Estimating Subjective Probabilities
DEFF Research Database (Denmark)
Andersen, Steffen; Fountain, John; Harrison, Glenn W.
2014-01-01
either construct elicitation mechanisms that control for risk aversion, or construct elicitation mechanisms which undertake 'calibrating adjustments' to elicited reports. We illustrate how the joint estimation of risk attitudes and subjective probabilities can provide the calibration adjustments...... that theory calls for. We illustrate this approach using data from a controlled experiment with real monetary consequences to the subjects. This allows the observer to make inferences about the latent subjective probability, under virtually any well-specified model of choice under subjective risk, while still...
Risk estimation using probability machines
2014-01-01
Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306
Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines
Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.
2011-01-01
Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433
Optimizing Probability of Detection Point Estimate Demonstration
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
Risk Probability Estimating Based on Clustering
DEFF Research Database (Denmark)
Chen, Yong; Jensen, Christian D.; Gray, Elizabeth
2003-01-01
of prior experiences, recommendations from a trusted entity or the reputation of the other entity. In this paper we propose a dynamic mechanism for estimating the risk probability of a certain interaction in a given environment using hybrid neural networks. We argue that traditional risk assessment models...... from the insurance industry do not directly apply to ubiquitous computing environments. Instead, we propose a dynamic mechanism for risk assessment, which is based on pattern matching, classification and prediction procedures. This mechanism uses an estimator of risk probability, which is based...
Bayesian estimation of core-melt probability
International Nuclear Information System (INIS)
Lewis, H.W.
1984-01-01
A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease
Comparison of density estimators. [Estimation of probability density functions
Energy Technology Data Exchange (ETDEWEB)
Kao, S.; Monahan, J.F.
1977-09-01
Recent work in the field of probability density estimation has included the introduction of some new methods, such as the polynomial and spline methods and the nearest neighbor method, and the study of asymptotic properties in depth. This earlier work is summarized here. In addition, the computational complexity of the various algorithms is analyzed, as are some simulations. The object is to compare the performance of the various methods in small samples and their sensitivity to change in their parameters, and to attempt to discover at what point a sample is so small that density estimation can no longer be worthwhile. (RWR)
The estimation of small probabilities and risk assessment
International Nuclear Information System (INIS)
Kalbfleisch, J.D.; Lawless, J.F.; MacKay, R.J.
1982-01-01
The primary contribution of statistics to risk assessment is in the estimation of probabilities. Frequently the probabilities in question are small, and their estimation is particularly difficult. The authors consider three examples illustrating some problems inherent in the estimation of small probabilities
Dynamic encoding of speech sequence probability in human temporal cortex.
Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F
2015-05-06
Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. Copyright © 2015 the authors 0270-6474/15/357203-12$15.00/0.
Estimating the Probability of Negative Events
Harris, Adam J. L.; Corner, Adam; Hahn, Ulrike
2009-01-01
How well we are attuned to the statistics of our environment is a fundamental question in understanding human behaviour. It seems particularly important to be able to provide accurate assessments of the probability with which negative events occur so as to guide rational choice of preventative actions. One question that arises here is whether or…
Rajeswaran, Jeevanantham; Blackstone, Eugene H; Ehrlinger, John; Li, Liang; Ishwaran, Hemant; Parides, Michael K
2018-01-01
Atrial fibrillation is an arrhythmic disorder where the electrical signals of the heart become irregular. The probability of atrial fibrillation (binary response) is often time varying in a structured fashion, as is the influence of associated risk factors. A generalized nonlinear mixed effects model is presented to estimate the time-related probability of atrial fibrillation using a temporal decomposition approach to reveal the pattern of the probability of atrial fibrillation and their determinants. This methodology generalizes to patient-specific analysis of longitudinal binary data with possibly time-varying effects of covariates and with different patient-specific random effects influencing different temporal phases. The motivation and application of this model is illustrated using longitudinally measured atrial fibrillation data obtained through weekly trans-telephonic monitoring from an NIH sponsored clinical trial being conducted by the Cardiothoracic Surgery Clinical Trials Network.
Adaptive estimation of binomial probabilities under misclassification
Albers, Willem/Wim; Veldman, H.J.
1984-01-01
If misclassification occurs the standard binomial estimator is usually seriously biased. It is known that an improvement can be achieved by using more than one observer in classifying the sample elements. Here it will be investigated which number of observers is optimal given the total number of
Internal Medicine residents use heuristics to estimate disease probability
Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin
2015-01-01
Background: Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. Method: We randomized 55 In...
Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.
Costello, Fintan; Watts, Paul
2018-01-01
We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.
Probability shapes perceptual precision: A study in orientation estimation.
