. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Mitochondria: Target organelles for estrogen action

    Directory of Open Access Journals (Sweden)

    Małgorzata Chmielewska

    2017-06-01

    Full Text Available Estrogens belong to a group of sex hormones, which have been shown to act in multidirectional way. Estrogenic effects are mediated by two types of intracellular receptors: estrogen receptor 1 (ESR1 and estrogen receptor 2 (ESR2. There are two basic mechanisms of estrogen action: 1 classical-genomic, in which the ligand-receptor complex acts as a transcriptional factor and 2 a nongenomic one, which is still not fully understood, but has been seen to lead to distinct biological effects, depending on tissue and ligand type. It is postulated that nongenomic effects may be associated with membrane signaling and the presence of classical nuclear receptors within the cell membrane. Estrogens act in a multidirectional way also within cell organelles. It is assumed that there is a mechanism which manages the migration of ESR into the mitochondrial membrane, wherein the exogenous estrogen affect the morphology of mitochondria. Estrogen, through its receptor, can directly modulate mitochondrial gene expression. Moreover, by regulating the level of reactive oxygen species, estrogens affect the biology of mitochondria. The considerations presented in this paper indicate the pleiotropic effects of estrogens, which represent a multidirectional pathway of signal transduction.

  13. Homology-modeled ligand-binding domains of medaka estrogen receptors and androgen receptors: A model system for the study of reproduction

    International Nuclear Information System (INIS)

    Cui Jianzhou; Shen Xueyan; Yan Zuowei; Zhao Haobin; Nagahama, Yoshitaka

    2009-01-01

    Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meERα and huERα, meERβ1 and huERβ, meERβ2, and huERβ with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meARα and huAR, meARβ, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for Cα atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.

  14. Synthesis and evaluation of 17 alpha-(carboranylalkyl)estradiols as ligands for estrogen receptors alpha and beta

    Czech Academy of Sciences Publication Activity Database

    Sedlák, David; Eignerová, Barbara; Dračínský, Martin; Janoušek, Zbyněk; Bartůněk, Petr; Kotora, Martin

    2013-01-01

    Roč. 747, 1.12.2013 (2013), s. 178-183 ISSN 0022-328X R&D Projects: GA MŠk(CZ) LC06070; GA MŠk(CZ) LC06077; GA MŠk LM2011022; GA ČR GA204/09/1905 Institutional support: RVO:68378050 ; RVO:61388963 Keywords : carborane * estradiol * metathesis * estrogen receptor * steroid ligand Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.302, year: 2013

  15. Assessment of estrogenic activity in some common essential oil constituents.

    Science.gov (United States)

    Howes, M-J R; Houghton, P J; Barlow, D J; Pocock, V J; Milligan, S R

    2002-11-01

    Estrogenic responses have not only been associated with endocrine function, but also with cognitive function. Several studies have indicated that estrogen replacement therapy has favourable effects on cognition, and may have potential in the prevention and treatment of Alzheimer's disease. Thus, ligands for the estrogen receptor, that have a better efficacy and adverse-effect profile than drugs currently available, require investigation. This study was undertaken to investigate the potential estrogenic activity of a number of essential oil constituents. Initially, estrogenic activity was determined by a sensitive and specific bioassay using recombinant yeast cells expressing the human estrogen receptor. At high concentrations, estrogenic activity was detected for citral (geranial and neral), geraniol, nerol and trans-anethole, while eugenol showed anti-estrogenic activity. Molecular graphics studies were undertaken to identify the possible mechanisms for the interaction of geranial, neral, geraniol, nerol and eugenol with the ligand-binding domain of the estrogen alpha-receptor, using the computer program HyperChem. Citral, geraniol, nerol and eugenol were also able to displace [(3)H]17beta-estradiol from isolated alpha- and beta-human estrogen receptors, but none of these compounds showed estrogenic or anti-estrogenic activity in the estrogen-responsive human cell line Ishikawa Var I at levels below their cytotoxic concentrations, and none showed activity in a yeast screen for androgenic and anti-androgenic activity. The potential in-vivo estrogenic effects of citral and geraniol were examined in ovariectomized mice, but neither compound showed any ability to stimulate the characteristic estrogenic responses of uterine hypertrophy or acute increase in uterine vascular permeability. These results show that very high concentrations of some commonly used essential oil constituents appear to have the potential to interact with estrogen receptors, although the

  16. Identification of estrogen receptor dimer selective ligands reveals growth-inhibitory effects on cells that co-express ERα and ERβ.

    Directory of Open Access Journals (Sweden)

    Emily Powell

    Full Text Available Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ.

  17. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  18. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  19. Bromine-80m-labeled estrogens: Auger-electron emitting, estrogen receptor-directed ligands with potential for therapy of estrogen receptor positive cancers

    International Nuclear Information System (INIS)

    DeSombre, E.R.; Mease, R.C.; Hughes, A.; Harper, P.V.; DeJesus, O.T.; Friedman, A.M.

    1988-01-01

    A triphenylbromoethylene, 1,1-bis(p-hydroxyphenyl)-2-bromo-2-phenylethylene, Br-BHPE, and a bromosteroidal estrogen, 17α- bromovinylestradiol, BrVE 2 , were labeled with the Auger electron emitting nuclide bromine-80m, prepared by the [p,n] reaction with 80 Se. To assess their potential as estrogen receptor (ER) directed therapeutic substrates the bromine-80m labeled estrogens were injected into immature female rats and the tissue distribution studied at 0.5 and 2 hours. Both radiobromoestrogens showed substantial diethylstilbesterol (DES)-inhibitable localization in the ER rich tissues, uterus, pituitary, ovary and vagina at both time points. While the percent dose per gram tissue was higher for the Br-BHPE, the BrVE 2 showed higher tissue to blood ratios, especially at 2 hr, reflecting the lower blood concentrations of radiobromine following administration of the steroidal bromoestrogen. Comparing intraperitoneal, intravenous and subcutaneous routes of administration for the radiobromine labeled Br-BHPE, the intraperitoneal route was particularly advantageous to provide maximum, DES-inhibitable concentrations in the peritoneal, ER-rich target organs, the uterus, ovary and vagina. While uterine concentrations after BrBHPE were from 10--48% dose/g and after BrVE 2 were 15--25% dose/g, similar treatment with /sup 80m/Br as sodium bromide showed uniform low concentrations in all tissues at about the levels seen in blood. The effective specific activity of [/sup 80m/Br]BrBHPE, assayed by specific binding to ER in rat uterine cytosol, was 8700 Ci/mmole. 23 refs., 9 figs., 2 tabs

  20. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    International Nuclear Information System (INIS)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-01-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17β to the four rainbow trout ER isoforms with that of three known environmental estrogens 17α-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ERα subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17β, bisphenol A binds less strongly to all four receptors, 17α-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the α subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  1. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals.

    Science.gov (United States)

    Bannister, Richard; Beresford, Nicola; Granger, David W; Pounds, Nadine A; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J

    2013-09-15

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p>0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10(-6)M for Gen and >10(-5)M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of genistein and

  2. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Stisova, Viktorie [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic); Goffinont, Stephane; Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire CNRS, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Davidkova, Marie, E-mail: davidkova@ujf.cas.c [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic)

    2010-08-15

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERalpha, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with gamma rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  3. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    Directory of Open Access Journals (Sweden)

    Xueyan Chen

    2016-08-01

    Full Text Available Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors.

  4. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  5. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Caroline [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056 (United States); Grimaldi, Marina; Boulahtouf, Abdelhay [Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier (France); Pakdel, Farzad [Institut de Recherche sur la Santé, Environnement et Travail (IRSET), INSERM U1085, Université de Rennes 1, Rennes (France); Brion, François; Aït-Aïssa, Sélim [Unité Écotoxicologie In Vitro et In Vivo, INERIS, Parc ALATA, 60550 Verneuil-en-Halatte (France); Cavaillès, Vincent [Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier (France); Bourguet, William [U1054, Centre de Biochimie Structurale, CNRS UMR5048, Université Montpellier 1 et 2, 34290 Montpellier (France); Gustafsson, Jan-Ake [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056 (United States); Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge (Sweden); and others

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared to 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zf

  6. Novel estrogen receptor-related Transcripts in Marisa cornuarietis; a freshwater snail with reported sensitivity to estrogenic chemicals.

    Science.gov (United States)

    Bannister, Richard; Beresford, Nicola; May, Denise; Routledge, Edwin J; Jobling, Susan; Rand-Weaver, Mariann

    2007-04-01

    We have isolated novel molluskan steroid receptor transcripts orthologous to vertebrate estrogen receptors (ERs) and estrogen receptor-related receptors (ERRs) from the freshwater snail Marisa cornuarietis. Radiolabeled ligand binding analyses showed that neither recombinant receptor protein specifically bound 17beta-estradiol over the range applied (0.3-9.6 nM). These novel receptor transcripts have thus been designated mcER-like and mcERR respectively. Quantitative PCR revealed mcER-like to be expressed ubiquitously throughout a range of male and female structures studied, including neural and reproductive tissues. Highest absolute levels were seen in the male penis-sheath complex. The mcERR mRNA was also expressed ubiquitously throughout all male and female tissues analyzed here, with very low absolute transcript numbers in female accessory sex structures compared to other tissues.

  7. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals☆☆☆

    Science.gov (United States)

    Bannister, Richard; Beresford, Nicola; Granger, David W.; Pounds, Nadine A.; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J.

    2013-01-01

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p > 0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10−6 M for Gen and >10−5 M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of

  8. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples.

    Science.gov (United States)

    Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E

    2014-04-01

    Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  9. Loss of ERβ expression as a common step in estrogen-dependent tumor progression

    Science.gov (United States)

    Bardin, Allison; Boulle, Nathalie; Lazennec, Gwendal; Vignon, Françoise; Pujol, Pascal

    2004-01-01

    The characterization of estrogen receptor beta (ERβ) brought new insight into the mechanisms underlying estrogen signaling. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues and the mitogenic effects of estrogen in these tissues (e.g. breast, endometrium and ovary) are well documented both in vitro and in vivo. There is also an emerging body of evidence that colon and prostate cancer growth is influenced by estrogens. In all of these tissues, most studies have shown decreased ERβ expression in cancer as compared to benign tumors or normal tissues, whereas ERα expression persists. The loss of ERβ expression in cancer cells could reflect tumor cell dedifferentiation but may also represent a critical stage in estrogen-dependent tumor progression. Modulation of the expression of ERα target genes by ERβ, or ERβ specific gene induction could indicate that ERβ has a differential effect on proliferation as compared to ERα. ERβ may exert a protective effect and thus constitute a new target for hormone therapy, e.g. via ligand specific activation. The potential distinct roles of ERα and ERβ expression in carcinogenesis, as suggested by experimental and clinical data, are discussed in this review. PMID:15369453

  10. Repression of estrogen receptor β function by putative tumor suppressor DBC1

    International Nuclear Information System (INIS)

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-01-01

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) α appears to promote the proliferation of cancer tissues, while ERβ can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ERα and ERβ may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ERα expression and promotes breast cancer cell survival by binding to ERα. Here we report an ERβ-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ERβ and DBC1 interact in a ligand-independent manner similar to ERα. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ERβ. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ERα, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ERβin vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ERβ. These results implicate the principal role of DBC1 in regulating ERβ-dependent gene expressions.

  11. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Ayako Casanova-Nakayama

    2018-03-01

    Full Text Available Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss, and to compare them to the hepatic ER numbers; (ii to analyse the ER mRNA isoform ratios in the immune system; and, (iii finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2, as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs—head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed

  12. Endoxifen, 4-Hydroxytamoxifen and an Estrogenic Derivative Modulate Estrogen Receptor Complex Mediated Apoptosis in Breast Cancer.

    Science.gov (United States)

    Maximov, Philipp Y; Abderrahman, Balkees; Fanning, Sean W; Sengupta, Surojeet; Fan, Ping; Curpan, Ramona F; Quintana Rincon, Daniela Maria; Greenland, Jeffery A; Rajan, Shyamala S; Greene, Geoffrey L; Jordan, V Craig

    2018-05-08

    Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment for breast cancer inevitably occurs, but unexpectedly low dose estrogen can cause regression of breast cancer and increase disease free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here we describe modulation of the estrogen receptor liganded with antiestrogens (endoxifen, 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE) EthoxyTPE (EtOXTPE) on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared to planar estradiol in these cells. Using RT-PCR, ChIP, Western blotting, molecular modelling and X-ray crystallography techniques we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the PERK sensor system to trigger an Unfolded Protein Response (UPR). The American Society for Pharmacology and Experimental Therapeutics.

  13. Estrogens in breast cancer

    International Nuclear Information System (INIS)

    Terzieff, V.; Vázquez, A.

    2004-01-01

    The prolonged exposure to estrogen increases the risk of cancer breast, the precise role of estrogen in the carcinogenesis process is unclear. They are capable of inducing cell proliferation through different channels receptor Estrogen (ER) known, for example through MAPkinasa sensitivity the promoter of proliferation effect depends on the level of RE, or type to â, integrity (mutations may alter its function) and ligand. The different types of estrogens and related compounds have different profile of affinity for RE and effect end. The modulatory role of progestogens proliferation is very complex, and the interaction between the effector pathways of progestin’s, estrogens, EGF and IGF family - maybe others - determines the final effect .. Estrogens are mutagenic per se weak, but is now known for its hepatic metabolism occur highly reactive species such as quinones, and catechol, powerful mutagens in vitro. Direct or indirect genotoxicity probably explains Part of the effects of estrogen on tumor cells. The use of hormone replacement (HTR) increases the risk of CM, as proportional to the time of use. The combination with progestin seems to be increased risk (R R 2). It is unclear the role of phyto estrogens in the prevention the CM. In the male breast is known that the proliferative response to parenchymal different hormonal maneuvers is different. The effect is minimal castration are and maximum with the combination of estrogen and progesterone. It is unclear, however, the risk of the population exposed to hormone therapy for cancer prostate or otherwise

  14. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  15. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  16. Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Joan S. [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States); Jordan, V. Craig [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States)]. E-mail: v.craig.jordan@fccc.edu

    2005-12-11

    Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17{beta}-estradiol (E{sub 2}), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ER{alpha} or ER{beta}, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.

  17. Bisphenol A in dental sealants and its estrogen like effect

    Directory of Open Access Journals (Sweden)

    Manu Rathee

    2012-01-01

    Full Text Available Bisphenol A or BPA-based epoxy resins are widely used in the manufacture of commercial products, including dental resins, polycarbonate plastics, and the inner coating of food cans. BPA is a precursor to the resin monomer Bis-GMA. During the manufacturing process of Bis-GMA dental sealants, Bisphenol A (BPA might be present as an impurity or as a degradation product of Bis-DMA through esterases present in saliva. Leaching of these monomers from resins can occur during the initial setting period and in conjunction with fluid sorption and desorption over time and this chemical leach from dental sealants may be bioactive. Researchers found an estrogenic effect with BPA, Bis-DMA, and Bis-GMA because BPA lacks structural specificity as a natural ligand to the estrogen receptor. It generated considerable concern regarding the safety of dental resin materials. This review focuses on the BPA in dental sealants and its estrogen-like effect.

  18. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-01-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of [ 32 P]-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions

  19. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    May, Felicity EB, E-mail: F.E.B.May@ncl.ac.uk [Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)

    2014-05-23

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  20. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  1. Evidence for estrogen receptor beta-selective activity of Vitex agnus-castus and isolated flavones.

    Science.gov (United States)

    Jarry, Hubertus; Spengler, Barbara; Porzel, Andrea; Schmidt, Juergen; Wuttke, Wolfgang; Christoffel, Volker

    2003-10-01

    Recent cell culture experiments indicated that extracts of Vitex agnus-castus (VAC) may contain yet unidentified phytoestrogens. Estrogenic actions are mediated via estrogen receptors (ER). To investigate whether VAC compounds bind to the currently known isoforms ERalpha or ERss, ligand binding assays (LBA) were performed. Subtype specific ER-LBA revealed a binding of VAC to ERss only. To isolate the ERss-selective compounds, the extract was fractionated by bio-guidance. The flavonoid apigenin was isolated and identified as the most active ERss-selective phytoestrogen in VAC. Other isolated compounds were vitexin and penduletin. These data demonstrate that the phytoestrogens in VAC are ERss-selective.

  2. Analysis of 3D models of octopus estrogen receptor with estradiol: evidence for steric clashes that prevent estrogen binding.

    Science.gov (United States)

    Baker, Michael E; Chandsawangbhuwana, Charlie

    2007-09-28

    Relatives of the vertebrate estrogen receptor (ER) are found in Aplysia californica, Octopus vulgaris, Thais clavigera, and Marisa cornuarietis. Unlike vertebrate ERs, invertebrate ERs are constitutively active and do not bind estradiol. To investigate the molecular basis of the absence of estrogen binding, we constructed a 3D model of the putative steroid-binding domain on octopus ER. Our 3D model indicates that binding of estradiol to octopus ER is prevented by steric clashes between estradiol and amino acids in the steroid-binding pocket. In this respect, octopus ER resembles vertebrate estrogen-related receptors (ERR), which have a ligand-binding pocket that cannot accommodate estradiol. Like ERR, octopus ER also may have the activation function 2 domain (AF2) in a configuration that can bind to coactivators in the absence of estrogens, which would explain constitutive activity of octopus ER.

  3. Structure-based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists.

    Science.gov (United States)

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...

  4. Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor

    Directory of Open Access Journals (Sweden)

    Kareem Mohideen-Abdul

    2017-06-01

    Full Text Available Most nuclear receptors (NRs bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs involves specific protein–DNA and protein–protein interactions. The estrogen-related receptor (ERR belongs to the steroid hormone nuclear receptor (SHR family and shares strong similarity in its DNA-binding domain (DBD with that of the estrogen receptor (ER. In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3, but in vivo, it preferentially binds to single half-site REs extended at the 5′-end by 3 bp [estrogen-related response element (ERREs], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS, non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3, such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3, where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half

  5. The Coordinated P53 and Estrogen Receptor Cis-Regulation at an FLT1 Promoter SNP Is Specific to Genotoxic Stress and Estrogenic Compound

    Science.gov (United States)

    Langen, Jan-Stephan; Schoenfelder, Gilbert; Resnick, Michael A.; Inga, Alberto

    2010-01-01

    Background Recently, we established that a C>T single nucleotide polymorphism (SNP) in the promoter of the VEGF receptor FLT1 gene generates a ½ site p53 response element (RE-T) that results in p53 responsiveness of the promoter. The transcriptional control required an estrogen receptor (ER) ½ site response element (ERE1) 225 nt upstream to the RE-T. Methodology/Principal Findings Here we report the identification of a second ER ½ site (ERE2) located 145 bp downstream of the RE-T and establish that both EREs can impact p53-mediated transactivation of FLT1-T in a manner that is cell type and ER level dependent. Gene reporter assays and ChIP experiments conducted in the breast cancer-derived MCF7 cells revealed that the ERE2 site was sufficient for p53-mediated ERα recruitment and transactivation of the FLT1-T promoter/reporter construct. Surprisingly, unlike the case for other p53 target promoters, p53-mediated transactivation of FLT1-T constructs or expression of the endogenous FLT1 gene, as well as binding of p53 and ER at the promoter constructs, was inducible by doxorubicin but not by 5-fluorouracil. Furthermore, ER activity at FLT1-T was differentially affected by ER ligands, compared to a control TFF1/pS2 ER target promoter. The p53-related transcription factors (TFs) p73 and p63 had no effect on FLT1 transactivation. Conclusions/Significance We establish a new dimension to the p53 master regulatory network where p53-mediated transcription from a ½ site RE can be determined by ER binding at one or more cis-acting EREs in manner that is dependent on level of ER protein, the type of ER ligand and the specific p53-inducing agent. PMID:20422012

  6. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  7. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    International Nuclear Information System (INIS)

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-01-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER

  8. 9-cis-retinoic acid represses estrogen-induced expression of the very low density apolipoprotein II gene.

    Science.gov (United States)

    Schippers, I J; Kloppenburg, M; Snippe, L; Ab, G

    1994-11-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concentrated on a potential RXR recognition site, which deviates at only one position from a perfect direct A/GGGTCA repeat spaced by one nucleotide (DR-1) and was earlier identified as a common HNF-4/COUP-TF recognition site. However, band shift analysis revealed that this imperfect DR-1 motif does not interact with RXR alpha-homodimers. In accordance with this observation we found that this regulatory element does not mediate transactivation through RXR alpha in the presence of 9-cis-RA. However, our experiments revealed another, unexpected, effect of 9-cis-RA. Instead of stimulating, 9-cis-RA attenuated estrogen-induced expression of transfected estrogen-responsive VLDL-CAT reporter plasmids. This repression appeared to take place through the main estrogen response element (ERE) of the gene. Importantly, 9-cis-RA also strongly repressed the estrogen-induced expression of the endogenous apoVLDLII gene in cultured chicken hepatoma cells.

  9. PET and Hormone Receptor Ligands in Breast Cancer

    National Research Council Canada - National Science Library

    Gemignani, Mary

    2006-01-01

    .... To investigate this further, this project's objectives are: To evaluate the use of estrogen-like ligands labeled with positron emitters in preoperatively determining the ER status of breast cancer using PET...

  10. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    Science.gov (United States)

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-05-01

    With increased life expectancy, women will spend over three decades of life postmenopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  11. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents.

    Science.gov (United States)

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J Christopher; Ugarte, Ricardo; Antoniou, Michael N

    2017-10-01

    The safety, including the endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased the expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBluc cells, which was blocked by the estrogen antagonist ICI 182,780. Commercial GBH formulations or their adjuvants alone did not exhibit estrogenic effects in either assay. Transcriptomics analysis of MCF-7 cells treated with glyphosate revealed changes in gene expression reflective of hormone-induced cell proliferation but did not overlap with an ERα gene expression biomarker. Calculation of glyphosate binding energy to ERα predicts a weak and unstable interaction (-4.10 kcal mol -1 ) compared to estradiol (-25.79 kcal mol -1 ), which suggests that activation of this receptor by glyphosate is via a ligand-independent mechanism. Induction of ERE-luc expression by the PKA signalling activator IBMX shows that ERE-luc is responsive to ligand-independent activation, suggesting a possible mechanism of glyphosate-mediated activation. Our study reveals that glyphosate, but not other components present in GBHs, can activate ERα in vitro, albeit at relatively high concentrations. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    Science.gov (United States)

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  13. An Estrogen-Responsive Module in the Ventromedial Hypothalamus Selectively Drives Sex-Specific Activity in Females

    Directory of Open Access Journals (Sweden)

    Stephanie M. Correa

    2015-01-01

    Full Text Available Estrogen-receptor alpha (ERα neurons in the ventrolateral region of the ventromedial hypothalamus (VMHVL control an array of sex-specific responses to maximize reproductive success. In females, these VMHVL neurons are believed to coordinate metabolism and reproduction. However, it remains unknown whether specific neuronal populations control distinct components of this physiological repertoire. Here, we identify a subset of ERα VMHVL neurons that promotes hormone-dependent female locomotion. Activating Nkx2-1-expressing VMHVL neurons via pharmacogenetics elicits a female-specific burst of spontaneous movement, which requires ERα and Tac1 signaling. Disrupting the development of Nkx2-1+ VMHVL neurons results in female-specific obesity, inactivity, and loss of VMHVL neurons coexpressing ERα and Tac1. Unexpectedly, two responses controlled by ERα+ neurons, fertility and brown adipose tissue thermogenesis, are unaffected. We conclude that a dedicated subset of VMHVL neurons marked by ERα, NKX2-1, and Tac1 regulates estrogen-dependent fluctuations in physical activity and constitutes one of several neuroendocrine modules that drive sex-specific responses.

  14. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Evolution of ligand specificity in vertebrate corticosteroid receptors

    Directory of Open Access Journals (Sweden)

    Deitcher David L

    2011-01-01

    Full Text Available Abstract Background Corticosteroid receptors include mineralocorticoid (MR and glucocorticoid (GR receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC] to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus and the midshipman fish (Porichthys notatus, a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher, another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.

  16. Estrogen receptor α enhances the transcriptional activity of ETS-1 and promotes the proliferation, migration and invasion of neuroblastoma cell in a ligand dependent manner

    International Nuclear Information System (INIS)

    Cao, Peng; Feng, Fan; Dong, Guofu; Yu, Chunyong; Feng, Sizhe; Song, Erlin; Shi, Guobing; Liang, Yong; Liang, Guobiao

    2015-01-01

    It is well known that estrogen receptor α (ERα) participates in the pathogenic progress of breast cancer, hepatocellular carcinoma and head and neck squamous cell carcinoma. In neuroblastoma cells and related cancer clinical specimens, moreover, the ectopic expression of ERα has been identified. However, the detailed function of ERα in the proliferation of neuroblastoma cell is yet unclear. The transcriptional activity of ETS-1 (E26 transformation specific sequence 1) was measured by luciferase analysis. Western blot assays and Real-time RT-PCR were used to examine the expression of ERα, ETS-1 and its targeted genes. The protein-protein interaction between ERα and ETS-1 was determined by co-IP and GST-Pull down assays. The accumulation of ETS-1 in nuclear was detected by western blot assays, and the recruitment of ETS-1 to its targeted gene’s promoter was tested by ChIP assays. Moreover, SH-SY5Y cells’ proliferation, anchor-independent growth, migration and invasion were quantified using the MTT, soft agar or Trans-well assay, respectively. The transcriptional activity of ETS-1 was significantly increased following estrogen treatment, and this effect was related to ligand-mediated activation of ERα. The interaction between the ERα and ETS-1 was identified, and enhancement of ERα activation would up-regulate the ETS-1 transcription factor activity via modulating its cytoplasm/nucleus translocation and the recruitment of ETS-1 to its target gene’s promoter. Furthermore, treatment of estrogen increased proliferation, migration and invasion of neuroblastoma cells, whereas the antagonist of ERα reduced those effects. In this study, we provided evidences that activation of ERα promoted neuroblastoma cells proliferation and up-regulated the transcriptional activity of ETS-1. By investigating the role of ERα in the ETS-1 activity regulation, we demonstrated that ERα may be a novel ETS-1 co-activator and thus a potential therapeutic target in human

  17. The effect of estrogen on the expression of cartilage-specific genes in the chondrogenesis process of adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadeghi

    2015-01-01

    Full Text Available Background: During adolescence, sex hormones play an important role in regulating proliferation, differentiation, maturation, and the scheduled death of chondrocytes. Although some studies have reported the regulatory role of estrogen in the development and progression of cartilage, some of the mechanisms still remain unclear, including the role of estrogen in the expression of cartilage-specific genes in chondrogenesis process, which we cover in this study. Materials and Methods: In the present study, we used adipose-derived stem cells (ADSCs to differentiate into cartilage. Differentiated cartilage cells were used in the control (without estrogen E2 in the culture medium and experimental (with estrogen in the culture medium groups to evaluate the expression of type II collagen and aggrecan as chondrogenic genes markers, with -real-time polymerase chain reaction technique. Results: Our results indicated that estrogen leads to inhibition of type II collagen gene expression and reduction of aggrecan gene expression. Conclusion: Therefore, estrogen probably has negative effects on chondrogenesis process of ADSCs.

  18. Specific ability of sulfur-ligands on removal of 203Hg-labeled organomercury from hemoglobin in comparison with nitrogen-ligands

    International Nuclear Information System (INIS)

    Hojo, Yasuji; Sugiura, Yukio; Tanaka, Hisashi

    1975-01-01

    Removal of 203 Hg-labeled organomercurials, bound to sulfhydryl groups of hemoglobin, by various chelating agents was investigated by the use of equilibrium dialysis. Organomercurials employed were chlormerodrin, methylmercury, ethylmercury and phenylmercury compounds. Higher and more specific effects of the sulfur-ligands, such as penicillamine and glutathione, on removal of organomercurial were found as compared with those of the nitrogen-ligands such as EDTA, glycine and polymethylenediamines. Linear correlation was observed between the degree of organomercury elimination from hemoglobin and the stability constant (log K 1 ) of 1:1 organomercury complex in both the sulfur- and nitrogen-ligand systems and at the same value of log K 1 , the elimination-effect of sulfur-ligands was extremely greater than that of the nitrogen-ligands. The relationship between the average percentage of removal and the Taft's polar substituent constant of organic moiety of the metal was also linear among the organomercury compounds other than chlormerodrin. The average removal percentage by sulfur-ligands increased in the order, ethylmercury>methylmercury>phenylmercury, while that of the nitrogen-ligands was not different among the organomercurials investigated. In addition, direct ligand-exchange reaction between hemoglobin-SH and the ligand coordinating-atom (S or N) against organomercurials rather than Ssub(N2) reaction via the ternary complex, hemoglobin-S-RHg-ligand, is postulated. (auth.)

  19. MOLECULAR DOCKING OF COMPOUNDS FROM Chaetomium Sp. AGAINST HUMAN ESTROGEN RECEPTOR ALPHA IN SEARCHING ANTI BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Maywan Hariono

    2016-05-01

    Full Text Available A study on molecular docking-based virtual screening has been conducted to select virtual hit of compounds, reported its existence in fungal endophytes of Chaetomium sp. as cytotoxic agent of breast cancer. The ligands were docked into Human Estrogen Receptor alpha (HERa as the protein which regulates the breast cancer growth via estradiol-estrogen receptor binding intervention. The results showed that two compounds bearing xanthone and two compounds bearing benzonaphtyridinedione scaffolds were selected as virtual hit ligands for HERa leading to the conclusion that these compounds were good to be developed as anti breast cancer.

  20. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    Science.gov (United States)

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  1. Labeled receptor ligands for spect

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  2. Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor.

    Science.gov (United States)

    LaFrate, Andrew L; Gunther, Jillian R; Carlson, Kathryn E; Katzenellenbogen, John A

    2008-12-01

    Most patients with hormone-responsive breast cancer eventually develop resistance to traditional antiestrogens such as tamoxifen, and this has become a major obstacle in their treatment. We prepared and characterized the activity of a series of 16 guanylhydrazone small molecules that are designed to block estrogen receptor (ER) activity through a non-traditional mechanism, by directly interfering with coactivator binding to agonist-liganded ER. The inhibitory activity of these compounds was determined in cell-based transcription assays using ER-responsive reporter gene and mammalian two-hybrid assays. Several of the compounds gave IC(50) values in the low micromolar range. Two secondary assays were used to confirm that these compounds were acting through the proposed non-traditional mode of estrogen inhibitory action and not as conventional antagonists at the ligand binding site.

  3. Comparative Structural Analysis of ERa and ERb Bound to Selective Estrogen Agonists and Antagonists

    National Research Council Canada - National Science Library

    Greene, Geoffrey

    2001-01-01

    ...) complexed with receptor-selective estrogens and antiestrogens (SERMs) The crystallographic structures of ERalpha and ERbeta ligand binding domains complexed with cis-R,R-diethyl-tetrahydrochrysene-2,8-diol (R,R-THC...

  4. Comparative Structural Analysis of ERa and ERb Bound to Selective Estrogen Agonists and Antagonists

    National Research Council Canada - National Science Library

    Greene, Geoggrey

    2000-01-01

    ...) complexed with receptor-selective estrogens and antiestrogens (SERMs). The crystallographic structures of ERalpha and ERbeta ligand binding domains complexed with cis- R,R-diethyl-tetrahydrochrysene-2, 8 -diol (R,R-THC...

  5. Comparison of monoclonal antibodies and tritiated ligands for estrogen receptor assays in 241 breast cancer cytosols

    International Nuclear Information System (INIS)

    Goussard, J.; Lechevrel, C.; Martin, P.M.; Roussel, G.

    1986-01-01

    Estrogen receptor determinations have been performed on 241 cytosols from 160 breast cancer tumors using both radioactive ligands ([ 3 H]-estradiol, [3H]R2858) and monoclonal antibodies (Abbott ER-EIA Kit) to compare the two methods and to evaluate the clinical usefulness of the new immunological, simplified assay. Intra- and interassay reproducibility of the enzyme immunoassay (EIA) method was studied during a 6-month period on 35 standard curves with 4 different batches of monoclonal antibodies. Intraassay coefficients of variation studied on duplicates were smaller than 5% in most cases and reproducibility of the curves showed coefficients of variation lower than 10% except for standard 0 and 5 fmol/ml. Pooled cytosols used as control for the dextran coated charcoal method had interassay variation coefficients between 3.8 and 11.4%. Reproducibility has been studied on clinical specimens assayed twice at two different periods with either EIA or dextran coated charcoal methods. Slopes obtained were 1.05 and 0.96, respectively. A good stability of EIA results was obtained with protein concentrations in the range 4-0.15 mg/ml cytosol. No significant effects of dithiothreitol or monothioglycerol (1 mM) on EIA and dextran coated charcoal assay were observed. Eighty breast cancer cytosols were assayed with both EIA and Scatchard analysis. The slope of the regression curve obtained was 1.04 (r = 0.963). Cytosols were assayed by EIA and by a saturating concentration of tritiated ligand (5 nM). With 153 cytosols the EIA/5 nM slope was 1.34 (r = 0.978). This slope can be compared with the slope Scatchard/5 nM obtained with 90 cytosols: 1.29 (r = 0.985). Absence of cross-reactivity of monoclonal ER antibodies with progesterone receptor was observed

  6. Specific activity isolation and determination of radioactive Estrogenic Substances in White Clover

    International Nuclear Information System (INIS)

    Pupiales T, G.; Mejia M, G.

    1986-01-01

    Due to high number of leguminous that exhibit estrogenic activity, subterranean clover between others, which causes infertility in sheep that eat it. It has been considered that white clover (Trifolium repens, variety Ladino, is an specie of low estrogenic activity, however at Bogota City (Colombia) it has high estrogenic activity and may cause reduction in the dairy cattle fertility. Research done in the IAN (today Ingeominas) over this clover variety, showed that the radioactivity substances presents in the white clover have high activity for stradiol, affecting organs from mouse females; Isoflavonoids from vegetables have an anabolism and utero tropic action; estrogenic activity of clover leaves, was exponentially proportional to the amount of ultraviolet radioactivity, falling upon plants during leaves development stage

  7. Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC).

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Pocar, Paola; Kauffold, Johannes; Klonisch, Thomas

    2006-04-01

    Oviduct epithelial cells are important for the nourishment and survival of ovulated oocytes and early embryos, and they respond to the steroid hormones estrogen and progesterone. Endocrine-disrupting polyhalogenated aromatic hydrocarbons (PHAH) are environmental toxins that act in part through the ligand-activated transcription factor arylhydrocarbon receptor (AhR; dioxin receptor), and exposure to PHAH has been shown to decrease fertility. To investigate effects of PHAHs on the oviduct epithelium as a potential target tissue of dioxin-type endocrine disruptors, we have established a novel telomerase-immortalized oviduct porcine epithelial cell line (TERT-OPEC). TERT-OPEC exhibited active telomerase and the immunoreactive epithelial marker cytokeratin but lacked the stromal marker vimentin. TERT-OPEC contained functional estrogen receptor (ER)-alpha and AhR, as determined by the detection of ER-alpha- and AhR-specific target molecules. Treatment of TERT-OPEC with the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a significant increase in the production of the cytochrome P-450 microsomal enzyme CYP1A1. Activated AhR caused a downregulation of ER nuclear protein fraction and significantly decreased ER-signaling in TERT-OPEC as determined by ERE-luciferase transient transfection assays. In summary, the TCDD-induced and AhR-mediated anti-estrogenic responses by TERT-OPEC suggest that PHAH affect the predominantly estrogen-dependent differentiation of the oviduct epithelium within the fallopian tube. This action then alters the local endocrine milieu, potentially resulting in a largely unexplored cause of impaired embryonic development and female infertility.

  8. Yeast Estrogen Screen Assay as a Tool for Detecting Estrogenic Activity in Water Bodies

    Directory of Open Access Journals (Sweden)

    Mirjana Bistan

    2012-01-01

    Full Text Available The presence of endocrine-disrupting compounds in wastewater, surface water, groundwater and even drinking water has become a major concern worldwide, since they negatively affect wildlife and humans. Therefore, these substances should be effectively removed from effluents before they are discharged into surface water to prevent pollution of groundwater, which can be a source of drinking water. Furthermore, an efficient control of endocrine-disrupting compounds in wastewater based on biological and analytical techniques is required. In this study, a yeast estrogen screen (YES bioassay has been introduced and optimized with the aim to assess potential estrogenic activity of waters. First, assay duration, concentration of added substrate to the assay medium and wavelength used to measure the absorbance of the substrate were estimated. Several compounds, such as 17-β-estradiol, 17-α-ethinylestradiol, bisphenol A, nonylphenol, genisteine, hydrocortisone, dieldrin, atrazine, methoxychlor, testosterone and progesterone were used to verify its specificity and sensitivity. The optimized YES assay was sensitive and responded specifically to the selected estrogenic and nonestrogenic compounds in aqueous samples. Potential estrogenicity of influent and effluent samples of two wastewater treatment plants was assessed after the samples had been concentrated by solid-phase extraction (SPE procedure using Oasis® HLB cartridges and methanol as eluting solvent. Up to 90 % of relative estrogenic activity was detected in concentrated samples of influents to wastewater treatment plants and estrogenic activity was still present in the concentrated effluent samples. We found that the introduced YES assay is a suitable screening tool for monitoring the potential estrogenicity of effluents that are discharged into surface water.

  9. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.

    Science.gov (United States)

    Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles

    2018-02-12

    Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Identification and analysis of novel flavonoid agonists and antagonists for the AH and estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Nagy, S.; Rogers, J.; Denison, M. [Dept. of Environmental Toxicology, Univ. of California, Davis (United States); Nantz, M.; Kurth, M.; Springsteel, M. [Dept. of Chemistry, Univ. of California, Davis (United States)

    2004-09-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxicological effects in a diverse range of species, tissues, and cell types. The most studied effect is induction of gene expression, and, the majority of AhR responsive genes, such as cytochrome P4501A1 (CYP1A1), utilize AhR dependent mechanism of action. While halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons (PAHs) are the prototypical ligands of the Ah receptor, it has recently identified that the AhR is activated by a structurally diverse array of hydrophobic natural and synthetic chemicals. Given the structural diversity in AhR ligands, the physiochemical characteristics for high and low affinity ligands seems to be established. Environmental contaminants that can disrupt the endocrine homeostasis of an organism have also gained widespread attention in recent years and numerous chemicals have been identified as having either hormone or anti-hormone properties. However, like the AhR, the structural diversity and characteristics of endocrine disrupters that exert their action via nuclear receptors also seems to be depended on the estrogen receptor (ER). The flavonoids are a diverse family of chemicals commonly found in fruits and vegetables. Members of this family exert cytostatic, apoptotic, anti-inflammatory and anti-angiogenic activities. In addition, several flavonoids are potent modulators of both the expression and activities of specific cytochrome P450 genes/proteins and somel others have estrogenic and antiestrogenic activity. Accordingly flavonoids have attracted attention as possible chemoprotective or chemotherapeutic agents. We have previously developed and analyzed a novel chemical library of flavonoids which contained {proportional_to}200 compounds. The ability of these compounds to activate and/or inhibit AhR- and ER- dependent gene expression was examined by using our recently developed AhR- and ER

  11. Labeled estrogens as mammary tumor probes

    International Nuclear Information System (INIS)

    Feenstra, A.

    1981-01-01

    In this thesis estrogens labeled with a gamma or positron emitting nuclide, called estrogen-receptor binding radiopharmaceuticals are investigated as mammary tumour probes. The requirements for estrogen-receptor binding radiopharmaceuticals are formulated and the literature on estrogens labeled for this purpose is reviewed. The potential of mercury-197/197m and of carbon-11 as label for estrogen-receptor binding radiopharmaceuticals is investigated. The synthesis of 197 Hg-labeled 4-mercury-estradiol and 2-mercury-estradiol and their properties in vitro and in vivo are described. It appears that though basically carbon-11 labeled compounds are very promising as mammary tumour probes, their achievable specific activity has to be increased. (Auth.)

  12. Clinical and Genomic Crosstalk between Glucocorticoid Receptor and Estrogen Receptor α In Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Jeffery M. Vahrenkamp

    2018-03-01

    Full Text Available Summary: Steroid hormone receptors are simultaneously active in many tissues and are capable of altering each other’s function. Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus, and their ligands have opposing effects on uterine growth. In endometrial tumors with high ER expression, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic-binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is altered significantly by estradiol with GR recruited to ER-bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol but with additional regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. : Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus and have differential effects on growth. Vahrenkamp et al. find that expression of both receptors is associated with poor outcome in endometrial cancer and that simultaneous induction of ER and GR leads to molecular interplay between the receptors. Keywords: estrogen receptor, glucocorticoid receptor, endometrial cancer

  13. ERE environment- and cell type-specific transcriptional effects of estrogen in normal endometrial cells.

    Science.gov (United States)

    Lascombe, I; Sallot, M; Vuillermoz, C; Weisz, A; Adessi, G L; Jouvenot, M

    1998-04-30

    Our previous results have suggested a repression of E2 (17beta-estradiol) effect on the c-fos gene of cultured guinea-pig endometrial cells. To investigate this repression, the expression of three human c-fos gene recombinants, pFC1-BL (-2250/+41), pFC2-BL (-1400/+41) and pFC2E (-1300/-1050 and -230/+41), known to be E2-responsive in Hela cells, was studied in stromal (SC) and glandular epithelial cells (GEC). In both cellular types, pFC1-BL was not induced by E2, even in the presence of growth factors or co-transfected estrogen receptor. The pattern of pFC2-BL and pFC2E expression was strikingly different and depended on the cellular type: pFC2-BL and pFC2E induction was restricted to the glandular epithelial cells and did not occur in the SCs. We argue for a repression of E2 action which is dependent on the estrogen-responsive cis-acting element (ERE) environment and also cell type-specific involving DNA/protein and/or protein/protein interactions with cellular type-specific factors.

  14. Tamoxifen-elicited uterotrophy: cross-species and cross-ligand analysis of the gene expression program

    Directory of Open Access Journals (Sweden)

    Forgacs Agnes L

    2009-04-01

    Full Text Available Abstract Background Tamoxifen (TAM is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level in vivo.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge. Results A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns. Conclusion Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.

  15. Estrogenic Activities of Fatty Acids and a Sterol Isolated from Royal Jelly

    Science.gov (United States)

    Isohama, Yoichiro; Maruyama, Hiroe; Yamada, Yayoi; Narita, Yukio; Ohta, Shozo; Araki, Yoko; Miyata, Takeshi; Mishima, Satoshi

    2008-01-01

    We have previously reported that royal jelly (RJ) from honeybees (Apis mellifera) has weak estrogenic activity mediated by interaction with estrogen receptors that leads to changes in gene expression and cell proliferation. In this study, we isolated four compounds from RJ that exhibit estrogenic activity as evaluated by a ligand-binding assay for the estrogen receptor (ER) β. These compounds were identified as 10-hydroxy-trans-2-decenoic acid, 10-hydroxydecanoic acid, trans-2-decenoic acid and 24-methylenecholesterol. All these compounds inhibited binding of 17β-estradiol to ERβ, although more weakly than diethylstilbestrol or phytoestrogens. However, these compounds had little or no effect on the binding of 17β-estradiol to ERα. Expression assays suggested that these compounds activated ER, as evidenced by enhanced transcription of a reporter gene containing an estrogen-responsive element. Treatment of MCF-7 cells with these compounds enhanced their proliferation, but concomitant treatment with tamoxifen blocked this effect. Exposure of immature rats to these compounds by subcutaneous injection induced mild hypertrophy of the luminal epithelium of the uterus, but was not associated with an increase in uterine weight. These findings provide evidence that these compounds contribute to the estrogenic effect of RJ. PMID:18830443

  16. Estrogenic Activities of Fatty Acids and a Sterol Isolated from Royal Jelly

    Directory of Open Access Journals (Sweden)

    Kazu-Michi Suzuki

    2008-01-01

    Full Text Available We have previously reported that royal jelly (RJ from honeybees (Apis mellifera has weak estrogenic activity mediated by interaction with estrogen receptors that leads to changes in gene expression and cell proliferation. In this study, we isolated four compounds from RJ that exhibit estrogenic activity as evaluated by a ligand-binding assay for the estrogen receptor (ER β. These compounds were identified as 10-hydroxy-trans-2-decenoic acid, 10-hydroxydecanoic acid, trans-2-decenoic acid and 24-methylenecholesterol. All these compounds inhibited binding of 17β-estradiol to ERβ, although more weakly than diethylstilbestrol or phytoestrogens. However, these compounds had little or no effect on the binding of 17β-estradiol to ERα. Expression assays suggested that these compounds activated ER, as evidenced by enhanced transcription of a reporter gene containing an estrogen-responsive element. Treatment of MCF-7 cells with these compounds enhanced their proliferation, but concomitant treatment with tamoxifen blocked this effect. Exposure of immature rats to these compounds by subcutaneous injection induced mild hypertrophy of the luminal epithelium of the uterus, but was not associated with an increase in uterine weight. These findings provide evidence that these compounds contribute to the estrogenic effect of RJ.

