WorldWideScience

Sample records for estimating transient-cavity diameters

  1. Study on the dependence of the resonance frequency of accelerators on the cavities internal diameter

    International Nuclear Information System (INIS)

    Serrao, V.A.; Franco, M.A.R.; Fuhrmann, C.

    1988-05-01

    The resonance frequencies of individual cavities and of a six cell disk-loaded prototype of an accelerating structure were measured as a function of cavity inner diameter. A linear relationship between the indidual cavity frequency and the six cell stack 2Π/3 mode frequency was obtained that will be very useful during the final tuning of the accelerating strutures of the IEAV linac. The dispersion diagrams were also obtained for various internal cavity diameters; these diagrams were utilized to estimate the group velocity and the RF filling time of the accelerating structure. (author) [pt

  2. Beam induced rf cavity transient voltage

    International Nuclear Information System (INIS)

    Kramer, S.L.; Wang, J.M.

    1998-10-01

    The authors calculate the transient voltage induced in a radio frequency cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ω r of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω ο . The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(hω ο t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting rf cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kinds of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  3. Analysis of short-term reactor cavity transient

    International Nuclear Information System (INIS)

    Cheng, T.C.; Fischer, S.R.

    1981-01-01

    Following the transient of a hypothetical loss-of-coolant accident (LOCA) in a nuclear reactor, peak pressures are reached within the first 0.03 s at different locations inside the reactor cavity. Due to the complicated multidimensional nature of the reactor cavity, the short-term analysis of the LOCA transient cannot be performed by using traditional containment codes, such as CONTEMPT. The advanced containment code, BEACON/MOD3, developed at the Idaho National Engineering Laboratory (INEL), can be adapted for such analysis. This code provides Eulerian, one and two-dimensional, nonhomogeneous, nonequilibrium flow modeling as well as lumped parameter, homogeneous, equilibrium flow modeling for the solution of two-component, two-phase flow problems. The purpose of this paper is to demonstrate the capability of the BEACON code to analyze complex containment geometry such as a reactor cavity

  4. Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Reitzenstein, Stephan

    2013-01-01

    The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the ca...... the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar....

  5. Value of transient dilation of the left ventricular cavity on stress thallium scintigraphy

    International Nuclear Information System (INIS)

    Sugihara, Hiroki; Shiga, Kouji; Umamoto, Ikuo

    1991-01-01

    This study was undertaken to evaluate the value of transient dilation of the left ventricular cavity on stress thallium scintigraphy in 80 patients with ischemic heart disease (IHD) and 50 with hypertrophic cardiomyopathy (HCM). Twenty persons without either coronary artery stenosis or heart disease were served as controls. Areas surrounded by maximum count points on the line of each 10deg on the short axis slice through the mid-cavity of the left ventricle were obtained at 10 minutes and at 3 hours after exercise. Transient dilation index (TDI) was obtained by dividing the area on early image by that on delayed image. TDI was significantly higher in patients with two or three vessel disease in the IHD group than the control group. High TDI was observed in 8% for one vessel disease, 40% for two vessel disease, and 80% for three vessel disease, contributing to the detection of multivessel IHD. In the HCM group of 80 patients, 24 (48%) had high TDI which was frequently associated with a history of chest pain and positive ECG findings at exercise. When these 24 HCM patients underwent exercise blood pool scintiscanning, left ventricular enddiastolic volume was similar before and at 10 minutes after exercise. These findings suggest that transient dilation of the left ventricular cavity after exercise may reflect subendocardial ischemia in both IHD and HCM. TDI would become a useful indicator for transient dilation of the left ventricular cavity. (N.K.)

  6. Transient behaviour of a ``beam loaded`` prebuncher cavity and linac structure

    Energy Technology Data Exchange (ETDEWEB)

    Messina, Giovanni; Picardi, Luigi; Ronsivalle, Concetta; Vignati, Angelo [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-03-01

    They present the evaluation of the effect of the beam loading on the time response of a 3 GHz prebuncher cavity to the generator and to an input 120 deg chopped electron beam for two different cavity materials. The lumped-element representation of the cavity as a parallel RLC circuit is used which allows to compute also the sensitivity of the prebuncher voltage amplitude and phase with respect to beam current fluctuations. The analysis has been extended to the transient behaviour of a linac positioned after the prebuncher cavity. The consequences of the computation results on the application of a chopper-prebuncher system in a linac devoted to the MUH FEL experiment are discussed.

  7. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  8. Effect of transients on the beam in the Superconducting Supercollider Coupled-Cavity Linac

    International Nuclear Information System (INIS)

    Young, L.M.; Nath, S.

    1992-01-01

    Each module of the Superconducting Super Collider (SSC) Coupled-Cavity Linac (CCL) consists of eight tanks (10 accelerating cells each) coupled with bridge couplers. The radio frequency (rf) power drive is in the center of the module at the bridge coupler between the fourth and fifth tanks. In this simulation of the beam dynamics, the rf power is turned on 10 μs before the beam is turned on. This time lapse allows the fields to build up and stabilize before they are required by the beam. When the beam is turned on, the beam loading causes the fields to change. This transient state of the fields together with their effect on the beam is presented. A model has been developed to calculate field distribution throughout the module as a function of time. Beam dynamics simulations were run with the results of this model at several times during the beam pulse. An estimate of the effect of the transients is given by the results of these simulations

  9. Estimating tree cavity distributions from historical FIA data

    Science.gov (United States)

    Mark D. Nelson; Charlotte. Roy

    2012-01-01

    Tree cavities provide important habitat features for a variety of wildlife species. We describe an approach for using historical FIA data to estimate the number of trees containing cavities during the 1990s in seven states of the Upper Midwest. We estimated a total of 280 million cavity-containing trees. Iowa and Missouri had the highest percentages of cavity-...

  10. Transient heating and entropy generation of a fluid inside a large aspect ratio cavity

    International Nuclear Information System (INIS)

    Cajas, J.C.; Trevino, C.

    2013-01-01

    In this work, the transient heating of a fluid inside a vertical cavity of large aspect ratio (height/length) was studied numerically by the use of the SIMPLE algorithm. The heat sources are two vertical plates localized in the side walls of the cavity near the bottom. Calculations were performed for a fixed value of the Prandtl number, Pr = 7, aspect ratio of 12 and six different Rayleigh numbers between 10 3 and 10 6 . The temperature and entropy production fields, the non-dimensional heat flux on the heated plates (given by the average Nusselt number) have been obtained. From a clear dependence on the Rayleigh number, different mechanisms of symmetry break and heat transfer in the cavity were found, where vortices dynamics play a very important role. A universal behavior of the mean values of the overall reduced entropy production rate was found, valid after a short initial transient. (authors)

  11. FEA stress analysis considering cavity formation of metallic fuel pin under transient state

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun-Woo; Oh, Young-Ryun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of)

    2016-05-15

    The aim of this research is to study the stress state of the fuel and the cladding under transient state using the commercial finite element analysis software, ABAQUS v6.13. It is checked out that the gap distance between the fuel and the cladding is a major factor determining FCMI stress. In this regard, initial boundary condition of the fuel pin such as the initial gap distance should be set carefully when the stress analysis of the fuel pin under transient state is conducted. In case of simulating cavity formation, it is confirmed that the new cavity simulation model that elements in cavity region lose their stiffness is valid. There is a great deal of research into SFR, which is one of GEN IV reactors. When it comes to the accidents of SFR, there are two cases of accident process. One of them is In-pin process that molten fuel is discharged into upper plenum. The other is Ex-pin process that the molten fuel is discharged into coolant because of breakage of cladding.

  12. Offline estimation of decay time for an optical cavity with a low pass filter cavity model.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2012-08-01

    This Letter presents offline estimation results for the decay-time constant for an experimental Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2×2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity.

  13. Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals

    Science.gov (United States)

    Albert, Magnus; Dantan, Aurélien; Drewsen, Michael

    2018-03-01

    We experimentally investigate the transient dynamics of an optical cavity field interacting with large ion Coulomb crystals in a situation of electromagnetically induced transparency (EIT). EIT is achieved by injecting a probe field at the single photon level and a more intense control field with opposite circular polarization into the same mode of an optical cavity to couple Zeeman substates of a metastable level in ? ions. The EIT interaction dynamics are investigated both in the frequency-domain - by measuring the probe field steady state reflectivity spectrum - and in the time-domain - by measuring the progressive buildup of transparency. The experimental results are observed to be in excellent agreement with theoretical predictions taking into account the inhomogeneity of the control field in the interaction volume, and confirm the high degree of control on light-matter interaction that can be achieved with ion Coulomb crystals in optical cavities.

  14. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  15. Transient mixed convection in a cavity. Comparison between water and sodium

    International Nuclear Information System (INIS)

    Garnier, J.

    1983-01-01

    The basic problem studied is the interaction between a vortex and a thermal stratification. The experiments are done in a parallelepipedic cavity which bottom communicates with a rectangular channel. A forced flow in this channel induces a recirculating flow in the cavity. The transient condition is a decrease (step wise or slope) of the inlet temperature at a constant flowrate. This problem is studied with two different approaches: experiments in water or in sodium. In the sodium experiments, the dimension of the cavity ensures large values of the Peclet number (about 10 4 ) and a wide range of values for the Richardson number (from 0.1 to 3). With these experiment, all the regimes of mixed convection, from forced convection to complete stratification can be covered. These results are compared with the other approach using a water model. This comparison is very helpful for studies on the thermalhydraulic behavior of Liquid Metal Fast Breeder Reactors. (author)

  16. Integration of Transients in Axisymmetrical Cavities for Accelerators: Formulation and applications to BNL Photocathode Gun

    International Nuclear Information System (INIS)

    Parsa, Z.; Serafini, L.

    1992-04-01

    This note provides a sketch of the formalism used for the Integration of Transients in Axisymmetrical Cavities for Accelerators, (ITACA). Application to study the BNL Photocathode Gun via the code ITACA is also included

  17. High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Dunzer, Florian

    As/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10....... It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light...... coupling in micropillars relied on quantum dots with high oscillator strengths f > 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µe...

  18. Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2011-03-28

    This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25 KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.

  19. Normal cardiac diameters in cine-MRI of the heart

    International Nuclear Information System (INIS)

    Hergan, K.; Schuster, A.; Mair, M.; Burger, R.; Toepker, M.

    2004-01-01

    Purpose: To measure the normal diameters of cardiac cavities in standard cardiac views using cine MRI. Materials and Methods: Fifty-six volunteers were examined (27 male, 29 female) on a 1.5 T MR unit with ECG-triggered single shot free precision (SSFP) cine MR sequences and parallel image acquisition. Standardized echocardiographic planes were used to depict the heart of all volunteers (short axis, 4-chamber view, left and right 2-chamber views). The different diameters of the cardiac cavities were measured using a fixed protocol. Results: For the estimation of ventricular dilatation, the important female/male cross diameters of the left ventricle are 45.2±3.4/51.6±4.6 mm diastolic and 30.5±3.5/33.8±3.6 mm systolic, and of the right ventricle 30.7±3.8/37.1±5.9 mm diastolic and 22.3±3.8/28.1±4.4 mm systolic. For the determination of a left ventricular hypertrophy, relevant septal wall thickness measured in the short axis of the left ventricle of female/male volunteers are 8.0±1.0/9.9±1.2 mm diastolic and 10.9±1.4/13.6±1.9 mm systolic. The measured normal values of male volunteers were generally higher than those of female volunteers. The thickness of the ventricular septum correlated well when measured in the short axis and 4-chamber view. When measured in the 4-chamber view, the longitudinal diameter of the ventricles had a higher value in diastole and a lower value in systole, compared to the 2-chamber views of the right and left cardiac cavities. The atrial longitudinal diameters were higher in the 4-chamber view compared to the 2-chamber views, without any difference in systole or diastole. Conclusion: Diameters of cardiac cavities are easily and quickly measured. Using the tables with the normal values published here, it is simple to estimate an abnormal size of the heart. (orig.)

  20. Transient mixed convection in a channel with an open cavity filled with porous media

    International Nuclear Information System (INIS)

    Buonomo, B; Cresci, G; Manca, O; Mesolella, P; Nardini, S

    2012-01-01

    In this work transient mixed convection in a porous medium in a horizontal channel with a open cavity below is studied numerically. The cavity presents a heated wall at uniform heat flux and the other walls of the cavity and the channel are assumed adiabatic. Air flows through the horizontal channel. The heated wall of the cavity experiences a uniform heat flux in such a way that the forced flow is perpendicular to the motion due to natural convection. The study is carried out employing Brinkman-Forchheimer-extended Darcy model and two energy equations due to the local thermal non-equilibrium assumption. The flow in the channel is assumed to be two-dimensional, laminar, incompressible. Boussinesq approximation is considered. The thermophysical properties of the fluid are evaluated at the ambient temperature. The results for stream function and temperature distribution given at different times are obtained. Wall temperature value are given and also, the velocity and temperature profiles in several sections of the cavity are presented. In addition, the Nusselt number, both local and average, is presented along with the temporal variations of the average Nusselt number.

  1. Global thunderstorm activity estimation based on number of transients in ELF-band

    Science.gov (United States)

    Ondraskova, Adriena; Sevcik, Sebastian

    2017-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance. Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - October 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Criteria for the identification of the burst are chosen on the basis of the transient amplitudes and their morphological features. Monthly mean daily variations in number of transients showed that African focus dominates at 14 - 16 h UT and it is more active in comparison with Asian source, which dominates at 5 - 8 h UT in dependence on winter or summer month. American source had surprisingly slight response. Meteorological observations in South America aiming to determine lightning hotspots on the Earth indicate that flash rate in this region is greatest during nocturnal 0 h - 3 h local standard time. This fact may be interpreted that Asian and South American sources contribute together in the same UT. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in

  2. Integral analysis of cavity pressurization in a fuel rod during an ULOF driven TOP with inclusion of surface tension effects on froth gas bubbles and variable cavity conditions due to fuel melting and ejection

    International Nuclear Information System (INIS)

    Royl, P.

    1984-02-01

    The transient cavity pressurization in an ULOF driven TOP excursion has been analyzed for the SPX-1 reactor with an equation of state that allows to simulate the contribution of small froth gas bubbles to the pressure build-up in a fuel pin with inclusion of restraints from surface tension. Calculations were performed for various bubble parameters. Estimates are made for effective gas availabilities at fuel melting which can be used in a cavity model with an ideal gas equation to arrive at similar pressure transients

  3. Transient response of a cylindrical cavity in viscoelastic saturated porous medium

    Directory of Open Access Journals (Sweden)

    LIU Tao

    2016-10-01

    Full Text Available The study on dynamic characteristics for fluid-solid coupling system in saturated porous medium is of significant academic value and potential application foreground.In this paper,the transient response of a cylindrical cavity in infinite viscoelastic saturated porous medium with the circular lining is studied,and the corresponding results can be used in the design of foundation engineering,such as the tunnel analyses in saturated soil,the nuclear waste disposal engineering,and the exploitation and utilization of geothermal reservoirs and so on.Firstly,based on the porous media theory,the governing equations of coupled system are presented,and the corresponding boundary conditions,initial conditions as well as the joint conditions are derived.Then,the differential quadrature element method and the second-order backward difference scheme are applied to discretize the governing differential equations of the coupled system on the spatial and temporal domains,respectively.Finally,the Newton-Raphson method is adopted to solve the discretization equations with the initial conditions,the transient responses of the coupled system are analyzed,the effects of the parameters are considered,and the validity of the numerical method is verified.

  4. Estimation of Scatterer Diameter by Normalized Power Spectrum of High-Frequency Ultrasonic RF Echo for Assessment of Red Blood Cell Aggregation

    Science.gov (United States)

    Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi

    2011-07-01

    Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.

  5. Numerical analysis of steady and transient natural convection in an enclosed cavity

    Science.gov (United States)

    Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul

    2017-06-01

    The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.

  6. RF cavity R and D at LBNL for the NLC damping rings, FY1999

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J.; Saleh, T.

    1999-01-01

    This report contains a summary of the R and D activities at LBNL on RF cavities for the NLC damping rings during fiscal year19999. These activities include the optimization of the RF design for both efficiency and damping of higher-order (HOMs), by systematic study of the cavity profile, the effect of the beam pipe diameter, nosecone angle and gap, the cross section and position of the HOM damping waveguides and the coupler. The effect of the shape of the HOM waveguides and their intersection with the cavity wall on the local surface heating is also an important factor, since it determines the highest stresses in the cavity body. This was taken into account during the optimization so that the stresses could be reduced at the same time as the HOP damping was improved over previous designs. A new method of calculating the RF heating was employed, using a recently released high frequency electromagnetic element in ANSYS. This greatly facilitates the thermal and stress analysis of the design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. Preliminary designs are described for the cavity ancillary components including the RF window, HOM loads, and tuners. A preliminary manufacturing plan is included, with an initial estimate of the resource requirements. Other cavity options are discussed which might be desirable to either lower the R/Q, for reduced transient response, or lower the residual HOM impedance to reduce coupled-bunch growth rates further still

  7. Calibration of the Diameter Distribution Derived from the Area-based Approach with Individual Tree-based Diameter Estimates Using the Airborne Laser Scanning

    Science.gov (United States)

    Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T.

    2015-12-01

    Diameter distributions of trees are important indicators of current forest stand structure and future dynamics. A new method was proposed in the study to combine the diameter distributions derived from the area-based approach (ABA) and the diameter distribution derived from the individual tree detection (ITD) in order to obtain more accurate forest stand attributes. Since dominant trees can be reliably detected and measured by the Lidar data via the ITD, the focus of the study is to retrieve the suppressed trees (trees that were missed by the ITD) from the ABA. Replacement and histogram matching were respectively employed at the plot level to retrieve the suppressed trees. Cut point was detected from the ITD-derived diameter distribution for each sample plot to distinguish dominant trees from the suppressed trees. The results showed that calibrated diameter distributions were more accurate in terms of error index and the entire growing stock estimates. Compared with the best performer between the ABA and the ITD, calibrated diameter distributions decreased the relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points respectively. Calibration improved the estimation of pulpwood fraction significantly, resulting in a negligible bias of the estimated entire growing stock.

  8. The Grenoble station for producing strong transient magnetic fields higher than 100 teslas by an explosive driven flux compression

    International Nuclear Information System (INIS)

    Guillot, M.

    1976-01-01

    Reproducible transient magnetic fields up to 400 teslas (4 megaoersted) are achieved by a simple explosive driven flux compression. The results are described simply from the point of view of energy conversion. The problems of field measurements are studied: the precision is +-2% with a field cavity of 5 mm diameter [fr

  9. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.

    Science.gov (United States)

    Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang

    2014-09-01

    Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Ultrasonographic fetometry formulas of inner chorionic cavity diameter and biparietal diameter for medium-sized dogs can be used in giant breeds.

    Science.gov (United States)

    Socha, Piotr; Janowski, Tomasz; Bancerz-Kisiel, Agata

    2015-09-15

    The aim of this study was to evaluate the suitability of the ultrasonographic fetometry method, involving inner chorionic cavity diameter (ICC) and biparietal diameter (BP) measurements, to predict the parturition date in giant breed dogs. Overall, 30 ICC and 24 BP measurements were taken on 24 giant breed bitches. The measured values were substituted into Luvoni and Grioni (2000) formulas for medium-sized bitches because formulas with ICC and BP to dogs with a body mass greater than 40 kg have not been defined. The accuracy of the parturition date predictions proved the method to be highly useful in the observed group of dogs. Prediction accuracy in the giants ranged between 54.16% (± 1 day, using BP) and 90% (± 2 days, using ICC), depending on the parameter measured and precision levels used. Numerically, the results obtained using ICC were better; however, no statistically significant differences between ICC and BP accuracy were found when comparing the effectiveness of the parturition date predictions. Regression lines based on the own fetometric measurements were highly convergent with the lines defined by Luvoni and Grioni (2000) formulas for medium-sized bitches. This outcome suggests a similar gestational development of fetuses in giant dogs and the possible use of Luvoni and Grioni (2000) formulas for medium-sized dogs with breeds weighing greater than 40 kg. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Discrete vapour cavity model with improved timing of opening and collapse of cavities

    NARCIS (Netherlands)

    Bergant, A.; Tijsseling, A.S.; Vítkovský, J.P.; Simpson, A.R.; Lambert, M.F.

    2007-01-01

    Transient vaporous cavitation occurs in hydraulic piping systems when the liquid pressure falls to the vapour pressure. Cavitation may occur as a localized vapour cavity (large void fraction) or as distributed vaporous cavitation (small void fraction). The discrete vapour cavity model (DVCM) with

  12. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    International Nuclear Information System (INIS)

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M.; Arnold, S.

    1992-01-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data

  13. Application of an estimation model to predict future transients at US nuclear power plants

    International Nuclear Information System (INIS)

    Hallbert, B.P.; Blackman, H.S.

    1987-01-01

    A model developed by R.A. Fisher was applied to a set of Licensee Event Reports (LERs) summarizing transient initiating events at US commercial nuclear power plants. The empirical Bayes model was examined to study the feasibility of estimating the number of categories of transients which have not yet occurred at nuclear power plants. An examination of the model's predictive ability using an existing sample of data provided support for use of the model to estimate future transients. The estimate indicates that an approximate fifteen percent increase in the number of categories of transient initiating events may be expected during the period 1983--1993, assuming a stable process of transients. Limitations of the model and other possible applications are discussed. 10 refs., 1 fig., 3 tabs

  14. Predicting the Parturition Date in Bitches of Different Body Weight by Ultrasonographic Measurements of Inner Chorionic Cavity Diameter and Biparietal Diameter.

    Science.gov (United States)

    Socha, P; Janowski, T

    2014-04-01

    Predicting the parturition date in dogs by taking ultrasonographic foetometry has opened interesting research areas of veterinary obstetrics. Recently developed calculation formulas of inner chorionic cavity diameter (ICC) and biparietal diameter (BP) are formulas by Luvoni and Grioni (2000). This study is one of the first reports referring to ICC and BP with the use of Luvoni and Grioni formulas for predicting the parturition time in dogs of different body weight in clinical practice conditions. The research material consists of 70 clinically healthy pregnant bitches of 27 breeds and cross-breeds. Bitches were divided into 4 groups according to their body weight. In each of the bitches, ultrasonographic examination of pregnancy was performed at least twice (ICC and BP measurements). Parturition dates for dogs with a body weight over 25 kg were calculated based on formulas intended for the group of medium dogs. It was caused by the lack of appropriate formulas for these groups of dogs. The predicting parturition dates were compared with the actual dates of delivery provided by the bitch owners. Generally, the results obtained in this study are very encouraging and similar or even better than those published by other authors using foetometric measurements. In our research, when comparing the effectiveness of predicting the delivery date based on foetometric formulas by Luvoni and Grioni (2000), it was proved that in all groups of dogs, even those over 25 kg, ICC and BP measurements at both accuracy levels were characterized similar reliability. © 2014 Blackwell Verlag GmbH.

  15. Development of technique for estimating primary cooling system break diameter in predicting nuclear emergency event sequence

    International Nuclear Information System (INIS)

    Tatebe, Yasumasa; Yoshida, Yoshitaka

    2012-01-01

    If an emergency event occurs in a nuclear power plant, appropriate action is selected and taken in accordance with the plant status, which changes from time to time, in order to prevent escalation and mitigate the event consequences. It is thus important to predict the event sequence and identify the plant behavior resulting from the action taken. In predicting the event sequence during a loss-of-coolant accident (LOCA), it is necessary to estimate break diameter. The conventional method for this estimation is time-consuming, since it involves multiple sensitivity analyses to determine the break diameter that is consistent with the plant behavior. To speed up the process of predicting the nuclear emergency event sequence, a new break diameter estimation technique that is applicable to pressurized water reactors was developed in this study. This technique enables the estimation of break diameter using the plant data sent from the safety parameter display system (SPDS), with focus on the depressurization rate in the reactor cooling system (RCS) during LOCA. The results of LOCA analysis, performed by varying the break diameter using the MAAP4 and RELAP5/MOD3.2 codes, confirmed that the RCS depressurization rate could be expressed by the log linear function of break diameter, except in the case of a small leak, in which RCS depressurization is affected by the coolant charging system and the high-pressure injection system. A correlation equation for break diameter estimation was developed from this function and tested for accuracy. Testing verified that the correlation equation could estimate break diameter accurately within an error of approximately 16%, even if the leak increases gradually, changing the plant status. (author)

  16. An Improved Weise’s Rule for Efficient Estimation of Stand Quadratic Mean Diameter

    Directory of Open Access Journals (Sweden)

    Róbert Sedmák

    2015-07-01

    Full Text Available The main objective of this study was to explore the accuracy of Weise’s rule of thumb applied to an estimation of the quadratic mean diameter of a forest stand. Virtual stands of European beech (Fagus sylvatica L. across a range of structure types were stochastically generated and random sampling was simulated. We compared the bias and accuracy of stand quadratic mean diameter estimates, employing different ranks of measured stems from a set of the 10 trees nearest to the sampling point. We proposed several modifications of the original Weise’s rule based on the measurement and averaging of two different ranks centered to a target rank. In accordance with the original formulation of the empirical rule, we recommend the application of the measurement of the 6th stem in rank corresponding to the 55% sample percentile of diameter distribution, irrespective of mean diameter size and degree of diameter dispersion. The study also revealed that the application of appropriate two-measurement modifications of Weise’s method, the 4th and 8th ranks or 3rd and 9th ranks averaged to the 6th central rank, should be preferred over the classic one-measurement estimation. The modified versions are characterised by an improved accuracy (about 25% without statistically significant bias and measurement costs comparable to the classic Weise method.

  17. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    Science.gov (United States)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  18. Transient beam loading in electron-positron storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1978-01-01

    In this note the fundamental of transient beam loading in electron-positron storage rings will be reviewed. The notation, and some of the material, has been introduced previously. The present note is, however, more tutorial in nature, and in addition the analysis is extended to include the transient behaviour of the cavity fields and reflected power between bunch passages. Since we are not bound here by the rigid space limitations of a paper for publication, an attempt is made to give a reasonably coherent and complete discussion of transient beam loading that can hopefully be followed even by the uninitiated. The discussion begins with a consideration of the beam-cavity interaction in the ''single-pass'' limit. In this limit it is assumed that the fields induced in the cavity by the passage of a bunch have decayed essentially to zero by the time the next bunch has arrived. The problem of the maximum energy that can be extracted from a cavity by a bunch is given particular attention, since this subject seems to be the source of some confusion. The analysis is then extended to the ''multiple-pass'' case, where the beam-induced fields do not decay to zero between bunches, and to a detailed consideration of the transient variation of cavity fields and reflected power. The note concludes with a brief discussion of the effect of transient beam loading on quantum lifetime

  19. Analysis and estimation of transient stability for a grid-connected wind turbine with induction generator

    DEFF Research Database (Denmark)

    Li, H.; Zhao, B.; Yang, C.

    2011-01-01

    based on normal form theory is proposed. The transient models of the wind turbine generation system including the flexible drive train model are derived based on the direct transient stability estimation method. A method of critical clearing time (CCT) calculation is developed for the transient......Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation...... of a grid-connected wind turbine with squirrel cage induction generator (SCIG). Firstly, by using an equivalent lump mass method, a three-mass wind turbine equivalent model is proposed considering both the blades and the shaft flexibility of the wind turbine drive train system. Combined with the detailed...

  20. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  1. Estimating the size of the cavity and surrounding failed region for underground nuclear explosions from scaling rules

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leo A [El Paso Natural Gas Company (United States)

    1970-05-01

    The fundamental physical principles involved in the formation of an underground cavity by a nuclear explosion and breakage of the rock surrounding the cavity are examined from the point of view of making preliminary estimates of their sizes where there is a limited understanding of the rock characteristics. Scaling equations for cavity formation based on adiabatic expansion are reviewed and further developed to include the strength of the material surrounding the shot point as well as the overburden above the shot point. The region of rock breakage or permanent distortion surround ing the explosion generated cavity is estimated using both the Von Mises and Coulomb-Mohr failure criteria. It is found that the ratio of the rock failure radius to the cavity radius for these two criteria becomes independent of yield and dependent only on the failure mechanics of the rock. The analytical solutions developed for the Coulomb-Mohr and Von Mises criteria are presented in graphical form. (author)

  2. Estimation of power feedback parameters of pulse reactor IBR-2M on transients

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Popov, A.K.

    2013-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) on a model of the reactor dynamics by mathematical treatment of two registered transients are estimated. Frequency characteristics and the pulse transient characteristics corresponding to these PFB parameters are calculated. PFB parameters received thus can be considered as their express tentative estimation as real measurements in this case occupy no more than 30 minutes. Total PFB is negative at 1 and 2 MW. At the received estimations of PFB parameters in a self-regulation mode it is possible to consider the stability margins of the IBR-2M reactor satisfactory

  3. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  4. Discrepancy between different estimates of the hydrodynamic diameter of polymer-coated iron oxide nanoparticles in solution

    International Nuclear Information System (INIS)

    Regmi, R.; Gumber, V.; Subba Rao, V.; Kohli, I.; Black, C.; Sudakar, C.; Vaishnava, P.; Naik, V.; Naik, R.; Mukhopadhyay, A.; Lawes, G.

    2011-01-01

    We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15–20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.

  5. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  6. Fluid Density and Impact Cavity Formation

    Directory of Open Access Journals (Sweden)

    Ga-Chun Lin

    2018-01-01

    Full Text Available Characteristics of the impact cavity formed when a steel ball is dropped into aqueous solutions of densities ranging from 0.98 g·cm-3 to 1.63 g·cm-3 were investigated. A high-speed camera was used to record the formation and collapse of the cavity. The results showed cavity diameter, volume, and pinch-off time are independent of fluid density, on average. There was an unexplained reduction in cavity formation for densities of 1.34 g·cm-3 and 1.45 g·cm-3.

  7. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction

    Science.gov (United States)

    Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.

    2018-01-01

    We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.

  8. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  9. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  10. Simulation of IVR-ERVC and estimation method of coolant inflow to the cavity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunjin; Namgung, Ihn [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    In this study, the temperature distribution outside of RV wall and evaporation rate due to heat from core will be investigated. Using the universal analysis program ANSYS Fluent, the natural convection in the cavity for IVR-ERVC conditions were modelled and performed for heat transfer analysis. The aim of this study is to calculate the appropriate coolant flow so that coolant level in the cavity can be maintained at prescribed level and vessel wall temperature distribution, including RV outside wall temperature are also investigated. Reactor vessel and cavity in case of ex-vessel cooling for severe accident condition were modeled with and without insulators. The heat load into reactor vessel from corium inside of reactor lower head were obtained from MELCORE analysis and used as input B.C of CFD analysis. The Temperature gradient of reactor outer surface and evaporation rate of cooling eater was obtained from the analysis. These results can be used for further analysis of reactor vessel creep behavior and the estimate the coolant flow rate into the reactor cavity.. and The result can be used to verify the natural convection phenomena in the cavity and also to set the design parameters of cavity and coolant flow rate. The vessel outer surface temperature gradient can be also used to more accurate investigation of vessel creep behavior during severe accident condition, The result can also be used set up a strategy for severe accident managements.

  11. Estimates of Radiation Dose Rates Near Large Diameter Sludge Containers in T Plant

    CERN Document Server

    Himes, D A

    2002-01-01

    Dose rates in T Plant canyon during the handling and storage of large diameter storage containers of K Basin sludge were estimated. A number of different geometries were considered from which most operational situations of interest can be constructed.

  12. Comparison of Mesa and Device Diameter Variation in Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface Emitting Lasers

    International Nuclear Information System (INIS)

    Menon, P.S.; Kandiah, K.; Burhanuddin Yeop Majlis; Shaari, S.

    2011-01-01

    Long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs) have profound advantages compared to traditional edge-emitting lasers offering improved properties with respect to mode selectivity, fibre coupling, threshold currents and integration into 2D arrays or with other electronic devices. Its commercialization is gaining momentum as the local and access network in optical communication system expand. Numerical modeling of LW-VCSEL utilizing wafer-fused InP-based multi-quantum wells (MQW) and GaAs-based distributed Bragg reflectors (DBRs) is presented in this paper. Emphasis is on the device and mesa/pillar diameter design parameter comparison and its effect on the device characteristics. (author)

  13. Bloch-Wave Engineered Submicron Diameter Micropillars with Quality Factors Exceeding 10,000

    DEFF Research Database (Denmark)

    Hofling, S.; Lermer, M.; Gregersen, Niels

    2011-01-01

    Adiabatic design submicron diameter quantum-dot micropillars have been designed and implemented for cavity quantum electrodynamics experiments. Ultra-high experimental quality factors (>10,000) are obtained for submicron diameters and strong light-matter interaction is observed....

  14. Depth distribution of 2-keV helium-ion irradiation-induced cavities in nickel

    International Nuclear Information System (INIS)

    Fenske, G.; Das, S.K.; Kaminsky, M.

    1981-01-01

    Transmission electron microscopy has been used to study the effect of total dose on the depth distribution of cavities (voids or bubbles) in nickel irradiated at 500 0 C with 20-keV 4 He + ions. A transverse sectioning technique allowed us to obtain the entire depth distribution of cavities from a single specimen. The diameter, number density and volume fraction of cavities were measured as a function of depth from micrographs taken from samples sectioned parallel to the direction of the incident beam. Results for the doses at 2.9 x 10 15 and 2.9 x 10 16 ions/cm 2 show an increase in the average cavity diameter, number density and volume fraction with increasing dose. A further increase in dose from 2.9 x 10 16 to 2.9 x 10 17 ions/cm 2 also shows an increase in the average cavity diameter but a decrease in the number density. This observation is interpreted as evidence for the coalescence of cavities. 3 figures, 1 table

  15. Effect of endometrial cavity fluid on pregnancy rate of fresh versus frozen In Vitro fertilization cycle

    Directory of Open Access Journals (Sweden)

    Nitika Gupta

    2017-01-01

    Full Text Available Objective: This study aims to study the difference in etiology and outcome in terms of implantation rate and abortion rate in fresh (self-stimulated versus frozen (oocyte donation cycle in vitro fertilization (IVF and in transient versus persistent fluid. Material and Methods: This retrospective study was conducted in the Department of Reproductive Medicine of tertiary care center from January 2012 to November 2015. Data were collected retrospectively from the departmental files. Twenty-four patients from fresh IVF-stimulated cycles and 24 from frozen oocyte donation cycle with their endometrium prepared by hormone replacement treatment were included in the study. All patients selected in the study had grade-A embryo transfer of day 3–4 with maximum three embryo transferred. Pregnancy was defined by rising serum beta-human chorionic gonadotrophin levels performed after 14 days of embryo transfer and further confirmed by ultrasonographic visualization of gestational sac at 6 weeks. All biochemical pregnancies were included in implantation failure. All pregnant patients were followed till the termination of pregnancy and further noted as live birth or abortion. Results: Clinical pregnancy rate was seen more in self-stimulated cycle (62.5% with live birth rate of 50% than hormone replacement treatment cycle, in which clinical pregnancy rate was 45.83% with live birth rate of 33.33%. Clinical pregnancy rate was highest in group with very less fluid in cavity (1–2 mm 63% and with live birth of 52.63%. Clinical pregnancy was seen only in two patients of group B with anterior and posterior (AP diameter of fluid in cavity of 2–3 mm with live birth of only one, whereas in group C, with AP diameter of 3–5 mm, none of the patient conceived. This difference was statistically significant. Clinical pregnancy rate was 65.62% in transient fluid accumulation with live birth rate of 53.25%, which was significantly higher than persistent fluid accumulation

  16. Development of the MARS input model for Ulchin 1/2 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.

    2003-03-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2

  17. Development of the MARS input model for Ulchin 3/4 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.

    2003-12-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4

  18. Apparatus and method for plasma processing of SRF cavities

    Science.gov (United States)

    Upadhyay, J.; Im, Do; Peshl, J.; Bašović, M.; Popović, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vušković, L.

    2016-05-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segmented plasma generation approach. The pill box cavity is filled with niobium ring- and disk-type samples and the etch rate of these samples was measured.

  19. Energy loss to parasitic modes of accelerating cavities

    International Nuclear Information System (INIS)

    Sands, M.

    1974-01-01

    At the maximum stored current, each circulating beam in PEP will consist of three bunches, each about 10 cm long containing 1.5 /times/ 10 12 particles. The large electric charge carried by such a bunch (2.5 /times/ 10/sup /minus/7/ coulomb) will, because of its short length, give rise to a large transient excitation of hundreds of parasitic modes in the accelerating cavities. The energy loss of the stored beam to the cavities from this process may be comparable to the loss to synchrotron radiation, and may, therefore, require a significant increase in power from the accelerating rf system. In this note I considered three aspects of this effect. First, an attempt is made to estimate the magnitude of the energy loss of a bunch in a single passage through the accelerating cavities. Then, I consider the effects of the periodic passages of the bunches in a single stored beam. And finally, I look at the consequences of storing two counter-rotating beams. The general conclusions are that the magnitude energy loss to the parasitic modes is serious, though probably not disastrous; and that, in general, the separate stored bunches will act incoherently. 2 refs., 7 figs

  20. Estimation of a tube diameter in a ‘church window’ condenser based on entropy generation minimization

    Directory of Open Access Journals (Sweden)

    Laskowski Rafał

    2015-09-01

    Full Text Available The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm. The calculated diameter depends on and is positively related to the roughness assumed in the model.

  1. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  2. Static and transient beam loading of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1992-01-01

    In a synchrotron, when the beam induced current is comparable to the driver current, the RF cavity is subjected to beam loading perturbation and corrective steps have to be implemented to regain beam stability. In this paper, the static and transient beam loading will be studied. We first discuss the static beam loading, which includes the cavity detuning condition, the stability condition, and the generator power dissipation. The beam current induced beam phase deviation is used as criterion to study the transient beam loading. The upgraded and the old AGS RF system parameters are used as an example to demonstrate how to choose cavity and generator parameters to satisfy the stability requirements under the beam loading. The dynamic models for the beam loading with beam control, and the beam loading with fast power amplifier feedback are presented and analyzed. It is shown that the beam phase and radial feedbacks alone are insufficient for the transient beam loading compensation, but the fast power amplifier feedback can provide effective correction on the beam loading. The limitation of the fast feedback and the beam loading with tuning and AVC loops are also discussed

  3. An Expectation-Maximization Algorithm for Amplitude Estimation of Saturated Optical Transient Signals.

    Energy Technology Data Exchange (ETDEWEB)

    Kagie, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lanterman, Aaron D. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-12-01

    This paper addresses parameter estimation for an optical transient signal when the received data has been right-censored. We develop an expectation-maximization (EM) algorithm to estimate the amplitude of a Poisson intensity with a known shape in the presence of additive background counts, where the measurements are subject to saturation effects. We compare the results of our algorithm with those of an EM algorithm that is unaware of the censoring.

  4. A model of gas cavity breakup behind a blockage in fast breeder reactor subassembly geometry

    International Nuclear Information System (INIS)

    Fukuzawa, Y.

    1980-05-01

    A semi-empirical model has been developed to describe the transient behaviour of a gas cavity due to breakup behind a blockage in Liquid Metal Fast Breeder Reactor subassembly geometry. The main mechanisms assumed for gas cavity breakup in the present model are as follows: The gas cavity is broken up by the pressure fluctuation at the interface due to turbulence in the liquid. The centrifugal force on the liquid opposes breakup. The model is able to describe experimental results on the transient behaviour of a gas cavity due to breakup after the termination of gas injection. On the basis of the present model the residence time of a gas cavity behind a blockage in sodium is predicted and the dependence of the residence time on blockage size is discussed. (orig.) [de

  5. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Science.gov (United States)

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  6. Effect of density inversion on the transient natural convection of liquids in a cavity with a non darcian porous material

    International Nuclear Information System (INIS)

    Moraga, Nelson O; Vega, Sylvana A

    2004-01-01

    This work aims to describe the mechanics of fluids and heat transfer by natural convection in porous materials, full of liquid phase elements like gallium and water. The transient process occurs inside a cavity with two adiabatic and two isothermic walls, at different temperatures. The properties vary with the temperature and specifically include the non lineal variation of the density with the temperature, that is typical of these elements. The study uses a mathematical model based on continuity equations, lineal moment and energy, including transport by convection and by diffusion. The method of finite volumes is used for the numerical simulation. The results generated include the variation in time of the distributions of speed and temperature (CW)

  7. Cavity Cooling a Single Charged Levitated Nanosphere

    Science.gov (United States)

    Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.

    2015-03-01

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  8. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    International Nuclear Information System (INIS)

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-01-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q max , on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q o e t/T , with periods, τ, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q max . Two main mechanisms of q max exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q max for long period range belonging to the former mechanism becomes longer and the q max mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q max for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling

  9. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  10. The transverse diameter of the chest on routine radiographs reliably estimates gestational age and weight in premature infants

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Kelly R. [University of Minnesota, Department of Radiology, Minneapolis, MN (United States); Zhang, Lei [University of Minnesota, Biostatistical Design and Analysis Center, Minneapolis, MN (United States); Seidel, Frank G. [Lucile Packard Children' s Hospital, Department of Radiology, Stanford, CA (United States)

    2015-08-15

    Prior to digital radiography it was possible for a radiologist to easily estimate the size of a patient on an analog film. Because variable magnification may be applied at the time of processing an image, it is now more difficult to visually estimate an infant's size on the monitor. Since gestational age and weight significantly impact the differential diagnosis of neonatal diseases and determine the expected size of kidneys or appearance of the brain by MRI or US, this information is useful to a pediatric radiologist. Although this information may be present in the electronic medical record, it is frequently not readily available to the pediatric radiologist at the time of image interpretation. To determine if there was a correlation between gestational age and weight of a premature infant with their transverse chest diameter (rib to rib) on admission chest radiographs. This retrospective study was approved by the institutional review board, which waived informed consent. The maximum transverse chest diameter outer rib to outer rib was measured on admission portable chest radiographs of 464 patients admitted to the neonatal intensive care unit (NICU) during the 2010 calendar year. Regression analysis was used to investigate the association between chest diameter and gestational age/birth weight. Quadratic term of chest diameter was used in the regression model. Chest diameter was statistically significantly associated with both gestational age (P < 0.0001) and birth weight (P < 0.0001). An infant's gestational age and birth weight can be reliably estimated by comparing a simple measurement of the transverse chest diameter on digital chest radiograph with the tables and graphs in our study. (orig.)