Jabar, Syaheed B; Anderson, Britt
2015-12-01
Probability is known to affect perceptual estimations, but an understanding of mechanisms is lacking. Moving beyond binary classification tasks, we had naive participants report the orientation of briefly viewed gratings where we systematically manipulated contingent probability. Participants rapidly developed faster and more precise estimations for high-probability tilts. The shapes of their error distributions, as indexed by a kurtosis measure, also showed a distortion from Gaussian. This kurtosis metric was robust, capturing probability effects that were graded, contextual, and varying as a function of stimulus orientation. Our data can be understood as a probability-induced reduction in the variability or "shape" of estimation errors, as would be expected if probability affects the perceptual representations. As probability manipulations are an implicit component of many endogenous cuing paradigms, changes at the perceptual level could account for changes in performance that might have traditionally been ascribed to "attention." (c) 2015 APA, all rights reserved).
Accounting Fraud: an estimation of detection probability
Directory of Open Access Journals (Sweden)
Artur Filipe Ewald Wuerges
2014-12-01
Full Text Available Financial statement fraud (FSF is costly for investors and can damage the credibility of the audit profession. To prevent and detect fraud, it is helpful to know its causes. The binary choice models (e.g. logit and probit commonly used in the extant literature, however, fail to account for undetected cases of fraud and thus present unreliable hypotheses tests. Using a sample of 118 companies accused of fraud by the Securities and Exchange Commission (SEC, we estimated a logit model that corrects the problems arising from undetected frauds in U.S. companies. To avoid multicollinearity problems, we extracted seven factors from 28 variables using the principal factors method. Our results indicate that only 1.43 percent of the instances of FSF were publicized by the SEC. Of the six significant variables included in the traditional, uncorrected logit model, three were found to be actually non-significant in the corrected model. The likelihood of FSF is 5.12 times higher when the firm’s auditor issues an adverse or qualified report.
Internal Medicine residents use heuristics to estimate disease probability
Directory of Open Access Journals (Sweden)
Sen Phang
2015-12-01
Conclusions: Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
Fisher classifier and its probability of error estimation
Chittineni, C. B.
1979-01-01
Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.
The estimation of collision probabilities in complicated geometries
International Nuclear Information System (INIS)
Roth, M.J.
1969-04-01
This paper demonstrates how collision probabilities in complicated geometries may be estimated. It is assumed that the reactor core may be divided into a number of cells each with simple geometry so that a collision probability matrix can be calculated for each cell by standard methods. It is then shown how these may be joined together. (author)
Estimated probability of the number of buildings damaged by the ...
African Journals Online (AJOL)
The analysis shows that the probability estimator of the building damage ... and homeowners) should reserve the cost of repair at least worth the risk of loss, to face ... Keywords: Citarum River; logistic regression; genetic algorithm; losses risk; ...
Crash probability estimation via quantifying driver hazard perception.
Li, Yang; Zheng, Yang; Wang, Jianqiang; Kodaka, Kenji; Li, Keqiang
2018-07-01
Crash probability estimation is an important method to predict the potential reduction of crash probability contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach to estimate crash probability, which combines a field operational test and numerical simulations of a typical rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying the crash probability estimation in this database, we estimate the potential decrease in crash probability owing to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability in a typical rear-end near-crash scenario with a one-second delay of driver's braking response. These results indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers. The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design and testing of FCATs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Incorporation of various uncertainties in dependent failure-probability estimation
International Nuclear Information System (INIS)
Samanta, P.K.; Mitra, S.P.
1982-01-01
This paper describes an approach that allows the incorporation of various types of uncertainties in the estimation of dependent failure (common mode failure) probability. The types of uncertainties considered are attributable to data, modeling and coupling. The method developed is applied to a class of dependent failures, i.e., multiple human failures during testing, maintenance and calibration. Estimation of these failures is critical as they have been shown to be significant contributors to core melt probability in pressurized water reactors
Information-theoretic methods for estimating of complicated probability distributions
Zong, Zhi
2006-01-01
Mixing up various disciplines frequently produces something that are profound and far-reaching. Cybernetics is such an often-quoted example. Mix of information theory, statistics and computing technology proves to be very useful, which leads to the recent development of information-theory based methods for estimating complicated probability distributions. Estimating probability distribution of a random variable is the fundamental task for quite some fields besides statistics, such as reliability, probabilistic risk analysis (PSA), machine learning, pattern recognization, image processing, neur
Estimating market probabilities of future interest rate changes
Hlušek, Martin
2002-01-01
The goal of this paper is to estimate the market consensus forecast of future monetary policy development and to quantify the priced-in probability of interest rate changes for different future time horizons. The proposed model uses the current spot money market yield curve and available money market derivative instruments (forward rate agreements, FRAs) and estimates the market probability of interest rate changes up to a 12-month horizon.