  17. Estrogen and the female heart.

    Science.gov (United States)

    Knowlton, A A; Korzick, D H

    2014-05-25

    Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system. Published by Elsevier Ireland Ltd.

  18. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Imaobong Etti

    2016-06-01

    Full Text Available The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of −12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8–6.9 µM in comparison to a reference standard Tamoxifen (18.9–24.1 µM within the tested time point (24–72 h. The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules.

  19. Distinct Effects of Estrogen on Mouse Maternal Behavior: The Contribution of Estrogen Synthesis in the Brain

    Science.gov (United States)

    Murakami, Gen

    2016-01-01

    Estrogen surge following progesterone withdrawal at parturition plays an important role in initiating maternal behavior in various rodent species. Systemic estrogen treatment shortens the latency to onset of maternal behavior in nulliparous female rats that have not experienced parturition. In contrast, nulliparous laboratory mice show rapid onset of maternal behavior without estrogen treatment, and the role of estrogen still remains unclear. Here the effect of systemic estrogen treatment (for 2 h, 1 day, 3 days, and 7 days) after progesterone withdrawal was examined on maternal behavior of C57BL/6 mice. This estrogen regimen led to different effects on nursing, pup retrieval, and nest building behaviors. Latency to nursing was shortened by estrogen treatment within 2 h. Moreover, pup retrieval and nest building were decreased. mRNA expression was also investigated for estrogen receptor α (ERα) and for genes involved in regulating maternal behavior, specifically, the oxytocin receptor (OTR) and vasopressin receptor in the medial amygdala (MeA) and medial preoptic area (MPOA). Estrogen treatment led to decreased ERα mRNA in both regions. Although OTR mRNA was increased in the MeA, OTR and vasopressin receptor mRNA were reduced in the MPOA, showing region-dependent transcription regulation. To determine the mechanisms for the actions of estrogen treatment, the contribution of estrogen synthesis in the brain was examined. Blockade of estrogen synthesis in the brain by systemic letrozole treatment in ovariectomized mice interfered with pup retrieval and nest building but not nursing behavior, indicating different contributions of estrogen synthesis to maternal behavior. Furthermore, letrozole treatment led to an increase in ERα mRNA in the MeA but not in the MPOA, suggesting that involvement of estrogen synthesis is brain region dependent. Altogether, these results suggest that region-dependent estrogen synthesis leads to differential transcriptional activation due

  20. Estrogens and Cognition: Friends or Foes?

    Science.gov (United States)

    Korol, Donna L.; Pisani, Samantha L.

    2015-01-01

    Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings that show the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. PMID:26149525

  1. Estrogen, Estrogen Receptor and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li-Han Hsu

    2017-08-01

    Full Text Available Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR, and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.

  2. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  3. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    Science.gov (United States)

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  4. Gene Activation by Antiestrogens Used in Breast Cancer Therapy Via the Interaction of Estrogen Receptor and AP-1

    National Research Council Canada - National Science Library

    Kushner, Peter

    1999-01-01

    .... We examined the role of ER transactivation functions (AF-1 and AF-2) in these responses. Estrogen activation requires ER transactivation functions, and may be obtained with the isolated ER alpha ligand binding domain...

  5. Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens

    Science.gov (United States)

    Gong, Ping; Madak-Erdogan, Zeynep; Li, Jilong; Cheng, Jianlin; Greenlief, C. Michael; Helferich, William G.; Katzenellenbogen, John A.

    2014-01-01

    The estrogen receptors (ERs) ERα and ERβ mediate the actions of endogenous estrogens as well as those of botanical estrogens (BEs) present in plants. BEs are ingested in the diet and also widely consumed by postmenopausal women as dietary supplements, often as a substitute for the loss of endogenous estrogens at menopause. However, their activities and efficacies, and similarities and differences in gene expression programs with respect to endogenous estrogens such as estradiol (E2) are not fully understood. Because gene expression patterns underlie and control the broad physiological effects of estrogens, we have investigated and compared the gene networks that are regulated by different BEs and by E2. Our aim was to determine if the soy and licorice BEs control similar or different gene expression programs and to compare their gene regulations with that of E2. Gene expression was examined by RNA-Seq in human breast cancer (MCF7) cells treated with control vehicle, BE or E2. These cells contained three different complements of ERs, ERα only, ERα+ERβ, or ERβ only, reflecting the different ratios of these two receptors in different human breast cancers and in different estrogen target cells. Using principal component, hierarchical clustering, and gene ontology and interactome analyses, we found that BEs regulated many of the same genes as did E2. The genes regulated by each BE, however, were somewhat different from one another, with some genes being regulated uniquely by each compound. The overlap with E2 in regulated genes was greatest for the soy isoflavones genistein and S-equol, while the greatest difference from E2 in gene expression pattern was observed for the licorice root BE liquiritigenin. The gene expression pattern of each ligand depended greatly on the cell background of ERs present. Despite similarities in gene expression pattern with E2, the BEs were generally less stimulatory of genes promoting proliferation and were more pro-apoptotic in their

  6. Identification of choriogenin cis-regulatory elements and production of estrogen-inducible, liver-specific transgenic Medaka.

    Science.gov (United States)

    Ueno, Tetsuro; Yasumasu, Shigeki; Hayashi, Shinji; Iuchi, Ichiro

    2004-07-01

    Choriogenins (chg-H, chg-L) are precursor proteins of egg envelope of medaka and synthesized in the spawning female liver in response to estrogen. We linked a gene construct chg-L1.5 kb/GFP (a 1.5 kb 5'-upstream region of the chg-L gene fused with a green fluorescence protein (GFP) gene) to another construct emgb/RFP (a cis-regulatory region of embryonic globin gene fused with an RFP gene), injected the double fusion gene construct into 1- or 2-cell-stage embryos, and selected embryos expressing the RFP in erythroid cells. From the embryos, we established two lines of chg-L1.5 kb/GFP-emgb/RFP-transgenic medaka. The 3-month-old spawning females and estradiol-17beta (E2)-exposed males displayed the liver-specific GFP expression. The E2-dependent GFP expression was detected in the differentiating liver of the stage 37-38 embryos. In addition, RT-PCR and whole-mount in situ hybridization showed that the E2-dependent chg expression was found in the liver of the stage 34 embryos of wild medaka, suggesting that such E2-dependency is achieved shortly after differentiation of the liver. Analysis using serial deletion mutants fused with GFP showed that the region -426 to -284 of the chg-L gene or the region -364 to -265 of the chg-H gene had the ability to promote the E2-dependent liver-specific GFP expression of its downstream gene. Further analyses suggested that an estrogen response element (ERE) at -309, an ERE half-site at -330 and a binding site for C/EBP at -363 of the chg-L gene played important roles in its downstream chg-L gene expression. In addition, this transgenic medaka may be useful as one of the test animals for detecting environmental estrogenic steroids.

  7. Estrogens and cognition: Friends or foes?: An evaluation of the opposing effects of estrogens on learning and memory.

    Science.gov (United States)

    Korol, Donna L; Pisani, Samantha L

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The effects of estrogen receptors α- and β-specific agonists and antagonists on cell proliferation and energy metabolism in human bone cell line.

    Science.gov (United States)

    Somjen, D; Katzburg, S; Sharon, O; Grafi-Cohen, M; Knoll, E; Stern, N

    2011-02-01

    In cultured human osteoblasts estradiol-17β (E2) modulated DNA synthesis, the specific activity of creatine kinase BB (CK), 12 and 15 lipoxygenase (LO) mRNA expression and formation of 12- and 15-hydroxyeicosatetraenoic acid (HETE). We now investigate the response of human bone cell line (SaOS2) to phytoestrogens and estrogen receptors (ER)-specific agonists and antagonists. Treatment of SaSO2 with E2, 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN; ERβ-specific agonist), 4,4',4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl] tris-phenol (PPT; ERα-specific agonist), biochainin A (BA), daidzein (D), genistein (G) and raloxifene (Ral) showed increased DNA synthesis and CK. Ral inhibited completely all stimulations except DPN and to some extent D. The ERα-specific antagonist methyl-piperidino-pyrazole (MPP) and the ERβ-specific antagonist 4-[2-phenyl-5,7-bis (tri-fluoro-methyl) pyrazolo [1,5-a]pyrimidin-3-yl] phenol (PTHPP) inhibited DNA synthesis, CK and reactive oxygen species (ROS) formation induced by estrogens according to their receptors affinity. The LO inhibitor baicaleine inhibited only E2, DPN and G's effects. E2 and Ral unlike all other compounds had no effect on ERα mRNA expression, while ERβ mRNA expression was stimulated by all compounds. All compounds modulated the expression of 12LO and 15LO mRNA, except E2, PPT and Ral for 12LO, and 12- and 15-HETE productions and stimulated ROS formation which was inhibited by NADPH oxidase inhibitors diphenyleneiodonium chloride (DPI) and N-acetyl cysteine and the estrogen inhibitor ICI. DPI did not affect hormonal-induced DNA and CK. In conclusion, we provide evidence for the separation of mediation via ERα and ERβ pathways in the effects of estrogenic compounds on osteoblasts, but the role of LO/HETE/ROS is unclear. Copyright © 2010 Wiley-Liss, Inc.

  9. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    Science.gov (United States)

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.

  10. Gender, Estrogen, and Obliterative Lesions in the Lung

    Directory of Open Access Journals (Sweden)

    Hamza Assaggaf

    2017-01-01

    Full Text Available Gender has been shown to impact the prevalence of several lung diseases such as cancer, asthma, chronic obstructive pulmonary disease, and pulmonary arterial hypertension (PAH. Controversy over the protective effects of estrogen on the cardiopulmonary system should be of no surprise as clinical trials of hormone replacement therapy have failed to show benefits observed in experimental models. Potential confounders to explain these inconsistent estrogenic effects include the dose, cellular context, and systemic versus local tissue levels of estrogen. Idiopathic PAH is disproportionately found to be up to 4 times more common in females than in males; however, estrogen levels cannot explain why males develop PAH sooner and have poorer survival. Since the sex steroid hormone 17β-estradiol is a mitogen, obliterative processes in the lung such as cell proliferation and migration may impact the growth of pulmonary tissue or vascular cells. We have reviewed evidence for biological differences of sex-specific lung obliterative lesions and highlighted cell context-specific effects of estrogen in the formation of vessel lumen-obliterating lesions. Based on this information, we provide a biological-based mechanism to explain the sex difference in PAH severity as well as propose a mechanism for the formation of obliterative vascular lesions by estrogens.

  11. Mechanism of estrogen activation of c-myc oncogene expression.

    Science.gov (United States)

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  12. Unusual estrogen-binding liver protein: additional data on the structural determinants of androgenic ligands

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Shchelkunova, T.A.; Rozen, V.B.

    1986-01-01

    The relative competitive activity of a number of androstane derivatives was determined according to the 50% displacement of [ 3 H] estradiol from complexes with an unusual estrogen-binding protein (UEBP) of the liver of male rats. It was shown that: (1) the bulk of the energy of the bond of the steroid to protein is due to hydrophobic interactions; (2) the real ability to form specific complexes with the UEBP at androgen concentrations close to the physiological is determined by the 17β-hydroxyl and is enhanced by the 3α- or 2α-hydroxy group; (3) the 3- and 17-keto groups weaken the interaction of androgens with the UEBP; (4) cis-coupling of the A and B rings in the molecule of androgens does not prevent the binding of the steroids to protein. These data substantially refine the concepts of the mechanisms of the interaction of androgens with the UEBP and may promote an elucidation of the physiological function of this protein

  13. Functional characterization of estrogen receptor subtypes, ERα and ERβ, mediating vitellogenin production in the liver of rainbow trout

    International Nuclear Information System (INIS)

    Leanos-Castaneda, Olga; Kraak, Glen van der

    2007-01-01

    The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ERα and ERβ, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ERα selective agonist, methyl-piperidino-pyrazole (MPP) an ERα selective antagonist, and diarylpropionitrile (DPN) an ERβ selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbow trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [ 3 H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ERα could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ERβ. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ERα. On the other hand, once blocked ERα with MPP, the only manifestation of agonist activity of estradiol would be achieved via ERβ. In conclusion, the present results indicate that vitellogenin production is mainly mediated through ERβ, implying, furthermore

  14. A RIKILT yeast estrogen bioassay (REA) for estrogen residue detection in urine of calves experimentally treated with 17ß-estradiol

    NARCIS (Netherlands)

    Divari, S.; Maria, De R.; Cannizzo, F.T.; Spada, F.; Mulasso, C.; Bovee, T.F.H.; Capra, P.; Leporati, M.; Biolatti, B.

    2010-01-01

    17ß-Estradiol is one of the most powerful sex steroids illegally used in bovine production. The objective of this study was to evaluate the application and the specificity of the RIKILT yeast estrogen bioassay (REA) for the detection of molecules with estrogenic activities in the urine of calves

  15. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats

    Directory of Open Access Journals (Sweden)

    Mahó Sándor

    2011-07-01

    Full Text Available Abstract Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα and β (ERβ. These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2, ERα agonist 16α-lactone-estradiol (16α-LE2 and ERβ agonist diarylpropionitrile (DPN, or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress

  16. UJI IN SILICO SENYAWA COUMESTROL SEBAGAI LIGAN RESEPTOR ESTROGEN ALFA

    Directory of Open Access Journals (Sweden)

    Felicia Felicia

    2015-11-01

    Full Text Available Breast cancer is a cancer caused by uncontrolled cell growth at breast tissue. One of the most common triggers of breast cancer is overexpression of estrogen receptor alpha (ERα. This research’s goal is to test the ability of coumestrol as the ligand of ERα with in silico method and to discover coumestrol’s binding pose inside the ERα’s binding pocket. Coumestrol’s ability as ERα’s ligand was tested using structure-based virtual screening (SVBS method by Setiawati et al. (2014 that had been modified by Istyastono (2015. Results analysis was done using decision tree generated from recursive partition and regression tree method (RPART. If coumestrol is a ligand based on decision tree, it is concluded that coumestrol is active as ligand of ERα. At the end of analysis, coumestrol’s pose inside ERα’s binding pocket was visualized using MacPyMol. From the test acknowledged that the smallest ChemPLP value of coumestrol’s pose was -83.1487. Coumestrol interacts with GLY420, ARG394, and GLU353 using hydrogen bonds. However, coumestrol were perceived as decoy according to decision tree. Hence, coumestrol could not be recognized as ERα’s ligand by the protocol. Therefore, development of proper protocol to indentify ligand for ERα is required.

  17. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.

    Science.gov (United States)

    Sikora, Matthew J; Jacobsen, Britta M; Levine, Kevin; Chen, Jian; Davidson, Nancy E; Lee, Adrian V; Alexander, Caroline M; Oesterreich, Steffi

    2016-09-20

    Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. WNT4 drives a novel signaling pathway in ILC cells, with a

  18. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  19. Expression and function of the human estrogen receptor in yeast

    International Nuclear Information System (INIS)

    White, J.H.; Metzger, D.; Chambon, P.

    1988-01-01

    Gene expression in eukaryotes is regulated at many levels. Moreover, there is increasing evidence that the basic control mechanisms of transcription initiation have been conserved across the range of eukaryotes from yeast to man. In vertebrates, the nuclear receptors, whose activity is dependent on the binding of specific ligands, stimulate transcription by interacting with specific cis-acting sequences and display all of the hallmarks of inducible enhancer factors. Alignment of their amino acid sequences indicates that they are composed of a series of conserved domains. The domain structure of the human estrogen receptor (hER) is typical of receptor proteins. Region C, containing two putative zinc fingers, comprises the DNA-binding domain responsible for specific recognition of estrogen response elements (ERE). Region E contains the hormone-binding domain and domain(s) responsible for transcription activation. A mutant of the hER, called HE15, which lacks the hormone-binding domain, binds DNA in vivo and in vitro but activates transcription only poorly in a constitutive manner in vivo in HeLa cells. A series of studies have demonstrated that the hormone- and DNA-binding domains of the nuclear receptors function independently. Chimeric proteins consisting of the DNA-binding domain of yeast GAL4 coupled to the hormone-binding domains of either the hER or glucocorticoid receptor element (GRE) will stimulate transcription in HeLa cells when bound to a UAS. Taken together, these results demonstrate that the hER and other nuclear receptors, as well as GAL4 and GCN4 proteins of yeast, consist of discrete and separable DNA-binding and transcription-activation functions. To investigate these striking parallels further, the authors have expressed the hER in the yeast Saccharomyces cerevisiae and have analyzed its hormone- and DNA-binding properties in vitro and its ability to stimulate transcription in vivo

  20. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens.

    Science.gov (United States)

    Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping

    2014-05-15

    In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Bokoch, Michael P; Zou, Yaozhong; Rasmussen, Søren Gøgsig Faarup

    2010-01-01

    extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known...... conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive...... about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic...

  2. Estrogen signaling in the proliferative endometrium: implications in endometriosis

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Pereira da Costa e Silva

    2016-02-01

    Full Text Available SUMMARY Even though the physiological role of estrogen in the female reproductive cycle and endometrial proliferative phase is well established, the signaling pathways by which estrogen exerts its action in the endometrial tissue are still little known. In this regard, advancements in cell culture techniques and maintenance of endometrial cells in cultures enabled the discovery of new signaling mechanisms activated by estrogen in the normal endometrium and in endometriosis. This review aims to present the recent findings in the genomic and non-genomic estrogen signaling pathways in the proliferative human endometrium specifically associated with the pathogenesis and development of endometriosis.

  3. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-01-01

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen

  4. Receptor-based high-throughput screening and identification of estrogens in dietary supplements using bioaffinity liquid-chromatography ion mobility mass spectrometry.

    Science.gov (United States)

    Aqai, Payam; Blesa, Natalia Gómez; Major, Hilary; Pedotti, Mattia; Varani, Luca; Ferrero, Valentina E V; Haasnoot, Willem; Nielen, Michel W F

    2013-11-01

    A high-throughput bioaffinity liquid chromatography-mass spectrometry (BioMS) approach was developed and applied for the screening and identification of recombinant human estrogen receptor α (ERα) ligands in dietary supplements. For screening, a semi-automated mass spectrometric ligand binding assay was developed applying (13)C2, (15) N-tamoxifen as non-radioactive label and fast ultra-high-performance-liquid chromatography-electrospray ionisation-triple-quadrupole-MS (UPLC-QqQ-MS), operated in the single reaction monitoring mode, as a readout system. Binding of the label to ERα-coated paramagnetic microbeads was inhibited by competing estrogens in the sample extract yielding decreased levels of the label in UPLC-QqQ-MS. The label showed high ionisation efficiency in positive electrospray ionisation (ESI) mode, so the developed BioMS approach is able to screen for estrogens in dietary supplements despite their poor ionisation efficiency in both positive and negative ESI modes. The assay was performed in a 96-well plate, and all these wells could be measured within 3 h. Estrogens in suspect extracts were identified by full-scan accurate mass and collision-cross section (CCS) values from a UPLC-ion mobility-Q-time-of-flight-MS (UPLC-IM-Q-ToF-MS) equipped with a novel atmospheric pressure ionisation source. Thanks to the novel ion source, this instrument provided picogram sensitivity for estrogens in the negative ion mode and an additional identification point (experimental CCS values) next to retention time, accurate mass and tandem mass spectrometry data. The developed combination of bioaffinity screening with UPLC-QqQ-MS and identification with UPLC-IM-Q-ToF-MS provides an extremely powerful analytical tool for early warning of ERα bioactive compounds in dietary supplements as demonstrated by analysis of selected dietary supplements in which different estrogens were identified.

  5. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    Science.gov (United States)

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Estrogenic effects of several BPA analogs in the developing zebrafish brain

    Directory of Open Access Journals (Sweden)

    Joel eCano-Nicolau

    2016-03-01

    Full Text Available Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA. The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4-day or 7-day post-fertilization (dpf zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B, expressed in the brain, using three different in situ/in vivo strategies: 1 Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols ; 2 Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus; and 3 Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα. Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP did not show estrogenic activity in our model.

  7. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media

    International Nuclear Information System (INIS)

    Oberley, T.D.; Lauchner, L.J.; Pugh, T.D.; Gonzalez, A.; Goldfarb, S.; Li, S.A.; Li, J.J.

    1989-01-01

    It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17β-estradiol or diethylstilbestrol. A similar 3-fold increase in cell number was also seen at 1 nM 17β-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17β-estradiol. The proliferation effect of estrogens on proximal tubular cell growth appears to be species specific since 17β-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17β-estradiol, [ 3 H]thymidine labeling of hamster tubular cells was enhanced 3-fold. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney

  8. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    International Nuclear Information System (INIS)

    Mann, Monica; Cortez, Valerie; Vadlamudi, Ratna K.

    2011-01-01

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications

  9. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  10. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  11. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estrogenic responses

    Energy Technology Data Exchange (ETDEWEB)

    Romkes, M.

    1988-01-01

    The competitive receptor binding affinities of thirteen 2-substituted-3,7,8-trichlorodibenzo-p-dioxins to hepatic cytosol from rat, mouse, guinea pig and hamster were determined using ({sup 3}H)-2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) as the radio-ligand. Significant species-dependent structural differences in the Ah receptor ligand binding site were observed and support the heterologous nature of the receptor protein. The interactions of 2,3,7,8-TCDD and estrogenic responses in the female rat and human breast cancer cells were also investigated. Cotreatment of 25-day-old female Long Evans rats with 20 or 80 ug/kg of 2,3,7,8-TCDD resulted in a dose-dependent decrease in both uterine and hepatic estrogen receptor (ER) levels. Moreover, these levels are decreased for at least ten days and appear to be related to the tissue persistence of 2,3,7,8-TCDD. In contrast, estradiol elevated uterine and hepatic ER levels and increased uterine wet weights. Cotreatment of the rats with 2,3,7,8-TCDD and estradiol resulted in hepatic and uterine ER levels which were comparable to those observed in the control rats; in addition, 2,3,7,8-TCDD also antagonized the effects of estradiol-induced uterine wet weights.

  12. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    Science.gov (United States)

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  13. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  14. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives.

    Science.gov (United States)

    Barton, Matthias; Filardo, Edward J; Lolait, Stephen J; Thomas, Peter; Maggiolini, Marcello; Prossnitz, Eric R

    2018-02-01

    Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial

  15. Steroids as immunochemical probes; thermodynamic and kinetic data with special regards to the 'bridge problem' in estrogen radioimmunoassay

    International Nuclear Information System (INIS)

    Kuss, E.; Dirr, W.; Goebel, R.; Gloning, K.; Hoetzinger, H.; Link, M.; Thoma, H.

    1977-01-01

    The binding sites of antibodies raised against estrogen-6-one-oxime-0-carboxymethyl-derivatives attached to epsilon-amino groups of lysine residues in albumin were mapped thermodynamically and kinetically by reactions with labelled and unlabelled haptens. By equilibrium dialysis Gibbs energies were found to amount to about -14 kcal/mol, to be rather uniformly distributed, and to be predominantly enthalpy contributed. From unlabeled haptens their potencies to inhibit binding of labeled ligands were determined, which values are related to their binding energies. The structures of the series of systematically varied unlabelled haptens approached increasingly the structure of the immunodeterminant. Ranking the inhibition potencies of this series revealed that estrogen-6-one exhibited the highest potency, even higher than the inhibition potency of the estrogen-6-one-oxime-0-carboxymethyl-lysine derivative, which is obviously most closely related to the immunodeterminant group. To prove whether the inhibition potencies were actually restricted by the size of the antibody-binding site, both components of the equilibrium constants were determined, the association rate constants and the dissociation rate constants. Structure dependent variation of both indicated that explanation of the binding processes in terms of only the equilibrium constants was insufficient. Association reaction rates decreased with increasing length of the hapten molecules. Inversely dissociation rates decreased, but the slowest dissociation rate was observed on complexes of antibodies with estrogen-6-one-oxime-0-methylether. Further lengthening of the hapten had no effect on the dissociation rate. It was concluded that this ligand reflects the size of antibody binding site. (orig.) [de

  16. Genetic Variants of GPER/GPR30, a Novel Estrogen-Related G Protein Receptor, Are Associated with Human Seminoma

    Directory of Open Access Journals (Sweden)

    Nicolas Chevalier

    2014-01-01

    Full Text Available Testicular germ cell tumors (TGCTs are the most common solid cancers in young men, with an increasing incidence over several years. However, their pathogenesis remains a matter of debate. Some epidemiological data suggest the involvement of both environmental and genetic factors. We reported two distinct effects of estrogens and/or xeno-estrogens on in vitro human seminoma-derived cells proliferation: (1 an antiproliferative effect via a classical estrogen receptor beta-dependent pathway, and (2 a promotive effect via a non-classical membrane G-protein-coupled receptor, GPR30/GPER, which is only overexpressed in seminomas, the most common TGCT. In order to explain this overexpression, we investigated the possible association of polymorphisms in the GPER gene by using allele-specific tetra-primer polymerase chain reaction performed on tissue samples from 150 paraffin-embedded TGCT specimens (131 seminomas, 19 non seminomas. Compared to control population, loss of homozygous ancestral genotype GG in two polymorphisms located in the promoter region of GPER (rs3808350 and rs3808351 was more frequent in seminomas but not in non-seminomas (respectively, OR = 1.960 (1.172–3.277 and 7.000 (2.747–17.840; p < 0.01. These polymorphisms may explain GPER overexpression and represent a genetic factor of susceptibility supporting the contribution of environmental GPER ligands in testicular carcinogenesis.

  17. The penis: a new target and source of estrogen in male reproduction.

    Science.gov (United States)

    Mowa, C N; Jesmin, S; Miyauchi, T

    2006-01-01

    In the past decade, interest and knowledge in the role of estrogen in male reproduction and fertility has gained significant momentum. More recently, the cellular distribution and activity of estrogen receptors (alpha and beta)(ER) and aromatase (estrogen synthesis) has been reported in the penis, making the penis the latest "frontier" in the study of estrogen in male reproduction. ER and aromatase are broadly and abundantly expressed in various penile compartments and cell types (erectile tissues, urethral epithelia, vascular and neuronal cells), suggesting the complexity and significance of the estrogen-ER system in penile events. Unraveling this complexity is important and will require utilization of the various resources that are now at our disposal including, animal models and human lacking or deficient in ER and aromatase and the use of advanced and sensitive techniques. Some of the obvious areas that require our attention include: 1) a comprehensive mapping of ER-alpha and -beta cellular expression in the different penile compartments and subpopulations of cells, 2) delineation of the specific roles of estrogen in the different subpopulations of cells, 3) establishing the relationship of the estrogen-ER system with the androgen-androgen receptor system, if any, and 4) characterizing the specific penile phenotypes in human and animals lacking or deficient in estrogen and ER. Some data generated thus far, although preliminary, appear to challenge the long held dogma that, overall, androgens have a regulatory monopoly of penile development and function.

  18. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation

    International Nuclear Information System (INIS)

    Nanao-Hamai, Michiko; Son, Bo-Kyung; Hashizume, Tsuyoshi; Ogawa, Sumito; Akishita, Masahiro

    2016-01-01

    Vascular calcification is one of the major complications of cardiovascular disease and is an independent risk factor for myocardial infarction and cardiac death. Postmenopausal women have a higher prevalence of vascular calcification compared with premenopausal women, suggesting protective effects of estrogen (E2). However, the underlying mechanisms of its beneficial effects remain unclear. In the present study, we examined the inhibitory effects of E2 on vascular smooth muscle cell (VSMC) calcification, and found that growth arrest-specific gene 6 (Gas6), a crucial molecule in vascular calcification, is transactivated by estrogen receptor α (ERα) in response to E2. In human aortic smooth muscle cells, physiological levels of E2 inhibited inorganic phosphate (Pi)-induced calcification in a concentration-dependent manner. This inhibitory effect was significantly abolished by MPP, an ERα-selective antagonist, and ERα siRNA, but not by PHTPP, an ERβ-selective antagonist, and ERβ siRNA, implicating an ERα-dependent action. Apoptosis, an essential process for Pi-induced VSMC calcification, was inhibited by E2 in a concentration-dependent manner and further, MPP abolished this inhibition. Mechanistically, E2 restored the inhibited expression of Gas6 and phospho-Akt in Pi-induced apoptosis through ERα. Furthermore, E2 significantly activated Gas6 transcription, and MPP abrogated this E2-dependent Gas6 transactivation. E2-BSA failed to activate Gas6 transcription and to inhibit Ca deposition in VSMC, suggesting beneficial actions of genomic signaling by E2/nuclear ERα. Taken together, these results indicate that E2 exerts inhibitory effects on VSMC apoptosis and calcification through ERα-mediated Gas6 transactivation. These findings indicate a potential therapeutic strategy for the prevention of vascular calcification, especially in postmenopausal women. - Highlights: • E2 inhibits Pi-induced calcification in vascular smooth muscles cells. • E2 inhibits Pi

  19. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    Science.gov (United States)

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  20. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR).

    Science.gov (United States)

    Wolf, Steffen; Jovancevic, Nikolina; Gelis, Lian; Pietsch, Sebastian; Hatt, Hanns; Gerwert, Klaus

    2017-11-22

    We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.

  1. A trans-acting enhancer modulates estrogen-mediated transcription of reporter genes in osteoblasts.

    Science.gov (United States)

    Sasaki-Iwaoka, H; Maruyama, K; Endoh, H; Komori, T; Kato, S; Kawashima, H

    1999-02-01

    The presence of bone-specific estrogen agonists and discovery of the osteoblast-specific transcription factor (TF), Cbfa1, together with the discovery of synergism between a TF Pit-1 and estrogen receptor alpha (ERalpha) on rat prolactin gene, led to investigation of Cbfa1 in the modulation of osteoblast-specific actions of estrogen. Reverse transcribed-polymerase chain reaction demonstrated expression of Cbfa1 in the osteoblastic cell lines, MG63, ROS17/2.8, and MC3T3E1, but not in nonosteoblastic cell lines, MCF7, C3H10T1/2, and HeLa. An ER expression vector and a series of luciferase (Luc) reporter plasmids harboring the Cbfa1 binding site OSE2 (the osteoblast-specific cis element in the osteocalcin promoter) and palindromic estrogen response elements (EREs) were cotransfected into both osteoblastic and nonosteoblastic cells. OSE2 worked as a cis- acting element in osteoblastic cells but not nonosteoblastic cells, whereas EREs were cis- acting in all cell lines. Synergistic transactivation was observed in osteoblastic cells only when both ERE and OSE2 were placed in juxtaposition to the promoter. Forced expression of Cbfa1 in C3H10T1/2 cells also induced synergism. Tamoxifen, a partial agonist/antagonist of estrogen, acted as an osteoblast-specific agonist in cells transfected with a promoter containing ERE and acted synergistically with a promoter containing the ERE-OSE2 enhancer combination. These results support the idea that bone-specific TFs modulate the actions of estrogen in a tissue-specific manner.

  2. Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis.

    Science.gov (United States)

    Wang, Hao; Sun, Xuming; Chou, Jeff; Lin, Marina; Ferrario, Carlos M; Zapata-Sudo, Gisele; Groban, Leanne

    2017-08-01

    Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Study on the optical properties of CdSe QDs with different ligands in specific matrix

    International Nuclear Information System (INIS)

    Lin Wei; Zou Wei; Du Zhongjie; Li Hangquan; Zhang Chen

    2013-01-01

    Different ligand structures of CdSe quantum dots were designed and synthesized for the specific matrix and the effect of the ligands on the photoluminescence and optical properties were further investigated. Ligand exchange reaction was used to synthesize thioglycolic acid-capped CdSe QDs and the process was characterized by FT-IR and titration. The influence of environmental pH value and storing time on the properties of thioglycolic acid-capped CdSe QDs in aqueous solution were studied by absorption and photoluminescence spectra. It was found that alkaline environment was more beneficial for the application of CdSe QDs. Therefore, the amino ligands with different molecular weight were grafted onto CdSe QDs for improving the compatibility with epoxy matrix and then amino-capped CdSe QDs/epoxy nanocomposites were fabricated. The morphologies and properties of the nanocomposites were characterized by DLS, HR-TEM, UV–Vis spectra, and photoluminescence spectra. As a result, amino ligands with short-molecular chain-capped CdSe QDs/epoxy nanocomposites exhibited good dispersion, high transparency and photoluminescence, and would be suitable for potential application in light-emitting diode device.

  4. Characterization of an estrogen-responsive element implicated in regulation of the rainbow trout estrogen receptor gene.

    Science.gov (United States)

    Le Dréan, Y; Lazennec, G; Kern, L; Saligaut, D; Pakdel, F; Valotaire, Y

    1995-08-01

    We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5' flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0.2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.

  5. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Science.gov (United States)

    Bhat-Nakshatri, Poornima; Song, Eun-Kyung; Collins, Nikail R; Uversky, Vladimir N; Dunker, A Keith; O'Malley, Bert W; Geistlinger, Tim R; Carroll, Jason S; Brown, Myles; Nakshatri, Harikrishna

    2013-06-11

    Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER

  6. Membrane estrogen receptors - is it an alternative way of estrogen action?

    Science.gov (United States)

    Soltysik, K; Czekaj, P

    2013-04-01

    The functions of estrogens are relatively well known, however the molecular mechanism of their action is not clear. The classical pathway of estrogen action is dependent on ERα and ERβ which act as transcription factors. The effects of this pathway occur within hours or days. In addition, so-called, non-classical mechanism of steroid action dependent on membrane estrogen receptors (mER) was described. In this mechanism the effects of estrogen action are observed in a much shorter time. Here we review the structure and cellular localization of mER, molecular basis of non-classical mER action, physiological role of mER as well as implications of mER action for cancer biology. Finally, some concerns about the new estrogen receptor - GPER and candidates for estrogen receptors - ER-X and ERx, are briefly discussed. It seems that mER is a complex containing signal proteins (signalosome), as IGF receptor, EGF receptor, Ras protein, adaptor protein Shc, non-receptor kinase c-Src and PI-3K, what rationalizes production of second messengers. Some features of membrane receptors are almost identical if compared to nuclear receptors. Probably, membrane and nuclear estrogen receptors are not separate units, but rather the components of a complex mechanism in which they both cooperate with each other. We conclude that the image of the estrogen receptor as a simple transcription factor is a far-reaching simplification. A better understanding of the mechanisms of estrogen action will help us to design more effective drugs affecting signal pathways depending on both membrane and nuclear receptors.

  7. Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression.

    Science.gov (United States)

    Ho, Ming-Fen; Correia, Cristina; Ingle, James N; Kaddurah-Daouk, Rima; Wang, Liewei; Kaufmann, Scott H; Weinshilboum, Richard M

    2018-04-03

    Major depressive disorder (MDD) is the most common psychiatric illness worldwide, and it displays a striking sex-dependent difference in incidence, with two thirds of MDD patients being women. Ketamine treatment can produce rapid antidepressant effects in MDD patients, effects that are mediated-at least partially-through glutamatergic neurotransmission. Two active metabolites of ketamine, (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-HNK, also appear to play a key role in ketamine's rapid antidepressant effects through the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. In the present study, we demonstrated that estrogen plus ketamine or estrogen plus active ketamine metabolites displayed additive effects on the induction of the expression of AMPA receptor subunits. In parallel, the expression of estrogen receptor alpha (ERα) was also significantly upregulated. Even more striking, radioligand binding assays demonstrated that [ 3 H]-ketamine can directly bind to ERα (K D : 344.5 ± 13 nM). Furthermore, ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites displayed similar affinity for ERα (IC 50 : 2.31 ± 0.1, 3.40 ± 0.2, and 3.53 ± 0.2 µM, respectively) as determined by [ 3 H]-ketamine displacement assays. Finally, induction of AMPA receptors by either estrogens or ketamine and its metabolites was lost when ERα was knocked down or silenced pharmacologically. These results suggest a positive feedback loop by which estrogens can augment the effects of ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites on the ERα-induced transcription of CYP2A6 and CYP2B6, estrogen inducible enzymes that catalyze ketamine's biotransformation to form the two active metabolites. These observations provide novel insight into ketamine's molecular mechanism(s) of action and have potential implications for the treatment of MDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. ESTROGEN RECEPTOR-alpha IMMUNOREACTIVE NEURONS IN THE BRAINSTEM AND SPINAL CORD OF THE FEMALE RHESUS MONKEY : SPECIES-SPECIFIC CHARACTERISTICS

    NARCIS (Netherlands)

    Vanderhorst, V. G. J. M.; Terasawa, E.; Ralston, H. J.

    2009-01-01

    The distribution pattern of estrogen receptors in the rodent CNS has been reported extensively, but mapping of estrogen receptors in primates is incomplete. In this study we describe the distribution of estrogen receptor alpha immunoreactive (ER-alpha 1R) neurons in the brainstem and spinal cord of

  9. Regulation of the intronic promoter of rat estrogen receptor alpha gene, responsible for truncated estrogen receptor product-1 expression.

    Science.gov (United States)

    Schausi, Diane; Tiffoche, Christophe; Thieulant, Marie-Lise

    2003-07-01

    We have characterized the intronic promoter of the rat estrogen receptor (ER) alpha gene, responsible for the lactotrope-specific truncated ER product (TERP)-1 isoform expression. Transcriptional regulation was investigated by transient transfections using 5'-deletion constructs. TERP promoter constructs were highly active in MMQ cells, a pure lactotrope cell line, whereas a low basal activity was detected in alphaT3-1 gonadotrope cells or in COS-7 monkey kidney cells. Serial deletion analysis revealed that 1) a minimal -693-bp region encompassing the TATA box is sufficient to allow lactotrope-specific expression; 2) the promoter contains strong positive cis-acting elements both in the distal and proximal regions, and 3) the region spanning the -1698/-1194 region includes repressor elements. Transient transfection studies, EMSAs, and gel shifts demonstrated that estrogen activates the TERP promoter via an estrogen-responsive element (ERE1) located within the proximal region. Mutation of ERE1 site completely abolishes the estradiol-dependent transcription, indicating that ERE1 site is sufficient to confer estrogen responsiveness to TERP promoter. In addition, ERalpha action was synergized by transfection of the pituitary-specific factor Pit-1. EMSAs showed that a single Pit-1 DNA binding element in the vicinity of the TATA box is sufficient to confer response by the TERP promoter. In conclusion, we demonstrated, for the first time, that TERP promoter regulation involves ERE and Pit-1 cis-elements and corresponding trans-acting factors, which could play a role in the physiological changes that occur in TERP-1 transcription in lactotrope cells.

  10. A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta.

    Science.gov (United States)

    Henke, Brad R; Consler, Thomas G; Go, Ning; Hale, Ron L; Hohman, Dana R; Jones, Stacey A; Lu, Amy T; Moore, Linda B; Moore, John T; Orband-Miller, Lisa A; Robinett, R Graham; Shearin, Jean; Spearing, Paul K; Stewart, Eugene L; Turnbull, Philip S; Weaver, Susan L; Williams, Shawn P; Wisely, G Bruce; Lambert, Millard H

    2002-12-05

    A series of 1,3,5-triazine-based estrogen receptor (ER) modulators that are modestly selective for the ERbeta subtype are reported. Compound 1, which displayed modest potency and selectivity for ERbeta vs ERalpha, was identified via high-throughput screening utilizing an ERbeta SPA-based binding assay. Subsequent analogue preparation resulted in the identification of compounds such as 21 and 43 that display 25- to 30-fold selectivity for ERbeta with potencies in the 10-30 nM range. These compounds profile as full antagonists at ERbeta and weak partial agonists at ERalpha in a cell-based reporter gene assay. In addition, the X-ray crystal structure of compound 15 complexed with the ligand binding domain of ERbeta has been solved and was utilized in the design of more conformationally restrained analogues such as 31 in an attempt to increase selectivity for the ERbeta subtype.

  11. Quantitation of estrogen receptor in seventy-five specimens of breast cancer: comparison between an immunoassay (Abbott ER-EIA monoclonal) and a [3H]estradiol binding assay based on isoelectric focusing in polyacrylamide gel

    International Nuclear Information System (INIS)

    Pousette, A.; Gustafsson, S.A.; Thoernblad, A.M.N.; Nordgren, A.; Saellstroem, J.Li.; Lindgren, A.; Sundelin, P.; Gustafsson, J.A.

    1986-01-01

    Quantitation of estrogen receptor has been performed in cytosol prepared from 75 specimens of breast cancer tissue from patients who had not received hormonal therapy. The study was performed in order to compare an immunoassay (Abbott Laboratories, North Chicago, IL) with our currently used method for estrogen receptor analysis based on isoelectric focusing of [ 3 H]estradiol-receptor complex in polyacrylamide gels. Using linear regression analysis, a regression coefficient (slope) of 1.30 and a correlation coefficient of 0.75 were calculated. The differences in results between the two methods are probably partly explained by the fact that the ligand-based method only measures unoccupied receptor, whereas the immunoassay detects the total amount of receptor, resulting in generally slightly higher concentrations with the latter method. However, in five of 75 specimens the ligand-based method gave a considerably higher concentration of estrogen receptor. This was most probably explained by partial proteolysis resulting in the formation of receptor fragment(s), which was undetectable with the immunoassay but detectable with the ligand-based method. These observations underline the importance of careful handling of specimens during the whole immunoassay procedure

  12. PAK1 translocates into nucleus in response to prolactin but not to estrogen

    Energy Technology Data Exchange (ETDEWEB)

    Oladimeji, Peter, E-mail: Peter.Oladimeji@rockets.utoledo.edu; Diakonova, Maria, E-mail: mdiakon@utnet.utoledo.edu

    2016-04-22

    Tyrosyl phosphorylation of the p21-activated serine–threonine kinase 1 (PAK1) has an essential role in regulating PAK1 functions in breast cancer cells. We previously demonstrated that PAK1 serves as a common node for estrogen (E2)- and prolactin (PRL)-dependent pathways. We hypothesize herein that intracellular localization of PAK1 is affected by PRL and E2 treatments differently. We demonstrate by immunocytochemical analysis that PAK1 nuclear translocation is ligand-dependent: only PRL but not E2 stimulated PAK1 nuclear translocation. Tyrosyl phosphorylation of PAK1 is essential for this nuclear translocation because phospho-tyrosyl-deficient PAK1 Y3F mutant is retained in the cytoplasm in response to PRL. We confirmed these data by Western blot analysis of subcellular fractions. In 30 min of PRL treatment, only 48% of pTyr-PAK1 is retained in the cytoplasm of PAK1 WT clone while 52% re-distributes into the nucleus and pTyr-PAK1 shuttles back to the cytoplasm by 60 min of PRL treatment. In contrast, PAK1 Y3F is retained in the cytoplasm. E2 treatment causes nuclear translocation of neither PAK1 WT nor PAK1 Y3F. Finally, we show by an in vitro kinase assay that PRL but not E2 stimulates PAK1 kinase activity in the nuclear fraction. Thus, PAK1 nuclear translocation is ligand-dependent: PRL activates PAK1 and induces translocation of activated pTyr-PAK1 into nucleus while E2 activates pTyr-PAK1 only in the cytoplasm. - Highlights: • Prolactin but not estrogen causes translocation of PAK1 into nucleus. • Tyrosyl phosphorylation of PAK1 is required for nuclear localization. • Prolactin but not estrogen stimulates PAK1 kinase activity in nucleus.

  13. Structural characterization of the binding interactions of various endogenous estrogen metabolites with human estrogen receptor α and β subtypes: a molecular modeling study.

    Directory of Open Access Journals (Sweden)

    Pan Wang

    Full Text Available In the present study, we used the molecular docking approach to study the binding interactions of various derivatives of 17β-estradiol (E2 with human estrogen receptor (ER α and β. First, we determined the suitability of the molecular docking method to correctly predict the binding modes and interactions of two representative agonists (E2 and diethylstilbesterol in the ligand binding domain (LBD of human ERα. We showed that the docked structures of E2 and diethylstilbesterol in the ERα LBD were almost exactly the same as the known crystal structures of ERα in complex with these two estrogens. Using the same docking approach, we then characterized the binding interactions of 27 structurally similar E2 derivatives with the LBDs of human ERα and ERβ. While the binding modes of these E2 derivatives are very similar to that of E2, there are distinct subtle differences, and these small differences contribute importantly to their differential binding affinities for ERs. In the case of A-ring estrogen derivatives, there is a strong inverse relationship between the length of the hydrogen bonds formed with ERs and their binding affinity. We found that a better correlation between the computed binding energy values and the experimentally determined logRBA values could be achieved for various A-ring derivatives by re-adjusting the relative weights of the van der Waals interaction energy and the Coulomb interaction energy in computing the overall binding energy values.

  14. Steroid receptors and their ligands: Effects on male gamete functions

    International Nuclear Information System (INIS)

    Aquila, Saveria; De Amicis, Francesca

    2014-01-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  15. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  16. Differential regulation of the human progesterone receptor gene through an estrogen response element half site and Sp1 sites.