  11. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    Science.gov (United States)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  12. Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

    Science.gov (United States)

    Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.

    2018-06-01

    In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

  13. Radiologic and clinical observation of tuberculous cavity in initial treatment

    International Nuclear Information System (INIS)

    Huh, Jin Do

    1986-01-01

    Tuberculous cavity is important in diagnosis and observation in the course of pulmonary tuberculosis. Author analyzed the radiologic findings of cavity and average months of negative conversion in AFB culture in 89 cases of initial treatment. The results were as follows: 1. The more number of cavities, the longer period in negative conversion of AFB culture. 2. No relation between sums of diameter and thickness of cavity and average months of negative conversion in AFB culture. 3. In the cases of cavity with air-fluid level took longer period in negative conversion og AFB culture than those of cavity without air-fluid level, significantly. 4. No relation between radiologic findings of cavity and results of chemotherapy for pulmonary tuberculosis.

  14. Dosimetric response of variable-size cavities in photon-irradiated media and the behaviour of the Spencer-Attix cavity integral with increasing Δ.

    Science.gov (United States)

    Kumar, Sudhir; Deshpande, Deepak D; Nahum, Alan E

    2016-04-07

    Cavity theory is fundamental to understanding and predicting dosimeter response. Conventional cavity theories have been shown to be consistent with one another by deriving the electron (+positron) and photon fluence spectra with the FLURZnrc user-code (EGSnrc Monte-Carlo system) in large volumes under quasi-CPE for photon beams of 1 MeV and 10 MeV in three materials (water, aluminium and copper) and then using these fluence spectra to evaluate and then inter-compare the Bragg-Gray, Spencer-Attix and 'large photon' 'cavity integrals'. The behaviour of the 'Spencer-Attix dose' (aka restricted cema), D S-A(▵), in a 1-MeV photon field in water has been investigated for a wide range of values of the cavity-size parameter ▵: D S-A(▵) decreases far below the Monte-Carlo dose (D MC) for ▵ greater than  ≈  30 keV due to secondary electrons with starting energies below ▵ not being 'counted'. We show that for a quasi-scatter-free geometry (D S-A(▵)/D MC) is closely equal to the proportion of energy transferred to Compton electrons with initial (kinetic) energies above ▵, derived from the Klein-Nishina (K-N) differential cross section. (D S-A(▵)/D MC) can be used to estimate the maximum size of a detector behaving as a Bragg-Gray cavity in a photon-irradiated medium as a function of photon-beam quality (under quasi CPE) e.g. a typical air-filled ion chamber is 'Bragg-Gray' at (monoenergetic) beam energies  ⩾260 keV. Finally, by varying the density of a silicon cavity (of 2.26 mm diameter and 2.0 mm thickness) in water, the response of different cavity 'sizes' was simulated; the Monte-Carlo-derived ratio D w/D Si for 6 MV and 15 MV photons varied from very close to the Spencer-Attix value at 'gas' densities, agreed well with Burlin cavity theory as ρ increased, and approached large photon behaviour for ρ  ≈  10 g cm(-3). The estimate of ▵ for the Si cavity was improved by incorporating a Monte-Carlo-derived correction for

  15. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa

    2002-01-01

    This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing

  16. Distribution of cavity trees in midwestern old-growth and second-growth forests

    Science.gov (United States)

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  17. High-Q AlAs/GaAs adiabatic micropillar cavities with submicron diameters for cQED experiments

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Dunzer, F.

    Quantum dot (QD) micropillar cavities represent an interesting class of microresonator systems aiming at the observation and application of cavity quantum electrodynamics (cQED) on a semiconductor platform. They combine valuable properties i.e. a highly directional and approximately Gaussian shaped...

  18. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rigit, A.R.H. [University of Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom)

    2009-06-15

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/d{proportional_to}200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested. (orig.)

  19. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Science.gov (United States)

    Rigit, A. R. H.; Shrimpton, John S.

    2009-06-01

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/ d ~ 200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested.

  20. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  1. Solution of axisymmetric transient inverse heat conduction problems using parameter estimation and multi block methods

    International Nuclear Information System (INIS)

    Azimi, A.; Hannani, S.K.; Farhanieh, B.

    2005-01-01

    In this article, a comparison between two iterative inverse techniques to solve simultaneously two unknown functions of axisymmetric transient inverse heat conduction problems in semi complex geometries is presented. The multi-block structured grid together with blocked-interface nodes is implemented for geometric decomposition of physical domain. Numerical scheme for solution of transient heat conduction equation is the finite element method with frontal technique to solve algebraic system of discrete equations. The inverse heat conduction problem involves simultaneous unknown time varying heat generation and time-space varying boundary condition estimation. Two parameter-estimation techniques are considered, Levenberg-Marquardt scheme and conjugate gradient method with adjoint problem. Numerically computed exact and noisy data are used for the measured transient temperature data needed in the inverse solution. The results of the present study for a configuration including two joined disks with different heights are compared to those of exact heat source and temperature boundary condition, and show good agreement. (author)

  2. Transient analysis of multicavity klystrons

    International Nuclear Information System (INIS)

    Lavine, T.L.; Miller, R.H.; Morton, P.L.; Ruth, R.D.

    1988-09-01

    We describe a model for analytic analysis of transients in multicavity klystron output power and phase. Cavities are modeled as resonant circuits, while bunching of the beam is modeled using linear space-charge wave theory. Our analysis has been implemented in a computer program which we use in designing multicavity klystrons with stable output power and phase. We present as examples transient analysis of a relativistic klystron using a magnetic pulse compression modulator, and of a conventional klystron designed to use phase shifting techniques for RF pulse compression. 4 refs., 4 figs

  3. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  4. Usefulness of left ventricular wall thickness-to-diameter ratio in thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Manno, B.; Hakki, A.H.; Kane, S.A.; Iskandrian, A.S.

    1983-01-01

    The ratio of left ventricular wall thickness to the cavity dimension, as seen on thallium-201 images, was used in this study to predict left ventricular ejection fraction and volume. We obtained rest thallium-201 images in 50 patients with symptomatic coronary artery disease. The thickness of a normal-appearing segment of the left ventricular wall and the transverse diameter of the cavity were measured in the left anterior oblique projection. The left ventricular ejection fraction and volume in these patients were determined by radionuclide ventriculography. There was a good correlation between thickness-to-diameter ratio and ejection fraction and end-systolic volume. In 18 patients with a thickness-to-diameter ratio less than 0.70, the ejection fraction was lower than in the 16 patients with thickness-to-diameter ratio greater than or equal to 1.0. Similarly, in patients with a thickness-to-diameter ratio less than 0.70, the end-diastolic and end-systolic volume were higher than in the remaining patients with higher thickness-to-diameter ratios. All 18 patients with a thickness-to-diameter ratio less than 0.70 had ejection fractions less than 40%; 14 of 15 patients with a thickness-to-diameter ratio greater than or equal to 1.0 had an ejection fraction greater than 40%. The remaining 16 patients with a thickness-to-diameter ratio of 0.7-0.99 had intermediate ejection fractions and volumes.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Cavity pressure history of contained nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, C E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Knowledge of pressure in cavities created by contained nuclear explosions is useful for estimating the possibility of venting radioactive debris to the atmosphere. Measurements of cavity pressure, or temperature, would be helpful in evaluating the correctness of present code predictions of underground explosions. In instrumenting and interpreting such measurements it is necessary to have good theoretical estimates of cavity pressures. In this paper cavity pressure is estimated at the time when cavity growth is complete. Its subsequent decrease due to heat loss from the cavity to the surrounding media is also predicted. The starting pressure (the pressure at the end of cavity growth) is obtained by adiabatic expansion to the final cavity size of the vaporized rock gas sphere created by the explosion. Estimates of cavity size can be obtained by stress propagation computer codes, such as SOC and TENSOR. However, such estimates require considerable time and effort. In this paper, cavity size is estimated using a scheme involving simple hand calculations. The prediction is complicated by uncertainties in the knowledge of silica water system chemistry and a lack of information concerning possible blowoff of wall material during cavity growth. If wall material blows off, it can significantly change the water content in the cavity, compared to the water content in the ambient media. After cavity growth is complete, the pressure will change because of heat loss to the surrounding media. Heat transfer by convection, radiation and conduction is considered, and its effect on the pressure is calculated. Analysis of cavity heat transfer is made difficult by the complex nature of processes which occur at the wall where melting, vaporization and condensation of the gaseous rock can all occur. Furthermore, the melted wall material could be removed by flowing or dripping to the cavity floor. It could also be removed by expansion of the steam contained in the melt (blowoff) and by

  6. Shallow Cavity Flow Tone Experiments: Onset of Locked-On States

    Energy Technology Data Exchange (ETDEWEB)

    D. Rockwell; J.C. Lin; P. Oshkai; M. Reiss; M. Pollack

    2000-09-05

    Fully turbulent inflow past a shallow cavity is investigated for the configuration of an axisymmetric cavity mounted in a pipe. Emphasis is on conditions giving rise to coherent oscillations, which can lead to locked-on states of flow tones in the pipe-cavity system. Unsteady surface pressure measurements are interpreted using three-dimensional representations of amplitude-frequency-inflow velocity; these representations are constructed for a range of cavity depth. Assessment of these data involves a variety of approaches. Evaluation of pressure gradients on plan views of the three-dimensional representations allows extraction of the frequencies of the instability (Strouhal) modes of the cavity oscillation. These frequency components are correlated with traditional models originally formulated for cavities in a free-stream. In addition, they are normalized using two length scales; inflow boundary-layer thickness and pipe diameter. These scales are consistent with those employed for the hydrodynamic instability of the separated shear layer, and are linked to the large-scale mode of the shear layer oscillation, which occurs at relatively long cavity length. In fact, a simple scaling based on pipe diameter can correlate the frequencies of the dominant peaks over a range of cavity depth. The foregoing considerations provide evidence that pronounced flow tones can be generated from a fully-turbulent inflow at very low Mach number, including the limiting case of fully-developed turbulent flow in a pipe. These tones can arise even for the extreme case of a cavity having a length over an order of magnitude longer than its depth. Suppression of tones is generally achieved if the cavity is sufficiently shallow.

  7. The transverse diameter of the chest on routine radiographs reliably estimates gestational age and weight in premature infants.

    Science.gov (United States)

    Dietz, Kelly R; Zhang, Lei; Seidel, Frank G

    2015-08-01

    Prior to digital radiography it was possible for a radiologist to easily estimate the size of a patient on an analog film. Because variable magnification may be applied at the time of processing an image, it is now more difficult to visually estimate an infant's size on the monitor. Since gestational age and weight significantly impact the differential diagnosis of neonatal diseases and determine the expected size of kidneys or appearance of the brain by MRI or US, this information is useful to a pediatric radiologist. Although this information may be present in the electronic medical record, it is frequently not readily available to the pediatric radiologist at the time of image interpretation. To determine if there was a correlation between gestational age and weight of a premature infant with their transverse chest diameter (rib to rib) on admission chest radiographs. This retrospective study was approved by the institutional review board, which waived informed consent. The maximum transverse chest diameter outer rib to outer rib was measured on admission portable chest radiographs of 464 patients admitted to the neonatal intensive care unit (NICU) during the 2010 calendar year. Regression analysis was used to investigate the association between chest diameter and gestational age/birth weight. Quadratic term of chest diameter was used in the regression model. Chest diameter was statistically significantly associated with both gestational age (P chest diameter on digital chest radiograph with the tables and graphs in our study.

  8. Shunt impedance of spiral loaded resonant rf cavities

    International Nuclear Information System (INIS)

    Peebles, P.Z. Jr.; Parvarandeh, M.

    1975-01-01

    Based upon a treatment of the spiral loaded resonant radio frequency cavity as a shorted quarter-wave transmission line, a model for shunt impedance is developed. The model is applicable to loosely wound spirals in large diameter containers. Theoretical shunt impedance is given for spirals wound from tubing of circular or rectangular cross section. The former produces higher shunt impedance. Measurements made at Oak Ridge National Laboratory on 17 copper cavities are described which support the theoretical results. Theoretical results are also compared to data from twenty-three additional cavities measured at Los Alamos Scientific Laboratory. It is shown that the theoretical function forms a useful means of interpreting the quality of constructed cavities. (author)

  9. Multiharmonic rf feedforward system for compensation of beam loading and periodic transient effects in magnetic-alloy cavities of a proton synchrotron

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2013-05-01

    Full Text Available Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR of the Japan Proton Accelerator Research Complex (J-PARC. Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9 rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10. Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10. The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×10^{14} proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.

  10. Design study of 'HIBLIC-I' reactor cavity

    International Nuclear Information System (INIS)

    Fujiie, Y.

    1984-01-01

    A preliminary conceptual design of a reactor cavity for HIBLIC-1, a heavy ion fusion reactor system, was carried out. Design efforts have been concentrated mainly on the feasibility study of the physical scenario adopted and also on the system integration of the structures and components into a compact reactor cavity. The design features of the reactor are a compact reactor cavity, maximum coolant temperature up to 500 deg C, the protection of the sacrificial wall and cavity wall from radiation, the protection of the sacrificial wall from the pressure transient due to rapid heating, the selection of a ferritic steel HT-9 as the structural material and impurity control, and tritium breeding and recovery. The purpose of this paper is to describe the outline of the reactor cavity design of HIBLIC-1. The objectives of the preliminary conceptual design were to propose the idea and concept in order to constitute the physical scenario without contradiction and to find out the critical and fundamental problems to be studied in future. The cavity configuration and dynamics, tritium breeding and radiation damage, the behavior of a structural material in liquid lithium and tritium recovery are reported. (Kako, I.)

  11. New Hybrid Algorithms for Estimating Tree Stem Diameters at Breast Height Using a Two Dimensional Terrestrial Laser Scanner

    Directory of Open Access Journals (Sweden)

    Jianlei Kong

    2015-07-01

    Full Text Available In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS, which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.

  12. Tree diameter at breast height in relation to stump diameter by species group

    Science.gov (United States)

    Arthur G. Horn; Richard C. Keller

    1957-01-01

    A stump tally is one method of determining the volume of timber previously removed from an area in a logging operation. To estimate volume of standing timber from stumps, foresters must first know the relationship between stump diameters and tree diameters at breast height (d.b.h.).

  13. CW substrate-free metal-cavity surface microemitters at 300 K

    International Nuclear Information System (INIS)

    Lu, Chien-Yao; Chang, Shu-Wei; Chuang, Shun Lien; Germann, Tim D; Pohl, Udo W; Bimberg, Dieter

    2011-01-01

    In this paper substrate-free metal-cavity surface microemitters are demonstrated. The optical cavity is formed by a metal reflector, metal-surrounded sidewall and n-doped distributed-Bragg reflector, which provides optical feedback and carrier injection. We describe a simple design principle with the modal properties modified by geometry and metal-insulator cladding. Both resonant cavity light-emitting diodes (1.85 µm diameter and 0.6 µm height) and lasers (2.0 µm diameter and 2.5 µm height) are successfully fabricated and characterized. These two types of devices operate at room temperature under continuous-wave (CW) operation. Since the devices are substrate-free, they can be bonded to any substrates. From the threshold currents of the lasers, we obtain a high characteristic temperature of 425 K in the range of 10–27 °C. We also discuss a general approach to improve the diffraction from small-aperture devices

  14. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  15. Cavity temperature and flow characteristics in a gas-core test reactor

    Science.gov (United States)

    Putre, H. A.

    1973-01-01

    A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.

  16. Cooling the APS storage ring radio-frequency accelerating cavities: Thermal/stress/fatigue analysis and cavity cooling configuration

    International Nuclear Information System (INIS)

    Primdahl, K.; Kustom, R.

    1995-01-01

    The 7-GeV Advanced Photon Source positron storage ring requires sixteen separate 352-MHz radio-frequency (rf) accelerating cavities. Cavities are installed as groups of four, in straight sections used elsewhere for insertion devices. They occupy the first such straight section after injection, along with the last three just before injection. Cooling is provided by a subsystem of the sitewide deionized water system. Pumping equipment is located in a building directly adjacent to the accelerator enclosure. A prototype cavity was fabricated and tested where cooling was via twelve 19-mm-diameter [3/4 in] brazed-on tubes in a series-parallel flow configuration. Unfortunately, the thermal contact to some tubes was poor due to inadequate braze filler. Here, heat transfer studies, including finite-element analysis and test results, of the Advanced Photon Source (APS) storage ring 352-MHz rf accelerating cavities are described. Stress and fatigue life of the copper are discussed. Configuration of water cooling is presented

  17. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  18. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  19. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  20. Design and analysis of magnetic shield for 650 MHz SCRF cavity

    International Nuclear Information System (INIS)

    Thakur, Vanshree; Jain, Vikas; Das, S.; Shinde, R.S.; Joshi, S.C.

    2015-01-01

    Five-cell, 650 MHz Superconducting RF (SCRF) cavity is being developed at RRCAT for the Injector Linac of proposed ISNS project. The SCRF cavity needs to be shielded effectively from earth magnetic field. The external magnetic field can cause magnetic field trapping that limits the performance of SCRF cavity. The allowable limit of earth magnetic field in the cavity surface is < 10 mG. The magnetic shielding analysis carried out for 650 MHz dressed SCRF cavity is presented in this paper. For axial magnetic field shielding analysis, 2-D code PANDIRA has been used. A 2-D axisymmetric geometry (cylinder of Cryoperm10 sheet with 460 mm diameter of various thickness and 1100 mm length) has been modelled and analyzed in the presence of 240 mG external axial magnetic field. The influence of partial opening of 120 mm diameter at both ends of the cylinder on magnetic field pattern inside the shielded region has been evaluated. The transverse magnetic shielding analysis in the presence of 500 mG transverse external field has been carried out using OPERA 3D code. The flux leakage through the major openings for cavity supports, ports on the shield is investigated and accordingly the openings are designed to minimize the leakage. Inference of material thickness on the magnetic shielding for reducing magnetic field below specified limit has been investigated. Details of design and analysis of magnetic shield for SCRF cavity will be discussed in this paper. (author)

  1. Heat loss investigation from spherical cavity receiver of solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, V. C. [Dept. of Mechanical Engineering, NDMVPS KBT College of Engineering, Nashik (India); Dongarwar, P. R. [Dept. of Mechanical Engineering, College of Military Engineering, Pune (India); Gawande, R. P. [Dept. of Mechanical Engineering, B.D.C.O.E. Wardha, Nagpur University, NagpurI (India)

    2016-11-15

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results.

  2. Heat loss investigation from spherical cavity receiver of solar concentrator

    International Nuclear Information System (INIS)

    Shewale, V. C.; Dongarwar, P. R.; Gawande, R. P.

    2016-01-01

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results

  3. Modeling of Transient Response of the Wickless Heat Pipes

    International Nuclear Information System (INIS)

    Hussien, A.K.A.

    2013-01-01

    Thermosyphons transient response for startup from ambient temperature to steady state until shutdown conditions, is considered a stringent necessity for applications such as electronic, solar, geothermal and even nuclear reactors safety systems. This typically returns to the need to keep the temperature within certain limits before reaching critical conditions. A simple network model is derived for describing the transient response of closed two-phase thermosyphon (CTPT) at startup and shutdown states. In addition, for predicting the effect of operational characteristics of water/copper closed two-phase thermosyphon such as thermal load, filling ratio, evaporator length, and thermosyphon tube diameter. The thermosyphons operation was considered a thermal network of various components with different thermal resistances and dynamic responses. The network model consists of six sub-models. These models are pure conduction in walls of evaporator, adiabatic and condenser, and convection in evaporator pool, evaporator film, and condenser film. So, an energy balance for each sub-model was done to estimate temperatures, heat transfer coefficients, thermal resistances, time constant, and other thermal characteristics that describe the required transient response of the closed two-phase thermosyphon. Governing equations of the transient thermosyphon behavior can be simplified into a set of first-order linear ordinary differential equations. The Runge-Kutta method can be used to obtain transient thermosyphon temperatures from these equations.

  4. Simulation and scaling for natural convection flow in a cavity with isothermal boundaries

    International Nuclear Information System (INIS)

    Jiracheewanun, S.; Armfield, S.W.; McBain, G.D.; Behnia, M.

    2005-01-01

    A numerical study of the transient two-dimensional natural convection flow within a differentially heated square cavity with iso-flux side walls and adiabatic top and bottom boundaries is presented. The governing equations are discretized using a non-staggered mesh and solved using a non-iterative fractional-step pressure correction method which provides second-order accuracy in both time and space. Results are obtained with the iso-flux boundary condition for Ra = 5.8 x 10 9 and Pr = 7.5. The results show that the transient flow features obtained for the iso-flux cavity are similar to the flow features for the isothermal case. However, the fully developed flow features of the iso-flux cavity are very different from the isothermal case. The scalings for the fully developed iso-flux boundary condition flow have been found to be different to those of the isothermal boundary condition flow. (authors)

  5. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    Science.gov (United States)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  6. Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation

    Directory of Open Access Journals (Sweden)

    Huan-Feng Duan

    2017-10-01

    Full Text Available This paper investigates the impacts of non-uniformities of pipe diameter (i.e., an inhomogeneous cross-sectional area along pipelines on transient wave behavior and propagation in water supply pipelines. The multi-scale wave perturbation method is firstly used to derive analytical solutions for the amplitude evolution of transient pressure wave propagation in pipelines, considering regular and random variations of cross-sectional area, respectively. The analytical analysis is based on the one-dimensional (1D transient wave equation for pipe flow. Both derived results show that transient waves can be attenuated and scattered significantly along the longitudinal direction of the pipeline due to the regular and random non-uniformities of pipe diameter. The obtained analytical results are then validated by extensive 1D numerical simulations under different incident wave and non-uniform pipe conditions. The comparative results indicate that the derived analytical solutions are applicable and useful to describe the wave scattering effect in complex pipeline systems. Finally, the practical implications and influence of wave scattering effects on transient flow analysis and transient-based leak detection in urban water supply systems are discussed in the paper.

  7. MCCREEP - a model to estimate creep produced by microcracking around a cavity in an intact rock mass

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1991-11-01

    AECL Research is examining the disposal of nuclear fuel waste in a vault in plutonic rock. Models (MCDIRC and MCROC) have been developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. MCDIRC has been constructed to consider the perturbation of the stress state of intact rock by long cylindrical cavities. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which possible movements (creep strain) in the rock mass are estimated. MCDIRC depends on analytical solutions for stress-state perturbations. MCCREEP has been developed from MCDIRC and relies on the use of finite-element methods to solve for stress states. It is more flexible than MCDIRC and can deal with non-homogeneous rock properties and non-symmetrical cavities

  8. Required cavity HOM deQing calculated from probability estimates of coupled bunch instabilities in the APS ring

    International Nuclear Information System (INIS)

    Emery, L.

    1993-01-01

    A method of determining the deQing requirement of individual cavity higher-order modes (HOM) for a multi-cavity RF system is presented and applied to the APS ring. Since HOM resonator frequency values are to some degree uncertain, the HOM frequencies should be regarded as random variables in predicting the stability of the coupled bunch beam modes. A Monte Carlo simulation provides a histogram of the growth rates from which one obtains an estimate of the probability of instability. The damping of each HOM type is determined such that the damping effort is economized, i.e. no single HOM dominates the specified growth rate histogram

  9. Modeling of the effect of tool wear per discharge estimation error on the depth of machined cavities in micro-EDM milling

    DEFF Research Database (Denmark)

    Puthumana, Govindan; Bissacco, Giuliano; Hansen, Hans Nørgaard

    2017-01-01

    In micro-EDM milling, real time electrode wear compensation based on tool wear per discharge (TWD) estimation permits the direct control of the position of the tool electrode frontal surface. However, TWD estimation errors will cause errors on the tool electrode axial depth. A simulation tool...... is developed to determine the effects of errors in the initial estimation of TWD and its propagation effect with respect to the error on the depth of the cavity generated. Simulations were applied to micro-EDM milling of a slot of 5000 μm length and 50 μm depth and validated through slot milling experiments...... performed on a micro-EDM machine. Simulations and experimental results were found to be in good agreement, showing the effect of errror amplification through the cavity depth....

  10. Coupling of an overdriven cavity

    International Nuclear Information System (INIS)

    Garbin, H.D.

    1993-01-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD's ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled

  11. Water entry without surface seal: Extended cavity formation

    KAUST Repository

    Mansoor, Mohammad M.

    2014-03-01

    We report results from an experimental study of cavity formation during the impact of superhydrophobic spheres onto water. Using a simple splash-guard mechanism, we block the spray emerging during initial contact from closing thus eliminating the phenomenon known as \\'surface seal\\', which typically occurs at Froude numbers Fr= V0 2/(gR0) = O(100). As such, we are able to observe the evolution of a smooth cavity in a more extended parameter space than has been achieved in previous studies. Furthermore, by systematically varying the tank size and sphere diameter, we examine the influence of increasing wall effects on these guarded impact cavities and note the formation of surface undulations with wavelength λ =O(10)cm and acoustic waves λa=O(D0) along the cavity interface, which produce multiple pinch-off points. Acoustic waves are initiated by pressure perturbations, which themselves are generated by the primary cavity pinch-off. Using high-speed particle image velocimetry (PIV) techniques we study the bulk fluid flow for the most constrained geometry and show the larger undulations ( λ =O (10cm)) have a fixed nature with respect to the lab frame. We show that previously deduced scalings for the normalized (primary) pinch-off location (ratio of pinch-off depth to sphere depth at pinch-off time), Hp/H = 1/2, and pinch-off time, τ α (R0/g) 1/2, do not hold for these extended cavities in the presence of strong wall effects (sphere-to-tank diameter ratio), ε = D 0/Dtank 1/16. Instead, we find multiple distinct regimes for values of Hp/H as the observed undulations are induced above the first pinch-off point as the impact speed increases. We also report observations of \\'kinked\\' pinch-off points and the suppression of downward facing jets in the presence of wall effects. Surprisingly, upward facing jets emanating from first cavity pinch-off points evolve into a \\'flat\\' structure at high impact speeds, both in the presence and absence of wall effects.

  12. Cavity closure during compression between semi-closed die using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A. I. O.; Al-Tamimi, M. M.

    2013-01-01

    Superplasticity is a feature of a material or alloy, which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature, and has been extensively used as a model material. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using semi-closed dies (modified dies) with 45 degree inclination and compare the results from these dies with those of flat platens (open dies) published previously. Hollow specimens having different values of bore diameter (Db) to outer diameter (Dout), of the same height and volume were investigated under 40% height reduction. The cavity closure for each specimen was determined. Comparison is made between flat platens and semi-closed dies regarding cavity closure based on bore diameter, bore volume, reduction percentage in bore diameter and reduction percentage in bore volume, at the 40% reduction in height. It was found that modifying the platens (45 degree inclination) resulted in lower values of bore diameters and volume i.e. higher values of reduction in bore diameters and volumes percentages irrespective of the value of bore diameter and the ratio of Db/Dout. (author)

  13. Transient two-dimensional flow in porous media

    International Nuclear Information System (INIS)

    Sharpe, L. Jr.

    1979-01-01

    The transient flow of an isothermal ideal gas from the cavity formed by an underground nuclear explosion is investigated. A two-dimensional finite element method is used in analyzing the gas flow. Numerical results of the pressure distribution are obtained for both the stemming column and the surrounding porous media

  14. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  15. RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity

    International Nuclear Information System (INIS)

    Virostek, S.; Li, D.

    2005-01-01

    A finite element analysis has been carried out to characterize the RF, thermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling channel. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. The high-gradient closed-cell cavity is currently being fabricated for the MICE (international Muon Ionization Cooling Experiment) and MUCOOL experiments. The 1200 mm diameter cavity is constructed of 6 mm thick copper sheet and incorporates a rounded pillbox-like profile with an open beam iris terminated by 420 mm diameter, 0.38 mm thick curved beryllium foils. Tuning is accomplished through elastic deformation of the cavity, and cooling is provided by external water passages. Details of the analysis methodology will be presented including a description of the ANSYS macro that computes the heat loads from the RF solution and applies them directly to the thermal model. The process and results of a calculation to determine the resulting frequency shift due to thermal and structural distortion of the cavity will also be presented

  16. Three-dimensional diffraction of a thin metallic cylinder illuminated in conical incidence: application to diameter estimation

    International Nuclear Information System (INIS)

    Miguel Sanchez-Brea, Luis; Javier Salgado-Remacha, Francisco

    2008-01-01

    We present a model to determine the far-field diffraction pattern of a metallic cylinder of infinite length when it is illuminated in oblique incidence. This model is based on the Helmholtz-Kirchhoff integral using the Beckmann conditions for reflection. It considers the three-dimensional nature of the diffracting object as well as the material of which the cylinder is made. This model shows that the diffraction orders are placed in a cone of light. The amplitude at the far field can be divided into three terms: the first term accounts for Babinet's principle, that is, the contribution of the cylinder projection; the second term accounts for the three dimensionality of the cylinder; and the third term accounts for the material of which the cylinder is made. This model is applied to the diameter estimation of the cylinder. Since the amplitude of the Babinet contribution is much larger than the light reflected by the surface, the cylinder diameter can be obtained in a simple way. With this approximation, the locations of the diffraction minima do not vary when the cylinder is inclined. On the other hand, when the reflected light is considered the location of the minima and, hence, the estimation of the diameter, varies. Also, a modification of the diffraction minima is produced by the material of which the cylinder is made. Experimental results are also obtained that corroborate the theoretical approach

  17. Study on transient beam loading compensation for China ADS proton linac injector II

    Science.gov (United States)

    Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom

    2016-05-01

    Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)

  18. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    Science.gov (United States)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  19. Best-estimate analyses of LOFT anticipated transients with and without scram using DYNODE-P

    International Nuclear Information System (INIS)

    Kern, R.C.; Anderson, R.O.; Rautmann, D.A.

    1984-01-01

    Six LOFT transient tests with scram (L6-1, L6-2, L6-3, L6-7, L6-8B-1, and L6-8B-2) and two anticipated transient tests without scram (L9-3 and L9-4) have been analyzed using a best-estimate DYNODE-P/5.2 computer model. These tests span a wide range of anticipated operational occurrences for Pressurized Water Reactors. In general, satisfactory agreement between calculation and measurement for the key system parameters (nuclear power, primary and secondary pressures, temperatures, liquid levels, and flows) have been found. Sensitivity studies have resolved all significant discrepancies. These analyses have provided a significant qualification of the model for application to these types of events

  20. Feasibility and safety of cavity-directed stereotactic radiosurgery for brain metastases at a high-volume medical center

    Directory of Open Access Journals (Sweden)

    Paul Rava, MD PhD

    2016-07-01

    Conclusions: Excellent local control is achievable with cavity-directed SRS in well-selected patients, particularly for lesions with diameter <3 cm and resection cavity volumes <14 mL. Long-term survival is possible for select patients.

  1. Lasers with intra-cavity phase elements

    Science.gov (United States)

    Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor

    2018-02-01

    Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.

  2. Effects of rear cavities on the wake behind an accelerating D-shaped bluff body

    Science.gov (United States)

    Lorite-Díez, M.; Jiménez-González, J. I.; Gutiérrez-Montes, C.; Martínez-Bazán, C.

    2018-04-01

    We investigate experimentally and numerically the transient development of the wake induced by a constant acceleration of a D-shaped bluff body, starting from rest and reaching a permanent regime of Reynolds number Re = 2000, under different values of acceleration and implementing three distinct rear geometrical configurations. Thus, alongside the classical blunt base, two control passive devices, namely, a straight cavity and an optimized, curved cavity, recently designed using adjoint optimization techniques, have also been used to assess their performance in transient flow conditions. Particle image velocimetry measurements were performed in a towing tank to characterize the near wake development in the early transient stages. It has been observed that the flow first develops symmetric shear layers with primary eddies attracted toward the base of the body due to the flow suction generated by the accelerated motion. Eventually, the interaction between the upper and lower shear layers provokes the destabilization of the flow and the symmetry breaking of the wake, finally giving rise to an alternate transitional vortex shedding regime. The transition between these phases is sped-up when the optimized cavity is used, reaching earlier the permanent flow conditions. In particular, the use of the optimized geometry has been shown to limit the growth of the primary eddies, decreasing both the recirculation and vortex formation length and providing with a more regularized, more organized vortex shedding. In addition, numerical simulations have been performed to evaluate the distribution of forces induced by the addition of rear cavities. In general, the aforementioned smoother and faster transition related to the use of optimized cavity translates into a lower averaged value of the drag coefficient, together with less energetic force fluctuations, regardless of the acceleration value.

  3. Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Naguib, Ahmed M. [Michigan State University, East Lansing, MI (United States)

    2011-11-15

    The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity's side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity. (orig.)

  4. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Leopoldo Vázquez

    Full Text Available It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha, though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  5. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Science.gov (United States)

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  6. Free convection performance of circular cavities having two active curved vertical sides and two inactive curved horizontal sides

    International Nuclear Information System (INIS)

    Ridouane, El Hassan; Campo, Antonio

    2006-01-01

    A detailed review of the archival reveals that the heat transfer and fluid flow characteristics of circular cavities have not been investigated so far and of course their physical features are not understood. A prominent application of these cavities arises in the miniaturized packaging of electronic components that are subject to strict constraints. This paper addresses primarily steady-state laminar natural convection of air in a circular cavity of diameter H inscribed in a square cavity of side H where the corresponding sides are in contact at four points. A third cavity, an arc-square cavity whose shape lies between the square and circular cavity shapes is included in the analysis. The finite volume method is used to perform the numerical simulations. The methodology takes into account the second-order-accurate QUICK scheme for the discretization of the convective term, whereas the pressure-velocity coupling is handled with the SIMPLE scheme. Since the air is not assumed a Boussinesq gas, it was decided to take all thermophysical properties as temperature-dependent. In the end, it has been demonstrated that the circular cavity possesses a superior balance between heat transfer enhancement and size in cross-section area in comparison with the standard square cavity. The side of the square cavity is similar to the diameter of the circular cavity

  7. The use of Lyapunov differential inequalities for estimating the transients of mechanical systems

    Science.gov (United States)

    Alyshev, A. S.; Dudarenko, N. A.; Melnikov, V. G.; Melnikov, G. I.

    2018-05-01

    In this paper we consider an autonomous mechanical system in a finite neighborhood of the zero of the phase space of states. The system is given as a matrix differential equation in the Cauchy form with the right-hand side of the polynomial structure. We propose a method for constructing a sequence of linear inhomogeneous differential inequalities for Lyapunov functions. As a result, we obtain estimates of transient processes in the form of functional inequalities.

  8. PSpice modeling of broadband RF cavities for transient and frequency domain simulations

    Energy Technology Data Exchange (ETDEWEB)

    Harzheim, Jens [Institut fuer Theorie Elektromagnetischer Felder, Fachgebiet Beschleunigertechnik, TU Darmstadt (Germany)

    2016-07-01

    In the future accelerator facility FAIR, Barrier-Bucket Systems will play an important role for different longitudinal beam manipulations. As the function of this type of system is to provide single sine gap voltages, the components of the system have to operate in a broad frequency range. To investigate the different effects and to design the different system components, the whole Barrier-Bucket System is to be modeled in PSpice. While for low power signals, the system shows linear behavior, nonlinear effects arise at higher amplitudes. Therefore, simulations in both, frequency and time domain are needed. The highly frequency dependent magnetic alloy ring cores of the future Barrier-Bucket cavity have been mod eled in a first step and based on these models, the whole cavity was analyzed in PSpice. The simulation results show good agreement with former measurements.

  9. Creep cavity and carbide studies during creep of a 12%CrMoV-steel

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik; Storesund, J.; Seitisleam, F.

    1997-03-01

    Uniaxial creep tests of a X20CrMoV 12 1 steel has been carried out. The work was performed as a follow-up on earlier investigations on a similar steel with lower creep ductility. A comparison with this previous work is included. Both interrupted and rupture tests were performed and studies were made of cavity formation processes and carbide transformations. The creep curves could be reproduced using an analytical model. No secondary creep was observed. Cavities were found to form already at a strain of 1%. The cavity density, mean diameter and cavitated area fraction were found to have a linear relationship with the strain for strains up to about 10%. The mean carbide diameter was observed to be a function of time at temperature. A small decrease in carbide density with strain was detected 12 refs, 28 figs, 6 tabs

  10. Using Rising Limb Analysis to Estimate Uptake of Reactive Solutes in Advective and Transient Storage Sub-compartments of Stream Ecosystems

    Science.gov (United States)

    Thomas, S. A.; Valett, H.; Webster, J. R.; Mulholland, P. J.; Dahm, C. N.

    2001-12-01

    Identifying the locations and controls governing solute uptake is a recent area of focus in studies of stream biogeochemistry. We introduce a technique, rising limb analysis (RLA), to estimate areal nitrate uptake in the advective and transient storage (TS) zones of streams. RLA is an inverse approach that combines nutrient spiraling and transient storage modeling to calculate total uptake of reactive solutes and the fraction of uptake occurring within the advective sub-compartment of streams. The contribution of the transient storage zones to solute loss is determined by difference. Twelve-hour coinjections of conservative (Cl-) and reactive (15NO3) tracers were conducted seasonally in several headwater streams among which AS/A ranged from 0.01 - 2.0. TS characteristics were determined using an advection-dispersion model modified to include hydrologic exchange with a transient storage compartment. Whole-system uptake was determined by fitting the longitudinal pattern of NO3 to first-order, exponential decay model. Uptake in the advective sub-compartment was determined by collecting a temporal sequence of samples from a single location beginning with the arrival of the solute front and concluding with the onset of plateau conditions (i.e. the rising limb). Across the rising limb, 15NO3:Cl was regressed against the percentage of water that had resided in the transient storage zone (calculated from the TS modeling). The y-intercept thus provides an estimate of the plateau 15NO3:Cl ratio in the absence of NO3 uptake within the transient storage zone. Algebraic expressions were used to calculate the percentage of NO3 uptake occurring in the advective and transient storage sub-compartments. Application of RLA successfully estimated uptake coefficients for NO3 in the subsurface when the physical dimensions of that habitat were substantial (AS/A > 0.2) and when plateau conditions at the sampling location consisted of waters in which at least 25% had resided in the

  11. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...

  12. Mixed convection of ferrofluids in a lid driven cavity with two rotating cylinders

    Directory of Open Access Journals (Sweden)

    Fatih Selimefendigil

    2015-09-01

    Full Text Available Mixed convection of ferrofluid filled lid driven cavity in the presence of two rotating cylinders were numerically investigated by using the finite element method. The cavity is heated from below, cooled from driven wall and rotating cylinder surfaces and side vertical walls of the cavity are assumed to be adiabatic. A magnetic dipole source is placed below the bottom wall of the cavity. The study is performed for various values of Reynolds numbers (100 ≤ Re ≤ 1000, angular rotational speed of the cylinders (−400 ≤ Ω ≤ 400, magnetic dipole strengths (0 ≤ γ ≤ 500, angular velocity ratios of the cylinders (0.25≤Ωi/Ωj≤4 and diameter ratios of the cylinders (0.5≤Di/Dj≤2. It is observed that flow patterns and thermal transport within the cavity are affected by variation in Reynolds number and magnetic dipole strength. The results of this investigation revealed that cylinder angular velocities, ratio of the angular velocities and diameter ratios have profound effect on heat transfer enhancement within the cavity. Averaged heat transfer enhancements of 181.5 % is achieved for clockwise rotation of the cylinder at Ω = −400 compared to motionless cylinder case. Increasing the angular velocity ratio from Ω2/Ω1=0.25 to Ω2/Ω1=4 brings about 91.7 % of heat transfer enhancement.

  13. Estimate of radiation damage to low-level electronics of the RF system in the LHC cavities arising from beam gas collisions.

    Science.gov (United States)

    Butterworth, A; Ferrari, A; Tsoulou, E; Vlachoudis, V; Wijnands, T

    2005-01-01

    Monte Carlo simulations have been performed to estimate the radiation damage induced by high-energy hadrons in the digital electronics of the RF low-level systems in the LHC cavities. High-energy hadrons are generated when the proton beams interact with the residual gas. The contributions from various elements-vacuum chambers, cryogenic cavities, wideband pickups and cryomodule beam tubes-have been considered individually, with each contribution depending on the gas composition and density. The probability of displacement damage and single event effects (mainly single event upsets) is derived for the LHC start-up conditions.