Directory of Open Access Journals (Sweden)
C. Y. Wu
2013-09-01
Full Text Available Landslide spatial, temporal, and size probabilities were used to perform a landslide hazard assessment in this study. Eleven intrinsic geomorphological, and two extrinsic rainfall factors were evaluated as landslide susceptibility related factors as they related to the success rate curves, landslide ratio plots, frequency distributions of landslide and non-landslide groups, as well as probability–probability plots. Data on landslides caused by Typhoon Aere in the Shihmen watershed were selected to train the susceptibility model. The landslide area probability, based on the power law relationship between the landslide area and a noncumulative number, was analyzed using the Pearson type 5 probability density function. The exceedance probabilities of rainfall with various recurrence intervals, including 2, 5, 10, 20, 50, 100 and 200 yr, were used to determine the temporal probabilities of the events. The study was conducted in the Shihmen watershed, which has an area of 760 km2 and is one of the main water sources for northern Taiwan. The validation result of Typhoon Krosa demonstrated that this landslide hazard model could be used to predict the landslide probabilities. The results suggested that integration of spatial, area, and exceedance probabilities to estimate the annual probability of each slope unit is feasible. The advantage of this annual landslide probability model lies in its ability to estimate the annual landslide risk, instead of a scenario-based risk.
Detection probabilities for time-domain velocity estimation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
1991-01-01
programs, it is demonstrated that the probability of correct estimation depends on the signal-to-noise ratio, transducer bandwidth, number of A-lines and number of samples used in the correlation estimate. The influence of applying a stationary echo-canceler is explained. The echo canceling can be modeled...
Estimating the empirical probability of submarine landslide occurrence
Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger
2010-01-01
The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.
Estimating the probability of rare events: addressing zero failure data.
Quigley, John; Revie, Matthew
2011-07-01
Traditional statistical procedures for estimating the probability of an event result in an estimate of zero when no events are realized. Alternative inferential procedures have been proposed for the situation where zero events have been realized but often these are ad hoc, relying on selecting methods dependent on the data that have been realized. Such data-dependent inference decisions violate fundamental statistical principles, resulting in estimation procedures whose benefits are difficult to assess. In this article, we propose estimating the probability of an event occurring through minimax inference on the probability that future samples of equal size realize no more events than that in the data on which the inference is based. Although motivated by inference on rare events, the method is not restricted to zero event data and closely approximates the maximum likelihood estimate (MLE) for nonzero data. The use of the minimax procedure provides a risk adverse inferential procedure where there are no events realized. A comparison is made with the MLE and regions of the underlying probability are identified where this approach is superior. Moreover, a comparison is made with three standard approaches to supporting inference where no event data are realized, which we argue are unduly pessimistic. We show that for situations of zero events the estimator can be simply approximated with 1/2.5n, where n is the number of trials. © 2011 Society for Risk Analysis.
Failure Probability Estimation of Wind Turbines by Enhanced Monte Carlo
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Naess, Arvid
2012-01-01
This paper discusses the estimation of the failure probability of wind turbines required by codes of practice for designing them. The Standard Monte Carlo (SMC) simulations may be used for this reason conceptually as an alternative to the popular Peaks-Over-Threshold (POT) method. However......, estimation of very low failure probabilities with SMC simulations leads to unacceptably high computational costs. In this study, an Enhanced Monte Carlo (EMC) method is proposed that overcomes this obstacle. The method has advantages over both POT and SMC in terms of its low computational cost and accuracy...... is controlled by the pitch controller. This provides a fair framework for comparison of the behavior and failure event of the wind turbine with emphasis on the effect of the pitch controller. The Enhanced Monte Carlo method is then applied to the model and the failure probabilities of the model are estimated...
Recommendations for the tuning of rare event probability estimators
International Nuclear Information System (INIS)
Balesdent, Mathieu; Morio, Jérôme; Marzat, Julien
2015-01-01
Being able to accurately estimate rare event probabilities is a challenging issue in order to improve the reliability of complex systems. Several powerful methods such as importance sampling, importance splitting or extreme value theory have been proposed in order to reduce the computational cost and to improve the accuracy of extreme probability estimation. However, the performance of these methods is highly correlated with the choice of tuning parameters, which are very difficult to determine. In order to highlight recommended tunings for such methods, an empirical campaign of automatic tuning on a set of representative test cases is conducted for splitting methods. It allows to provide a reduced set of tuning parameters that may lead to the reliable estimation of rare event probability for various problems. The relevance of the obtained result is assessed on a series of real-world aerospace problems
Internal Medicine residents use heuristics to estimate disease probability.
Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin
2015-01-01
Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
Allelic drop-out probabilities estimated by logistic regression
DEFF Research Database (Denmark)
Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria
2012-01-01
We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....
Energy Technology Data Exchange (ETDEWEB)
Garza, J. [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States); Millwater, H., E-mail: harry.millwater@utsa.edu [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States)
2012-04-15
A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: Black-Right-Pointing-Pointer Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. Black-Right-Pointing-Pointer The sensitivities are computed with negligible cost using Monte Carlo sampling. Black-Right-Pointing-Pointer The change in the POF due to a change in the POD curve parameters can be easily estimated.
International Nuclear Information System (INIS)
Garza, J.; Millwater, H.
2012-01-01
A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: ► Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. ►The sensitivities are computed with negligible cost using Monte Carlo sampling. ► The change in the POF due to a change in the POD curve parameters can be easily estimated.
Estimation of failure probabilities of linear dynamic systems by ...
Indian Academy of Sciences (India)
An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.
Estimating the joint survival probabilities of married individuals
Sanders, Lisanne; Melenberg, Bertrand
We estimate the joint survival probability of spouses using a large random sample drawn from a Dutch census. As benchmarks we use two bivariate Weibull models. We consider more flexible models, using a semi-nonparametric approach, by extending the independent Weibull distribution using squared
Probability Estimation in the Framework of Intuitionistic Fuzzy Evidence Theory
Directory of Open Access Journals (Sweden)
Yafei Song
2015-01-01
Full Text Available Intuitionistic fuzzy (IF evidence theory, as an extension of Dempster-Shafer theory of evidence to the intuitionistic fuzzy environment, is exploited to process imprecise and vague information. Since its inception, much interest has been concentrated on IF evidence theory. Many works on the belief functions in IF information systems have appeared. Although belief functions on the IF sets can deal with uncertainty and vagueness well, it is not convenient for decision making. This paper addresses the issue of probability estimation in the framework of IF evidence theory with the hope of making rational decision. Background knowledge about evidence theory, fuzzy set, and IF set is firstly reviewed, followed by introduction of IF evidence theory. Axiomatic properties of probability distribution are then proposed to assist our interpretation. Finally, probability estimations based on fuzzy and IF belief functions together with their proofs are presented. It is verified that the probability estimation method based on IF belief functions is also potentially applicable to classical evidence theory and fuzzy evidence theory. Moreover, IF belief functions can be combined in a convenient way once they are transformed to interval-valued possibilities.
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
COMPARATIVE ANALYSIS OF ESTIMATION METHODS OF PHARMACY ORGANIZATION BANKRUPTCY PROBABILITY
Directory of Open Access Journals (Sweden)
V. L. Adzhienko
2014-01-01
Full Text Available A purpose of this study was to determine the probability of bankruptcy by various methods in order to predict the financial crisis of pharmacy organization. Estimating the probability of pharmacy organization bankruptcy was conducted using W. Beaver’s method adopted in the Russian Federation, with integrated assessment of financial stability use on the basis of scoring analysis. The results obtained by different methods are comparable and show that the risk of bankruptcy of the pharmacy organization is small.
Failure probability estimate of type 304 stainless steel piping
International Nuclear Information System (INIS)
Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Mehta, H.S.; Ranganath, S.
1989-01-01
The primary source of in-service degradation of the SRS production reactor process water piping is intergranular stress corrosion cracking (IGSCC). IGSCC has occurred in a limited number of weld heat affected zones, areas known to be susceptible to IGSCC. A model has been developed to combine crack growth rates, crack size distributions, in-service examination reliability estimates and other considerations to estimate the pipe large-break frequency. This frequency estimates the probability that an IGSCC crack will initiate, escape detection by ultrasonic (UT) examination, and grow to instability prior to extending through-wall and being detected by the sensitive leak detection system. These events are combined as the product of four factors: (1) the probability that a given weld heat affected zone contains IGSCC; (2) the conditional probability, given the presence of IGSCC, that the cracking will escape detection during UT examination; (3) the conditional probability, given a crack escapes detection by UT, that it will not grow through-wall and be detected by leakage; (4) the conditional probability, given a crack is not detected by leakage, that it grows to instability prior to the next UT exam. These four factors estimate the occurrence of several conditions that must coexist in order for a crack to lead to a large break of the process water piping. When evaluated for the SRS production reactors, they produce an extremely low break frequency. The objective of this paper is to present the assumptions, methodology, results and conclusions of a probabilistic evaluation for the direct failure of the primary coolant piping resulting from normal operation and seismic loads. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break
Bickel, Warren K; George Wilson, A; Franck, Christopher T; Terry Mueller, E; Jarmolowicz, David P; Koffarnus, Mikhail N; Fede, Samantha J
2014-04-01
Previous research comparing obese and non-obese samples on the delayed discounting procedure has produced mixed results. The aim of the current study was to clarify these discrepant findings by comparing a variety of temporal discounting measures in a large sample of internet users (n=1163) obtained from a crowdsourcing service, Amazon Mechanical Turk (AMT). Measures of temporal, social-temporal (a combination of standard and social temporal), and probability discounting were obtained. Significant differences were obtained on all discounting measures except probability discounting, but the obtained effect sizes were small. These data suggest that larger-N studies will be more likely to detect differences between obese and non-obese samples, and may afford the opportunity, in future studies, to decompose a large obese sample into different subgroups to examine the effect of other relevant measures, such as the reinforcing value of food, on discounting. Copyright © 2013 Elsevier Ltd. All rights reserved.