    Science.gov (United States)

    Petz, Larry N; Ziegler, Yvonne S; Schultz, Jennifer R; Kim, Hwajin; Kemper, J Kim; Nardulli, Ann M

    2004-02-01

    The progesterone receptor (PR) gene is regulated by estrogen in normal reproductive tissues and in MCF-7 human breast cancer cells. Although it is generally thought that estrogen responsiveness is mediated by interaction of the ligand-occupied estrogen receptor (ER) with estrogen response elements (EREs) in target genes, the human progesterone receptor (PR) gene lacks a palindromic ERE. Promoter A of the PR gene does, however, contain an ERE half site upstream of two adjacent Sp1 sites from +571 to +595, the +571 ERE/Sp1 site. We have examined the individual contributions of the ERE half site and the two Sp1 sites in regulating estrogen responsiveness. Transient transfection assays demonstrated that both Sp1 sites were critical for estrogen-mediated activation of the PR gene. Interestingly, rather than decreasing transcription, mutations in the ERE half site increased transcription substantially suggesting that this site plays a role in limiting transcription. Chromatin immunoprecipitation assays demonstrated that Sp1 was associated with the +571 ERE/Sp1 site in the endogenous PR gene in the absence and in the presence of estrogen, but that ERalpha was only associated with this region of the PR gene after MCF-7 cells had been treated with estrogen. Our studies provide evidence that effective regulation of transcription through the +571 ERE/Sp1 site requires the binding of ERalpha and Sp1 to their respective cis elements and the appropriate interaction of ERalpha and Sp1 with other coregulatory proteins and transcription factors.

  17. Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Hertoghs, Nina; Geijtenbeek, Teunis B. H.

    2016-01-01

    In this chapter we describe a fluorescent bead-binding assay, which is an efficient and feasible method to measure interaction between ligands and receptors on cells. In principle, any ligand can be coated on fluorescent beads either directly or via antibodies. Binding between ligand-coated beads

  18. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    International Nuclear Information System (INIS)

    Jenkins, B.G.

    1991-01-01

    Study of ligand-macromolecular interactions by 19 F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19 F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19 F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19 F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  19. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.

  20. Discovering rules for protein-ligand specificity using support vector inductive logic programming.

    Science.gov (United States)

    Kelley, Lawrence A; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2009-09-01

    Structural genomics initiatives are rapidly generating vast numbers of protein structures. Comparative modelling is also capable of producing accurate structural models for many protein sequences. However, for many of the known structures, functions are not yet determined, and in many modelling tasks, an accurate structural model does not necessarily tell us about function. Thus, there is a pressing need for high-throughput methods for determining function from structure. The spatial arrangement of key amino acids in a folded protein, on the surface or buried in clefts, is often the determinants of its biological function. A central aim of molecular biology is to understand the relationship between such substructures or surfaces and biological function, leading both to function prediction and to function design. We present a new general method for discovering the features of binding pockets that confer specificity for particular ligands. Using a recently developed machine-learning technique which couples the rule-discovery approach of inductive logic programming with the statistical learning power of support vector machines, we are able to discriminate, with high precision (90%) and recall (86%) between pockets that bind FAD and those that bind NAD on a large benchmark set given only the geometry and composition of the backbone of the binding pocket without the use of docking. In addition, we learn rules governing this specificity which can feed into protein functional design protocols. An analysis of the rules found suggests that key features of the binding pocket may be tied to conformational freedom in the ligand. The representation is sufficiently general to be applicable to any discriminatory binding problem. All programs and data sets are freely available to non-commercial users at http://www.sbg.bio.ic.ac.uk/svilp_ligand/.

  1. Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor.

    Science.gov (United States)

    Stark, Karri; Burger, Angelika; Wu, Jianmei; Shelton, Phillip; Polin, Lisa; Li, Jing

    2013-01-01

    Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.

  2. Impact of Estrogens and Estrogen Receptor Alpha (ESR1) in Brain Lipid Metabolism.

    Science.gov (United States)

    Morselli, Eugenia; de Souza Santos, Roberta; Gao, Su; Ávalos, Yenniffer; Criollo, Alfredo; Palmer, Biff F; Clegg, Deborah J

    2018-03-06

    Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.

  3. Novel transcripts of the estrogen receptor α gene in channel catfish

    Science.gov (United States)

    Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian

    2000-01-01

    Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may

  4. Biosensors paving the way to understanding the interaction between cadmium and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Peter Fechner

    Full Text Available Cadmium is a toxic heavy metal ubiquitously present in the environment and subsequently in the human diet. Cadmium has been proposed to disrupt the endocrine system, targeting in particular the estrogen signaling pathway already at environmentally relevant concentrations. Thus far, the reports on the binding affinity of cadmium towards human estrogen receptor alpha (hERα have been contradicting, as have been the reports on the in vivo estrogenicity of cadmium. Hence, the mode of interaction between cadmium and the receptor remains unclear. Here, we investigated the interaction between cadmium and hERα on a molecular level by applying a novel, label-free biosensor technique based on reflectometric interference spectroscopy (RIfS. We studied the binding of cadmium to hERα, and the conformation of the receptor following cadmium treatment. Our data reveals that cadmium interacts with the ligand binding domain (LBD of the ERα and affects the conformation of the receptor. However, the binding event, as well as the induced conformation change, greatly depends on the accessibility of the cysteine tails in the LBD. As the LBD cysteine residues have been reported as targets of post-translational modifications in vivo, we present a hypothesis according to which different cellular pools of ERα respond to cadmium differently. Our proposed theory could help to explain some of the previously contradicting results regarding estrogen-like activity of cadmium.

  5. Isolation of linoleic acid as an estrogenic compound from the fruits of Vitex agnus-castus L. (chaste-berry).

    Science.gov (United States)

    Liu, J; Burdette, J E; Sun, Y; Deng, S; Schlecht, S M; Zheng, W; Nikolic, D; Mahady, G; van Breemen, R B; Fong, H H S; Pezzuto, J M; Bolton, J L; Farnsworth, N R

    2004-01-01

    A methanol extract of chaste-tree berry (Vitex agnus-castus L.) was tested for its ability to displace radiolabeled estradiol from the binding site of estrogen receptors alpha (ERalpha) and beta (ERbeta). The extract at 46 +/- 3 microg/ml displaced 50% of estradiol from ERalpha and 64 +/- 4 microg/ml from ERbeta. Treatment of the ER+ hormone-dependent T47D:A18 breast cancer cell line with the extract induced up-regulation of ERbeta mRNA. Progesterone receptor (PR) mRNA was upregulated in the Ishikawa endometrial cancer cell line. However, chaste-tree berry extract did not induce estrogen-dependent alkaline phosphatase (AP) activity in Ishikawa cells. Bioassay-guided isolation, utilizing ER binding as a monitor, resulted in the isolation of linoleic acid as one possible estrogenic component of the extract. The use of pulsed ultrafiltration liquid chromatography-mass spectrometry, which is an affinity-based screening technique, also identified linoleic acid as an ER ligand based on its selective affinity, molecular weight, and retention time. Linoleic acid also stimulated mRNA ERbeta expression in T47D:A18 cells, PR expression in Ishikawa cells, but not AP activity in Ishikawa cells. These data suggest that linoleic acid from the fruits of Vitex agnus-castus can bind to estrogen receptors and induce certain estrogen inducible genes.

  6. Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination.

    Science.gov (United States)

    Karim, Hawra; Kim, Sung Hoon; Lapato, Andrew S; Yasui, Norio; Katzenellenbogen, John A; Tiwari-Woodruff, Seema K

    2018-06-12

    Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis. Copyright © 2018 the Author(s). Published by PNAS.

  7. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States); Zhu, Hao [The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Department of Chemistry, Rutgers University, Camden, NJ (United States); Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia [NovaMechanics Ltd., Nicosia (Cyprus); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  8. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    International Nuclear Information System (INIS)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh; Zhu, Hao; Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R 2 = 0.71, STL R 2 = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R 2 = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results

  9. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network

    Science.gov (United States)

    Nwachukwu, Jerome C; Srinivasan, Sathish; Bruno, Nelson E; Parent, Alexander A; Hughes, Travis S; Pollock, Julie A; Gjyshi, Olsi; Cavett, Valerie; Nowak, Jason; Garcia-Ordonez, Ruben D; Houtman, René; Griffin, Patrick R; Kojetin, Douglas J; Katzenellenbogen, John A; Conkright, Michael D; Nettles, Kendall W

    2014-01-01

    Resveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile. Gene expression analyses revealed significant overlap of TNFα genes modulated by resveratrol and estradiol. Furthermore, the ability of resveratrol to suppress interleukin-6 transcription was shown to require ERα and several ERα coregulators, suggesting that ERα functions as a primary conduit for resveratrol activity. DOI: http://dx.doi.org/10.7554/eLife.02057.001 PMID:24771768

  10. Synergism between a half-site and an imperfect estrogen-responsive element, and cooperation with COUP-TFI are required for estrogen receptor (ER) to achieve a maximal estrogen-stimulation of rainbow trout ER gene.

    Science.gov (United States)

    Petit, F G; Métivier, R; Valotaire, Y; Pakdel, F

    1999-01-01

    In all oviparous, liver represents one of the main E2-target tissues where estrogen receptor (ER) constitutes the key mediator of estrogen action. The rainbow trout estrogen receptor (rtER) gene expression is markedly up-regulated by estrogens and the sequences responsible for this autoregulation have been located in a 0.2 kb upstream transcription start site within - 40/- 248 enhancer region. Absence of interference with steroid hormone receptors and tissue-specific factors and a conserved basal transcriptional machinery between yeast and higher eukaryotes, make yeast a simple assay system that will enable determination of important cis-acting regulatory sequences within rtER gene promoter and identification of transcription factors implicated in the regulation of this gene. Deletion analysis allowed to show a synergistic effect between an imperfect estrogen-responsive element (ERE) and a consensus half-ERE to achieve a high hormone-dependent transcriptional activation of the rtER gene promoter in the presence of stably expressed rtER. As in mammalian cells, here we observed a positive regulation of the rtER gene promoter by the chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) through enhancing autoregulation. Using a point mutation COUP-TFI mutant unable to bind DNA demonstrates that enhancement of rtER gene autoregulation requires the interaction of COUP-TFI to the DNA. Moreover, this enhancement of transcriptional activation by COUP-TFI requires specifically the AF-1 transactivation function of ER and can be observed in the presence of E2 or 4-hydroxytamoxifen but not ICI 164384. Thus, this paper describes the reconstitution of a hormone-responsive transcription unit in yeast in which the regulation of rtER gene promoter could be enhanced by the participation of cis-elements and/or trans-acting factors, such as ER itself or COUP-TF.

  11. Estrogen and the aging brain: an elixir for the weary cortical network.

    Science.gov (United States)

    Dumitriu, Dani; Rapp, Peter R; McEwen, Bruce S; Morrison, John H

    2010-08-01

    The surprising discovery in 1990 that estrogen modulates hippocampal structural plasticity launched a whole new field of scientific inquiry. Over the past two decades, estrogen-induced spinogenesis has been described in several brain areas involved in cognition in a number of species, in both sexes and on multiple time scales. Exploration into the interaction between estrogen and aging has illuminated some of the hormone's neuroprotective effects, most notably on age-related cognitive decline in nonhuman primates. Although there is still much to be learned about the mechanisms by which estrogen exerts its actions, key components of the signal transduction pathways are beginning to be elucidated and nongenomic actions via membrane bound estrogen receptors are of particular interest. Future studies are focused on identifying the most clinically relevant hormone treatment, as well as the potential identification of new therapeutics that can prevent or reverse age-related cognitive impairment by intercepting specific signal transduction pathways initiated by estrogen.

  12. A-C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions.

    Science.gov (United States)

    Hanson, Alicia M; Perera, K L Iresha Sampathi; Kim, Jaekyoon; Pandey, Rajesh K; Sweeney, Noreena; Lu, Xingyun; Imhoff, Andrea; Mackinnon, Alexander Craig; Wargolet, Adam J; Van Hart, Rochelle M; Frick, Karyn M; Donaldson, William A; Sem, Daniel S

    2018-06-04

    Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC 50 s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.

  13. Estrogens and aging skin

    OpenAIRE

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity...

  14. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiyuan [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); An, Byoung Ha [Department of Food and Nutrition, College of Life Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kim, Min Jung; Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kang, Young Sook [Department of Pharmacy, College of Pharmacy, Sookmyung Women’s University, Seoul (Korea, Republic of); Chang, Minsun, E-mail: minsunchang@sm.ac.kr [Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women’s University, Seoul (Korea, Republic of)

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  15. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  16. The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha.

    Science.gov (United States)

    Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto

    2017-11-01

    Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.

  17. Role of estrogen in lung cancer based on the estrogen receptor-epithelial mesenchymal transduction signaling pathways

    Directory of Open Access Journals (Sweden)

    Zhao XZ

    2015-10-01

    Full Text Available Xiao-zhen Zhao,1,* Yu Liu,1,* Li-juan Zhou,1,* Zhong-qi Wang,1 Zhong-hua Wu,2 Xiao-yuan Yang31Department of Tumor, Longhua Hospital, 2Center of Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 3Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workBackground/aim: Estrogen is reported to promote the occurrence and development of several human cancers. Increasing evidence shows that most human lung tumors exert estrogen receptor expression. In the present study, we investigated the underlying mechanism of estrogen effect in lung cancer through estrogen receptor-epithelial–mesechymal-transition signaling pathways for the first time.Materials and methods: A total of 36 inbred C57BL/6 mice (18 male and 18 female were injected subcutaneously with human lung adenocarcinoma cell line, Lewis. After the lung tumor model was established, mice with lung adenocarcinoma were randomly divided into three groups for each sex (n=6, such as vehicle group, estrogen group, and estrogen plus tamoxifen group. The six groups of mice were sacrificed after 21 days of drug treatment. Tumor tissue was stripped and weighed, and tumor inhibition rate was calculated based on average tumor weight. Protein and messenger RNA (mRNA expressions of estrogen receptor α (ERα, estrogen receptor β (ERβ, phosphatidylinositol 3'-kinase (PI3K, AKT, E-cadherin, and vimentin were detected in both tumor tissue and lung tissue by using immunohistochemistry and real-time reverse transcription-polymerase chain reaction.Results: 1 For male mice: in the estrogen group, estrogen treatment significantly increased ERα protein and mRNA expressions in tumor tissue and protein expression of PI3K, AKT, and vimentin in both tumor tissue and lung tissue compared with the vehicle-treated group. Besides, m

  18. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  19. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study.

    Science.gov (United States)

    Flores, Roberto; Shi, Jianxin; Fuhrman, Barbara; Xu, Xia; Veenstra, Timothy D; Gail, Mitchell H; Gajer, Pawel; Ravel, Jacques; Goedert, James J

    2012-12-21

    High systemic estrogen levels contribute to breast cancer risk for postmenopausal women, whereas low levels contribute to osteoporosis risk. Except for obesity, determinants of non-ovarian systemic estrogen levels are undefined. We sought to identify members and functions of the intestinal microbial community associated with estrogen levels via enterohepatic recirculation. Fifty-one epidemiologists at the National Institutes of Health, including 25 men, 7 postmenopausal women, and 19 premenopausal women, provided urine and aliquots of feces, using methods proven to yield accurate and reproducible results. Estradiol, estrone, 13 estrogen metabolites (EM), and their sum (total estrogens) were quantified in urine and feces by liquid chromatography/tandem mass spectrometry. In feces, β-glucuronidase and β-glucosidase activities were determined by realtime kinetics, and microbiome diversity and taxonomy were estimated by pyrosequencing 16S rRNA amplicons. Pearson correlations were computed for each loge estrogen level, loge enzymatic activity level, and microbiome alpha diversity estimate. For the 55 taxa with mean relative abundance of at least 0.1%, ordinal levels were created [zero, low (below median of detected sequences), high] and compared to loge estrogens, β-glucuronidase and β-glucosidase enzymatic activity levels by linear regression. Significance was based on two-sided tests with α=0.05. In men and postmenopausal women, levels of total urinary estrogens (as well as most individual EM) were very strongly and directly associated with all measures of fecal microbiome richness and alpha diversity (R≥0.50, P≤0.003). These non-ovarian systemic estrogens also were strongly and significantly associated with fecal Clostridia taxa, including non-Clostridiales and three genera in the Ruminococcaceae family (R=0.57-0.70, P=0.03-0.002). Estrone, but not other EM, in urine correlated significantly with functional activity of fecal β-glucuronidase (R=0.36, P=0

  20. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  1. Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect.

    Science.gov (United States)

    Cotnoir-White, David; El Ezzy, Mohamed; Boulay, Pierre-Luc; Rozendaal, Marieke; Bouvier, Michel; Gagnon, Etienne; Mader, Sylvie

    2018-03-13

    There is currently an unmet need for versatile techniques to monitor the assembly and dynamics of ternary complexes in live cells. Here we describe bioluminescence resonance energy transfer with fluorescence enhancement by combined transfer (BRETFect), a high-throughput technique that enables robust spectrometric detection of ternary protein complexes based on increased energy transfer from a luciferase to a fluorescent acceptor in the presence of a fluorescent intermediate. Its unique donor-intermediate-acceptor relay system is designed so that the acceptor can receive energy either directly from the donor or indirectly via the intermediate in a combined transfer, taking advantage of the entire luciferase emission spectrum. BRETFect was used to study the ligand-dependent cofactor interaction properties of the estrogen receptors ERα and ERβ, which form homo- or heterodimers whose distinctive regulatory properties are difficult to dissect using traditional methods. BRETFect uncovered the relative capacities of hetero- vs. homodimers to recruit receptor-specific cofactors and regulatory proteins, and to interact with common cofactors in the presence of receptor-specific ligands. BRETFect was also used to follow the assembly of ternary complexes between the V2R vasopressin receptor and two different intracellular effectors, illustrating its use for dissection of ternary protein-protein interactions engaged by G protein-coupled receptors. Our results indicate that BRETFect represents a powerful and versatile technique to monitor the dynamics of ternary interactions within multimeric complexes in live cells.

  2. Estrogenic involvement in social learning, social recognition and pathogen avoidance.

    Science.gov (United States)

    Choleris, Elena; Clipperton-Allen, Amy E; Phan, Anna; Valsecchi, Paola; Kavaliers, Martin

    2012-04-01

    Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Functional adaptation in female rats: the role of estrogen signaling.

    Directory of Open Access Journals (Sweden)

    Susannah J Sample

    Full Text Available Sex steroids have direct effects on the skeleton. Estrogen acts on the skeleton via the classical genomic estrogen receptors alpha and beta (ERα and ERβ, a membrane ER, and the non-genomic G-protein coupled estrogen receptor (GPER. GPER is distributed throughout the nervous system, but little is known about its effects on bone. In male rats, adaptation to loading is neuronally regulated, but this has not been studied in females.We used the rat ulna end-loading model to induce an adaptive modeling response in ovariectomized (OVX female Sprague-Dawley rats. Rats were treated with a placebo, estrogen (17β-estradiol, or G-1, a GPER-specific agonist. Fourteen days after OVX, rats underwent unilateral cyclic loading of the right ulna; half of the rats in each group had brachial plexus anesthesia (BPA of the loaded limb before loading. Ten days after loading, serum estrogen concentrations, dorsal root ganglion (DRG gene expression of ERα, ERβ, GPER, CGRPα, TRPV1, TRPV4 and TRPA1, and load-induced skeletal responses were quantified. We hypothesized that estrogen and G-1 treatment would influence skeletal responses to cyclic loading through a neuronal mechanism. We found that estrogen suppresses periosteal bone formation in female rats. This physiological effect is not GPER-mediated. We also found that absolute mechanosensitivity in female rats was decreased, when compared with male rats. Blocking of adaptive bone formation by BPA in Placebo OVX females was reduced.Estrogen acts to decrease periosteal bone formation in female rats in vivo. This effect is not GPER-mediated. Gender differences in absolute bone mechanosensitivity exist in young Sprague-Dawley rats with reduced mechanosensitivity in females, although underlying bone formation rate associated with growth likely influences this observation. In contrast to female and male rats, central neuronal signals had a diminished effect on adaptive bone formation in estrogen-deficient female rats.

  4. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta.

    Science.gov (United States)

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki

    2004-01-01

    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  5. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    Science.gov (United States)

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  6. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders.

    Science.gov (United States)

    Borrow, Amanda P; Cameron, Nicole M

    2014-10-03

    Clinical research has demonstrated a significant sex difference in the occurrence of depressive disorders. Beginning at pubertal onset, women report a higher incidence of depression than men. Women are also vulnerable to the development of depressive disorders such as premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression. These disorders are associated with reproductive stages involving changes in gonadal hormone levels. Specifically, female depression and female affective behaviors are influenced by estradiol levels. This review argues two major mechanisms by which estrogens influence depression and depressive-like behavior: through interactions with neurotrophic factors and through an influence on the serotonergic system. In particular, estradiol increases brain derived neurotrophic factor (BDNF) levels within the brain, and alters serotonergic expression in a receptor subtype-specific manner. We will take a regional approach, examining these effects of estrogens in the major brain areas implicated in depression. Finally, we will discuss the gaps in our current knowledge of the effects of estrogens on female depression, and the potential utility for estrogen receptor modulators in treatment for this disorder. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Estrogen: The necessary evil for human health, and ways to tame it.

    Science.gov (United States)

    Patel, Seema; Homaei, Ahmad; Raju, Akondi Butchi; Meher, Biswa Ranjan

    2018-06-01

    Estrogen is a pivotal enzyme for survival and health in both genders, though their quantum, tropism, tissue-specific distribution, and receptor affinity varies with different phases of life. Converted from androgen via aromatase enzyme, this hormone is indispensable to glucose homeostasis, immune robustness, bone health, cardiovascular health, fertility, and neural functions. However, estrogen is at the center of almost all human pathologies as well-infectious, autoimmune, metabolic to degenerative. Both hypo and hyper level of estrogen has been linked to chronic and acute diseases. While normal aging is supposed to lower its level, leading to tissue degeneration (bone, muscle, neural etc.), and metabolite imbalance (glucose, lipid etc.), the increment in inflammatory agents in day-to-day life are enhancing the estrogen (or estrogen mimic) level, fueling 'estrogen dominance'. The resultant excess estrogen is inducing an overexpression of estrogen receptors (ERα and ERβ), harming tissues, leading to autoimmune diseases, and neoplasms. The unprecedented escalation in the polycystic ovary syndrome, infertility, breast cancer, ovary cancer, and gynecomastia cases are indicating that this sensitive hormone is getting exacerbated. This critical review is an effort to analyze the dual, and opposing facets of estrogen, via understanding its crosstalk with other hormones, enzymes, metabolites, and drugs. Why estrogen level correction is no trivial task, and how it can be restored to normalcy by a disciplined lifestyle with wise dietary and selective chemical usage choices has been discussed. Overall, our current state of knowledge does not disclose the full picture of estrogen's pleiotropic importance. Hence, this review should be a resource for general public as well as researchers to work in that direction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Antibody Probes to Estrogen Receptor-Alpha Transcript-Specific Upstream Peptides: Alternate ER-Alpha Promoter Use and Breast Cancer Etiology/Outcome

    National Research Council Canada - National Science Library

    Pentecost, Brian

    2002-01-01

    Positive Estrogen Receptor alpha (ER) status correlates with a reduced incidence of breast cancer recurrence in the first years after resection of tumors, and predicts a favorable response to adjuvant anti-estrogens...

  9. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter.

    Science.gov (United States)

    Corthésy, B; Cardinaux, J R; Claret, F X; Wahli, W

    1989-12-01

    A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.

  10. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2002-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  11. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2001-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  12. Estrogen receptor beta in prostate cancer: friend or foe?

    Science.gov (United States)

    Nelson, Adam W; Tilley, Wayne D; Neal, David E; Carroll, Jason S

    2014-08-01

    Prostate cancer is the commonest, non-cutaneous cancer in men. At present, there is no cure for the advanced, castration-resistant form of the disease. Estrogen has been shown to be important in prostate carcinogenesis, with evidence resulting from epidemiological, cancer cell line, human tissue and animal studies. The prostate expresses both estrogen receptor alpha (ERA) and estrogen receptor beta (ERB). Most evidence suggests that ERA mediates the harmful effects of estrogen in the prostate, whereas ERB is tumour suppressive, but trials of ERB-selective agents have not translated into improved clinical outcomes. The role of ERB in the prostate remains unclear and there is increasing evidence that isoforms of ERB may be oncogenic. Detailed study of ERB and ERB isoforms in the prostate is required to establish their cell-specific roles, in order to determine if therapies can be directed towards ERB-dependent pathways. In this review, we summarise evidence on the role of ERB in prostate cancer and highlight areas for future research. © 2014 Society for Endocrinology.

  13. Estrogenic activity, estrogens, and calcium in runoff post-layer litter application from rainfall simulated events

    Science.gov (United States)

    Estrogens in runoff from fields fertilized with animal wastes have been implicated as endocrine disruptors of fish in recipient surface waters. The goal of this study was to measure estrogenic activity in runoff post-application of animal waste with the greatest potential for estrogenic activity - ...

  14. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    Science.gov (United States)

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  15. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    International Nuclear Information System (INIS)

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia; Moras, Dino; Ruff, Marc

    2007-01-01

    A new crystallization strategy: the presence of cleaved thioredoxin fusion is critical for crystallization of the estrogen nuclear receptor ligand binding domain in complex with synthetic ligands. This novel technique should be regarded as an interesting alternative for crystallization of difficult proteins. The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage and its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins

  16. Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians--screening for estrogen, androgen and thyroid hormone disruption.

    Science.gov (United States)

    Scholz, S; Renner, P; Belanger, S E; Busquet, F; Davi, R; Demeneix, B A; Denny, J S; Léonard, M; McMaster, M E; Villeneuve, D L; Embry, M R

    2013-01-01

    Endocrine disruption is considered a highly relevant hazard for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening tests with a focus on interference with estrogen, androgen, and thyroid hormone pathways in fish and amphibians have been developed. However, they use a large number of animals and short-term alternatives to animal tests would be advantageous. Therefore, the status of alternative assays for endocrine disruption in fish and frogs was assessed by a detailed literature analysis. The aim was to (i) determine the strengths and limitations of alternative assays and (ii) present conclusions regarding chemical specificity, sensitivity, and correlation with in vivo data. Data from 1995 to present were collected related to the detection/testing of estrogen-, androgen-, and thyroid-active chemicals in the following test systems: cell lines, primary cells, fish/frog embryos, yeast and cell-free systems. The review shows that the majority of alternative assays measure effects directly mediated by receptor binding or resulting from interference with hormone synthesis. Other mechanisms were rarely analysed. A database was established and used for a quantitative and comparative analysis. For example, a high correlation was observed between cell-free ligand binding and cell-based reporter cell assays, between fish and frog estrogenic data and between fish embryo tests and in vivo reproductive effects. It was concluded that there is a need for a more systematic study of the predictive capacity of alternative tests and ways to reduce inter- and intra-assay variability.

  17. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.

    Science.gov (United States)

    Li, Shuang; Shang, Xinxin; Liu, Jia; Wang, Yujie; Guo, Yingshu; You, Jinmao

    2017-07-01

    We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A 620 /A 520 ) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10 -11  M to 9.0 × 10 -10  M, and as low as 1.0 × 10 -11  M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10 -8  M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.

    Science.gov (United States)

    Xia, Jie; Hsieh, Jui-Hua; Hu, Huabin; Wu, Song; Wang, Xiang Simon

    2017-06-26

    Structure-based virtual screening (SBVS) has become an indispensable technique for hit identification at the early stage of drug discovery. However, the accuracy of current scoring functions is not high enough to confer success to every target and thus remains to be improved. Previously, we had developed binary pose filters (PFs) using knowledge derived from the protein-ligand interface of a single X-ray structure of a specific target. This novel approach had been validated as an effective way to improve ligand enrichment. Continuing from it, in the present work we attempted to incorporate knowledge collected from diverse protein-ligand interfaces of multiple crystal structures of the same target to build PF ensembles (PFEs). Toward this end, we first constructed a comprehensive data set to meet the requirements of ensemble modeling and validation. This set contains 10 diverse targets, 118 well-prepared X-ray structures of protein-ligand complexes, and large benchmarking actives/decoys sets. Notably, we designed a unique workflow of two-layer classifiers based on the concept of ensemble learning and applied it to the construction of PFEs for all of the targets. Through extensive benchmarking studies, we demonstrated that (1) coupling PFE with Chemgauss4 significantly improves the early enrichment of Chemgauss4 itself and (2) PFEs show greater consistency in boosting early enrichment and larger overall enrichment than our prior PFs. In addition, we analyzed the pairwise topological similarities among cognate ligands used to construct PFEs and found that it is the higher chemical diversity of the cognate ligands that leads to the improved performance of PFEs. Taken together, the results so far prove that the incorporation of knowledge from diverse protein-ligand interfaces by ensemble modeling is able to enhance the screening competence of SBVS scoring functions.

  19. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption

    Directory of Open Access Journals (Sweden)

    Chen-he Zhou

    2018-03-01

    Full Text Available Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK and phosphatidylinositol 3-kinase (PI3K-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist and/or SC79 (an AKT agonist in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

  20. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  1. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis.

    Science.gov (United States)

    Martin, Olwenn V; Shialis, Tassos; Lester, John N; Scrimshaw, Mark D; Boobis, Alan R; Voulvoulis, Nikolaos

    2008-02-01

    Male reproductive tract abnormalities such as hypospadias and cryptorchidism, and testicular cancer have been proposed to comprise a common syndrome together with impaired spermatogenesis with a common etiology resulting from the disruption of gonadal development during fetal life, the testicular dysgenesis syndrome (TDS). The hypothesis that in utero exposure to estrogenic agents could induce these disorders was first proposed in 1993. The only quantitative summary estimate of the association between prenatal exposure to estrogenic agents and testicular cancer was published over 10 years ago, and other systematic reviews of the association between estrogenic compounds, other than the potent pharmaceutical estrogen diethylstilbestrol (DES), and TDS end points have remained inconclusive. We conducted a quantitative meta-analysis of the association between the end points related to TDS and prenatal exposure to estrogenic agents. Inclusion in this analysis was based on mechanistic criteria, and the plausibility of an estrogen receptor (ER)-alpha-mediated mode of action was specifically explored. We included in this meta-analysis eight studies investigating the etiology of hypospadias and/or cryptorchidism that had not been identified in previous systematic reviews. Four additional studies of pharmaceutical estrogens yielded a statistically significant updated summary estimate for testicular cancer. The doubling of the risk ratios for all three end points investigated after DES exposure is consistent with a shared etiology and the TDS hypothesis but does not constitute evidence of an estrogenic mode of action. Results of the subset analyses point to the existence of unidentified sources of heterogeneity between studies or within the study population.

  2. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target.

    Directory of Open Access Journals (Sweden)

    Francesca Spyrakis

    Full Text Available The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block

  3. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    Science.gov (United States)

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  4. Neuroprotective effects of 17β-estradiol rely on estrogen receptor membrane initiated signals

    Directory of Open Access Journals (Sweden)

    Marco eFiocchetti

    2012-04-01

    Full Text Available 17β-estradiol (E2 exerts protective effects in the central nervous system besides its crucial role in many physiological and pathological events. E2 effects are not restricted to the brain areas related with the control of the reproductive function, but rather are widespread throughout the developing and the adult brain. E2 actions are mediated by estrogen receptors (i.e., ERα and ERβ belonging to the nuclear receptor super family. As members of the ligand-regulated transcription factor family, the actions of ERs in the brain were thought to mediate only the E2 long-term transcriptional effects. However, a growing body of evidence has emerged indicating the presence of rapid, membrane initiated E2 effects in the brain which result independent from ER transcriptional activities and involved in E2-induced neuroprotection. Aim of this review is to focus on the rapid effects of E2 in the brain taking into account the specific contribution of the signaling pathway of ERβ subtype in neuroprotective actions of E2.

  5. Evidence of estrogenic endocrine disruption in smallmouth and largemouth bass inhabiting Northeast U.S. National Wildlife Refuge waters: A reconnaissance study

    Science.gov (United States)

    Iwanowicz, Luke R.; Blazer, Vicki S.; Pinkney, A.E.; Guy, C.P.; Major, A.M.; Munney, K.; Mierzykowski, S.; Lingenfelser, S.; Secord, A.; Patnode, K.; Kubiak, T.J.; Stern, C.; Hahn, Cassidy M.; Iwanowicz, Deborah; Walsh, Heather L.; Sperry, Adam J.

    2016-01-01

    Intersex as the manifestation of testicular oocytes (TO) in male gonochoristic fishes has been used as an indicator of estrogenic exposure. Here we evaluated largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) form 19 National Wildlife Refuges (NWRs) in the Northeast U.S. inhabiting waters on or near NWR lands for evidence of estrogenic endocrine disruption. Waterbodies sampled included rivers, lakes, impoundments, ponds, and reservoirs. Here we focus on evidence of endocrine disruption in male bass evidenced by gonad histopathology including intersex or abnormal plasma vitellogenin (Vtg) concentrations. During the fall seasons of 2008–2010, we collected male smallmouth bass (n=118) from 12 sites and largemouth bass (n=173) from 27 sites. Intersex in male smallmouth bass was observed at all sites and ranged from 60% to 100%; in male largemouth bass the range was 0–100%. Estrogenicity, as measured using a bioluminescent yeast reporter, was detected above the probable no effects concentration (0.73 ng/L) in ambient water samples from 79% of the NWR sites. Additionally, the presence of androgen receptor and glucocorticoid receptor ligands were noted as measured via novel nuclear receptor translocation assays. Mean plasma Vtg was elevated (>0.2 mg/ml) in male smallmouth bass at four sites and in male largemouth bass at one site. This is the first reconnaissance survey of this scope conducted on US National Wildlife Refuges. The baseline data collected here provide a necessary benchmark for future monitoring and justify more comprehensive NWR-specific studies.

  6. Evidence of estrogenic endocrine disruption in smallmouth and largemouth bass inhabiting Northeast U.S. national wildlife refuge waters: A reconnaissance study.

    Science.gov (United States)

    Iwanowicz, L R; Blazer, V S; Pinkney, A E; Guy, C P; Major, A M; Munney, K; Mierzykowski, S; Lingenfelser, S; Secord, A; Patnode, K; Kubiak, T J; Stern, C; Hahn, C M; Iwanowicz, D D; Walsh, H L; Sperry, A

    2016-02-01

    Intersex as the manifestation of testicular oocytes (TO) in male gonochoristic fishes has been used as an indicator of estrogenic exposure. Here we evaluated largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) form 19 National Wildlife Refuges (NWRs) in the Northeast U.S. inhabiting waters on or near NWR lands for evidence of estrogenic endocrine disruption. Waterbodies sampled included rivers, lakes, impoundments, ponds, and reservoirs. Here we focus on evidence of endocrine disruption in male bass evidenced by gonad histopathology including intersex or abnormal plasma vitellogenin (Vtg) concentrations. During the fall seasons of 2008-2010, we collected male smallmouth bass (n=118) from 12 sites and largemouth bass (n=173) from 27 sites. Intersex in male smallmouth bass was observed at all sites and ranged from 60% to 100%; in male largemouth bass the range was 0-100%. Estrogenicity, as measured using a bioluminescent yeast reporter, was detected above the probable no effects concentration (0.73ng/L) in ambient water samples from 79% of the NWR sites. Additionally, the presence of androgen receptor and glucocorticoid receptor ligands were noted as measured via novel nuclear receptor translocation assays. Mean plasma Vtg was elevated (>0.2mg/ml) in male smallmouth bass at four sites and in male largemouth bass at one site. This is the first reconnaissance survey of this scope conducted on US National Wildlife Refuges. The baseline data collected here provide a necessary benchmark for future monitoring and justify more comprehensive NWR-specific studies. Published by Elsevier Inc.

  7. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  8. Multi-year prediction of estrogenicity in municipal wastewater effluents.

    Science.gov (United States)

    Arlos, Maricor J; Parker, Wayne J; Bicudo, José R; Law, Pam; Marjan, Patricija; Andrews, Susan A; Servos, Mark R

    2018-01-01

    In this study, the estrogenicity of two major wastewater treatment plant (WWTP) effluents located in the central reaches of the Grand River watershed in southern Ontario was estimated using population demographics, excretion rates, and treatment plant-specific removals. Due to the lack of data on estrogen concentrations from direct measurements at WWTPs, the treatment efficiencies through the plants were estimated using the information obtained from an effects-directed analysis. The results show that this approach could effectively estimate the estrogenicity of WWTP effluents, both before and after major infrastructure upgrades were made at the Kitchener WWTP. The model was then applied to several possible future scenarios including population growth and river low flow conditions. The scenario analyses showed that post-upgrade operation of the Kitchener WWTP will not release highly estrogenic effluent under the 2041 projected population increase (36%) or summer low flows. Similarly, the Waterloo WWTP treatment operation is also expected to improve once the upgrades have been fully implemented and is expected to effectively treat estrogens even under extreme scenarios of population growth and river flows. The developed model may be employed to support decision making on wastewater management strategies designed for environmental protection, especially on reducing the endocrine effects in fish exposed to WWTP effluents. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-κB motifs.

    Science.gov (United States)

    Singh, Narendra P; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2012-11-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions.

  10. In Vivo Anti-estrogenic Effects of Menadione on Hepatic Estrogen-responsive Gene Expression in Male Medaka (Oryzias latipes)

    OpenAIRE

    Yamaguchi, Akemi; Kohra, Shinya; Ishibashi, Hiroshi; Arizono, Koji; Tominaga, Nobuaki

    2008-01-01

    Menadione, a synthetic vitamin K3, exhibits anti-estrogenic activity on in vitro assay. However, the in vivo anti-estrogenic effects of menadione have not been determined, while correlations between biological effects and structural changes are unclear. Thus, we investigated the in vivo anti-estrogenic activity of menadione under fluorescent light and dark conditions. Suppression of the hepatic estrogen response genes vitellogenin1 (VTG1), VTG2 and estrogen receptor-α (ER-α) was used as an in...

  11. [Equine estrogens vs. esterified estrogens in the climacteric and menopause. The controversy arrives in Mexico].

    Science.gov (United States)

    Velasco-Murillo, V

    2001-01-01

    It exists controversies about if the effects and benefits of the esterified estrogens could be similar to those informed for equines, because its chemical composition and bioavailability are different. Esterified estrogens has not delta 8,9 dehydroestrone, and its absorption and level of maximum plasmatic concentrations are reached very fast. In United States of America and another countries, esterified estrogens has been marketed and using for treatment of climacteric syndrome and prevention of postmenopausal osteoporosis, based on the pharmacopoiea of that country, but the Food and Drug administration (FDA) has not yet authorized up today, a generic version of conjugated estrogens. In Instituto Mexicano del Seguro Social (IMSS) and another institutions of health sector in Mexico, starting in year 2000, it has been used esterified estrogens for medical treatment of climacteric and menopausal conditions. For this reason, in this paper we revised the most recent information about pharmacology, chemical composition, clinical use and costs of the conjugated estrogens with the purpose to guide the decisions to purchase this kind of drugs in Mexican heath institutions.

  12. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen A Baltgalvis

    Full Text Available BACKGROUND: Estrogens are associated with the loss of skeletal muscle strength in women with age. Ovarian hormone removal by ovariectomy in mice leads to a loss of muscle strength, which is reversed with 17beta-estradiol replacement. Aging is also associated with an increase in antioxidant stress, and estrogens can improve antioxidant status via their interaction with estrogen receptors (ER to regulate antioxidant gene expression. The purpose of this study was to determine if ER and antioxidant gene expression in skeletal muscle are responsive to changes in circulating estradiol, and if ERs regulate antioxidant gene expression in this tissue. METHODOLOGY/PRINCIPAL FINDINGS: Adult C57BL/6 mice underwent ovariectomies or sham surgeries to remove circulating estrogens. These mice were implanted with placebo or 17beta-estradiol pellets acutely or chronically. A separate experiment examined mice that received weekly injections of Faslodex to chronically block ERs. Skeletal muscles were analyzed for expression of ER genes and proteins and antioxidant genes. ERalpha was the most abundant, followed by Gper and ERbeta in both soleus and EDL muscles. The loss of estrogens through ovariectomy induced ERalpha gene and protein expression in the soleus, EDL, and TA muscles at both the acute and chronic time points. Gpx3 mRNA was also induced both acutely and chronically in all 3 muscles in mice receiving 17beta-estradiol. When ERs were blocked using Faslodex, Gpx3 mRNA was downregulated in the soleus muscle, but not the EDL and TA muscles. CONCLUSIONS/SIGNIFICANCE: These data suggest that Gpx3 and ERalpha gene expression are sensitive to circulating estrogens in skeletal muscle. ERs may regulate Gpx3 gene expression in the soleus muscle, but skeletal muscle regulation of Gpx3 via ERs is dependent upon muscle type. Further work is needed to determine the indirect effects of estrogen and ERalpha on Gpx3 expression in skeletal muscle, and their importance in the

  13. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)]. E-mail: shinjit@fmsrsa.fukui-med.ac.jp; Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)

    2005-11-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16{alpha}-[{sup 18}F]-fluoro-17{beta}-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [{sup 3}H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [{sup 3}H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES.

  14. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [ 3 H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [ 3 H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES

  15. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  16. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng; Zheng, Bin; Huang, Kuo-Wei

    2014-01-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  17. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility

    Directory of Open Access Journals (Sweden)

    Monica Marzagalli

    2016-10-01

    Full Text Available Cutaneous melanoma is an aggressive tumor with its incidence increasing faster than any other cancer in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies.Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ER and ERβ that exert opposite effects on cancer growth: ER is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant estrogen receptor in melanoma and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation. However, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention

  18. Select estrogens within the complex formulation of conjugated equine estrogens (Premarin® are protective against neurodegenerative insults: implications for a composition of estrogen therapy to promote neuronal function and prevent Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2006-03-01

    Full Text Available Abstract Background Results of the Women's Health Initiative Memory Study (WHIMS raised concerns regarding the timing and formulation of hormone interventions. Conjugated equine estrogens (CEE, used as the estrogen therapy in the WHIMS trial, is a complex formulation containing multiple estrogens, including several not secreted by human ovaries, as well as other biologically active steroids. Although the full spectrum of estrogenic components present in CEE has not yet been resolved, 10 estrogens have been identified. In the present study, we sought to determine which estrogenic components, at concentrations commensurate with their plasma levels achieved following a single oral dose of 0.625 mg CEE (the dose used in the WHIMS trial in women, are neuroprotective and whether combinations of those neuroprotective estrogens provide added benefit. Further, we sought, through computer-aided modeling analyses, to investigate the potential correlation of the molecular mechanisms that conferred estrogen neuroprotection with estrogen interactions with the estrogen receptor (ER. Results Cultured basal forebrain neurons were exposed to either β-amyloid25–35 or excitotoxic glutamate with or without pretreatment with estrogens followed by neuroprotection analyses. Three indicators of neuroprotection that rely on different aspects of neuronal damage and viability, LDH release, intracellular ATP level and MTT formazan formation, were used to assess neuroprotective efficacy. Results of these analyses indicate that the estrogens, 17α-estradiol, 17β-estradiol, equilin, 17α-dihydroequilin, equilinen, 17α-dihydroequilenin, 17β-dihydroequilenin, and Δ8,9-dehydroestrone were each significantly neuroprotective in reducing neuronal plasma membrane damage induced by glutamate excitotoxicity. Of these estrogens, 17β-estradiol and Δ8,9-dehydroestrone were effective in protecting neurons against β-amyloid25–35-induced intracellular ATP decline

  19. Molecular analysis of human endometrium: Short-term tibolone signaling differs significantly from estrogen and estrogen + progestagen signaling

    NARCIS (Netherlands)

    P. Hanifi-Moghaddam (Payman); B. Boers-Sijmons (Bianca); A.H.A. Klaassens (Anet); F.H. van Wijk (Heidy); M.A. den Bakker (Michael); M.C. Ott; G.L. Shipley; H.A.M. Verheul (Herman); H.J. Kloosterboer (Helenius); C.W. Burger (Curt); L.J. Blok (Leen)

    2007-01-01

    textabstractTibolone, a tissue-selective compound with a combination of estrogenic, progestagenic, and androgenic properties, is used as an alternative for estrogen or estrogen plus progesterone hormone therapy for the treatment of symptoms associated with menopause and osteoporosis. The current

  20. Characterization of high specific activity [16 alpha-123I]Iodo-17 beta-estradiol as an estrogen receptor-specific radioligand capable of imaging estrogen receptor-positive tumors

    International Nuclear Information System (INIS)

    Pavlik, E.J.; Nelson, K.; Gallion, H.H.; van Nagell, J.R. Jr.; Donaldson, E.S.; Shih, W.J.; Spicer, J.A.; Preston, D.F.; Baranczuk, R.J.; Kenady, D.E.