  14. Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72

    Science.gov (United States)

    Kumar G., Udaya; S., Suresh; M. R., Thansekhar; Babu P., Dinesh

    2017-11-01

    Effect of varying diameter of metal nanowires on pool boiling heat transfer performance is presented in this study. Copper nanowires (CuNWs) of four different diameters (∼35 nm, ∼70 nm, ∼130 nm and ∼200 nm) were grown directly on copper specimen using template-based electrodeposition technique. Both critical heat flux (CHF) and boiling heat transfer coefficient (h) were found to be improved in surfaces with nanowires as compared to the bare copper surface. Moreover, both the parameters were found to increase with increasing diameter of the nanowires. The percentage increases observed in CHF for the samples with nanowires were 38.37%, 40.16%, 48.48% and 45.57% whereas the percentage increase in the heat transfer coefficient were 86.36%, 95.45%, 184.1% and 131.82% respectively as compared to the bare copper surface. Important reasons believed for this enhancement were improvement in micron scale cavity density and cavity size which arises as a result of the coagulation and grouping of nanowires during the drying process. In addition to this, superhydrophilic nature, capillary effect, and enhanced bubble dynamics parameters (bubble frequency, bubble departure diameter, and nucleation site density) were found to be the concurring mechanisms responsible for this enhancement in heat transfer performance. Qualitative bubble dynamics analysis was done for the surfaces involved and the visual observations are provided to support the results presented and discussed.

  15. Scaling of reactor cavity wall loads and stresses

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.

    1977-11-01

    Scalings of reactor cavity wall loads and stresses are determined by deriving an analytic expression in terms of relevant parameters for each loading induced in the reactor cavity walls by fuel pellet microexplosion and by deriving associated expressions relating resulting stresses to shell thicknesses. Also identified are problems that require additional investigations to obtain satisfactory explicit stress estimates for the reactor cavity walls

  16. Temperature distribution induced by electron beam in a closed cavity

    International Nuclear Information System (INIS)

    Molhem, A.G.; Soulayman, S.Sh.

    2004-01-01

    In order to investigate heat transfer phenomena induced by EB in a closed cavity an experimental arrangement, which allows generating and focusing an electron beam in to closed cavity within 1 mm in diameter and measuring temperature all over any perpendicular section to the EB, is used for this purpose. Experimental data show that the radial distribution of current density and temperature is normal with pressure and location dependent parameters. Moreover, there is two distinguishable regions in the EB: one is central while the other surrounds the first one. (orig.)

  17. Explosive and radio-selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    40

    sitive measurements will lead to very accurate mass loss estimation in these supernovae. .... transients are powerful probes of intervening media owing to dispersion ...... A., & Chandra, P. 2011, Nature Communications,. 2, 175. Chakraborti, S.

  18. Efficient quality-eactor estimation of a vertical cavity employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2017-01-01

    Hybrid vertical cavity lasers employing high-contrast grating reflectors are attractive for Si-integrated light source applications. Here, a method for reducing a three-dimensional (3D) optical simulation of this laser structure to lower-dimensional simulations is suggested, which allows for very...... fast and approximate analysis of the quality-factor of the 3D cavity. This approach enables us to efficiently optimize the laser cavity design without performing cumbersome 3D simulations....

  19. Full standard triple wireless transmission over 50m large core diameter graded index POF

    NARCIS (Netherlands)

    Shi, Y.; Morant, M.; Tangdiongga, E.; Llorente, R.; Koonen, A.M.J.

    2011-01-01

    We demonstrated for the first time a successful radio-over-1mm core diameter plastic optical fibre transmission of three simultaneous full standard wireless signals. Up to 50-m long transmission distance employing an eye-safe vertical cavity surface emitting laser has been achieved. The transmission

  20. Variability Among Breast Radiation Oncologists in Delineation of the Postsurgical Lumpectomy Cavity

    International Nuclear Information System (INIS)

    Landis, Daniel M.; Luo Weixiu; Song Jun; Bellon, Jennifer R.; Punglia, Rinaa S.; Wong, Julia S.; Killoran, Joseph H.; Gelman, Rebecca; Harris, Jay R.

    2007-01-01

    Purpose: Partial breast irradiation (PBI) is becoming more widely used. Accurate determination of the surgical lumpectomy cavity volume is more critical with PBI than with whole breast radiation therapy. We examined the interobserver variability in delineation of the lumpectomy cavity among four academic radiation oncologists who specialize in the treatment of breast cancer. Methods and Materials: Thirty-four lumpectomy cavities in 33 consecutive patients were evaluated. Each physician contoured the cavity and a 1.5-cm margin was added to define the planning target volume (PTV). A cavity visualization score (CVS) was assigned (1-5). To eliminate bias, the physician of record was eliminated from the analysis in all cases. Three measures of variability of the PTV were developed: average shift of the center of mass (COM), average percent overlap between the PTV of two physicians (PVO), and standard deviation of the PTV. Results: Of variables examined, pathologic resection volume was significantly correlated with CVS, with larger volumes more easily visualized. Shift of the COM decreased and PVO increased significantly as CVS increased. For CVS 4 and 5 cases, the average COM shift was 3 mm and 2 mm, respectively, and PVO was 77% and 87%, respectively. In multiple linear regression, pathologic diameter >4 cm and CVS ≥3 were significantly associated with smaller COM shift. When CVS was omitted from analysis, PVO was significantly larger with pathologic diameter ≥5 cm, days to planning <36, and older age. Conclusions: Even among radiation oncologists who specialize in breast radiotherapy, there can be substantial differences in delineation of the postsurgical radiotherapy target volume. Large treatment margins may be prudent if the cavity is not clearly defined

  1. Orion EFT-1 Cavity Heating Tile Experiments and Environment Reconstruction

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Oliver, Brandon; Hyatt, Andrew; Rezin, Marc

    2016-01-01

    Developing aerothermodynamic environments for deep cavities, such as those produced by micrometeoroids and orbital debris impacts, poses a great challenge for engineers. In order to assess existing cavity heating models, two one-inch diameter cavities were flown on the Orion Multi-Purpose Crew Vehicle during Exploration Flight Test 1 (EFT1). These cavities were manufactured with depths of 1.0 in and 1.4 in, and they were both instrumented. Instrumentation included surface thermocouples upstream, downstream and within the cavities, and additional thermocouples at the TPS-structure interface. This paper will present the data obtained, and comparisons with computational predictions will be shown. Additionally, the development of a 3D material thermal model will be described, which will be used to account for the three-dimensionality of the problem when interpreting the data. Furthermore, using a multi-dimensional inverse heat conduction approach, a reconstruction of a time- and space-dependent flight heating distribution during EFT1 will be presented. Additional discussions will focus on instrumentation challenges and calibration techniques specific to these experiments. The analysis shown will highlight the accuracies and/or deficiencies of current computational techniques to model cavity flows during hypersonic re-entry.

  2. Estimate of radiation damage to low-level electronics of the RF system in the LHC cavities arising from beam gas collisions

    International Nuclear Information System (INIS)

    Butterworth, A.; Ferrari, A.; Tsoulou, E.; Vlachoudis, V.; Wijnands, T.

    2005-01-01

    Monte Carlo simulations have been performed to estimate the radiation damage induced by high-energy hadrons in the digital electronics of the RF low-level systems in the LHC cavities. High-energy hadrons are generated when the proton beams interact with the residual gas. The contributions from various elements - vacuum chambers, cryogenic cavities, wideband pickups and cryo-module beam tubes - have been considered individually, with each contribution depending on the gas composition and density. The probability of displacement damage and single event effects (mainly single event upsets) is derived for the LHC start-up conditions. (authors)

  3. Interaction of IREB with a cavity

    International Nuclear Information System (INIS)

    Sawhney, R.; Mishra, Mamta; Purkayastha, A.D.; Rambabu, P.; Maheshwari, K.P.

    1991-01-01

    The propagation of an intense pulsed relativistic electron beam (IREB) through a cavity resonator is considered. The cavity gets shock excited. The electromagnetic fields so generated interact with the beam in such a way that the energy is transferred from the front of the beam to the back. As a result the beams gets energized but shortened in time. Analysis for the chosen dominant mode of the cavity viz. TMsub(010) is carried out. The induced electric field excited is calculated and the accelerating potential is estimated. The results are compared with the recent-experiments. (author). 5 refs., 1 fig

  4. Diameter-speed relation of sprite streamers

    International Nuclear Information System (INIS)

    Kanmae, T; Stenbaek-Nielsen, H C; McHarg, M G; Haaland, R K

    2012-01-01

    Propagation and splitting of sprite streamers has been observed at high temporal and spatial resolution using two intensified high-speed CMOS cameras recording at 10 000 and 16 000 frames per second. Concurrent video recordings from a remote site provided data for triangulation allowing us to determine accurate altitude scales for the sprites. Diameters and speeds of the sprite streamers were measured from the high-speed images, and the diameters were scaled to the reduced diameters based on the triangulated locations. The sprite streamers with larger reduced diameter move faster than those with smaller diameter; the relation between the reduced diameter and speed is roughly linear. The reduced diameters at ≈65-70 km altitude are larger than streamer diameters measured at ground pressure in laboratory discharges indicating a deviation from the similarity law possibly due to the effects of the photoionization and an expansion of the streamer head along its propagation over a long distance. The reduced diameter and speed of the sprite streamers agree well with the diameter-velocity relation proposed by Naidis (2009 Phys. Rev. E 79 057401), and the peak electric field of the sprite streamers is estimated to be approximately 3-5 times the breakdown threshold field. (paper)

  5. Estimation of center line and diameter of brain blood vessel using three-dimensional blood vessel matching method with head three-dimensional CTA image

    International Nuclear Information System (INIS)

    Maekawa, Masashi; Shinohara, Toshihiro; Nakayama, Masato; Nakasako, Noboru

    2010-01-01

    To support and automate the brain blood vessel disease diagnosis, a novel method to obtain the center line and the diameter of a blood vessel is proposed with a three-dimensional head computed tomographic angiography (CTA) image. Although the line thinning processing with distance transform or gray information is generally used to obtain the blood vessel center line, this method is not essentially one to obtain the center line and tends to yield extra lines depending on CTA images. In this study, the center line of the blood vessel is obtained by tracing the vessel. The blood vessel is traced by sequentially estimating the center point and direction of the blood vessel. The center point and direction of the blood vessel are estimated by taking the correlation between the blood vessel and a solid model of the blood vessel that is designed by considering noise influence. In addition, the vessel diameter is also estimated by correlating the blood vessel and the blood vessel model of which the diameter is variable. The validity of the proposed method is confirmed by experimentally applied the proposed method to an actual three-dimensional head CTA image. (author)

  6. CT findings of solitary tuberculoma with a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Dong Erk; Goo, Hyun Woo; Song, Koun Sik; Lim, Tae Hwan; Kim, Won Dong [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1994-09-15

    Differential diagnosis of solitary pulmonary nodule with cavity includes lung abscess, tuberculoma, bronchogenic carcinoma, metastasis and trauma, etc. We analyzed the CT appearance of tuberculoma presenting as a solitary pulmonary nodule with cavity and describe the findings which suggest tuberculoma in the differential diagnosis of solitary pulmonary nodule with cavity. 25 patients with solitary pulmonary nodule(diameter less than 4 cm) without surrounding parenchymal consolidation on chest radiograph, who had a cavity within the nodule on CT, were included in our study. Density of the nodule, maximal wall thickness, the character of inner and outer wall margin, location of cavity within nodule, location of the nodule, presence or absence of satellite lesions and calcification were analyzed. Solitary tuberculoma with cavity showed maximal wall thickness more than 15 m in 40%(10/25) and 5-14 mm in 56%(14/25), eccentric cavitation in 84%(21/25) and concentric cavitation in 16%(4/25), spiculated outer wall margin in 56%(14/15) and lobulated margin in 32%(8/25), smooth inner wall margin in 60%(15/25) and nodular margin in 40%(10/25). CT density of the cavity wall compared wth the chest wall muscle was low in 84%(21/25) and isodense in 16%(4/25). Accompanying satellite lesions were seen in 84%(21/25) and calcification was visible in 28%(7/25). The CT findings of solitary tuberculoma with cavity are relative peripheral location, eccentric cavitation, finely spiculated outer wall margin, and mean maximal wall thickness of 13.2 mm, which are also the common features of malignant nodule. However, relative low density of the nodule compared to the chest wall muscle and surrounding satellite lesions can be additional clues favouring solitary tuberculoma with cavity on CT.

  7. Construction of the LITL cavity structure

    International Nuclear Information System (INIS)

    Itoh, S.; Masuda, S.; Ukai, Y.; Hirao, Y.

    1984-01-01

    This report presents briefly the mechanical consideration for the 100 MHz four-vane RFQ (radio frequency quadrupole accelerator) structure construction. At first, the theoretical vane shape required to obtain the RFQ electric field distribution was determined. A numerically controlled milling machine was employed for the precise machining of the complicated shape. The data sets for NC machining and for checking the size of three-dimensional coordinates were made up. A small vane model was machined by way of trial experiment to check the data to verify the circular interpolation programmed NC machining method, and to investigate cutter interference. The errors in the measurement in machining were less than +- 30 micrometer. The resonator tank is 56 cm in inner diameter and 138 cm in length, and is made of mild steel of 35 mm thickness. The inside wall was plated with copper thickly. Various conditions for the copper plating were investigated. Four vanes were assembled within the cavity of the RFQ. The vanes were built in the cavity tank with high dimensional accuracy. It was a matter of primary concern to design acceptable mechanical rf joints and select suitable rf contact elements for a high Q value of the RFQ resonator cavity. Finally, the Q value was measured, and was 10,600. The cavity was able to be evacuated to 10 -7 Torr. (Kato, T.)

  8. Dependence of mis-alignment sensitivity of ring laser gyro cavity on cavity parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sun Feng; Zhang Xi; Zhang Hongbo; Yang Changcheng, E-mail: sunok1234@sohu.com [Huazhong Institute of Electro-Optics - Wuhan National Lab for Optoelectronics, Wuhan, Hubei (China)

    2011-02-01

    The ring laser gyroscope (RLG), as a rotation sensor, has been widely used for navigation and guidance on vehicles and missiles. The environment of strong random-vibration and large acceleration may deteriorate the performance of the RLG due to the vibration-induced tilting of the mirrors. In this paper the RLG performance is theoretically analyzed and the parameters such as the beam diameter at the aperture, cavity mirror alignment sensitivities and power loss due to the mirror tilting are calculated. It is concluded that by carefully choosing the parameters, the significant loss in laser power can be avoided.

  9. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  10. Large eddy simulation of particulate flow inside a differentially heated cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bosshard, Christoph, E-mail: christoph.bosshard@a3.epfl.ch [Paul Scherrer Institut, Laboratory for Thermalhydraulics (LTH), 5232 Villigen PSI (Switzerland); Dehbi, Abdelouahab, E-mail: abdel.dehbi@psi.ch [Paul Scherrer Institut, Laboratory for Thermalhydraulics (LTH), 5232 Villigen PSI (Switzerland); Deville, Michel, E-mail: michel.deville@epfl.ch [École Polytechnique Fédérale de Lausanne, STI-DO, Station 12, 1015 Lausanne (Switzerland); Leriche, Emmanuel, E-mail: emmanuel.leriche@univ-lille1.fr [Université de Lille I, Laboratoire de Mécanique de Lille, Avenue Paul Langevin, Cité Scientifique, F-59655 Villeneuve d’Ascq Cédex (France); Soldati, Alfredo, E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine and Centro Interdipartimentale di Fluidodinamica e Idraulica, Universitá degli Studi di Udine, Udine (Italy)

    2014-02-15

    Highlights: • Nuclear accident leads to airborne radioactive particles in containment atmosphere. • Large eddy simulation with particles in differentially heated cavity is carried out. • LES results show negligible differences with direct numerical simulation. • Four different particle sets with diameters from 10 μm to 35 μm are tracked. • Particle removal dominated by gravity settling and turbophoresis is negligible. - Abstract: In nuclear safety, some severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity to the environment should a containment break occur. As a model for the containment, we use the three-dimensional differentially heated cavity problem. The differentially heated cavity is a cubical box with a hot wall and a cold wall on vertical opposite sides. On the other walls of the cube we have adiabatic boundary conditions. For the velocity field the no-slip boundary condition is applied. The flow of the air in the cavity is described by the Boussinesq equations. The method used to simulate the turbulent flow is the large eddy simulation (LES) where the dynamics of the large eddies is resolved by the computational grid and the small eddies are modelled by the introduction of subgrid scale quantities using a filter function. Particle trajectories are computed using the Lagrangian particle tracking method, including the relevant forces (drag, gravity, thermophoresis). Four different sets with each set containing one million particles and diameters of 10 μm, 15 μm, 25 μm and 35 μm are simulated. Simulation results for the flow field and particle sizes from 15 μm to 35 μm are compared to previous results from direct numerical simulation (DNS). The integration time of the LES is three times longer and the smallest particles have been simulated only in the LES. Particle

  11. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seon Yeong; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hwang, Ji-Gwang; Heo, A.; Won, Jang Si [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Vinokurov, Nikolay A.; Jeong, Young UK, E-mail: yujung@kaeri.re.kr; Hee Park, Seong; Jang, Kyu-Ha [WCI Center for Quantum-Beam-based Radiation Research, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon (Korea, Republic of)

    2015-01-15

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  12. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    Science.gov (United States)

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  13. 150 Mb/s wifi transmission over 50m large core diameter step index POF

    NARCIS (Netherlands)

    Shi, Y.; Nieto Munoz, M.; Okonkwo, C.M.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2011-01-01

    We demonstrate successful transmission of WiFi signals over 50m step-index plastic optical fibre with 1mm core diameter employing an eye-safe resonant cavity light emitting diode and an avalanche photodetector. The EVM performance of 4.1% at signal data rate of 150Mb/s is achieved.

  14. Best-estimate methodology for analysis of anticipated transients without scram in pressurized water reactors

    International Nuclear Information System (INIS)

    Rebollo, L.

    1993-01-01

    Union Fenosa, a utility company in Spain, has performed research on pressurized water reactor (PWR) safety with respect to the development of a best-estimate methodology for the analysis of anticipated transients without scram (ATWS), i.e., those anticipated transients for which failure of the reactor protection system is postulated. A scientific and technical approach is adopted with respect to the ATWS phenomenon as it affects a PWR, specifically the Zorita nuclear power plant, a single-loop Westinghouse-designed PWR in Spain. In this respect, an ATWS sequence analysis methodology based on published codes that is generically applicable to any PWR is proposed, which covers all the anticipated phenomena and defines the applicable acceptance criteria. The areas contemplated are cell neutron analysis, core thermal hydraulics, and plant dynamics, which are developed, qualified, and plant dynamics, which are developed, qualified, and validated by comparison with reference calculations and measurements obtained from integral or separate-effects tests

  15. High beta lasing in micropillar cavities with adiabatic layer design

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Lorke, M.

    2013-01-01

    We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...... of the threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....

  16. Observation of single quantum dots in GaAs/AlAs micropillar cavities

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Philipp; Karl, Matthias; Hu, Dongzhi; Schaadt, Daniel M.; Kalt, Heinz; Hetterich, Michael [Institut fuer Angewandte Physik, Universitaet Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), Karlsruhe (Germany)

    2009-07-01

    In our contribution we present the fabrication steps of micropillar cavities and their optical properties. The layer structure consisting of a GaAs-based lambda-cavity sandwiched between two GaAs/AlAs distributed Bragg reflectors is grown by molecular-beam epitaxy. In(Ga)As quantum dots, emitting at around 950 nm, are embedded as optically active medium in the middle of the cavity. The pillars are milled out of this structure with a focused ion-beam. A confocal micro-photoluminescence set-up allows to measure optical cavity modes as well as single quantum dots in the pillars when using low excitation intensity. This enables us to observe a (thermal) shift of the single quantum dot peaks relative to the cavity mode. In addition, we increased the numerical aperture of the set-up (originally 0.4) with a solid immersion lens up to 0.8. Thus we are able to detect the fundamental mode of pillars with very small diameters. Furthermore, the collection efficiency increases substantially.

  17. Albedo analytical method for multi-scattered neutron flux calculation in cavity

    International Nuclear Information System (INIS)

    Shin, Kazuo; Selvi, S.; Hyodo, Tomonori

    1986-01-01

    A simple formula which describes multi-scattered neutron flux in a spherical cavity was derived based on the albedo concept. The formura treats a neutron source which has an arbitrary energy-angle distribution and is placed at any point in the cavity. The derived formula was applied to the estimation of neutron fluxes in two cavities, i.e. a spherical concrete cell with a 14-MeV neutron source at the center and the ''YAYOI'' reactor cavity with a pencil beam of reactor neutrons. The results of the analytical formula agreed very well with the reference data in the both problems. It was concluded that the formula is applicable to estimate the neutron fluxes in a spherical cell except for special cases that tangential source neutrons are incident to the cavity wall. (author)

  18. M10.3.4: CLIC crab cavity specifications completed

    CERN Document Server

    Dexter, A; Ambattu, P; Shinton, I; Jones, R

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  19. CLIC CRAB CAVITY SPECIFICATIONS MILESTONE: M10.3.4

    CERN Document Server

    Ambattu, P; Dexter, A; Jones, R; McIntosh, P; Shinton, I

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  20. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    Science.gov (United States)

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  1. User guide for HCR Estimator 2.0: software to calculate cost and revenue thresholds for harvesting small-diameter ponderosa pine.

    Science.gov (United States)

    Dennis R. Becker; Debra Larson; Eini C. Lowell; Robert B. Rummer

    2008-01-01

    The HCR (Harvest Cost-Revenue) Estimator is engineering and financial analysis software used to evaluate stand-level financial thresholds for harvesting small-diameter ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in the Southwest United States. The Windows-based program helps contractors and planners to identify costs associated with tree...

  2. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Directory of Open Access Journals (Sweden)

    Jeffrey Tuck

    2013-12-01

    Full Text Available Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the

  3. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Science.gov (United States)

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important

  4. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO

    International Nuclear Information System (INIS)

    Mueller, R.; Lipinski, W.; Steinfeld, A.

    2008-01-01

    A numerical and experimental investigation is carried out in a solar thermochemical reactor for the thermal dissociation of ZnO at 2000 K using concentrated solar energy. The reactor consists of a cavity-receiver lined with ZnO particles and directly exposed to high-flux irradiation. A transient heat transfer model is formulated to link the rate of radiation, convection, and conduction heat transfer to the reaction kinetics. The radiosity and Monte Carlo methods are applied to obtain the distribution of net radiative fluxes at the internal surfaces of the reactor cavity and at the surface of the ZnO bed. Validation is accomplished in terms of the calculated and measured transient temperature profiles and chemical reaction rates

  5. Transient analysis of intercalation electrodes for parameter estimation

    Science.gov (United States)

    Devan, Sheba

    An essential part of integrating batteries as power sources in any application, be it a large scale automotive application or a small scale portable application, is an efficient Battery Management System (BMS). The combination of a battery with the microprocessor based BMS (called "smart battery") helps prolong the life of the battery by operating in the optimal regime and provides accurate information regarding the battery to the end user. The main purposes of BMS are cell protection, monitoring and control, and communication between different components. These purposes are fulfilled by tracking the change in the parameters of the intercalation electrodes in the batteries. Consequently, the functions of the BMS should be prompt, which requires the methodology of extracting the parameters to be efficient in time. The traditional transient techniques applied so far may not be suitable due to reasons such as the inability to apply these techniques when the battery is under operation, long experimental time, etc. The primary aim of this research work is to design a fast, accurate and reliable technique that can be used to extract parameter values of the intercalation electrodes. A methodology based on analysis of the short time response to a sinusoidal input perturbation, in the time domain is demonstrated using a porous electrode model for an intercalation electrode. It is shown that the parameters associated with the interfacial processes occurring in the electrode can be determined rapidly, within a few milliseconds, by measuring the response in the transient region. The short time analysis in the time domain is then extended to a single particle model that involves bulk diffusion in the solid phase in addition to interfacial processes. A systematic procedure for sequential parameter estimation using sensitivity analysis is described. Further, the short time response and the input perturbation are transformed into the frequency domain using Fast Fourier Transform

  6. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  7. Heritability of optic disc diameters: a twin study

    DEFF Research Database (Denmark)

    Drobnjak, Dragana; Taarnhøj, Nina Charlotte; Mitchell, Paul

    2011-01-01

    , additive genetic factors (i.e. heritability) explained 77% (95% CI: 65-85%) of variation of vertical disc diameters, whereas estimated unshared environmental effect was 23% (95% CI: 15-35%). For vertical cup diameters, heritability accounted for 70% (95% CI: 55-80%) and environmental factors 30% (95% CI...

  8. Cavity Voltage Phase Modulation MD blocks 3 and 4

    CERN Document Server

    Mastoridis, T; Butterworth, A; Molendijk, J; Tuckmantel, J

    2013-01-01

    The LHC RF/LLRF system is currently setup for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would push the klystrons to saturation. For beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam (transient beam loading) will not be corrected, but the strong RF feedback and One-Turn Delay feedback will still be active for RF loop and beam stability in physics. To achieve this, the voltage set point should be adapted for each bunch. The goal of these MDs was to test thefirmware version of an iterative algorithm that adjusts the voltage set point to achieve the optimal phase modulation for klystron forward power considerations.

  9. Accelerator cavities as a probe of millicharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Gies, H. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jaeckel, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-08-15

    We investigate Schwinger pair production of millicharged fermions in the strong electric field of cavities used for particle accelerators. Even without a direct detection mechanism at hand, millicharged particles, if they exist, contribute to the energy loss of the cavity and thus leave an imprint on the cavity's quality factor. Already conservative estimates substantially constrain the electric charge of these hypothetical particles; the resulting bounds are competitive with the currently best laboratory bounds which arise from experiments based on polarized laser light propagating in a magnetic field. We propose an experimental setup for measuring the electric current comprised of the millicharged particles produced in the cavity. (orig.)

  10. Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics

    Directory of Open Access Journals (Sweden)

    Selin Aradag

    2017-01-01

    Full Text Available Supersonic flow over cavities has been of interest since 1960s because cavities represent the bomb bays of aircraft. The flow is transient, turbulent, and complicated. Pressure fluctuations inside the cavity can impede successful weapon release. The objective of this study is to use active and passive control methods on supersonic cavity flow numerically to decrease or eliminate pressure oscillations. Jet blowing at several locations on the front and aft walls of the cavity configuration is used as an active control method. Several techniques are used for passive control including using a cover plate to separate the flow dynamics inside and outside of the cavity, trailing edge wall modifications, such as inclination of the trailing edge, and providing curvature to the trailing edge wall. The results of active and passive control techniques are compared with the baseline case in terms of pressure fluctuations, sound pressure levels at the leading edge, trailing edge walls, and cavity floor and in terms of formation of the flow structures and the results are presented. It is observed from the results that modification of the trailing edge wall is the most effective of the control methods tested leading to up to 40 dB reductions in cavity tones.

  11. Pupil Center as a Function of Pupil Diameter

    DEFF Research Database (Denmark)

    Ahmed, Zaheer; Mardanbegi, Diako; Hansen, Dan Witzner

    2016-01-01

    We investigate the gaze estimation error induced by pupil size changes using simulated data. We investigate the influence of pupil diameter changes on estimated gaze point error obtained by two gaze estimation models. Simulation data show that at wider viewing angles and at small eye...

  12. Modeling and simulation of a molten salt cavity receiver with Dymola

    International Nuclear Information System (INIS)

    Zhang, Qiangqiang; Li, Xin; Wang, Zhifeng; Zhang, Jinbai; El-Hefni, Baligh; Xu, Li

    2015-01-01

    Molten salt receivers play an important role in converting solar energy to thermal energy in concentrating solar power plants. This paper describes a dynamic mathematical model of the molten salt cavity receiver that couples the conduction, convection and radiation heat transfer processes in the receiver. The temperature dependence of the material properties is also considered. The radiosity method is used to calculate the radiation heat transfer inside the cavity. The outlet temperature of the receiver is calculated for 11 sets of transient working conditions. The simulation results compare well with experimental data, thus the model can be further used in system simulations of entire power plants. - Highlights: • A detailed model for molten salt cavity receiver is presented. • The model couples the conduction, convection and thermal radiation. • The simulation results compare well with experimental data. • The model can be further used for many purposes.

  13. Development of 400- to 450-MHz RFQ resonator-cavity mechanical designs

    International Nuclear Information System (INIS)

    Hansborough, L.D.

    1982-01-01

    In the development of the radio-frequency quadrupole (RFQ) linac, the resonator cavity's mechanical design may be a challenge similar in magnitude to that of the development of the accelerator structure itself. Experience with the all-copper 425-MHz RFQ proof-of-principle linac has demonstrated that the resonator cavity must be structurally stiff and easily tunable. This experience has led to development of copper-plated steel structures having vanes that may be moved within a cylinder for tuning. Design of a flexible vane-to-cylinder radio-frequency (rf) joint, the vane, and the cylinder has many constraints dictated by the small-diameter cavities in the 400-MHz-frequency region. Two types of flexible, mechanical vane-to-cylinder rf joints are being developed at Los Alamos: the C-seal and the rf clamp-joint

  14. Estimation and tracking of AP-diameter of the inferior vena cava in ultrasound images using a novel active circle algorithm.

    Science.gov (United States)

    Karami, Ebrahim; Shehata, Mohamed S; Smith, Andrew

    2018-05-04

    Medical research suggests that the anterior-posterior (AP)-diameter of the inferior vena cava (IVC) and its associated temporal variation as imaged by bedside ultrasound is useful in guiding fluid resuscitation of the critically-ill patient. Unfortunately, indistinct edges and gaps in vessel walls are frequently present which impede accurate estimation of the IVC AP-diameter for both human operators and segmentation algorithms. The majority of research involving use of the IVC to guide fluid resuscitation involves manual measurement of the maximum and minimum AP-diameter as it varies over time. This effort proposes using a time-varying circle fitted inside the typically ellipsoid IVC as an efficient, consistent and novel approach to tracking and approximating the AP-diameter even in the context of poor image quality. In this active-circle algorithm, a novel evolution functional is proposed and shown to be a useful tool for ultrasound image processing. The proposed algorithm is compared with an expert manual measurement, and state-of-the-art relevant algorithms. It is shown that the algorithm outperforms other techniques and performs very close to manual measurement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. An Estimation of Risk Impact of Anticipated Transients without Scram for a KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seok Jung; Yang Joon Eon

    2006-07-15

    Anticipated transient without scram (ATWS) event is an accident sequence with large risk impact, while it is a beyond design basis accident (BDBA). We have estimated a risk due to an ATWS accident sequence for the KSNP in consideration of the recent accident analysis results. The SECY-83-293's model for the CE type plants has been used in a risk estimation of ATWS. A risk estimation due to an ATWS for the KSNP has been performed in consideration of the recent ATWS accident analysis results and plant information. We reviewed influence factors in the SECY-83-293's model, these factors have been re-estimated by using current information and PSA results for a KSNP. A risk due to an ATWS has been estimated as 3.6E-6/yr of CDF by using domestic aspect and recent KSNP information. A sensitivity study for the UET variation has been performed. As the results of the sensitivity analysis, the overall risk spectrum by the UET variation is bounded between 7.80E-7/yr to 8.00E-6/yr of CDF. As the result of the current study, the risk due to an ATWS accident sequence has been identified as a considerable impact on the entire risk of a KSNP, so the risk estimation of that plant should be upgraded by considering the recent information like the ATWS accident analysis results. Finally, we expect that this study can become a basis for the entire risk estimation of the referred plant.

  17. Automated estimation of abdominal effective diameter for body size normalization of CT dose.

    Science.gov (United States)

    Cheng, Phillip M

    2013-06-01

    Most CT dose data aggregation methods do not currently adjust dose values for patient size. This work proposes a simple heuristic for reliably computing an effective diameter of a patient from an abdominal CT image. Evaluation of this method on 106 patients scanned on Philips Brilliance 64 and Brilliance Big Bore scanners demonstrates close correspondence between computed and manually measured patient effective diameters, with a mean absolute error of 1.0 cm (error range +2.2 to -0.4 cm). This level of correspondence was also demonstrated for 60 patients on Siemens, General Electric, and Toshiba scanners. A calculated effective diameter in the middle slice of an abdominal CT study was found to be a close approximation of the mean calculated effective diameter for the study, with a mean absolute error of approximately 1.0 cm (error range +3.5 to -2.2 cm). Furthermore, the mean absolute error for an adjusted mean volume computed tomography dose index (CTDIvol) using a mid-study calculated effective diameter, versus a mean per-slice adjusted CTDIvol based on the calculated effective diameter of each slice, was 0.59 mGy (error range 1.64 to -3.12 mGy). These results are used to calculate approximate normalized dose length product values in an abdominal CT dose database of 12,506 studies.

  18. PREDICTIVE ACCURACY OF TRANSCEREBELLAR DIAMETER IN COMPARISON WITH OTHER FOETAL BIOMETRIC PARAMETERS FOR GESTATIONAL AGE ESTIMATION AMONG PREGNANT NIGERIAN WOMEN.

    Science.gov (United States)

    Adeyekun, A A; Orji, M O

    2014-04-01

    To compare the predictive accuracy of foetal trans-cerebellar diameter (TCD) with those of other biometric parameters in the estimation of gestational age (GA). A cross-sectional study. The University of Benin Teaching Hospital, Nigeria. Four hundred and fifty healthy singleton pregnant women, between 14-42 weeks gestation. Trans-cerebellar diameter (TCD), biparietal diameter (BPD), femur length (FL), abdominal circumference (AC) values across the gestational age range studied. Correlation and predictive values of TCD compared to those of other biometric parameters. The range of values for TCD was 11.9 - 59.7mm (mean = 34.2 ± 14.1mm). TCD correlated more significantly with menstrual age compared with other biometric parameters (r = 0.984, p = 0.000). TCD had a higher predictive accuracy of 96.9% ± 12 days), BPD (93.8% ± 14.1 days). AC (92.7% ± 15.3 days). TCD has a stronger predictive accuracy for gestational age compared to other routinely used foetal biometric parameters among Nigerian Africans.

  19. Evolution of pH during in-situ leaching in small concrete cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saguees, A.A. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil and Environmental Engineering; Moreno, E.I. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil and Environmental Engineering]|[CINVESTAV Merida-Unit (Mexico); Andrade, C. [CSIC, Madrid (Spain). Inst. Eduardo Torroja de Ciencias de la Construccion

    1997-11-01

    Small amounts (0.4 cc) of neutral water placed in small cylindrical cavities (5 mm diameter) in concrete exposed to 100% relative humidity first developed a pH comparable to that of a saturated Ca(OH){sub 2} solution. The pH then increased over a period of days-weeks toward a higher terminal value. A micro pH electrode arrangement was used. This behavior was observed in samples of 12 different concrete mix designs, including some with pozzolanic additions. The average terminal cavity pH closely approached that of expressed pore water from the same concretes. A simplified mathematical model reproduced the experimentally observed behavior. The model assumed inward diffusional transport of the pH-determining species in the surrounding concrete pore solution. The experimental results were consistent with the model predictions when using diffusion parameters on the order of those previously reported for alkali cations in concrete. The cavity size, cavity water content, and exposure to atmospheric CO{sub 2} should be minimized when attempting to obtain cavity pH values approaching those of the surrounding pore water.

  20. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  1. Estimation of the fustal diameter on the central knotty cylinder in oak basal logs, Chile

    Directory of Open Access Journals (Sweden)

    Patricio Corvalán Vera

    2018-01-01

    Full Text Available In order to determine the diameter of the central knotted cylinder both alive and dead, a total of 60 trees belonging to the upper quartile of diametric classes in unmanaged renewal of N. obliqua from the Maule foothills were sampled. It is assumed that these are determined by the lowest living and dead branch present in tree height, respectively. We analyzed the relationships between the diameter of the central knotty cylinder, and the diameters at the lower end of logs 1.2, 2.4 and 3.6 m above the stump, the normal diameter and the insertion height of the first branch. From the analysis it is deduced that: i the diameter of the live and dead central knotted cylinder increases linearly with the normal diameter of the tree, ii that the diameter at the smaller end of the logs increases as it does and decreases as increases in height above the ground and iii that the fustal diameter on the dead central knotty cylinder increases linearly with the normal diameter and the insertion height of the lowest dead branch of the tree, allowing to determine the zone of occlusion of the knots of the tree.

  2. Gas-core reactor power transient analysis. Final report

    International Nuclear Information System (INIS)

    Kascak, A.F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of the study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process. (auth)

  3. Analysis of forced convective transient boiling by homogeneous model of two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao

    1985-01-01

    Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)

  4. Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver

    International Nuclear Information System (INIS)

    Loni, R.; Kasaeian, A.B.; Mahian, O.; Sahin, A.Z.

    2016-01-01

    Highlights: • A non-regenerative Organic Rankine Cycle has been analyzed. • R113, R601, R11, R141b, Ethanol and Methanol were used as the working fluid. • A parabolic dish concentrator with a square prismatic cavity receiver was used. • Thermal efficiency, second law efficiency, and net power output were analyzed. - Abstract: In this study, a non-regenerative Organic Rankine Cycle (ORC) has been thermodynamically analyzed under superheated conditions, constant evaporator pressure of 2.5 MPa, and condenser temperature of 300 K. R113, R601, R11, R141b, Ethanol and Methanol were employed as the working fluid. A parabolic dish concentrator with a square prismatic tubular cavity receiver was used as the heat source of the ORC system. The effects of the tube diameter, the cavity depth, and the solar irradiation on the thermodynamic performance of the selected working fluid were investigated. Some thermodynamic parameters were analyzed in this study. These thermodynamic parameters included the thermal efficiency, second law efficiency, total irreversibility, availability ratio, mass flow rate, and net power output. The results showed that, among the selected working fluids, methanol had the highest thermal efficiency, net power output, second law efficiency, and availability ratio in the range of turbine inlet temperature (TIT) considered. On the other hand, methanol had the smallest total irreversibility in the same range of TIT. The results showed also that mass flow rate and consequently the net power output increased for higher solar irradiation, smaller tube diameter, and for the case of cubical cavity receiver (i.e. cavity depth h equal to the receiver aperture side length a).

  5. OECD/NRC BWR Turbine Trip Transient Benchmark as a Basis for Comprehensive Qualification and Studying Best-Estimate Coupled Codes

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Olson, Andy; Sartori, Enrico

    2004-01-01

    An Organisation for Economic Co-operation and Development (OECD)/U.S. Nuclear Regulatory Commission (NRC)-sponsored coupled-code benchmark has been initiated for a boiling water reactor (BWR) turbine trip (TT) transient. Turbine trip transients in a BWR are pressurization events in which the coupling between core space-dependent neutronic phenomena and system dynamics plays an important role. In addition, the available real plant experimental data make this benchmark problem very valuable. Over the course of defining and coordinating the BWR TT benchmark, a systematic approach has been established to validate best-estimate coupled codes. This approach employs a multilevel methodology that not only allows for a consistent and comprehensive validation process but also contributes to the study of different numerical and computational aspects of coupled best-estimate simulations. This paper provides an overview of the OECD/NRC BWR TT benchmark activities with emphasis on the discussion of the numerical and computational aspects of the benchmark

  6. The economic impact of reactor transients

    International Nuclear Information System (INIS)

    Rossin, A.D.; Vine, G.L.

    1984-01-01

    This chapter discusses the cost estimation of transients and the causal relationship between transients and accidents. It is suggested that the calculation of the actual cost of a transient that has occurred is impossible without computerized records. Six months of operating experience reports, based on a survey of pressurized water reactors (PWRs) and boiling water reactors (BWRs) conducted by the Nuclear Safety Analysis Center (NSAC), are analyzed. The significant costs of a reactor transient are the repair costs resulting from severe damage to plant equipment, the cost of scrams (the actions the system is designed to take to avoid safety risks), US NRC fines, negative publicity, utility rates and revenues. It is estimated that the Three Mile Island-2 accident cost the US over $100 billion in nuclear plant delays and cancellations, more expensive fuel, oil imports, backfits, bureaucratic, administrative and legal costs, and lost productivity

  7. Numerical analysis of the bubble detachment diameter in nucleate boiling

    International Nuclear Information System (INIS)

    Lamas, M I; Sáiz Jabardo, J M; Arce, A; Fariñas, P

    2012-01-01

    The present paper presents a tri-dimensional CFD (Computational Fluid Dynamics) model to investigate the fluid flow around bubbles attached to heated walls. Transient solutions of the governing field equations in a domain containing the bubbles and the surrounding liquid have been obtained. The nucleation, growing and detachment processes have been analyzed. Concerning the software, the open source OpenFOAM has been used. Special attention has been given to the bubble detachment diameter. Two mechanisms have been considered as physically related to the detachment: surface tension and buoyancy. As expected, it has been verified that the bubble detachment diameter depends on the contact angle, operating pressure and properties of the fluid. Several fluids have been considered (water, R134a, ammonia and R123), as well as several operating pressures (between 0.1 and 10 bar) and contact angles (between 10 and 80°). It has been concluded that the detachment diameter depends strongly on the contact angle and fluid properties and slightly on the pressure. A correlation for the bubble detachment diameter has been developed based on the obtained numerical results. Data from this expression compare reasonably well with those from other correlations from the literature.

  8. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-12-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.

  9. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  10. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  11. Development of a movable plunger tuner for the high-power RF cavity for the PEP-II B-factory

    International Nuclear Information System (INIS)

    Schwarz, H.D.; Fant, K.; Judkins, J.G.