Collective animal behavior from Bayesian estimation and probability matching.
Directory of Open Access Journals (Sweden)
Alfonso Pérez-Escudero
2011-11-01
Full Text Available Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is mainly based on empirical fits to observations, with less emphasis in obtaining first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching. In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability equal to the Bayesian-estimated probability that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior.
Maximum Entropy Estimation of Transition Probabilities of Reversible Markov Chains
Directory of Open Access Journals (Sweden)
Erik Van der Straeten
2009-11-01
Full Text Available In this paper, we develop a general theory for the estimation of the transition probabilities of reversible Markov chains using the maximum entropy principle. A broad range of physical models can be studied within this approach. We use one-dimensional classical spin systems to illustrate the theoretical ideas. The examples studied in this paper are: the Ising model, the Potts model and the Blume-Emery-Griffiths model.
Estimating probable flaw distributions in PWR steam generator tubes
International Nuclear Information System (INIS)
Gorman, J.A.; Turner, A.P.L.
1997-01-01
This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses
Estimating the exceedance probability of rain rate by logistic regression
Chiu, Long S.; Kedem, Benjamin
1990-01-01
Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.
Probability Density Estimation Using Neural Networks in Monte Carlo Calculations
International Nuclear Information System (INIS)
Shim, Hyung Jin; Cho, Jin Young; Song, Jae Seung; Kim, Chang Hyo
2008-01-01
The Monte Carlo neutronics analysis requires the capability for a tally distribution estimation like an axial power distribution or a flux gradient in a fuel rod, etc. This problem can be regarded as a probability density function estimation from an observation set. We apply the neural network based density estimation method to an observation and sampling weight set produced by the Monte Carlo calculations. The neural network method is compared with the histogram and the functional expansion tally method for estimating a non-smooth density, a fission source distribution, and an absorption rate's gradient in a burnable absorber rod. The application results shows that the neural network method can approximate a tally distribution quite well. (authors)
Human error probability estimation using licensee event reports
International Nuclear Information System (INIS)
Voska, K.J.; O'Brien, J.N.
1984-07-01
Objective of this report is to present a method for using field data from nuclear power plants to estimate human error probabilities (HEPs). These HEPs are then used in probabilistic risk activities. This method of estimating HEPs is one of four being pursued in NRC-sponsored research. The other three are structured expert judgment, analysis of training simulator data, and performance modeling. The type of field data analyzed in this report is from Licensee Event reports (LERs) which are analyzed using a method specifically developed for that purpose. However, any type of field data or human errors could be analyzed using this method with minor adjustments. This report assesses the practicality, acceptability, and usefulness of estimating HEPs from LERs and comprehensively presents the method for use
Estimation of the probability of success in petroleum exploration
Davis, J.C.
1977-01-01
A probabilistic model for oil exploration can be developed by assessing the conditional relationship between perceived geologic variables and the subsequent discovery of petroleum. Such a model includes two probabilistic components, the first reflecting the association between a geologic condition (structural closure, for example) and the occurrence of oil, and the second reflecting the uncertainty associated with the estimation of geologic variables in areas of limited control. Estimates of the conditional relationship between geologic variables and subsequent production can be found by analyzing the exploration history of a "training area" judged to be geologically similar to the exploration area. The geologic variables are assessed over the training area using an historical subset of the available data, whose density corresponds to the present control density in the exploration area. The success or failure of wells drilled in the training area subsequent to the time corresponding to the historical subset provides empirical estimates of the probability of success conditional upon geology. Uncertainty in perception of geological conditions may be estimated from the distribution of errors made in geologic assessment using the historical subset of control wells. These errors may be expressed as a linear function of distance from available control. Alternatively, the uncertainty may be found by calculating the semivariogram of the geologic variables used in the analysis: the two procedures will yield approximately equivalent results. The empirical probability functions may then be transferred to the exploration area and used to estimate the likelihood of success of specific exploration plays. These estimates will reflect both the conditional relationship between the geological variables used to guide exploration and the uncertainty resulting from lack of control. The technique is illustrated with case histories from the mid-Continent area of the U.S.A. ?? 1977 Plenum
Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods
Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.