    1990-01-01

    16 alpha-[123I]Iodo-17 beta-estradiol (16 alpha-[123I]E2) has been characterized for use as a selective radioligand for estrogen receptor (ERc) that is capable of generating in situ images of ERc-positive tumors. High specific activity 16 alpha-[123I]E2 (7,500-10,000 Ci/mmol) was used in all determinations. Radiochemical purity was determined by thin layer chromatography, and the selectivity of radioligand for ERc was evaluated using size exclusion high performance liquid chromatography on ERc prepared from rodent uteri. Efficiencies of radioidination approaching 100% were achieved, and excellent receptor selectivity was obtained even when the efficiency of radioiodination was as low as 10%. Low radiochemical purity was always associated with poor selectivity for ERc. No new radioligand species was generated during the course of radiodecay; however, reduced binding over time, even when increased activity was used to compensate for radiodecay, indicated that the formation of a radioinert competitor does occur. 16 alpha-[123I]E2 demonstrated stable, high affinity binding to ERc and was concentrated by ERc-positive tissues. After injecting 16 alpha-[123I]E2 in vivo, images of ERc-containing tissues were obtained, including rabbit reproductive tract and dimethylbenzanthracene-induced tumors. The demonstrations of ERc selectivity and image formation both indicate that 16 alpha-[123I]E2 should have promise as a useful new radiopharmaceutical for imaging ERc-positive cancers

  1. Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen.

    Science.gov (United States)

    Dias, Amanda Cristina Vieira; Gomes, Frederico Wegenast; Bila, Daniele Maia; Sant'Anna, Geraldo Lippel; Dezotti, Marcia

    2015-10-01

    The estrogenicity of waters collected from an important hydrological system in Brazil (Paraiba do Sul and Guandu Rivers) was assessed using the yeast estrogen screen (YES) assay. Sampling was performed in rivers and at the outlets of conventional water treatment plants (WTP). The removal of estrogenic activity by ozonation and chlorination after conventional water treatment (clarification and sand filtration) was investigated employing samples of the Guandu River spiked with estrogens and bisphenol A (BPA). The results revealed a preoccupying incidence of estrogenic activity at levels higher than 1ngL(-1) along some points of the rivers. Another matter of concern was the number of samples from WTPs presenting estrogenicity surpassing 1ngL(-1). The oxidation techniques (ozonation and chlorination) were effective for the removal of estrogenic activity and the combination of both techniques led to good results using less amounts of oxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Estrogen for Alzheimer's disease in women: randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Henderson, V W; Paganini-Hill, A; Miller, B L; Elble, R J; Reyes, P F; Shoupe, D; McCleary, C A; Klein, R A; Hake, A M; Farlow, M R

    2000-01-25

    AD, the most prevalent cause of dementia, affects twice as many women as men. Therapeutic options are limited, but results of prior studies support the hypothesis that estrogen treatment may improve symptoms of women with this disorder. Forty-two women with mild-to-moderate dementia due to AD were enrolled into a randomized, double-blind, placebo-controlled, parallel-group trial of unopposed conjugated equine estrogens (1.25 mg/day) for 16 weeks. Outcome data were available for 40 women at 4 weeks and 36 women at 16 weeks. At both 4 and 16 weeks, there were no significant differences or statistical trends between treatment groups on the primary outcome measure (the cognitive subscale of the Alzheimer's Disease Assessment Scale), clinician-rated global impression of change, or caregiver-rated functional status. Exploratory analyses of mood and specific aspects of cognitive performance also failed to demonstrate substantial group differences. Although conclusions are limited by small sample size and the possibility of a type II error, results suggest that short-term estrogen therapy does not improve symptoms of most women with AD. These findings do not address possible long-term effects of estrogen in AD, possible interactions between estrogen and other treatment modalities, or putative effects of estrogen in preventing or delaying onset of this disorder.

  3. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach

    Directory of Open Access Journals (Sweden)

    Niu AQ

    2016-07-01

    Full Text Available Ai-qin Niu,1 Liang-jun Xie,2 Hui Wang,1 Bing Zhu,1 Sheng-qi Wang3 1Department of Gynecology, the First People’s Hospital of Shangqiu, Shangqiu, Henan, People’s Republic of China; 2Department of Image Diagnoses, the Third Hospital of Jinan, Jinan, Shandong, People’s Republic of China; 3Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China Background: Estrogen receptors (ERs are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. ERs have been validated as important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data suggest that the development of subtype-selective ligands that specifically target ER-β could be a more optimal approach to elicit beneficial estrogen-like activities and reduce side effects. Methods: Herein, we focused on ER-β and developed its in silico quantitative structure-activity relationship models using machine learning (ML methods. Results: The chemical structures and ER-β bioactivity data were extracted from public chemogenomics databases. Four types of popular fingerprint generation methods including MACCS fingerprint, PubChem fingerprint, 2D atom pairs, and Chemistry Development Kit extended fingerprint were used as descriptors. Four ML methods including Naïve Bayesian classifier, k-nearest neighbor, random forest, and support vector machine were used to train the models. The range of classification accuracies was 77.10% to 88.34%, and the range of area under the ROC (receiver operating characteristic curve values was 0.8151 to 0.9475, evaluated by the 5-fold cross-validation. Comparison analysis suggests that both the random forest and the support vector machine are superior

  4. Estrogen Receptor β (ERβ1) Transactivation Is Differentially Modulated by the Transcriptional Coregulator Tip60 in a cis-Acting Element-dependent Manner*

    Science.gov (United States)

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-01-01

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1. PMID:23857583

  5. Estrogen receptor β (ERβ1) transactivation is differentially modulated by the transcriptional coregulator Tip60 in a cis-acting element-dependent manner.

    Science.gov (United States)

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-08-30

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1.

  6. Sequence-specific inhibition of Dicer measured with a force-based microarray for RNA ligands.

    Science.gov (United States)

    Limmer, Katja; Aschenbrenner, Daniela; Gaub, Hermann E

    2013-04-01

    Malfunction of protein translation causes many severe diseases, and suitable correction strategies may become the basis of effective therapies. One major regulatory element of protein translation is the nuclease Dicer that cuts double-stranded RNA independently of the sequence into pieces of 19-22 base pairs starting the RNA interference pathway and activating miRNAs. Inhibiting Dicer is not desirable owing to its multifunctional influence on the cell's gene regulation. Blocking specific RNA sequences by small-molecule binding, however, is a promising approach to affect the cell's condition in a controlled manner. A label-free assay for the screening of site-specific interference of small molecules with Dicer activity is thus needed. We used the Molecular Force Assay (MFA), recently developed in our lab, to measure the activity of Dicer. As a model system, we used an RNA sequence that forms an aptamer-binding site for paromomycin, a 615-dalton aminoglycoside. We show that Dicer activity is modulated as a function of concentration and incubation time: the addition of paromomycin leads to a decrease of Dicer activity according to the amount of ligand. The measured dissociation constant of paromomycin to its aptamer was found to agree well with literature values. The parallel format of the MFA allows a large-scale search and analysis for ligands for any RNA sequence.

  7. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  8. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Directory of Open Access Journals (Sweden)

    Sreenivasan Paruthiyil

    2009-07-01

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  9. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors

    Energy Technology Data Exchange (ETDEWEB)

    Madureira, Tânia Vieira, E-mail: tvmadureira@icbas.up.pt [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto—University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)—University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto (Portugal); Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto—University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)—University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto (Portugal); Urbatzka, Ralph [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto—University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Castro, L. Filipe C. [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto—University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Faculty of Sciences (FCUP), U.Porto—University of Porto, Department of Biology, Rua do Campo Alegre, P 4169-007 Porto (Portugal); Rocha, Eduardo [Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto—University of Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)—University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto (Portugal)

    2015-12-15

    Highlights: • Evidence of crosstalk between estrogens and peroxisomal pathways in brown trout. • VtgA and ERα mRNA levels increased after 1, 10 and 50 μM of ethinylestradiol (EE2). • ERβ-1, catalase and urate oxidase mRNA levels decreased after estrogenic stimuli. • Estrogenic effects in VtgA, ERα and Uox mRNA levels were reverted by ICI 182,780. • Immunofluorescence/electron microscopy shows smaller peroxisomes after 50 μM of EE2. - Abstract: Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96 h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol—EE2) at 1, 10 and 50 μM; (2) an ER antagonist (ICI 182,780) at 10 and 50 μM; and (3) mixtures of both (Mix I—10 μM EE2 and 50 μM ICI; Mix II—1 μM EE2 and 10 μM ICI and Mix III—1 μM EE2 and 50 μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A—VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase—Uox, 17β-hydroxysteroid dehydrogenase 4—17β-HSD4, peroxin 11α—Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50 μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα m

  10. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors

    International Nuclear Information System (INIS)

    Madureira, Tânia Vieira; Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia; Urbatzka, Ralph; Castro, L. Filipe C.; Rocha, Eduardo

    2015-01-01

    Highlights: • Evidence of crosstalk between estrogens and peroxisomal pathways in brown trout. • VtgA and ERα mRNA levels increased after 1, 10 and 50 μM of ethinylestradiol (EE2). • ERβ-1, catalase and urate oxidase mRNA levels decreased after estrogenic stimuli. • Estrogenic effects in VtgA, ERα and Uox mRNA levels were reverted by ICI 182,780. • Immunofluorescence/electron microscopy shows smaller peroxisomes after 50 μM of EE2. - Abstract: Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96 h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol—EE2) at 1, 10 and 50 μM; (2) an ER antagonist (ICI 182,780) at 10 and 50 μM; and (3) mixtures of both (Mix I—10 μM EE2 and 50 μM ICI; Mix II—1 μM EE2 and 10 μM ICI and Mix III—1 μM EE2 and 50 μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A—VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase—Uox, 17β-hydroxysteroid dehydrogenase 4—17β-HSD4, peroxin 11α—Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50 μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα m

  11. Why estrogens matter for behavior and brain health.

    Science.gov (United States)

    Galea, Liisa A M; Frick, Karyn M; Hampson, Elizabeth; Sohrabji, Farida; Choleris, Elena

    2017-05-01

    The National Institutes of Health (NIH) has required the inclusion of women in clinical studies since 1993, which has enhanced our understanding of how biological sex affects certain medical conditions and allowed the development of sex-specific treatment protocols. However, NIH's policy did not previously apply to basic research, and the NIH recently introduced a new policy requiring all new grant applications to explicitly address sex as a biological variable. The policy itself is grounded in the results of numerous investigations in animals and humans illustrating the existence of sex differences in the brain and behavior, and the importance of sex hormones, particularly estrogens, in regulating physiology and behavior. Here, we review findings from our laboratories, and others, demonstrating how estrogens influence brain and behavior in adult females. Research from subjects throughout the adult lifespan on topics ranging from social behavior, learning and memory, to disease risk will be discussed to frame an understanding of why estrogens matter to behavioral neuroscience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer.

    Science.gov (United States)

    Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe

    2015-12-29

    The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERß) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.

  13. Estrogen

    Science.gov (United States)

    ... menopause ('change of life', the end of monthly menstrual periods). Some brands of estrogen are also used ... you.Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient.

  14. Identification of amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor causing the species-specific response to omeprazole: possible determinants for binding putative endogenous ligands.

    Science.gov (United States)

    Shiizaki, Kazuhiro; Ohsako, Seiichiroh; Kawanishi, Masanobu; Yagi, Takashi

    2014-02-01

    Omeprazole (OME) induces the expression of genes encoding drug-metabolizing enzymes, such as CYP1A1, via activation of the aryl hydrocarbon receptor (AhR) both in vivo and in vitro. However, the precise mechanism of OME-mediated AhR activation is still under investigation. While elucidating species-specific susceptibility to dioxin, we found that OME-mediated AhR activation was mammalian species specific. Moreover, we previously reported that OME has inhibitory activity toward CYP1A1 enzymes. From these observations, we speculated that OME-mediated AhR target gene transcription is due to AhR activation by increasing amounts of putative AhR ligands in serum by inhibition of CYP1A1 activity. We compared the amino acid sequences of OME-sensitive rabbit AhR and nonsensitive mouse AhR to identify the residues responsible for the species-specific response. Chimeric AhRs were constructed by exchanging domains between mouse and rabbit AhRs to define the region required for the response to OME. OME-mediated transactivation was observed only with the chimeric AhR that included the ligand-binding domain (LBD) of the rabbit AhR. Site-directed mutagenesis revealed three amino acids (M328, T353, and F367) in the rabbit AhR that were responsible for OME-mediated transactivation. Replacing these residues with those of the mouse AhR abolished the response of the rabbit AhR. In contrast, substitutions of these amino acids with those of the rabbit AhR altered nonsensitive mouse AhR to become sensitive to OME. These results suggest that OME-mediated AhR activation requires a specific structure within LBD that is probably essential for binding with enigmatic endogenous ligands.

  15. Radioiodinated ligands for the estrogen receptor: Effect of different 7-cyanoalkyl chains on the binding affinity of novel iodovinyl-6-dehydroestradiols

    International Nuclear Information System (INIS)

    Neto, Carina; Oliveira, Maria Cristina; Gano, Lurdes; Marques, Fernanda; Santos, Isabel; Morais, Goreti Ribeiro; Yasuda, Takumi; Thiemann, Thies; Botelho, Filomena; Oliveira, Carlos F.

    2009-01-01

    Three novel 17α-ethynyl-Δ 6,7 -estra-3,17β-diols and their 17α-[ 125 I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17α-[ 125 I]-iodovinyl-Δ 6,7 -estra-3,17β-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself. In addition, a non-specific cell binding was observed which is in accordance with the encountered ethynyl RBA values suggesting that the uptake is not ER mediated

  16. Ept7 influences estrogen action in the pituitary gland and body weight of rats.

    Science.gov (United States)

    Kurz, Scott G; Dennison, Kirsten L; Samanas, Nyssa Becker; Hickman, Maureen Peters; Eckert, Quincy A; Walker, Tiffany L; Cupp, Andrea S; Shull, James D

    2014-06-01

    Estrogens control many aspects of pituitary gland biology, including regulation of lactotroph homeostasis and synthesis and secretion of prolactin. In rat models, these actions are strain specific and heritable, and multiple quantitative trait loci (QTL) have been mapped that impact the responsiveness of the lactotroph to estrogens. One such QTL, Ept7, was mapped to RNO7 in female progeny generated in an intercross between BN rats, in which the lactotroph population is insensitive to estrogens, and ACI rats, which develop lactotroph hyperplasia/adenoma and associated hyperprolactinemia in response to estrogen treatment. The primary objective of this study was to confirm the existence of Ept7 and to quantify the impact of this QTL on responsiveness of the pituitary gland of female and male rats to 17β-estradiol (E2) and diethylstilbestrol (DES), respectively. Secondary objectives were to determine if Ept7 influences the responsiveness of the male reproductive tract to DES and to identify other discernible phenotypes influenced by Ept7. To achieve these objectives, a congenic rat strain that harbors BN alleles across the Ept7 interval on the genetic background of the ACI strain was generated and characterized to define the effect of administered estrogens on the anterior pituitary gland and male reproductive tissues. Data presented herein indicate Ept7 exerts a marked effect on development of lactotroph hyperplasia in response to estrogen treatment, but does not affect atrophy of the male reproductive tissues in response to hormone treatment. Ept7 was also observed to exert gender specific effects on body weight in young adult rats.

  17. Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions.

    Science.gov (United States)

    Abrash, Emily B; Davies, Kelli A; Bergmann, Dominique C

    2011-08-01

    Core signaling pathways function in multiple programs during multicellular development. The mechanisms that compartmentalize pathway function or confer process specificity, however, remain largely unknown. In Arabidopsis thaliana, ERECTA (ER) family receptors have major roles in many growth and cell fate decisions. The ER family acts with receptor TOO MANY MOUTHS (TMM) and several ligands of the EPIDERMAL PATTERNING FACTOR LIKE (EPFL) family, which play distinct yet overlapping roles in patterning of epidermal stomata. Here, our examination of EPFL genes EPFL6/CHALLAH (CHAL), EPFL5/CHALLAH-LIKE1, and EPFL4/CHALLAH-LIKE2 (CLL2) reveals that this family may mediate additional ER-dependent processes. chal cll2 mutants display growth phenotypes characteristic of er mutants, and genetic interactions are consistent with CHAL family molecules acting as ER family ligands. We propose that different classes of EPFL genes regulate different aspects of ER family function and introduce a TMM-based discriminatory mechanism that permits simultaneous, yet compartmentalized and distinct, function of the ER family receptors in growth and epidermal patterning.

  18. Estrogenic Activity of Coumestrol, DDT, and TCDD in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Ndebele

    2010-05-01

    Full Text Available Endogenous estrogens have dramatic and differential effects on classical endocrine organ and proliferation. Xenoestrogens are environmental estrogens that have endocrine impact, acting as both estrogen agonists and antagonists, but whose effects are not well characterized. In this investigation we sought to delineate effects of xenoestrogens. Using human cervical cancer cells (HeLa cells as a model, the effects of representative xenoestrogens (Coumestrol-a phytoestrogen, tetrachlorodioxin (TCDD-a herbicide and DDT-a pesticide on proliferation, cell cycle, and apoptosis were examined. These xenoestrogens and estrogen inhibited the proliferation of Hela cells in a dose dependent manner from 20 to 120 nM suggesting, that 17-β-estrtadiol and xenoestrogens induced cytotoxic effects. Coumestrol produced accumulation of HeLa cells in G2/M phase, and subsequently induced apoptosis. Similar effects were observed in estrogen treated cells. These changes were associated with suppressed bcl-2 protein and augmented Cyclins A and D proteins. DDT and TCDD exposure did not induce apoptosis. These preliminary data taken together, suggest that xenoestrogens have direct, compound-specific effects on HeLa cells. This study further enhances our understanding of environmental modulation of cervical cancer.

  19. Estrogen, Progesterone and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Ho Shuk-Mei

    2003-10-01

    Full Text Available Abstract Ovarian carcinoma (OCa continues to be the leading cause of death due to gynecologic malignancies and the vast majority of OCa is derived from the ovarian surface epithelium (OSE and its cystic derivatives. Epidemiological evidence strongly suggests that steroid hormones, primarily estrogens and progesterone, are implicated in ovarian carcinogenesis. However, it has proved difficult to fully understand their mechanisms of action on the tumorigenic process. New convincing data have indicated that estrogens favor neoplastic transformation of the OSE while progesterone offers protection against OCa development. Specifically, estrogens, particularly those present in ovulatory follicles, are both genotoxic and mitogenic to OSE cells. In contrast, pregnancy-equivalent levels progesterone are highly effective as apoptosis inducers for OSE and OCa cells. In this regard, high-dose progestin may exert an exfoliation effect and rid an aged OSE of pre-malignant cells. A limited number of clinical studies has demonstrated efficacies of antiestrogens, aromatase inhibitors, and progestins alone or in combination with chemotherapeutic drugs in the treatment of OCa. As a result of increased life expectancy in most countries, the number of women taking hormone replacement therapies (HRT continues to grow. Thus, knowledge of the mechanism of action of steroid hormones on the OSE and OCa is of paramount significance to HRT risk assessment and to the development of novel therapies for the prevention and treatment of OCa.

  20. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.

    Science.gov (United States)

    Amini, Ata; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2007-12-01

    Despite the increased recent use of protein-ligand and protein-protein docking in the drug discovery process due to the increases in computational power, the difficulty of accurately ranking the binding affinities of a series of ligands or a series of proteins docked to a protein receptor remains largely unsolved. This problem is of major concern in lead optimization procedures and has lead to the development of scoring functions tailored to rank the binding affinities of a series of ligands to a specific system. However, such methods can take a long time to develop and their transferability to other systems remains open to question. Here we demonstrate that given a suitable amount of background information a new approach using support vector inductive logic programming (SVILP) can be used to produce system-specific scoring functions. Inductive logic programming (ILP) learns logic-based rules for a given dataset that can be used to describe properties of each member of the set in a qualitative manner. By combining ILP with support vector machine regression, a quantitative set of rules can be obtained. SVILP has previously been used in a biological context to examine datasets containing a series of singular molecular structures and properties. Here we describe the use of SVILP to produce binding affinity predictions of a series of ligands to a particular protein. We also for the first time examine the applicability of SVILP techniques to datasets consisting of protein-ligand complexes. Our results show that SVILP performs comparably with other state-of-the-art methods on five protein-ligand systems as judged by similar cross-validated squares of their correlation coefficients. A McNemar test comparing SVILP to CoMFA and CoMSIA across the five systems indicates our method to be significantly better on one occasion. The ability to graphically display and understand the SVILP-produced rules is demonstrated and this feature of ILP can be used to derive hypothesis for

  1. Interactions between the cytomegalovirus promoter and the estrogen response element: implications for design of estrogen-responsive reporter plasmids.

    Science.gov (United States)

    Derecka, K; Wang, C K; Flint, A P F

    2006-07-01

    We aimed to produce an estrogen-responsive reporter plasmid that would permit monitoring of estrogen receptor function in the uterus in vivo. The plasmid pBL-tk-CAT(+)ERE was induced by estrogen in bovine endometrial stromal cells. When the CAT gene was replaced by the secreted alkaline phosphatase SeAP, the resulting construct pBL-tk-SeAP(+)ERE remained estrogen responsive. However when the tk promoter was replaced by the cytomegalovirus (cmv) promoter, the resulting plasmid (pBL-cmv-SeAP(+)ERE) was not estrogen responsive. Inhibition of ERE function was not due to an effect in trans or due to lack of estrogen receptor. It was not due to an interaction between the cmv promoter and the SeAP gene. cmv promoter function was dependent on NF-kappaB, and mutagenesis in the NF-kappaB sites reduced basal reporter expression without imparting responsiveness to estrogen. A mutation in the TATA box also failed to impart estrogen responsiveness. Modeling of DNA accessibility indicated the ERE was inserted at a site accessible to transcription factors. We conclude that the cmv promoter inhibits ERE function in cis when the two sequences are located in the same construct, and that this effect does not involve an interaction between cmv and reporter gene, NF-kappaB sites or the TATA box, or DNA inaccessibility.

  2. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  3. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach.

    Science.gov (United States)

    Niu, Ai-Qin; Xie, Liang-Jun; Wang, Hui; Zhu, Bing; Wang, Sheng-Qi

    2016-01-01

    Estrogen receptors (ERs) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. ERs have been validated as important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data suggest that the development of subtype-selective ligands that specifically target ER-β could be a more optimal approach to elicit beneficial estrogen-like activities and reduce side effects. Herein, we focused on ER-β and developed its in silico quantitative structure-activity relationship models using machine learning (ML) methods. The chemical structures and ER-β bioactivity data were extracted from public chemogenomics databases. Four types of popular fingerprint generation methods including MACCS fingerprint, PubChem fingerprint, 2D atom pairs, and Chemistry Development Kit extended fingerprint were used as descriptors. Four ML methods including Naïve Bayesian classifier, k-nearest neighbor, random forest, and support vector machine were used to train the models. The range of classification accuracies was 77.10% to 88.34%, and the range of area under the ROC (receiver operating characteristic) curve values was 0.8151 to 0.9475, evaluated by the 5-fold cross-validation. Comparison analysis suggests that both the random forest and the support vector machine are superior for the classification of selective ER-β agonists. Chemistry Development Kit extended fingerprints and MACCS fingerprint performed better in structural representation between active and inactive agonists. These results demonstrate that combining the fingerprint and ML approaches leads to robust ER-β agonist prediction models, which are potentially applicable to the identification of selective ER-β agonists.

  4. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-α with BCAR1 and Traf6

    International Nuclear Information System (INIS)

    Robinson, Lisa J.; Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L.; Blair, Harry C.

    2009-01-01

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at ∼ 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-β-estradiol. Estrogen receptor-α (ERα) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ERα. However, ERα was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ERα in the presence of estrogen, was abundant. Immunoprecipitation showed rapid (∼ 5 min) estrogen-dependent formation of ERα-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-κB activity, precipitated with this complex. Reduction of NF-κB nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of IκB in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ERα.

  5. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-{alpha} with BCAR1 and Traf6

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Lisa J., E-mail: robinsonlj@msx.upmc.edu [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Blair, Harry C. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Veteran' s Affairs Medical Center, Pittsburgh, PA 15243 (United States)

    2009-04-15

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at {approx} 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-{beta}-estradiol. Estrogen receptor-{alpha} (ER{alpha}) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ER{alpha}. However, ER{alpha} was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ER{alpha} in the presence of estrogen, was abundant. Immunoprecipitation showed rapid ({approx} 5 min) estrogen-dependent formation of ER{alpha}-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-{kappa}B activity, precipitated with this complex. Reduction of NF-{kappa}B nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of I{kappa}B in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ER{alpha}.

  6. Interactions Between the Cytomegalovirus Promoter and the Estrogen Response Element: Implications for Design of Estrogen-Responsive Reporter Plasmids

    OpenAIRE

    Derecka, K.; Wang, C.K.; Flint, A.P.F.

    2006-01-01

    We aimed to produce an estrogen-responsive reporter plasmid that would permit monitoring of estrogen receptor function in the uterus in vivo. The plasmid pBL-tk-CAT(+)ERE was induced by estrogen in bovine endometrial stromal cells. When the CAT gene was replaced by the secreted alkaline phosphatase SeAP, the resulting construct pBL-tk-SeAP(+)ERE remained estrogen responsive. However when the tk promoter was replaced by the cytomegalovirus (cmv) promoter, the resulting plasmid (pBL-cmv-SeAP(+)...

  7. Estrogenic activity of flavonoids in mice. The importance of estrogen receptor distribution, metabolism and bioavailability

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Hossaini, A.; Svendsen, Gitte W.

    2000-01-01

    The in vivo estrogenic potential of the flavonoids apigenin, kaempferol, genistein and equol was investigated in immature female mice. Genistein and equol, administered by gavage for 4 consecutive days [post-natal day (PND) 17-20, 100 mg/kg body weight], was found to significantly increase uterine...... or lower potency. Bioavailability, metabolism, the ability to alter ER alpha distribution in the uterus and the estrogenic potential of parent compound and metabolites may thus contribute to the differences in in vivo estrogenicity of dietary flavonoids....

  8. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Yuxin Feng

    Full Text Available Estrogen receptor alpha (ERα, a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER's ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER's transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy.

  9. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    Science.gov (United States)

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  10. Inhibition of neointima formation by local delivery of estrogen receptor alpha and beta specific agonists

    NARCIS (Netherlands)

    Krom, Y.D.; Pires, N.M.M.; Jukema, J.W.; Vries, M.R. de; Frants, R.R.; Havekes, L.M.; Dijk, K.W. van; Quax, P.H.A.

    2007-01-01

    Objective: Neointima formation is the underlying mechanism of (in-stent) restenosis. 17β-Estradiol (E2) is known to inhibit injury-induced neointima formation and post-angioplasty restenosis. Estrogen receptor alpha (ERα) has been demonstrated to mediate E2 anti-restenotic properties. However, the

  11. Estrogen Signaling Contributes to Sex Differences in Macrophage Polarization during Asthma.

    Science.gov (United States)

    Keselman, Aleksander; Fang, Xi; White, Preston B; Heller, Nicola M

    2017-09-01

    Allergic asthma is a chronic Th2 inflammation in the lungs that constricts the airways and presents as coughing and wheezing. Asthma mostly affects boys in childhood and women in adulthood, suggesting that shifts in sex hormones alter the course of the disease. Alveolar macrophages have emerged as major mediators of allergic lung inflammation in animal models as well as humans. Whether sex differences exist in macrophage polarization and the molecular mechanism(s) that drive differential responses are not well understood. We found that IL-4-stimulated bone marrow-derived and alveolar macrophages from female mice exhibited greater expression of M2 genes in vitro and after allergen challenge in vivo. Alveolar macrophages from female mice exhibited greater expression of the IL-4Rα and estrogen receptor (ER) α compared with macrophages from male mice following allergen challenge. An ERα-specific agonist enhanced IL-4-induced M2 gene expression in macrophages from both sexes, but more so in macrophages from female mice. Furthermore, IL-4-stimulated macrophages from female mice exhibited more transcriptionally active histone modifications at M2 gene promoters than did macrophages from male mice. We found that supplementation of estrogen into ovariectomized female mice enhanced M2 polarization in vivo upon challenge with allergen and that macrophage-specific deletion of ERα impaired this M2 polarization. The effects of estrogen are long-lasting; bone marrow-derived macrophages from ovariectomized mice implanted with estrogen exhibited enhanced IL-4-induced M2 gene expression compared with macrophages from placebo-implanted littermates. Taken together, our findings suggest that estrogen enhances IL-4-induced M2 gene expression and thereby contributes to sex differences observed in asthma. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands.

    Science.gov (United States)

    He, Wei; Kularatne, Sumith A; Kalli, Kimberly R; Prendergast, Franklyn G; Amato, Robert J; Klee, George G; Hartmann, Lynn C; Low, Philip S

    2008-10-15

    Quantitation of circulating tumor cells (CTCs) can provide information on the stage of a malignancy, onset of disease progression and response to therapy. In an effort to more accurately quantitate CTCs, we have synthesized fluorescent conjugates of 2 high-affinity tumor-specific ligands (folate-AlexaFluor 488 and DUPA-FITC) that bind tumor cells >20-fold more efficiently than fluorescent antibodies. Here we determine whether these tumor-specific dyes can be exploited for quantitation of CTCs in peripheral blood samples from cancer patients. A CTC-enriched fraction was isolated from the peripheral blood of ovarian and prostate cancer patients by an optimized density gradient centrifugation protocol and labeled with the aforementioned fluorescent ligands. CTCs were then quantitated by flow cytometry. CTCs were detected in 18 of 20 ovarian cancer patients (mean 222 CTCs/ml; median 15 CTCs/ml; maximum 3,118 CTCs/ml), whereas CTC numbers in 16 gender-matched normal volunteers were negligible (mean 0.4 CTCs/ml; median 0.3 CTCs/ml; maximum 1.5 CTCs/ml; p < 0.001, chi(2)). CTCs were also detected in 10 of 13 prostate cancer patients (mean 26 CTCs/ml, median 14 CTCs/ml, maximum 94 CTCs/ml) but not in 18 gender-matched healthy donors (mean 0.8 CTCs/ml, median 1, maximum 3 CTC/ml; p < 0.0026, chi(2)). Tumor-specific fluorescent antibodies were much less efficient in quantitating CTCs because of their lower CTC labeling efficiency. Use of tumor-specific fluorescent ligands to label CTCs in peripheral blood can provide a simple, accurate and sensitive method for determining the number of cancer cells circulating in the bloodstream.

  13. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  14. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  15. Vitellogenin, a Marker of Estrogen Mimicking Contaminants in Fishes: Characterization, Quantification and Interference by Anti-Estrogens

    OpenAIRE

    Palumbo, Amanda J.

    2008-01-01

    Vitellogenin (Vg), the estrogen inducible protein precursor to egg yolk, serves as an indicator of exposure to estrogen mimicking environmental contaminants. Vg was isolated by size exclusion and ion exchange chromatography from plasma of California halibut (Paralichthys californicus) treated with estrogen. MALDI TOF mass spectrometry (MS) analysis resulted in a molecular mass of 188 kDa. MS/MS de novo sequencing provided evidence that California halibut has more than one form of Vg. Similar ...

  16. Estrogenic and pregnancy interceptory effects of Achyranthes ...

    African Journals Online (AJOL)

    ... the dose of 200 mg/kg body weight also exhibited estrogenic activity. Histological studies of the uterus were carried out to confirm this estrogenic activity. Keywords: Achyranthes aspera; antifertility; anti-implantation; estrogenic; uterotropic. The African Journal of Traditional, Complementary and Alternative Medicines Vol.

  17. Estrogen therapy: the dangerous road to Shangri-La.

    Science.gov (United States)

    1976-11-01

    The use of estrogens almost tripled during the 1965-75 period, with usage concentrated as a cure-all for aging, for the degenerative diseases associated with aging, and for the emotional difficulties of middle age. 3 separate studies published in the last year have shown a high level of association between estrogen use and the development of endometrial cancer. Results of these studies coupled with the significant recent increase in the incidence of cancer in women over 50 who are in the high socioeconomic groups--the groups most likely to use estrogen therapy--emphasize the association. The U.S. FDA has proposed a modification in the labeling for estrogens, and a package insert for patients which would warn of possible hazards of estrogen therapy. It is recommended that estrogen be used only for vasomotor symptoms and vaginal atrophy. The lowest possible effective dosage should be used and for the shortest possible amount of time. Earlier studies had suggested that estrogen replacement therapy might protect against breast cancer; most recent studies suggest the opposite. In addition, estrogen may trigger high blood pressure and increase some blood clotting. Women with high blood pressure or a family history of early heart attacks are contraindicated from using estrogen therapy. Even for the treatment of osteoporosis, there may be safer alternative therapies. Women are cautioned as to their own responsibilities when taking estrogens.

  18. Estrogen replacement therapy and cardioprotection: mechanisms and controversies

    Directory of Open Access Journals (Sweden)

    M.T.R. Subbiah

    2002-03-01

    Full Text Available Epidemiological and case-controlled studies suggest that estrogen replacement therapy might be beneficial in terms of primary prevention of coronary heart disease (CHD. This beneficial effect of estrogens was initially considered to be due to the reduction of low density lipoproteins (LDL and to increases in high density lipoproteins (HDL. Recent studies have shown that estrogens protect against oxidative stress and decrease LDL oxidation. Estrogens have direct effects on the arterial tissue and modulate vascular reactivity through nitric oxide and prostaglandin synthesis. While many of the effects of estrogen on vascular tissue are believed to be mediated by estrogen receptors alpha and ß, there is evidence for `immediate non-genomic' effects. The role of HDL in interacting with 17ß-estradiol including its esterification and transfer of esterified estrogens to LDL is beginning to be elucidated. Despite the suggested positive effects of estrogens, two recent placebo-controlled clinical trials in women with CHD did not detect any beneficial effects on overall coronary events with estrogen therapy. In fact, there was an increase in CHD events in some women. Mutations in thrombogenic genes (factor V Leiden, prothrombin mutation, etc. in a subset of women may play a role in this unexpected finding. Thus, the cardioprotective effect of estrogens appears to be more complicated than originally thought and requires more research.

  19. Inhibitory effect of luteolin on estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19).

    Science.gov (United States)

    Lu, Dan-feng; Yang, Li-juan; Wang, Fei; Zhang, Guo-lin

    2012-08-29

    Inhibition of aromatase, the key enzyme in estrogen biosynthesis, is an important strategy in the treatment of breast cancer. Several dietary flavonoids show aromatase inhibitory activity, but their tissue specificity and mechanism remain unclear. This study found that the dietary flavonoid luteolin potently inhibited estrogen biosynthesis in a dose- and time-dependent manner in KGN cells derived from human ovarian granulosa cells, the major source of estrogens in premenopausal women. Luteolin decreased aromatase mRNA and protein expression in KGN cells. Luteolin also promoted aromatase protein degradation and inhibited estrogen biosynthesis in aromatase-expressing HEK293A cells, but had no effect on recombinant expressed aromatase. Estrogen biosynthesis in KGN cells was inhibited with differing potencies by extracts of onion and bird chili and by four other dietary flavonoids: kaempferol, quercetin, myricetin, and isorhamnetin. The present study suggests that luteolin inhibits estrogen biosynthesis by decreasing aromatase expression and destabilizing aromatase protein, and it warrants further investigation as a potential treatment for estrogen-dependent cancers.

  20. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors.

    Directory of Open Access Journals (Sweden)

    Yun Zhu

    Full Text Available Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81 with that of estrogen (17β-estradiol or E2. Significant correlations were observed among lignans (R values: 0.77 to 0.97, and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1 secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level.

  1. Sensitivity and Specificity of Bioassay of Estrogenicity on Mammary Gland and Uterus of Female Mice

    Czech Academy of Sciences Publication Activity Database

    Škarda, Josef

    2002-01-01

    Roč. 51, - (2002), s. 407-412 ISSN 0862-8408 R&D Projects: GA ČR GA523/99/0843; GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5045916 Keywords : Bioassay * Estrogenicity * Mammary gland Subject RIV: ED - Physiology Impact factor: 0.984, year: 2002

  2. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  3. Profile of bazedoxifene/conjugated estrogens for the treatment of estrogen deficiency symptoms and osteoporosis in women at risk of fracture

    Directory of Open Access Journals (Sweden)

    Rossini M

    2013-07-01

    Full Text Available Maurizio Rossini,1 Stefano Lello,2 Ignazio Sblendorio,3 Ombretta Viapiana,1 Elena Fracassi,1 Silvano Adami,1 Davide Gatti11Department of Medicine, Rheumatology Unit, University of Verona, Italy; 2Endocrinological Gynecology, Pathophysiology of Menopause and Osteoporosis, Dermopathic Institute of Immacolata, Roma, Italy; 3Medical Coach Italia Center, Bari, ItalyAbstract: Decreasing levels of estrogens during menopause are associated with reduced bone density and an increased risk of osteoporosis. Many women also experience bothersome vasomotor and vaginal symptoms during the menopausal transition. Results of systematic reviews and meta-analyses of randomized controlled trials have shown that both systemic estrogen therapy or hormone therapy (estrogen combined with a progestin are useful to prevent bone loss, and they are the most effective treatment for such climacteric symptoms as hot flushes, sweating, vaginal dryness, and dyspareunia. Unfortunately, estrogen therapy and hormone therapy increase the risk of endometrial and breast cancer, respectively. The selective estrogen receptor modulators (SERMs result in positive estrogenic effects on bone, with no negative effects on the endometrium and breast but do not provide relief from postmenopausal symptoms. The combination of a SERM with estrogen as a tissue selective estrogen complex (TSEC is a new strategy for the prevention of bone loss and the treatment of climacteric symptoms. This combination is particularly interesting from a clinical point of view, taking into account that estrogen alone did not increase breast cancer risk by the Women's Health Initiative. TSEC is hypothesized to provide the benefits of estrogen-alone therapy, with an improved tolerability profile because the SERM component can make possible the elimination of progestin. The objective of this review was to critically evaluate the evidence from the reports published to date on the use of bazedoxifene (a third

  4. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Schwarzschild, Michael A; Xu, Kui

    2008-01-01

    Continued progress has been made toward each of the Specific Aims (SAs) 1 and 2 (SA 3 completed) of our research project, Caffeine, adenosine receptors and estrogen in toxin models of Parkinson's disease...

  5. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor.

    Science.gov (United States)

    Kousteni, Stavroula; Almeida, Maria; Han, Li; Bellido, Teresita; Jilka, Robert L; Manolagas, Stavros C

    2007-02-01

    Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.

  6. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors.

    Science.gov (United States)

    Madureira, Tânia Vieira; Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2015-12-01

    Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol-EE2) at 1, 10 and 50μM; (2) an ER antagonist (ICI 182,780) at 10 and 50μM; and (3) mixtures of both (Mix I-10μM EE2 and 50μM ICI; Mix II-1μM EE2 and 10μM ICI and Mix III-1μM EE2 and 50μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A-VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase-Uox, 17β-hydroxysteroid dehydrogenase 4-17β-HSD4, peroxin 11α-Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα mRNA increased after all EE2 treatments, while ERβ-1 had an inverse pattern. The EE2 action was reversed by ICI 182,780 in a concentration-dependent manner, for VtgA, ERα and Uox. Overall, our data show the great value of primary brown trout hepatocytes to study the effects of estrogenic/anti-estrogenic inputs in peroxisome kinetics and in ER and PPARα signaling, backing the still open hypothesis of crosstalk interactions between these pathways and calling for more mechanistic

  7. Histone H2A.Z is essential for estrogen receptor signaling

    Science.gov (United States)

    Gévry, Nicolas; Hardy, Sara; Jacques, Pierre-Étienne; Laflamme, Liette; Svotelis, Amy; Robert, François; Gaudreau, Luc

    2009-01-01

    Incorporation of H2A.Z into the chromatin of inactive promoters has been shown to poise genes for their expression. Here we provide strong evidence that H2A.Z is incorporated into the promoter regions of estrogen receptor (ERα) target genes only upon gene induction, and that, in a cyclic pattern. Moreover, members of the human H2A.Z-depositing complex, p400, also follow the same gene recruitment kinetics as H2A.Z. Importantly, cellular depletion of H2A.Z or p400 leads to a severe defect in estrogen signaling, including loss of estrogen-specific cell proliferation. We find that incorporation of H2A.Z within TFF1 promoter chromatin allows nucleosomes to adopt preferential positions along the DNA translational axis. Finally, we provide evidence that H2A.Z is essential to allow estrogen-responsive enhancer function. Taken together, our results provide strong mechanistic insight into how H2A.Z regulates ERα-mediated gene expression and provide a novel link between H2A.Z–p400 and ERα-dependent gene regulation and enhancer function. PMID:19515975

  8. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes

    DEFF Research Database (Denmark)

    Wiik, A.; Hellsten, Ylva; Berthelson, P.

    2009-01-01

    is ER independent. The muscle contraction-induced transactivation of ERE and increase in ERbeta mRNA were instead found to be MAP kinase (MAPK) dependent. This study demonstrates for the first time that muscle contractions have a similar functional effect as estrogen in skeletal muscle myotubes, causing......The aim of the present study was to investigate the activation of estrogen response elements (EREs) by estrogen and muscle contractions in rat myotubes in culture and to assess whether the activation is dependent on the estrogen receptors (ERs). In addition, the effect of estrogen and contraction...... on the mRNA levels of ERalpha and ERbeta was studied to determine the functional consequence of the transactivation. Myoblasts were isolated from rat skeletal muscle and transfected with a vector consisting of sequences of EREs coupled to the gene for luciferase. The transfected myoblasts were...

  9. The role of estrogen in bipolar disorder, a review

    DEFF Research Database (Denmark)

    Meinhard, Ninja; Kessing, Lars Vedel; Vinberg, Maj

    2014-01-01

    hormones, e.g. estrogen, are fluctuating and particularly postpartum there is a steep fall in the levels of serum estrogen. The role of estrogen in women with bipolar disorder is, however, not fully understood. Aim: The main objective of this review is to evaluate the possible relation between serum...... estrogen levels and women with bipolar disorder including studies of the anti manic effects of the selective estrogen receptor modulator tamoxifen. Method: A systematically literature search on PubMed was conducted: two studies regarding the connection between serum estrogen levels and women with bipolar...... tamoxifen studies found that tamoxifen was effective in producing antimanic effects. Conclusion: These results indicate that estrogen fluctuations may be an important factor in the etiology of bipolar disorder and it is obvious that more research on this topic is needed to clarify the role of estrogen...

  10. The role of estrogen in bipolar disorder, a review

    DEFF Research Database (Denmark)

    Meinhard, Ninja; Kessing, Lars Vedel; Vinberg, Maj

    2014-01-01

    hormones, e.g. estrogen, are fluctuating and particularly postpartum there is a steep fall in the levels of serum estrogen. The role of estrogen in women with bipolar disorder is, however, not fully understood. AIM: The main objective of this review is to evaluate the possible relation between serum...... estrogen levels and women with bipolar disorder including studies of the anti manic effects of the selective estrogen receptor modulator tamoxifen. METHOD: A systematically literature search on PubMed was conducted: two studies regarding the connection between serum estrogen levels and women with bipolar...... tamoxifen studies found that tamoxifen was effective in producing antimanic effects. CONCLUSION: These results indicate that estrogen fluctuations may be an important factor in the etiology of bipolar disorder and it is obvious that more research on this topic is needed to clarify the role of estrogen...

  11. Targeted basic research to highlight the role of estrogen and estrogen receptors in the cardiovascular system.

    Science.gov (United States)

    Dworatzek, Elke; Mahmoodzadeh, Shokoufeh

    2017-05-01

    Epidemiological, clinical and animal studies revealed that sex differences exist in the manifestation and outcome of cardiovascular disease (CVD). The underlying molecular mechanisms implicated in these sex differences are not fully understood. The reasons for sex differences in CVD are definitely multifactorial, but major evidence points to the contribution of sex steroid hormone, 17β-estradiol (E2), and its receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). In this review, we summarize past and present studies that implicate E2 and ER as important determinants of sexual dimorphism in the physiology and pathophysiology of the heart. In particular, we give an overview of studies aimed to reveal the role of E2 and ER in the physiology of the observed sex differences in CVD using ER knock-out mice. Finally, we discuss recent findings from novel transgenic mouse models, which have provided new information on the sexual dimorphic roles of ER specifically in cardiomyocytes under pathological conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Estrogen receptor binding radiopharmaceuticals: II. Tissue distribution of 17 α-methylestradiol in normal and tumor-bearing rats

    International Nuclear Information System (INIS)

    Feenstra, A.; Vaalburg, W.; Nolten, G.M.J.; Reiffers, S.; Talma, A.G.; Wiegman, T.; van der Molen, H.D.; Woldring, M.G.