    1997-05-01

    A 10 cm diameter by 5 cm travel plunger tuner was developed for the PEP-II RF copper cavity system. The single cell cavity including the tuner is designed to operate up to 150 kW of dissipated RF power are specially placed 8.5 cm away from the inside wall of the cavity to avoid fundamental and higher order mode resonances. The spring fingers are made of dispersion-strengthened copper to accommodate relatively high heating. The design, alignment, testing and performance of the tuner is described

  12. A Feasibility Study on the Inspection System Development of Underground Cavities Using Neutron Source

    International Nuclear Information System (INIS)

    Yim, Che Wook; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho

    2015-01-01

    The detection efficiency using the gravimetry method is significantly low; therefore, it requires large surveying time. The magnetometry method detects the cavities by the magnitude of the magnetic field. However, the magnetometry method is problematical in urban areas due to pipes and electrical installations. GPR is the method that uses high frequency electromagnetic wave. This method is widely used for the inspection; however, the detection accuracy of sinkholes can be low in specific soil types. In this study, to verify the feasibility of the neutron source-based inspection system to detect the cavity detection, the Monte Carlo simulation was performed using neutron source. The analysis shows that the detection of the cavity with the given condition is possible when the diameter of cavity is over 100 cm. However, the detection efficiency can be enough increased if some optimization strategies for the inspection are developed. Also, it is expected that the proposed inspection method can detect the expected locations of the cavities

  13. A Feasibility Study on the Inspection System Development of Underground Cavities Using Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Che Wook; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    The detection efficiency using the gravimetry method is significantly low; therefore, it requires large surveying time. The magnetometry method detects the cavities by the magnitude of the magnetic field. However, the magnetometry method is problematical in urban areas due to pipes and electrical installations. GPR is the method that uses high frequency electromagnetic wave. This method is widely used for the inspection; however, the detection accuracy of sinkholes can be low in specific soil types. In this study, to verify the feasibility of the neutron source-based inspection system to detect the cavity detection, the Monte Carlo simulation was performed using neutron source. The analysis shows that the detection of the cavity with the given condition is possible when the diameter of cavity is over 100 cm. However, the detection efficiency can be enough increased if some optimization strategies for the inspection are developed. Also, it is expected that the proposed inspection method can detect the expected locations of the cavities.

  14. Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing

    Science.gov (United States)

    Gilgannon, James; Fusseis, Florian; Menegon, Luca; Regenauer-Lieb, Klaus; Buckman, Jim

    2017-12-01

    Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener-Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener-Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.

  15. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  16. Towards a Cryogen-Free MgB2-Based Superconducting Radio Frequency Accelerating Cavities

    Science.gov (United States)

    Nassiri, Alireza

    Studies on the application of Magnesium diboride (MgB2) superconducting films have shown promise for use with the radio-frequency (SRF) accelerating cavities. MgB2\\ coating is a potential candidate to replace bulk niobium (Nb) SRF cavities. The ultimate goal of our research is to demonstrate MgB2 coating on copper cavities to allow operation at about 20 K or so as a result of the high transition temperature (Tc) of MgB2 and taking advantage of the excellent thermal conductivity of copper. Here, we will report on our recent experimental results of applying hybrid physical-chemical vapor deposition (HPCVD) to grow MgB2 films on 2-inch diameter copper discs as well as on a 2.8 GHz resonator cavity *Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.

  17. Cavity characterization for general use in linear electron accelerators

    International Nuclear Information System (INIS)

    Souza Neto, M.V. de.

    1985-01-01

    The main objective of this work is to is to develop measurement techniques for the characterization of microwave cavities used in linear electron accelerators. Methods are developed for the measurement of parameters that are essential to the design of an accelerator structure using conventional techniques of resonant cavities at low power. Disk-loaded cavities were designed and built, similar to those in most existing linear electron accelerators. As a result, the methods developed and the estimated accuracy were compared with those from other investigators. The results of this work are relevant for the design of cavities with the objective of developing linear electron accelerators. (author) [pt

  18. Generalized height-diameter models for Populus tremula L. stands

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... and stand density) into the base height-diameter models increased the accuracy of prediction for P. tremula. .... parameter estimates compared with those obtained with ... using coefficient of determination for non-linear regression (. 2. R ), ..... stochastic height-diameter model for maritime pine ecoregions in.

  19. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  20. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  1. Dayside magnetospheric and ionospheric responses to a foreshock transient on June 25, 2008: 2. 2-D evolution based on dayside auroral imaging

    OpenAIRE

    Wang, Boyi; Nishimura, Yukitoshi; Hietala, Heli; Shen, Xiao-Chen; Shi, Quanqi; Zhang, Hui; Lyons, Larry; Zou, Ying; Angelopoulos, Vassilis; Ebihara, Yusuke; Weatherwax, Allan

    2018-01-01

    The foreshock region involves localized and transient structures such as foreshock cavities and hot flow anomalies due to solar wind-bow shock interactions, and foreshock transients have been shown to lead to magnetospheric and ionospheric responses. In this paper, the interaction between a foreshock transient and the magnetosphere-ionosphere system is investigated using dayside aurora imagers revealing structures and propagation in greater detail than previously possible. A foreshock transie...

  2. Transient convergence and compaction of crushed salt as incorporated in the computer code EMOS

    International Nuclear Information System (INIS)

    Heijdra, J.J.; Hamilton, L.F.M.; Prij, J.; Slagter, W.

    1995-11-01

    An improved model for description of the transient convergence of cavities in rock salt, together with an improved model for the compaction of crushed salt is introduced. The covergence model is based on solutions of the analytical expressions based on secondary creep for a cylindrical and spherical cavity in rock salt. For the model for compaction of crushed salt the relations based on theoretical micro mechanisms have been fitted to laboratory results. A description is given of how the improved models are incorporated into the program EMOS. (orig.)

  3. Transient convergence and compaction of crushed salt as incorporated in the computer code EMOS

    Energy Technology Data Exchange (ETDEWEB)

    Heijdra, J.J.; Hamilton, L.F.M.; Prij, J.; Slagter, W.

    1995-11-01

    An improved model for description of the transient convergence of cavities in rock salt, together with an improved model for the compaction of crushed salt is introduced. The covergence model is based on solutions of the analytical expressions based on secondary creep for a cylindrical and spherical cavity in rock salt. For the model for compaction of crushed salt the relations based on theoretical micro mechanisms have been fitted to laboratory results. A description is given of how the improved models are incorporated into the program EMOS. (orig.).

  4. Crown-Stump Diameter Model for Parkia biglobosa Benth. Species in Makurdi, Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    O. Chukwu

    2017-07-01

    Full Text Available The crown of tree is the centre of physiological activity which gives an indication of the potential photosynthetic capacity on a tree. Though, its measurement remains a challenge in forest inventory task. The ability to predict crown diameter from stump diameter provides an effective technique of obtaining its estimate. This helps in detecting the excessive tree felling than actual requirements and wildlife suitability.The main objective of this study was to develop and test crown diameter prediction models for silvicultural management of naturally grown Parkia biglobosa within the University of Agriculture, Makurdi. Nine 100 m x 100 m temporary sample plots were established using simple random sampling method. Crown diameter and stump diameter were measured in all living P. biglobosa trees with stump diameter ≥10.0 cm. Least square method was used to convert the counted stumps into harvested crown dimension. Three linear and three non-linear models using stump diameter as the exploratory variable were developed and evaluated using the adjusted coefficient of determination (Adj.R2, standard error of estimate (SEE, prediction error sum of squares (PRESS and Akaike information criterion (AIC. The crown-stump diameter relationship was best described by the double logarithmic function with .The result showed that Crown diameter estimation was feasible even when the only information available is stump diameter.The resulting equation was tested for validation with independent data obtained from additional plots and was found to be desirable for estimating the crown diameter for Parkia biglobosa in Makurdi, Benue State, Nigeria.

  5. Comparative analysis of spectral unmixing and neural networks for estimating small diameter tree above-ground biomass in the State of Mississippi

    Science.gov (United States)

    Moham P. Tiruveedhula; Joseph Fan; Ravi R. Sadasivuni; Surya S. Durbha; David L. Evans

    2010-01-01

    The accumulation of small diameter trees (SDTs) is becoming a nationwide concern. Forest management practices such as fire suppression and selective cutting of high grade timber have contributed to an overabundance of SDTs in many areas. Alternative value-added utilization of SDTs (for composite wood products and biofuels) has prompted the need to estimate their...

  6. Inferring diameters of spheres and cylinders using interstitial water.

    Science.gov (United States)

    Herrera, Sheryl L; Mercredi, Morgan E; Buist, Richard; Martin, Melanie

    2018-06-04

    Most early methods to infer axon diameter distributions using magnetic resonance imaging (MRI) used single diffusion encoding sequences such as pulsed gradient spin echo (SE) and are thus sensitive to axons of diameters > 5 μm. We previously simulated oscillating gradient (OG) SE sequences for diffusion spectroscopy to study smaller axons including the majority constituting cortical connections. That study suggested the model of constant extra-axonal diffusion breaks down at OG accessible frequencies. In this study we present data from phantoms to test a time-varying interstitial apparent diffusion coefficient. Diffusion spectra were measured in four samples from water packed around beads of diameters 3, 6 and 10 μm; and 151 μm diameter tubes. Surface-to-volume ratios, and diameters were inferred. The bead pore radii estimates were 0.60±0.08 μm, 0.54±0.06 μm and 1.0±0.1 μm corresponding to bead diameters ranging from 2.9±0.4 μm to 5.3±0.7 μm, 2.6±0.3 μm to 4.8±0.6 μm, and 4.9±0.7 μm to 9±1 μm. The tube surface-to-volume ratio estimate was 0.06±0.02 μm -1 corresponding to a tube diameter of 180±70 μm. Interstitial models with OG inferred 3-10 μm bead diameters from 0.54±0.06 μm to 1.0±0.1 μm pore radii and 151 μm tube diameters from 0.06±0.02 μm -1 surface-to-volume ratios.

  7. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    International Nuclear Information System (INIS)

    Meng Qinghua; Luo Huan; Bao Shiwei; Zhou Yifan; Chen Sihai

    2011-01-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  8. Characterization of Nb coating in HIE-ISOLDE QWR superconducting accelerating cavities by means of SEM-FIB and TEM

    CERN Document Server

    Bartova, Barbora; Taborelli, M; Aebersold, A B; Alexander, D T L; Cantoni, M; Calatroni, Sergio; CERN. Geneva. ATS Department

    2015-01-01

    The Quarter Wave Resonators (QWR) high-β cavities (0.3 m diameter and 0.9 m height) are made from OFE 3D-forged copper and are coated by DC-bias diode sputtering with a thin superconducting layer of niobium. The Nb film thickness, morphology, purity and quality are critical parameters for RF performances of the cavity. They have been investigated in a detailed material study.

  9. Cavity parameters identification for TESLA control system development

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). ELHEP Lab., ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  10. Cavity parameters identification for TESLA control system development

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S.

    2005-01-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  11. Fission gas behavior during fast thermal transients

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1976-01-01

    The behavior of non-equilibrium fission in fuel elements undergoing fast thermal transients is analyzed. To facilitate the analysis, a new variable, the equilibrium variable (EV) is defined. This variable, together with bubble radius, completely specifies a bubble with respect to its size and equilibrium condition. The analysis is coded using a two-variable (radius and EV) multigroup numerical approximation that accepts as input the time-temperature history, the time-fission rate history, and the time-thermal gradient history of the fuel element. Studies were performed to test the code for convergence with respect to the time interval and the number of groups chosen. For a series of transient simulation studies, the measurements obtained at HEDL (microscopic examination of intragranular porosity in oxide fuel transient-tested in TREAT) are used. Two different transient histories were selected; the first, a high-temperature transient (HTT) with a peak at 2477 0 K and the second, a low-temperature transient (LTT) with a peak-temperature at 2000 0 K. The LTT was simulated for three different conditions: Bubbles were allowed to move via (a) only biased migration, (b) via random migration, and (c) via both mechanisms. The HTT was also run for both mechanisms. The agreement with HEDL microscopic observations was fair for bubbles smaller than 964 A in diameter, and poor for larger bubbles. Bubbles that grew during the heat-up part of the transient were frozen at a larger size during the cool down

  12. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  13. Approximation of the breast height diameter distribution of two-cohort stands by mixture models III Kernel density estimators vs mixture models

    Science.gov (United States)

    Rafal Podlaski; Francis A. Roesch

    2014-01-01

    Two-component mixtures of either the Weibull distribution or the gamma distribution and the kernel density estimator were used for describing the diameter at breast height (dbh) empirical distributions of two-cohort stands. The data consisted of study plots from the Å wietokrzyski National Park (central Poland) and areas close to and including the North Carolina section...

  14. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    Science.gov (United States)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  15. Pharyngeal cavity and the gills are the target organ for the repellent action of pardaxin in shark.

    Science.gov (United States)

    Primor, N

    1985-05-15

    Pardaxin, an active principle of the repellent secretion of the Red Sea flatfish, Pardachirus marmoratus, elicited severe struggling, mouth paralysis, and transient increase in urea leakage from the gills only when administered to the medium bathing the shark's pharyngeal cavity and gills. An apparatus was constructed which prevents a mixing of the outflow from shark's gills with water bathing its surface skin. It is concluded that in sharks the gills and/or the pharyngeal cavity are the target organ for the repellent action of pardaxin.

  16. Development of 650 MHz (β=0.9) single-cell SCRF cavity

    International Nuclear Information System (INIS)

    Bagre, M.; Jain, V.; Yedle, A.; Maurya, T.; Yadav, A.; Puntambekar, A.; Goswami, S.G.; Choudhary, R.S.; Sandha, S.; Dwivedi, J.; Kane, G.V.; Mahawar, A.; Mohania, P.; Shrivastava, P.; Sharma, S.; Gupta, R.; Sharma, S.D.; Joshi, S.C.; Mistri, K.K.; Prakash, P.N.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology has initiated the work on development of Superconducting Radio Frequency (SCRF) cavities and associated technologies as part of R and D activities for upcoming Spallation Neutron Source (SNS) project involving superconducting Linear Accelerator (LINAC). It is planned to use 650 MHz SCRF cavities for the medium and high energy section of the proposed LINAC. Under Indian Institution Fermilab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology is also working on development of 650 MHz (β=0.9) SCRF cavities proposed to be used in the high energy section of Project-X at FNAL. The work has been initiated with design and development of 650 MHz single cell SCRF cavity. FE analysis was done to estimate change in frequency with temperature as well as to estimate the frequency of the cavity at different cavity manufacturing stages. The development cycle comprises of design and manufacturing of forming tooling, machining, welding and RF measurement fixtures as well as design for manufacturing. The half-cell and beam tubes forming and machining of all parts were done using in-house facilities. The Electron beam welding was carried out at Inter-University Accelerator Centre (IUAC), New Delhi under a MoU. One 650 MHz single cell SCRF cavity has been recently manufactured. In this paper we present the development efforts on manufacturing and pre-qualification of 650 MHz (β=0.9) single cell SCRF cavity. (author)

  17. Analytic models for fuel pin transient performance

    International Nuclear Information System (INIS)

    Bard, F.E.; Fox, G.L.; Washburn, D.F.; Hanson, J.E.

    1976-09-01

    HEDL's ability to analyze various mechanisms that operate within a fuel pin has progressed substantially through development of codes such as PECTCLAD, which solves cladding response, and DSTRESS, which solves fuel response. The PECTCLAD results show good correlation with a variety of mechanical tests on cladding material and also demonstrate the significance of cladding strength when applying the life fraction rule. The DSTRESS results have shown that fuel deforms sufficiently during overpower transient tests that available volumes are filled, whether in the form of a central cavity or start-up cracks

  18. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  19. Flow-driven simulation on variation diameter of counter rotating wind turbines rotor

    Directory of Open Access Journals (Sweden)

    Littik Y. Fredrika

    2018-01-01

    Full Text Available Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT. This research aims to investigating the influence of front rotor diameter variation (D1 with rear rotor (D2 to the angular velocity optimal (ω and tip speed ratio (TSR on counter rotating wind turbines (CRWT. The method used transient 3D simulation with computational fluid dynamics (CFD to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2 are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.

  20. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  1. Estimation of the radial force on the tokamak vessel wall during fast transient events

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V. D., E-mail: pustovitov-vd@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    The radial force balance in a tokamak during fast transient events with a duration much shorter than the resistive time of the vacuum vessel wall is analyzed. The aim of the work is to analytically estimate the resulting integral radial force on the wall. In contrast to the preceding study [Plasma Phys. Rep. 41, 952 (2015)], where a similar problem was considered for thermal quench, simultaneous changes in the profiles and values of the pressure and plasma current are allowed here. Thereby, the current quench and various methods of disruption mitigation used in the existing tokamaks and considered for future applications are also covered. General formulas for the force at an arbitrary sequence or combination of events are derived, and estimates for the standard tokamak model are made. The earlier results and conclusions are confirmed, and it is shown that, in the disruption mitigation scenarios accepted for ITER, the radial forces can be as high as in uncontrolled disruptions.

  2. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  3. Theoretical and experimental studies on transient heat transfer for forced convection flow of helium gas over a horizontal cylinder

    International Nuclear Information System (INIS)

    Liu Qiusheng; Katsuya Fukuda; Zhang Zheng

    2005-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on

  4. Fabrication, Treatment and Testing of a 1.6 Cell Photo-injector Cavity for HZB

    International Nuclear Information System (INIS)

    Kneisel, P.; Kamps, T.; Knobloch, J.; Kugeler, O.; Neumann, A.; Nietubyc, R.; Sekutowicz, J.K.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Forschungszentrum Dresden (FZD) and JLab we have fabricated and tested after appropriate surface treatment a 1.5 cell, 1300 MHz RRR niobium photo-injector cavity to be used in a demonstration test at BESSY*. Following a baseline test at JLab, the cavity received a lead spot coating of ∼ 8 mm diameter deposited with a cathode arc at the Soltan Institute on the endplate made from large grain niobium. It had been demonstrated in earlier tests with a DESY built 1.5 cell cavity - the original design - that a lead spot of this size can be a good electron source, when irradiated with a laser light of 213 nm. In the initial test with the lead spot we could measure a peak surface electric field of ∼ 29 MV/m; after a second surface treatment, carried out to improve the cavity performance, but which was not done with sufficient precaution, the lead spot was destroyed and the cavity had to be coated a second time. This contribution reports about the experiences and results obtained with this cavity.

  5. Improvement of Estimation method for two-phase flow in a large-diameter pipe. Pt. 4. Effect of the inlet boundary condition of the upward flow section on flow characteristics

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Okawa, Tomio; Zhou, Shirong

    1999-01-01

    In nuclear power plants, many large-diameter pipes are subject to gas-liquid two-phase flow. For rational design and performance estimation, the flow in the pipes should be predicted accurately. With the correlation used at present, however, the flow analysis can not reach desirable precision. This is partly due to the lack of understanding of the two-phase flow characteristics in large-diameter pipes. Therefore, steam-water two-phase flow in a vertical pipe (155 mm i.d.) was investigated empirically. Lateral distribution data of phase volume fraction, gas velocity and bubble diameter were obtained. The effects of the inlet boundary condition were also observed. The drift velocity in the developing region was considerably affected by the inlet boundary condition. By deriving the correlation of mean bubble diameter as a function of void fraction and pressure, the empirical data was predicted with high accuracy compared with the existing correlation used in best-estimate codes of nuclear reactor safety analysis. (author)

  6. High power RF test of an 805 MHz RF cavity for a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

    2002-01-01

    We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q 0 of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons

  7. Measurement of beam phase at FLASH using HOMs in accelerating cavities

    CERN Document Server

    Shi, Lianliang; Jones, Roger M; Joshi, Nirav

    2017-01-01

    The beam phase relative to the accelerating field is of vital importance for the quality of photon beams produced in modern Free Electron Lasers based on superconducting cavities. Normally, the phase is determined by detecting the transient field induced by the beam. In this way the phase of each cavity is checked and adjusted typically every few months. In this paper, we present an on-line method of beam phase determination, based on higher order modes (HOMs) excited in the 2nd monopole band by the beam inside these cavities. A circuit model of this HOM band is also presented. Various effects on the resolution have been studied. The results indicate that the resolution is strongly dependent on the signal to noise ratio and the sampling rate. Preliminary experimental results, based on a broadband setup, reveal a resolution of ca. 0.1° RMS. These are in good agreement with simulation results. The work will pave the way for a dedicated system of beam phase monitoring, which is under development for the Europea...

  8. Transient beam loading in the ALS harmonic RF system

    International Nuclear Information System (INIS)

    Byrd, J.; De Santis, S.; Georgsson, M.; Stover, G.; Fox, J.; Prabhakar, S.; Teytelman, D.

    2000-01-01

    We report on the commissioning of a higher harmonic radiofrequency system at the Advanced Light Source, designed to improve the beam lifetime. We have achieved an increase above a factor of two in our best results up to now. Transient beam loading of the harmonic cavities, due to the unequal fill patterns, creates the greatest limitation on lifetime improvement. We also describe several interesting effects on the operation of the longitudinal and transverse multibunch feedback system

  9. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  10. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    International Nuclear Information System (INIS)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs

  11. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    Science.gov (United States)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  12. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    International Nuclear Information System (INIS)

    Jin, S.; Wu, A.T.; Lu, X.Y.; Rimmer, R.A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-01-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I–V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson–Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  13. Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process.

    Science.gov (United States)

    Gu, Rui; Xu, Jinglei

    2014-01-01

    The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.

  14. Defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Ibrahim Ahmad; Ab Razak Hamzah; Wan Saffiey Wan Abdullah

    2008-08-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 kWatt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with ThermofitTMPro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔΤ m ax and the time of its appearance, τ m ax (ΔΤ). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔΤ m ax), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defects are at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (Author)

  15. The excess radio background and fast radio transients

    International Nuclear Information System (INIS)

    Kehayias, John; Kephart, Thomas W.; Weiler, Thomas J.

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE 2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background

  16. SRF cavity testing using a FPGA Self Excited Loop

    CERN Document Server

    Ben-Zvi, Ilan

    2018-01-01

    This document provides a detailed description of procedures for very-high precision calibration and testing of superconducting RF cavities using digital Low-Level RF (LLRF) electronics based on Field Programmable Gate Arrays (FPGA). The use of a Self-Excited Loop with an innovative procedure for fast turn-on allows the measurement of the forward, reflected and transmitted power from a single port of the directional coupler in front of the cavity, thus eliminating certain measurement errors. Various procedures for measuring the quality factor as a function of cavity fields are described, including a single RF pulse technique. Errors are estimated for the measurements.

  17. RF cavity R and D at LBNL for the NLC Damping Rings, FY2000/2001

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Atkinson, D.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J.; Saleh, T.; Weidenbach, W.

    2001-01-01

    This report contains a summary of the R and D activities at LBNL on RF cavities for the NLC damping rings during fiscal years 2000/2001. This work is a continuation of the NLC RF system R and D of the previous year [1]. These activities include the further optimization and fine tuning of the RF cavity design for both efficiency and damping of higher-order modes (HOMs). The cavity wall surface heating and stresses were reduced at the same time as the HOM damping was improved over previous designs. Final frequency tuning was performed using the high frequency electromagnetic analysis capability in ANSYS. The mechanical design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. The cavity ancillary components including the RF window, coupling box, HOM loads, and tuners have been studied in more detail. Other cavity options are discussed which might be desirable to either further lower the HOM impedance or increase the stored energy for reduced transient response. Superconducting designs and the use of external ''energy storage'' cavities are discussed. A section is included in which the calculation method is summarized and its accuracy assessed by comparisons with the laboratory measurements of the PEP-II cavity, including errors, and with the beam-sampled spectrum

  18. A COMETHE version with transient capability

    International Nuclear Information System (INIS)

    Vliet, J. van; Lebon, G.; Mathieu, P.

    1980-01-01

    A version of the COMETHE code is under development to simulate transient situations. This paper focuses on some aspects of the transient heat transfer models. Initially the coupling between transient heat transfer and other thermomechanical models is discussed. An estimation of the thermal characteristic times shows that the cladding temperatures are often in quasi-steady state. In order to reduce the computing time, calculations are therefore switched from a transient to a quasi-static numerical procedure as soon as such a quasi-equilibrium is detected. The temperature calculation is performed by use of the Lebon-Lambermont restricted variational principle, with piecewise polynoms as trial functions. The method has been checked by comparison with some exact results and yields good agreement for transient as well as for quasi-static situations. This method therefore provides a valuable tool for the simulation of the transient behaviour of nuclear reactor fuel rods. (orig.)

  19. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    Science.gov (United States)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  20. Analysis of the Magnetic Field Effect on Entropy Generation at Thermosolutal Convection in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2011-05-01

    Full Text Available Thermosolutal convection in a square cavity filled with air and submitted to an inclined magnetic field is investigated numerically. The cavity is heated and cooled along the active walls with a mass gradient whereas the two other walls of the cavity are adiabatic and insulated. Entropy generation due to heat and mass transfer, fluid friction and magnetic effect has been determined in transient state for laminar flow by solving numerically the continuity, momentum energy and mass balance equations, using a Control Volume Finite—Element Method. The structure of the studied flows depends on four dimensionless parameters which are the Grashof number, the buoyancy ratio, the Hartman number and the inclination angle. The results show that the magnetic field parameter has a retarding effect on the flow in the cavity and this lead to a decrease of entropy generation, Temperature and concentration decrease with increasing value of the magnetic field parameter.

  1. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  2. Electron beam weld parameter set development and cavity cost

    International Nuclear Information System (INIS)

    John Brawley; John Mammossor; Larry Philips

    1997-01-01

    Various methods have recently been considered for use in the cost-effective manufacturing of large numbers of niobium cavities. A method commonly assumed to be too expensive is the joining of half cells by electron beam welding (EBW), as has been done with multipurpose EBW equipment for producing small numbers of cavities at accelerator laboratories. The authors have begun to investigate the advantages that would be available if a single-purpose, task-specific EBW processing tool were used to produce cavities in a high-volume commercial-industrial context. For such a tool and context they have sought to define an EBW parameter set that is cost-effective not only in terms of per-cavity production cost, but also in terms of the minimization of quench-producing weld defects. That is, they define cavity cost-effectiveness to include both production and performance costs. For such an EBW parameter set, they have developed a set of ideal characteristics, produced and tested samples and a complete cavity, studied the weld-defect question, and obtained industrial estimates of cavity high-volume production costs. The investigation in ongoing. This paper reports preliminary findings

  3. Analysis of pumping tests: Significance of well diameter, partial penetration, and noise

    Science.gov (United States)

    Heidari, M.; Ghiassi, K.; Mehnert, E.

    1999-01-01

    The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in

  4. Ultrafast directional beam switching in coupled vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Ning, C. Z.; Goorjian, P.

    2001-01-01

    We propose a strategy to performing ultrafast directional beam switching using two coupled vertical-cavity surface-emitting lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 μm in diameter placed about 1 μm apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degree. [copyright] 2001 American Institute of Physics

  5. Normal ureteral diameter in infancy and childhood

    International Nuclear Information System (INIS)

    Hellstroem, M.; Hjaelmaas, K.; Jacobsson, B.; Jodal, U.; Oden, A.; Oestra Sjukhuset, Goeteborg; Oestra Sjukhuset, Goeteborg; Goeteborg Univ.

    1985-01-01

    Ureteral diameters were estimated on films from intravenous urography in 194 children (100 boys and 94 girls) aged 0-16 years. Children with signs of urinary tract infection, calculi, obstruction, duplication or malformation were excluded. Films obtained without abdominal compression were used for measurements, including only ureters visualized over 50 per cent of their lengths. A good correlation was demonstrated between ureteral diameter and age and between ureteral diameter and the length of a segment of the lumbar spine. The widest part of the ureter was most often located just above the crossing of the iliac vessels. The right ureter was slightly wider than the left one. No difference between boys and girls was noted. The results are in good agreement with those of others obtained at autopsy. Bearing in mind the possible physiologic variations, it would seem that measuring the ureteral diameter can be of value for a more objective differentiation between dilated and non-dilated ureters. (orig.)

  6. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    M. A. Wolak

    2014-01-01

    Full Text Available We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD. To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB_{2} films on these substrates showed uniformly good superconducting properties including T_{c} of 37–40 K, residual resistivity ratio of up to 14, and root-mean-square roughness R_{q} of 20–30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB_{2} by the HPCVD technique, an important step towards superconducting rf cavities with MgB_{2} coating.

  7. Scale-up of microwave assisted flow synthesis by transient processing through monomode cavities in series

    NARCIS (Netherlands)

    Patil, N.G.; Benaskar, F.; Rebrov, E.; Meuldijk, J.; Hulshof, L.A.; Hessel, V.; Schouten, J.C.

    2014-01-01

    A new scale-up concept for microwave assisted flow processing is presented where modular scale-up is achieved by implementing microwave cavities in series. The scale-up concept is demonstrated for case studies of a packed-bed reactor and a wall-coated tubular reactor. With known kinetics and

  8. Emittance Growth due to Crab Cavity Ramping for LHC Beam-1 Lattice

    CERN Document Server

    Morita, A

    2008-01-01

    In LHC upgrade scenarios using global crab crossing, it is desired to turn on the crab cavity only at top energy. Turning on the crab cavity could increase the emittance of the stored beam, since the transverse kick of the crab cavity excites betatron oscillations. For a sufficiently slow ramping speed of the crab cavity voltage, however, the changes in z-dependent closed orbit are sufficiently adiabatic that the emittance growth becomes negligible. In order to determine the safe ramping speed of the LHC crab-cavity voltage, the dependence of the emittance growth on the ramping speed is estimated via a 6D particle-tracking simulation.

  9. Effects of Core Cavity on a Flow Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Soon; Kim, Kihwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The axial pressure drop is removed in the free core condition, But the actual core has lots of fuel bundles and mixing vanes to the flow direction. The axial pressure drop induces flow uniformity. In a uniform flow having no shear stress, the cross flow or cross flow mixing decreases. The mixing factor is important in the reactor safety during a Steam Line Break (SLB) or Main Steam Line Break (MSLB) transients. And the effect of core cavity is needed to evaluate the realistic core mixing factor quantification. The multi-dimensional flow mixing phenomena in a core cavity has been studied using a CFD code. The 1/5-scale model was applied for the reactor flow analysis. A single phase water flow conditions were considered for the 4-cold leg and DVI flows. To quantify the mixing intensity, a boron scalar was introduced to the ECC injection water at cold legs and DVI nozzles. The present CFD pre-study was performed to quantify the effects of core structure on the mixing phenomena. The quantified boron mixing scalar in the core simulator model represented the effect of core cavity on the core mixing phenomena. This simulation results also give the information for sensor resolution to measure the boron concentration in the experiments and response time to detect mixing phenomena at the core and reactor vessel.

  10. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.

    2011-01-01

    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  11. Probabilistic estimates of 1.5-degree carbon budgets based on uncertainty in transient climate response and aerosol forcing

    Science.gov (United States)

    Partanen, A. I.; Mengis, N.; Jalbert, J.; Matthews, D.

    2017-12-01

    Nations agreed to limit the increase in global mean surface temperature relative to the preindustrial era below 2 degrees Celsius and pursue efforts to a more ambitious goal of 1.5 degrees Celsius. To achieve these goals, it is necessary to assess the amount of cumulative carbon emissions compatible with these temperature targets, i.e. so called carbon budgets. In this work, we use the intermediate complexity University of Victoria Earth System Climate Model (UVic ESCM) to assess how uncertainty in aerosol forcing and transient climate response transfers to uncertainty in future carbon budgets for burning fossil fuels. We create a perturbed parameter ensemble of model simulations by scaling aerosol forcing and transient climate response, and assess the likelihood of each simulation by comparing the simulated historical cumulative carbon emissions, CO2 concentration and radiative balance to observations. By weighting the results of each simulation with the likelihood of the simulation, the preliminary results give a carbon budget of 48 Pg C to reach 1.5 degree Celsius temperature increase. The small weighted mean is due to large fraction of simulations with strong aerosol forcing and transient climate response giving negative carbon budgets for this time period. The probability of the carbon budget being over 100 Pg C was 38% and 23% for over 200 Pg carbon budget. The carbon budgets after temperature stabilization at 1.5 degrees are even smaller with a weighted mean of -100 Pg C until the year 2200. The main reason for the negative carbon budgets after temperature stabilization is an assumed strong decrease in aerosol forcing in the 21st century. Conversely, simulations with weak aerosol forcing and transient climate response give positive carbon budgets. Our results highlight both the importance of reducing uncertainty in aerosol forcing and transient climate response, and of taking the non-CO2 forcers into account when estimating carbon budgets.

  12. Survival of Patients with Oral Cavity Cancer in Germany

    Science.gov (United States)

    Listl, Stefan; Jansen, Lina; Stenzinger, Albrecht; Freier, Kolja; Emrich, Katharina; Holleczek, Bernd; Katalinic, Alexander; Gondos, Adam; Brenner, Hermann

    2013-01-01

    The purpose of the present study was to describe the survival of patients diagnosed with oral cavity cancer in Germany. The analyses relied on data from eleven population-based cancer registries in Germany covering a population of 33 million inhabitants. Patients with a diagnosis of oral cavity cancer (ICD-10: C00-06) between 1997 and 2006 are included. Period analysis for 2002–2006 was applied to estimate five-year age-standardized relative survival, taking into account patients' sex as well as grade and tumor stage. Overall five-year relative survival for oral cavity cancer patients was 54.6%. According to tumor localization, five-year survival was 86.5% for lip cancer, 48.1% for tongue cancer and 51.7% for other regions of the oral cavity. Differences in survival were identified with respect to age, sex, tumor grade and stage. The present study is the first to provide a comprehensive overview on survival of oral cavity cancer patients in Germany. PMID:23349710

  13. Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity

    International Nuclear Information System (INIS)

    Iwahori, K; Yamashita, I

    2008-01-01

    A simple size-controlled synthesis of cadmium sulfide (CdS) nanoparticle (NP) cores in the cavity of apoferritin from horse spleen (HsAFr) was performed by a slow chemical reaction synthesis and a two-step synthesis protocol. We found that the CdS NP core synthesis was slow and that premature CdS NP cores were formed in the apoferritin cavity when the concentration of ammonia water was low. It was proven that the control of the ammonia water concentration can govern the CdS NP core synthesis and successfully produce size-controlled CdS NP cores with diameters from 4.7 to 7.1 nm with narrow size dispersion. X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDS) analysis and high-resolution transmission electron microscopy (HR-TEM) observation characterized the CdS NP cores obtained as cubic polycrystalline NPs, which showed photoluminescence with red shifts depending on their diameters. From the research of CdS NP core synthesis in the recombinant apoferritins, the zeta potential of apoferritin is important for the biomineralization of CdS NP cores in the apoferritin cavity. These synthesized CdS NPs with different photoluminescence properties will be applicable in a wide variety of nano-applications.

  14. Transient peristaltic transport of grains in a liquid

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  15. Transient peristaltic transport of grains in a liquid

    Science.gov (United States)

    Marconati, Marco; Rault, Sharvari; Charkhi, Farshad; Burbidge, Adam; Engmann, Jan; Ramaioli, Marco

    2017-06-01

    Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  16. SRF cavity alignment detection method using beam-induced HOM with curved beam orbit

    Science.gov (United States)

    Hattori, Ayaka; Hayano, Hitoshi

    2017-09-01

    We have developed a method to obtain mechanical centers of nine cell superconducting radio frequency (SRF) cavities from localized dipole modes, that is one of the higher order modes (HOM) induced by low-energy beams. It is to be noted that low-energy beams, which are used as alignment probes, are easy to bend in fringe fields of accelerator cavities. The estimation of the beam passing orbit is important because only information about the beam positions measured by beam position monitors outside the cavities is available. In this case, the alignment information about the cavities can be obtained by optimizing the parameters of the acceleration components over the beam orbit simulation to consistently represent the position of the beam position monitors measured at every beam sweep. We discuss details of the orbit estimation method, and estimate the mechanical center of the localized modes through experiments performed at the STF accelerator. The mechanical center is determined as (x , y) =(0 . 44 ± 0 . 56 mm , - 1 . 95 ± 0 . 40 mm) . We also discuss the error and the applicable range of this method.

  17. Quantitative one-dimensional thermal-wave cavity measurements of fluid thermophysical properties through equivalence studies with three-dimensional geometries

    International Nuclear Information System (INIS)

    Matvienko, Anna; Mandelis, Andreas

    2006-01-01

    The thermal-wave field in a photopyroelectric thermal-wave cavity was calculated with two theoretical approaches: a computationally straightforward, conventional, one-dimensional approach and a three-dimensional experimentally more realistic approach. The calculations show that the dimensionality of the thermal-wave field in the cavity depends on the lateral heat transfer boundary conditions and the relation between the beam size of the laser impinging on the thermal-wave generating metallic film and the diameter of the film itself. The theoretical calculations and the experimental data on the photopyroelectric signal in the cavity were compared. The study resulted in identifying ranges of heat transfer rates, beam sizes, and cavity radii for which accurate quantitative measurements of the thermal diffusivity of intracavity fluids can be made within the far simpler, but only approximate, one-dimensional approach conventionally adopted by users of thermal-wave cavities. It was shown that the major parameters affecting the dimensionality of thermal-wave cavities are the laser beam spot size and the Biot number of the medium comprising the sidewalls of the (cylindrical) cavity

  18. In-house L-band niobium single cell cavities at KEK

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Kobayashi, Yoshiharu; Funahashi, Yoshisato; Koizumi, Susumu; Saito, Kenji; Noguchi, Shuichi; Kako, Eiji; Shishido, Toshio

    1993-01-01

    For the TESLA (TeV Energy Superconducting Linear Accelerator) as an energy frontier accelerator of the next generation improving the performance of the niobium superconducting cavities is the most important issue and much reduction of fabrication cost of cavities is another key. Since manufacturing of niobium material requires hard techniques due to the easily oxidizable metal, fabrication of niobium cavities has been conducted in only companies providing enough equipments in Japan. KEK has accumulated the fabrication technics such as forming method by deep drawing, trimming, centering of beam tubes, electron beam welding and measurement of manufacturing error so on. We made in-house L-band single cell cavities using these technologies. In this paper we present these manufacturing of the niobium cavities and estimate the fabrication cost as exactly as possible. The manufacturing error is also described. (author)

  19. Effects of Freestream Turbulence on Cavity Tone and Sound Source

    Directory of Open Access Journals (Sweden)

    Hiroshi Yokoyama

    2016-01-01

    Full Text Available To clarify the effects of freestream turbulence on cavity tones, flow and acoustic fields were directly predicted for cavity flows with various intensities of freestream turbulence. The freestream Mach number was 0.09 and the Reynolds number based on the cavity length was 4.0 × 104. The depth-to-length ratio of the cavity, D/L, was 0.5 and 2.5, where the acoustic resonance of a depth-mode occurs for D/L = 2.5. The incoming boundary layer was laminar. The results for the intensity of freestream turbulence of Tu = 2.3% revealed that the reduced level of cavity tones in a cavity flow with acoustic resonance (D/L=2.5 was greater than that without acoustic resonance (D/L=0.5. To clarify the reason for this, the sound source based on Lighthill’s acoustic analogy was computed, and the contributions of the intensity and spanwise coherence of the sound source to the reduction of the cavity tone were estimated. As a result, the effects of the reduction of spanwise coherence on the cavity tone were greater in the cavity flow with acoustic resonance than in that without resonance, while the effects of the intensity were comparable for both flows.

  20. Development of transient head cavities during early organogenesis of the Nile Crocodile (Crocodylus niloticus)

    Czech Academy of Sciences Publication Activity Database

    Kundrát, M.; Janáček, Jiří; Martin, S.

    2009-01-01

    Roč. 270, č. 9 (2009), s. 1069-1083 ISSN 0362-2525 R&D Projects: GA AV ČR(CZ) KJB6111301 Grant - others:Univerzita Karlova(CZ) 122/2003-B; NATO Fellowship Programme and Center for Higher Education Studies(CZ) MK2003-13 Institutional research plan: CEZ:AV0Z50110509 Keywords : Nile Crocodile * head cavities * organogenesis Subject RIV: EA - Cell Biology Impact factor: 1.706, year: 2009

  1. Spherical and cylindrical cavity expansion models based prediction of penetration depths of concrete targets.

    Directory of Open Access Journals (Sweden)

    Xiaochao Jin

    Full Text Available The cavity expansion theory is most widely used to predict the depth of penetration of concrete targets. The main purpose of this work is to clarify the differences between the spherical and cylindrical cavity expansion models and their scope of application in predicting the penetration depths of concrete targets. The factors that influence the dynamic cavity expansion process of concrete materials were first examined. Based on numerical results, the relationship between expansion pressure and velocity was established. Then the parameters in the Forrestal's formula were fitted to have a convenient and effective prediction of the penetration depth. Results showed that both the spherical and cylindrical cavity expansion models can accurately predict the depth of penetration when the initial velocity is lower than 800 m/s. However, the prediction accuracy decreases with the increasing of the initial velocity and diameters of the projectiles. Based on our results, it can be concluded that when the initial velocity is higher than the critical velocity, the cylindrical cavity expansion model performs better than the spherical cavity expansion model in predicting the penetration depth, while when the initial velocity is lower than the critical velocity the conclusion is quite the contrary. This work provides a basic principle for selecting the spherical or cylindrical cavity expansion model to predict the penetration depth of concrete targets.