2014-12-01
Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.
A Balanced Approach to Adaptive Probability Density Estimation
Directory of Open Access Journals (Sweden)
Julio A. Kovacs
2017-04-01
Full Text Available Our development of a Fast (Mutual Information Matching (FIM of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.
Site Specific Probable Maximum Precipitation Estimates and Professional Judgement
Hayes, B. D.; Kao, S. C.; Kanney, J. F.; Quinlan, K. R.; DeNeale, S. T.
2015-12-01
State and federal regulatory authorities currently rely upon the US National Weather Service Hydrometeorological Reports (HMRs) to determine probable maximum precipitation (PMP) estimates (i.e., rainfall depths and durations) for estimating flooding hazards for relatively broad regions in the US. PMP estimates for the contributing watersheds upstream of vulnerable facilities are used to estimate riverine flooding hazards while site-specific estimates for small water sheds are appropriate for individual facilities such as nuclear power plants. The HMRs are often criticized due to their limitations on basin size, questionable applicability in regions affected by orographic effects, their lack of consist methods, and generally by their age. HMR-51 for generalized PMP estimates for the United States east of the 105th meridian, was published in 1978 and is sometimes perceived as overly conservative. The US Nuclear Regulatory Commission (NRC), is currently reviewing several flood hazard evaluation reports that rely on site specific PMP estimates that have been commercially developed. As such, NRC has recently investigated key areas of expert judgement via a generic audit and one in-depth site specific review as they relate to identifying and quantifying actual and potential storm moisture sources, determining storm transposition limits, and adjusting available moisture during storm transposition. Though much of the approach reviewed was considered a logical extension of HMRs, two key points of expert judgement stood out for further in-depth review. The first relates primarily to small storms and the use of a heuristic for storm representative dew point adjustment developed for the Electric Power Research Institute by North American Weather Consultants in 1993 in order to harmonize historic storms for which only 12 hour dew point data was available with more recent storms in a single database. The second issue relates to the use of climatological averages for spatially
Brus, D.J.; Gruijter, de J.J.
2003-01-01
In estimating spatial means of environmental variables of a region from data collected by convenience or purposive sampling, validity of the results can be ensured by collecting additional data through probability sampling. The precision of the pi estimator that uses the probability sample can be
NESTEM-QRAS: A Tool for Estimating Probability of Failure
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-10-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
NESTEM-QRAS: A Tool for Estimating Probability of Failure
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-01-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
Structural Reliability Using Probability Density Estimation Methods Within NESSUS
Chamis, Chrisos C. (Technical Monitor); Godines, Cody Ric
2003-01-01
A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been
On the prior probabilities for two-stage Bayesian estimates
International Nuclear Information System (INIS)
Kohut, P.
1992-01-01
The method of Bayesian inference is reexamined for its applicability and for the required underlying assumptions in obtaining and using prior probability estimates. Two different approaches are suggested to determine the first-stage priors in the two-stage Bayesian analysis which avoid certain assumptions required for other techniques. In the first scheme, the prior is obtained through a true frequency based distribution generated at selected intervals utilizing actual sampling of the failure rate distributions. The population variability distribution is generated as the weighed average of the frequency distributions. The second method is based on a non-parametric Bayesian approach using the Maximum Entropy Principle. Specific features such as integral properties or selected parameters of prior distributions may be obtained with minimal assumptions. It is indicated how various quantiles may also be generated with a least square technique
[Survival analysis with competing risks: estimating failure probability].
Llorca, Javier; Delgado-Rodríguez, Miguel
2004-01-01
To show the impact of competing risks of death on survival analysis. We provide an example of survival time without chronic rejection after heart transplantation, where death before rejection acts as a competing risk. Using a computer simulation, we compare the Kaplan-Meier estimator and the multiple decrement model. The Kaplan-Meier method overestimated the probability of rejection. Next, we illustrate the use of the multiple decrement model to analyze secondary end points (in our example: death after rejection). Finally, we discuss Kaplan-Meier assumptions and why they fail in the presence of competing risks. Survival analysis should be adjusted for competing risks of death to avoid overestimation of the risk of rejection produced with the Kaplan-Meier method.
Selection of anchor values for human error probability estimation
International Nuclear Information System (INIS)
Buffardi, L.C.; Fleishman, E.A.; Allen, J.A.