    1983-01-01

    Tritiated 17α-methylestradiol was synthesized to investigate the potential of the carbon-11-labeled analog as an estrogen-receptor-binding radiopharmaceutical. In vitro, 17α-methylestradiol is bound with high affinity to the cytoplasmic estrogen receptor from rabbit uterus (K/sub d/ = 1.96 x 10 -10 M), and it sediments as an 8S hormone-receptor complex in sucrose gradients. The compound shows specific uptake in the uterus of the adult rat, within 1 h after injection. In female rats bearing DMBA-induced tumors, specific uterine and tumor uptakes were observed, although at 30 min the tumor uptake was only 23 to 30% of the uptake in the uterus. Tritiated 17α-methylestradiol with a specific activity of 6 Ci/mmole showed a similar tissue distribution. Our results indicate that a 17 α-methylestradiol is promising as an estrogen-receptor-binding radiopharmaceutical

  13. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer.

    Science.gov (United States)

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-05-10

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette-Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence.

  14. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  15. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria

    2011-01-01

    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  16. Estrogen and its role in gastrointestinal health and disease.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    INTRODUCTION: While the concept of a role of estrogen in gastrointestinal (in particular, colonic) malignancy has generated excitement in recent years, no review has examined the role of this potent and omnipresent steroid hormone in physiological states or its contribution to the development of benign pathological processes. Understanding these effects (and mechanisms therein) may provide a platform for a deeper understanding of more complex disease processes. METHODS: A literature search was conducted using the PubMed database and the search terms were "estrogen," "estrogen AND gastrointestinal tract," "estrogen AND colon," "estrogen AND esophagus," "estrogen AND small intestine," "estrogen AND stomach," "estrogen AND gallbladder," and "estrogen AND motility." Bibliographies of extracted studies were further cross-referenced. In all, 136 full-text articles were selected for review. A logical organ-based approach was taken to enable extraction of data of clinical relevance and meaningful interpretation thereof. Insight is provided into the hypotheses, theories, controversies, and contradictions generated over the last five decades by extensive investigation of estrogen in human, animal, and cell models using techniques as diverse as autoradiographic studies of baboons to human population analysis. CONCLUSIONS: Effects from esophagus through to the colon and rectum are summarized in this first concise collection of data pertaining to estrogenic actions in gastrointestinal health and disease. Mechanisms of these actions are discussed where possible. Undoubtedly, this hormone exerts many actions yet to be elucidated, and its potential therapeutic applications remain, as yet, largely unexplored.

  17. Meeting report: batch-to-batch variability in estrogenic activity in commercial animal diets--importance and approaches for laboratory animal research.

    Science.gov (United States)

    Heindel, Jerrold J; vom Saal, Frederick S

    2008-03-01

    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research.

  18. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition.

    Science.gov (United States)

    Liu, Jin; Xu, Congfeng; Hsu, Li-Chung; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2010-02-01

    Toll-like receptors play important roles in regulating immunity against microbial infections. Toll-like receptor 8 (TLR8) belongs to a subfamily comprising TLR7, TLR8 and TLR9. Human TLR8 mediates anti-viral immunity by recognizing ssRNA viruses, and triggers potent anti-viral and antitumor immune responses upon ligation by synthetic small molecular weight ligands. Interestingly, distinct from human TLR8, mouse TLR8 was not responsive to ligand stimulation in the absence of polyT-oligodeoxynucleotides (polyT-ODN). The molecular basis for this distinct ligand recognition is still unclear. In the present study, we compared the activation of TLR8 from different species including mouse, rat, human, bovine, porcine, horse, sheep, and cat by ligand ligations. Only the TLR8s from the rodent species (i.e., mouse and rat TLR8s) failed to respond to ligand stimulation in the absence of polyT-ODN. Multiple sequence alignment analysis suggested that these two rodent TLR8s lack a five-amino-acid motif that is conserved in the non-rodent species with varied sequence. This small motif is located in an undefined region of the hTLR8 ectodomain, immediately following LRR-14. Deletion mutation analysis suggested that this motif is essential for the species-specific ligand recognition of hTLR8, whereas it is not required for self-dimerization and intracellular localization of this receptor. (c) 2009 Elsevier Ltd. All rights reserved.

  19. Detection of estrogen receptor endocrine disruptor potency of commonly used organochlorine pesticides using the LUMI-CELL ER bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J D; Chu, A C; Clark, G C [Xenobiotic Detection Systems, Inc., Durham, NC (United States); Chu, M D [Alta Analytical Perspectives, Wilmington, NC (United States); Denison, M S [Dept. of Environmental Toxicology, Univ. of California, Davis, CA (United States)

    2004-09-15

    In order to detect the endocrine disrupting potency of organochlorine pesticides and other compounds, BG-1 (human ovarian carcinoma) cells containing a stably transfected estrogenresponsive luciferase reporter gene plasmid (BG1Luc4E2), was used. This cell line, termed the LUMI-CELL trademark ER estrogenic cell bioassay system, responds in a time-, dose dependent- and chemical-specific manner with the induction of luciferase gene expression in response to exposure to estrogen (but not other steroid hormones) and estrogenic chemicals in a high-throughput screening (HTPS) format6. Here we describe studies in which the LUMI-CELL trademark ER estrogenic cell bioassay system was used for high throughput screening (HTPS) analysis of the estrogenic disrupting potency of several commonly used pesticides and organochlorines: p,p'DDT; p,p'-DDE; DDD; {alpha}a-chlordane; {psi}-chlordane; Kepone; Methoxychlor; Vinclozolin; Fenarimol; 2,4,5-Trichlorophenoxyacetic Acid; and Dieldrin. Our results demonstrate the utility of XDS's LUMI-CELL trademark ER bioassay HTPS system for screening chemicals for estrogenic activity.

  20. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chiara Lucchetti

    Full Text Available In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1, a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.

  1. Computational Biology Tools for Identifying Specific Ligand Binding Residues for Novel Agrochemical and Drug Design.

    Science.gov (United States)

    Neshich, Izabella Agostinho Pena; Nishimura, Leticia; de Moraes, Fabio Rogerio; Salim, Jose Augusto; Villalta-Romero, Fabian; Borro, Luiz; Yano, Inacio Henrique; Mazoni, Ivan; Tasic, Ljubica; Jardine, Jose Gilberto; Neshich, Goran

    2015-01-01

    The term "agrochemicals" is used in its generic form to represent a spectrum of pesticides, such as insecticides, fungicides or bactericides. They contain active components designed for optimized pest management and control, therefore allowing for economically sound and labor efficient agricultural production. A "drug" on the other side is a term that is used for compounds designed for controlling human diseases. Although drugs are subjected to much more severe testing and regulation procedures before reaching the market, they might contain exactly the same active ingredient as certain agrochemicals, what is the case described in present work, showing how a small chemical compound might be used to control pathogenicity of Gram negative bacteria Xylella fastidiosa which devastates citrus plantations, as well as for control of, for example, meningitis in humans. It is also clear that so far the production of new agrochemicals is not benefiting as much from the in silico new chemical compound identification/discovery as pharmaceutical production. Rational drug design crucially depends on detailed knowledge of structural information about the receptor (target protein) and the ligand (drug/agrochemical). The interaction between the two molecules is the subject of analysis that aims to understand relationship between structure and function, mainly deciphering some fundamental elements of the nanoenvironment where the interaction occurs. In this work we will emphasize the role of understanding nanoenvironmental factors that guide recognition and interaction of target protein and its function modifier, an agrochemical or a drug. The repertoire of nanoenvironment descriptors is used for two selected and specific cases we have approached in order to offer a technological solution for some very important problems that needs special attention in agriculture: elimination of pathogenicity of a bacterium which is attacking citrus plants and formulation of a new fungicide. Finally

  2. Identification of novel peptide ligands for the cancer-specific receptor mutation EFGRvIII using a mixture-based synthetic combinatorial library

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Hansen, Paul Robert; Pedersen, Nina

    2009-01-01

    We report here, the design and synthesis of a positional scanning synthetic combinatorial library for the identification of novel peptide ligands targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in se...

  3. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (Pswimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Estrogen in cardiovascular disease during systemic lupus erythematosus.

    Science.gov (United States)

    Gilbert, Emily L; Ryan, Michael J

    2014-12-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in

  5. Estrogen in Cardiovascular Disease during Systemic Lupus Erythematosus

    Science.gov (United States)

    Gilbert, Emily L.; Ryan, Michael J.

    2015-01-01

    Purpose Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. Methods PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. Findings The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against

  6. A robust high-throughput fungal biosensor assay for the detection of estrogen activity.

    Science.gov (United States)

    Zutz, Christoph; Wagener, Karen; Yankova, Desislava; Eder, Stefanie; Möstl, Erich; Drillich, Marc; Rychli, Kathrin; Wagner, Martin; Strauss, Joseph

    2017-10-01

    Estrogenic active compounds are present in a variety of sources and may alter biological functions in vertebrates. Therefore, it is crucial to develop innovative analytical systems that allow us to screen a broad spectrum of matrices and deliver fast and reliable results. We present the adaptation and validation of a fungal biosensor for the detection of estrogen activity in cow derived samples and tested the clinical applicability for pregnancy diagnosis in 140 mares and 120 cows. As biosensor we used a previously engineered genetically modified strain of the filamentous fungus Aspergillus nidulans, which contains the human estrogen receptor alpha and a reporter construct, in which β-galactosidase gene expression is controlled by an estrogen-responsive-element. The estrogen response of the fungal biosensor was validated with blood, urine, feces, milk and saliva. All matrices were screened for estrogenic activity prior to and after chemical extraction and the results were compared to an enzyme immunoassay (EIA). The biosensor showed consistent results in milk, urine and feces, which were comparable to those of the EIA. In contrast to the EIA, no sample pre-treatment by chemical extraction was needed. For 17β-estradiol, the biosensor showed a limit of detection of 1ng/L. The validation of the biosensor for pregnancy diagnosis revealed a specificity of 100% and a sensitivity of more than 97%. In conclusion, we developed and validated a highly robust fungal biosensor for detection of estrogen activity, which is highly sensitive and economic as it allows analyzing in high-throughput formats without the necessity for organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Identification of cancer specific ligands from one-bead one compound combinatorial libraries to develop theranostics agents against oral squamous cell carcinoma

    Science.gov (United States)

    Yang, Frances Fan

    Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent disease worldwide. One-bead one-compound (OBOC) combinatorial technology is a powerful method to identify peptidomimetic ligands against a variety of receptors on cell surfaces. We therefore hypothesized that cancer specific ligands against OSCC might be identified and can be conjugated to optical dyes or nanocarriers to develop theranostic agents against OSCC. Material and methods: Different OSCC cell lines were incubated with OBOC libraries and beads with cell binding were sorted and then screened with normal human cells to identify peptide-beads binding to different OSCC cell lines but not binding to normal human cells. The molecular probes of OSCC were developed by biotinylating the carboxyl end of the ligands. OSCC theranostic agents were developed by decorating LLY13 with NPs and evaluated by using orthotopic bioluminescent oral cancer model. Results: Six OSCC specific ligands were discovered. Initial peptide-histochemistry study indicated that LLY12 and LLY13 were able to specifically detect OSCC cells grown on chamber slides at the concentration of 1 muM. In addition, LLY13 was found to penetrate into the OSCC cells and accumulate in the cytoplasm, and nucleus. After screened with a panel of integrin antibodies, only anti-alpha3 antibody was able to block most of OSCC cells binding to the LLY13 beads. OSCC theranostic agents developed using targeting LLY13 micelles (25+/- 4nm in diameter) were more efficient in binding to HSC-3 cancer cells compared to non-targeting micelles. Ex vivo images demonstrated that xenografts from the mice with targeting micelles appeared to have higher signals than the non-targeting groups. Conclusion: LLY13 has promising in vitro and in vivo targeting activity against OSCC. In addition, LLY13 is also able to penetrate into cancer cells via endocytosis. Initial study indicated that alpha3 integrin might partially be the corresponding receptor involved

  8. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    Science.gov (United States)

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  9. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice.

    Science.gov (United States)

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J; Karl, Michael

    2011-02-01

    Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis.

  10. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    Science.gov (United States)

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: cross-talk with glucocorticoids with implications for behavior

    Directory of Open Access Journals (Sweden)

    Jennifer eRainville

    2015-02-01

    Full Text Available The estrogen receptor (ER and glucocorticoid receptor (GR are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER or membrane GR (mGR that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically-driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.

  12. Estrogenicity of glabridin in Ishikawa cells.

    Directory of Open Access Journals (Sweden)

    Melissa Su Wei Poh

    Full Text Available Glabridin is an isoflavan from licorice root, which is a common component of herbal remedies used for treatment of menopausal symptoms. Past studies have shown that glabridin resulted in favorable outcome similar to 17β-estradiol (17β-E2, suggesting a possible role as an estrogen replacement therapy (ERT. This study aims to evaluate the estrogenic effect of glabridin in an in-vitro endometrial cell line -Ishikawa cells via alkaline phosphatase (ALP assay and ER-α-SRC-1-co-activator assay. Its effect on cell proliferation was also evaluated using Thiazoyl blue tetrazolium bromide (MTT assay. The results showed that glabridin activated the ER-α-SRC-1-co-activator complex and displayed a dose-dependent increase in estrogenic activity supporting its use as an ERT. However, glabridin also induced an increase in cell proliferation. When glabridin was treated together with 17β-E2, synergistic estrogenic effect was observed with a slight decrease in cell proliferation as compared to treatment by 17β-E2 alone. This suggest that the combination might be better suited for providing high estrogenic effects with lower incidences of endometrial cancer that is associated with 17β-E2.

  13. Labeling of receptor ligands with bromine radionuclides. Progress report, March 1, 1981-February 28, 1982

    International Nuclear Information System (INIS)

    Welch, M.J.

    1981-10-01

    In recent years there has been an interest in the use of various radioisotopes of bromine as labels for radiopharmaceuticals. Although radioisotopes of iodine have been used extensively as radiopharmaceutical labels, there are several advantages associated with the use of radiobromine as a label, due primarily to increased stability of bonds to the radiohalide and smaller steric perturbation resulting from substitution of the radiohalide. Methods of attaching radiobromine to receptor ligands with the potential of mapping estrogen receptors in mammary tumors and uteri were studied. Two ligands were studied extensively in vitro and in animal models; preliminary studies were also carried out in humans. To date, the only radioisotope of bromine used was bromine-77. In addition, a series of model compounds were labeled with bromine-77 using a recently described method for rapid bromination; the scope and limitations of this new rapid radiobromination technique were evaluated

  14. Association Between Menopausal Estrogen-Only Therapy and Ovarian Carcinoma Risk

    DEFF Research Database (Denmark)

    Lee, Alice W; Ness, Roberta B; Roman, Lynda D

    2016-01-01

    OBJECTIVE: To describe the association between postmenopausal estrogen-only therapy use and risk of ovarian carcinoma, specifically with regard to disease histotype and duration and timing of use. METHODS: We conducted a pooled analysis of 906 women with ovarian carcinoma and 1,220 women in a con...

  15. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    1980-01-01

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine ( 125 I) and the receptor is digoxin antibody. (U.K.)

  16. Application of 4D-QSAR Studies to a Series of Raloxifene Analogs and Design of Potential Selective Estrogen Receptor Modulators

    Directory of Open Access Journals (Sweden)

    Carlos Rangel Rodrigues

    2012-06-01

    Full Text Available Four-dimensional quantitative structure-activity relationship (4D-QSAR analysis was applied on a series of 54 2-arylbenzothiophene derivatives, synthesized by Grese and coworkers, based on raloxifene (an estrogen receptor-alpha antagonist, and evaluated as ERa ligands and as inhibitors of estrogen-stimulated proliferation of MCF-7 breast cancer cells. The conformations of each analogue, sampled from a molecular dynamics simulation, were placed in a grid cell lattice according to three trial alignments, considering two grid cell sizes (1.0 and 2.0 Å. The QSAR equations, generated by a combined scheme of genetic algorithms (GA and partial least squares (PLS regression, were evaluated by “leave-one-out” cross-validation, using a training set of 41 compounds. External validation was performed using a test set of 13 compounds. The obtained 4D-QSAR models are in agreement with the proposed mechanism of action for raloxifene. This study allowed a quantitative prediction of compounds’ potency and supported the design of new raloxifene analogs.

  17. Computational method for discovery of estrogen responsive genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Tan, Sin Lam; Ramadoss, Suresh Kumar

    2004-01-01

    Estrogen has a profound impact on human physiology and affects numerous genes. The classical estrogen reaction is mediated by its receptors (ERs), which bind to the estrogen response elements (EREs) in target gene's promoter region. Due to tedious and expensive experiments, a limited number of hu...

  18. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Cavalieri, Ercole L

    2008-01-01

    ... and their reaction with DNA. Compelling evidence obtained in the various specific aims of this COE will be decisive for determining the risk of breast cancer by using the depurinating estrogen-DNA adducts as biomarkers...

  19. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Cavalieri, Ercole L

    2007-01-01

    ... and their reaction with DNA. Compelling evidence obtained in the various specific aims of this COE will be decisive for determining the risk of breast cancer by using the depurinating estrogen-DNA adducts as biomarkers...

  20. Estrogen induces glomerulosclerosis in analbuminemic rats

    NARCIS (Netherlands)

    Joles, JA; van Goor, H; Koomans, HA

    Progression of chronic renal disease: is usually more rapid in males, both In humans and in experimental animals. Estrogen-replacement studies indicate that this may be related to the beneficial effects of estrogen on the lipoprotein profile. However, in hyperlipidemic analbuminemic rats (NAR),

  1. Quantum chemical studies of estrogenic compounds

    Science.gov (United States)

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  2. Estrogens and progression of diabetic kidney damage.

    Science.gov (United States)

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Elliot, Sharon J

    2011-01-01

    It is generally accepted that estrogens affect and modulate the development and progression of chronic kidney diseases (CKD) not related to diabetes. Clinical studies have indeed demonstrated that the severity and rate of progression of renal damage tends to be greater among men, compared with women. Experimental studies also support the notion that female sex is protective and male sex permissive, for the development of CKD in non-diabetics, through the opposing actions of estrogens and testosterone. However, when we consider diabetes-induced kidney damage, in the setting of either type 1 or type 2 diabetes, the contribution of gender to the progression of renal disease is somewhat uncertain. Previous studies on the effects of estrogens in the pathogenesis of progressive kidney damage have primarily focused on mesangial cells. More recently, data on the effects of estrogens on podocytes, the cell type whose role may include initiation of progressive diabetic renal disease, became available. The aim of this review will be to summarize the main clinical and experimental data on the effects of estrogens on the progression of diabetes-induced kidney injury. In particular, we will highlight the possible biological effects of estrogens on podocytes, especially considering those critical for the pathogenesis of diabetic kidney damage.

  3. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells

    OpenAIRE

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2015-01-01

    Recent studies identified PCB sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific...

  4. Selective estrogen receptor modulators as brain therapeutic agents

    OpenAIRE

    Arévalo, María Ángeles; Santos-Galindo, María; Lagunas, Natalia; Azcoitia, I.; García-Segura, Luis M.

    2011-01-01

    Selective estrogen receptor modulators (SERMs), used for the treatment of breast cancer, osteoporosis, and menopausal symptoms, affect the nervous system. Some SERMs trigger neuroprotective mechanisms and reduce neural damage in different experimental models of neural trauma, brain inflammation, neurodegenerative diseases, cognitive impairment, and affective disorders. New SERMs with specific actions on neurons and glial cells may represent promising therapeutic tools for the brain. © 2011 So...

  5. Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene - methyltetrazine reactions.

    Science.gov (United States)

    Muraki, Michiro; Hirota, Kiyonori

    2017-07-03

    Fas ligand plays a key role in the human immune system as a major cell death inducing protein. The extracellular domain of human Fas ligand (hFasLECD) triggers apoptosis of malignant cells, and therefore is expected to have substantial potentials in medical biotechnology. However, the current application of this protein to clinical medicine is hampered by a shortage of the benefits relative to the drawbacks including the side-effects in systemic administration. Effective procedures for the engineering of the protein by attaching useful additional functions are required to overcome the problem. A procedure for the site-specific chemical conjugation of hFasLECD with a fluorochrome and functional proteins was devised using an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene group and methyltetrazine group. The conjugations in the present study were attained by using much less molar excess amounts of the compounds to be attached as compared with the conventional chemical modification reactions using maleimide derivatives in the previous study. The isolated conjugates of hFasLECD with sulfo-Cy3, avidin and rabbit IgG Fab' domain presented the functional and the structural integrities of the attached molecules without impairing the specific binding activity toward human Fas receptor extracellular domain. The present study provided a new fundamental strategy for the production of the engineered hFasLECDs with additional beneficial functions, which will lead to the developments of the improved diagnostic systems and the effective treatment methods of serious diseases by using this protein as a component of novel molecular tools.

  6. Detection of estrogen receptor endocrine disruptor potency of commonly used organochlorine pesticides using the LUMI-CELL ER bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.D.; Chu, A.C.; Clark, G.C. [Xenobiotic Detection Systems, Inc., Durham, NC (United States); Chu, M.D. [Alta Analytical Perspectives, Wilmington, NC (United States); Denison, M.S. [Dept. of Environmental Toxicology, Univ. of California, Davis, CA (United States)

    2004-09-15

    In order to detect the endocrine disrupting potency of organochlorine pesticides and other compounds, BG-1 (human ovarian carcinoma) cells containing a stably transfected estrogenresponsive luciferase reporter gene plasmid (BG1Luc4E2), was used. This cell line, termed the LUMI-CELL trademark ER estrogenic cell bioassay system, responds in a time-, dose dependent- and chemical-specific manner with the induction of luciferase gene expression in response to exposure to estrogen (but not other steroid hormones) and estrogenic chemicals in a high-throughput screening (HTPS) format6. Here we describe studies in which the LUMI-CELL trademark ER estrogenic cell bioassay system was used for high throughput screening (HTPS) analysis of the estrogenic disrupting potency of several commonly used pesticides and organochlorines: p,p'DDT; p,p'-DDE; DDD; {alpha}a-chlordane; {psi}-chlordane; Kepone; Methoxychlor; Vinclozolin; Fenarimol; 2,4,5-Trichlorophenoxyacetic Acid; and Dieldrin. Our results demonstrate the utility of XDS's LUMI-CELL trademark ER bioassay HTPS system for screening chemicals for estrogenic activity.

  7. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    International Nuclear Information System (INIS)

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-01-01

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 0 C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17β-[ 3 H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins

  8. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    International Nuclear Information System (INIS)

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-01-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling

  9. Sensitivity and specificity of the bioassay of estrogenicity in mammary gland and seminal vesicles of male mice

    Czech Academy of Sciences Publication Activity Database

    Škarda, Josef

    2002-01-01

    Roč. 51, č. 3 (2002), s. 267-276 ISSN 0862-8408 R&D Projects: GA ČR GA523/99/0843; GA AV ČR KSK5020115 Keywords : bioassay * estrogenicity * mammary gland Subject RIV: ED - Physiology Impact factor: 0.984, year: 2002

  10. Estrogen-dependent changes in serum iron levels as a translator of the adverse effects of estrogen during infection: a conceptual framework.

    Science.gov (United States)

    Hamad, Mawieh; Awadallah, Samir

    2013-12-01

    Elevated levels of estrogen often associate with increased susceptibility to infection. This has been attributed to the ability of estrogen to concomitantly enhance the growth and virulence of pathogens and suppress host immunity. But the exact mechanism of how estrogen mediates such effects, especially in cases where the pathogen and/or the immune components in question do not express estrogen receptors, has yet to be elucidated. Here we propose that translating the adverse effects of estrogen during infection is dependent to a significant degree upon its ability to manipulate iron homeostasis. For elevated levels of estrogen alter the synthesis and/or activity of several factors involved in iron metabolism including hypoxia inducible factor 1α (HIF-1α) and hepcidin among others. This leads to the inhibition of hepcidin synthesis in hepatocytes and the maintenance of ferroportin (FPN) integrity on the surface of iron-releasing duodenal enterocytes, hepatocytes, and macrophages. Intact FPN permits the continuous efflux of dietary and stored iron into the circulation, which further enhances pathogen growth and virulence on the one hand and suppresses host immunity on the other. This new conceptual framework may help explain a multitude of disparate clinical and experimental observations pertinent to the relationship between estrogen and infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Urinary estrogen metabolites and breast cancer

    DEFF Research Database (Denmark)

    Dallal, Cher M; Stone, Roslyn A; Cauley, Jane A

    2013-01-01

    Background: Circulating estrogens are associated with increased breast cancer risk, yet the role of estrogen metabolites in breast carcinogenesis remains unclear. This combined analysis of 5 published studies evaluates urinary 2-hydroxyestrone (2-OHE1), 16a-hydroxyestrone (16a-OHE1......), and their ratio (2:16a-OHE1) in relation to breast cancer risk. ¿Methods: Primary data on 726 premenopausal women (183 invasive breast cancer cases and 543 controls) and 1,108 postmenopausal women (385 invasive breast cancer cases and 723 controls) were analyzed. Urinary estrogen metabolites were measured using...... premenopausal 2:16a-OHE1 was suggestive of reduced breast cancer risk overall (study-adjusted ORIIIvsI=0.80; 95% CI: 0.49-1.32) and for estrogen receptor negative (ER-) subtype (ORIIIvsI=0.33; 95% CI: 0.13-0.84). Among postmenopausal women, 2:16a-OHE1 was unrelated to breast cancer risk (study-adjusted ORIIIvs...

  12. Anaerobic biotransformation of estrogens

    International Nuclear Information System (INIS)

    Czajka, Cynthia P.; Londry, Kathleen L.

    2006-01-01

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-α-ethynylestradiol (EE2) and 17-β-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 μg L -1 day -1 ), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-α-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-α-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments

  13. Development of androgen-and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays

    NARCIS (Netherlands)

    Sonneveld, E.; Jansen, H.J..; Riteco, J.A.C.; Brouwer, A.

    2005-01-01

    We have established highly sensitive and specific androgen and estrogen reporter cell lines which we have named AR (androgen receptor) and ERα (estrogen receptor alpha) CALUX® (Chemically Activated LUciferase eXpression), respectively. Both bioassays are member of a panel of CALUX reporter cell

  14. Social memory associated with estrogen receptor polymorphisms in women

    Science.gov (United States)

    Karlsson, Sara; Henningsson, Susanne; Hovey, Daniel; Zettergren, Anna; Jonsson, Lina; Cortes, Diana S.; Melke, Jonas; Laukka, Petri; Fischer, Håkan

    2016-01-01

    The ability to recognize the identity of faces and voices is essential for social relationships. Although the heritability of social memory is high, knowledge about the contributing genes is sparse. Since sex differences and rodent studies support an influence of estrogens and androgens on social memory, polymorphisms in the estrogen and androgen receptor genes (ESR1, ESR2, AR) are candidates for this trait. Recognition of faces and vocal sounds, separately and combined, was investigated in 490 subjects, genotyped for 10 single nucleotide polymorphisms (SNPs) in ESR1, four in ESR2 and one in the AR. Four of the associations survived correction for multiple testing: women carrying rare alleles of the three ESR2 SNPs, rs928554, rs1271572 and rs1256030, in linkage disequilibrium with each other, displayed superior face recognition compared with non-carriers. Furthermore, the uncommon genotype of the ESR1 SNP rs2504063 was associated with better recognition of identity through vocal sounds, also specifically in women. This study demonstrates evidence for associations in women between face recognition and variation in ESR2, and recognition of identity through vocal sounds and variation in ESR1. These results suggest that estrogen receptors may regulate social memory function in humans, in line with what has previously been established in mice. PMID:26955855

  15. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed

  16. Serum estrogen and SHBG levels and breast cancer incidence among users and never users of hormone replacement therapy

    DEFF Research Database (Denmark)

    Würtz, Anne Mette Lund; Tjønneland, Anne; Christensen, Jane

    2012-01-01

    OBJECTIVE: Levels of endogenous estrogen and SHBG are associated with risk of breast cancer among women who have never used hormone replacement therapy (HRT). We investigated these associations in both never and baseline users of HRT. METHODS: A nested case-control study was conducted within the ...... and baseline HRT users. More studies are needed to support the findings for HRT users and to further investigate estrogen levels in relation to estrogen receptor-specific breast cancer and other histological and molecular subtypes.......OBJECTIVE: Levels of endogenous estrogen and SHBG are associated with risk of breast cancer among women who have never used hormone replacement therapy (HRT). We investigated these associations in both never and baseline users of HRT. METHODS: A nested case-control study was conducted within...... logistic regression yielded incidence rate ratios and 95 % confidence intervals for exposures analyzed continuously and categorically in models adjusted for potential confounders. RESULTS: Modest direct associations were identified between estrogen levels and breast cancer incidence among both never...

  17. The differential association of conjugated equine estrogen and esterified estrogen with activated protein C resistance in postmenopausal women

    NARCIS (Netherlands)

    Smith, N. L.; Heckbert, S. R.; Doggen, C. J.; Lemaitre, R. N.; Reiner, A. P.; Lumley, T.; Meijers, J. C. M.; Psaty, B. M.; Rosendaal, F. R.

    2006-01-01

    OBJECTIVES: Clinical trials have demonstrated that oral conjugated equine estrogen (CEE) therapy with or without medroxyprogesterone (MPA) increases venous thrombotic risk but this safety issue has not been investigated for other oral estrogens. Based on observational study findings that esterified

  18. KBERG: KnowledgeBase for Estrogen Responsive Genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Zhang, Zhuo; Tan, Sin Lam

    2007-01-01

    Estrogen has a profound impact on human physiology affecting transcription of numerous genes. To decipher functional characteristics of estrogen responsive genes, we developed KnowledgeBase for Estrogen Responsive Genes (KBERG). Genes in KBERG were derived from Estrogen Responsive Gene Database...... (ERGDB) and were analyzed from multiple aspects. We explored the possible transcription regulation mechanism by capturing highly conserved promoter motifs across orthologous genes, using promoter regions that cover the range of [-1200, +500] relative to the transcription start sites. The motif detection...... is based on ab initio discovery of common cis-elements from the orthologous gene cluster from human, mouse and rat, thus reflecting a degree of promoter sequence preservation during evolution. The identified motifs are linked to transcription factor binding sites based on the TRANSFAC database. In addition...

  19. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  20. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription.

    Science.gov (United States)

    Zangen, David; Kaufman, Yotam; Zeligson, Sharon; Perlberg, Shira; Fridman, Hila; Kanaan, Moein; Abdulhadi-Atwan, Maha; Abu Libdeh, Abdulsalam; Gussow, Ayal; Kisslov, Irit; Carmel, Liran; Renbaum, Paul; Levy-Lahad, Ephrat

    2011-10-07

    XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder characterized by lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism as a result of streak gonads. Most cases are unexplained but thought to be autosomal recessive. We elucidated the genetic basis of XX-GD in a highly consanguineous Palestinian family by using homozygosity mapping and candidate-gene and whole-exome sequencing. Affected females were homozygous for a 3 bp deletion (NM_016556.2, c.600_602del) in the PSMC3IP gene, leading to deletion of a glutamic acid residue (p.Glu201del) in the highly conserved C-terminal acidic domain. Proteasome 26S subunit, ATPase, 3-Interacting Protein (PSMC3IP)/Tat Binding Protein Interacting Protein (TBPIP) is a nuclear, tissue-specific protein with multiple functions. It is critical for meiotic recombination as indicated by the known role of its yeast ortholog, Hop2. Through the C terminus (not present in yeast), PSMC3IP also coactivates ligand-driven transcription mediated by estrogen, androgen, glucocorticoid, progesterone, and thyroid nuclear receptors. In cell lines, the p.Glu201del mutation abolished PSMC3IP activation of estrogen-driven transcription. Impaired estrogenic signaling can lead to ovarian dysgenesis both by affecting the size of the follicular pool created during fetal development and by failing to counteract follicular atresia during puberty. PSMC3IP joins previous genes known to be mutated in XX-GD, the FSH receptor, and BMP15, highlighting the importance of hormonal signaling in ovarian development and maintenance and suggesting a common pathway perturbed in isolated XX-GD. By analogy to other XX-GD genes, PSMC3IP is also a candidate gene for premature ovarian failure, and its role in folliculogenesis should be further investigated. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  2. Radiation sensitization by an iodine-labelled DNA ligand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R F; Murray, V; D' Cunha, G; Pardee, M; Haigh, A; Hodgson, G S [Peter MacCallum Cancer Inst., Melbourne (Australia); Kampouris, E; Kelly, D P [Melbourne Univ., Parkville (Australia)

    1990-05-01

    An iodinated DNA ligand, iodoHoechst 33258, which binds in the minor groove of DNA, enhances DNA strand breakage and cell killing by UV-A irradiation. The sites of UV-induced strand breaks reflect the known sequence specificity of the ligand. (author).

  3. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  4. The role of estrogen in cutaneous ageing and repair.

    Science.gov (United States)

    Wilkinson, Holly N; Hardman, Matthew J

    2017-09-01

    Combined advances in modern medical practice and increased human longevity are driving an ever-expanding elderly population. Females are particularly at risk of age-associated pathology, spending more of their lives in a post-menopausal state. Menopause, denoted by a rapid decline in serum sex steroid levels, accelerates biological ageing across the body's tissues. Post-menopause physiological changes are particularly noticeable in the skin, which loses structural architecture and becomes prone to damage. The sex steroid most widely discussed as an intrinsic contributor to skin ageing and pathological healing is 17β-estradiol (or estrogen), although many others are involved. Estrogen deficiency is detrimental to many wound-healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment widely reverses these effects. Over recent decades, many of the molecular and cellular correlates to estrogen's beneficial effect on normal skin homeostasis and wound healing have been reported. However, disparities still exist, particularly in the context of mechanistic studies investigating estrogen receptor signalling and its potential cellular effects. New molecular techniques, coupled with increased understanding of estrogen in skin biology, will provide further opportunities to develop estrogen receptor-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30.

    Directory of Open Access Journals (Sweden)

    Julie Carnesecchi

    Full Text Available The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2 addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.

  6. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30.

    Science.gov (United States)

    Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc

    2015-01-01

    The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.

  7. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    International Nuclear Information System (INIS)

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-01-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation

  8. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha, E-mail: paroyfbs@iitr.ernet.in

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation.

  9. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    Science.gov (United States)

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The distribution of estrogen receptor in various organs of rabbit

    International Nuclear Information System (INIS)

    Son, H.Y.; In, J.W.; Min, B.S.

    1978-01-01

    For clinical application of radioreceptor assay, we studied preliminarily the distribution of estrogen receptor in various organs of rabbit by a dextran-charcoal method using 6,7- 3 H-es-tradiol. The results were expressed as binding index, which is the ratio of specific estradiol receptor binding radioactivity to total radioactivity. The materials consist of 5 female rabbits and 3 male rabbits. For female rabbits the binding index was highest in the uterine tissue. This binding index of the uterine tissue was 9.4 times that of the liver, 21.9 times that of the kidney, 24.6 times that of the brain, 28.1 times that of the lung and 65.7 times that of the muscle. For male rabbits the binding index was highest in the liver and decreased in the order of the kidney, the testis, the lung, the brain and the muscle. It is suggested that the estrogen receptor is not confined to any specific target organ but is widely distributed in the various organs, to a different degree. (author)

  11. The Distribution of Estrogen Receptor in Various Organs of Rabbit

    International Nuclear Information System (INIS)

    Son, Ho Young; In, Jae Whan; Min, Byong Sok

    1978-01-01

    For clinical application of radioreceptor assay, we studied preliminarily the distribution of estrogen receptor in various organs of rabbit by a dextran-charcoal method using 6, 7- 3 H-estradiol. The results were expressed as binding index, which is the ratio of specific estradiol receptor binding radioactivity to total radioactivity. The materials consist of 5 female rabbits and 3 male rabbits. The results were as follows: 1) Female rabbits. The binding index was highest in the uterine tissue. This binding index of the uterine tissue was 9.4 times that of the liver, 21.9 times that of the kidney, 24.6 times that of the brain, 28.1 times that of the lung and 65.7 times that of the muscle. 2) Male rabbits. The binding index was highest in the liver and decreased in the order of the kidney, the testis, the lung, the brain and the muscle. It is suggested that the estrogen receptor is not confined to any specific target organ but is widely distributed in the various organs, to a different degree.

  12. Mixture interactions of xenoestrogens with endogenous estrogens.

    Science.gov (United States)

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. These environmental estrogens originate from various sources including concentrated animal feedlot operations (CAFO), m...

  13. Aromatase and estrogen receptors in male reproduction.

    Science.gov (United States)

    Carreau, Serge; Delalande, Christelle; Silandre, Dorothée; Bourguiba, Sonia; Lambard, Sophie

    2006-02-26

    Aromatase is a terminal enzyme which transforms irreversibly androgens into estrogens and it is present in the endoplasmic reticulum of numerous tissues. We have demonstrated that mature rat germ cells express a functional aromatase with a production of estrogens equivalent to that of Leydig cells. In humans in addition to Leydig cells, we have shown the presence of aromatase in ejaculated spermatozoa and in immature germ cells. In most tissues, high affinity estrogen receptors, ERalpha and/or ERbeta, mediate the role of estrogens. Indeed, in human spermatozoa, we have successfully amplified ERbeta mRNA but the protein was not detectable. Using ERalpha antibody we have detected two proteins in human immature germ cells: one at the expected size 66 kDa and another at 46 kDa likely corresponding to the ERalpha isoform lacking exon 1. In spermatozoa only the 46 kDa isoform was present, and we suggest that it may be located on the membrane. In addition, in men genetically deficient in aromatase, it is reported that alterations of spermatogenesis occur both in terms of the number and motility of spermatozoa. All together, these observations suggest that endogenous estrogens are important in male reproduction.

  14. Steroid production and estrogen binding in flowers of Gladiolus

    International Nuclear Information System (INIS)

    Adler, J.H.; Wolfe, G.R.; Janik, J.R.

    1987-01-01

    The bioconversion of 3 H-cholesterol to steroids was examined in excised tissue from the pistils and bracts of Gladiolus. Ovary-ovule and stigma-style tissues produce a compound with chromatographic properties on reverse phase HPLC similar to 17β-estradiol (E 2 ). The stigma-style fraction also produced a compound that chromatographed similarly to progesterone. Bracts and the oxidation controls produced no radiolabeled compounds which were chromatographically similar to E 2 . An endogenous E 2 binding protein was partially characterized from the ovules. The protein binds E 2 , estriol, and diethylstilbesterol whereas testosterone and progesterone do not bind. The total specific binding capacities in the cytosolic and nuclear fractions are 1.6 and 2.2 femtomoles of estradiol per mg of tissue. The dissociation constant is 1.1 x 10 -9 M -1 for both subcellular fractions. The protein-estradiol complex has a sedimentation coefficient of 4.7 +/- 0.1S. The tissue specific biosynthesis of estrogens and the presence of a steroid binding protein similar to a Type 1 estrogen receptor found in mammals is suggestive of a role for steroids in pistil ontogeny

  15. Development of Androgen- and Estrogen-Responsive bio-assays, members of a panel of human cell line-based highly selective steroid-responsive bioassays

    NARCIS (Netherlands)

    Sonneveld, E.; Jansen, H.J.

    2004-01-01

    We have established highly sensitive and specific androgen and estrogen reporter cell lines which we have named AR (androgen receptor) and ERα (estrogen receptor alpha) CALUX® (Chemically Activated LUciferase eXpression), respectively. Both bioassays are member of a panel of CALUX reporter cell

  16. Genome specific PPARαB duplicates in salmonids and insights into estrogenic regulation in brown trout.

    Science.gov (United States)

    Madureira, Tânia Vieira; Pinheiro, Ivone; de Paula Freire, Rafaelle; Rocha, Eduardo; Castro, Luis Filipe; Urbatzka, Ralph

    2017-06-01

    Peroxisome proliferator-activated receptors (PPARs) are key regulators of many processes in vertebrates, such as carbohydrate and lipid metabolism. PPARα, a member of the PPAR nuclear receptor gene subfamily (NR1C1), is involved in fatty acid metabolism, namely in peroxisomal β-oxidation. Two gene paralogues, pparαA and pparαB, were described in several teleost species with their origin dating back to the teleost-specific genome duplication (3R). Given the additional salmonid-specific genome duplication (4R), four genes could be theoretically anticipated for this gene subfamily. In this work, we examined the pparα gene repertoire in brown trout, Salmo trutta f. fario. Data disclosed two pparα-like sequences in brown trout. Phylogenetic analyses further revealed that the isolated genes are most likely genome pparαB duplicates, pparαBa and pparαBb, while pparαA is apparently absent in salmonids. Both genes showed a ubiquitous mRNA expression across a panel of 11 different organs. In vitro exposed primary brown trout hepatocytes strongly suggest that pparα gene paralogues are differently regulated by ethinylestradiol (EE2). PparαBb mRNA expression significantly decreased with dosage, reaching significance after exposure to 50μM EE2, while pparαBa mRNA increased, significant at 1μM EE2. The present data enhances the understanding of pparα function and evolution in teleost, and reinforces the evidence of a potential crosstalk between estrogenic and pparα signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Estrogen-related and other disease diagnoses preceding Parkinson's disease

    DEFF Research Database (Denmark)

    Latourelle, Jeanne C; Dybdal, Merete; Destefano, Anita L

    2010-01-01

    Estrogen exposure has been associated with the occurrence of Parkinson's disease (PD), as well as many other disorders, and yet the mechanisms underlying these relations are often unknown. While it is likely that estrogen exposure modifies the risk of various diseases through many different...... mechanisms, some estrogen-related disease processes might work in similar manners and result in association between the diseases. Indeed, the association between diseases need not be due only to estrogen-related factors, but due to similar disease processes from a variety of mechanisms....

  18. The Critical Role of Estrogen in Menopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Mrinali Sharma

    2017-12-01

    Full Text Available Osteoporosis is a bone disorder, which causes a reduction in the mass and density of bone tissue, and implants a greater possibility for skeletal fractures to occur. This bone disease is especially relevant for women suffering from menopause. Due to this general prevalence, osteoporosis requires continual intervention in the pharmacological and medicinal industry for better treatment alternatives for patients. A focal point for many scientific research studies for osteoporosis has been estrogen. As a hormone, estrogen exhibits a fluctuating capacity in the woman's body, and this has been proclaimed to be a qualifying explanation as to why women develop osteoporosis after menopause. The purpose of this paper is to interpret estrogen's capacity to treat menopausal osteoporosis. Thus, in this article, estrogen’s significance in bone health and different forms, derivatives, and the combinations of estrogen is examined in terms of efficiency in treating osteoporosis. [J Contemp Med 2017; 7(4.000: 418-427

  19. Long-term use of estrogens: benefit or risk

    Directory of Open Access Journals (Sweden)

    Bogusława Pietrzak

    2015-03-01

    Full Text Available Estrogens are widely used in hormone replacement therapy, gynecology, urogynecology and rarely in dermatology. Non-therapeutic use of estrogens is very widespread. Estrogens are used as contraceptives, which cause a lot of serious side effects. A common clinical problem is skin hyperpigmentation (melasma, occurring mainly in women who take contraceptives with high doses of estrogens. But low doses of estrogens may also cause skin side effects. The mechanism of melasma development is very complicated and not fully understood. It is very likely that UV radiation and genetic background can affect melasma development. Effective therapy should lead to prevention or alleviation of relapses. Treatment should also reduce the area of lesions and improve the appearance of skin. There is no effective and universal pattern of treatment, in which only one substance or method is used. A combination of different methods is used to optimize the therapy. An important role is attributed to prevention, especially protection from UV radiation.

  20. Peptide ligands specific to the oxidized form of escherichia coli thioredoxin.

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M. D.; Banach, B. S.; Hamdan, S. M.; Richardson, C. C.; Kay, B. K.; Biosciences Division; Amunix, Inc.; Univ. of Illinois at Chicago; Harvard Medical School

    2008-11-01

    Thioredoxin (Trx) is a highly conserved redox protein involved in several essential cellular processes. In this study, our goal was to isolate peptide ligands to Escherichia coli Trx that mimic protein-protein interactions, specifically the T7 polymerase-Trx interaction. To do this, we subjected Trx to affinity selection against a panel of linear and cysteine-constrained peptides using M13 phage display. A novel cyclized conserved peptide sequence, with a motif of C(D/N/S/T/G)D(S/T)-hydrophobic-C-X-hydrophobic-P, was isolated to Trx. These peptides bound specifically to the E. coli Trx when compared to the human and spirulina homologs. An alanine substitution of the active site cysteines (CGPC) resulted in a significant loss of peptide binding affinity to the Cys-32 mutant. The peptides were also characterized in the context of Trx's role as a processivity factor of the T7 DNA polymerase (gp5). As the interaction between gp5 and Trx normally takes place under reducing conditions, which might interfere with the conformation of the disulfide-bridged peptides, we made use of a 22 residue deletion mutant of gp5 in the thioredoxin binding domain (gp5{Delta}22) that bypassed the requirements of reducing conditions to interact with Trx. A competition study revealed that the peptide selectively inhibits the interaction of gp5{Delta}22 with Trx, under oxidizing conditions, with an IC50 of {approx} 10 {micro}M.