  2. Influence of time off feed on broiler viscera weight, diameter, and shear.

    Science.gov (United States)

    Buhr, R J; Northcutt, J K; Lyon, C E; Rowland, G N

    1998-05-01

    The influence of time off feed on broiler viscera weight, intestinal diameter, and shear was studied by subjecting market-age male broilers (42, 44, or 48 d) to incremental feed withdrawal periods (0, 6, 12, 18, or 24 h). Body weight was determined prior to feed withdrawal and at the time of processing. After slaughter, scalding, and defeathering, the abdominal cavity was opened. Diameter and shear of the proventriculus-ventriculus junction, jejunum, and ileum segments were measured, as were gallbladder length and width. Thoracic and abdominal viscera, liver, and ventriculus weights were determined, and liver surface color was measured. Percentage body weight loss increased with longer feed withdrawal periods, as viscera, liver, and ventriculus weights decreased. Gallbladder length increased with time off feed, whereas its width did not change. Diameter of the proventriculus-ventriculus junction, jejunum, and ileum decreased with longer feed withdrawal periods. Shear values for the proventriculus-ventriculus junction, jejunum, and ileum were not influenced by time off feed. Positive correlations (P 0.4) between viscera weight and intestinal diameter were detected. Correlations between all measured parameters and shear values were not significant. Liver color measurements indicated that longer feed withdrawal periods resulted in significant linear decreases in L* (lightness), +a* (redness), and +b* (yellowness). Longer feed withdrawal periods decreased viscera weight and intestinal diameter, which would lower the potential for cutting the intestine during automated evisceration. However, the resulting greater gallbladder length (5 mm) would increase the possibility of bile contamination during evisceration.

  3. Electrodynamic characterisitcs measurements of higher order modes in S-band cavity

    Science.gov (United States)

    Donetsky, R.; Lalayan, M.; Sobenin, N. P.; Orlov, A.; Bulygin, A.

    2017-12-01

    The 800 MHz superconducting cavities with grooved beam pipes were suggested as one of the harmonic cavities design options for High Luminosity LHC project. Cavity simulations were carried out and scaled aluminium prototype having operational mode frequency of 2400 MHz was manufactured for testing the results of simulations. The experimental measurements of transverse shunt impedance with error estimation for higher order modes TM 110 and TE 111 for S-band elliptical cavity were done. The experiments using dielectric and metallic spherical beads and with ring probe were carried out. The Q-factor measurements for two-cell structure and array of two cells were carried out.

  4. Computational simulation of two-dimensional transient natural convection in volumetrically heated square enclosure

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Jian Su

    2010-01-01

    Natural convection is a physical phenomenon that has been investigated in nuclear engineering so as to provide information about heat transfer in severe accident conditions involving nuclear reactors. This research reported transient natural convection of fluids with uniformly distributed volumetrically heat generation in square cavity with isothermal side walls and adiabatic top/bottom walls. Two Prandtl numbers were considered, 0:0321 and 0:71. Direct numerical simulations were applied in order to obtain results about the velocities of the fluid in directions x and y. These results were used in Fast Fourier Transform, which showed the periodic, quasi-chaotic and chaotic behavior of transient laminar flow. (author)

  5. Fast thermal transients on valve

    International Nuclear Information System (INIS)

    Ferjancic, M.; Stok, B.; Halilovic, M.; Koc, P.; Mole, N.; Otrin, Z.; Kotar, A.

    2007-01-01

    One of the regulatory body methods to supervise nuclear safety of a nuclear power plant is a review of plant modifications and evaluation of their impact on plant operating experience. The Slovenian Nuclear Safety Administration (SNSA) licensed in April 2003 the use of leak-before-break (LBB) methodology in the Krsko NPP for the primary loop including surge line and connecting pipelines with minimal diameter of 6 inch. The SNSA decision based also on fracture mechanics analyses that include direct pipe failure mechanisms such as water hammer, creep damage, erosion and corrosion, fatigue and environmental conditions over the entire life of the plant. The evaluation of the operating transients pointed out, that presumed loadings, used for the LBB analysis, did not incorporate all the fast thermal transients data. For that purpose the SNSA requested Faculty of Mechanical Engineering (FS) in Ljubljana to perform additional analyses. The results of the analysis shall confirm the validity of the LBB analysis. (author)

  6. Estimation of intrathoracic arterial diameter by means of computed tomographic angiography in Hispaniolan Amazon parrots.

    Science.gov (United States)

    Beaufrère, Hugues; Rodriguez, Daniel; Pariaut, Romain; Gaschen Dvm, Lorrie; Schnellbacher, Rodney; Nevarez, Javier G; Tully, Thomas N

    2011-02-01

    To establish a computed tomography (CT)-angiography protocol and measure the diameters of major arteries in parrots. 13 Hispaniolan Amazon parrots (Amazona ventralis). 16-slice CT scanning was used to measure the apparent diameter of the ascending aorta, abdominal aorta, pulmonary arteries, and brachiocephalic trunk. Before scanning, all birds underwent ECG and echocardiographic assessment and were considered free of detectable cardiovascular diseases. Each bird was anesthetized, and a precontrast helical CT scan was performed. Peak aortic enhancement was established with a test bolus technique via dynamic axial CT scan over a predetermined single slice. An additional bolus of contrast medium was then injected, and a helical CT-angiography scan was performed immediately afterward. Arterial diameter measurements were obtained by 2 observers via various windows before and after injection, and intra- and interobserver agreement was assessed. Reference limits were determined for arterial diameter measurements before and after contrast medium administration in pulmonary, mediastinal, and manual angiography windows. Ratios of vertebral body diameter to keel length were also calculated. Intraobserver agreement was high (concordance correlation coefficients ≥ 0.95); interobserver agreement was medium to high (intraclass correlation coefficients ≥ 0.65). CT-angiography was safe and is of potential diagnostic value in parrots. We recommend performing the angiography immediately after IV injection of 3 mL of iohexol/kg. Arterial diameter measurements at the described locations were reliable.

  7. Improvement of cavity performance in the Saclay/Cornell/DESY's SC cavities

    International Nuclear Information System (INIS)

    Kako, E.; Noguchi, S.; Ono, M.

    2000-01-01

    Development of 1.3 GHz Nb superconducting cavities for TESLA (TeV Energy Superconducting Linear Collider) has been carried out with international collaboration. Three Saclay single-cell cavities, one Cornell two-cell cavity and one DESY nine-cell cavity were sent to KEK in order to compare the cavity performance. These cavities were tested at KEK after the following surface treatment: 1) high pressure rinsing, HPR, 2) chemical polishing and HPR, 3) electropolishing and HPR. The test results, especially, improvement of the cavity performance due to electropolishing are reported in this paper. (author)

  8. Transverse deflections in a cavity due to the short-range longitudinal wake

    International Nuclear Information System (INIS)

    Bane, K

    2003-01-01

    Consider an ultra-relativistic electron bunch passing through a (cylindrically symmetric) multi-cell linac cavity that is filled with fundamental mode rf. It is well known that this bunch--on entering the cavity--experiences a focusing kick, and--on exiting the cavity--a defocusing kick, even though the mode is cylindrically symmetric. The effects of these kicks in linacs tend to be significant only in low energy regions. Tracking computer programs such as MAD [1] and LIAR [2] include a simple model of these kicks, one based on calculations of W.H. Panofsky [3]. According to this model the effect is represented by two thin lenses positioned at the ends of the cavity, with the strength of the lenses dependent on the accelerating gradient in the cavity. However, a beam will itself excite wakefields that modify its energy gain in a cavity, a modification that depends also on longitudinal position within the bunch. The program LIAR extends Panofsky's rf kick model to include this modification to the effective gradient experienced by different parts of the beam. In this report we investigate how the wakefields affect the rf cavity kicks. In particular, we are interested in the case when the wakefields are a significant perturbation to the problem, such as when, for example, the beam traverses an empty cavity (one with no rf). In this report we have shown that one can calculate the transverse kicks when one knows the time-dependent variation of the longitudinal wake forces on axis. The variation in gradient due to wakefields, however, will in general differ from that due to normal rf acceleration. In particular, transients at the ends of structures, and--for constant gradient structures--an increase in gradient amplitude from beginning to end of the cavity, will mean that the model of focusing/defocusing edges, used for rf acceleration, will be inaccurate. Finally, we conclude that the method LIAR uses to treat the effect of rf focusing in the presence of wakefields on

  9. SQUID-based Nondestructive Testing Instrument of Dished Niobium Sheets for SRF Cavities

    International Nuclear Information System (INIS)

    Q. S. Shu; I. Ben-Zvi; G. Cheng; I. M. Phipps; J. T. Susta; P. Kneisel; G. Myneni; J. Mast; R. Selim

    2007-01-01

    Currently available technology can only inspect flat sheets and allow the elimination of defective flat sheets before the expensive forming and machining of the SRF cavity half-cells, but it does not eliminate the problem of remaining or uncovered surface impurities after partial chemical etching of the half-cells, nor does it detect any defects that may have been added during the fabrication of the half-cells. AMAC has developed a SQUID scanning system based on eddy current technique that allows the scanning of curved Nb samples that are welded to make superconducting RF cavity half-cells. AMAC SQUID scanning system successfully located the defects (Ta macro particles about 100 mm diameter) in a flat Nb sample (top side) and was able to also locate the defects in a cylindrical surface sample (top side). It is more significant that the system successfully located the defects on the backside of the flat sample and curved sample or 3-mm from the top surface. The 3-D SQUID-based Nondestructive instrument will be further optimized and improved in making SRF cavities and allow inspection and detection during cavity manufacturing for achieving highest accelerating fields

  10. The Gain Estimation of a Fabry-Perot Cavity (FPC Antenna with a Finite Dimension

    Directory of Open Access Journals (Sweden)

    Taek-Sun Kwon

    2017-10-01

    Full Text Available In this paper, we have presented an equation for estimating the gain of a Fabry-Perot cavity (FPC antenna with a finite dimension. When an FPC antenna has an infinite dimension and its height is half of a wavelength, the maximum gain of that FPC antenna can be obtained theoretically. If the FPC antenna does not have a dimension sufficient for multiple reflections between a partially reflective surface (PRS and the ground, its gain must be less than that of an FPC antenna that has an infinite dimension. In addition, the gain of an FPC antenna increases as the dimension of a PRS increases and becomes saturated from a specific dimension. The specific dimension where the gain starts to saturate also gets larger as the reflection magnitude of the PRS becomes closer to one. Thus, it would be convenient to have a gain equation when considering the dimension of an FPC antenna in order to estimate the exact gain of the FPC antenna with a specific dimension. A gain versus the dimension of the FPC antenna for various reflection magnitudes of PRS has been simulated, and the modified gain equation is produced through the curve fitting of the full-wave simulation results. The resulting empirical gain equation of an FPC antenna whose PRS dimension is larger than 1.5λ0 has been obtained.

  11. Tranport of p-aminohippuric acid (3H-PAH), inulin and dextran out of the cranial cavity: A methodological study using intraventricular injection and sample combustion

    International Nuclear Information System (INIS)

    Jakobson, Aa. M.

    1987-01-01

    Material injected into the cerebral ventricles can leave the cerebrospinal fluid (CSF) but remain in the cranial cavity. To analyze the disappearance of 3 H- and of 14 C-labelled material from the cranial cavity, such material was injected into the lateral ventricles together with a bulk flow marker, labelled with the other radionuclide. In the present pilot study 3 H-PAH and 14 C-inulin were used. Five μl of a mixture was injected into each lateral cerebral ventricles in rats, which were killed at various intervals. The whole skull was analyzed without opening the CSF space after homogenization in the deep-frozen state. The samples were combusted and analyzed by liquid scintillation counting. Probenecid, injected intraperitoneally, inhibited the removal of 3 H-PAH from the skull cavity, as anticipated. Immediately after the intraventricular injection, however, 3 H-PAH was transiently retained, probably by uptake into actively transporting tissue. After injection of probenecid, this delay in removal was reduced. The difference in disappearance rate between 3 H-PAH and 14 C-inulin was estimated by comparing the 3 H/ 14 C ratio in the skulls with that in the injected solution, which appeared to be a better method than comparing the recovery of each compound. (author)

  12. An animal experimental study of transient synovitis of hip using three phase bone imaging

    International Nuclear Information System (INIS)

    Liang Jiugen; Lu Bing; Lu Xiaohu; Liu Shangli

    1994-01-01

    A model of transient synovitis was established by means of injecting noradrenaline (NA) into the joint cavity of young dogs. Radionuclide three phase bone imaging was then used to observe the local blood supply of femoral head and histological examination was used to understand the natural course of the disease process. The result showed that there were transient synovitis of the hip and decrease of blood supply in the affected femoral head after NA injection, but the changes gradually returned to normal after 4 weeks. No evidence of femoral head necrosis had been noticed. It is suggested that serial quantitative analysis of three phase bone imaging may have good clinical value in the early diagnosis transient hip synovitis, as well as in the assessment of the stage of the disease etc

  13. Isolation of intact sub-dermal secretory cavities from Eucalyptus

    Directory of Open Access Journals (Sweden)

    Goodger Jason QD

    2010-09-01

    Full Text Available Abstract Background The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. Results Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h, with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. Conclusions The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain.

  14. Mucoceles of the oral cavity in pediatric patients

    Directory of Open Access Journals (Sweden)

    Chung Wei Wu

    2011-07-01

    Full Text Available Mucoceles are quite common in the oral cavity, but reports on pediatric patients are very rare. The aims of this study were to present our data and experience in the treatment of mucoceles of the oral cavity in pediatric patients, to compare them with those of other countries, and to remind the pediatric physician to devote much attention to lesions of the oral cavity in children. This retrospective study is based on the record of the patients who received surgical treatment for mucoceles of the oral cavity with pathologic confirmation at the Department of Dentistry, Kaohsiung Medical University Hospital, Taiwan, between 2000 and 2004. Patients younger than 18 years were included in this study. The analyzed data included age, gender, site, size, histopathologic findings, surgical methods, and complications. There were a total of 289 patients with mucoceles confirmed by histopathologic examination. As many as 64 patients were younger than 18 years. Of the 64, 34 were girls and 30 were boys; 89.1% of the lesions were in the lower lip; and 48.4% of the lesions were less than 5 mm in diameter. Histopathologic findings showed that all mucoceles were of the extravasation type. As many as 30 patients were treated by carbon dioxide laser vaporization, and two cases recurred (6.67%; 34 patients were treated by surgical excision, and the recurrence rate (5.88% was not statistically different for the treatment methods. The laser vaporization has the advantage of less bleeding, no sutures, and saving time, especially suitable for children with oral mucocele.

  15. Laser cavities with self-pumped phase conjugation by mixing of four waves in an amplifier

    International Nuclear Information System (INIS)

    Sillard, Pierre

    1998-01-01

    The purpose of this research thesis is to characterise a new type of cavities with self-pumped phase conjugation which uses a mixing of four waves degenerated in a solid amplifier. After a definition of phase conjugation and a brief overview of the history of this technique, the author describes and compares the different laser architectures with phase conjugation. He explains benefits and perspectives related to cavities with self-pumped phase conjugation using a mixing of four waves in an amplifier. He develops the necessary formalism for the resolution of the coupled equations of four wave mixing in transient regime for a resonant and saturated non-linearity. He shows how these results can be applied to solid amplifiers, in particularly to the Nd:YAG amplifier which is used in all experiments. In the next part, the author describes the principle and characteristics of cavity with self-pumped phase conjugation injected by another laser. An experiment is performed with two conventional Nd:YAG amplifiers pumped by flash lamps. The excellent performance of the cavity allows the study of cavity without this injection, but self-oscillating is to be envisaged, and a modelling of self-oscillating cavities is proposed and studied. Results are compared with those obtained with two N:YAG amplifiers pumped by flash lamps. Polarisation properties of the self-oscillating cavity are also studied. Finally, the author reports an experimental validation of a cavity with self-pumped phase conjugation all in solid state, pumped by laser diodes (a more efficient pumping) [fr

  16. Benchmarking Microwave Cavity Dark Matter Searches using a Radioactive Source

    CERN Multimedia

    Caspers, F

    2014-01-01

    A radioactive source is proposed as a calibration device to verify the sensitivity of a microwave dark matter search experiment. The interaction of e.g., electrons travelling in an arbitrary direction and velocity through an electromagnetically “empty” microwave cavity can be calculated numerically. We give an estimation of the energy deposited by a charged particle into a particular mode. Numerical examples are given for beta emitters and two particular cases: interaction with a field free cavity and interaction with a cavity which already contains an electromagnetic field. Each particle delivers a certain amount of energy related to the modal R/Q value of the cavity. The transferred energy is a function of the particles trajectory and its velocity. It results in a resonant response of the cavity, which can be observed using a sensitive microwave receiver, provided that the deposited energy is significantly above the single photon threshold.

  17. An analytical boundary element integral approach to track the boundary of a moving cavity using electrical impedance tomography

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn

    2012-01-01

    This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)

  18. Modal analysis of wake fields and its application to elliptical pill-box cavity with finite aperture

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.; Yang, J.S.

    1990-01-01

    The potential of the wake-field produced by a bunch of relativistic charged particles passing through a pill-box cavity is expressed by using Floquet's theorem, and an obvious requirement that the energy gain over all acceleration cavity of many pill boxes must be proportional to the number of pill boxes, based on the previous modal approach (BWW theory). It is found that the wake-field is consisted of two classes of modes: the longitudinal modes which are independent of the aperture and the pill-box gap, the hybrid (pill-box) modes which are dependent of the pill-box gap. The wake field is predominated by the fundamental longitudinal mode whose wavelength is on the order of the effective diameter of the cavity, and its magnitude is inversely proportional to the cross sectional area of the cavity for practical cavities with small apertures. Both longitudinal and transverse wake fields due to the longitudinal modes in an elliptical pill box cavity are expressed analytically in a closed series form by solving exactly the longitudinal eigenmode equation in the elliptical cylindrical coordinates in terms of Mathieu functions. It is found that both longitudinal and transverse wake fields whose amplitudes per driving charge are greater than 100 MV/m/μC can be generated in an elliptical cavity

  19. Modeling of environmentally induced transients within satellites

    Science.gov (United States)

    Stevens, N. John; Barbay, Gordon J.; Jones, Michael R.; Viswanathan, R.

    1987-01-01

    A technique is described that allows an estimation of possible spacecraft charging hazards. This technique, called SCREENS (spacecraft response to environments of space), utilizes the NASA charging analyzer program (NASCAP) to estimate the electrical stress locations and the charge stored in the dielectric coatings due to spacecraft encounter with a geomagnetic substorm environment. This information can then be used to determine the response of the spacecraft electrical system to a surface discharge by means of lumped element models. The coupling into the electronics is assumed to be due to magnetic linkage from the transient currents flowing as a result of the discharge transient. The behavior of a spinning spacecraft encountering a severe substorm is predicted using this technique. It is found that systems are potentially vulnerable to upset if transient signals enter through the ground lines.

  20. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    Science.gov (United States)

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  1. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  2. Height - Diameter predictive equations for Rubber (Hevea ...

    African Journals Online (AJOL)

    BUKOLA

    They proffer logistic data for modeling and futuristic prediction for sustainable forest management. Diameter is one of the most ... in various quantitative estimation following the intricacy of time, availability of modern equipments .... growth functions. This trend is shown in Figure 1 where the prediction equations are plotted.

  3. Comparison of LiF and FeSO4 dosimetry with cavity theory for high-energy electrons

    International Nuclear Information System (INIS)

    Fregene, A.O.

    1976-01-01

    Using FeSO 4 dosimetry in a comparative study, the response of LiF dosimeter rods 1 mm in diameter by 6 mm in length to electron beams of initial energies in the range 5 to 39 MeV was investigated. The electron beam cavity theories of T. E. Burlin, R. J. Shelling, and B. Owen (1969), P. R. Almond and K. McCray (1970), and L. H. Bragg-Gray (1937) were employed in the estimation of absorbed doses. The LiF dosimeter was found energy independent over the range of electron energies covered. Bragg-Gray's and Almond's electron beam theories confirm this finding within 2 percent. The overall experimental error in the work is within 2 percent. Burlin's electron beam theory gave values that were considerably out, especially at the lower end of the range of energy covered

  4. Stand diameter distribution modelling and prediction based on Richards function.

    Directory of Open Access Journals (Sweden)

    Ai-guo Duan

    Full Text Available The objective of this study was to introduce application of the Richards equation on modelling and prediction of stand diameter distribution. The long-term repeated measurement data sets, consisted of 309 diameter frequency distributions from Chinese fir (Cunninghamia lanceolata plantations in the southern China, were used. Also, 150 stands were used as fitting data, the other 159 stands were used for testing. Nonlinear regression method (NRM or maximum likelihood estimates method (MLEM were applied to estimate the parameters of models, and the parameter prediction method (PPM and parameter recovery method (PRM were used to predict the diameter distributions of unknown stands. Four main conclusions were obtained: (1 R distribution presented a more accurate simulation than three-parametric Weibull function; (2 the parameters p, q and r of R distribution proved to be its scale, location and shape parameters, and have a deep relationship with stand characteristics, which means the parameters of R distribution have good theoretical interpretation; (3 the ordinate of inflection point of R distribution has significant relativity with its skewness and kurtosis, and the fitted main distribution range for the cumulative diameter distribution of Chinese fir plantations was 0.4∼0.6; (4 the goodness-of-fit test showed diameter distributions of unknown stands can be well estimated by applying R distribution based on PRM or the combination of PPM and PRM under the condition that only quadratic mean DBH or plus stand age are known, and the non-rejection rates were near 80%, which are higher than the 72.33% non-rejection rate of three-parametric Weibull function based on the combination of PPM and PRM.

  5. COMETHE III-M for transient fuel rod behaviour prediction

    International Nuclear Information System (INIS)

    Billaux, M.; Vliet, J. van

    1983-01-01

    The COMETHE III-M version is being developed in order to provide fuel rod behaviour prediction capability both in steady-state and in transient situations. It also allows to estimate the fuel rod enthalpy evolution versus time or burnup which may be important in core-related safety studies. This paper describes the transient heat transfer models, including transient heat conduction inside the fuel rod, and a subchannel model providing transient flow as well as enthalpy calculation capability. Transient fission gas release is also modelled on basis of the change rate of oxide temperature. The models are illustrated by a few calculation examples. (author)

  6. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  7. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  8. Resonant-frequency discharge in a multi-cell radio frequency cavity

    International Nuclear Information System (INIS)

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-01-01

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal

  9. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  10. Sponge retention within the abdominal cavity: presentation forms and radiological diagnosis

    International Nuclear Information System (INIS)

    Pastor Santovena, S.; Fernandez Ramos, J.; Diaz Riudavets, M.C.; Rodriguez Delgado, L.E.; Torres Diaz, M.; Pitti Reyes, S.; Toledo Trujillo, F.

    1994-01-01

    The incidence of surgical sponge retention within the abdominal cavity has been estimated to range between 1:1000 and 1:5000. This study deals with the radiological, ultrasonographic (US) and computed tomographic (CT) findings, with and without radiolabeling, in four cases in which sponges were retained in the abdominal cavity for different lengths of time, each of which followed a different course. (Author)

  11. Transient analysis for PWR reactor core using neural networks predictors

    International Nuclear Information System (INIS)

    Gueray, B.S.

    2001-01-01

    In this study, transient analysis for a Pressurized Water Reactor core has been performed. A lumped parameter approximation is preferred for that purpose, to describe the reactor core together with mechanism which play an important role in dynamic analysis. The dynamic behavior of the reactor core during transients is analyzed considering the transient initiating events, wich are an essential part of Safety Analysis Reports. several transients are simulated based on the employed core model. Simulation results are in accord the physical expectations. A neural network is developed to predict the future response of the reactor core, in advance. The neural network is trained using the simulation results of a number of representative transients. Structure of the neural network is optimized by proper selection of transfer functions for the neurons. Trained neural network is used to predict the future responses following an early observation of the changes in system variables. Estimated behaviour using the neural network is in good agreement with the simulation results for various for types of transients. Results of this study indicate that the designed neural network can be used as an estimator of the time dependent behavior of the reactor core under transient conditions

  12. Miniature scanning electron microscope for investigation of the interior surface of a superconducting Nb radiofrequency accelerating cavity

    International Nuclear Information System (INIS)

    Mathewson, A.G.; Grillot, A.

    1982-01-01

    A miniature scanning electron microscope with an electron beam diameter approx.1 μm has been constructed for high resolution examination at room temperature of the interior surface of a superconducting Nb radiofrequency accelerating cavity. Various objects and surface structures were observed, some of which could be correlated with lossy regions or ''hot spots'' detected previously on the outside surface during cavity operation at < or =4.2 K by a chain of carbon resistors. No internal surface features were observed which could conclusively be correlated with field emitting electron sources

  13. Effects of urban sprawl on snags and the abundance and productivity of cavity-nesting birds

    Science.gov (United States)

    Christina M. Blewett; John M. Marzluff

    2005-01-01

    We investigated the occurrence of, and relationships among, snags and cavity-nesting birds in the rapidly urbanizing region around Seattle, Washington in 2001 and 2002. We measured the density of snags in 49 sites (1-km2 "suburban landscapes" that included built and forested portions), and determined the diameter, height, decay status,...

  14. Assessment of models for steam release from concrete and implications for modeling corium behavior in reactor cavities

    International Nuclear Information System (INIS)

    Washington, K.E.; Carroll, D.E.

    1988-01-01

    Models for concrete outgassing have been developed and incorporated into a developmental version of the CONTAIN code for the assessment of corium behavior in reactor cavities. The resultant code, referred to as CONTAIN/OR in order to distinguish it from the released version of CONTAIN, has the capability to model transient heat conduction and concrete outgassing in core-concrete interaction problems. This study focused on validation and assessment of the outgassing model through comparisons with other concrete response codes. In general, the model is not mechanistic; however, there are certain important processes and feedback effects that are treated rigorously. The CONTAIN outgassing model was compared against two mechanistic concrete response codes (USINT and SLAM). Gas release and temperature profile predictions for several concrete thicknesses and heating rates were performed with acceptable agreement seen in each case. The model was also applied to predict corium behavior in a reactor cavity for a hypothetical severe accident scenario. In this calculation, gases evolving from the concrete during nonablating periods fueled exothermic Zr chemical reactions in the corium. Higher corium temperatures and more concrete ablation were observed when compared with that seen when concrete outgassing was neglected. Even though this result depends somewhat upon the makeup of the corium sources and the concrete type in the cavity, it does show that concrete outgassing can be important in the modeling of corium behavior in reactor cavities. In particular, the need to expand the traditional role of CORCON from steady-state ablation to the consideration of more transient events is clearly evident as a result of this work. 5 refs., 11 figs., 1 tab

  15. Fitting diameter distribution models to data from forest inventories with concentric plot design

    Energy Technology Data Exchange (ETDEWEB)

    Nanos, N.; Sjöstedt de Luna, S.

    2017-11-01

    Aim: Several national forest inventories use a complex plot design based on multiple concentric subplots where smaller diameter trees are inventoried when lying in the smaller-radius subplots and ignored otherwise. Data from these plots are truncated with threshold (truncation) diameters varying according to the distance from the plot centre. In this paper we designed a maximum likelihood method to fit the Weibull diameter distribution to data from concentric plots. Material and methods: Our method (M1) was based on multiple truncated probability density functions to build the likelihood. In addition, we used an alternative method (M2) presented recently. We used methods M1 and M2 as well as two other reference methods to estimate the Weibull parameters in 40000 simulated plots. The spatial tree pattern of the simulated plots was generated using four models of spatial point patterns. Two error indices were used to assess the relative performance of M1 and M2 in estimating relevant stand-level variables. In addition, we estimated the Quadratic Mean plot Diameter (QMD) using Expansion Factors (EFs). Main results: Methods M1 and M2 produced comparable estimation errors in random and cluster tree spatial patterns. Method M2 produced biased parameter estimates in plots with inhomogeneous Poisson patterns. Estimation of QMD using EFs produced biased results in plots within inhomogeneous intensity Poisson patterns. Research highlights:We designed a new method to fit the Weibull distribution to forest inventory data from concentric plots that achieves high accuracy and precision in parameter estimates regardless of the within-plot spatial tree pattern.

  16. A transparent model of the human scala tympani cavity.

    Science.gov (United States)

    Rebscher, S J; Talbot, N; Bruszewski, W; Heilmann, M; Brasell, J; Merzenich, M M

    1996-01-01

    A dimensionally accurate clear model of the human scala tympani has been produced to evaluate the insertion and position of clinically applied intracochlear electrodes for electrical stimulation. Replicates of the human scala tympani were made from low melting point metal alloy (LMA) and from polymethylmeth-acrylate (PMMA) resin. The LMA metal casts were embedded in blocks of epoxy and in clear silicone rubber. After removal of the metal alloy, a cavity was produced that accurately models the human scala tympani. Investment casting molds were made from the PMMA scala tympani casts to enable production of multiple LMA casts from which identical models were fabricated. Total dimensional distortion of the LMA casting process was less than 1% in length and 2% in diameter. The models have been successfully integrated into the design process for the iterative development of advanced intracochlear electrode arrays at UCSF. These fabrication techniques are applicable to a wide range of biomedical design problems that require modelling of visually obscured cavities.

  17. CT virtual endoscopy: a study of the capability to display the structures and abnormalities in nasal cavity

    International Nuclear Information System (INIS)

    Han Ping; Brambs, H.J.; Sokiranski, R.

    1999-01-01

    Objective: To evaluate display ability of virtual endoscopy and its clinical application in comparison with fiberoptic nasal endoscopy. Methods: 11 patients (22 nasal cavities) were examined by virtual endoscopy after axial spiral CT scanning was performed. Virtual endoscopy was performed by Explorer software package in a computer workstation. 9 patients (18 nasal cavities) underwent fiberoptic endoscopy. Results: Virtual endoscopy could clearly demonstrate the anatomical structures in nasal cavity, septal deviation, nasal meatus narrowing and obstruction, turbinate hyperplasia, and pathological masses larger than 3 mm in diameter. However, 'false adhesions' may appear in virtual endoscopy. The main limitation of virtual endoscopy was inability to evaluate mucosa and lack of histological diagnosis. Conclusions: Virtual endoscopy is a new, non-invasive method for demonstrating anatomical structures and diseases in nasal cavity. Its display ability is comparable with fiberoptic nasal endoscopy and is a supplement to fiberoptic nasal endoscopy

  18. Nonlocal Intracranial Cavity Extraction

    Science.gov (United States)

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  19. Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles.

    Science.gov (United States)

    Baliyan, Ankur; Nakajima, Yoshikata; Fukuda, Takahiro; Uchida, Takashi; Hanajiri, Tatsuro; Maekawa, Toru

    2014-01-22

    It still remains a crucial challenge to actively control carbon nanotube (CNT) structure such as the alignment, area density, diameter, length, chirality, and number of walls. Here, we synthesize an ultradense forest of CNTs of a uniform internal diameter by the plasma-enhanced chemical vapor deposition (PECVD) method using hollow nanoparticles (HNPs) modified with ligand as a catalyst. The diameters of the HNPs and internal cavities in the HNPs are uniform. A monolayer of densely packed HNPs is self-assembled on a silicon substrate by spin coating. HNPs shrink via the collapse of the internal cavities and phase transition from iron oxide to metallic iron in hydrogen plasma during the PECVD process. Agglomeration of catalytic NPs is avoided on account of the shrinkage of the NPs and ligand attached to the NPs. Diffusion of NPs into the substrate, which would inactivate the growth of CNTs, is also avoided on account of the ligand. As a result, an ultradense forest of triple-walled CNTs of a uniform internal diameter is successfully synthesized. The area density of the grown CNTs is as high as 0.6 × 10(12) cm(-2). Finally, the activity of the catalytic NPs and the NP/carbon interactions during the growth process of CNTs are investigated and discussed. We believe that the present approach may make a great contribution to the development of an innovative synthetic method for CNTs with selective properties.

  20. Design of rf-cavities in the funnel of accelerators for transmutation technologies

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Bultman, N.K.; Chan, K.D.C.; Martineau, R.L.; Nath, S.; Young, L.M.

    1994-01-01

    Funnels are a key component of accelerator structures proposed for transmutation technologies. In addition to conventional accelerator elements, specialized rf-cavities are needed for these structures. Simulations were done to obtain their electromagnetic field distribution and to minimize the rf-induced heat loads. Using these results a structural and thermal analysis of these cavities was performed to insure their reliability at high average power and to determine their cooling requirements. For one cavity the thermal expansion data in return was used to estimate the thermal detuning

  1. Mucoceles of the oral cavity in pediatric patients.

    Science.gov (United States)

    Wu, Chung Wei; Kao, Yu-Hsun; Chen, Chao-Ming; Hsu, Han Jen; Chen, Chun-Ming; Huang, I-Yueh

    2011-07-01

    Mucoceles are quite common in the oral cavity, but reports on pediatric patients are very rare. The aims of this study were to present our data and experience in the treatment of mucoceles of the oral cavity in pediatric patients, to compare them with those of other countries, and to remind the pediatric physician to devote much attention to lesions of the oral cavity in children. This retrospective study is based on the record of the patients who received surgical treatment for mucoceles of the oral cavity with pathologic confirmation at the Department of Dentistry, Kaohsiung Medical University Hospital, Taiwan, between 2000 and 2004. Patients younger than 18 years were included in this study. The analyzed data included age, gender, site, size, histopathologic findings, surgical methods, and complications. There were a total of 289 patients with mucoceles confirmed by histopathologic examination. As many as 64 patients were younger than 18 years. Of the 64, 34 were girls and 30 were boys; 89.1% of the lesions were in the lower lip; and 48.4% of the lesions were less than 5mm in diameter. Histopathologic findings showed that all mucoceles were of the extravasation type. As many as 30 patients were treated by carbon dioxide laser vaporization, and two cases recurred (6.67%); 34 patients were treated by surgical excision, and the recurrence rate (5.88%) was not statistically different for the treatment methods. The laser vaporization has the advantage of less bleeding, no sutures, and saving time, especially suitable for children with oral mucocele. Copyright © 2011 Elsevier Taiwan LLC. All rights reserved.

  2. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  3. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information about...... tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... model to enable axon diameter mapping in voxels with crossing fibers. We show in simulation that the technique can provide robust axon diameter estimates in a two-fiber crossing with the crossing angle as small as 45 degrees. Using ex vivo imaging data, we further demonstrate the feasibility...

  4. Transient performance estimation of charge plasma based negative capacitance junctionless tunnel FET

    International Nuclear Information System (INIS)

    Singh, Sangeeta; Kondekar, P. N.; Pal, Pawan

    2016-01-01

    We investigate the transient behavior of an n-type double gate negative capacitance junctionless tunnel field effect transistor (NC-JLTFET). The structure is realized by using the work-function engineering of metal electrodes over a heavily doped n + silicon channel and a ferroelectric gate stack to get negative capacitance behavior. The positive feedback in the electric dipoles of ferroelectric materials results in applied gate bias boosting. Various device transient parameters viz. transconductance, output resistance, output conductance, intrinsic gain, intrinsic gate delay, transconductance generation factor and unity gain frequency are analyzed using ac analysis of the device. To study the impact of the work-function variation of control and source gate on device performance, sensitivity analysis of the device has been carried out by varying these parameters. Simulation study reveals that it preserves inherent advantages of charge-plasma junctionless structure and exhibits improved transient behavior as well. (paper)

  5. On the performance of small diameter gas cyclones

    International Nuclear Information System (INIS)

    Halasz, Marcos Roberto Teixeira

    2002-02-01

    Small diameter cyclones represent a potential alternative for the removal of small diameter particles from gaseous mixtures as well as the environmental control of their emission. In order to establish feasible configurations of a small diameter cyclone applied in the separation of solid particles dispersed in a gas and considering a large quantify of experimental data in literature, neural networks were used to estimate the equipment grade efficiency and pressure drop. In order to evaluate a performance of many small diameters configurations and analysis was carried of parametrical sensibility which determines the most important variables on separation efficiency determination. A set of experimental runs was carried out in a lab-scale mini-cyclone in order to obtain the separation efficiency and pressure drop for different configurations, and evaluate the feasibility of coupling a post-cyclone device to improve the equipment overall performance. The cyclones used presented diameters of 0.03 and 0.05 m and the remaining dimensions varied proportionally about those found in Stairmand high-efficiency cyclones. Experimental separation efficiencies up to 99% were obtained in this work. These results confirm the feasibility of the experimental set-up configuration proposed. (author)

  6. Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods

    Science.gov (United States)

    Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett

    2009-01-01

    Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....

  7. Detecting aseismic strain transients from seismicity data

    Science.gov (United States)

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  8. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  9. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  10. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation.

    Science.gov (United States)

    Luczak, Vincent; Blackwell, Kim T; Abel, Ted; Girault, Jean-Antoine; Gervasi, Nicolas

    2017-02-01

    In the hippocampus, cyclic-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) form a critical signaling cascade required for long-lasting synaptic plasticity, learning and memory. Plasticity and memory are known to occur following pathway-specific changes in synaptic strength that are thought to result from spatially and temporally coordinated intracellular signaling events. To better understand how cAMP and PKA dynamically operate within the structural complexity of hippocampal neurons, we used live two-photon imaging and genetically-encoded fluorescent biosensors to monitor cAMP levels or PKA activity in CA1 neurons of acute hippocampal slices. Stimulation of β-adrenergic receptors (isoproterenol) or combined activation of adenylyl cyclase (forskolin) and inhibition of phosphodiesterase (IBMX) produced cAMP transients with greater amplitude and rapid on-rates in intermediate and distal dendrites compared to somata and proximal dendrites. In contrast, isoproterenol produced greater PKA activity in somata and proximal dendrites compared to intermediate and distal dendrites, and the on-rate of PKA activity did not differ between compartments. Computational models show that our observed compartmental difference in cAMP can be reproduced by a uniform distribution of PDE4 and a variable density of adenylyl cyclase that scales with compartment size to compensate for changes in surface to volume ratios. However, reproducing our observed compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient. Together, our imaging and computational results show that compartment diameter interacts with rate-limiting components like adenylyl cyclase, phosphodiesterase and protein phosphatase to shape the spatial and temporal components of cAMP and PKA signaling in CA1 neurons and suggests that small neuronal compartments are most sensitive to c

  11. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed

    Science.gov (United States)

    Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo

    2018-01-01

    Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.

  12. Assessment of age based on the pulp cavity width of the maxillary central incisors

    Directory of Open Access Journals (Sweden)

    Uday Ginjupally

    2014-01-01

    Full Text Available Aims and Objectives: The aim of this study was to estimate the age of the patients belonging to the age group of 15 - 55 years, attending the Department of Oral Medicine and Radiology, St. Joseph Dental College and Hospital, Eluru, based on the radiographic evaluation of the pulp cavity width of the maxillary central incisors. Materials and Methods: The study group comprised of 120 subjects. Intraoral periapical radiographs of the maxillary central incisors were taken for all subjects, using the conventional paralleling angle technique and the pulp cavity width was measured at the cervical and middle third using a digital vernier caliper. The data obtained was subjected to correlation and regression analysis. Results: A negative linear relationship was obtained between the age and pulp cavity width (cervical third, r = -0.459 and middle third, r = -0.704. Cubic regression analysis was done and the regression formulae were obtained. A mean difference of 0.1 years was obtained between the estimated age and real age, indicating the reliability of the derived formula. Conclusion: It can be concluded that the width of the pulp cavity of maxillary central incisors are reliable for estimation of age.

  13. Effect of strain rate on cavity closure during compression between flat platens using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Al-Tamimi, M.M.

    2011-01-01

    Superplasticity is a feature of a material or alloy which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature. This alloy has been extensively used as a model material to simulate behavior of engineering materials at high strain rates and temperatures. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using flat platens (open dies). Hollow specimens having different values of bore diameter (D/sub b/) to outer diameter (D/sub out/), of the same height and volume were investigated under different values of height reduction percentages ranging from 20% to 80% , and the percentage of cavity closure at each reduction percentage was determined. It was found that the cavity closure percentage increases or decreases at slow rate for reduction percentage in height less than 40% and increases more rapidly for reduction percentages in height above this value. Furthermore, specimens having smaller values of ratio (D/sub b//D/sub out/) resulted in higher percentage of cavity closure than specimens having higher ratios at the same value of reduction in height percentage. Complete cavity closure has occurred in specimens having the ratios of 0.1 and 0.2 at 75% reduction in height. (author)

  14. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...

  15. Implosion of the small cavity and large cavity cannonball targets

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Yamanaka, Chiyoe.

    1984-01-01

    Recent results of cannonball target implosion research are briefly reviewed with theoretical predictions for GEKKO XII experiments. The cannonball targets are classified into two types according to the cavity size ; small cavity and large cavity. The compression mechanisms of the two types are discussed. (author)

  16. Height-Diameter Models for Mixed-Species Forests Consisting of Spruce, Fir, and Beech

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2014-06-01

    Full Text Available Height-diameter models define the general relationship between the tree height and diameter at each growth stage of the forest stand. This paper presents generalized height-diameter models for mixed-species forest stands consisting of Norway spruce (Picea abies Karst., Silver fir (Abies alba L., and European beech (Fagus sylvatica L. from Slovakia. The models were derived using two growth functions from the exponential family: the two-parameter Michailoff and three-parameter Korf functions. Generalized height-diameter functions must normally be constrained to pass through the mean stand diameter and height, and then the final growth model has only one or two parameters to be estimated. These “free” parameters are then expressed over the quadratic mean diameter, height and stand age and the final mathematical form of the model is obtained. The study material included 50 long-term experimental plots located in the Western Carpathians. The plots were established 40-50 years ago and have been repeatedly measured at 5 to 10-year intervals. The dataset includes 7,950 height measurements of spruce, 21,661 of fir and 5,794 of beech. As many as 9 regression models were derived for each species. Although the “goodness of fit” of all models showed that they were generally well suited for the data, the best results were obtained for silver fir. The coefficient of determination ranged from 0.946 to 0.948, RMSE (m was in the interval 1.94-1.97 and the bias (m was -0.031 to 0.063. Although slightly imprecise parameter estimation was established for spruce, the estimations of the regression parameters obtained for beech were quite less precise. The coefficient of determination for beech was 0.854-0.860, RMSE (m 2.67-2.72, and the bias (m ranged from -0.144 to -0.056. The majority of models using Korf’s formula produced slightly better estimations than Michailoff’s, and it proved immaterial which estimated parameter was fixed and which parameters

  17. Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity.