1989-01-01
There is a need for more dependable information to assist in the prediction of human errors in nuclear power environments. The major objective of the current project is to establish guidelines for using error probabilities from other task settings to estimate errors in the nuclear environment. This involves: (1) identifying critical nuclear tasks, (2) discovering similar tasks in non-nuclear environments, (3) finding error data for non-nuclear tasks, and (4) establishing error-rate values for the nuclear tasks based on the non-nuclear data. A key feature is the application of a classification system to nuclear and non-nuclear tasks to evaluate their similarities and differences in order to provide a basis for generalizing human error estimates across tasks. During the first eight months of the project, several classification systems have been applied to a sample of nuclear tasks. They are discussed in terms of their potential for establishing task equivalence and transferability of human error rates across situations
The estimation of probable maximum precipitation: the case of Catalonia.
Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel
2008-12-01
A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.
Shiryaev, A N
1996-01-01
This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter Many examples are discussed in detail, and there are a large number of exercises The book is accessible to advanced undergraduates and can be used as a text for self-study This new edition contains substantial revisions and updated references The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures Proofs for a number of some important results which were merely stated in the first edition have been added The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables
The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation
Felder, Guido; Zischg, Andreas; Weingartner, Rolf
2017-07-01
Deterministic rainfall-runoff modelling usually assumes stationary hydrological system, as model parameters are calibrated with and therefore dependant on observed data. However, runoff processes are probably not stationary in the case of a probable maximum flood (PMF) where discharge greatly exceeds observed flood peaks. Developing hydrodynamic models and using them to build coupled hydrologic-hydrodynamic models can potentially improve the plausibility of PMF estimations. This study aims to assess the potential benefits and constraints of coupled modelling compared to standard deterministic hydrologic modelling when it comes to PMF estimation. The two modelling approaches are applied using a set of 100 spatio-temporal probable maximum precipitation (PMP) distribution scenarios. The resulting hydrographs, the resulting peak discharges as well as the reliability and the plausibility of the estimates are evaluated. The discussion of the results shows that coupling hydrologic and hydrodynamic models substantially improves the physical plausibility of PMF modelling, although both modelling approaches lead to PMF estimations for the catchment outlet that fall within a similar range. Using a coupled model is particularly suggested in cases where considerable flood-prone areas are situated within a catchment.
Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation
Sun, Ying
2015-09-01
Quantile functions are important in characterizing the entire probability distribution of a random variable, especially when the tail of a skewed distribution is of interest. This article introduces new quantile function estimators for spatial and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without replicated observations. The theoretical properties are investigated and the performances of the proposed methods are evaluated by simulations. The proposed method is applied to particulate matter (PM) data from the Community Multiscale Air Quality (CMAQ) model to characterize the upper quantiles, which are crucial for studying spatial association between PM concentrations and adverse human health effects. © 2016 American Statistical Association and the American Society for Quality.
State estimation of spatio-temporal phenomena
Yu, Dan
This dissertation addresses the state estimation problem of spatio-temporal phenomena which can be modeled by partial differential equations (PDEs), such as pollutant dispersion in the atmosphere. After discretizing the PDE, the dynamical system has a large number of degrees of freedom (DOF). State estimation using Kalman Filter (KF) is computationally intractable, and hence, a reduced order model (ROM) needs to be constructed first. Moreover, the nonlinear terms, external disturbances or unknown boundary conditions can be modeled as unknown inputs, which leads to an unknown input filtering problem. Furthermore, the performance of KF could be improved by placing sensors at feasible locations. Therefore, the sensor scheduling problem to place multiple mobile sensors is of interest. The first part of the dissertation focuses on model reduction for large scale systems with a large number of inputs/outputs. A commonly used model reduction algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not computationally tractable for large systems with a large number of inputs/outputs. Inspired by the BPOD and randomized algorithms, we propose a randomized proper orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD (RPOD*) algorithm, which construct an ROM to capture the input-output behaviour of the full order model, while reducing the computational cost of BPOD by orders of magnitude. It is demonstrated that the proposed RPOD* algorithm could construct the ROM in real-time, and the performance of the proposed algorithms on different advection-diffusion equations. Next, we consider the state estimation problem of linear discrete-time systems with unknown inputs which can be treated as a wide-sense stationary process with rational power spectral density, while no other prior information needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input
Multiscale spatial and temporal estimation of the b-value
García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.
2017-12-01
The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.
Structural health monitoring and probability of detection estimation
Forsyth, David S.
2016-02-01
Structural health monitoring (SHM) methods are often based on nondestructive testing (NDT) sensors and are often proposed as replacements for NDT to lower cost and/or improve reliability. In order to take advantage of SHM for life cycle management, it is necessary to determine the Probability of Detection (POD) of the SHM system just as for traditional NDT to ensure that the required level of safety is maintained. Many different possibilities exist for SHM systems, but one of the attractive features of SHM versus NDT is the ability to take measurements very simply after the SHM system is installed. Using a simple statistical model of POD, some authors have proposed that very high rates of SHM system data sampling can result in high effective POD even in situations where an individual test has low POD. In this paper, we discuss the theoretical basis for determining the effect of repeated inspections, and examine data from SHM experiments against this framework to show how the effective POD from multiple tests can be estimated.