  1. Estrogenicity of halogenated bisphenol A: in vitro and in silico investigations.

    Science.gov (United States)

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Yuan, Cuiping; Zhong, Shuning; Guan, Tianzhu; Li, Zhuolin; Wang, Yongzhi; Yu, Hansong; Luo, Quan; Wang, Yongjun; Zhang, Tiehua

    2018-03-01

    The binding interactions of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to human estrogen receptor α ligand binding domain (hERα-LBD) was investigated using a combined in vitro and in silico approach. First, the recombinant hERα-LBD was prepared as a soluble protein in Escherichia coli BL21(DE3)pLysS. A native fluorescent phytoestrogen, coumestrol, was employed as tracer for the fluorescence polarization assay. The results of the in vitro binding assay showed that bisphenol compounds could bind to hERα-LBD as the affinity ligands. All the tested halogenated BPAs exhibited weaker receptor binding than BPA, which might be explained by the steric effect of substituents. Molecular docking studies elucidated that the halogenated BPAs adopted different conformations in the flexible hydrophobic ligand binding pocket (LBP), which is mainly dependent on their distinct halogenation patterns. The compounds with halogen substituents on the phenolic rings and on the bridging alkyl moiety acted as agonists and antagonists for hERα, respectively. Interestingly, all the compounds in the agonist conformation of hERα formed a hydrogen bond with His524, while the compounds in the antagonist conformation formed a hydrogen bond with Thr347. These docking results suggested a pivotal role of His524/Thr347 in maintaining the hERα structure in the biologically active agonist/antagonist conformation. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation, which might be applicable for the structure-based design of novel bisphenol compounds with reduced toxicities and for environmental risk assessment. In addition, based on hERα-LBD as a recognition element, the proposed fluorescence polarization assay may offer an alternative to chromatographic techniques for the multi-residue determination of bisphenol compounds.

  2. Estrogen influences dolichyl phosphate distribution among glycolipid pools in mouse uteri

    Energy Technology Data Exchange (ETDEWEB)

    Carson, D.D.; Tang, J.; Hu, G.

    1987-03-24

    To determine the role that dolichyl phosphate availability plays in this induction, the authors studied the effects of estrogen priming on the content of dolichyl phosphate and the distribution of dolichyl phosphate among various glycolipids in uteri. Dolichol-linked saccharides were metabolically labeled to equilibrium with either (/sup 3/H)glucosamine or (/sup 3/H)mannose and extracted from primary explants of uterine tissue. The amount of dolichol-linked saccharide was calculated from the specific radioactivity determined for the corresponding sugar nucleotides extracted from the tissues. The major dolichol-linked saccharides identified were mannosylphosphoryldolichol (MPD), oligosaccharylpyrophosphorydolichol (OSL), and N,N'-diacetylchitobiosylpyrophosphoryldolichol (CBL). Estrogen increased the levels of MPD and OSL 4-fold; however, CBL levels did not change. After 3 days of treatment, the levels of these glycolipids were very similar to those in uteri from pregnant mice. The specific activity of GPD synthase was similar under all conditions studied. These studies provide the first determination of the levels of dolichol-linked saccharides in tissues and how these levels change during hormonal induction of glycoprotein assembly. Coupled with earlier studies, the present work demonstrates that among a number of key points of N-linked oligosaccharide assembly and transfer only synthesis of MPD increases coordinately with the increase observed in lipid- and protein-linked oligosaccharide assembly that occurs in vivo in response to estrogen. They suggest that control of MPD levels is an important regulatory aspect of N-linked glycoprotein assembly in this system.

  3. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  4. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action.

    Science.gov (United States)

    Bhavnani, Bhagu R; Stanczyk, Frank Z

    2014-07-01

    Oral conjugated equine estrogens (CEE) are the most used estrogen formulation for postmenopausal hormone therapy either alone or in combination with a progestin. CEE is most commonly used for the management of early menopausal symptoms such as hot flashes, vaginitis, insomnia, and mood disturbances. Additionally, if used at the start of the menopausal phase (age 50-59 years), CEE prevents osteoporosis and may in some women reduce the risk of cardiovascular disease (CVD) and Alzheimer's disease (AD). There appears to be a common mechanism through which estrogens can protect against CVD and AD. CEE is a natural formulation of an extract prepared from pregnant mares' urine. The product monogram lists the presence of only 10 estrogens consisting of the classical estrogens, estrone and 17β-estradiol, and a group of unique ring B unsaturated estrogens such as equilin and equilenin. The ring B unsaturated estrogens are formed by an alternate steroidogenic pathway in which cholesterol is not an obligatory intermediate. Both the route of administration and structure of these estrogens play a role in the overall pharmacology of CEE. In contrast to 17β-estradiol, ring B unsaturated estrogens express their biological effects mainly mediated by the estrogen receptor β and not the estrogen receptor α. All estrogen components of CEE are antioxidants, and some ring B unsaturated estrogens have several fold greater antioxidant activity than estrone and 17β-estradiol. The cardioprotective and neuroprotective effects of CEE appear to be, to some extent, due to its ability to prevent the formation of oxidized LDL and HDL, and by inhibiting or modulating some of the key proteases involved in programmed cell death (apoptosis) induced by the excess neurotransmitter glutamate and other neurotoxins. Selective combinations of ring B unsaturated estrogens have the potential of being developed as novel therapeutic agents for the prevention of cardiovascular disease and Alzheimer

  5. Estrogens and Androgens in Skeletal Physiology and Pathophysiology

    OpenAIRE

    Almeida, Maria; Laurent, Michaël R.; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A.; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C.

    2016-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably t...

  6. Characterization of a cis-acting element involved in cell-specific expression of the zebrafish brain aromatase gene.

    Science.gov (United States)

    Le Page, Yann; Menuet, Arnaud; Kah, Olivier; Pakdel, Farzad

    2008-10-01

    The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell-specific expression. First, we show that a 20 bp length motif, named G x RE (glial x responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro-glial cells and is able to confer a glial specificity to an artificial estrogen-dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms.

  7. Radical-scavenging Activity of Estrogen and Estrogen-like Compounds Using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2007-04-01

    Full Text Available The radical-scavenging activity of estrogens (estrone, 2-hydroxyestradiol,estrogen-like compounds (diethylstilbestrol, DES; bisphenol A, BPA and the mono-phenolic compound 2,6-di-t-butyl-4-methoxyphenol (BMP was investigated using themethod of measuring the induction period for polymerization of methyl methacrylate(MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN andbenzoyl peroxide (BPO at 70°C using differential scanning calorimetry (DSC. Thestoichiometric factor (n, number of free radicals trapped by one mole of antioxidantmoiety for the AIBN system declined in the order BMP (2.0, 2-hydroxyestradiol (2.0>DES (1.3 > BPA (1.2 > estrone (0.9, whereas that for the BPO system declined in theorder BMP (2.0 >DES (1.9, BPA (1.9 > estrone (1.3 > 2-hydroxyestradiol (0.7. Theinhibition rate constant (kinh x 10-3 M-1s-1 for the AIBN system declined in the orderestrone (2.2 > BPA (2.0 > DES (1.9 > 2-hydroxyestradiol (1.2 > BMP (1.1, whereasthat for the BPO system declined in the order 2-hydroxyestradiol (3.2 > estrone (1.4 >DES (1.2 > BPA (1.0 > BMP (0.9. The radical-scavenging activity for bioactivecompounds such as estrogens should be evaluated using these two methods (the n and kinhto elucidate the mechanism of a particular reaction. The great difference of the n and kinhfor estrogens between the AIBN and BPO system suggested that their oxidation process iscomplex.

  8. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  9. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  10. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  11. Effect of estrogen withdrawal on energy-rich phosphates and prediction of estrogen dependence monitored by in vivo 31P magnetic resonance spectroscopy of four human breast cancer xenografts

    DEFF Research Database (Denmark)

    Kristensen, C A; Kristjansen, P E; Brünner, N

    1995-01-01

    The effect of estrogen withdrawal on energy metabolism was studied in four human breast cancer xenografts: the estrogen-dependent MCF-7 and ZR75-1 and the estrogen-independent ZR75/LCC-3 and MDA-MB-231. The tumors were grown in ovariectomized nude mice with a s.c. implanted estrogen pellet. After......-clamped tumors prepared 14 days after estrogen removal were analyzed for ATP and phosphocreatine content. Our findings suggest a correlation between estrogen withdrawal and the steady-state concentrations of ATP, phosphocreatine, and Pi in human breast cancer xenografts. Discrimination analysis...

  12. Estrogen inhibits Dlk1/FA1 production: A potential mechanism for estrogen effects on bone turnover

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Bay-Jensen, Anne-Christine; Srinivasan, Bhuma

    2011-01-01

    We have recently identified delta-like 1/fetal antigen 1 (Dlk1/FA1) as a novel regulator of bone mass that functions to mediate bone loss under estrogen deficiency in mice. In this report, we investigated the effects of estrogen (E) deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s......-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (serum cross-linked C-telopeptide [s-CTX] and serum osteocalcin) were measured in two cohorts: a group of pre- and postmenopausal women (n = 100) and a group of postmenopausal women, where half had received...... estrogen-replacement therapy (ERT, n = 166). s-Dlk1/FA1 and s-CTX were elevated in postmenopausal E-deficient women compared with premenopausal E-replete women (both p ...

  13. Estrogenic effects of fusarielins in human breast cancer cell lines

    DEFF Research Database (Denmark)

    Søndergaard, Teis; Klitgaard, Louise Graabæk; Purup, Stig

    2012-01-01

    without the estrogen receptor-α and MCF-10a cells without estrogen receptors were not stimulated by fusarielins. Furthermore, the stimulation was prevented in MCF-7 cells when fusarielins were incubated in the presence of the estrogen receptor antagonist fulvestrant. These observations suggest...

  14. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD

    Directory of Open Access Journals (Sweden)

    Nilfer Sahin

    2018-05-01

    Full Text Available Estrogen has a crucial role in the regulation of reproductive and neuroendocrine function and exerts its effects through two classes of receptors, nuclear and membrane estrogen receptors (mERs. G protein-coupled estrogen receptor 1 (GPER is a member of mERs, and despite limited research on the levels of GPER in patients with psychiatric diseases, a role of GPER in such conditions has been suggested. Here we evaluated serum estrogen and GPER levels in children with attention deficit hyperactivity disorder (ADHD in relation to their age- and gender-matched healthy controls. A total of 82 children were included in the study, 47 drug- naïve patients with ADHD (age: 6–12 years; male/female: 34/13 and 35 healthy controls (age: 6–12 years; male/female: 19/16. The subgroups according to ADHD types were inattentive, hyperactive/impulsive, and combined. Serum estrogen was measured using an immunoassay system, while serum GPER was determined using a commercial sandwich enzyme-linked immunosorbent assay kit. Estrogen levels in children with ADHD were similar as in control group, while GPER levels were significantly lower in ADHD group compared to controls (p < 0.05. Logistic regression analysis showed a significant association between GPER levels and ADHD (p < 0.05, and no association between estrogen levels and ADHD (p > 0.05. No significant differences were found in GPER and estrogen levels between ADHD subgroups (p > 0.05. To the best of our knowledge, this study is the first to investigate estrogen and GPER levels in ADHD. Our preliminary findings suggest a relationship between serum GPER levels and ADHD, and this should be further investigated.

  15. Organization of Estrogen-Associated Circuits in the Mouse Primary Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available Sex steroid hormones influence the perceptual processing of sensory signals in vertebrates. In particular, decades of research have shown that circulating levels of estrogen correlate with hearing function. The mechanisms and sites of action supporting this sensory-neuroendocrine modulation, however, remain unknown. Here we combined a molecular cloning strategy, fluorescence in-situ hybridization and unbiased quantification methods to show that estrogen-producing and -sensitive neurons heavily populate the adult mouse primary auditory cortex (AI. We also show that auditory experience in freely-behaving animals engages estrogen-producing and -sensitive neurons in AI. These estrogen-associated networks are greatly stable, and do not quantitatively change as a result of acute episodes of sensory experience. We further demonstrate the neurochemical identity of estrogen-producing and estrogen-sensitive neurons in AI and show that these cell populations are phenotypically distinct. Our findings provide the first direct demonstration that estrogen-associated circuits are highly prevalent and engaged by sensory experience in the mouse auditory cortex, and suggest that previous correlations between estrogen levels and hearing function may be related to brain-generated hormone production. Finally, our findings suggest that estrogenic modulation may be a central component of the operational framework of central auditory networks.

  16. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway

    DEFF Research Database (Denmark)

    Uhlenbrock, Franziska Katharina; Hagemann-Jensen, Michael Henrik; Kehlet, Stephanie

    2014-01-01

    by affecting endosomal/lysosomal integrity and protein kinase C activity. The invariant chain was further essential for endosomal transport of ULBP2. This novel pathway was identified through screening experiments by which methylselenic acid was found to possess notable NKG2D ligand regulatory properties....... The protein kinase C inhibitor methylselenic acid induced MICA/B surface expression but dominantly blocked ULBP2 surface transport. Remarkably, by targeting this novel pathway we could specifically block the production of soluble ULBP2 from different, primary melanomas. Our findings strongly suggest...

  17. Estrogen-cholinergic interactions: Implications for cognitive aging.

    Science.gov (United States)

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  18. Estrogen-associated severe hypertriglyceridemia with pancreatitis.

    Science.gov (United States)

    Aljenedil, Sumayah; Hegele, Robert A; Genest, Jacques; Awan, Zuhier

    Estrogen, whether therapeutic or physiologic, can cause hypertriglyceridemia. Hypertriglyceridemia-induced pancreatitis is a rare complication. We report 2 women who developed estrogen-associated severe hypertriglyceridemia with pancreatitis. The first patient developed pancreatitis secondary to hypertriglyceridemia associated with in vitro fertilization cycles. Marked reduction in her triglyceride was achieved with dietary restrictions and fibrate. The second patient developed pancreatitis secondary to hypertriglyceridemia during her pregnancies. She was noncompliant with the treatment; therefore, her triglyceride remained high after delivery. In both patients, no hypertriglyceridemia-associated genes mutations were identified, although the second patient had strong polygenic susceptibility to hypertriglyceridemia. Estrogen-induced severe hypertriglyceridemia with pancreatitis can be a life-threatening condition. Screening in high-risk patients is crucial to prevent subsequent complications. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  19. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  20. The Role and Use of Estrogens Following Trauma.

    Science.gov (United States)

    Weniger, Maximilian; Angele, Martin K; Chaudry, Irshad H

    2016-09-01

    Several lines of evidence indicate that female sex is a protective factor in trauma and hemorrhage. In both clinical and experimental studies, proestrus females have been shown to have better chances of survival and reduced rates of posttraumatic sepsis. Estrogen receptors are expressed in a variety of tissues and exert genomic, as well as nongenomic effects. By improving cardiac, pulmonary, hepatic, and immune function, estrogens have been shown to prolong survival in animal models of hemorrhagic shock. Despite encouraging results from experimental studies, retrospective clinical studies have not clearly pointed to advantages of estrogens following trauma-hemorrhage, which may be due to insufficient study design. Therefore, this review aims to give an overview on the current evidence and emphasizes on the importance of further clinical investigation on estrogens following trauma.

  1. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    Science.gov (United States)

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  2. Estrogen receptor α- (ERα), but not ERβ-signaling, is crucially involved in mechanostimulation of bone fracture healing by whole-body vibration.

    Science.gov (United States)

    Haffner-Luntzer, Melanie; Kovtun, Anna; Lackner, Ina; Mödinger, Yvonne; Hacker, Steffen; Liedert, Astrid; Tuckermann, Jan; Ignatius, Anita

    2018-05-01

    Mechanostimulation by low-magnitude high frequency vibration (LMHFV) has been shown to provoke anabolic effects on the intact skeleton in both mice and humans. However, experimental studies revealed that, during bone fracture healing, the effect of whole-body vibration is profoundly influenced by the estrogen status. LMHFV significantly improved fracture healing in ovariectomized (OVX) mice being estrogen deficient, whereas bone regeneration was significantly reduced in non-OVX, estrogen-competent mice. Furthermore, estrogen receptors α (ERα) and β (ERβ) were differentially expressed in the fracture callus after whole-body vibration, depending on the estrogen status. Based on these data, we hypothesized that ERs may mediate vibration-induced effects on fracture healing. To prove this hypothesis, we investigated the effects of LMHFV on bone healing in mice lacking ERα or ERβ. To study the influence of the ER ligand estrogen, both non-OVX and OVX mice were used. All mice received a femur osteotomy stabilized by an external fixator. Half of the mice were sham-operated or subjected to OVX 4 weeks before osteotomy. Half of each group received LMHFV with 0.3 g and 45 Hz for 20 min per day, 5 days per week. After 21 days, fracture healing was evaluated by biomechanical testing, μCT analysis, histomorphometry and immunohistochemistry. Absence of ERα or ERβ did not affect fracture healing in sham-treated mice. Wildtype (WT) and ERβ-knockout mice similarly displayed impaired bone regeneration after OVX, whereas ERα-knockout mice did not. Confirming previous data, in WT mice, LMHFV negatively affected bone repair in non-OVX mice, whereas OVX-induced compromised healing was significantly improved by vibration. In contrast, vibrated ERα-knockout mice did not display significant differences in fracture healing compared to non-vibrated animals, both in non-OVX and OVX mice. Fracture healing in ERβ-knockout mice was similarly affected by LMHFV as in WT

  3. The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin.

    Science.gov (United States)

    Brander, Susanne M; He, Guochun; Smalling, Kelly L; Denison, Michael S; Cherr, Gary N

    2012-12-01

    Pyrethroids are highly toxic to fish at parts per billion or parts per trillion concentrations. Their intended mechanism is prolonged sodium channel opening, but recent studies reveal that pyrethroids such as permethrin and bifenthrin also have endocrine activity. Additionally, metabolites may have greater endocrine activity than parent compounds. The authors evaluated the in vivo concentration-dependent ability of bifenthrin and permethrin to induce choriogenin (an estrogen-responsive protein) in Menidia beryllina, a fish species known to reside in pyrethroid-contaminated aquatic habitats. The authors then compared the in vivo response with an in vitro assay--chemical activated luciferase gene expression (CALUX). Juvenile M. beryllina exposed to bifenthrin (1, 10, 100 ng/L), permethrin (0.1, 1, 10 µg/L), and ethinylestradiol (1, 10, 50 ng/L) had significantly higher ng/mL choriogenin (Chg) measured in whole body homogenate than controls. Though Chg expression in fish exposed to ethinylestradiol (EE2) exhibited a traditional sigmoidal concentration response, curves fit to Chg expressed in fish exposed to pyrethroids suggest a unimodal response, decreasing slightly as concentration increases. Whereas the in vivo response indicated that bifenthrin and permethrin or their metabolites act as estrogen agonists, the CALUX assay demonstrated estrogen antagonism by the pyrethroids. The results, supported by evidence from previous studies, suggest that bifenthrin and permethrin, or their metabolites, appear to act as estrogen receptor (ER) agonists in vivo, and that the unmetabolized pyrethroids, particularly bifenthrin, act as an ER antagonists in cultured mammalian cells. Copyright © 2012 SETAC.

  4. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  5. Pollution by endocrine disrupting estrogens in aquatic ecosystems ...

    African Journals Online (AJOL)

    Jane Erike-Etchie

    reproductive abnormalities than the natural estrogens. (Aris et al., 2014). .... 2006; Pool, 2008). Detection and quantification of estrogens by ELISA competitive ..... Williams M, Wood M, Kumar A, Ying GG, Shareef A, Karkkainen M,. Kookana R ...

  6. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Czech Academy of Sciences Publication Activity Database

    Štísová, Viktorie; Goffinont, S.; Maurizot, M. S.; Davídková, Marie

    2010-01-01

    Roč. 79, č. 8 (2010), s. 880-889 ISSN 0969-806X R&D Projects: GA MŠk 1P05OC085; GA MŠk OC09012 Institutional research plan: CEZ:AV0Z10480505 Keywords : DNA-protein complex * estrogen response element * estrogen receptor * ionizing radiation Subject RIV: BO - Biophysics Impact factor: 1.132, year: 2010

  7. Estrogen replacement therapy, Alzheimer's disease, and mild cognitive impairment.

    Science.gov (United States)

    Mulnard, Ruth A; Corrada, Marìa M; Kawas, Claudia H

    2004-09-01

    This article highlights the latest findings regarding estrogen replacement therapy in the treatment and prevention of Alzheimer's disease (AD) and mild cognitive impairment in women. Despite considerable evidence from observational studies, recent randomized clinical trials of conjugated equine estrogens, alone and in combination with progestin, have shown no benefit for either the treatment of established AD or for the short-term prevention of AD, mild cognitive impairment, or cognitive decline. Based on the evidence, there is no role at present for estrogen replacement therapy in the treatment or prevention of AD or cognitive decline, despite intriguing results from the laboratory and from observational studies. However, numerous questions remain about the biologic effects of estrogens on brain structure and function. Additional basic and clinical investigations are necessary to examine different forms and dosages of estrogens, other populations, and the relevance of timing and duration of exposure.

  8. Role of progesterone and estrogen in the preparation of the uterus and induction of implantation in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Huet-Hudson, Y.M.

    1989-01-01

    The implantation of the embryo into the uterine wall and subsequent decidualization of the uterine endometrium requires ovarian progesterone and estrogen. Prerequisites for implantation include (1) the preparation of the uterus for embryo implantation and (2) increase stromal capillary permeability at the site of embryo attachment. During the first three days of pregnancy, epithelial cells undergo proliferation, death and differentiation, in response to preovaluatory estrogen. These events occur in stromal cells in response to progesterone on days 4 and 5. The mechanism by which the steroid hormones modulate their functions and how estrogen initiates implantation in a progesterone-primed (P{sub 4}) uterus in not clearly understood. The author shows that 24h of P{sub 4}-priming is adequate for induction of implantation in the mouse. In addition, following this initial exposure of the uterus to P{sub 4} a long lasting effect is induced i.e. 24h of priming is no longer required for the induction of implantation. The uterine cell proliferation and differentiation that occurs in response to steroid hormones could be through their modulation of the expression of proto-oncogenes and growth factors. Results show that the proto-oncogene, c-myc and the growth factor, EGF are expressed in a cell-type specific manner in the uterus and are regulated by P{sub 4} and estrogen in a spatial and temporal manner during early pregnancy. It is apparent that c-myc protein in epithelia is primarily regulated by estrogen, while in the stroma by P{sub 4}. {sup 3}H-thymidine incorporation in specific uterine cell-types correlated with expression of the c-myc protein. On the other hand, EGF is always localized to the epithelia and is primarily regulated by estrogen.

  9. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT expression in an ELISA-based system.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA, and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT is transcriptionally regulated by estrogen via estrogen receptor (ER. Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP, and di-n-butyl phthalate (DBP. Cells were exposed to either these plasticizers or 17β-estradiol (E2 in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9-10(-7M dose-dependently reduced COMT expression (p<0.05, which was blocked by ICI 182,780. Reduction of COMT expression was readily detectable in cells exposed to picomolar level of E2, comparable to other in vitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different

  10. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Directory of Open Access Journals (Sweden)

    Cléciton Braga Tavares

    Full Text Available Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  11. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Science.gov (United States)

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  12. Estrogen-mediated hemangioma-derived stem cells through estrogen receptor-α for infantile hemangioma

    Directory of Open Access Journals (Sweden)

    Zhang L

    2017-07-01

    Full Text Available Ling Zhang,1 Hai Wei Wu,1 Weien Yuan,2 Jia Wei Zheng1 1Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Background: Infantile hemangiomas (IHs are the most common benign vascular tumor of infancy. They occur more frequently in female infants. The cause of hemangioma is currently unknown; however, current studies suggested the importance of estrogen (E2 signaling in hemangioma proliferation. Methods: Hemangioma-derived stem cells (HemSCs were cultured with estrogen for 48–72 h; the cell viability and proliferation were evaluated with the messenger RNA (mRNA and protein expression levels of fibroblast growth factor 2 (FGF2, vascular endothelial growth factor-A (VEGF-A and estrogen receptor-α (ER-α, by application of several in vitro assays, such as methyl thiazolyl tetrazolium (MTT, reverse transcriptase–polymerase chain reaction (RT-PCR, real-time PCR, enzyme-linked immunosorbent assay (ELISA and Western blotting. Also, the cell population’s response to external estrogen was investigated by in vivo experiments. HemSCs and human umbilical vein endothelial cells (HUVECs were mixed and injected subcutaneously into 20 flank of BALB/c-nu mice, which were randomly divided into 5 groups based on different E2 treatment doses (0, 0.01, 0.1 and 1 mg, respectively, 0.1 mg dimethyl sulfoxide (DMSO as control. Each group of mice were treated intramuscularly every week, then 2 and 4 weeks later, the subcutaneous implants were harvested and evaluated the tumor tissues with microvessel density (MVD assay and immunohistochemistry. Results: The study demonstrated that application of E2 increased the expression of FGF2, VEGF-A, and ER-α in HemSCs with the optimal concentration from 10−9 to 10−5 M. Two

  13. Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Muchtaridi Muchtaridi

    2017-10-01

    Full Text Available Tamoxifen is the most frequently used anti-estrogen adjuvant treatment for estrogen receptor-positive breast cancer. However, it is associated with an increased risk of several serious side–effects, such as uterine cancer, stroke, and pulmonary embolism. The 2′,4′-dihydroxy-6-methoxy-3,5-dimethylchalcone (ChalcEA from plant leaves of Eugenia aquea, has been found to inhibit the proliferation of MCF-7 human breast cancer cells in a dose-dependent manner, with an IC50 of 74.5 μg/mL (250 μM. The aim of this work was to study the molecular interactions of new ChalcEA derivatives formed with the Estrogen Receptor α (ERα using computer aided drug design approaches. Molecular docking using Autodock 4.2 was employed to explore the modes of binding of ChalcEA derivatives with ERα. The 3D structure-based pharmacophore model was derived using LigandScout 4.1 Advanced to investigate the important chemical interactions of the ERα-tamoxifen complex structure. The binding energy and the tamoxifen-pharmacophore fit score of the best ChalcEA derivative (HNS10 were −12.33 kcal/mol and 67.07 kcal/mol, respectively. The HNS10 interacted with Leu346, Thr347, Leu349, Ala350, Glu353, Leu387, Met388, Leu391, Arg394, Met421, and Leu525. These results suggest that the new ChalcEA derivatives could serve as the lead compound for potent ERα inhibitor in the fight against breast cancer.

  14. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM).

    Science.gov (United States)

    Christgau, Stephan; Tankó, László B; Cloos, Paul A C; Mouritzen, Ulrik; Christiansen, Claus; Delaissé, Jean-Marie; Høegh-Andersen, Pernille

    2004-01-01

    Several observational studies indicate that estrogen deficiency increases the incidence of osteoarthritis in postmenopausal women. To validate this observation, we investigated the effects of ovariectomy (OVX) on cartilage erosion in rats using histology and an established bio-assay of cartilage-specific collagen type II degradation products (CTX-II). Furthermore, we investigated whether estrogen and levormeloxifene, a selective estrogen-receptor modulator (SERM), can prevent the OVX-induced changes in cartilage degradation. The clinical relevance was assessed in postmenopausal women by measuring the changes in CTX-II during 12-month treatment with levormeloxifene versus placebo. Sixty 6-month-old rats were divided in five groups. One group was subjected to sham and the others to OVX, followed by treatment with vehicle alone, estradiol or 0.2 mg/kg/day or 5 mg/kg/day of levormeloxifene. The rats were treated for 9 weeks with biweekly blood and urine sampling for measurement of bone resorption and cartilage turnover. After study termination, hind knees were removed for histological analysis of erosions. The effect of levormeloxifene in post-menopausal women was assessed by measuring CTX-II in samples from 301 women who were participating in a phase II study of this SERM. OVX rats showed significant increases in the urinary excretion of CTX-II. After 9 weeks this was manifested as increased surface erosion of knee articular cartilage compared with sham-operated rats. Treatment with estrogen or levormeloxifene prevented the OVX-induced changes. There was a significant correlation between the 4-week changes in CTX-II and cartilage erosion at week 9 (r = 0.64, P women treated with levormeloxifene, the urinary excretion of CTX-II was decreased by approximately 50% and restored CTX-II levels to the premenopausal range. This study is the first to demonstrate that a SERM suppresses cartilage degradation in both rodents and humans, suggesting potential therapeutical benefits

  15. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    International Nuclear Information System (INIS)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.

    2015-01-01

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data

  16. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian, E-mail: sfalberti@gmail.com [Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal (Argentina); Roitberg, Adrian E. [Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611 (United States)

    2015-06-28

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.

  17. The Distinct Effects of Estrogen and Hydrostatic Pressure on Mesenchymal Stem Cells Differentiation: Involvement of Estrogen Receptor Signaling.

    Science.gov (United States)

    Zhao, Ying; Yi, Fei-Zhou; Zhao, Yin-Hua; Chen, Yong-Jin; Ma, Heng; Zhang, Min

    2016-10-01

    This study aimed to investigate the differential and synergistic effects of mechanical stimulation and estrogen on the proliferation and osteogenic or chondrogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and the roles of estrogen receptor (ER) in them. BMSCs were isolated and cultured using the whole bone marrow adherence method, and flow cytometry was used to identify the surface marker molecules of BMSCs. Cells were pre-treated with 1 nM 17β-estradiol or 1 nM of the estrogen receptor antagonist tamoxifen. Then, the cells were stimulated with hydrostatic pressure. Assessment included flow cytometry analysis of the cell cycle; immunofluorescent staining for F-actin; protein quantification for MAPK protein; and mRNA analysis for Col I, OCN, OPN and BSP after osteogenic induction and Sox-9, Aggrecan and Col-II after chondrogenic induction. Hydrostatic pressure (90 kPa/1 h) and 1 nM 17β-estradiol enhanced the cellular proliferation ability and the cytoskeleton activity but without synergistic biological effects. Estrogen activated ERKs and JNKs simultaneously and promoted the osteogenic differentiation, whereas the pressure just caused JNK-1/2 activation and promoted the chondrogenic differentiation of BMSCs. Estrogen had antagonism effect on chondrogenic promotion of hydrostatic pressure. Mechanobiological effects of hydrostatic pressure are closely associated with ERα activity. MAPK molecules and F-actin were likely to be important mediator molecules in the ER-mediated mechanotransduction of BMSCs.

  18. The immunologic effects of estrogen on psoriasis: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Melissa Danesh, B.S.

    2015-06-01

    Conclusions: Increased estrogen production in pregnancy is associated with decreased Th1 and Th17 cytokine production. While estrogen may be responsible for some of these immune shifts resulting in disease improvement, there remains no definitive evidence to prove the hypothesis that estrogen is responsible for such improvement.

  19. Estrogenic effects of marijuana smoke condensate and cannabinoid compounds

    International Nuclear Information System (INIS)

    Lee, Soo Yeun; Oh, Seung Min; Chung, Kyu Hyuck

    2006-01-01

    Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related to the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect

  20. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  1. Rapid effects of estrogens on short-term memory: Possible mechanisms.

    Science.gov (United States)

    Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena

    2018-06-01

    Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility

    Science.gov (United States)

    Marzagalli, Monica; Montagnani Marelli, Marina; Casati, Lavinia; Fontana, Fabrizio; Moretti, Roberta Manuela; Limonta, Patrizia

    2016-01-01

    Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to

  3. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.

    Science.gov (United States)

    Trenti, Annalisa; Tedesco, Serena; Boscaro, Carlotta; Trevisi, Lucia; Bolego, Chiara; Cignarella, Andrea

    2018-03-15

    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.

  4. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Estrogens (total, in pregnancy) test system. 862.1270 Section 862.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1270 Estrogens (total, in pregnancy) test system. (a) Identification. As estrogens...

  5. Vascular measurements correlate with estrogen receptor status

    International Nuclear Information System (INIS)

    Lloyd, Mark C; Alfarouk, Khalid O; Verduzco, Daniel; Bui, Marilyn M; Gillies, Robert J; Ibrahim, Muntaser E; Brown, Joel S; Gatenby, Robert A

    2014-01-01

    Breast carcinoma can be classified as either Estrogen Receptor (ER) positive or negative by immunohistochemical phenotyping, although ER expression may vary from 1 to 100% of malignant cells within an ER + tumor. This is similar to genetic variability observed in other tumor types and is generally viewed as a consequence of intratumoral evolution driven by random genetic mutations. Here we view cellular evolution within tumors as a classical Darwinian system in which variations in molecular properties represent predictable adaptations to spatially heterogeneous environmental selection forces. We hypothesize that ER expression is a successful adaptive strategy only if estrogen is present in the microenvironment. Since the dominant source of estrogen is blood flow, we hypothesized that, in general, intratumoral regions with higher blood flow would contain larger numbers of ER + cells when compared to areas of low blood flow and in turn necrosis. This study used digital pathology whole slide image acquisition and advanced image analysis algorithms. We examined the spatial distribution of ER + and ER- cells, vascular density, vessel area, and tissue necrosis within histological sections of 24 breast cancer specimens. These data were correlated with the patients ER status and molecular pathology report findings. ANOVA analyses revealed a strong correlation between vascular area and ER expression and between high fractional necrosis and absent ER expression (R 2 = 39%; p < 0.003 and R 2 = 46%; p < 0.001), respectively). ER expression did not correlate with tumor grade or size. We conclude that ER expression can be understood as a Darwinian process and linked to variations in estrogen delivery by temporal and spatial heterogeneity in blood flow. This correlation suggests strategies to promote intratumoral blood flow or a cyclic introduction of estrogen in the treatment schedule could be explored as a counter-intuitive approach to increase the efficacy of anti-estrogen

  6. Do Soy Isoflavones Provide Protection Against Prostate Cancer Via a Classical Estrogen Receptor-Alpha (Era) Independent Mechanism?

    National Research Council Canada - National Science Library

    Lubahn, Dennis

    2001-01-01

    .... Our hypothesis is that soy isoflavones, specifically genistein and daidzein, will provide protection from development and progression of prostate cancer in mice lacking functional estrogen receptor...

  7. Urinary estrogen metabolites and self-reported infertility in women infected with Schistosoma haematobium.

    Directory of Open Access Journals (Sweden)

    Júlio Santos

    Full Text Available BACKGROUND: Schistosomiasis is a neglected tropical disease, endemic in 76 countries, that afflicts more than 240 million people. The impact of schistosomiasis on infertility may be underestimated according to recent literature. Extracts of Schistosoma haematobium include estrogen-like metabolites termed catechol-estrogens that down regulate estrogen receptors alpha and beta in estrogen responsive cells. In addition, schistosome derived catechol-estrogens induce genotoxicity that result in estrogen-DNA adducts. These catechol estrogens and the catechol-estrogen-DNA adducts can be isolated from sera of people infected with S. haematobium. The aim of this study was to study infertility in females infected with S. haematobium and its association with the presence of schistosome-derived catechol-estrogens. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study was undertaken of female residents of a region in Bengo province, Angola, endemic for schistosomiasis haematobia. Ninety-three women and girls, aged from two (parents interviewed to 94 years were interviewed on present and previous urinary, urogenital and gynecological symptoms and complaints. Urine was collected from the participants for egg-based parasitological assessment of schistosome infection, and for liquid chromatography diode array detection electron spray ionization mass spectrometry (LC/UV-DAD/ESI-MSn to investigate estrogen metabolites in the urine. Novel estrogen-like metabolites, potentially of schistosome origin, were detected in the urine of participants who were positive for eggs of S. haematobium, but not detected in urines negative for S. haematobium eggs. The catechol-estrogens/ DNA adducts were significantly associated with schistosomiasis (OR 3.35; 95% CI 2.32-4.84; P≤0.001. In addition, presence of these metabolites was positively associated with infertility (OR 4.33; 95% CI 1.13-16.70; P≤0.05. CONCLUSIONS/SIGNIFICANCE: Estrogen metabolites occur widely in diverse

  8. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.

    Science.gov (United States)

    Lawson, D M; Williams, C E; Mitchenall, L A; Pau, R N

    1998-12-15

    . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.

  9. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products.

    Science.gov (United States)

    Myers, Sharon L; Yang, Chun Z; Bittner, George D; Witt, Kristine L; Tice, Raymond R; Baird, Donna D

    2015-05-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products.

  10. Biological validation of a sample preparation method for ER-CALUX bioanalysis of estrogenic activity in sediments using mixtures of xeno-estrogens

    NARCIS (Netherlands)

    Houtman, C.J.; Houten, Y.K.; Leonards, P.E.G.; Brouwer, A.; Lamoree, M.H.; Legler, J.

    2006-01-01

    The combined estrogenic effects of mixtures of environmental pollutants in the in vitro ER-CALUX (chemical activated luciferase gene expression) bioassay were examined to biologically validate a sample preparation method for the analysis of estrogenic compounds in sediment. The method used

  11. Biolonical validation of a sample preparation method for ER-CALUX bioanalysis of estrogenic activity in sediment using mixtures of xeno-estrogens

    NARCIS (Netherlands)

    Houtman, C.J.; Houten, Van Y.K.; Leonards, P.E.G.; Brouwer, A.; Lamoree, M.H.; Legler, J.

    2006-01-01

    The combined estrogenic effects of mixtures of environmental pollutants in the in vitro ER-CALUX (chemical activated luciferase gene expression) bioassay were examined to biologically validate a sample preparation method for the analysis of estrogenic compounds in sediment. The method used

  12. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  13. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs, which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen in vascular injury require the estrogen receptor alpha (ERα. ERα transduces the effects of estrogen via a classical DNA binding, "genomic" signaling pathway and via a more recently-described "rapid" signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα that is specifically defective in rapid signaling, but is competent to regulate transcription through the "genomic" pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen.

  14. Isomer-specific analysis of nonylphenols with estrogenic activity and their distribution in aquatic environment in relation to endocrine disrupters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.S.; Katase, T.; Inoue, T. [Nihon Univ., Fujisawa, Kanagawa (Japan). College of Bioresource Sciences; Horii, Y.; Yamashita, N. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Makino, M.; Uchiyama, T.; Fujimoto, Y. [Nihon Univ., Chiba (Japan). College of Pharmacy

    2004-09-15

    The effect of estrogen-exposure on levels of a larval storage protein of Balanus amphitrite, cypris major protein (CMP), which is related to barnacle vitellin, has been examined at low concentrations (0.01-1.0 {mu}g/l) of 4-nonylphenol (NP) and 17{beta}-estradiol (E2) (1.0 {mu}g/l) from egg hatching until the nauplius cypris stage. Eventually, the exposure to 0.01 {mu}g/l of NP led to a ca. 50% increase in the optical density of the CMP. There are theoretically ca. 170 kinds of isomers of NP, based on the structure of the nonyl side chain in NP. We fractionated a commercial NP by high performance liquid chromatography (HPLC) to give six fractions (Fr. 1- Fr. 6). Fr. 3 - Fr. 5 were further separated to afford 14 fractions by using gas chromatograph equipped with a preparative fraction collector (GC-PFC) and 11 NP isomers were identified by gas chromatograph equipped with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). The chemical structures of 11 isomers (NP1 to NP14) were characterized and estrogenicities of the selected isomers were tested in recombinant yeast screen system. The 4-(1,1-dimethyl-2-ethyl-pentyl)- phenol (NP7) was found to exhibit the highest estrogenic activity corresponding to 1.9 x 10{sup -3} that of E2. The NP4 and 6 were structurally in diastereomer. The individual isomer of NP in aquatic samples taken from Ariake Sea and Tokyo, Japan was analyzed by steam distillation extraction in the present study.

  15. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Cathey, T.M.; Chung, Kyung W. (Univ. of Oklahoma, Oklahoma City (USA))

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.

  16. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    International Nuclear Information System (INIS)

    Cathey, T.M.; Chung, Kyung W.

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy

  17. Synthesis of 125I Labeled Estradiol-17-Hemisuccinate and Its Binding Study to Estrogen Receptors Using Scintillation Proximity Assay Method

    Directory of Open Access Journals (Sweden)

    Y. Susilo

    2012-12-01

    Full Text Available Research was carried out to obtain a selective ligand which strongly bind to estrogen receptors through determination of binding affinity of estradiol-17β-hemisuccinate. Selectivity of these compounds for estrogen receptor was studied using Scintillation Proximity Assay (SPA method. Primary reagents required in the SPA method including radioligand and receptor, the former was obtained by labeling of estradiol-17β-hemisuccinate with 125I, while MCF7 was used as the receptor. The labeling process was performed by indirect method via two-stage reaction. In this procedure, first step was activation of estradiol-17β-hemisuccinate using isobutylchloroformate and tributylamine as a catalist, while labeling of histamine with 125I was carried out using chloramin-T method to produce 125I-histamine. The second stage was conjugation of activated estradiol-17β-hemisuccinate with 125I-histamine. The product of estradiol-17β-hemisuccinate labeled 125I was extracted using toluene. Furtherly, the organic layer was purified by TLC system. Characterization of estradiol-17β-hemisuccinate labeled 125I from this solvent extraction was carried out by determining its radiochemical purity and the result was obtained using paper electrophoresis and TLC were 79.8% and 84.4% respectively. Radiochemical purity could be increased when purification step was repeated using TLC system, the result showed up to 97.8%. Determination of binding affinity by the SPA method was carried out using MCF7 cell lines which express estrogen receptors showed the value of Kd at 7.192 x 10-3 nM and maximum binding at 336.1 nM. This low value of Kd indicated that binding affinity of estradiol-17β-hemisuccinate was high or strongly binds to estrogen recepto

  18. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  19. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.

    Science.gov (United States)

    Broda, Ellen; Mickler, Frauke Martina; Lächelt, Ulrich; Morys, Stephan; Wagner, Ernst; Bräuchle, Christoph

    2015-09-10

    Sophisticated drug delivery systems are coated with targeting ligands to improve the specific adhesion to surface receptors on diseased cells. In our study, we developed a method with which we assessed the potential of peptide ligands to specifically bind to receptor overexpressing target cells. Therefore, a microfluidic setup was used where the cellular adhesion of nanoparticles with ligand and of control nanoparticles was observed in parallel under the same experimental conditions. The effect of the ligand on cellular binding was quantified by counting the number of adhered nanoparticles with ligand and differently labeled control nanoparticles on single cells after incubation under flow conditions. To provide easy-to-synthesize, stable and reproducible nanoparticles which mimic the surface characteristics of drug delivery systems and meet the requirements for quantitative analysis, latex beads based on amine-modified polystyrene were used as model nanoparticles. Two short peptides were tested to serve as targeting ligand on the beads by increasing the specific binding to HuH7 cells. The c-Met binding peptide cMBP2 was used for hepatocyte growth factor receptor (c-Met) targeting and the peptide B6 for transferrin receptor (TfR) targeting. The impact of the targeting peptide on binding was investigated by comparing the beads with ligand to different internal control beads: 1) without ligand and tailored surface charge (electrostatic control) and 2) with scrambled peptide and similar surface charge, but a different amino acid sequence (specificity control). Our results demonstrate that the method is very useful to select suitable targeting ligands for specific nanoparticle binding to receptor overexpressing tumor cells. We show that the cMBP2 ligand specifically enhances nanoparticle adhesion to target cells, whereas the B6 peptide mediates binding to tumor cells mainly by nonspecific interactions. All together, we suggest that cMBP2 is a suitable choice for

  20. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templates

    National Research Council Canada - National Science Library

    Nordeen, Steven

    2000-01-01

    .... Using newly-developed approaches, I investigated mechanisms of estrogen/estrogen receptor action on chromatin templates in vitro in order to better understand the role of chromatin in steroid-regulated gene expression...

  1. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templaces

    National Research Council Canada - National Science Library

    Nordeen, Steve

    2001-01-01

    .... Using newly-developed approaches, I investigated mechanisms of estrogen/estrogen receptor action on chromatin templates in vitro in order to better understand the role of chromatin in steroid-regulated gene expression...

  2. A summary of the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health.

    Science.gov (United States)

    Southmayd, Emily A; De Souza, Mary Jane

    2017-02-01

    Bone growth, development, and remodeling are modulated by numerous circulating hormones. Throughout the lifespan, the extent to which each of the hormones impacts bone differs. Understanding the independent and combined impact of these hormones on controlling bone remodeling allows for the development of more informed decision making regarding pharmacology, specifically the use of hormonal medication, at all ages. Endocrine control of bone health in women is largely dictated by the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and the hypothalamic-pituitary-ovarian (HPO) axis. Growth hormone, secreted from the pituitary gland, stimulates cells in almost every tissue to secrete IGF-1, although the majority of circulating IGF-1 is produced hepatically. Indeed, systemic IGF-1 concentrations have been found to be correlated with bone mineral density (BMD) in both pre- and post-menopausal women and is often used as a marker of bone formation. Sex steroids produced by the ovaries, namely estradiol, mediate bone resorption through binding to estrogen receptors on osteoclasts and osteoblasts. Specifically, by increasing osteoclast apoptosis and decreasing osteoblast apoptosis, adequate estrogen levels prevent excessive bone resorption, which helps to explain the rapid decline in bone mass that occurs with the menopausal decrease in estrogen production. Though there are documented correlations between endogenous estrogen concentrations and GH/IGF-1 dynamics, this relationship changes across the lifespan as sex-steroid dynamics fluctuate and, possibly, as tissue responsiveness to GH stimulation decreases. Aside from the known role of endogenous sex steroids on bone health, the impact of exogenous estrogen administration is of interest, as exogenous formulations further modulate GH and IGF-1 production. However, the effect and extent of GH and IGF-1 modulation seems to be largely dependent on age at administration and route of administration. Specifically

  3. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Characterization of estrogen receptors alpha and beta in uterine leiomyoma cells.