    Science.gov (United States)

    Paramo, Teresa; East, Alexandra; Garzón, Diana; Ulmschneider, Martin B; Bond, Peter J

    2014-05-13

    Protein cavities and tunnels are critical in determining phenomena such as ligand binding, molecular transport, and enzyme catalysis. Molecular dynamics (MD) simulations enable the exploration of the flexibility and conformational plasticity of protein cavities, extending the information available from static experimental structures relevant to, for example, drug design. Here, we present a new tool (trj_cavity) implemented within the GROMACS ( www.gromacs.org ) framework for the rapid identification and characterization of cavities detected within MD trajectories. trj_cavity is optimized for usability and computational efficiency and is applicable to the time-dependent analysis of any cavity topology, and optional specialized descriptors can be used to characterize, for example, protein channels. Its novel grid-based algorithm performs an efficient neighbor search whose calculation time is linear with system size, and a comparison of performance with other widely used cavity analysis programs reveals an orders-of-magnitude improvement in the computational cost. To demonstrate its potential for revealing novel mechanistic insights, trj_cavity has been used to analyze long-time scale simulation trajectories for three diverse protein cavity systems. This has helped to reveal, respectively, the lipid binding mechanism in the deep hydrophobic cavity of a soluble mite-allergen protein, Der p 2; a means for shuttling carbohydrates between the surface-exposed substrate-binding and catalytic pockets of a multidomain, membrane-proximal pullulanase, PulA; and the structural basis for selectivity in the transmembrane pore of a voltage-gated sodium channel (NavMs), embedded within a lipid bilayer environment. trj_cavity is available for download under an open-source license ( http://sourceforge.net/projects/trjcavity ). A simplified, GROMACS-independent version may also be compiled.

  18. Use of loop-seals for the control of the overpressures in hydraulic transients evolving in a sea service water system

    Energy Technology Data Exchange (ETDEWEB)

    Canetta, D.; Capozza, A.; Iovino, G.

    1985-01-01

    The transient response following pump trip-offs and start-ups was investigated in the sea water system of a nuclear power plant. Specific care was devoted to water column separation and cavity collapse phenomena. A computer program designed for analysis of complex hydraulic networks was used. It is found that dangerous overpressures can be avoided by the use of loop seals. The design of the vacuum breaker valves of the loop seals and the optimization of overall transient behavior is discussed. 1 reference.

  19. Mechanistic pathways of recognition of a solvent-inaccessible cavity of protein by a ligand

    Science.gov (United States)

    Mondal, Jagannath; Pandit, Subhendu; Dandekar, Bhupendra; Vallurupalli, Pramodh

    One of the puzzling questions in the realm of protein-ligand recognition is how a solvent-inaccessible hydrophobic cavity of a protein gets recognized by a ligand. We address the topic by simulating, for the first time, the complete binding process of benzene from aqueous media to the well-known buried cavity of L99A T4 Lysozyme at an atomistic resolution. Our multiple unbiased microsecond-long trajectories, which were completely blind to the location of target binding site, are able to unequivocally identify the kinetic pathways along which benzene molecule meanders across the solvent and protein and ultimately spontaneously recognizes the deeply buried cavity of L99A T4 Lysozyme at an accurate precision. Our simulation, combined with analysis based on markov state model and free energy calculation, reveals that there are more than one distinct ligand binding pathways. Intriguingly, each of the identified pathways involves the transient opening of a channel of the protein prior to ligand binding. The work will also decipher rich mechanistic details on unbinding kinetics of the ligand as obtained from enhanced sampling techniques.

  20. Errors in estimating neutron quality factor using lineal energy distributions measured in tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1982-01-01

    Neutron dose equivalent is obtained from quality factors which are defined in terms of LET. It is possible to estimate the dose averaged quality factor, antiQ, directly from distributions in lineal energy, y, that are measured in tissue-equivalent proportional counters. This eliminates a mathematical transformation of the absorbed dose from D(y) to D(L). We evaluate the inherent error in computing Q from D(y) rather than D(L) for neutron spectra below 4 MeV. The effects of neutron energy and simulated tissue diameters within a gas cavity are examined in detail. (author)

  1. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  2. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  3. Sagittal Abdominal Diameter: Application in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Thaís Da Silva-Ferreira

    2014-05-01

    Full Text Available Excess visceral fat is associated with cardiovascular risk factors. Sagittal abdominal diameter (SAD has recently been highlighted as an indicator of abdominal obesity, and also may be useful in predicting cardiovascular risk. The purpose of the present study was to review the scientific literature on the use of SAD in adult nutritional assessment. A search was conducted for scientific articles in the following electronic databases: SciELO , MEDLINE (PubMed and Virtual Health Library. SAD is more associated with abdominal fat (especially visceral, and with different cardiovascular risk factors, such as, insulin resistance, blood pressure, and serum lipoproteins than the traditional methods of estimating adiposity, such as body mass index and waist-to-hip ratio. SAD can also be used in association with other anthropometric measures. There are still no cut-off limits established to classify SAD as yet. SAD can be an alternative measure to estimate visceral adiposity. However, the few studies on this diameter, and the lack of consensus on the anatomical site to measure SAD, are obstacles to establish cut-off limits to classify it.

  4. Investigation of transient cavitating flow in viscoelastic pipes

    International Nuclear Information System (INIS)

    Keramat, A; Tijsseling, A S; Ahmadi, A

    2010-01-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  5. Investigation of transient cavitating flow in viscoelastic pipes

    Science.gov (United States)

    Keramat, A.; Tijsseling, A. S.; Ahmadi, A.

    2010-08-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  6. Sub-surface defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Huda Abdullah; Abdul Razak Hamzah; Wan Saffiey Wan Abdullah; Ibrahim Ahmad; Vavilov, Vladimir

    2009-04-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 k Watt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with thermo fit TM Pro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔT max and the time of its appearance, τ max (ΔT). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔT max ), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defect area at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (author)

  7. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  8. Height-diameter allometry of tropical forest trees

    Science.gov (United States)

    T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...

  9. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production

    Science.gov (United States)

    Richard N. Conner; Daniel Saenz; D. Craig Rudolph; William G. Ross; David L. Kulhavy

    1998-01-01

    The authors evaluated selection of nest sites by male red-cockaded woodpeckers (Picoides borealis) in Texas relative to the age of the cavity when only cavities excavated by the woodpeckers were available and when both naturally excavated cavities and artificial cavities were available. They also evaluated nest-cavity selection relative to the ability of naturally...

  10. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

    Science.gov (United States)

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W

    2014-10-28

    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  11. Estimating steady state and transient characteristics of molten salt natural circulation loop using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kudariyawar, J.Y. [Homi Bhabha National Institue, Mumbai (India); Vaidya, A.M.; Maheshwari, K.K.; Srivastava, A.K. [Reactor Engineering Division, Bhabha Atomic Research Center, Mumbai (India); Satyamurthy, P. [ATDS, Bhabha Atomic Research Center, Mumbai (India)

    2015-03-15

    The steady state and transient characteristics of a molten salt natural circulation loop (NCL) are obtained by 3D CFD simulations. The working fluid is a mixture of NaNO{sub 3} and KNO{sub 3} in 60:40 ratio. Simulation is performed using PHOENICS CFD software. The computational domain is discretized by a body fitted grid generated using in-built mesh generator. The CFD model includes primary side. Primary side fluid is subjected to heat addition in heater section, heat loss to ambient (in piping connecting heater and cooler) and to secondary side (in cooler section). Reynolds Averaged Navier Stokes equations are solved along with the standard k-ε turbulence model. Validation of the model is done by comparing the computed steady state Reynolds number with that predicted by various correlations proposed previously. Transient simulations were carried out to study the flow initiations transients for different heater powers and different configurations. Similarly the ''power raising'' transient is computed and compared with in-house experimental data. It is found that, using detailed information obtained from 3D transient CFD simulations, it is possible to understand the physics of oscillatory flow patterns obtained in the loop under certain conditions.

  12. Two-phase flow structure in large diameter pipes

    International Nuclear Information System (INIS)

    Smith, T.R.; Schlegel, J.P.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► Local profiles of various quantities measured in large diameter pipe. ► Database for interfacial area in large pipes extended to churn-turbulent flow. ► Flow regime map confirms previous models for flow regime transitions. ► Data will be useful in developing interfacial area transport models for large pipes. - Abstract: Flow in large pipes is important in a wide variety of applications. In the nuclear industry in particular, understanding of flow in large diameter pipes is essential in predicting the behavior of reactor systems. This is especially true of natural circulation Boiling Water Reactor (BWR) designs, where a large-diameter chimney above the core provides the gravity head to drive circulation of the coolant through the reactor. The behavior of such reactors during transients and during normal operation will be predicted using advanced thermal–hydraulics analysis codes utilizing the two-fluid model. Essential to accurate two-fluid model calculations is reliable and accurate computation of the interfacial transfer terms. These interfacial transfer terms can be expressed as the product of one term describing the potential driving the transfer and a second term describing the available surface area for transfer, or interfacial area concentration. Currently, the interfacial area is predicted using flow regime dependent empirical correlations; however the interfacial area concentration is best computed through the use of the one-dimensional interfacial area transport equation (IATE). To facilitate the development of IATE source and sink term models in large-diameter pipes a fundamental understanding of the structure of the two-phase flow is essential. This understanding is improved through measurement of the local void fraction, interfacial area concentration and gas velocity profiles in pipes with diameters of 0.102 m and 0.152 m under a wide variety of flow conditions. Additionally, flow regime identification has been performed to

  13. CO Gas Inside the Protoplanetary Disk Cavity in HD 142527: Disk Structure from ALMA

    OpenAIRE

    Perez, S.; Casassus, S.; Ménard, F.; Roman, P.; van der Plas, G.; Cieza, L.; Pinte, C.; Christiaens, Valentin; Hales, A. S.

    2014-01-01

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue 2-1 line ...

  14. Nonlocal Intracranial Cavity Extraction

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2014-01-01

    Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.

  15. Validating automated kidney stone volumetry in computed tomography and mathematical correlation with estimated stone volume based on diameter.

    Science.gov (United States)

    Wilhelm, Konrad; Miernik, Arkadiusz; Hein, Simon; Schlager, Daniel; Adams, Fabian; Benndorf, Matthias; Fritz, Benjamin; Langer, Mathias; Hesse, Albrecht; Schoenthaler, Martin; Neubauer, Jakob

    2018-06-02

    To validate AutoMated UroLithiasis Evaluation Tool (AMULET) software for kidney stone volumetry and compare its performance to standard clinical practice. Maximum diameter and volume of 96 urinary stones were measured as reference standard by three independent urologists. The same stones were positioned in an anthropomorphic phantom and CT scans acquired in standard settings. Three independent radiologists blinded to the reference values took manual measurements of the maximum diameter and automatic measurements of maximum diameter and volume. An "expected volume" was calculated based on manual diameter measurements using the formula: V=4/3 πr³. 96 stones were analyzed in the study. We had initially aimed to assess 100. Nine were replaced during data acquisition due of crumbling and 4 had to be excluded because the automated measurement did not work. Mean reference maximum diameter was 13.3 mm (5.2-32.1 mm). Correlation coefficients among all measured outcomes were compared. The correlation between the manual and automatic diameter measurements to the reference was 0.98 and 0.91, respectively (pvolumetry is possible and significantly more accurate than diameter-based volumetric calculations. To avoid bias in clinical trials, size should be measured as volume. However, automated diameter measurements are not as accurate as manual measurements.

  16. Modelling of diamond deposition microwave cavity generated plasmas

    International Nuclear Information System (INIS)

    Hassouni, K; Silva, F; Gicquel, A

    2010-01-01

    Some aspects of the numerical modelling of diamond deposition plasmas generated using microwave cavity systems are discussed. The paper mainly focuses on those models that allow (i) designing microwave cavities in order to optimize the power deposition in the discharge and (ii) estimating the detailed plasma composition in the vicinity of the substrate surface. The development of hydrogen plasma models that may be used for the self-consistent simulation of microwave cavity discharge is first discussed. The use of these models for determining the plasma configuration, composition and temperature is illustrated. Examples showing how to use these models in order to optimize the cavity structure and to obtain stable process operations are also given. A transport model for the highly reactive H 2 /CH 4 moderate pressure discharges is then presented. This model makes possible the determination of the time variation of plasma composition and temperature on a one-dimensional domain located on the plasma axis. The use of this model to analyse the transport phenomena and the chemical process in diamond deposition plasmas is illustrated. The model is also utilized to analyse pulsed mode discharges and the benefit they can bring as far as diamond growth rate and quality enhancement are concerned. We, in particular, show how the model can be employed to optimize the pulse waveform in order to improve the deposition process. Illustrations on how the model can give estimates of the species density at the growing substrate surface over a wide domain of deposition conditions are also given. This brings us to discuss the implication of the model prediction in terms of diamond growth rate and quality. (topical review)

  17. Transient Fuel Behavior and Failure Condition in the CABRI-2 Experiments

    International Nuclear Information System (INIS)

    Sato, Ikken; Lemoine, Francette; Struwe, Dankward

    2004-01-01

    In the CABRI-2 program, 12 tests were performed under various transient conditions covering a wide range of accident scenarios using two types of preirradiated fast breeder reactor (FBR) fuel pins with different smear densities and burnups. For each fuel, a nonfailure-transient test was performed, and it provided basic information such as fuel thermal condition, fuel swelling, and gas release. From the failure tests, information on failure mode, failure time, and axial location was obtained. Based on this information, failure conditions such as fuel enthalpy and cladding temperature were evaluated. These failure conditions were compared with the CABRI-1 tests in which different fuels as well as different transient conditions were used. This comparison, together with supporting information available from existing in-pile and out-of-pile experiments, allowed an effective understanding on failure mechanisms depending on fuel and transient conditions. It is concluded that pellet-cladding mechanical interaction (PCMI) due to fuel thermal expansion and fission-gas-induced swelling is playing an important role on mechanical clad loading especially with high smear density and low fuel-heating-rate conditions. At very high heating-rate conditions, there is no sufficient time to allow significant fuel swelling, so that cavity pressurization with fuel melting becomes the likely failure mechanism. Fuel smear density and fission-gas retention have a strong impact both on PCMI and cavity pressurization. Furthermore, pin failure is strongly dependent on cladding temperature, which plays an important role in the axial failure location. With the low smear-density fuel, considerable PCMI mitigation is possible leading to a high failure threshold as well as in-pin molten-fuel relocation along the central hole. However, even with the low smear density fuel, PCMI failure could take place with an elevated cladding-temperature condition. On the other hand, in case of a sufficiently long

  18. Dental cavities

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  19. Comparison of LIFE-4 and TEMECH code predictions with TREAT transient test data

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Bard, F.E.; Hunter, C.W.

    1984-09-01

    Transient tests in the TREAT reactor were performed on FFTF Reference design mixed-oxide fuel pins, most of which had received prior steady-state irradiation in the EBR-II reactor. These transient test results provide a data base for calibration and verification of fuel performance codes and for evaluation of processes that affect pin damage during transient events. This paper presents a comparison of the LIFE-4 and TEMECH fuel pin thermal/mechanical analysis codes with the results from 20 HEDL TREAT experiments, ten of which resulted in pin failure. Both the LIFE-4 and TEMECH codes provided an adequate representation of the thermal and mechanical data from the TREAT experiments. Also, a criterion for 50% probability of pin failure was developed for each code using an average cumulative damage fraction value calculated for the pins that failed. Both codes employ the two major cladding loading mechanisms of differential thermal expansion and central cavity pressurization which were demonstrated by the test results. However, a detailed evaluation of the code predictions shows that the two code systems weigh the loading mechanism differently to reach the same end points of the TREAT transient results

  20. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  1. Prediction and error of baldcypress stem volume from stump diameter

    Science.gov (United States)

    Bernard R. Parresol

    1998-01-01

    The need to estimate the volume of removals occurs for many reasons, such as in trespass cases, severance tax reports, and post-harvest assessments. A logarithmic model is presented for prediction of baldcypress total stem cubic foot volume using stump diameter as the independent variable. Because the error of prediction is as important as the volume estimate, the...

  2. A lateral cephalometric study of pharyngeal cavity in Korean adults

    International Nuclear Information System (INIS)

    Lee, Sang Rae

    1976-01-01

    A study was performed to investigate the size of pharyngeal cavity and sexual differences between Korean adult mal e and female by introducing linear analysis of the lateral cephalogram. The radiograms were composed of 46 adult male aged 24.64 and 52 adult female aged 22.74 respectively. In order to study and measure the pharyngeal area, the following skeletal landmarks were selected: S,N,A,Ptm, B,H,H', M ,S-N, FH and CV, and the angle CV-FH was measured to provide a factor for correction of error resulting from improper he ad positioning of subjects, especially in the relative positions of A and H, while radiography. All points to be measured were projected at right angles to the Frankfort plane. For the purpose of measuring the anteroposterior dimensions of pharyngeal cavity the distances were measured in A-Ptm, A-S, S-Ptm and CV-H, and vertical measurements were made in SN-A, SN-PNS, SN-H' and M-H. The obtained results were as follows: 1. The pharyngeal cavity is broader in the vertical than in the anteroposterior diameter in both sex and the maximum sexual differences were showed in the distances between SN and H', and minimal sexual differences in the distances between S and Ptm. 2. In general, the measurements of male were larger than those of female in the anteroposterior dimensions of pharyngea l cavity, but the distances between A and S, between CV and H showed significant sexual differences when evaluated statistically. 3. All of the measurements were larger in male than in female in vertical dimensions of pharyngeal cavity, and there were statistical significances of sexual differences in all variables.

  3. A lateral cephalometric study of pharyngeal cavity in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Rae [Department of Dental Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1976-11-15

    A study was performed to investigate the size of pharyngeal cavity and sexual differences between Korean adult mal e and female by introducing linear analysis of the lateral cephalogram. The radiograms were composed of 46 adult male aged 24.64 and 52 adult female aged 22.74 respectively. In order to study and measure the pharyngeal area, the following skeletal landmarks were selected: S,N,A,Ptm, B,H,H', M ,S-N, FH and CV, and the angle CV-FH was measured to provide a factor for correction of error resulting from improper he ad positioning of subjects, especially in the relative positions of A and H, while radiography. All points to be measured were projected at right angles to the Frankfort plane. For the purpose of measuring the anteroposterior dimensions of pharyngeal cavity the distances were measured in A-Ptm, A-S, S-Ptm and CV-H, and vertical measurements were made in SN-A, SN-PNS, SN-H' and M-H. The obtained results were as follows: 1. The pharyngeal cavity is broader in the vertical than in the anteroposterior diameter in both sex and the maximum sexual differences were showed in the distances between SN and H', and minimal sexual differences in the distances between S and Ptm. 2. In general, the measurements of male were larger than those of female in the anteroposterior dimensions of pharyngea l cavity, but the distances between A and S, between CV and H showed significant sexual differences when evaluated statistically. 3. All of the measurements were larger in male than in female in vertical dimensions of pharyngeal cavity, and there were statistical significances of sexual differences in all variables.

  4. Estimation of Time Dependent Properties from Surface Pressure in Open Cavities

    Science.gov (United States)

    2008-02-01

    static pressure of the cavity. The stagnation and static pressures are measured separately with Druck Model DPI 145 pressure transducers (with a quoted...interacting with the ZNMF actuator jets, the 2D shape of the vortical structures transform to a 3D shape with spanwise vortical structures. These...Therefore, the pressure gradient in the d direction is dd ° 3d Substituting Equation (5.3) into Equation (5.5) results in ^l = PJk(e^-Re^)/c^ (5.6

  5. Performance of Superconducting Cavities as Required for the SPL

    CERN Document Server

    Weingarten, Wolfgang

    2008-01-01

    This document outlines an optimisation analysis for the RF cavities of the planned Superconducting Proton Linac (SPL) at CERN with regard to the operating frequency and temperature. The analysis is based on a phenomenological assessment of the field dependent Q-value, as taken from published test results from RF cavities of various proveniences. It turns out that the design Q-value at an accelerating gradient of 25 MV/m ($\\Beta$ = 1 cavity) of $1^{.}10^{10}$ at 704 (1408) MHz is attainable at 1.9 (1.6) K, respectively, however, with the present state-of-the-art manufacturing, at the expense of some reprocessing. The optimum of the total electrical grid power consumption (composed of RF and cryogenics) is estimated as a function of frequency and operating temperature for both the low and high power SPL. This document outlines an optimisation analysis for the RF cavities of the planned Superconducting Proton Linac (SPL) at CERN with regard to the operating frequency and temperature. The analysis is based on a p...

  6. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    Science.gov (United States)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  7. Addressing the selectivity issue of cobalt doped zinc oxide thin film iso-butane sensors: Conductance transients and principal component analyses

    Science.gov (United States)

    Ghosh, A.; Majumder, S. B.

    2017-07-01

    Iso-butane (i-C4H10) is one of the major components of liquefied petroleum gas which is used as fuel in domestic and industrial applications. Developing chemi-resistive selective i-C4H10 thin film sensors remains a major challenge. Two strategies were undertaken to differentiate carbon monoxide, hydrogen, and iso-butane gases from the measured conductance transients of cobalt doped zinc oxide thin films. Following the first strategy, the response and recovery transients of conductances in these gas environments are fitted using the Langmuir adsorption kinetic model to estimate the heat of adsorption, response time constant, and activation energies for adsorption (response) and desorption (recovery). Although these test gases have seemingly different vapor densities, molecular diameters, and reactivities, analyzing the estimated heat of adsorption and activation energies (for both adsorption and desorption), we could not differentiate these gases unequivocally. However, we have found that the lower the vapor density, the faster the response time irrespective of the test gas concentration. As a second strategy, we demonstrated that feature extraction of conductance transients (using fast Fourier transformation) in conjunction with the pattern recognition algorithm (principal component analysis) is more fruitful to address the cross-sensitivity of Co doped ZnO thin film sensors. We have found that although the dispersion among different concentrations of hydrogen and carbon monoxide could not be avoided, each of these three gases forms distinct clusters in the plot of principal component 2 versus 1 and therefore could easily be differentiated.

  8. Fundamental mode rf power dissipated in a waveguide attached to an accelerating cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1993-01-01

    An accelerating RF cavity usually requires accessory devices such as a tuner, a coupler, and a damper to perform properly. Since a device is attached to the wall of the cavity to have certain electrical coupling of the cavity field through the opening. RF power dissipation is involved. In a high power accelerating cavity, the RF power coupled and dissipated in the opening and in the device must be estimated to design a proper cooling system for the device. The single cell cavities of the APS storage ring will use the same accessories. These cavities are rotationally symmetric and the fields around the equator can be approximated with the fields of the cylindrical pillbox cavity. In the following, the coupled and dissipated fundamental mode RF power in a waveguide attached to a pillbox cavity is discussed. The waveguide configurations are (1) aperture-coupled cylindrical waveguide with matched load termination; (2) short-circuited cylindrical waveguide; and (3) E-probe or H-loop coupled coaxial waveguide. A short-circuited, one-wavelength coaxial structure is considered for the fundamental frequency rejection circuit of an H-loop damper

  9. The measurement of the radioactive aerosol diameter by position sensitive detectors, 3

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Nakamoto, Atsushi; Kanamori, Masashi; Seki, Akio.

    1981-10-01

    The measurement of the diameter of radioactive aerosol, in particular plutonium aerosol, is very important for the internal dose estimation. Determination of the diameter of radioactive aerosol is performed by using the position sensitive detectors. Position sensitive semiconductor detectors and Scintillation detectors with IIT tube are used as the position sensitive detector. The filter paper with the radioactive aerosols is contacted to the PSD which is connected to the data processor so that the diameter of the aerosol is calculated from the measured radioactivity. (author)

  10. A Review of the Segmental Diameter of the Healthy Human Spinal Cord.

    Science.gov (United States)

    Frostell, Arvid; Hakim, Ramil; Thelin, Eric Peter; Mattsson, Per; Svensson, Mikael

    2016-01-01

    Knowledge of the average size and variability of the human spinal cord can be of importance when treating pathological conditions in the spinal cord. Data on healthy human spinal cord morphometrics have been published for more than a century using different techniques of measurements, but unfortunately, comparison of results from different studies is difficult because of the different anatomical landmarks used as reference points along the craniocaudal axis for the measurements. The aim of this review was to compute population estimates of the transverse and anteroposterior diameter of the human spinal cord by comparing and combining previously published data on a normalized craniocaudal axis. We included 11 studies presenting measurements of spinal cord cross-sectional diameters, with a combined sample size ranging from 15 to 488 subjects, depending on spinal cord level. Based on five published studies presenting data on the lengths of the segments of the spinal cord and vertebral column, we calculated the relative positions of all spinal cord neuronal segments and vertebral bony segments and mapped measurements of spinal cord size to a normalized craniocaudal axis. This mapping resulted in better alignment between studies and allowed the calculation of weighted averages and standard deviations (SDs) along the spinal cord. These weighted averages were smoothed using a generalized additive model to yield continuous population estimates for transverse and anteroposterior diameter and associated SDs. The spinal cord had the largest transverse diameter at spinal cord neuronal segment C5 (13.3 ± 2.2), decreased to segment T8 (8.3 ± 2.1), and increased slightly again to 9.4 ± 1.5 at L3. The anteroposterior diameter showed less variation in size along the spinal cord at C5 (7.4 ± 1.6), T8 (6.3 ± 2.0), and L3 (7.5 ± 1.6). All estimates are presented in millimeters ± 2 SDs. We conclude that segmental transverse and anteroposterior

  11. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  12. Compressibility effects in the shear layer over a rectangular cavity

    Energy Technology Data Exchange (ETDEWEB)

    Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie

    2016-10-26

    we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.

  13. Assessment of cavity dispersal correlations for possible implementation in the CONTAIN code

    International Nuclear Information System (INIS)

    Williams, D.C.; Griffith, R.O.

    1996-02-01

    Candidate models and correlations describing entrainment and dispersal of core debris from reactor cavities in direct containment heating (DCH) event, are assessed against a data base of approximately 600 experiments performed previously at Brookhaven National Laboratory and Sandia National Laboratories reactor cavities was studied. Cavity geometries studied are those of the Surry and Zion nuclear power plants and scale factors of 1/42 and 1/10 were studied for both geometries. Other parameters varied in the experiments include gas pressure driving the dispersal, identities of the driving gas and of the simulant fluid, orifice diameter in the pressure vessel, and volume of the gas pressure vessel. Correlations were assessed in terms of their ability to reproduce the observed trends in the fractions dispersed as the experimental parameters were varied. For the fraction of the debris dispersed, the correlations recommended for inclusion in the CONTAIN code are the Tutu-Ginsberg correlations, the integral form of the correlation proposed by Levy and a modified form of the Whalley-Hewitt correlation. For entrainment rates, the recommended correlations are the time-dependent forms of the Levy correlation, a correlation suggested by Tutu, and the modified Whalley-Hewitt correlation

  14. Investigation of the pressure generated in the mould cavity during polyurethane integral skin foam moulding

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available An industrial scale measuring system was set up to investigate the pressure arising in the mould cavity during polyurethane integral skin foaming. The system is able to measure the pressure arising in the mould cavity and the pressure distribution using a piezoresistive pressure sensor. The pressure distribution was measured at 18 points along the mould surface at constant production parameters. Then six production parameters, which affect the pressure, were investigated in detail with the Taguchi method of experimental design. The results of the design were processed by ANOVA (analysis of variance. Three major influencing parameters were estimated by regression analysis. Finally an equation was developed to give a good estimation to the pressure arising in the mould cavity.

  15. Peculiar transient events in the Schumann resonance band and their possible explanation

    Science.gov (United States)

    Ondrásková, Adriena; Bór, József; S[Breve]Evcík, Sebastián; Kostecký, Pavel; Rosenberg, Ladislav

    2008-04-01

    Superimposed on the continuous Schumann resonance (SR) background in the extremely low frequency (ELF) band, transient signals (e.g. bursts) can be observed, which originate from intense lightning discharges occurring at different locations on the globe. From the many transients that were observed at the Astronomical and Geophysical Observatory (AGO) of Comenius University near Modra, western Slovakia, in the vertical electric field component mainly during May and June of 2006, a peculiar group of events could be recognized. According to the waveform analysis, these peculiar events in most cases consist of two overlapping transients with a characteristic time difference of 0.13-0.15 s between the onsets. On the other hand, the spectrum of these peculiar transients showed discernible SR peaks for higher modes as well (n>7). The same events could be found in the records of the Széchenyi István Geophysical Observatory of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences near Nagycenk, Hungary (NCK). The natural origin of the peculiar events was verified from the NCK data and the source location was determined from the second transient. The results suggest that the two consecutive transients originated in the same thunderstorm. Furthermore, the phase spectrum analysis indicates that the sources have coherently excited the Earth-ionosphere cavity. These findings seem to support the idea that electromagnetic waves orbiting the Earth might trigger lightning discharges. The possibility that electromagnetic waves may trigger discharges was first considered by Nikola Tesla.

  16. Estimation of internal heat transfer coefficients and detection of rib positions in gas turbine blades from transient surface temperature measurements

    International Nuclear Information System (INIS)

    Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M

    2008-01-01

    This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.

  17. Estimating chronic hepatitis C prognosis using transient elastography-based liver stiffness: A systematic review and meta-analysis.

    Science.gov (United States)

    Erman, A; Sathya, A; Nam, A; Bielecki, J M; Feld, J J; Thein, H-H; Wong, W W L; Grootendorst, P; Krahn, M D

    2018-05-01

    Chronic hepatitis C (CHC) is a leading cause of hepatic fibrosis and cirrhosis. The level of fibrosis is traditionally established by histology, and prognosis is estimated using fibrosis progression rates (FPRs; annual probability of progressing across histological stages). However, newer noninvasive alternatives are quickly replacing biopsy. One alternative, transient elastography (TE), quantifies fibrosis by measuring liver stiffness (LSM). Given these developments, the purpose of this study was (i) to estimate prognosis in treatment-naïve CHC patients using TE-based liver stiffness progression rates (LSPR) as an alternative to FPRs and (ii) to compare consistency between LSPRs and FPRs. A systematic literature search was performed using multiple databases (January 1990 to February 2016). LSPRs were calculated using either a direct method (given the difference in serial LSMs and time elapsed) or an indirect method given a single LSM and the estimated duration of infection and pooled using random-effects meta-analyses. For validation purposes, FPRs were also estimated. Heterogeneity was explored by random-effects meta-regression. Twenty-seven studies reporting on 39 groups of patients (N = 5874) were identified with 35 groups allowing for indirect and 8 for direct estimation of LSPR. The majority (~58%) of patients were HIV/HCV-coinfected. The estimated time-to-cirrhosis based on TE vs biopsy was 39 and 38 years, respectively. In univariate meta-regressions, male sex and HIV were positively and age at assessment, negatively associated with LSPRs. Noninvasive prognosis of HCV is consistent with FPRs in predicting time-to-cirrhosis, but more longitudinal studies of liver stiffness are needed to obtain refined estimates. © 2017 John Wiley & Sons Ltd.

  18. Improved reactor cavity

    International Nuclear Information System (INIS)

    Katz, L.R.; Demarchais, W.E.

    1984-01-01

    A reactor pressure vessel disposed in a cavity has coolant inlet or outlet pipes extending through passages in the cavity walls and welded to pressure nozzles. The cavity wall has means for directing fluid away from a break at a weld away from the pressure vessel, and means for inhibiting flow of fluid toward the vessel. (author)

  19. Study of the initiation of subcooled boiling during power transients

    International Nuclear Information System (INIS)

    VanVleet, R.J.

    1985-01-01

    An experimental investigation of boiling initiation during power transients has been conducted for horizontal-cylinder heating elements in degassed distilled water. Platinum elements, 0.127 and 0.250 mm in diameter, were internally heated electrically at a controlled superficial heat flux (power applied divided by surface area) increasing linearly with time at rates of 0.035 and 0.35 MW/m 2 s and corresponding test durations of 20 and 2 seconds. Tests were carried out at saturation temperatures from 100 to 195 0 C with bulk fluid subcooling from 0 to 30 K. During the course of a power transient, element temperature and superficial heat flux were measured electrically and the boiling initiation time was determined optically. It was found that the conditions for boiling initiation depended strongly on the pressure-temperature history of the heating element and surround fluid prior to the transient. Boiling initiation times were found to agree qualitatively with predictions of a model based on the contact-angle hysteresis concept. Brief prepressurization prior to a transient was found to increase dramatically the temperature and heat flux required for boiling initiation because of deactivation of boiling initiation sites. However, sites were re-activated during the transient and, in subsequent tests without prepressurization, no elevation in boiling initiation conditions was observed and results were in quantitative agreement with predictions of the model

  20. Shear Layer Dynamics in Resonating Cavity Flows

    National Research Council Canada - National Science Library

    Ukeiley, Lawrence

    2004-01-01

    .... The PIV data was also combined with the surface pressure measurements through the application of the Quadratic Stochastic Estimation procedure to provide time resolved snapshots of the flow field. Examination of these results indicate the strong pumping action of the cavity regardless of whether resonance existed and was used to visualize the large scale structures interacting with the aft wall.

  1. WHEELSET AXLE WITH THE CAVITY OF UNIFORM CROSS SECTION

    Directory of Open Access Journals (Sweden)

    S. R. Kolesnykov

    2014-10-01

    Full Text Available Purpose. Due to operation in complex loading conditions, the rolling stock wheelsets should provide high reliability, since the train traffic safety largely depends on them. Design and technical condition of wheelsets affect the smoothness, intensity of forces generated by the interaction between the car and track, and the motion resistance. Specificity of the axle operation consists in the fact that it undergoes the bending stresses under loading. These stresses are unevenly distributed along the cross-sectional area, reaching the highest values in the outer fibers and the minimal values in the internal ones. This aspect sets the problem of replacement of the uniform cross section with the hollow cross section. The disadvantages of hollow axle design, which are used at the present time, should include a significant manufacturing complexity of the variable section cavity. The purpose is to develop a modernized design of the wheelset axle. Methodology. A construction of the hollow axle having an inner longitudinal cylindrical through hole of the constant diameter throughout its length was proposed. The item is made of steel seamless tube. The inner surface of the tube is treated by mechanical means to remove the voltage concentrations in the internal longitudinal cylindrical through hole, which has a constant diameter along the entire length of the axle. Findings. Application of this design will facilitate manufacturing of the hollow axle and the machining of the inner longitudinal through hole, while retaining all the use advantages of the hollow axle in the rolling stock wheel pairs. Another use advantage of the hollow axle of this design is the absence of partial heterogeneity of the metal, which is inevitably, occurs during the solid axles blanking. Originality. A new design of the wheelset hollow axle of railway rolling stock was proposed. Practical value. Introduction of the new design simplifying the manufacture and mechanical treatment of

  2. ROC analysis of benefit and limitation in radiotherapy for cancer of the oral cavity

    International Nuclear Information System (INIS)

    Maciejewski, B.; Zajusz, A.

    1993-01-01

    The ROC (receiver operating characteristic) analysis of optimization of radiation treatment of cancer of oral cavity was carried out. Material of 210 patients with squamous cell carcinoma of the oral cavity was included into the study. Based on dose-response curves for tumor and late mucosal reactions, iso-utility curves and optimal k values were estimated. Optimal k values decreased from 0.792 to 0.584 with extension of overall treatment time from 35 to 49 days. This may suggest that the planning of additional dose to compensate tumor clonogens repopulation during prolonged treatment does not improve the therapeutic gain in radiotherapy for cancer of the oral cavity. The ROC is a useful model to estimate the optimal radiation treatment for a given tumor because it is independent of any arbitrary consensus or theoretical assumption. (author) 1 tab., 3 figs., 5 refs

  3. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  4. State of the art of multicell SC cavities and perspectives

    International Nuclear Information System (INIS)

    Peter Kneisel

    2002-01-01

    Superconducting cavity technology has made major progresses in the last decade with the introduction of high purity niobium on an industrial scale and, at the same time, by an improved understanding of the limiting processes in cavity performance, such as multipacting, field emission loading and thermal break-down. Multicell niobium cavities for beta = 1 particle acceleration, e.g. for the TESLA project, are routinely exceeding gradients of Eacc = 20 MV/m after the application of surface preparation techniques such as buffered chemical polishing or electropolishing, high pressure ultrapure water rinsing, UHV heat treatment and clean room assembly. The successes of the technology for beta = 1 accelerators has triggered a whole set of possible future applications for beta < 1 particle acceleration such as spallation neutron sources (SNS, ESS), transmutation of nuclear waste (TRASCO, ASH) or rare isotopes (RIA). The most advanced of these projects is SNS now under construction at Oak Ridge National Laboratory. This paper will review the technical solutions adopted to advance SRF technology and their impact on cavity performance, based on the SNS prototyping efforts. 2K at these high gradients are no longer out of reach. For the accelerator builder the challenge remains to come up with a good and reasonable design, which takes into account the status of the technology and does not over-estimate the achievable cavity performances in a large assembly such as, e.g., a multi-cavity cryo-module. In the following the criteria for multi-cell sc cavity design are reviewed and it is attempted to give a snapshot of the present status of multi-cell cavity performances

  5. Attached cavitation at a small diameter ultrasonic horn tip

    Science.gov (United States)

    Žnidarčič, Anton; Mettin, Robert; Cairós, Carlos; Dular, Matevž

    2014-02-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids, for instance, for cell disruption or sonochemical reactions. They are operated typically in the frequency range up to about 50 kHz and have tip diameters from some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e., below the acoustic driving frequency. Here, we present a systematic study of the cavitation dynamics in water at a 20 kHz horn tip of 3 mm diameter. The system was investigated by high-speed imaging with simultaneous recording of the acoustic emissions. Measurements were performed under variation of acoustic power, air saturation, viscosity, surface tension, and temperature of the liquid. Our findings show that the liquid properties play no significant role in the dynamics of the attached cavitation at the small ultrasonic horn. Also the variation of the experimental geometry, within a certain range, did not change the dynamics. We believe that the main two reasons for the peculiar dynamics of cavitation on a small ultrasonic horn are the higher energy density on a small tip and the inability of the big tip to "wash" away the gaseous bubbles. Calculation of the somewhat adapted Strouhal number revealed that, similar to the hydrodynamic cavitation, values which are relatively low characterize slow cavitation structure dynamics. In cases where the cavitation follows the driving frequency this value lies much higher - probably at Str > 20. In the spirit to distinguish the observed phenomenon with other cavitation dynamics at ultrasonic transducer surfaces, we suggest to term the observed phenomenon of attached cavities partly covering the full horn

  6. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  7. Multipacting studies in elliptic SRF cavities

    Science.gov (United States)

    Prakash, Ram; Jana, Arup Ratan; Kumar, Vinit

    2017-09-01

    Multipacting is a resonant process, where the number of unwanted electrons resulting from a parasitic discharge rapidly grows to a larger value at some specific locations in a radio-frequency cavity. This results in a degradation of the cavity performance indicators (e.g. the quality factor Q and the maximum achievable accelerating gradient Eacc), and in the case of a superconducting radiofrequency (SRF) cavity, it leads to a quenching of superconductivity. Numerical simulations are essential to pre-empt the possibility of multipacting in SRF cavities, such that its design can be suitably refined to avoid this performance limiting phenomenon. Readily available computer codes (e.g.FishPact, MultiPac,CST-PICetc.) are widely used to simulate the phenomenon of multipacting in such cases. Most of the contemporary two dimensional (2D) codes such as FishPact, MultiPacetc. are unable to detect the multipacting in elliptic cavities because they use a simplistic secondary emission model, where it is assumed that all the secondary electrons are emitted with same energy. Some three-dimensional (3D) codes such as CST-PIC, which use a more realistic secondary emission model (Furman model) by following a probability distribution for the emission energy of secondary electrons, are able to correctly predict the occurrence of multipacting. These 3D codes however require large data handling and are slower than the 2D codes. In this paper, we report a detailed analysis of the multipacting phenomenon in elliptic SRF cavities and development of a 2D code to numerically simulate this phenomenon by employing the Furman model to simulate the secondary emission process. Since our code is 2D, it is faster than the 3D codes. It is however as accurate as the contemporary 3D codes since it uses the Furman model for secondary emission. We have also explored the possibility to further simplify the Furman model, which enables us to quickly estimate the growth rate of multipacting without

  8. Frequency-feedback cavity enhanced spectrometer

    Science.gov (United States)

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  9. Coherent stacking of picosecond laser pulses in a high-Q optical cavity for accelerator applications

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Telegin, Yu.N.