    Science.gov (United States)

    Valladares, Francisco; Frías, Ignacio; Báez, Delia; García, Candelaria; López, Francisco J; Fraser, James D; Rodríguez, Yurena; Reyes, Ricardo; Díaz-Flores, Lucio; Bello, Aixa R

    2006-12-01

    Cellular and subcellular localization of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) in uterine leiomyomas. Retrospective study. University of La Laguna (ULL) and Canary University Hospital (HUC). Premenopausal and postmenopausal women with uterine leiomyomas. Hysterectomy and myomectomy. Estrogen receptor alpha was only present in smooth muscle cells with variation in the subcellular location in different leiomyomas. Estrogen receptor beta was widely distributed in smooth muscle, endothelial, and connective tissue cells with nuclear location in all cases studied; variations were only found in the muscle cells for this receptor. Estrogens operate in leiomyoma smooth muscle cells through different receptors, alpha and beta. However they only act through the ERbeta in endothelial and connective cells.

  5. Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover

    Science.gov (United States)

    Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.

    2011-01-01

    We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814

  6. Ozonation of estrogenic chemicals in biologically treated sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus; Ledin, Anna

    2010-01-01

    The present study shows that ozonation of effluents from municipal wastewater treatment plants (WWTPs) is likely to be a future treatment solution to remove estrogens and xeno-estrogens. The required ozone dose and electrical energy for producing the ozone were determined in two WWTP effluents fo...

  7. A latex agglutination test for the field determination of abnormal vitellogenin production in male fishes contaminated by estrogen mimics

    International Nuclear Information System (INIS)

    Magalhaes, Ilizabete; Pihan, Jean-Claude; Falla, Jairo

    2004-01-01

    Estrogen mimics are pollutants present in the aquatic environment. These compounds induce abnormalities in the reproductive system of male fishes, which lead to a total or partial male feminization, or to their demasculinization. Ultimately, these alterations could lead to a disappearance of the total contaminated fish population. Moreover, these toxic substances possess the capacity to mimic endogenous estrogens and to induce the abnormal production of vitellogenin (VTG) in male and immature fishes. The purpose of this research was to develop an easy, specific, cheap and fast method for diagnosing the contamination of male fishes by estrogen mimics, using VTG as biomarker. The selected method is based on a reverse latex agglutination test (rLAT), developed with monoclonal antibodies specific of this biomarker. The development of this VTG-rLAT has involved, firstly, the purification of carp VTG to produce monoclonal antibodies, specifics of this protein. One of these antibodies was selected to recover latex particles (diameter: 1 μm). Finally, the immunoreactivity of the VTG-rLAT was verified with different fish plasma samples from males treated with 17β-estradiol and non-treated males or females in vitellogenesis

  8. Estrogen induction of telomerase activity through regulation of the mitogen-activated protein kinase (MAPK dependent pathway in human endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhou

    Full Text Available Given that prolonged exposure to estrogen and increased telomerase activity are associated with endometrial carcinogenesis, our objective was to evaluate the interaction between the MAPK pathway and estrogen induction of telomerase activity in endometrial cancer cells. Estradiol (E2 induced telomerase activity and hTERT mRNA expression in the estrogen receptor (ER-α positive, Ishikawa endometrial cancer cell line. UO126, a highly selective inhibitor of MEK1/MEK2, inhibited telomerase activity and hTERT mRNA expression induced by E2. Similar results were also found after transfection with ERK 1/2-specific siRNA. Treatment with E2 resulted in rapid phosphorylation of p44/42 MAPK and increased MAPK activity which was abolished by UO126. The hTERT promoter contains two estrogen response elements (EREs, and luciferase assays demonstrate that these EREs are activated by E2. Exposure to UO126 or ERK 1/2-specific siRNA in combination with E2 counteracted the stimulatory effect of E2 on luciferase activity from these EREs. These findings suggest that E2-induction of telomerase activity is mediated via the MAPK pathway in human endometrial cancer cells.

  9. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects.

    Science.gov (United States)

    Khalaj, Anna J; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K

    2016-06-01

    Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory

  10. Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection

    Science.gov (United States)

    Kemper, Martin F.; Stirone, Chris; Krause, Diana N.; Duckles, Sue P.; Procaccio, Vincent

    2014-01-01

    We previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC). In vessels ex vivo, estrogen decreased protein levels of PGC-1α via activation of phosphatidylinositol 3-kinase (PI3K). Estrogen treatment also increased phosphorylation of forkhead transcription factor, FoxO1, a known pathway for PGC-1α downregulation. In contrast to the decrease in PGC-1α, estrogen increased protein levels of nuclear respiratory factor 1, a known PGC target and mediator of mitochondrial biogenesis. The latter effect of estrogen was independent of PI3K, suggesting a separate mechanism consistent with increased expression of PGC-1β and PRC. We demonstrated increased mitochondrial biogenesis following estrogen treatment in vivo; cerebrovascular levels of mitochondrial transcription factor A and electron transport chain subunits as well as the mitochondrial/ nuclear DNA ratio were increased. We examined a downstream target of PGC-1β, glutamate-cysteine ligase (GCL), the rate-limiting enzyme for glutathione synthesis. In vivo estrogen increased protein levels of both GCL subunits and total glutathione levels. Together these data show estrogen differentially regulates PGC-1 isoforms in brain vasculature, underscoring the importance of these coactivators in adapting mitochondria in specific tissues. By upregulating PGC-1β and/or PRC, estrogen appears to enhance mitochondrial biogenesis, function and reactive oxygen species protection. PMID:24275351

  11. Association of Increased Prenatal Estrogen With Risk Factors for Schizophrenia

    OpenAIRE

    Brown, James S.

    2010-01-01

    The author previously described a theoretical cause of schizophrenia based on the effects of estrogenic endocrine disruption. In the current review, the author describes how increased estrogen during pregnancy increases susceptibility to certain viral infections associated with increased risk for schizophrenia. The review further discusses how prenatal estrogen exposure could explain associations of schizophrenia with autoimmune diseases, urban environments, and stress. Based on the associati...

  12. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  13. Aptamer-Assisted Detection of the Altered Expression of Estrogen Receptor Alpha in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Rajesh Ahirwar

    Full Text Available An increase in the expression of estrogen receptors (ER and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4 and ERα (Ka = 1.55±0.298×108 M(-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg. Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20. Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative

  14. The estrogen-injected female mouse: new insight into the etiology of PCOS

    Directory of Open Access Journals (Sweden)

    Freeh Steven M

    2009-05-01

    Full Text Available Abstract Background Female mice and rats injected with estrogen perinatally become anovulatory and develop follicular cysts. The current consensus is that this adverse response to estrogen involves the hypothalamus and occurs because of an estrogen-induced alteration in the GnRH delivery system. Whether or not this is true has yet to be firmly established. The present study examined an alternate possibility in which anovulation and cyst development occurs through an estrogen-induced disruption in the immune system, achieved through the intermediation of the thymus gland. Methods, Results and Conclusion A putative role for the thymus in estrogen-induced anovulation and follicular cyst formation (a model of PCOS was examined in female mice by removing the gland prior to estrogen injection. Whereas all intact, female mice injected with 20 ug estrogen at 5–7 days of age had ovaries with follicular cysts, no cysts were observed in animals in which thymectomy at 3 days of age preceded estrogen injection. In fact, after restoring immune function by thymocyte replacement, the majority of thymectomized, estrogen-injected mice had ovaries with corpora lutea. Thus, when estrogen is unable to act on the thymus, ovulation occurs and follicular cysts do not develop. This implicates the thymus in the cysts' genesis and discounts the role of the hypothalamus. Subsequent research established that the disease is transferable by lymphocyte infusion. Transfer took place between 100-day-old estrogen-injected and 15-day-old naïve mice only when recipients were thymectomized at 3 days of age. Thus, a prerequisite for cyst formation is the absence of regulatory T cells. Their absence in donor mice was judged to be the result of an estrogen-induced increase in the thymus' vascular permeability, causing de facto circumvention of the final stages of regulatory T cell development. The human thymus has a similar vulnerability to steroid action during the fetal stage. We

  15. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced OsteoporosisIn Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Chuandong Wang

    2017-06-01

    Full Text Available Postmenopausal osteoporosis is a disease characterized by excessive osteoclastic bone resorption. Some anti-diabetic drugs were demonstrated for anti-osteoclastic bone-loss effects. The present study investigated the skeletal effects of chronic administration of sitagliptin, a dipeptidyl peptidase IV (DPP IV inhibitor that is increasingly used for type 2 diabetes treatments, in an estrogen deficiency-induced osteoporosis and elucidated the associated mechanisms. This study indicated that sitagliptin effectively prevented ovariectomy-induced bone loss and reduced osteoclast numbers in vivo. It was also indicated that sitagliptin suppressed receptor activator of nuclear factor-κB ligand (RANKL-mediated osteoclast differentiation, bone resorption, and F-actin ring formation in a manner of dose-dependence. In addition, sitagliptin significantly reduced the expression of osteoclast-specific markers in mouse bone-marrow-derived macrophages, including calcitonin receptor (Calcr, dendrite cell-specific transmembrane protein (Dc-stamp, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1. Further study indicated that sitagliptin inhibited osteoclastogenesis by suppressing AKT and ERK signaling pathways, scavenging ROS activity, and suppressing the Ca2+ oscillation that consequently affects the expression and/or activity of the osteoclast-specific transcription factors, c-Fos and NFATc1. Collectively, these findings suggest that sitagliptin possesses beneficial effects on bone and the suppression of osteoclast number implies that the effect is exerted directly on osteoclastogenesis.

  16. Estrogenic activity and estrogen receptor β binding of the UV filter 3-benzylidene camphor Comparison with 4-methylbenzylidene camphor

    International Nuclear Information System (INIS)

    Schlumpf, Margret; Jarry, Hubert; Wuttke, Wolfgang; Ma, Risheng; Lichtensteiger, Walter

    2004-01-01

    UV filters represent new classes of estrogenic [Environ. Health Perspect. 109 (2001) 239] or antiandrogenic [Toxicol. Sci. 74 (2003) 43] chemicals. We tested 3-benzylidene camphor (3-BC), reported as estrogenic in fish [Pharmacol. Toxicol. 91 (2002) 204], and mammalian systems in comparison to 4-methylbenzylidene camphor (4-MBC), shown to be active in rats, and analyzed binding to estrogen receptor subtypes. 3-BC and 4-MBC stimulated MCF-7 cell proliferation (EC 50 : 0.68 and 3.9 μM). The uterotrophic assay of 3-BC (oral gavage) in immature rats showed unexpected potency with ED50 45.3 mg/kg per day; lowest effective dose 2 mg/kg per day, and maximum effect with 70% of ethinylestradiol. After comparing with literature data, we found that the oral 3-BC was considerably more potent than oral bisphenol A and almost as active as subcutaneous genistein. 3-BC and 4-MBC displaced 16α 125 I-estradiol from porcine uterine cytosolic receptors (IC 50 : 14.5 and 112 μM), and from recombinant human estrogen receptor β (hERβ) (IC 50 : 3-BC, 11.8 μM; 4-MBC, 35.3 μM), whereas no displacement was detected at human estrogen receptor α (hERα) up to 3 mM. This subtype selectivity makes the two camphor derivatives interesting model compounds. Their activity on immature rat uterus is not easily explained by ERβ activation. It cannot be excluded that active metabolites with possibly different receptor binding characteristics are formed in vivo

  17. Reviewing the options for local estrogen treatment of vaginal atrophy

    Directory of Open Access Journals (Sweden)

    Lindahl SH

    2014-03-01

    Full Text Available Sarah H Lindahl Sutter East Bay Medical Foundation, SEBMF – Diablo Division, Castro Valley, CA, USA Background: Vaginal atrophy is a chronic condition with symptoms that include vaginal dryness, pain during sex, itching, irritation, burning, and discharge, as well as various urinary problems. Up to 45% of postmenopausal women may be affected, but it often remains underreported and undertreated. This article aims to review the current recommendations for treatment of vaginal atrophy, and current data on the effectiveness and safety of local vaginal estrogen therapies. Methods: Literature regarding vaginal atrophy (2007–2012 was retrieved from PubMed and summarized, with emphasis on data related to the treatment of vaginal atrophy with local vaginal estrogen therapy. Results: Published data support the effectiveness and endometrial safety of low-dose local estrogen therapies. These results further support the general recommendation by the North American Menopause Society that a progestogen is not needed for endometrial protection in patients using low-dose local vaginal estrogen. Benefits of long-term therapy for vaginal atrophy include sustained relief of symptoms as well as physiological improvements (eg, decreased vaginal pH and increased blood flow, epithelial thickness, secretions. Conclusion: Currently available local vaginal estrogen therapies are well tolerated and effective in relieving symptoms of vaginal atrophy. Recent data support the endometrial safety of low-dose regimens for up to 1 year. Keywords: menopause, estrogen, local estrogen therapy, vaginal atrophy

  18. Synthesis of high specific activity tritium labelled 1S,2S-(-)-trans-2-isothiocyanato-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)benzene acetamide, a specific irreversible ligand for kappa opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Costa, B.R. de; Thurkauf, A.; Rothman, R.R. (National Inst. of Mental Health, Bethesda, MD (USA)); Jacobson, A.E.; Rice, K.C. (National Inst. of Digestive Diabetes, and Kidney Diseases, Bethesda, MD (USA))

    1990-11-01

    Optically pure tritium labeled 1S,2S-(-)-trans-2-isothiocyanato-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl )benzeneacetamide, an affinity ligand specific for the kappa opioid receptor was synthesized from optically pure 1S,2S-(-)-trans-2-amino-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide via the sequence of dibromination (57%) followed by catalytic tritiation of the dibromide. The resulting tritium labelled aniline (14% yield, specific activity 31.2 Ci/mmol) was transformed to the title compound in 13.3% yield and 99+% radiochemical purity by treatment with thiophosgene. (author).

  19. Perturbation of estrogen receptor α localization with synthetic nona-arginine LXXLL-peptide coactivator binding inhibitors

    NARCIS (Netherlands)

    Carraz, M.; Zwart, W.; Phan, T.; Michalides, R.; Brunsveld, L.

    2009-01-01

    The interaction of estrogen receptor a (ERa) with the consensus LXXLL motifs of transcriptional coactivators provides an entry for functional ERa inhibition. Here, synthetic cell-permeable LXXLL peptide probes are brought forward that allow evaluation of the interaction of specific recognition

  20. Role of GPR30 in estrogen-induced prostate epithelial apoptosis and benign prostatic hyperplasia.

    Science.gov (United States)

    Yang, Deng-Liang; Xu, Jia-Wen; Zhu, Jian-Guo; Zhang, Yi-Lin; Xu, Jian-Bang; Sun, Qing; Cao, Xiao-Nian; Zuo, Wu-Lin; Xu, Ruo-Shui; Huang, Jie-Hong; Jiang, Fu-Neng; Zhuo, Yang-Jia; Xiao, Bai-Quan; Liu, Yun-Zhong; Yuan, Dong-Bo; Sun, Zhao-Lin; He, Hui-Chan; Lun, Zhao-Rong; Zhong, Wei-De; Zhou, Wen-Liang

    2017-06-03

    Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17β-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca 2+ release from the endoplasmic reticulum, increased the mitochondrial Ca 2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca 2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP 3 ) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A comparative QSAR study on the estrogenic activities of persistent organic pollutants by PLS and SVM

    Directory of Open Access Journals (Sweden)

    Fei Li

    2015-11-01

    Full Text Available Quantitative structure-activity relationships (QSARs were determined using partial least square (PLS and support vector machine (SVM. The predicted values by the final QSAR models were in good agreement with the corresponding experimental values. Chemical estrogenic activities are related to atomic properties (atomic Sanderson electronegativities, van der Waals volumes and polarizabilities. Comparison of the results obtained from two models, the SVM method exhibited better overall performances. Besides, three PLS models were constructed for some specific families based on their chemical structures. These predictive models should be useful to rapidly identify potential estrogenic endocrine disrupting chemicals.

  2. Cross-talk between estrogen and leptin signaling in the hypothalamus.

    Science.gov (United States)

    Gao, Qian; Horvath, Tamas L

    2008-05-01

    Obesity, characterized by enhanced food intake (hyperphagia) and reduced energy expenditure that results in the accumulation of body fat, is a major risk factor for various diseases, including diabetes, cardiovascular disease, and cancer. In the United States, more than half of adults are overweight, and this number continues to increase. The adipocyte-secreted hormone leptin and its downstream signaling mediators play crucial roles in the regulation of energy balance. Leptin decreases feeding while increasing energy expenditure and permitting energy-intensive neuroendocrine processes, such as reproduction. Thus, leptin also modulates the neuroendocrine reproductive axis. The gonadal steroid hormone estrogen plays a central role in the regulation of reproduction and also contributes to the regulation of energy balance. Estrogen deficiency promotes feeding and weight gain, and estrogen facilitates, and to some extent mimics, some actions of leptin. In this review, we examine the functions of estrogen and leptin in the brain, with a focus on mechanisms by which leptin and estrogen cooperate in the regulation of energy homeostasis.

  3. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    Science.gov (United States)

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  4. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    Science.gov (United States)

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  5. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    Science.gov (United States)

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  6. An IFNG SNP with an estrogen-like response element selectively enhances promoter expression in peripheral but not lamina propria T cells.

    Science.gov (United States)

    Gonsky, R; Deem, R L; Bream, J H; Young, H A; Targan, S R

    2006-07-01

    This study examines mucosa-specific regulatory pathways involved in modulation of interferon-gamma (IFN-gamma) in lamina propria T cells. Previous studies identified mucosa-specific CD2 cis-elements within the -204 to -108 bp IFNG promoter. Within this region, a single-site nucleotide polymorphism, -179G/T, imparts tumor necrosis factor-alpha stimulation of IFNG in peripheral blood lymphocytes, and is linked with accelerated AIDS progression. We discovered a putative estrogen response element (ERE) introduced by the -179T, which displays selective activation in peripheral blood mononuclear cells (PBMC) vs lamina propria mononuclear cells (LPMC). Transfection of PBMC with constructs containing the -179G or -179T site revealed CD2-mediated enhancement of the -179T compared to -179G allele, although, in LPMC, a similar level of expression was detected. Electrophoretic mobility shift assay (EMSA) analysis demonstrated CD2-mediated nucleoprotein binding to the -179T but not the -179G in PBMC. In LPMC, binding is constitutive to both -179G and -179T regions. Sequence and EMSA analysis suggests that the -179T allele creates an ERE-like binding site capable of binding recombinant estrogen receptor. Estrogen response element transactivation is enhanced by CD2 signaling, but inhibited by estrogen in PBMC but not in LPMC, although expression of estrogen receptor was similar. This is the first report to describe a potential molecular mechanism responsible for selectively controlling IFN-gamma production in LPMC.

  7. High-throughput screening and mechanism-based evaluation of estrogenic botanical extracts

    Science.gov (United States)

    Overk, Cassia R.; Yao, Ping; Chen, Shaonong; Deng, Shixing; Imai, Ayano; Main, Matthew; Schinkovitz, Andreas; Farnsworth, Norman R.; Pauli, Guido F.; Bolton, Judy L.

    2009-01-01

    Symptoms associated with menopause can greatly affect the quality of life for women. Botanical dietary supplements have been viewed by the public as safe and effective despite a lack of evidence indicating a urgent necessity to standardize these supplements chemically and biologically. Seventeen plants were evaluated for estrogenic biological activity using standard assays: competitive estrogen receptor (ER) binding assay for both alpha and beta subtypes, transient transfection of the estrogen response element luciferase plasmid into MCF-7 cells expressing either ER alpha or ER beta, and the Ishikawa alkaline phosphatase induction assay for both estrogenic and antiestrogenic activities. Based on the combination of data pooled from these assays, the following was determined: a) a high rate of false positive activity for the competitive binding assays, b) some extracts had estrogenic activity despite a lack of ability to bind the ER, c) one extract exhibited selective estrogen receptor modulator (SERM) activity, and d) several extracts show additive/synergistic activity. Taken together, these data indicate a need to reprioritize the order in which the bioassays are performed for maximal efficiency of programs involving bioassay-guided fractionation. In addition, possible explanations for the conflicts in the literature over the estrogenicity of Cimicifuga racemosa (black cohosh) are suggested. PMID:18473738

  8. Estrogenic plant foods of red colobus monkeys and mountain gorillas in Uganda.

    Science.gov (United States)

    Wasserman, Michael D; Taylor-Gutt, Alexandra; Rothman, Jessica M; Chapman, Colin A; Milton, Katharine; Leitman, Dale C

    2012-05-01

    Phytoestrogens, or naturally occurring estrogen-mimicking compounds, are found in many human plant foods, such as soybeans (Glycine max) and other legumes. Because the consumption of phytoestrogens may result in both health benefits of protecting against estrogen-dependent cancers and reproductive costs of disrupting the developing endocrine system, considerable biomedical research has been focused on the physiological and behavioral effects of these compounds. Despite this interest, little is known about the occurrence of phytoestrogens in the diets of wild primates, nor their likely evolutionary importance. We investigated the prevalence of estrogenic plant foods in the diets of two folivorous primate species, the red colobus monkey (Procolobus rufomitratus) of Kibale National Park and mountain gorilla (Gorilla beringei) of Bwindi Impenetrable National Park, both in Uganda. To examine plant foods for estrogenic activity, we screened 44 plant items (species and part) comprising 78.4% of the diet of red colobus monkeys and 53 plant items comprising 85.2% of the diet of mountain gorillas using transient transfection assays. At least 10.6% of the red colobus diet and 8.8% of the gorilla diet had estrogenic activity. This was mainly the result of the red colobus eating three estrogenic staple foods and the gorillas eating one estrogenic staple food. All estrogenic plants exhibited estrogen receptor (ER) subtype selectivity, as their phytoestrogens activated ERβ, but not ERα. These results demonstrate that estrogenic plant foods are routinely consumed by two folivorous primate species. Phytoestrogens in the wild plant foods of these two species and many other wild primates may have important implications for understanding primate reproductive ecology. Copyright © 2012 Wiley Periodicals, Inc.

  9. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    Science.gov (United States)

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  10. Two novel mixed-ligand complexes containing organosulfonate ligands.

    Science.gov (United States)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  11. Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China

    International Nuclear Information System (INIS)

    Ma Mei; Rao Kaifeng; Wang Zijian

    2007-01-01

    Estrogenic potencies of the effluents or water samples from wastewater treatment plants (WWTPs), industries and hospitals and some receiving rivers in Beijing city were estimated by using a human estrogen receptor recombinant yeast assay. Estrogenic activity of industrial wastewaters was found to range from 0.1 to 13.3 ng EEQ/L and decreased to the range of 0.03-1.6 ng EEQ/L after treatment. Estrogenic activity in WWTP influent ranged from 0.3 to 1.7 ng EEQ/L and decreased to the range of 0.05-0.5 ng EEQ/L after treatment. In the receiving river waters, the estrogenic effect range was 0.1-4.7 ng EEQ/L. These data suggest that treated industrial effluents and WWTP effluents of concern are not the only source of estrogenic pollution in surface waters in Beijing city. EEQ levels in Beijing river water are likely attributable to untreated municipal and industrial wastewaters discharged directly into the river. - Estrogenic activity in Beijing river water is attributed to direct discharges of untreated municipal and industrial wastewaters

  12. Effect of Topical Estrogen in the Mangement of Traumatic Facial Wounds

    Directory of Open Access Journals (Sweden)

    Seyed Amirhosein Ghazizadeh Hashemi

    2016-01-01

    Full Text Available Introduction: Acute skin wound healing is a complicated process comprising various phases. Recent animal studies have shown that steroid sex hormones such as estrogen maybe helpful in the regulation of several pathophysiologic stages that are involved in wound healing. In this study we examined the effects of topical estrogen in the treatment of traumatic facial wounds.   Materials and Methods: Patients referred to Luqman Hospital, Tehran with traumatic wounds were enrolled in this case-control study into two groups of equal size. From the second week of the study, topical estrogen (0.625 mg conjugated topical estrogen ointment was administered in the case group, while the control group received a Eucerin dressing only. The two groups were then compared in terms of wound healing rate on Day 7,14, and 30.   Results: Thirty patients with mean age of 16.02+36.23 years were compared in the control and estrogen-treated groups. After treatment, no scars or keloids were observed in either group. The wound area in the estrogen group was lower than that in the control group on Day 14 and 30, but the difference was not significant (P>0.05. Healing rates in the control group on Day  14 (7.1+42.3 vs.50.3+4.9 mm2 and Day 30 (1.9+93.5 vs. + 97.3+0.6 mm2 (were lower than those in the estrogen group, but the differences were not significant (P>0.05. Findings show that the required time for wound healing in the estrogen-treated group was lower than that in the control group, but the difference was not significant (P>0.05.   Conclusion:  Based on this study, topical estrogen has no effect on the rate of wound healing or the rate of wound area .

  13. Effect of Topical Estrogen in the Mangement of Traumatic Facial Wounds

    Science.gov (United States)

    Ghazizadeh Hashemi, Seyed Amirhosein; Barati, Behrooz; Mohammadi, Hosein; Saeidi, Masumeh; Bahreini, Abbas; Kiani, Mohammad Ali

    2016-01-01

    Introduction: Acute skin wound healing is a complicated process comprising various phases. Recent animal studies have shown that steroid sex hormones such as estrogen maybe helpful in the regulation of several pathophysiologic stages that are involved in wound healing. In this study we examined the effects of topical estrogen in the treatment of traumatic facial wounds. Materials and Methods: Patients referred to Luqman Hospital, Tehran with traumatic wounds were enrolled in this case-control study into two groups of equal size. From the second week of the study, topical estrogen (0.625 mg conjugated topical estrogen ointment) was administered in the case group, while the control group received a Eucerin dressing only. The two groups were then compared in terms of wound healing rate on Day 7,14, and 30. Results: Thirty patients with mean age of 16.02+36.23 years were compared in the control and estrogen-treated groups. After treatment, no scars or keloids were observed in either group. The wound area in the estrogen group was lower than that in the control group on Day 14 and 30, but the difference was not significant (P>0.05). Healing rates in the control group on Day 14 (7.1+42.3 vs.50.3+4.9 mm2) and Day 30 (1.9+93.5 vs. + 97.3+0.6 mm2) (were lower than those in the estrogen group, but the differences were not significant (P>0.05). Findings show that the required time for wound healing in the estrogen-treated group was lower than that in the control group, but the difference was not significant (P>0.05). Conclusion: Based on this study, topical estrogen has no effect on the rate of wound healing or the rate of wound area. PMID:26878003

  14. Identification of estrogen responsive genes using esophageal squamous cell carcinoma (ESCC) as a model

    KAUST Repository

    Essack, Magbubah

    2012-10-26

    Background: Estrogen therapy has positively impact the treatment of several cancers, such as prostate, lung and breast cancers. Moreover, several groups have reported the importance of estrogen induced gene regulation in esophageal cancer (EC). This suggests that there could be a potential for estrogen therapy for EC. The efficient design of estrogen therapies requires as complete as possible list of genes responsive to estrogen. Our study develops a systems biology methodology using esophageal squamous cell carcinoma (ESCC) as a model to identify estrogen responsive genes. These genes, on the other hand, could be affected by estrogen therapy in ESCC.Results: Based on different sources of information we identified 418 genes implicated in ESCC. Putative estrogen responsive elements (EREs) mapped to the promoter region of the ESCC genes were used to initially identify candidate estrogen responsive genes. EREs mapped to the promoter sequence of 30.62% (128/418) of ESCC genes of which 43.75% (56/128) are known to be estrogen responsive, while 56.25% (72/128) are new candidate estrogen responsive genes. EREs did not map to 290 ESCC genes. Of these 290 genes, 50.34% (146/290) are known to be estrogen responsive. By analyzing transcription factor binding sites (TFBSs) in the promoters of the 202 (56+146) known estrogen responsive ESCC genes under study, we found that their regulatory potential may be characterized by 44 significantly over-represented co-localized TFBSs (cTFBSs). We were able to map these cTFBSs to promoters of 32 of the 72 new candidate estrogen responsive ESCC genes, thereby increasing confidence that these 32 ESCC genes are responsive to estrogen since their promoters contain both: a/mapped EREs, and b/at least four cTFBSs characteristic of ESCC genes that are responsive to estrogen. Recent publications confirm that 47% (15/32) of these 32 predicted genes are indeed responsive to estrogen.Conclusion: To the best of our knowledge our study is the first

  15. Identification of estrogen responsive genes using esophageal squamous cell carcinoma (ESCC) as a model

    KAUST Repository

    Essack, Magbubah; MacPherson, Cameron Ross; Schmeier, Sebastian; Bajic, Vladimir B.

    2012-01-01

    Background: Estrogen therapy has positively impact the treatment of several cancers, such as prostate, lung and breast cancers. Moreover, several groups have reported the importance of estrogen induced gene regulation in esophageal cancer (EC). This suggests that there could be a potential for estrogen therapy for EC. The efficient design of estrogen therapies requires as complete as possible list of genes responsive to estrogen. Our study develops a systems biology methodology using esophageal squamous cell carcinoma (ESCC) as a model to identify estrogen responsive genes. These genes, on the other hand, could be affected by estrogen therapy in ESCC.Results: Based on different sources of information we identified 418 genes implicated in ESCC. Putative estrogen responsive elements (EREs) mapped to the promoter region of the ESCC genes were used to initially identify candidate estrogen responsive genes. EREs mapped to the promoter sequence of 30.62% (128/418) of ESCC genes of which 43.75% (56/128) are known to be estrogen responsive, while 56.25% (72/128) are new candidate estrogen responsive genes. EREs did not map to 290 ESCC genes. Of these 290 genes, 50.34% (146/290) are known to be estrogen responsive. By analyzing transcription factor binding sites (TFBSs) in the promoters of the 202 (56+146) known estrogen responsive ESCC genes under study, we found that their regulatory potential may be characterized by 44 significantly over-represented co-localized TFBSs (cTFBSs). We were able to map these cTFBSs to promoters of 32 of the 72 new candidate estrogen responsive ESCC genes, thereby increasing confidence that these 32 ESCC genes are responsive to estrogen since their promoters contain both: a/mapped EREs, and b/at least four cTFBSs characteristic of ESCC genes that are responsive to estrogen. Recent publications confirm that 47% (15/32) of these 32 predicted genes are indeed responsive to estrogen.Conclusion: To the best of our knowledge our study is the first

  16. Estrogens and male reproduction: a new concept

    Directory of Open Access Journals (Sweden)

    S. Carreau

    2007-06-01

    Full Text Available The mammalian testis serves two main functions: production of spermatozoa and synthesis of steroids; among them estrogens are the end products obtained from the irreversible transformation of androgens by a microsomal enzymatic complex named aromatase. The aromatase is encoded by a single gene (cyp19 in humans which contains 18 exons, 9 of them being translated. In rats, the aromatase activity is mainly located in Sertoli cells of immature rats and then in Leydig cells of adult rats. We have demonstrated that germ cells represent an important source of estrogens: the amount of P450arom transcript is 3-fold higher in pachytene spermatocytes compared to gonocytes or round spermatids; conversely, aromatase activity is more intense in haploid cells. Male germ cells of mice, bank voles, bears, and monkeys express aromatase. In humans, we have shown the presence of a biologically active aromatase and of estrogen receptors (alpha and ß in ejaculated spermatozoa and in immature germ cells in addition to Leydig cells. Moreover, we have demonstrated that the amount of P450arom transcripts is 30% lower in immotile than in motile spermatozoa. Alterations of spermatogenesis in terms of number and motility of spermatozoa have been described in men genetically deficient in aromatase. These last observations, together with our data showing a significant decrease of aromatase in immotile spermatozoa, suggest that aromatase could be involved in the acquisition of sperm motility. Thus, taking into account the widespread localization of aromatase and estrogen receptors in testicular cells, it is obvious that, besides gonadotrophins and androgens, estrogens produced locally should be considered to be physiologically relevant hormones involved in the regulation of spermatogenesis and spermiogenesis.

  17. Estrogen is essential but not sufficient to induce endometriosis

    Indian Academy of Sciences (India)

    Mosami Galvankar

    2017-05-11

    May 11, 2017 ... Beyond estrogen, the levels of Estrogen Receptors (ER) are also altered in the ..... lesions were found on the bladder on day 7 and the lesions ..... effects of adipose tissue on cancer development and progression. Endocr. Rev ...

  18. Characterizing the Estrogenic Potential of 1060 Environmental ...

    Science.gov (United States)

    In order to detect environmental chemicals that pose a risk of endocrine disruption, high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals are needed. Alteration of estrogen signaling has been implicated in a variety of adverse health effects including cancer promotion, reproductive deficits, and vascular effects. Here we investigate the estrogenic potential of 1060 chemicals of environmental relevance using a real-time measure of growth kinetics by electrode impedance in the estrogen-responsive human ductal carcinoma, T47D cell line. Cells were treated in concentration response and measurements of cellular impedance were recorded every hour for six days. Progestens, androgens, and mineralocortocoids (progesterone, dihydrotestosterone, aldosterone) invoked a biphasic impedance signature that contrasted with the anticipated exponential impedance observed in response to known estrogen receptor agonists (17β-estradiol, genestein, bisphenol-A, nonylphenol, 4-tert-octylphenol). Several compounds, including bisphenol-A, and genestein caused impedance comparable to that of 17β-estradiol, although at much higher concentrations. Additionally, trenbolone and cyproterone acetate invoked the characteristic biphasic signature observed with other endogenous steroid hormones. The continuous real-time nature of this assay allows for the rapid detection of differential growth characteristics not easily detected by traditional cell prol

  19. "Precipitation on Nanoparticles": Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles.

    Science.gov (United States)

    Chu, Zonglin; Han, Yanxiao; Kral, Petr; Klajn, Rafal

    2018-04-19

    Confining organic molecules to the surfaces of inorganic nanoparticles can induce intermolecular interactions between them, which can affect the composition of the mixed self-assembled monolayers obtained by co-adsorption from solution of two different molecules. Here, we study co-adsorption of two thiolated ligands-a dialkylviologen and a zwitterionic sulfobetaine-that can interact with each other electrostatically, onto gold nanoparticles. Consequently, the nanoparticles favor a narrow range of ratios of these two molecules that is largely independent of the molar ratio in solution. We show that changing the solution molar ratio of two ligands by a factor of ~5,000 affects the on-nanoparticle ratio of these ligands by only 3 times. This behavior is reminiscent of the formation of insoluble inorganic salts (e.g., AgCl), which similarly compensate positive and negative charges upon crystallizing. Our results pave the way towards developing well-defined hybrid organic-inorganic nanostructures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Vida Naderi

    2015-02-01

    Full Text Available Objective(s:Estrogen (E2 has neuroprotective effects on blood-brain-barrier (BBB after traumatic brain injury (TBI. In order to investigate the roles of estrogen receptors (ERs in these effects, ER-α antagonist (MPP and, ER-β antagonist (PHTPP, or non-selective estrogen receptors antagonist (ICI 182780 were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg or oil were administered 30 min after TBI. 1 dose (150 µg/Kg of each of MPP, PHTPP, and (4 mg/kg ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content and brain edema (brain water content evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P

  1. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    International Nuclear Information System (INIS)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH 2 -PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH 2 -PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His 6 -tagged protein molecules to AFM tips via noncovalent NTA-Ni 2+ -His 6 bridges. The new crosslinker was applied to link a recombinant His 6 -tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin β1 was studied in detail by SMRFM, using the new crosslinker to link His 6 -tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557

  2. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  3. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  4. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  5. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Li; Ma, Hongyue; Tang, Yuping; Chen, Wenxing; Lu, Yin; Guo, Jianming; Duan, Jin-Ao

    2012-01-01

    The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Estrogens regulate the hepatic effects of Growth Hormone, a hormonal interplay with multiple fates

    Directory of Open Access Journals (Sweden)

    Leandro eFernandez-Perez

    2013-06-01

    Full Text Available The liver responds to estrogens and GH which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk with endocrine, metabolic, and sex-differentiated functions of GH. Most previous studies have been focused on the influence of estrogens on pituitary GH secretion, which has a great impact on hepatic transcriptional regulation. However, there is strong evidence that estrogens can influence the GH-regulated endocrine and metabolic functions in the human liver by acting at the level of GHR-STAT5 signaling pathway. This cross-talk is relevant because the widespread exposition of estrogen or estrogen-related compounds in human. Therefore, GH or estrogen signaling deficiency as well as the influence of estrogens on GH biology can cause a dramatic impact in liver physiology during mammalian development and in adulthood. In this review, we will summarize the current status of the influence of estrogen on GH actions in liver. A better understanding of estrogen-GH interplay in liver will lead to improved therapy of children with growth disorders and of adults with GH deficiency.

  8. Role of estrogens in anterior pituitary gland remodeling during the estrous cycle.

    Science.gov (United States)

    Zárate, S; Zaldivar, V; Jaita, G; Magri, L; Radl, D; Pisera, D; Seilicovich, A

    2010-01-01

    In this review, we analyze the action of estrogens leading to the remodeling of the anterior pituitary gland, especially during the estrous cycle. Proliferation and death of anterior pituitary cells and especially lactotropes is regulated by estrogens, which act by sensitizing these cells to both mitotic and apoptotic stimuli such as TNF-alpha, FasL and dopamine. During the estrous cycle, the changing pattern of gonadal steroids is thought to modulate both cell proliferation and death in the anterior pituitary gland, estrogens being key players in cell turnover. The mechanisms involved in estrogen-modulated cell renewal in the anterior pituitary gland during the estrous cycle could include an increase in the expression of proapoptotic cytokines as well as the increase in the Bax/Bcl-2 ratio at proestrus, when estrogen levels are highest and a peak of apoptosis, in particular of lactotropes, is evident in this gland. Estrogens exert rapid antimitogenic and proapoptotic actions in the anterior pituitary through membrane-associated estrogen receptors, a mechanism that might also be involved in remodeling of this gland during the estrous cycle. Copyright (c) 2010 S. Karger AG, Basel.

  9. Conditional expression of constitutively active estrogen receptor α in chondrocytes impairs longitudinal bone growth in mice

    International Nuclear Information System (INIS)

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-01-01

    Highlights: ► Conditional transgenic mice expressing constitutively active estrogen receptor α (caERα) in chondrocytes were developed. ► Expression of caERα in chondrocytes impaired longitudinal bone growth in mice. ► caERα affects chondrocyte proliferation and differentiation. ► This mouse model is useful for understanding the physiological role of ERαin vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERα ColII , expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERα ColII mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERα ColII mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERα ColII mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  10. Regional differences in the prostate of the neonatally estrogenized mouse

    International Nuclear Information System (INIS)

    Pylkkaenen, L.S.; Santti, R.; Newbold, R.; McLachlan, J.A.

    1991-01-01

    Neonatal estrogenization of the mouse with diethylstilbestrol resulted in time-of-exposure and dose-dependent inhibition of the growth of the prostatic lobes observed at the age of 2 mon. The critical time was the days 1-6 of postnatal life. In neonatally estrogenized (neoDES) mice, responses to 5 alpha-dihydrotestosterone in terms of nuclear 3H-thymidine labelling were altered concomitantly with the inhibition of growth and were in accordance with changes in the relative volumes of epithelium, glandular lumina, and interacinar stroma. Secondary estrogen treatment of neoDES mice with 17 beta-estradiol did not increase 3H-thymidine labelling in the prostate of control or neoDES mice. However, it induced squamous epithelial metaplasia in periurethral collecting ducts and proximal parts of coagulating glands of neoDES animals. In control mice only slight epithelial hyperplasia could be observed after similar treatment. Estrogen receptors, located immunocytochemically in nuclei of stromal cell, corresponded with the sites of increased estrogen sensitivity, observed as metaplastic transformation. When the neoDES animals aged, epithelial hyperplasia and dysplasia could be observed at distinct prostatic sites, ie, the periurethral collecting ducts and the coagulating glands and periurethral glands, and stromal inflammation become more extensive. Almost identical location of the epithelial changes and the altered estrogen response is suggestive of causal relationship

  11. Selective estrogen receptor modulators and risk for coronary heart disease.

    Science.gov (United States)

    Cano, A; Hermenegildo, C; Oviedo, P; Tarín, J J

    2007-04-01

    Coronary heart disease (CHD) is the leading cause of death in women in most countries. Atherosclerosis is the main biological process determining CHD. Clinical data support the notion that CHD is sensitive to estrogens, but debate exists concerning the effects of the hormone on atherosclerosis and its complications. Selective estrogen receptor modulators (SERMs) are compounds capable of binding the estrogen receptor to induce a functional profile distinct from estrogens. The possibility that SERMs may shift the estrogenic balance on cardiovascular risk towards a more beneficial profile has generated interest in recent years. There is considerable information on the effects of SERMs on distinct areas that are crucial in atherogenesis. The complexity derived from the diversity of variables affecting their mechanism of action plus the differences between compounds make it difficult to delineate one uniform trend for SERMs. The present picture, nonetheless, is one where SERMs seem less powerful than estrogens in atherosclerosis protection, but more gentle with advanced forms of the disease. The recent publication of the Raloxifene Use for The Heart (RUTH) study has confirmed a neutral effect for raloxifene. Prothrombotic states may favor occlusive thrombi at sites occupied by atheromatous plaques. Platelet activation has received attention as an important determinant of arterial thrombogenesis. Although still sparse, available evidence globally suggests neutral or beneficial effects for SERMs.

  12. Use of vaginal estrogen in Danish women

    DEFF Research Database (Denmark)

    Meaidi, Amani; Goukasian, Irina; Lidegaard, Oejvind

    2016-01-01

    INTRODUCTION: We know little about the use of vaginal estrogen in perimenopausal and postmenopausal women. We aimed to assess the prevalence of vaginal estrogen use in Denmark. MATERIAL AND METHODS: The study was designed as a nationwide cross-sectional study of all Danish women aged 40-79 years......, living in Denmark during the period 2007-2013. The Danish Prescription Register delivered data permitting us to assess the prevalence, age and regional geographical belonging of women purchasing prescribed vaginal estradiol. The number of women using over-the-counter vaginal estriol products...... was estimated from sale statistics from the same register. RESULTS: In 2013, 10.2% of all Danish women between 40 and 79 years of age used vaginal estradiol. The prevalence of women using this type of vaginal estrogen increased from 8.5% in year 2007 to 10.2% in 2013. The use peaked at 16.5% in women aged 60...

  13. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    International Nuclear Information System (INIS)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-01-01

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  14. [Expression of receptors of estrogens and androgens in the testicular appendices].

    Science.gov (United States)

    Paredes Esteban, R M; Luque Barona, R J; Velasco Sánchez, B; Rodríguez Vargas, J; Lorite, A; García Ruiz, M

    2008-07-01

    The appendices or hidátides of the testicle are structures that are considered an embryonic rest. In testicular hidátide estrogen receivers have been demonstrated but in the epididimys the results vary. Has been theorized that the elevation of the estrogen levels in the puberty can produce an inflammation and torsion of hidátide, nevertheless, in the epididimys in which the estrogen expression is not clear (and also they are twisted) the theory is put in doubt. This controversy takes us to the accomplishment of this work. A prospective study is made in 20 testicular appendices, of which 7 from the epididimys are extirpated of patients to whom an escrotal exploration is made in the development of surgery of processes of the inguino-escrotal channel (hidroceles, hernias). Optical microscopy and inmunohistoquímical study are analyzed by means of using prediluted monoclonales antibodies, for receivers of estrogens, androgens and proliferative index. The results were proceed and analyzed by means of SPSS statistical program. All hidátides, testicular and from the epididimarys expressed receivers for estrogens without significant difference among them, not existing differences as far as the location of receiving sayings within the three compartments of hidátide. The number of estrogen receivers was in relation to the age of the patient. Only hidátides from the epididimys fundamentally expressed receivers of located androgens and at level of ductus. We have not found significant relation between the proliferative index and the expression of estrogen receivers. The proliferative index was more elevated at level of ductus. 1) As much the testicular appendices as those from the epididimays expressed receivers of estrogens at level of the three compartments. It makes think about a same embryonic origin, although only the epididimal ones expressed androgen receivers. 2) the observation of estrogen receivers in both types of hidátides, as well as the relation of the

  15. Detecting estrogenic activity in water samples withestrogen-sensitive yeast cells using spectrophotometry and fluorescencemicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Holman, H-Y.N.; Hermanowicz, S.W.; Borglin S.