    2007-01-01

    We have performed the harmonic analysis of the steady-state coherent pulse-stacking process in a high-Q Fabry-Perot cavity. The expression for the stacked pulse shape is obtained as a function of both the laser cavity and pulse-stacking cavity parameters. We have also estimated the pulse power gains attainable in the laser-optical system of NESTOR storage ring, which is under development at Kharkov Institute of Physics and Technology. It is shown that high power gains (∼10 4 ) can be, in principle, achieved in a cavity, formed with low-absorption, high reflectivity (R ∼ 0.9999) mirrors, if the laser cavity length will differ exactly by half wavelength from the pulse-stacking cavity length. It implies development of the sophisticated frequency stabilization loop for maintaining the cavity length constant within a sub-nanometer range. At the same time, power gains of ∼10 3 can be obtained with medium reflectivity mirrors (R ∼ 0.999) at considerably lower cost

  10. Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Vesa J Kiviniemi

    2009-07-01

    Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  11. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    Science.gov (United States)

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  12. Effect of dose on the evolution of cavities in 500-KeV 4He+-ion irradiated nickel

    International Nuclear Information System (INIS)

    Fenske, G.; Das, S.K.; Kaminsky, M.; Miley, G.H.

    1979-01-01

    Transmission electron microscopy has been used to investigate the effect of total dose on the depth distribution of cavities (voids or bubbles) in nickel irradiated at 500 0 C with 500-keV 4 He + ions. A transverse sectioning technique, which allows one to obtain the entire depth distribution of cavities and of damage from a single specimen, was utilized. The size, number density and volume fraction of bubbles or voids were measured from the micrographs taken from samples sectioned parallel to the direction of the incident beam. The results for the dose range studied (2 x 10 19 to 1 x 10 21 ions/m 2 ) show that the average cavity diameter, number density, and the volume fraction (i.e., swelling) increases with increasing dose. The peak in the swelling distribution occurs at depths 8 to 15% deeper than the peak in the calculated projected range profile

  13. Experiment for transient effects of sudden catastrophic loss of vacuum on a scaled superconducting radio frequency cryomodule

    International Nuclear Information System (INIS)

    Dalesandro, A.; Theilacker, J.; Van Sciver, S.W.

    2011-01-01

    Safe operation of superconducting radio frequency (SRF) cavities require design consideration of a sudden catastrophic loss of vacuum (SCLV) adjacent with liquid helium (LHe) vessels and subsequent dangers. An experiment is discussed to test the longitudinal effects of SCLV along the beam line of a string of scaled SRF cavities. Each scaled cavity includes one segment of beam tube within a LHe vessel containing 2 K saturated LHe, and a riser pipe connecting the LHe vessel to a common gas header. At the beam tube inlet is a fast acting solenoid valve to simulate SCLV and a high/low range orifice plate flow-meter to measure air influx to the cavity. The gas header exit also has an orifice plate flow-meter to measure helium venting the system at the relief pressure of 0.4 MPa. Each cavity is instrumented with Validyne pressure transducers and Cernox thermometers. The purpose of this experiment is to quantify the time required to spoil the beam vacuum and the effects of transient heat and mass transfer on the helium system. Heat transfer data is expected to reveal a longitudinal effect due to the geometry of the experiment. Details of the experimental design criteria and objectives are presented.

  14. Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    -linear zone and the volume reduction. Results are given for cavities in rock salt, and a comparison with measured stress concentrations is used to support the assumption of a hydrostatic stress state in undisturbed salt formations. Finally a method to estimate convergence due to creep is outlined....

  15. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dai, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Masi, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seda, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kellerman, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tallerico, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Todd, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 108 and at 2 K reached a value of ~6 × 109. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.

  16. Diameter measurements of polystyrene particles with atomic force microscopy

    International Nuclear Information System (INIS)

    Garnaes, J

    2011-01-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA

  17. An advanced UV optical cavity for the European FEL project

    CERN Document Server

    Poole, M W; Chesworth, A A; Clarke, J A; Fell, B; Hill, C; Marl, R; Mullacrane, I D; Reid, R J

    2000-01-01

    A European collaboration is constructing a short wavelength FEL for the ELETTRA storage ring. The optical cavity has been designed and constructed at Daresbury Laboratory for delivery to Sincrotrone Trieste in Autumn 1999, following commissioning tests over the Summer. Initial FEL operation will be at 350 nm but subsequently down to 200 nm or less and mirrors will be 40 mm diameter. The 32 m optical cavity is controllable to 0.01 mu rad in mirror pitch and yaw using digital piezo translators. A novel feature is the simultaneous presence of three remotely interchangeable mirrors to extend the tuning range and also to interchange damaged mirrors immediately. In addition, a transfer arm and load-lock arrangement will permit a mirror to be withdrawn from the chamber and replaced without disruption to the UHV system. The FEL is designed to operate at high power (1-10 W) and multi-watt spontaneous emission is also present: power loading has been investigated by FEA analysis and has necessitated specification of a w...

  18. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  19. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1999-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  20. Early 500 MHz prototype LEP RF Cavity with superposed storage cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The principle of transferring the RF power back and forth between the accelerating cavity and a side-coupled storage cavity was demonstrated with this 500 MHz prototype. In LEP, the accelerating frequency was 352.2 MHz, and accelerating and storage cavities were consequently larger. See also 8002294, 8006061, 8407619X, and Annual Reports 1980, p.115; 1981, p.95; 1985, vol.I, p.13.

  1. Failure Diameter Resolution Study

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-19

    Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).

  2. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  3. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  4. Critical power characteristics in 37-rod tight lattice bundles under transient conditions

    International Nuclear Information System (INIS)

    Liu, Wei; Kureta, Masatoshi; Tamai, Hidesada; Ohnuki, Akira; Akimoto, Hajime

    2007-01-01

    Critical power characteristics in the postulated abnormal transient processes that may be possibly met in the operation of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) were investigated for the design of the FLWR core. Transient Boiling Transition (BT) tests were carried out using two sets of 37-rod tight lattice rod bundles (rod diameter: 13 mm; rod clearance: 1.3 mm or 1.0 mm) at Japan Atomic Energy Agency (JAEA) under the conditions covering the FLWR operating condition (P ex =7.2 MPa, T in =556 K) for mass velocity G=400-800 kg/(m 2 s). For the postulated power increase and flow decrease transients, no obvious change of the critical power against the steady one was observed. The traditional quasi-steady characteristic was confirmed to be working for the postulated power increase and flow decrease transients. The experiments were analyzed with TRAC-BF1 code, where the JAEA newest critical power correlation for the tight lattice rod bundles was implemented for the BT judgment. The TRAC-BF1 code showed good prediction for the occurrence or the non occurrence of the BT and for the exact BT starting time. The tranditional quasi-steady state prediction of the BT in transient process was confirmed to be applicable for the postulated abnormal transient processes in the tight lattice rod bundles. (author)

  5. Validation of Left Atrial Volume Estimation by Left Atrial Diameter from the Parasternal Long-Axis View.

    Science.gov (United States)

    Canciello, Grazia; de Simone, Giovanni; Izzo, Raffaele; Giamundo, Alessandra; Pacelli, Filomena; Mancusi, Costantino; Galderisi, Maurizio; Trimarco, Bruno; Losi, Maria-Angela

    2017-03-01

    Measurement of left atrial (LA) volume (LAV) is recommended for quantification of LA size. Only LA anteroposterior diameter (LAd) is available in a number of large cohorts, trials, or registries. The aim of this study was to evaluate whether LAV may be reasonably estimated from LAd. One hundred forty consecutive patients referred to our outpatient clinics were prospectively enrolled to measure LAd from the long-axis view on two-dimensional echocardiography. LA orthogonal dimensions were also taken from apical four- and two-chamber views. LAV was measured using the Simpson, area-length, and ellipsoid (LAV e ) methods. The first 70 patients were the learning series and the last 70 the testing series (TeS). In the learning series, best-fitting regression analysis of LAV-LAd was run using all LAV methods, and the highest values of F were chosen among the regression equations. In the TeS, the best-fitting regressions were used to estimate LAV from LAd. In the learning series, the best-fitting regression was linear for the Spearman method (r 2  = 0.62, F = 111.85, P = .0001) and area-length method (r 2  = 0.62, F = 112.24, P = .0001) and powered for the LAV e method (r 2  = 0.81, F = 288.41, P = .0001). In the TeS, the r 2 value for LAV prediction was substantially better using the LAV e method (r 2  = 0.89) than the Simpson (r 2  = 0.72) or area-length (r 2  = 0.70) method, as was the intraclass correlation (ρ = 0.96 vs ρ = 0.89 and ρ = 0.89, respectively). In the TeS, the sensitivity and specificity of LA dilatation by the estimated LAV e method were 87% and 90%, respectively. LAV can be estimated from LAd using a nonlinear equation with an elliptical model. The proposed method may be used in retrospective analysis of existing data sets in which determination of LAV was not programmed. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  6. Effect of additional holes on transient thermal fatigue life of gas turbine casing

    Directory of Open Access Journals (Sweden)

    H. Bazvandi

    2017-10-01

    Full Text Available Gas turbines casings are susceptible to cracking at the edge of eccentric pin hole, which is the most likely position for crack initiation and propagation. This paper describes the improvement of transient thermal fatigue crack propagation life of gas turbines casings through the application of additional holes. The crack position and direction was determined using non-destructive tests. A series of finite element patterns were developed and tested in ASTM-A395 elastic perfectly-plastic ductile cast iron. The effect of arrangement of additional holes on transient thermal fatigue behavior of gas turbines casings containing hole edge cracks was investigated. ABAQUS finite element package and Zencrack fracture mechanics code were used for modeling. The effect of the reduction of transient thermal stress distribution around the eccentric pin hole on the transient thermal fatigue crack propagation life of the gas turbines casings was discussed. The result shows that transient thermal fatigue crack propagation life could be extended by applying additional holes of larger diameter and decreased by increasing the vertical distance, angle, and distance between the eccentric pin hole and the additional holes. The results from the numerical predictions were compared with experimental data.

  7. Photoproduction of axions in a resonant electromagnetic cavity

    International Nuclear Information System (INIS)

    Dang Van Soa; Hoang Ngoc Long; Ha Huy Bang; Nguyen Mai Hung

    2000-09-01

    Photon-axion conversions in a resonant electromagnetic cavity with frequency equal to the axion mass are considered in detail by the Feynman diagram methods. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process. From our results, some estimates for experimental conditions are given. (author)

  8. Assessment of lymph node tumour from CT scans: how good is diameter and visual assessment

    International Nuclear Information System (INIS)

    Kumar, Pratik; Rehani, M.M.; Anand, Vikram; Raina, Vinod; Rao, Keshava

    1995-01-01

    The evaluation response of tumours requires quantification of tumour mass in terms of volume or maximum diameter. In normal practice changes in maximum diameter of tumour are assessed visually on follow-up CT films. This may lead to erroneous results. Twenty one patients of testicular cancer in stage II A to II D with retroperitoneal lymphadenopathy were scanned by CT for 3 to 5 times during the course of treatment. Tumour size was assessed in terms of diameter as per practice followed routinely. A very important observation was that actual measurement of diameter instead of visual assessment resulted in change of stage of cancer in 42.8% (9 out of 21) cases. Moreover, in 6 out of these 21 cases (28%) there occurred a change in stage from II C to II D which assumes significance due to change in treatment protocol from BEP (Bleomycin, Etoposide, Cisplatinum) to BOP-VIP (Bleomycin, Vincristin, Cisplatinum , VP-16, Ifosfamide, Cisplatinum). Tumour volume estimated on the basis of visual method differed considerably from the calculated one. In 16 out of 21 scans, the difference was between 6.4% to 42.9%. The acceptable difference of 5% was seen only in 4 out of 21 cases indicating the importance of volume measurement. The method of volume estimation was validated and found to be within ± 5% of actual volume. The correlation between diameter and volume shows that tumours with similar range of diameter have 20% to 100% more volume. Many times increase in diameter was found associated with actually reduced tumour volume, difference being as much as 515%. This has not been documented earlier in clinical situations. Thus, the study underscores the role of measuring the diameter of tumour for staging and highlights the need for actual volume estimation rather than depending on maximum transverse diameter alone in follow-up studies. (author). 9 refs., 4 figs., 4 tabs

  9. Development of a cryostat for the 4-cell 352 MHz sc accelerating cavities at LEP

    International Nuclear Information System (INIS)

    Stierlin, R.

    1988-01-01

    The upgrading of LEP by s.c. cavities will require installation and operation of a few hundred 350 MHz, 4-cell cavities in the accelerator tunnel. It is at present anticipated to install eight cavities per rf-cell which have a length of ∼ 24 m. A tunnel slope of up to 1.5% and a tunnel diameter of 4.4 m have to be accommodated. For the design of adequate cryostats the following guiding lines were considered: up to eight cavities with their He tank could be housed in a common insulation vacuum. Cryostats should be modular and allow installation of individual cavities or groups of two cavities (with a total length not exceeding 6 m thus enabling normal transport inside the access pits and machine tunnel). A high accessibility to all critical parts like couplers, tuners and beam tube connections should be guaranteed. This requirement dictates a lateral access through the vacuum tank and thermal radiation shield which should also permit the removal and replacement of any one 4-cell cavity without disturbing the neighboring units. Cavity connections to the beam vacuum system as well as repairs should be possible under reasonably clean and dust-free conditions, particularly when keeping cavities under a slight overpressure of dry, dust-free protective gas. A test program was launched and a 1/5 scale model vacuum tank was constructed and tested. The main feature of this model was a frame and sealing skin design which offers complete accessibility to the inside of the vessel. The results obtained prompted the design and construction of a full size model which was completed in 1985 and proved the feasibility of the new concepts. A thin copper radiation shield mechanically clamped to the piping carrying the refrigerant and thus easily removable to meet the requirement of accessibility also proved adequate to intercept and evacuate the heat radiated by the vacuum tank. 4 references, 6 figures

  10. Residual stresses and critical diameter in vitreous matrix materials

    International Nuclear Information System (INIS)

    Mastelaro, Valmor R.; Zanotto, Edgar D.

    1995-01-01

    The present study was undertaken to test the validity of existing models for: i) the residual internal stresses which arise due to thermal and elastic mismatch in duplex systems, and ii) the critical particle diameter for spontaneous cracking. Partially crystallized 1,07 Na 2 O-2 Ca O-3 Si O 2 - 6% P 2 O 5 glasses were studied. The experimental residual stress was in excellent agreement with the calculated value, however, the critical particle diameter, estimated by an energy balance approach, was more than ten times smaller than the experimental value. This discrepancy indicates that the energy model is not applicable in this case. (author)

  11. Influence of fluid properties, flow rate and aspect ratios on stratification in a cylindrical cavity

    International Nuclear Information System (INIS)

    Bouhdjar, A.; Harhad, A.; Guerri, O.

    2003-01-01

    The fluid flow and temperature field in a cavity are numerically simulated using finite volume techniques. The fluid flow in the vertical cylindrical cavity is assumed to be two-dimensional. Inflow occurs at the top through a ring like entrance and outflow takes place at the bottom through an exit of the same shape. The study considers a transient mixed convection flow. The governing equations are the conservation equations for laminar natural convection flow based on the Boussinesq approximation. Forced convection flow is superimposed through the appropriate boundary conditions (inflow and outflow conditions). The influence of the mass flow rate and of the fluid is made through the Reynolds number and the Prandtl number. Stratification analysis is made qualitatively through temperature distribution. The study considers two fluids i.e. water (Pr=4.5) and ethylene glycol (Pr=51) and cavity aspect ratios of 1/0.5 and 1 /2. So the objective of the work is to get more information on the influence of flow rate on the performance of the thermal energy storage. Correlations for the storage efficiency are deduced with respect to the Reynolds number. (author)

  12. Measurements of the diameter of the supernova SN 1987A

    International Nuclear Information System (INIS)

    Karovska, M.; Nisenson, P.; Standley, C.; Heathcote, S.R.

    1991-01-01

    Speckle interferometric measurements of the angular diameter of SN 1987A in the Large Magellanic Cloud, obtained at 664 days after the outburst are presented. Diameters were estimated with milliarcsec precision at 657 nm and 550 nm by fitting model visibility functions to the data corresponding to different intensity distributions for the supernova disk. Measurements made assuming a uniform intensity distribution were compared to the uniform disk measurements obtained from 30 days after the explosion. Diameter measurements obtained near the center of the H-alpha line are consistent with homologous expansion of the supernova shell with a mean velocity of 2850 km/s. The linear least-squares fit to the measurements obtained at other wavelengths from 260 days after the explosion yielded a somewhat lower mean expansion velocity. 8 refs

  13. Estimating shrub biomass from basal stem diameters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J K

    1976-01-01

    Stem lengths and oven dry wt of stemwood and foilage were determined for shrubs in dia classes of 0 to 0.5 cm, 0.5 to 2 cm and 2 to 5 cm in various habitat types in Idaho and Montana. The logarithm of basal stem dia was closely correlated with the logarithm of wt. Regression components are presented for estimating leaf wt and total above-ground wt of 25 woody shrub species using a linear equation relating these 2 variables. Percentage stemwood wt is given for the 3 dia classes. Dia distributions for the smallest dia class were normal except for a few species with fine twigs; distributions for the other classes were positively skewed. Applications to forest fuel studies are briefly discussed.

  14. Estimating shrub biomass from basal stem diameters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J K

    1976-01-01

    Stem lengths and oven dry wt of stemwood and foilage were determined for shrubs in dia classes of 0 to 0.5 cm, 0.5 to 2 cm and 2 to 5 cm in various habitat types in Idaho and Montana. The logarithm of basal stem dia was closely correlated with the logarithm of wt. Regression components are presented for estimating leaf wt and total above-ground wt of 25 woody shrub species using a linear equation relating these 2 variables. Percentage stemwood wt is given for the 3 dia classes. Dia distributions for the smallest dia class were normal except for a few species with fine twigs: distributions for the other classes were positively skewed. Applications to forest fuel studies are briefly discussed.

  15. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  16. DEFORM-4: fuel pin characterization and transient response in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Miles, K.J.; Hill, D.J.

    1986-01-01

    The DEFORM-4 module is the segment of the SAS4A Accident Analysis Code System that calculates the fuel pin characterization in response to a steady state irradiation history, thereby providing the initial conditions for the transient calculation. The various phenomena considered include fuel porosity migration, fission gas bubble induced swelling, fuel cracking and healing, fission gas release, cladding swelling, and the thermal-mechanical state of the fuel and cladding. In the transient state, the module continues the thermal-mechanical response calculation, including fuel melting and central cavity pressurization, until cladding failure is predicted and one of the failed fuel modules is initiated. Comparisons with experimental data have demonstrated the validity of the modeling approach

  17. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  18. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  19. Geometric optimization of the 56 MHz SRF cavity and its frequency table

    International Nuclear Information System (INIS)

    Chang, X.; Ben-Zvi, I.

    2008-01-01

    It is essential to know the frequency of a Superconducting Radio Frequency (SRF) cavity at its 'just being fabricated' stage because frequency is the key parameter in constructing the cavity. In this paper, we report our work on assessing it. We can estimate the frequency change from stage to stage theoretically and/or by simulation. At the operating stage, the frequency can be calculated accurately, and, from this value, we obtain the frequencies at other stages. They are listed in a table that serves to check the processes from stage to stage. Equally important is optimizing the geometric shape of the SRF cavity so that the peak electric-field and peak magnetic-field are as low as possible. It is particularly desirable in the 56MHz SRF cavity of RHIC to maximize the frequency sensitivity of the slow tuner. After undertaking such optimization, our resultant peak electric-field is only 44.1MV/m, and the peak magnetic-field is 1049G at 2.5MV of voltage across the cavity gap. To quench superconductivity in an SRF cavity, it is reported that the limit of the peak magnetic-field is 1800G (1), and that of the peak electric-field is more than l00MV/m for a SRF cavity (2). Our simulations employed the codes Superfish and Microwave Studio

  20. Ex-vessel boiling experiments: laboratory- and reactor-scale testing of the flooded cavity concept for in-vessel core retention. Pt. II. Reactor-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    International Nuclear Information System (INIS)

    Chu, T.Y.; Bentz, J.H.; Slezak, S.E.; Pasedag, W.F.

    1997-01-01

    For pt.I see ibid., p.77-88 (1997). This paper summarizes the results of a reactor-scale ex-vessel boiling experiment for assessing the flooded cavity design of the heavy water new production reactor. The simulated reactor vessel has a cylindrical diameter of 3.7 m and a torispherical bottom head. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling mainly results from the gravity head, which in turn results from flooding the side of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid-solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion. The results show that, under prototypic heat load and heat flux distributions, the flooded cavity will be effective for in-vessel core retention in the heavy water new production reactor. The results also demonstrate that the heat dissipation requirement for in-vessel core retention, for the central region of the lower head of an AP-600 advanced light water reactor, can be met with the flooded cavity design. (orig.)

  1. Practical optimization of Steiner trees via the cavity method

    Science.gov (United States)

    Braunstein, Alfredo; Muntoni, Anna

    2016-07-01

    The optimization version of the cavity method for single instances, called Max-Sum, has been applied in the past to the minimum Steiner tree problem on graphs and variants. Max-Sum has been shown experimentally to give asymptotically optimal results on certain types of weighted random graphs, and to give good solutions in short computation times for some types of real networks. However, the hypotheses behind the formulation and the cavity method itself limit substantially the class of instances on which the approach gives good results (or even converges). Moreover, in the standard model formulation, the diameter of the tree solution is limited by a predefined bound, that affects both computation time and convergence properties. In this work we describe two main enhancements to the Max-Sum equations to be able to cope with optimization of real-world instances. First, we develop an alternative ‘flat’ model formulation that allows the relevant configuration space to be reduced substantially, making the approach feasible on instances with large solution diameter, in particular when the number of terminal nodes is small. Second, we propose an integration between Max-Sum and three greedy heuristics. This integration allows Max-Sum to be transformed into a highly competitive self-contained algorithm, in which a feasible solution is given at each step of the iterative procedure. Part of this development participated in the 2014 DIMACS Challenge on Steiner problems, and we report the results here. The performance on the challenge of the proposed approach was highly satisfactory: it maintained a small gap to the best bound in most cases, and obtained the best results on several instances in two different categories. We also present several improvements with respect to the version of the algorithm that participated in the competition, including new best solutions for some of the instances of the challenge.

  2. Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations

    Energy Technology Data Exchange (ETDEWEB)

    Yarlong Wang [Petro-Geotech Inc., Calgary, AB (Canada); Papamichos, Euripides [IKU Petroleum Research, Trondheim (Norway)

    1999-07-01

    The coupled heat-fluid-stress problem of circular wellbore or spherical cavity subjected to a constant temperature change and a constant fluid flow rate is considered. Transient analytical solutions for temperature, pore pressure and stress are developed by coupling conductive heat transfer with Darcy fluid flow in a poroelastic medium. They are applicable to lower permeability porous media suitable for liquid-waste disposal and also simulating reservoir for enhanced oil recovery, where conduction dominates the heat transfer process. A full range of solutions is presented showing separately the effects of temperature and fluid flow on pore pressure and stress development. It is shown that injection of warm fluid can be used to restrict fracture development around wellbores and cavities and generally to optimise a fluid injection operation. Both the limitations of the solutions and the convective flow effect are addressed. (Author)

  3. Correlation of Mechanical Properties with Diameter and Cooling Rate of 1080 Wire-Rod

    Science.gov (United States)

    Kohli, A.; Poirier, D. R.

    2017-12-01

    More than 540 heats of 1080 wire-rod were statistically analyzed by regression analyses to see whether tensile strength and percent reduction in area (%RA) relate to wire-rod diameter and composition. As diameter increases from 5.6 to 12.7 mm, the trend in %RA shows a decrease with negligible effect on the trend of the tensile strength. It was found that the estimated cooling rate at 700 °C during controlled cooling is responsible for the "diameter effect." The effect of composition on %RA is minor when contrasted to the "diameter effect." In particular, the effect of the concentrations of the residual elements on %RA within the compositional range studied is negligible.

  4. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Laborda, Francisco; Medrano, Jesus; Castillo, Juan R.

    2004-01-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ

  5. Bayesian Methods for Predicting the Shape of Chinese Yam in Terms of Key Diameters

    Directory of Open Access Journals (Sweden)

    Mitsunori Kayano

    2017-01-01

    Full Text Available This paper proposes Bayesian methods for the shape estimation of Chinese yam (Dioscorea opposita using a few key diameters of yam. Shape prediction of yam is applicable to determining optimal cutoff positions of a yam for producing seed yams. Our Bayesian method, which is a combination of Bayesian estimation model and predictive model, enables automatic, rapid, and low-cost processing of yam. After the construction of the proposed models using a sample data set in Japan, the models provide whole shape prediction of yam based on only a few key diameters. The Bayesian method performed well on the shape prediction in terms of minimizing the mean squared error between measured shape and the prediction. In particular, a multiple regression method with key diameters at two fixed positions attained the highest performance for shape prediction. We have developed automatic, rapid, and low-cost yam-processing machines based on the Bayesian estimation model and predictive model. Development of such shape prediction approaches, including our Bayesian method, can be a valuable aid in reducing the cost and time in food processing.

  6. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  7. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    . The chapter ends by proposing a systematic method that can be used when doing the insulation co-ordination study for a line, as well as the modelling requirements, both modelling depth and modelling detail of the equipment, for the study of the different types of transients followed by a step-by-step generic...... typically used for the screens of cables (both-ends bonding and cross-boding) and also presents methods that can be used to estimate the maximum current of a cable for different types of soils, i.e. thermal calculations. The end of the chapter introduces the shunt reactor, which is an important element...... detail of the equipment, for the study of the different types of transients followed by a step-by-step generic example....

  8. Radio and white-light observations of coronal transients

    International Nuclear Information System (INIS)

    Dulk, G.A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. The author reviews the observed properties of coronal transients, concentrating on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones non-thermal. The possible mechanisms involved in the radio bursts are discussed and the estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the Sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the fields, provides a possible driving force for the coronal and interplanetary shock waves. (Auth.)

  9. Hydroforming of elliptical cavities

    Science.gov (United States)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  10. Characterizing cavities in model inclusion molecules: a comparative study.

    Science.gov (United States)

    Torrens, F; Sánchez-Marín, J; Nebot-Gil, I

    1998-04-01

    We have selected fullerene-60 and -70 cavities as model systems in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecule taken as a unitary sphere, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and a cubic lattice approach to a molecular space. Accurate measures of the molecular volume and surface area have been performed with the pseudo-random Monte Carlo (MCVS) and uniform Monte Carlo (UMCVS) methods. These calculations serve as a reference for the rest of the methods. The SURMO2 and MS methods have not recognized the cavities and may not be convenient for intercalation compounds. The programs that have detected the cavities never exceed 5% deviation relative to the reference values for molecular volume and surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the accessible surfaces has been calculated.

  11. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  12. Dosimetry of a gamma beam - 650 60Co irradiator. 3. Mapping of the isodose curves in the internal cavity

    International Nuclear Information System (INIS)

    Escobedo, J.F.; Nascimento Filho, V.F. do; Ferraz, E.S.B.

    1981-01-01

    The Gammabeam-650 60 Co irradiator, containing 29,080 curies (April 1 sup(st), 1974), made by Atomic Energy of Canada Limited and in operation at CENA - Piracicaba, Sao Paulo, Brazil, basically has a block of lead for storage and shielding of the radioactive capsules and 12 vertical pneumatic tubes to maintain them in exposure position. These tubes form a cylindrical internal cavity with varying diameter between 10 and 84 cm. The isodose curves were determined for the geometries of 3, 6 and 12 actives tubes and 42 and 84 cm of diameter using the Fricke's chemical dosimeter. (Author) [pt

  13. Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Allan [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Grassellino, Anna [Fermilab; Melnychuk, Oleksandr [Fermilab; Merio, Margherita [Fermilab; Reid, Thomas [Argonne (main); Sergatskov, Dmitri [Fermilab

    2017-05-01

    The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, and LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.

  14. Is the inferior vena cava diameter measured by bedside ultrasonography valuable in estimating the intravascular volume in patients with septic shock?

    Directory of Open Access Journals (Sweden)

    Mortaza Talebi Doluie

    2016-07-01

    Full Text Available Introduction:Resuscitation should be initiated immediately in shock. Early goal-directed therapy is an established algorithm for the resuscitation in septic shock. The first step is to maintain cardiac preload. Central venous pressure (CVP plays an important role in goal-directed therapy. Central venous catheterization is invasive and time-consuming in emergency conditions. There are some alternative and noninvasive methods for estimating the intravascular volume such as measuring the inferior vena cava (IVC diameter by ultrasonography. Methods: We searched PubMed, Google scholar, and Scopus databases with keywords (central venous pressure OR venous pressure OR CVP AND (ultrasonography OR sonography AND (sepsis OR septic shock AND (inferior vena cava OR IVC.Result: The search resulted in 2550 articles. The articles were appraised regarding the relevance, type of article, and statistical methods. Finally, 12 articles were selected. The number of patients was between 30 and 83 cases (mean age=57-67 years, intubated and non-intubated in each study. The IVC diameter was measured in respiratory cycle by bedside ultrasonography in longitudinal subxiphoid view and caval index was calculated, then they were compared with the CVP measured by central venous catheter.Discussion: CVP is an indicator of intravascular fluid status and right heart function. CVP measurement is an invasive method and of course with some complications. The IVC is the biggest vein of venous system with low-pressure; expansion of the vein reflects intravascular volume.Conclusion: It seems that IVC diameter measured by ultrasonography could be used as an alternative method for the determination of CVP in the emergency or critical patients.

  15. Estimating air drying times of small-diameter ponderosa pine and Douglas-fir logs.

    Science.gov (United States)

    William T. Simpson; Xiping. Wang

    2003-01-01

    Because dense stands of softwood trees are causing forest health problems in the western United States, new ways to use this material need to be found. One option is to use this material as logs rather than sawing it into lumber. For many applications, logs require some degree of drying. Even though these logs may be considered small diameter, they are large compared...

  16. Instability of Reference Diameter in the Evaluation of Stenosis After Coronary Angioplasty: Percent Diameter Stenosis Overestimates Dilative Effects Due to Reference Diameter Reduction

    International Nuclear Information System (INIS)

    Hirami, Ryouichi; Iwasaki, Kohichiro; Kusachi, Shozo; Murakami, Takashi; Hina, Kazuyoshi; Matano, Shigeru; Murakami, Masaaki; Kita, Toshimasa; Sakakibara, Noburu; Tsuji, Takao

    2000-01-01

    Purpose: To examine changes in the reference segment luminal diameter after coronary angioplasty.Methods: Sixty-one patients with stable angina pectoris or old myocardial infarction were examined. Coronary angiograms were recorded before coronary angioplasty (pre-angioplasty) and immediately after (post-angioplasty), as well as 3 months after. Artery diameters were measured on cine-film using quantitative coronary angiographic analysis.Results: The diameters of the proximal segment not involved in the balloon inflation and segments in the other artery did not change significantly after angioplasty, but the reference segment diameter significantly decreased (4.7%). More than 10% luminal reduction was observed in seven patients (11%) and more than 5% reduction was observed in 25 patients (41%). More than 5% underestimation of the stenosis was observed in 22 patients (36%) when the post-angioplasty reference diameter was used as the reference diameter, compared with when the pre-angioplasty measurement was used and more than 10% underestimation was observed in five patients (8%).Conclusion: This study indicated that evaluation by percent diameter stenosis, with the reference diameter from immediately after angioplasty, overestimates the dilative effects of coronary angioplasty, and that it is thus better to evaluate the efficacy of angioplasty using the absolute diameter in addition to percent luminal stenosis

  17. A High Current Proton Linac with 352 MHz SC Cavities

    CERN Document Server

    Pagani, C; Pierini, P

    1996-01-01

    A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three beta-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 M$ at 10 mA, reaching up to 280 M$ for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high effic...

  18. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  19. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  20. Effect of the cavity configuration factor on the marginal microleakage of esthetic restorative materials.

    Science.gov (United States)

    Franco, Eduardo Batista; Gonzaga Lopes, Lawrence; Lia Mondelli, Rafael Francisco; da Silva e Souza, Mário Honorato; Pereira Lauris, José Roberto

    2003-06-01

    To evaluate the effect of the cavity configuration factor (CF) on the marginal microleakage of cervical restorations with four aesthetic restorative materials. Conventional cavities, 2.9 mm in diameter and 1.5 mm deep, with CF=2.7 and "saucer"-shaped ones with CF=2 were created in 60 extracted premolars. The following groups were established: G1: Z100/Single Bond, G2: Freedom/Stae, G3: Vitremer/Primer and G4: Durafill/Durafill Bond, following each manufacturer's directions. Thermocycling of the specimens was performed in an aqueous solution of 2% buffered methylene blue, with the temperature varying between 5 to 55 degrees C, for a total of cycles of 60 minutes per day, for 7 days. The specimens were then sectioned and evaluated by two observers using photographs acquired from a stereomicroscope. The values were subjected to Kruskal-Wallis analysis and the Dunn and Wilcoxon test. The averages of the microleakage scores observed in the conventional and "saucer"-shaped cavities were respectively: G1: 0.66/0.46; G2: 0.92/0.69; G3: 1.8/1.86; G4: 3.54/2.3.

  1. Measurements of stem diameter: implications for individual- and stand-level errors.

    Science.gov (United States)

    Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D

    2017-08-01

    Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when

  2. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  3. An Over-damped Cavity Longitudinal Kicker for the PEP-II LER

    CERN Document Server

    McIntosh, P

    2003-01-01

    Both rings of PEP-II use drift tube kickers in the longitudinal bunch-by-bunch feedback system. Efforts are now underway to increase the stored beam currents and luminosity of PEP-II, and beam-induced heating of these structures, particularly in the Low Energy Ring (LER) is of concern. An alternative kicker design based on the over-damped cavity kicker, first developed by INFN-Frascati is being built for PEP-II. This low loaded Q (or wide bandwidth) structure is fed by a network of ridged waveguides coupled to a simple pill-box cavity. Beam induced RF power is also coupled out of the cavity to external loads, so that the higher order modes (HOMs) excited in the structure are well-damped. This paper details the kicker design for PEP-II and discusses some of the design trade-offs between shunt impedance and bandwidth, as well as the influence of the feedthroughs on the kicker parameters. Estimates of the expected power deposition in the cavity are also provided.

  4. Investigation of transient dynamics of capillary assisted particle assembly yield

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)

    2017-06-01

    Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  5. Transient selection in multicellular immune networks

    Science.gov (United States)

    Ivanchenko, M. V.

    2011-03-01

    We analyze the dynamics of a multi-clonotype naive T-cell population competing for survival signals from antigen-presenting cells. We find that this competition provides with an efficacious selection of clonotypes, making the less able and more repetitive get extinct. We uncover the scaling principles for large systems the extinction rate obeys and calibrate the model parameters to their experimental counterparts. For the first time, we estimate the physiological values of the T-cell receptor-antigen presentation profile recognition probability and T-cell clonotypes niche overlap. We demonstrate that, while the ultimate state is a stable fixed point, sequential transients dominate the dynamics over large timescales that may span over years, if not decades, in real time. We argue that what is currently viewed as "homeostasis" is a complex sequential transient process, while being quasi-stationary in the total number of T-cells only. The discovered type of sequential transient dynamics in large random networks is a novel alternative to the stable heteroclinic channel mechanism.

  6. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  7. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  8. Cavity assisted measurements of heat and work in optical lattices

    Directory of Open Access Journals (Sweden)

    Louis Villa

    2018-01-01

    Full Text Available We propose a method to experimentally measure the internal energy of a system of ultracold atoms trapped in optical lattices by coupling them to the fields of two optical cavities. We show that the tunnelling and self-interaction terms of the one-dimensional Bose-Hubbard Hamiltonian can be mapped to the field and photon number of each cavity, respectively. We compare the energy estimated using this method with numerical results obtained using the density matrix renormalisation group algorithm. Our method can be employed for the assessment of power and efficiency of thermal machines whose working substance is a strongly correlated many-body system.

  9. Overwintering strategies of migratory birds: a novel approach for estimating seasonal movement patterns of residents and transients

    Science.gov (United States)

    Ruiz-Gutierrez, Viviana; Kendall, William L.; Saracco, James F.; White, Gary C.

    2016-01-01

    Our understanding of movement patterns in wildlife populations has played an important role in current ecological knowledge and can inform landscape conservation decisions. Direct measures of movement can be obtained using marked individuals, but this requires tracking individuals across a landscape or multiple sites.We demonstrate how movements can be estimated indirectly using single-site, capture–mark–recapture (CMR) data with a multi-state open robust design with state uncertainty model (MSORD-SU). We treat residence and transience as two phenotypic states of overwintering migrants and use time- and state-dependent probabilities of site entry and persistence as indirect measures of movement. We applied the MSORD-SU to data on eight species of overwintering Neotropical birds collected in 14 countries between 2002 and 2011. In addition to entry and persistence probabilities, we estimated the proportions of residents at a study site and mean residence times.We identified overwintering movement patterns and residence times that contrasted with prior categorizations of territoriality. Most species showed an evidence of residents entering sites at multiple time intervals, with transients tending to enter between peak resident movement times. Persistence and the proportion of residents varied by latitude, but were not always positively correlated for a given species.Synthesis and applications. Our results suggest that migratory songbirds commonly move among habitats during the overwintering period. Substantial proportions of populations appear to be comprised of transient individuals, and residents tend to persist at specific sites for relatively short periods of time. This information on persistence and movement patterns should be explored for specific habitats to guide landscape management on the wintering grounds, such as determining which habitats are conserved or restored as part of certification programmes of tropical agroforestry crops. We suggest that

  10. Efficient multidimensional regularization for Volterra series estimation

    Science.gov (United States)

    Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan

    2018-05-01

    This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.

  11. [Comparison of the M and XL FibroScan(®) probes to estimate liver stiffness by transient elastography].

    Science.gov (United States)

    Herrero, José Ignacio; Iñarrairaegui, Mercedes; D'Avola, Delia; Sangro, Bruno; Prieto, Jesús; Quiroga, Jorge

    2014-04-01

    The FibroScan(®) XL probe has been specifically designed for obese patients to measure liver stiffness by transient elastography, but it has not been well tested in non-obese patients. The aim of this study was to compare the M and XL FibroScan(®) probes in a series of unselected obese (body mass index above 30 kg/m(2)) and non-obese patients with chronic liver disease. Two hundred and fifty-four patients underwent a transient elastography examination with both the M and XL probes. The results obtained with the two probes were compared in the whole series and in obese (n=82) and non-obese (n=167) patients separately. The reliability of the examinations was assessed using the criteria defined by Castéra et al. The proportion of reliable exams was significantly higher when the XL probe was used (83% versus 73%; P=.001). This significance was maintained in the group of obese patients (82% versus 55%; P<.001), but not in the non-obese patients (84% versus 83%). Despite a high correlation between the stiffness values obtained with the two probes (R=.897; P<.001), and a high concordance in the estimation of fibrosis obtained with the two probes (Cronbach's alpha value: 0.932), the liver stiffness values obtained with the XL probe were significantly lower than those obtained with the M probe, both in the whole series (9.5 ± 9.1 kPa versus 11.3 ± 12.6 kPa; P<0.001) and in the obese and non-obese groups. In conclusion, transient elastography with the XL probe allows a higher proportion of reliable examinations in obese patients but not in non-obese patients. Stiffness values were lower with the XL probe than with the M probe. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  12. The effect of ethanol sclerotherapy of 5 minutes duration on cyst diameter and rat ovarian tissue in simple ovarian cysts

    Directory of Open Access Journals (Sweden)

    Şimşek M

    2015-03-01

    Full Text Available Mehmet Şimşek,1 Tuncay Kuloğlu,2 Şehmus Pala,3 Abdullah Boztosun,4 Behzat Can,1 Remzi Atilgan1 1Department of Obstetrics and Gynecology, 2Department of Histology, Firat University School of Medicine, Elazig, Turkey; 3Clinic of Obstetrics and Gynecology, Batman Yasam Hospital, Batman, Turkey; 4Department of Obstetrics and Gynecology, Akdeniz University School of Medicine, Antalya, Turkey Objectives: To examine the effect of 95% ethanol sclerotherapy (EST administered over 5 minutes on cyst diameter and ovarian tissue in experimentally induced simple ovarian cysts in a rat model. Materials and methods: In order to induce ovarian cysts, unilateral total salpingectomy was performed in regularly menstruating adult female Wistar albino rats (n=20 between 12 and 14 weeks of age and weighing between 200 and 220 g. One month after the procedure, the abdominal cavity was opened and 14 rats (70% were found to have developed macroscopic cysts. Rats with macroscopic cysts (n=14 were assigned into two groups in a prospective and single-blinded manner: group 1 (G1 (n=7, control rats; and group 2 (G2 (n=7, 5-minute EST 95% group. Cyst diameter was measured and recorded for each rat. In G2, after whole cyst fluid was aspirated the cystic cavity was irrigated with 95% ethanol, approximately equal to half of the aspirated cyst volume, after which an interval of 5 minutes was allowed and same amount was re-aspirated and the abdominal cavity was closed. One month after this procedure, abdominal cavities were reopened and intra-abdominal adhesion scoring was performed in both groups. Cyst diameter was measured for each rat, and the right ovary was removed, fixed in 10% formaldehyde, and transported to the laboratory. A histologic assessment of the ovarian tissues was performed under light microscopy following staining with hematoxylin and eosin. Mann–Whitney U-test was used for statistical analysis. A P-level less than 0.05 was considered significant. Results

  13. Experimental study on transient boiling heat transfer

    International Nuclear Information System (INIS)

    Visentini, R.

    2012-01-01

    Boiling phenomena can be found in the everyday life, thus a lot of studies are devoted to them, especially in steady state conditions. Transient boiling is less known but still interesting as it is involved in the nuclear safety prevention. In this context, the present work was supported by the French Institute of Nuclear Safety (IRSN). In fact, the IRSN wanted to clarify what happens during a Reactivity-initiated Accident (RIA). This accident occurs when the bars that control the nuclear reactions break down and a high power peak is passed from the nuclear fuel bar to the surrounding fluid. The temperature of the nuclear fuel bar wall increases and the fluid vaporises instantaneously. Previous studies on a fuel bar or on a metal tube heated by Joule effect were done in the past in order to understand the rapid boiling phenomena during a RIA. However, the measurements were not really accurate because the measurement techniques were not able to follow rapid phenomena. The main goal of this work was to create an experimental facility able to simulate the RIA boiling conditions but at small scale in order to better understand the boiling characteristics when the heated-wall temperature increases rapidly. Moreover, the experimental set-up was meant to be able to produce less-rapid transients as well, in order to give information on transient boiling in general. The facility was built at the Fluid-Mechanics Institute of Toulouse. The core consists of a metal half-cylinder heated by Joule effect, placed in a half-annulus section. The inner half cylinder is made of a 50 microns thick stainless steel foil. Its diameter is 8 mm, and its length 200 mm. The outer part is a 34 mm internal diameter glass half cylinder. The semi-annular section is filled with a coolant, named HFE7000. The configuration allows to work in similarity conditions. The heated part can be place inside a loop in order to study the flow effect. The fluid temperature influence is taken into account as

  14. Modeling transient streaming potentials in falling-head permeameter tests.

    Science.gov (United States)

    Malama, Bwalya; Revil, André

    2014-01-01

    We present transient streaming potential data collected during falling-head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl ) of the sand samples. A semi-empirical model based on the falling-head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl . The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling-head permeameter tests can be used to estimate both K and Cl . They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications. © 2013, National Ground Water Association.

  15. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  16. System transient response to loss of off-site power

    International Nuclear Information System (INIS)

    Sozer, A.

    1990-01-01

    A simultaneous trip of the reactor, main circulation pumps, secondary coolant pumps, and pressurizer pump due to loss of off-site power at the High Flux Isotope Reactor (HFIR) located at the Oak Ridge National Laboratory (ORNL) has been analyzed to estimate available safety margin. A computer model based on the Modular Modeling System code has been used to calculate the transient response of the system. The reactor depressurizes from 482.7 psia down to about 23 psia in about 50 seconds and remains stable thereafter. Available safety margin has been estimated in terms of the incipient boiling heat flux ratio. It is a conservative estimate due to assumed less than available primary and secondary flows and higher than normal depressurization rate. The ratio indicates no incipient boiling conditions at the hot spot. No potential damage to the fuel is likely to occur during this transient. 2 refs., 6 figs

  17. SUITABLE LOCATION OF SHEET PILE UNDER DAM RESTING ON SANDY SOIL WITH CAVITY

    Directory of Open Access Journals (Sweden)

    Laith J. Aziz

    2018-05-01

    Full Text Available This research describes the seepage characteristics of experimental model test of dam with cutoff located at different region (at dam heel, at mid floor of dam, and at dam toe. It is resting on sandy soil with cavity at different locations in X and Y directions (such as in Al-Najaf soil city. Thirty three model tests are performed in laboratory by using steel box to estimate the quantity of the seepage and flow lines direction. It was concluded that the best location of the cutoff wall is at the dam toe for model test with cavity ( Xc B = 0 and 0.5, but for model test with cavity ( Xc B ≥1, the best location of the sheet pile wall becomes at the dam heel. For negative location of the cavity, the best location of the sheet pile wall is at the middle of the floor dam.

  18. A strategy to unveil transient sources of ultra-high-energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Takami Hajime

    2013-06-01

    Full Text Available Transient generation of ultra-high-energy cosmic rays (UHECRs has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ∼ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.

  19. Pressure transients resulting from sodium-water reaction following a large leak in LMFBR steam generator

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1984-01-01

    The study of sodium water reaction, following a large leak, concerns primarily with the estimation of pressure/flow transients that are developed in the steam generator and the associated secondary circuit. This paper describes the mathematical formulations used in SWRT (Sodium Water Reaction Transients) code developed to estimate such pressure transients for FBTR plant. The results, obtained using SWRT have been presented for a leak in economiser (20m from bottom water header) and for a leak in super heater portions. A time lag of 50 m sec was considered for rupture disc takes to burst once the pressure experienced by it exceeds the set value. Also described in annexure to this paper is the mathematical formulation for two phase transient flow for the better estimation of leak rate from the ruptured end of the damaged heat transfer tube. This leak model considers slip but assumes thermal equilibrium between the liquid and vapour phases

  20. Radio and white-light observations of coronal transients

    Science.gov (United States)

    Dulk, G. A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.

  1. Uncertainty in simulated groundwater-quality trends in transient flow

    Science.gov (United States)

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios; Robbins, Gary A.

    2013-01-01

    In numerical modeling of groundwater flow, the result of a given solution method is affected by the way in which transient flow conditions and geologic heterogeneity are simulated. An algorithm is demonstrated that simulates breakthrough curves at a pumping well by convolution-based particle tracking in a transient flow field for several synthetic basin-scale aquifers. In comparison to grid-based (Eulerian) methods, the particle (Lagrangian) method is better able to capture multimodal breakthrough caused by changes in pumping at the well, although the particle method may be apparently nonlinear because of the discrete nature of particle arrival times. Trial-and-error choice of number of particles and release times can perhaps overcome the apparent nonlinearity. Heterogeneous aquifer properties tend to smooth the effects of transient pumping, making it difficult to separate their effects in parameter estimation. Porosity, a new parameter added for advective transport, can be accurately estimated using both grid-based and particle-based methods, but predictions can be highly uncertain, even in the simple, nonreactive case.

  2. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    International Nuclear Information System (INIS)

    Puragliesi, R.; Dehbi, A.; Leriche, E.; Soldati, A.; Deville, M.O.

    2011-01-01

    Highlights: → 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. → Description of velocity and temperature first and second moments with changing in the Rayleigh number. → Strong decoupling between the turbulent kinetic energy and the dissipation rate. → Particle recirculation sustained by the vertical hot boundary layer. → Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10 9 , 10 10 ) and three values of the particle diameter (d p = 15, 25, 35 [μm]). We consider the cavity filled with air and particles with the same density of water ρ w = 1000 [kg/m 3 ] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift and thermophoretic

  3. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  4. Evaluating growth assumptions using diameter or radial increments in natural even-aged longleaf pine

    Science.gov (United States)

    John C. Gilbert; Ralph S. Meldahl; Jyoti N. Rayamajhi; John S. Kush

    2010-01-01

    When using increment cores to predict future growth, one often assumes future growth is identical to past growth for individual trees. Once this assumption is accepted, a decision has to be made between which growth estimate should be used, constant diameter growth or constant basal area growth. Often, the assumption of constant diameter growth is used due to the ease...

  5. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  6. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter

    International Nuclear Information System (INIS)

    Bifano, Michael F P; Kaul, Pankaj B; Prakash, Vikas

    2010-01-01

    This paper reports dependency of specific heat and ballistic thermal conductance on cross-sectional geometry (tube versus rod) and size (i.e., diameter and wall thickness), in free-standing isotropic non-metallic crystalline nanostructures. The analysis is performed using dispersion relations found by numerically solving the Pochhammer-Chree frequency equation for a tube. Estimates for the allowable phonon dispersion relations within the crystal lattice are obtained by modifying the elastic acoustic dispersion relations so as to account for the discrete nature of the material's crystal lattice. These phonon dispersion relations are then used to evaluate the specific heat and ballistic thermal conductance in the nanostructures as a function of the nanostructure geometry and size. Two major results are revealed in the analysis: increasing the outer diameter of a nanotube while keeping the ratio of the inner to outer tube radius (γ) fixed increases the total number of available phonon modes capable of thermal population. Secondly, decreasing the wall thickness of a nanotube (i.e., increasing γ) while keeping its outer diameter fixed, results in a drastic decrease in the available phonon mode density and a reduction in the frequency of the longitudinal and flexural acoustic phonon modes in the nanostructure. The dependency of the nanostructure's specific heat on temperature indicates 1D, 2D, and 3D geometric phonon confinement regimes. Transition temperatures for each phonon confinement regime are shown to depend on both the nanostructure's wall thickness and outer radius. Compared to nanowires (γ = 0), the frequency reduction of acoustic phonon modes in thinner walled nanotubes (γ = 0.96) is shown to elevate the ballistic thermal conductance of the thin-walled nanotube between 0.2 and 150 K. At 20 K, the ballistic thermal conductance of the thin-walled nanotube (γ = 0.96) becomes 300% greater than that of a solid nanowire. For temperatures above 150 K, the trend

  7. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  8. Individual tree diameter, height, and volume functions for longleaf pine

    Science.gov (United States)

    Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Timothy A. Martin; Wendell P. Cropper; Lisa J. Samuelson; Daniel J. Leduc

    2014-01-01

    Currently, little information is available to estimate individual tree attributes for longleaf pine (Pinus palustris Mill.), an important tree species of the southeastern United States. The majority of available models are local, relying on stem diameter outside bark at breast height (dbh, cm) and not including stand-level parameters. We developed...

  9. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    Science.gov (United States)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  10. Influence of fluid properties, flow rate and aspect ratios on stratification in a cylindrical cavity

    International Nuclear Information System (INIS)

    Bouhdjar, A.; Benyoucef, B.; Harhad, A.

    2005-01-01

    Fluid flow and temperature field in a cavity are numerically simulated using finite volume techniques. The fluid flow in the vertical cylindrical cavity is assumed to be two-dimensional. Inflow occurs at the top through a ring like entrance and outflow takes place at the bottom through an exit of the same shape. The study considers a transient mixed convection flow. The governing equations are the conservation equations for laminar natural convection flow based on the Boussinesq approximation. Forced convection flow is superimposed through the appropriate boundary conditions (inflow and outflow conditions). The influence of the mass flow rate and of the fluid is made through the Reynolds number and the Prandtl number. Stratification analysis is made qualitatively through temperature distribution. In a previous study, consideration was given to low Reynolds numbers i.e. Re +4 ) in considering water (Pr=3.01) as the working fluid for the thermal energy storage. Correlations for the storage efficiency are deduced with respect to the Reynolds number and cavity aspect ratios of 1/0.5, 1/1 and 1/2. So the objective of the work is to get more information on the influence of flow rate on the storage efficiency as well as on the medium mean temperature. (author)

  11. Tests on model of a prestressed concrete nuclear pressure vessel with multiple cavities

    International Nuclear Information System (INIS)

    Favre, R.; Koprna, M.; Jaccoud, J.P.

    1977-01-01

    The prestressed concrete pressure vessel (prototype) is a cylinder having a diameter of 48 m and a height of 39 m. It has 25 vertical cavities (reactor, heat exchangers, heat recuperators) and 3 horizontal cavities (gas turbines of 500 kw). The cavities are closed by plugs, and their tightness is ensured by a steel lining. A model, on a scale of 1/20, made of microconcrete, was loaded in several cycles, by a uniform inner pressure in the cavities, increasing to the point of failure. The three successive stages were examined: stage of globally elastic behavior, cracking stage, ultimate stage. The behavior of the model is globally elastic up to an inner pressure of 120 to 130 kp/cm 2 , corresponding to about twice the maximum pressure of service, equal to 65 kp/cm 2 . The prestressed tendons at this stage show practically no stress increase. The first detectable cracks appear on the lateral side half-way up the model, as soon as the pressure exceeded 120 kp/cm 2 . From 150-165 kp/cm 2 , the cracking stage can be considered as achieved and the main crack pattern entirely formed. A horizontal crack continues in the middle of the barrel, as well as vertical cracks at each outer cavity. Beyond a pressure of 150-165 kp/cm 2 the ultimate stage begins. The strains of the stresses in the tendons grow more rapidly. The steel lining is highly solicited. Above about 210 kp/cm 2 the model behaves like a structure composed of a group of concrete blocks bound by the tendons and the lining. The failure (240 kp/cm 2 ) occurred through a mechanism of ejection and bending of the concrete ring at the periphery of the barrel of the vessel, which was solicited mainly in tension

  12. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  13. Transient photoluminescence decay investigations of LPE GaAs heteroface solar cells

    International Nuclear Information System (INIS)

    Wettling, W.; Ehrhardt, A.; Brett, A.; Lutz, F.

    1990-01-01

    The transient photoluminescence decay (PLD) is investigated as a technique for the quality control of GaAs solar cells. An analytic expression for the PL intensity is derived from the time dependent continuity equation for minority carrier concentration in the emitter by the Fourier transform method. On both sides of the emitter, i.e. at the interface to the window layer and to the space charge region, surface recombination velocities that can vary between 0 and ∞ are allowed as boundary conditions. Experiments were performed using a mode-locked and cavity dumped laser as excitation source and an optical sampling oscilloscope as detector for the transient PL. PLD from GaAs wafers and solar cells was measured with time resolution of down to 20 ps for various intensities of laser excitation and (for the cells) under open-circuit and short-circuit condition. The results are discussed in respect to the theory together with a model of local internal boundary conditions at the junction near the exciting laser beam

  14. Modeling of HVDC System to Improve Estimation of Transient DC Current and Voltages for AC Line-to-Ground Fault—An Actual Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Dohoon Kwon

    2017-10-01

    Full Text Available A new modeling method for high voltage direct current (HVDC systems and associated controllers is presented for the power system simulator for engineering (PSS/E simulation environment. The aim is to improve the estimation of the transient DC voltage and current in the event of an AC line-to-ground fault. The proposed method consists primary of three interconnected modules for (a equation conversion; (b control-mode selection; and (c DC-line modeling. Simulation case studies were carried out using PSS/E and a power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC model of the Jeju– Haenam HVDC system in Korea. The simulation results are compared with actual operational data and the PSCAD/EMTDC simulation results for an HVDC system during single-phase and three-phase line-to-ground faults, respectively. These comparisons show that the proposed PSS/E modeling method results in the improved estimation of the dynamic variation in the DC voltage and current in the event of an AC network fault, with significant gains in computational efficiency, making it suitable for real-time analysis of HVDC systems.

  15. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  16. Sugar maple height-diameter and age-diameter relationships in an uneven-aged northern hardwood stand

    Science.gov (United States)

    Laura S. Kenefic; R.D. Nyland

    1999-01-01

    Sugar maple (Acer saccharum Marsh.) height-diameter and age-diameter relationships are explored in a balanced uneven-aged northern hardwood stand in central New York. Results show that although both height and age vary considerably with diameter, these relationships can be described by statistically valid equations. The age-diameter relationship...

  17. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser

    International Nuclear Information System (INIS)

    Zhu Guo-Li; Ju You-Lun; Yao Bao-Quan; Wang Yue-Zhu

    2012-01-01

    We report a 31.2 W cw diode-pumped cryogenic Ho(0.4at.%),Tm(4at.%):GdVO 4 laser in a dual-crystal cavity. The pumping sources are two fiber-coupled laser diodes with a fiber core diameter of 0.4 mm, both of which can supply 42 W near 802 nm. With an incident pump power of 70.3 W at 802.4 nm, a cw output power of 31.2 W at 2.05 μm is attained, corresponding to an optical-to-optical conversion efficiency of 44.4%. The M 2 factor is measured as ∼1.3 under an output power of 20 W. (fundamental areas of phenomenology(including applications))

  18. Study of a superconducting spoke-type cavity and of its associated power coupler

    International Nuclear Information System (INIS)

    Mielot, Ch.

    2004-12-01

    This work deals with the study of a spoke-type cavity and its associated power coupler. The results of this study are used in the framework of the high power proton linear accelerator of the experimental accelerator-driven system project (XADS). The cavity (F=352 MHz, β=0.35) was tested at 4 K and 2 K. The results at 4 K gave good margins toward XADS requirements that increase the reliability of a spoke based driver. At 2 K the accelerating field reached is the highest in the world for spoke cavities: 16 MV/M. The position and diameter of the coupling have been optimized in order to decrease the HF losses and avoid multi-factor risk. In order to decrease HF losses (taking into account the 20 kW power fed into the cavity) the electric coupling mode has been chosen. Different types of ceramic windows have been studied in order to make this critical point of the coupler reliable: coaxial disk with or without chokes or empty coaxial cylinder. The optimization process focused on the reflected power, the losses in the ceramic and the surface electric field. The risk with chokes has been modeled and studied with the propagation lines theory. A systematic study of the different windows has been done regarding the geometrical parameters. The disk without chokes seems to be a good solution for our application. The power source will be a solid state amplifier (for reliability and modularity reasons). An all over coaxial coupler can be designed and will be fabricated and tested soon. (author)

  19. Influence of tensile stress on cavity growth in nickel under helium irradiation

    International Nuclear Information System (INIS)

    Kusanagi, Hideo; Hide, Koichiro; Takaku, Hiroshi

    1989-01-01

    The influence of tensile stress on cavity behavior in pure nickel under helium irradiation was investigated by in-situ observation using the transmission electron microscope (TEM) in which an ion gun is installed. Specimens were irradiated at 500 0 C with 20 keV helium in the TEM. The dose rate was about 10 14 He/cm 2 s, and the angle between the helium beam and the normal direction of the specimens was about 60 0 . The damage rate estimated by the E-DEP-1 code was about 0.6x10 -3 dpa/s at its peak position. The main results are as follows: (1) cavity nucleation was accelerated by applying tensile stress, and cavity size in stressed specimens was several times larger than that in stress-free specimens; (2) cavity density in the stressed specimen increased more rapidly than in the stress-free specimen, and then decreased by cavity coalescences; (3) depth of cavity nucleation in the stress-free specimen was about 160 nm, while that in the stressed specimen was about 320 nm; that is, cavities nucleated in deeper regions in the stressed specimen than in the stress-free specimen. This result indicates that helium atoms and vacancies can migrate into the deeper region by applying tensile stress. (4) The experimental results obtained in this study can be explained qualitatively by the mechanism that mobile dislocations drag He-V complexes to the deeper region. This implies that there are similar phenomena in the case of compressive stress. (orig.)

  20. Modelling of the thermal parameters of high-power linear laser-diode arrays. Two-dimensional transient model

    International Nuclear Information System (INIS)

    Bezotosnyi, V V; Kumykov, Kh Kh

    1998-01-01

    A two-dimensional transient thermal model of an injection laser is developed. This model makes it possible to analyse the temperature profiles in pulsed and cw stripe lasers with an arbitrary width of the stripe contact, and also in linear laser-diode arrays. This can be done for any durations and repetition rates of the pump pulses. The model can also be applied to two-dimensional laser-diode arrays operating quasicontinuously. An analysis is reported of the influence of various structural parameters of a diode array on the thermal regime of a single laser. The temperature distributions along the cavity axis are investigated for different variants of mounting a crystal on a heat sink. It is found that the temperature drop along the cavity length in cw and quasi-cw laser diodes may exceed 20%. (lasers)

  1. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  2. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  3. Study of transient and permanent flow in the event of natural convection in a confined environment

    International Nuclear Information System (INIS)

    Tenchine, Denis.

    1978-01-01

    This report deals with natural convection in a confined environment, in connection with the studies on the safety of nuclear reactors of the sodium cooled breeder type (possibilities of removing the residual power of the fuel by natural convection in the liquid sodium). These natural convection exchanges develop in a confined environment between various sodium volumes separated by metallic structures. The study covered a cavity heated by the roof or by the bottom and cooled laterally. The results are compared with those achieved along heating plates, vertical or horizontal, in an infinite medium and the effect of the thermal limit conditions are highlighted by comparison with the case of bottom heated and roof cooled cavities. Placed in a bidimensional geometry situation, with water as fluid, this leads to tackling the problems of similitude between water and sodium flows. A digital code has been developed in plane bidimensional geometry with a laminar and permanent flow. A description is given of the 'BIDIM' experimental rig as well as the measuring and display devices. A permanent flow study of the two previously mentioned configurations produces references for the analysis of transient flows, particularly in the case of the heating bottom (field of medium temperatures and medium exchange coefficient). The turbulence intensity and frequency distribution determinations of the temperature changes are given. Then the determinations of the temperature changes are given. Then the determinations in transient flow are dealt with in the case of the heating bottom. The cavity being initially cold, a power rise is initiated in the heating plates and the establishment and growth of natural convection and the change in the field of medium temperatures and exchange coefficient are studied [fr

  4. Design of a 1.42 GHZ spin-flip cavity for antihydrogen atoms

    CERN Document Server

    Caspers, F; Juhasz, B; Mahner, E; Widmann, E

    2010-01-01

    The ground state hyperfine transition frequency of hydrogen is known to a very high precision and therefore the measurement of this transition frequency in antihydrogen is offering one of the most accurate tests of CPT symmetry. The ASACUSA collaboration at CERN will run an experiment designed to produce ground state antihydrogen atoms in a cusp trap. These antihydrogen atoms will pass with a low rate in the order of 1 per second through a spin-flip cavity where they get excited depending on their polarization by a 1.42 GHz magnetic field. Due to the small amount of antihydrogen atoms that will be available the requirement of good field homogeneity is imposed in order to obtain an interaction with as many antihydrogen atoms as possible. This leads to a requirement of an RF field deviation of less than ±10% transverse to the beam direction over a beam aperture with 10 cm diameter. All design aspects of this new spin-flip cavity, including the required field homogeneity and vacuum aspects, are discussed.

  5. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  6. Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes

    Science.gov (United States)

    Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.

    Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  7. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  8. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  9. Using dynamic N-mixture models to test cavity limitation on northern flying squirrel demographic parameters using experimental nest box supplementation.

    Science.gov (United States)

    Priol, Pauline; Mazerolle, Marc J; Imbeau, Louis; Drapeau, Pierre; Trudeau, Caroline; Ramière, Jessica

    2014-06-01

    Dynamic N-mixture models have been recently developed to estimate demographic parameters of unmarked individuals while accounting for imperfect detection. We propose an application of the Dail and Madsen (2011: Biometrics, 67, 577-587) dynamic N-mixture model in a manipulative experiment using a before-after control-impact design (BACI). Specifically, we tested the hypothesis of cavity limitation of a cavity specialist species, the northern flying squirrel, using nest box supplementation on half of 56 trapping sites. Our main purpose was to evaluate the impact of an increase in cavity availability on flying squirrel population dynamics in deciduous stands in northwestern Québec with the dynamic N-mixture model. We compared abundance estimates from this recent approach with those from classic capture-mark-recapture models and generalized linear models. We compared apparent survival estimates with those from Cormack-Jolly-Seber (CJS) models. Average recruitment rate was 6 individuals per site after 4 years. Nevertheless, we found no effect of cavity supplementation on apparent survival and recruitment rates of flying squirrels. Contrary to our expectations, initial abundance was not affected by conifer basal area (food availability) and was negatively affected by snag basal area (cavity availability). Northern flying squirrel population dynamics are not influenced by cavity availability at our deciduous sites. Consequently, we suggest that this species should not be considered an indicator of old forest attributes in our study area, especially in view of apparent wide population fluctuations across years. Abundance estimates from N-mixture models were similar to those from capture-mark-recapture models, although the latter had greater precision. Generalized linear mixed models produced lower abundance estimates, but revealed the same relationship between abundance and snag basal area. Apparent survival estimates from N-mixture models were higher and less precise

  10. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    Science.gov (United States)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  11. Numerical simulation of forced convection over a periodic series of rectangular cavities at low Prandtl number

    International Nuclear Information System (INIS)

    Stalio, E.; Angeli, D.; Barozzi, G.S.

    2011-01-01

    Highlights: → We investigate laminar convective heat transfer in channels with periodic cavities. → Heat transfer rates are lower than for the flat channel. → This is ascribed to the steady circulating motion within the cavities. → Diffusion in a low Prandtl number fluid can locally overcome the heat transfer decrease due to advection only for isothermal boundary conditions. - Abstract: Convective heat transfer in laminar conditions is studied numerically for a Prandtl number Pr = 0.025, representative of liquid lead-bismuth eutectic (LBE). The geometry investigated is a channel with a periodic series of shallow cavities. Finite-volume simulations are carried out on structured orthogonal curvilinear grids, for ten values of the Reynolds number based on the hydraulic diameter between Re m = 24.9 and Re m = 2260. Flow separation and reattachment are observed also at very low Reynolds numbers and wall friction is found to be remarkably unequal at the two walls. In almost all cases investigated, heat transfer rates are smaller than the corresponding flat channel values. Low-Prandtl number heat transfer rates, investigated by comparison with Pr = 0.71 results, are large only for uniform wall temperature and very low Re. Influence of flow separation on local heat transfer rates is discussed, together with the effect of different thermal boundary conditions. Dependency of heat transfer performance on the cavity geometry is also considered.

  12. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity

    Science.gov (United States)

    Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.

    2011-07-01

    High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.

  13. Resonant spin wave excitations in a magnonic crystal cavity

    Science.gov (United States)

    Kumar, N.; Prabhakar, A.

    2018-03-01

    Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.

  14. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  15. Cavity design programs

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    Numerous computer programs are available to help accelerator physicists and engineers model and design accelerator cavities and other microwave components. This article discusses the problems these programs solve and the principles upon which these programs are based. Some examples of how these programs are used in the design of accelerator cavities are also given

  16. Magnetic losses and instabilities in ferrite garnet tuned RF cavities for synchrotrons

    International Nuclear Information System (INIS)

    Shapiro, V.E.

    1994-01-01

    The aim of this paper is to introduce basic notions and elucidate the main features of magnetic losses and nonlinear effects in high power rf cavities with perpendicularly biased ferrite garnet used for varying the frequency in rapid cycling synchrotrons. A method of analysis is developed using a minimum of specific details. Simple formulae and estimates of the trend of magnetic loss, nonlinear frequency shift and possible instabilities in the cavities as a function of rf power level and ferrite garnet parameters are presented. Numerical examples correspond to the TRIUMF KAON Booster synchrotron. (author). 14 refs., 5 figs

  17. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  18. TEM observations of crack tip: cavity interactions

    International Nuclear Information System (INIS)

    Horton, J.A.; Ohr, S.M.; Jesser, W.A.

    1981-01-01

    Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities

  19. Transient analysis of a variable speed rotary compressor

    International Nuclear Information System (INIS)

    Park, Youn Cheol

    2010-01-01

    A transient simulation model of a rolling piston type rotary compressor is developed to predict the dynamic characteristics of a variable speed compressor. The model is based on the principles of conservation, real gas equations, kinematics of the crankshaft and roller, mass flow loss due to leakage, and heat transfer. For the computer simulation of the compressor, the experimental data were obtained from motor performance tests at various operating frequencies. Using the developed model, re-expansion loss, friction loss, mass flow loss and heat transfer loss is estimated as a function of the crankshaft speed in a variable speed compressor. In addition, the compressor efficiency and energy losses are predicted at various compressor-operating frequencies. Since the transient state of the compressor strongly depends on the system, the developed model is combined with a transient system simulation program to get transient variations of the compression process in the system. Motor efficiency, mechanical efficiency, motor torque and volumetric efficiency are calculated with respect to variation of the driving frequency in a rotary compressor.

  20. Information content of transient synchrotron radiation in tokamak plasmas

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1989-04-01

    A brief, deliberate, perturbation of hot tokamak electrons produces a transient, synchrotron radiation signal, in frequency-time space, with impressive informative potential on plasma parameters; for example, the dc toroidal electric field, not available by other means, may be measurably. Very fast algorithms have been developed, making tractable a statistical analysis that compares essentially all parameter sets that might possibly explain the transient signal. By simulating data numerically, we can estimate the informative worth of data prior to obtaining it. 20 refs., 2 figs

  1. Search method for long-duration gravitational-wave transients from neutron stars

    International Nuclear Information System (INIS)

    Prix, R.; Giampanis, S.; Messenger, C.

    2011-01-01

    We introduce a search method for a new class of gravitational-wave signals, namely, long-duration O(hours-weeks) transients from spinning neutron stars. We discuss the astrophysical motivation from glitch relaxation models and we derive a rough estimate for the maximal expected signal strength based on the superfluid excess rotational energy. The transient signal model considered here extends the traditional class of infinite-duration continuous-wave signals by a finite start-time and duration. We derive a multidetector Bayes factor for these signals in Gaussian noise using F-statistic amplitude priors, which simplifies the detection statistic and allows for an efficient implementation. We consider both a fully coherent statistic, which is computationally limited to directed searches for known pulsars, and a cheaper semicoherent variant, suitable for wide parameter-space searches for transients from unknown neutron stars. We have tested our method by Monte-Carlo simulation, and we find that it outperforms orthodox maximum-likelihood approaches both in sensitivity and in parameter-estimation quality.

  2. STRUCTURAL ANALYSIS OF SUPERCONDUCTING ACCELERATOR CAVITIES

    International Nuclear Information System (INIS)

    Schrage, D.

    2000-01-01

    The static and dynamic structural behavior of superconducting cavities for various projects was determined by finite element structural analysis. The β = 0.61 cavity shape for the Neutron Science Project was studied in detail and found to meet all design requirements if fabricated from five millimeter thick material with a single annular stiffener. This 600 MHz cavity will have a Lorentz coefficient of minus1.8 Hz/(Mv/meter) 2 and a lowest structural resonance of more than 100 Hz. Cavities at β = 0.48, 0.61, and 0.77 were analyzed for a Neutron Science Project concept which would incorporate 7-cell cavities. The medium and high beta cavities were found to meet all criteria but it was not possible to generate a β = 0.48 cavity with a Lorentz coefficient of less than minus3 Hz/(Mv/meter) 2

  3. Superconducting cavities developments efforts at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Bagre, M.; Dwivedi, J.; Shrivastava, P.; Mundra, G.; Joshi, S.C.; Potukuchi, P.N.

    2011-01-01

    Superconducting RE cavities are the work-horse for many existing and proposed linear accelerators. Raja Ramanna Centre for Advanced Technology (RRCAT) has initiated a comprehensive R and D program for development of Superconducting RF cavities suitable for high energy accelerator application like SNS and ADS. For the initial phase of technology demonstration several prototype 1.3 GHz single cell-cavities have been developed. The work began with development of prototype single cell cavities in aluminum and copper. This helped in development of cavity manufacturing process, proving various tooling and learning on various mechanical and RF qualification processes. The parts manufacturing was done at RRCAT and Electron beam welding was carried out at Indian industry. These cavities further served during commissioning trials for various cavity processing infrastructure being developed at RRCAT and are also a potential candidate for Niobium thin film deposition R and D. Based on the above experience, few single cell cavities were developed in fine grain niobium. The critical technology of forming and machining of niobium and the intermediate RF qualification were developed at RRCAT. The EB welding of bulk niobium cavities was carried out in collaboration with IUAC, New Delhi at their facility. As a next logical step efforts are now on for development of multicell cavities. The prototype dumbbells and end group made of aluminium, comprising of RF and HOM couplers ports have also been developed, with their LB welding done at Indian industry. In this paper we shall present the development efforts towards manufacturing of 1.3 GHz single cell cavities and their initial processing and qualification. (author)

  4. Effect of cavity disinfectants on antibacterial activity and microtensile bond strength in class I cavity.

    Science.gov (United States)

    Kim, Bo-Ram; Oh, Man-Hwan; Shin, Dong-Hoon

    2017-05-31

    This study was performed to compare the antibacterial activities of three cavity disinfectants [chlorhexidine (CHX), NaOCl, urushiol] and to evaluate their effect on the microtensile bond strength of Scotchbond Universal Adhesive (3M-ESPE, St. Paul, MN, USA) in class I cavities. In both experiments, class I cavities were prepared in dentin. After inoculation with Streptococcus mutans, the cavities of control group were rinsed and those of CHX, NaOCl and urushiol groups were treated with each disinfectant. Standardized amounts of dentin chips were collected and number of S. mutans was determined. Following the same cavity treatment, same adhesive was applied in etch-and-rinse mode. Then, microtensile bond strength was evaluated. The number of S. mutans was significantly reduced in the cavities treated with CHX, NaOCl, and urushiol compared with control group (p<0.05). However, there was a significant bond strength reduction in NaOCl group, which showed statistical difference compared to the other groups (p<0.05).

  5. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-02-16

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  6. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-04-01

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20-25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical-chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg-Cu alloy layer with occasional intrusion of Mg-Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  7. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a device that consists of a compound intended to coat a prepared cavity of a tooth before insertion of...

  8. FDTD modeling of EM field inside microwave cavities

    CERN Document Server

    Narayan, Shiv; Kanth, V Krushna

    2017-01-01

    This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.

  9. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  10. Development of superconducting cavities at JAERI

    International Nuclear Information System (INIS)

    Ouchi, N.

    2001-01-01

    Development of superconducting (SC) cavities is continued for the high intensity proton accelerator in JAERI. In FY-1999, we carried out R and D work; (1) 2nd vertical test of β=0.886 single-cell cavity, (2) vertical test for observation of Q-disease without heat treatment after electropolishing, (3) vertical test of β=0.5 5-cell cavity, (4) pretuning, surface treatment and vertical test of β=0.886 5-cell cavity, (5) pulsed operation of β=0.886 single-cell cavity in the vertical test to confirm the validity of a new model calculation. This paper describes the present status of the R and D work for the SC cavities in JAERI. (author)

  11. A Scalable Parallel PWTD-Accelerated SIE Solver for Analyzing Transient Scattering from Electrically Large Objects

    KAUST Repository

    Liu, Yang

    2015-12-17

    A scalable parallel plane-wave time-domain (PWTD) algorithm for efficient and accurate analysis of transient scattering from electrically large objects is presented. The algorithm produces scalable communication patterns on very large numbers of processors by leveraging two mechanisms: (i) a hierarchical parallelization strategy to evenly distribute the computation and memory loads at all levels of the PWTD tree among processors, and (ii) a novel asynchronous communication scheme to reduce the cost and memory requirement of the communications between the processors. The efficiency and accuracy of the algorithm are demonstrated through its applications to the analysis of transient scattering from a perfect electrically conducting (PEC) sphere with a diameter of 70 wavelengths and a PEC square plate with a dimension of 160 wavelengths. Furthermore, the proposed algorithm is used to analyze transient fields scattered from realistic airplane and helicopter models under high frequency excitation.

  12. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  13. Analysis of fuel pin behavior under slow-ramp type transient overpower condition by using the fuel performance evaluation code 'FEMAXI-FBR'

    International Nuclear Information System (INIS)

    Tsuboi, Yasushi; Ninokata, Hisashi; Endo, Hiroshi; Ishizu, Tomoko; Tatewaki, Isao; Saito, Hiroaki

    2012-01-01

    FEMAXI-FBR has been developed as the one module of the core disruptive accident analysis code 'ASTERIA-FBR' in order to evaluate the mixed oxide (MOX) fuel performance under steady, transient and accident conditions of fast reactors consistently. On the basis of light water reactor (LWR) fuel performance evaluation code 'FEMAXI-6', FEMAXI-FBR develops specific models for the fast reactor fuel performance, such as restructuring, material migration during steady state and transient, melting cavity formation and pressure during accident, so that it can evaluate the fuel failure during accident. The analysis of test pin with slow transient over power test of CABRI-2 program was conducted from steady to transient. The test pin was pre-irradiated and tested under transient overpower with several % P 0 /s (P 0 : steady state power) of the power rate. Analysis results of the gas release ratio, pin failure time, and fuel melt radius were compared to measured values. The analysis results of the steady and transient performances were also compared with the measured values. The compared performances are gas release ratio, fuel restructuring for steady state and linear power and melt radius at failure during transient. This analysis result reproduces the measured value. It was concluded that FEMAXI-FBR is effective to evaluate fast reactor fuel performances from steady state to accident conditions. (author)

  14. Swelling in cold-worked 316 stainless steels irradiated in a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Fukuya, Koji; Fujii, Katsuhiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Swelling behavior in a cold-worked 316 stainless steel irradiated up to 53 dpa in a PWR at 290-320degC was examined using high resolution transmission electron microscopy. Small cavities with the average diameter of 1 nm were observed in the samples irradiated to doses above 3 dpa. The average diameter did not increase with increasing in dose. The maximum swelling was as low as 0.042%. The measured helium content and the cavity morphology led to the conclusion that the cavities were helium bubbles. A comparison of the observed cavity microstructure with data from FBR, HFIR and ATR irradiation showed that the cavity structure in PWR at 320degC or less was similar to those in HFIR and ATR irradiation but quite different from those in FBR condition. From a calculation based on the cavity data and kinetic models the incubation dose of swelling was estimated to be higher than 80dpa in the present irradiation condition. (author)

  15. Fundamental limitations of cavity-assisted atom interferometry

    Science.gov (United States)

    Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.

    2017-11-01

    Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.

  16. Experimental analysis of natural convection in a cavity with relation 2:1

    International Nuclear Information System (INIS)

    Reyes S, M.

    1994-01-01

    This work develop an experimental study of the natural convection in Transient State in a cavity of the relation 2:1 (long-height), heated by a heat flux on a side wall with the opposite wall at constant temperature and equal at the temperature of the fluid. The experimental work was made for a Rayleigh number of approximately 10 9 , and the Prandtl number of 7.69. The work objective is to describe the velocity fields by mean of optic methods at different times, wide of limit layers, and searching the best visual conditions for know widely the phenomena in study. We carry out a comparison of the experimental results with the analysis of scales of Patterson and Imberger (9), with the adaptations of Poujol (19), for the condition of a constant heat flux, given this theories good results. The experimental work it have the formation of a vortex near of the hot wall, this vortex, decrease only in size during the heat transfer. In the top of the cavity in the right corner we found a divergence zone such as a H ydraulic jump , mentioned by Ivey (13), and we found too a second vortex in the bottom of the wall with constant temperature, that decrease and finally disappear when the fluid reach a permanent state. This work contribute to the mechanical design of the cavity, and at the description of the best photographic conditions for the study of the natural convection, giving good results for the study of the limit layers, thermic, hydrodynamic and the intrusion. (Author)

  17. Mathematical model in post-mortem estimation of brain edema using morphometric parameters.

    Science.gov (United States)

    Radojevic, Nemanja; Radnic, Bojana; Vucinic, Jelena; Cukic, Dragana; Lazovic, Ranko; Asanin, Bogdan; Savic, Slobodan

    2017-01-01

    Current autopsy principles for evaluating the existence of brain edema are based on a macroscopic subjective assessment performed by pathologists. The gold standard is a time-consuming histological verification of the presence of the edema. By measuring the diameters of the cranial cavity, as individually determined morphometric parameters, a mathematical model for rapid evaluation of brain edema was created, based on the brain weight measured during the autopsy. A cohort study was performed on 110 subjects, divided into two groups according to the histological presence or absence of (the - deleted from the text) brain edema. In all subjects, the following measures were determined: the volume and the diameters of the cranial cavity (longitudinal and transverse distance and height), the brain volume, and the brain weight. The complex mathematical algorithm revealed a formula for the coefficient ε, which is useful to conclude whether a brain edema is present or not. The average density of non-edematous brain is 0.967 g/ml, while the average density of edematous brain is 1.148 g/ml. The resulting formula for the coefficient ε is (5.79 x longitudinal distance x transverse distance)/brain weight. Coefficient ε can be calculated using measurements of the diameters of the cranial cavity and the brain weight, performed during the autopsy. If the resulting ε is less than 0.9484, it could be stated that there is cerebral edema with a reliability of 98.5%. The method discussed in this paper aims to eliminate the burden of relying on subjective assessments when determining the presence of a brain edema. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. [The oral cavity condition in patients with high blood pressure].

    Science.gov (United States)

    Rosiak, Joanna; Kubić-Filiks, Beata; Szymańska, Jolanta

    2015-10-01

    The incidence of high blood pressure in adults is estimated at ca. 30-40% of the general population. Both hypertension disease and hypertensive drugs affect the condition of the patients' oral cavity. A review of the current literature shows that disorders most frequently found in the masticatory organ of patients with hypertension include: xerostomia, changes in salivary glands, gum hypertrophy, lichenoid lesions, taste disorders, and paraesthesias. The authors emphasize that patients with high blood pressure, along with the treatment of the underlying disease, should receive prophylactic and therapeutic dental care. This would enable reduction and/or elimination of unpleasant complaints, and also help prevent the emergence of secondary disorders in the patients' oral cavity as a result of hypertension pharmacotherapy. © 2015 MEDPRESS.

  19. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  20. A GaInAsP/InP Vertical Cavity Surface Emitting Laser for 1.5 m m operation

    Science.gov (United States)

    Sceats, R.; Balkan, N.; Adams, M. J.; Masum, J.; Dann, A. J.; Perrin, S. D.; Reid, I.; Reed, J.; Cannard, P.; Fisher, M. A.; Elton, D. J.; Harlow, M. J.

    1999-04-01

    We present the results of our studies concerning the pulsed operation of a bulk GaInAsP/InP vertical cavity surface emitting laser (VCSEL). The device is tailored to emit at around 1.5 m m at room temperature. The structure has a 45 period n-doped GaInAsP/InP bottom distributed Bragg reflector (DBR), and a 4 period Si/Al2O3 dielectric top reflector defining a 3-l cavity. Electroluminescence from a 16 m m diameter top window was measured in the pulsed injection mode. Spectral measurements were recorded in the temperature range between 125K and 240K. Polarisation, lasing threshold current and linewidth measurements were also carried out at the same temperatures. The threshold current density has a broad minimum at temperatures between 170K and 190K, (Jth=13.2 kA/cm2), indicating a good match between the gain and the cavity resonance in this temperature range. Maximum emitted power from the VCSEL is 0.18 mW at 180K.