    2006-03-15

    Environmental estrogens are environmental contaminants that can mimic the biological activities of the female hormone estrogen in the endocrine system, i.e. they act as endocrine disrupters. Several substances are reported to have estrogen-like activity or estrogenic activity. These include steroid hormones, synthetic estrogens (xenoestrogens), environmental pollutants and phytoestrogens (plant estrogens). Using the chromogenic substrate ortho-nitrophenyl-{beta}-D-galactopyranoside (ONPG) we show that an estrogen-sensitive yeast strain RMY/ER-ERE, with human estrogen receptor (hER{alpha}) gene and the lacZ gene which encodes the enzyme {beta}-galactosidase, is able to detect estrogenic activity in water samples over a wide range of spiked concentrations of the hormonal estrogen 17{beta}-estradiol (E2). Ortho-nitrophenol (ONP), the yellow product of this assay can be detected using spectrophotometry but requires cell lysis to release the enzyme and allow product formation. We improved this aspect in a fluorogenic assay by using fluorescein di-{beta}-D-galactopyranoside (FDG) as a substrate. The product was visualized using fluorescence microscopy without the need to kill, fix or lyse the cells. We show that in live yeast cells, the uptake of E2 and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximum enzyme-catalyzed fluorescent product formation evident after about 30 minutes of exposure to E2. The fluorogenic assay was applied to a selection of estrogenic compounds and the Synchrotron-based Fourier transform infrared (SR-FTIR) spectra of the cells obtained to better understand the yeast whole cell response to the compounds. The fluorogenic assay is most sensitive to E2, but the SR-FTIR spectra suggest that the cells respond to all the estrogenic compounds tested even when no fluorescent response was detected. These findings are promising and may shorten the duration of environmental water screening and monitoring regimes using

  16. Cytotoxicity of an 125I-labelled DNA ligand

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [ 125 I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the 125 I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to 125 I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging

  17. A positive feedback pathway of estrogen biosynthesis in breast cancer cells is contained by resveratrol

    International Nuclear Information System (INIS)

    Wang Yun; Ye Lan; Leung, Lai K.

    2008-01-01

    Cytochrome P450 (CYP) 19 enzyme or aromatase catalyses the rate-determining step of estrogen synthesis. The transcriptional control of CYP19 gene is highly specific in different cell types, for instance, Promoter I.3/II is commonly used for regulation in breast cancer cells. Recently, a positive feedback pathway for estrogen synthesis has been identified in ERα expressing SK-BR-3 cells. CYP19 mRNA abundance and activity are increased in this pathway and the promoter usage is switched from Promoter I.3/II to I.1 through a non-genomic process. In the present study, effect of the phytocompound resveratrol on this Promoter I.1-controlled expression of aromatase was investigated. Results indicated that resveratrol reduced the estradiol-induced mRNA abundance in SK-BR-3 cells expressing ERα. Luciferase reporter gene assays revealed that resveratrol could also repress the transcriptional control dictated by Promoter I.1. Since the ERE-driven luciferase activity was not repressed by resveratrol, the nuclear events of estrogen were unlikely to be suppressed by resveratrol. Instead the phytochemical reduced the amount of ERK activated by estradiol, which could be the pathway responsible for Promoter I.1 transactivation and the induced CYP19 expression. The present study illustrated that resveratrol impeded the non-genomic induction of estrogen on CYP19

  18. Ekspresi Gen CYP19 Aromatase, Estrogen, Androgen pada penderita Periodontitis Agresif

    Directory of Open Access Journals (Sweden)

    Dahlia Herawati

    2016-11-01

    Full Text Available Kepadatan tulang tubuh ditentukan oleh gen CYP19 aromatase, hormon estrogen dan androgen. Pada periodontitis agresif terjadi perkembangan cepat kerusakan tulang alveolar, dan kerusakan tulang alveoler tersebut tidak diimbangioleh regenerasi tulang. Tujuan penelitian ini adalah menunjukkan ekspresi gen CYP19 aromatase, estrogen, androgen pada penderita periodontitis agresif agar dapat untuk menjadi pertimbangan pada saat melakukan perawatan periodontal. Metode penelitian, pemeriksaan ekspresi gen aromatse CYP19 berasal dari spesimen tulang alveolar menggunakan imunohistokimia, pengukuran hormon estrogen dan androgen dari serum menggunakan Vidas: Elfa. Hasil penelitian ekspresi gene CYP19 aromatase pada periodontitis agresif menunjukkan gambaran lebih rendah densitasnya dibandingkan pada nonperiodontitis. Estrogen dan androgen pad aperiodontitis agresif ada kecenderungan lebih rendah dibandingkan pada nonperiodontitis. Kesimpulan regenerasi tulang alveoler pad a periodontitis agresif terhambat karena sedikitnya gen CYP19 aromatase dan hormon estrogen dan androgen yang berperan pada pembentukan tulang alveoler kurang memadai.

  19. Effect of estrogens on bacterial adherence to HeLa cells.

    OpenAIRE

    Sugarman, B; Epps, L R

    1982-01-01

    Incubating confluent cell culture HeLa cells for 18 h with increasing concentrations of estrogens progressively enhanced the subsequent attachment of a variety of radiolabeled bacteria to the HeLa cells. This effect was not caused by other hormones and was not produced by 1-h incubations of HeLa cells or bacteria with hormones. Estrogens did not similarly affect two other receptor cell lines studied. The addition of metabolic inhibitors showed that this effect of estrogens on HeLa cells was e...

  20. Role of estrogen receptor-α on food demand elasticity.

    Science.gov (United States)

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. © Society for the Experimental Analysis of Behavior.

  1. Effects of estrogen antagonists on estradiol-enhanced radiation transformation in vitro

    International Nuclear Information System (INIS)

    Umans, R.S.; Kenneddy, A.R.

    1988-01-01

    We have previously reported that radiation and 17β-estrediol can induce transformation in vitro in C3H 10T1/2 cells. In the present series of experiments, we have observed that antagonists of estrogen action, such as c-AMP activating agents(Theophylinne and dibutylc-AMP) and the antiestrogens tamoxifen, suppress radiation/17β-estradiol enhanced transformation in vitro. None of these known estrogen antagonists had a significant effect on transformation induced by radiation alone. Our results with added dibutyl c-AMP, theophylline and tamoxifen suggest that estrogen receptor complex formation may play a role in estrogen-enhanced radiation transformation in vitro (author)

  2. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  3. The effects of the botanical estrogen, isoliquiritigenin on delayed spatial alternation.

    Science.gov (United States)

    Kundu, Payel; Neese, Steven L; Bandara, Suren; Monaikul, Supida; Helferich, William G; Doerge, Daniel R; Khan, Ikhlas A; Schantz, Susan L

    Age-related declines in cognitive function can impair working memory, reduce speed of processing, and alter attentional resources. In particular, menopausal women may show an acceleration in the rate of cognitive decline as well as an increased vulnerability to brain diseases as estrogens may play a neuroprotective and neurotrophic role in the brain. To treat menopausal symptoms, many women turn to botanical estrogens that are promoted as a safe and natural alternative to traditional hormone replacement therapy. However, the majority of these compounds have not been systematically evaluated for efficacy and safety. The current study investigated the efficacy of the commercially available botanical estrogenic compound isoliquiritigenin (ISL) to alter performance on an operant working memory task, delayed spatial alternation (DSA). ISL is a compound found in licorice root that has been shown to have a wide range of effects on different biological systems, including estrogenic properties. This botanical is currently being used in over the counter dietary supplements. Middle-aged (12-month old) Long-Evans female rats were ovariectomized and orally dosed with either 0 mg, 6 mg, 12 mg or 24 mg of ISL 60 min before testing on the DSA task. The DSA task required the rat to alternate its responses between two retractable levers in order to earn food rewards. Random delays of 0, 3, 6, 9 or 18 s were imposed between opportunities to press. ISL treatment failed to alter DSA performance. Previous work from our research group has found that estrogenic compounds, including 17β-estradiol and the botanical estrogen genistein impair performance on the DSA task. The goal of our botanical estrogens research is to find compounds that offer some of the beneficial effects of estrogen supplementation, without the harmful effects. This work suggests that ISL may not carry the cognitive risks associated with most other estrogenic compounds tested to date. Copyright © 2018

  4. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    Science.gov (United States)

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  5. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  6. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    Science.gov (United States)

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  7. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    Science.gov (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  8. The Determinations of Estrogen and Progesterone Receptor in Breast Cancer Cell by Radioimmunoassay Method

    International Nuclear Information System (INIS)

    Kim, Chi Yeul

    1981-01-01

    The estrogen and progesterone receptors which are bound to the cytoplasmic protein of cancer cells were measured in 20 patients with the early breast cancer by means of radioimmunoassay using charcoal. 1) The patients with estrogen receptor positive were 13 (65%) of 20 cases and with progestrone receptor positive were 7 cases (35%) in the early breast cancer. 2) Coexistence of estrogen and progesterone receptor positive was noted in 7 cases (35%). The cases of estrogen receptor positive and progesterone receptor negative were 6 cases (33.3%), while there were no cases of estrogen receptor negative with progesterone receptor positive. 3) Coincidence of estrogen and progesterone negative was noticed in 7 cases (35%). Conclusively it is considered that the measurement of estrogen and progesterone receptors has relevance as predictive value, in the response to hormonal manipulations and chemotherapy for breast cancer patients.

  9. High-affinity binding of [3H]estradiol-17 beta by an estrogen receptor in the liver of the turtle

    International Nuclear Information System (INIS)

    Ho, S.M.; Fehrer, S.; Yu, M.; Liang, L.C.; Press, D.

    1988-01-01

    Specific [3H]estradiol-17 beta ([3H]E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds [3H]E2 with high affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of [3H]E2 binding activity in both cytosolic and nuclear fractions. The exchange between [3H]E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species

  10. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Science.gov (United States)

    2018-01-01

    Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention. PMID:29385066

  11. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Directory of Open Access Journals (Sweden)

    Olga A. Sukocheva

    2018-01-01

    Full Text Available Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1 and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.

  12. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    OpenAIRE

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor?positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak ...

  13. Estrogen receptor beta-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2010-07-01

    Full Text Available Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERalpha and ERbeta on calcium oscillations in neurons derived from human (hES and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERbeta, but not ERalpha. The non-selective ER agonist 17beta-estradiol (E(2 rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERalpha agonist 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyltrisphenol (PPT. In contrast, the selective ERbeta agonists, 2,3-bis(4-Hydroxyphenyl-propionitrile (DPN, MF101, and 2-(3-fluoro-4-hydroxyphenyl-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041 stimulated calcium oscillations similar to E(2. The ERbeta agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERbeta activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERbeta signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.

  14. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.

    Science.gov (United States)

    Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E

    2001-12-01

    Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the

  15. Expression of nociceptive ligands in canine osteosarcoma.

    Science.gov (United States)

    Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  16. A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements.

    Science.gov (United States)

    Powers, Chelsea N; Setzer, William N

    2015-01-01

    The purpose of this study is to use a molecular docking approach to identify potential estrogen mimics or anti-estrogens in phytochemicals found in popular dietary herbal supplements. In this study, 568 phytochemicals found in 17 of the most popular herbal supplements sold in the United States were built and docked with two isoforms of the estrogen receptor, ERα and ERβ (a total of 27 different protein crystal structures). The docking results revealed six strongly docking compounds in Echinacea, three from milk thistle (Silybum marianum), three from Gingko biloba, one from Sambucus nigra, none from maca (Lepidium meyenii), five from chaste tree (Vitex agnus-castus), two from fenugreek (Trigonella foenum-graecum), and two from Rhodiola rosea. Notably, of the most popular herbal supplements for women, there were numerous compounds that docked strongly with the estrogen receptor: Licorice (Glycyrrhiza glabra) had a total of 26 compounds strongly docking to the estrogen receptor, 15 with wild yam (Dioscorea villosa), 11 from black cohosh (Actaea racemosa), eight from muira puama (Ptychopetalum olacoides or P. uncinatum), eight from red clover (Trifolium pratense), three from damiana (Turnera aphrodisiaca or T. diffusa), and three from dong quai (Angelica sinensis). Of possible concern were the compounds from men's herbal supplements that exhibited strong docking to the estrogen receptor: Gingko biloba had three compounds, gotu kola (Centella asiatica) had two, muira puama (Ptychopetalum olacoides or P. uncinatum) had eight, and Tribulus terrestris had six compounds. This molecular docking study has revealed that almost all popular herbal supplements contain phytochemical components that may bind to the human estrogen receptor and exhibit selective estrogen receptor modulation. As such, these herbal supplements may cause unwanted side effects related to estrogenic activity.

  17. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    Science.gov (United States)

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  18. Toxicity and Estrogenic Endocrine Disrupting Activity of Phthalates and Their Mixtures

    Directory of Open Access Journals (Sweden)

    Xueping Chen

    2014-03-01

    Full Text Available Phthalates, widely used in flexible plastics and consumer products, have become ubiquitous contaminants worldwide. This study evaluated the acute toxicity and estrogenic endocrine disrupting activity of butyl benzyl phthalate (BBP, di(n-butyl phthalate (DBP, bis(2-ethylhexyl phthalate (DEHP, diisodecyl phthalate (DIDP, diisononyl phthalate (DINP, di-n-octyl phthalate (DNOP and their mixtures. Using a 72 h zebrafish embryo toxicity test, the LC50 values of BBP, DBP and a mixture of the six phthalates were found to be 0.72, 0.63 and 0.50 ppm, respectively. The other four phthalates did not cause more than 50% exposed embryo mortality even at their highest soluble concentrations. The typical toxicity symptoms caused by phthalates were death, tail curvature, necrosis, cardio edema and no touch response. Using an estrogen-responsive ChgH-EGFP transgenic medaka (Oryzias melastigma eleutheroembryos based 24 h test, BBP demonstrated estrogenic activity, DBP, DEHP, DINP and the mixture of the six phthalates exhibited enhanced-estrogenic activity and DIDP and DNOP showed no enhanced- or anti-estrogenic activity. These findings highlighted the developmental toxicity of BBP and DBP, and the estrogenic endocrine disrupting activity of BBP, DBP, DEHP and DINP on intact organisms, indicating that the widespread use of these phthalates may cause potential health risks to human beings.

  19. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    International Nuclear Information System (INIS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-01-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L −1 , respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation. - Highlights: ► Livestock effluent showed strong estrogenic activity due to E2, E1 and EE2. ► EE2 remained in all effluents after gamma-irradiation even at a dose of 10 kGy. ► DOMs in effluents inhibited degradation and activity of estrogenic compounds.

  1. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms

    Science.gov (United States)

    Briz, Victor; Baudry, Michel

    2014-01-01

    Estrogen rapidly modulates hippocampal synaptic plasticity by activating selective membrane-associated receptors. Reorganization of the actin cytoskeleton and stimulation of mammalian target of rapamycin (mTOR)-mediated protein synthesis are two major events required for the consolidation of hippocampal long-term potentiation and memory. Estradiol regulates synaptic plasticity by interacting with both processes, but the underlying molecular mechanisms are not yet fully understood. Here, we used acute rat hippocampal slices to analyze the mechanisms underlying rapid changes in mTOR activity and actin polymerization elicited by estradiol. Estradiol-induced mTOR phosphorylation was preceded by rapid and transient activation of both extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) and by phosphatase and tensin homolog (PTEN) degradation. These effects were prevented by calpain and ERK inhibitors. Estradiol-induced mTOR stimulation did not require activation of classical estrogen receptors (ER), as specific ERα and ERβ agonists (PPT and DPN, respectively) failed to mimic this effect, and ER antagonists could not block it. Estradiol rapidly activated both RhoA and p21-activated kinase (PAK). Furthermore, a specific inhibitor of RhoA kinase (ROCK), H1152, and a potent and specific PAK inhibitor, PF-3758309, blocked estradiol-induced cofilin phosphorylation and actin polymerization. ER antagonists also blocked these effects of estrogen. Consistently, both PPT and DPN stimulated PAK and cofilin phosphorylation as well as actin polymerization. Finally, the effects of estradiol on actin polymerization were insensitive to protein synthesis inhibitors, but its stimulation of mTOR activity was impaired by latrunculin A, a drug that disrupts actin filaments. Taken together, our results indicate that estradiol regulates local protein synthesis and cytoskeletal reorganization via different molecular mechanisms and signaling pathways. PMID:24611062

  2. In vivo imaging of estrogen receptor concentration in the endometrium and myometrium using FES PET - influence of menstrual cycle and endogenous estrogen level

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Tatsuro [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan)]. E-mail: tsucchy@fmsrsa.fukui-med.ac.jp; Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Kobayashi, Masato [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Yoshida, Yoshio [Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Itoh, Harumi [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan)

    2007-02-15

    Purpose: The goals of this study were to measure estrogen receptor (ER) concentration in the endometrium and myometrium using 16{alpha}-[{sup 18}F]fluoro-17{beta}-estradiol (FES) positron emission tomography (PET) and to investigate the relationship between changes in these parameters with the menstrual cycle and endogenous estrogen levels. Methods: Sixteen female healthy volunteers were included in this study. After blood sampling to measure endogenous estrogen level, FES PET image was acquired 60 min postinjection of FES. After whole-body imaging of FES PET, averaged standardized uptake values (SUVs) in the endometrium and myometrium were measured, and the relationship between FES uptake and menstrual cycle or endogenous estrogen level was evaluated. Results: Endometrial SUV was significantly higher in the proliferative phase than in the secretory phase (6.03{+-}1.05 vs. 3.97{+-}1.29, P=.022). In contrast, there was no significant difference in myometrial SUV when the proliferative and secretory phases were compared (P=.23). Further, there was no correlation between SUV and endogenous estrogen level in the proliferative phase. Conclusions: The change of ER concentration relative to menstrual cycle as characterized by FES PET was consistent with those from previous reports that used an immunohistochemical technique. These data suggest that FES PET is a feasible, noninvasive method for characterizing changes in ER concentration.

  3. In vivo imaging of estrogen receptor concentration in the endometrium and myometrium using FES PET - influence of menstrual cycle and endogenous estrogen level

    International Nuclear Information System (INIS)

    Tsuchida, Tatsuro; Okazawa, Hidehiko; Mori, Tetsuya; Kobayashi, Masato; Yoshida, Yoshio; Fujibayashi, Yasuhisa; Itoh, Harumi

    2007-01-01

    Purpose: The goals of this study were to measure estrogen receptor (ER) concentration in the endometrium and myometrium using 16α-[ 18 F]fluoro-17β-estradiol (FES) positron emission tomography (PET) and to investigate the relationship between changes in these parameters with the menstrual cycle and endogenous estrogen levels. Methods: Sixteen female healthy volunteers were included in this study. After blood sampling to measure endogenous estrogen level, FES PET image was acquired 60 min postinjection of FES. After whole-body imaging of FES PET, averaged standardized uptake values (SUVs) in the endometrium and myometrium were measured, and the relationship between FES uptake and menstrual cycle or endogenous estrogen level was evaluated. Results: Endometrial SUV was significantly higher in the proliferative phase than in the secretory phase (6.03±1.05 vs. 3.97±1.29, P=.022). In contrast, there was no significant difference in myometrial SUV when the proliferative and secretory phases were compared (P=.23). Further, there was no correlation between SUV and endogenous estrogen level in the proliferative phase. Conclusions: The change of ER concentration relative to menstrual cycle as characterized by FES PET was consistent with those from previous reports that used an immunohistochemical technique. These data suggest that FES PET is a feasible, noninvasive method for characterizing changes in ER concentration

  4. Intratumoral estrogen production and actions in luminal A type invasive lobular and ductal carcinomas.

    Science.gov (United States)

    Takagi, Mayu; Miki, Yasuhiro; Miyashita, Minoru; Hata, Shuko; Yoda, Tomomi; Hirakawa, Hisashi; Sagara, Yasuaki; Rai, Yoshiaki; Ohi, Yasuyo; Tamaki, Kentaro; Ishida, Takanori; Suzuki, Takashi; Ouchi, Noriaki; Sasano, Hironobu

    2016-02-01

    The great majority of invasive lobular carcinoma (ILC) is estrogen-dependent luminal A type carcinoma but the details of estrogen actions and its intratumoral metabolism have not been well studied compared to invasive ductal carcinoma (IDC). We first immunolocalized estrogen-related enzymes including estrogen sulfotransferase (EST), estrogen sulfatase (STS), 17β-hydroxysteroid dehydrogenase (HSD) 1/2, and aromatase. We then evaluated the tissue concentrations of estrogens in ILC and IDC and subsequently estrogen-responsive gene profiles in these tumors in order to explore the possible differences and/or similarity of intratumoral estrogen environment of these two breast cancer subtypes. The status of STS and 17βHSD1 was significantly lower in ILCs than IDCs (p = 0.022 and p < 0.0001), but that of EST and 17βHSD2 vice versa (p < 0.0001 and p = 0.0106). In ILCs, tissue concentrations of estrone and estradiol were lower than those in IDCs (p = 0.0709 and 0.069). In addition, the great majority of estrogen response genes tended to be lower in ILCs. Among those genes above, FOXP1 was significantly higher in ILCs than in IDCs (p = 0.002). FOXP1 expression was reported to be significantly higher in relapse-free IDC patients treated with tamoxifen. Therefore, tamoxifen may be considered an option of endocrine therapy for luminal A type ILC patients. This is the first study to demonstrate the detailed and comprehensive status of intratumoral production and metabolism of estrogens and the status of estrogen response genes in luminal A-like ILC with comparison to those in luminal A-like IDCs.

  5. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Participation of Water in the Binding of Estrogen Receptor with Estrogen Responsive Element in vitro.

    Science.gov (United States)

    Zhu, Guo-Zhang; Tang, Guo-Qing; Ruan, Kang-Cheng; Gong, Yue-Ting; Zhang, Yong-Lian

    1998-01-01

    Many reports have showed that bound water was involved in the interaction between/among the macromolecules. However, it has not been reported whether bound water is also involved in the binding of trans-factors and cis-elements in the regulation of the eukaryotic gene trans-cription or not. Preliminary studies have been made on the effect of bound water on the binding of estrogen receptor with estrogen responsive element in vitro. In the gel retardation assay using the cytosol extract of rat uterus as the supplier of estrogen receptor and 32 bp oligonucleotide containing a concensus vitellogenin A(2) ERE as the probe, various cosolvents, such as glycerol, sucrose, N-dimethylformamide and dimethylsulfoxide, were added respectively to the reaction mixture in varying concentrations to regulate the osmotic pressure. The results indicated that the binding of ER-ERE was enhanced with the increase in the final concentration of these individual cosolvents. On the other hand, when the reaction was carried out under an increasing hydrostatic pressure, the ER-ERE binding was decreased sharply. After decompression the binding of ER-ERE was gradually restored to the normal level with the lapse of time. These results suggested that bound water was directly involved in the binding of ER-ERE and may play an important role in the regulation of the eukaryotic gene transcription.

  7. related apoptosis-inducing ligand in transplastomic tobacco

    African Journals Online (AJOL)

    -inducing ligand (sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various cancer treatments.

  8. Synthesis, characterization and biological evaluation of [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand complexes as prototypes for the development of {sup 188}Re(N)-based target-specific radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Stefan [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Agostini, Stefania [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Bergmann, Ralf; Pietzsch, Jens; Pietzsch, Hans-Juergen [Institute of Radiopharmacy, Forschungszentrum Dresden Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Carta, Davide; Salvarese, Nicola [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); Refosco, Fiorenzo [ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Bolzati, Cristina, E-mail: bolzati@icis.cnr.i [Department of Pharmaceutical Sciences, University of Padua, Via Marzolo 5, 35131 Padova (Italy); ICIS-CNR, Corso Stati Uniti 4, 35127 Padova (Italy)

    2011-04-15

    We report on an efficient procedure for the preparation of [{sup 188}Re(N)(PNP)]-based complexes (where PNP is diphosphinoamine) useful in the development of target-specific radiopharmaceuticals. The radiochemical yield of the compounds was optimized considering such reaction parameters as nature of the nitrido nitrogen donor, reaction times and pH level. The chemical identity of the {sup 188}Re agents was determined by high-performance liquid chromatography comparison with the corresponding well-characterized cold Re compounds. {sup 188}Re(N) mixed compounds have been evaluated with regard to stability toward transchelation with GSH and degradation by serum enzymes. The clearance of selected radiocompounds from normal tissues and their in vivo stability were evaluated in rats by biodistribution and imaging studies. [{sup 188}Re(N)(cys{approx})(PNP)]{sup +/0} mixed-ligand compounds were efficiently prepared in aqueous solution from perrhenate using a multistep procedure based on the preliminary formation of the labile {sup 188}Re{sup III}-EDTA species, which easily undergo oxidation/ligand exchange reaction to afford the [{sup 188}Re{sup V{identical_to}}N]{sup 2+} core in the presence of dithiocarbazate. The final mixed-ligand compounds were obtained, at 100{sup o}C, by adding the two bidentate ligands to the buffered [{sup 188}Re{sup V{identical_to}}N]{sup 2+} solution (pH 3.2-3.6). However, a relatively high amount of cys{approx} ligand was required to obtain a quantitative radiochemical yield. The complexes were stable toward reoxidation to perrhenate and ligand exchange reactions. In vivo studies showed rapid distribution and elimination of the complexes from the body. No specific uptakes in sensitive tissues/organs were detected. A positive correlation of the distribution of the complexes estimated with biodistribution studies (%ID) and with micro-SPECT semiquantification imaging analysis (standard uptake values) was observed. These results support the

  9. Selective intercalation of six ligands molecules in a self-assembled triple helix

    NARCIS (Netherlands)

    Mateos timoneda, Miguel; Kerckhoffs, J.M.C.A.; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    The addition of a ligand molecule to an artificial self-assembled triple helix leads to the selective intercalation of two hydrogen-bonded trimers in specific binding pockets. Furthermore, the triple helix suffers large conformational rearrangements in order to accommodate the ligand molecules in a

  10. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  11. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  12. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1-7 cells.

    Science.gov (United States)

    Varju, Patricia; Chang, Ken C; Hrabovszky, Erik; Merchenthaler, István; Liposits, Zsolt

    2009-02-01

    The long-term cellular effects of estrogens are mediated by nuclear estrogen receptors which act as transcription factors to regulate gene expression. Hypothalamic targets of estrogen action include luteinizing hormone-releasing hormone-secreting neurons controlling reproduction in vertebrates. Microarray analysis and qRT-PCR studies were performed on GT1-7, immortalized LHRH neurons after 17beta-estradiol treatment to reveal the nature of estrogen-regulated genes and the time course of changes in their expression profile. More than 1000 transcripts showed robust responses to estrogen treatment and the majority of responding genes were up-regulated. Early-responding genes showed altered expression 0.5-2h after estrogen exposure, whereas late-responding genes changed after 24-48h treatment. Up-regulated genes encoded transcription factors, molecules involved in cellular movement, cell death, immune response, neurotransmitter and neuropeptide receptors, ion channels and transporters. The 17beta-estradiol modulation of 12 genes - representing characteristic gene clusters - has been confirmed by qRT-PCR. Our studies highlighted diverse gene networks, cell regulatory mechanisms and metabolic pathways through which estrogen may alter gene expression in immortalized LHRH neurons. The findings also support the notion that genomic effects of estrogen targeting in vivo directly the LHRH neuronal network of mammals play an important role in the central feedback regulation of the reproductive axis by estrogen.

  13. Biosensors engineered from conditionally stable ligand-binding domains

    Science.gov (United States)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  14. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents

    OpenAIRE

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J. Christopher; Ugarte, Ricardo; Antoniou, Michael N.

    2017-01-01

    The safety, including endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBl...

  15. Ligands in PSI structures

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Morse, Andrew; Elsliger, Marc-André; Wilson, Ian A.; Deacon, Ashley

    2010-01-01

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  16. Estrogens and the risk of complex regional pain syndrome (CRPS).

    Science.gov (United States)

    de Mos, M; Huygen, F J P M; Stricker, B H Ch; Dieleman, J P; Sturkenboom, M C J M

    2009-01-01

    Since complex regional pain syndrome (CRPS) shows a clear female predominance, we investigated the association between the cumulative as well as current exposure to estrogens, and CRPS. A population-based case-control study was conducted in the Integrated Primary Care Information (IPCI) project in the Netherlands. Cases were identified from electronic records (1996-2005) and included if they were confirmed during a visit (using International Association for the Study of Pain Criteria), or had been diagnosed by a specialist. Controls were matched to cases on gender, age, calendar time, and injury. Measures of cumulative endogenous estrogen exposure were obtained by questionnaire and included age of menarche and menopause, menstrual life, and cumulative months of pregnancy and breast-feeding. Current estrogen exposure at CRPS onset was retrieved from the electronic medical records and determined by current pregnancy or by the use of oral contraceptive (OC) drugs or hormonal replacement therapy (HRT). Hundred and forty-three female cases (1493 controls) were included in analyses on drug use and pregnancies, while cumulative endogenous estrogen exposure was studied in 53 cases (58 controls) for whom questionnaire data were available. There was no association between CRPS and either cumulative endogenous estrogen exposure, OC, or HRT use. CRPS onset was increased during the first 6 months after pregnancy (OR: 5.6, 95%CI: 1.0-32.4), although based on small numbers. We did not find an association between CRPS onset and cumulative endogenous estrogen exposure or current OC or HRT use, but more powered studies are needed to exclude potential minor associations.

  17. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of [3H]dextromethorphan and σligands to guinea pig brain

    International Nuclear Information System (INIS)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM 1 /σ 1 site binds dextromethorphan (DM) and σ receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of [ 3 H]dextromethorphan, [ 3 H]3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine and (+)-[ 3 H]1,3-Di-o-tolyl-guanidine ([ 3 H]DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K i values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM 1 σ 1 site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K i values of 9-13 and 3-4 μM respectively against the three labeled ligands. These results, the broad specificity of the DM 1 /σ 1 binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor

  18. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  19. A novel estrogenic compound transformed from fenthion under UV-A irradiation

    International Nuclear Information System (INIS)

    Yamada, Kenta; Terasaki, Masanori; Makino, Masakazu

    2010-01-01

    The photo-transformed products of fenthion well-known as one of the most photosensitive organophosphorus insecticides and their estrogenic activities were investigated using a yeast two-hybrid assay incorporating the human estrogen receptor α (hERα). We identified fenthion sulfoxide and 3-methyl-4-methylsulfinylphenol (MMS) as the major transformed products and 3-methyl-4-(methylthio)phenol (MMP) as the minor product under UV-A irradiation. Further, significant estrogenic activity was observed in the solution irradiated for 160 min; this activity was evaluated as 18 pM converted to 17β-estradiol (E 2 ) equivalent concentration. By using authentic standards, it was found that MMP possessed weak estrogenic activity; its activity was evaluated as 1.7 x 10 -6 times compared with that of E 2 . However, it was also revealed that the activity due to MMP was only 13%. From high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopies, we newly identified a significant estrogenic compound transformed from fenthion, O,O-dimethyl S-[3-methyl-4-(methylthio)phenyl]phosphorothioate, S-aryl fenthion.

  20. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish

    International Nuclear Information System (INIS)

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-01-01

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC 50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24 progestins

  1. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Nicolau, Joel [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Garoche, Clémentine; Hinfray, Nathalie [Unité d' Ecotoxicologie in vitro et in vivo , Institut National de l' Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte (France); Pellegrini, Elisabeth [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Boujrad, Noureddine; Pakdel, Farzad [TREK, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Kah, Olivier, E-mail: oliver.kah@univ-rennes1.fr [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Brion, François, E-mail: francois.brion@ineris.fr [Unité d' Ecotoxicologie in vitro et in vivo , Institut National de l' Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte (France)

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC{sub 50} ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24

  2. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment.

  3. Applying Computational Scoring Functions to Assess Biomolecular Interactions in Food Science: Applications to the Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Francesca Spyrakis

    2016-10-01

    Thus, key computational medicinal chemistry methods like molecular dynamics can be used to decipher protein flexibility and to obtain stable models for docking and scoring in food-related studies, and virtual screening is increasingly being applied to identify molecules with potential to act as endocrine disruptors, food mycotoxins, and new nutraceuticals [3,4,5]. All of these methods and simulations are based on protein-ligand interaction phenomena, and represent the basis for any subsequent modification of the targeted receptor's or enzyme's physiological activity. We describe here the energetics of binding of biological complexes, providing a survey of the most common and successful algorithms used in evaluating these energetics, and we report case studies in which computational techniques have been applied to food science issues. In particular, we explore a handful of studies involving the estrogen receptors for which we have a long-term interest.

  4. Efficient preparation of {sup 99m}Tc(III) '4+1' mixed-ligand complexes for peptide labeling with high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Kunstler, Jens-Uwe [Biotectid GmbH, Deutscher Platz 5c, 04103 Leipzig (Germany); Seidel, Gesine [Institute of Radiopharmacy, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Pietzsch, Hans-Jurgen, E-mail: h.j.pietzsch@fzd.d [Institute of Radiopharmacy, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany)

    2010-09-15

    An improved labeling procedure for peptides attached to organometallic {sup 99m}Tc(III) '4+1' mixed-ligand complexes in which the radiometal is coordinated by a tripodal tetradentate chelator 2,2',2''-nitrilotriethanethiol (NS{sub 3}) and a monodentate isocyanide ligand is presented. The labeling procedure was evaluated by the synthesis of [{sup 99m}Tc(NS{sub 3})(L2-RGD)]. The containing radiopharmaceutically interesting RGD-peptide cyclo[Arg-Gly-Asp-D-Tyr-Lys] was modified with 4-isocyanobutanoic acid (L2) as linker conjugated to N{sup 6}-Lys to get the monodentate ligand L2-RGD. The structural identity of the {sup 99m}Tc-conjugate was confirmed by comparison to a Re reference compound. The Tc- and Re-conjugates had matching retention times under identical HPLC conditions. The {sup 99m}Tc-labeling was performed in a novel one-step procedure using the eluate of a {sup 99}Mo/{sup 99m}Tc generator, NS{sub 3}, the isocyanide modified peptide, SnCl{sub 2}, Na{sub 2}EDTA, mannitol and ascorbic acid in the reaction mixture. Using optimized reagents it is possible to label 50 nmol peptide with {sup 99m}Tc within 60 min at room temperature with a radiochemical yield higher than 95% and a specific activity of {approx}20 GBq/{mu}mol.

  5. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  6. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities.

    Science.gov (United States)

    Lew, Erin D; Oh, Jennifer; Burrola, Patrick G; Lax, Irit; Zagórska, Anna; Través, Paqui G; Schlessinger, Joseph; Lemke, Greg

    2014-09-29

    The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.

  7. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2006-01-01

    Using a fluorescein di-{beta}-d-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17{beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 min of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  8. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2005-07-13

    Using a fluorescein di-{beta}-D-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17 {beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 minutes of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  9. Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments.

    Science.gov (United States)

    Lee, Cassandra A; Lee-Barthel, Ann; Marquino, Louise; Sandoval, Natalie; Marcotte, George R; Baar, Keith

    2015-05-15

    Women are more likely to suffer an anterior cruciate ligament (ACL) rupture than men, and the incidence of ACL rupture in women rises with increasing estrogen levels. We used an engineered ligament model to determine how an acute rise in estrogen decreases the mechanical properties of ligaments. Using fibroblasts isolated from human ACLs from male or female donors, we engineered ligaments and determined that ligaments made from female ACL cells had more collagen and were equal in strength to those made from male ACL cells. We then treated engineered ligaments for 14 days with low (5 pg/ml), medium (50 pg/ml), or high (500 pg/ml) estrogen, corresponding to the range of in vivo serum estrogen concentrations and found that collagen within the grafts increased without a commensurate increase in mechanical strength. Mimicking the menstrual cycle, with 12 days of low estrogen followed by 2 days of physiologically high estrogen, resulted in a decrease in engineered ligament mechanical function with no change in the amount of collagen in the graft. The decrease in mechanical stiffness corresponded with a 61.7 and 76.9% decrease in the activity of collagen cross-linker lysyl oxidase with 24 and 48 h of high estrogen, respectively. Similarly, grafts treated with the lysyl oxidase inhibitor β-aminoproprionitrile (BAPN) for 24 h showed a significant decrease in ligament mechanical strength [control (CON) = 1.58 ± 0.06 N; BAPN = 1.06 ± 0.13 N] and stiffness (CON = 7.7 ± 0.46 MPa; BAPN = 6.1 ± 0.71 MPa) without changing overall collagen levels (CON = 396 ± 11.5 μg; BAPN = 382 ± 11.6 μg). Together, these data suggest that the rise in estrogen during the follicular phase decreases lysyl oxidase activity in our engineered ligament model and if this occurs in vivo may decrease the stiffness of ligaments and contribute to the elevated rate of ACL rupture in women. Copyright © 2015 the American Physiological Society.

  10. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    Science.gov (United States)

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  11. Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall.

    Science.gov (United States)

    Ripperda, Christopher M; Maldonado, Pedro Antonio; Acevedo, Jesus F; Keller, Patrick W; Akgul, Yucel; Shelton, John M; Word, Ruth Ann

    2017-07-01

    Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury.

  12. Management of osteoporosis and menopausal symptoms: focus on bazedoxifene/conjugated estrogen combination

    Directory of Open Access Journals (Sweden)

    Mirkin S

    2013-08-01

    Full Text Available Sebastian Mirkin,1 James H Pickar21Pfizer Inc, Collegeville, PA, 2Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USAAbstract: Loss of estrogen production in women during menopause results in a state of estrogen deficiency which has been associated with multiple problems, including vasomotor symptoms, symptoms of vulvovaginal atrophy, bone loss, and difficulties with sleep, mood, memory, and sexual activity. The only treatment option currently available to address multiple postmenopausal symptoms in women with an intact uterus is estrogen/progestin-containing hormone therapy (HT. Concerns surrounding side effects and published data regarding the association of HT with the increased risk for breast cancer have induced a decrease in the number of women seeking, initiating, and continuing this type of therapy. A combination containing bazedoxifene and conjugated estrogens (BZA/CE maintains the established benefits of estrogen therapy for treatment of postmenopausal vasomotor symptoms, vulvovaginal atrophy, and osteoporosis, while certain estrogenic effects, such as stimulation of the uterus and breast, are antagonized without the side effects associated with HT. BZA/CE has been evaluated in a series of multicenter, randomized, double-blind, placebo-controlled, and active-controlled Phase III trials known as the Selective estrogens, Menopause, And Response to Therapy (SMART trials. BZA/CE demonstrated clinically meaningful improvements in vasomotor symptoms, vulvovaginal atrophy, and a protective effect on the skeleton. These clinical benefits were associated with an acceptable safety profile and an improved tolerability compared with HT. BZA/CE showed a favorable safety profile on the breast, endometrium, and ovaries. The incidence of venous thromboembolism was low and the risk does not appear to be any greater than for CE alone or BZA alone or greater than HT. The incidence of coronary heart disease and

  13. Bromine-77-labeled estrogen receptor-binding radiopharmaceuticals for breast tumor imaging

    International Nuclear Information System (INIS)

    McElvany, K.D.

    1985-01-01

    Two derivatives of 16α-bromoestradiol, both with and without an 11β-methoxy substituent, have been labeled with bromine-77 and evaluated as potential breast tumor imaging agents. Extensive characterization of these radiotracers in animal models has demonstrated their effective concentration in estrogen target tissues. Preliminary clinical studies have demonstrated the potential of radiolabeled estrogens for breast tumor imaging; however, the suboptimal decay properties of bromine-77 limit the utility of these agents in imaging studies. These results with 77 -Br-labeled estrogens suggest that estrogen derivatives labeled with other radionuclides should provide enhanced image resolution with various imaging devices. Although the decay characteristics of bromine-77 are such that it is not ideally suited to imaging with conventional gamma cameras, it may be a useful radionuclide for therapeutic applications

  14. Changes in bone density and turnover after alendronate or estrogen withdrawal

    DEFF Research Database (Denmark)

    Wasnich, Richard D; Bagger, Yu Z; Hosking, David J

    2004-01-01

    OBJECTIVE: To compare bone mineral density (BMD) and bone turnover changes after therapy withdrawal in postmenopausal women treated with alendronate or estrogen-progestin. DESIGN: In this randomized, blinded, multinational, placebo-controlled trial, 1,609 healthy postmenopausal women ages 45 to 59...... years were assigned to receive alendronate, placebo, or open-label estrogen-progestin (conjugated equine estrogens plus medroxyprogesterone acetate or a cyclic regimen of 17 beta-estradiol, norethisterone acetate and estradiol). Of the original women, one third after year 2 and one third after year 4...... were switched from alendronate to placebo, while remaining blinded to treatment assignment. The women taking estrogen-progestin in years 1 to 4 were followed off therapy in years 5 and 6. BMD at the lumbar spine and hip and biochemical markers of bone turnover were measured. RESULTS: The treatment...

  15. Postmenopausal vaginal atrophy: evaluation of treatment with local estrogen therapy

    Directory of Open Access Journals (Sweden)

    Minkin MJ

    2014-03-01

    Full Text Available Mary Jane Minkin,1 Ricardo Maamari,2 Suzanne Reiter3 1Department of Gynecology and Reproductive Medicine, Yale University School of Medicine, New Haven, CT, USA; 2Novo Nordisk Inc., Plainsboro, NJ, USA; 3Mid-County Health Center, Largo, FL, USA Abstract: Postmenopausal vaginal atrophy, resulting from decreased estrogen production, frequently requires treatment. Estrogen preparations provide the most effective treatment; local application is preferred to systemic drugs when treating only vaginal symptoms. As local estrogen therapies have comparable efficacy, this study aimed to understand treatment practices, assess experiences with different forms of local estrogen-delivering applicators, and evaluate satisfaction. Women who were US residents aged ≥18 years, menopausal (no spontaneous menstrual period for ≥1 year or with a double oophorectomy, and receiving local estrogen therapy for 1–6 months (vaginal cream [supplied with a reusable applicator] or vaginal tablets [supplied with a single-use/disposable applicator], completed an online questionnaire. Data from 200 women (100 cream users and 100 tablet users; mean therapy duration 3.48 months showed that most stored medication in the room in which it was applied (88% and applied it at bedtime (71%, a procedure for which cream users required, on average, more than twice the time of tablet users (5.08 minutes versus 2.48 minutes. Many cream users applied larger-than-prescribed amounts of cream, attempting to achieve greater efficacy (42%, or lower-than-recommended doses (45%, most frequently to avoid messiness (33% or leakage (30%. More tablet users (69% than cream users (14% were "extremely satisfied" with their applicator. Postmenopausal women using local estrogen therapy were generally more satisfied with the application of vaginal tablets than cream. Patient satisfaction may help to facilitate accurate dosing. Positive perceptions of medication will help to optimize treatment, which

  16. Specific binding assay technique; standardization of reagent

    International Nuclear Information System (INIS)

    Huggins, K.G.; Roitt, I.M.

    1979-01-01

    The standardization of a labelled constituent, such as anti-IgE, for use in a specific binding assay method is disclosed. A labelled ligand, such as IgE, is standardized against a ligand reference substance, such as WHO standard IgE, to determine the weight of IgE protein represented by the labelled ligand. Anti-light chain antibodies are contacted with varying concentrations of the labelled ligand. The ligand is then contacted with the labelled constituent which is then quantitated in relation to the amount of ligand protein present. The preparation of 131 I-labelled IgE is described. Also disclosed is an improved specific binding assay test method for determining the potency of an allergen extract in serum from an allergic individual. The improvement involved using a parallel model system of a second complex which consisted of anti-light chain antibodies, labelled ligand and the standardized labelled constituent (anti-IgE). The amount of standardized labelled constituent bound to the ligand in the first complex was determined, as described above, and the weight of ligand inhibited by addition of soluble allergen was then used as a measure of the potency of the allergen extract. (author)

  17. Computational Study of Estrogen Receptor-Alpha Antagonist with Three-Dimensional Quantitative Structure-Activity Relationship, Support Vector Regression, and Linear Regression Methods

    Directory of Open Access Journals (Sweden)

    Ying-Hsin Chang

    2013-01-01

    Full Text Available Human estrogen receptor (ER isoforms, ERα and ERβ, have long been an important focus in the field of biology. To better understand the structural features associated with the binding of ERα ligands to ERα and modulate their function, several QSAR models, including CoMFA, CoMSIA, SVR, and LR methods, have been employed to predict the inhibitory activity of 68 raloxifene derivatives. In the SVR and LR modeling, 11 descriptors were selected through feature ranking and sequential feature addition/deletion to generate equations to predict the inhibitory activity toward ERα. Among four descriptors that constantly appear in various generated equations, two agree with CoMFA and CoMSIA steric fields and another two can be correlated to a calculated electrostatic potential of ERα.

  18. Computational multiscale modeling in protein--ligand docking.

    Science.gov (United States)

    Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles

    2009-01-01

    In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].

  19. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J. [Johns Hopkins Univ., Baltimore, MD (United States)

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  20. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.