International Nuclear Information System (INIS)
Stillwell, W.G.; Seaver, D.A.; Schwartz, J.P.
1982-05-01
This report reviews probability assessment and psychological scaling techniques that could be used to estimate human error probabilities (HEPs) in nuclear power plant operations. The techniques rely on expert opinion and can be used to estimate HEPs where data do not exist or are inadequate. These techniques have been used in various other contexts and have been shown to produce reasonably accurate probabilities. Some problems do exist, and limitations are discussed. Additional topics covered include methods for combining estimates from multiple experts, the effects of training on probability estimates, and some ideas on structuring the relationship between performance shaping factors and HEPs. Preliminary recommendations are provided along with cautions regarding the costs of implementing the recommendations. Additional research is required before definitive recommendations can be made
Dental age estimation: the role of probability estimates at the 10 year threshold.
Lucas, Victoria S; McDonald, Fraser; Neil, Monica; Roberts, Graham
2014-08-01
The use of probability at the 18 year threshold has simplified the reporting of dental age estimates for emerging adults. The availability of simple to use widely available software has enabled the development of the probability threshold for individual teeth in growing children. Tooth development stage data from a previous study at the 10 year threshold were reused to estimate the probability of developing teeth being above or below the 10 year thresh-hold using the NORMDIST Function in Microsoft Excel. The probabilities within an individual subject are averaged to give a single probability that a subject is above or below 10 years old. To test the validity of this approach dental panoramic radiographs of 50 female and 50 male children within 2 years of the chronological age were assessed with the chronological age masked. Once the whole validation set of 100 radiographs had been assessed the masking was removed and the chronological age and dental age compared. The dental age was compared with chronological age to determine whether the dental age correctly or incorrectly identified a validation subject as above or below the 10 year threshold. The probability estimates correctly identified children as above or below on 94% of occasions. Only 2% of the validation group with a chronological age of less than 10 years were assigned to the over 10 year group. This study indicates the very high accuracy of assignment at the 10 year threshold. Further work at other legally important age thresholds is needed to explore the value of this approach to the technique of age estimation. Copyright © 2014. Published by Elsevier Ltd.
First hitting probabilities for semi markov chains and estimation
DEFF Research Database (Denmark)
Georgiadis, Stylianos
2017-01-01
We first consider a stochastic system described by an absorbing semi-Markov chain with finite state space and we introduce the absorption probability to a class of recurrent states. Afterwards, we study the first hitting probability to a subset of states for an irreducible semi-Markov chain...
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and
On estimating the fracture probability of nuclear graphite components
International Nuclear Information System (INIS)
Srinivasan, Makuteswara
2008-01-01
The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation
average probability of failure on demand estimation for burner
African Journals Online (AJOL)
HOD
Pij – Probability from state i to j. 1. INTRODUCTION. In the process .... the numerical value of the PFD as result of components, sub-system ... ignored in probabilistic risk assessment it may lead to ...... Markov chains for a holistic modeling of SIS.
Estimated probability of stroke among medical outpatients in Enugu ...
African Journals Online (AJOL)
Risk factors for stroke were evaluated using a series of laboratory tests, medical history and physical examinations. The 10‑year probability of stroke was determined by applying the Framingham stroke risk equation. Statistical analysis was performed with the use of the SPSS 17.0 software package (SPSS Inc., Chicago, IL, ...
Temporal rainfall estimation using input data reduction and model inversion
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a
Wenger, Seth J; Freeman, Mary C
2008-10-01
Researchers have developed methods to account for imperfect detection of species with either occupancy (presence absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.
Naive Probability: Model-based Estimates of Unique Events
2014-05-04
of inference. Argument and Computation, 1–17, iFirst. Khemlani, S., & Johnson-Laird, P.N. (2012b). Theories of the syllogism: A meta -analysis...is the probability that… 1 space tourism will achieve widespread popularity in the next 50 years? advances in material science will lead to the... governments dedicate more resources to contacting extra-terrestrials? 8 the United States adopts an open border policy of universal acceptance? English is
Nonlinear Estimation With Sparse Temporal Measurements
2016-09-01
through an atmosphere while being monitored periodically by a single radar. Equation (2.1) details the states and param- eters used in the model...param- eter , gravitational acceleration, that is usually not considered in the literature is estimated, as shown in Equation (2.1), to increase the...the param- eters , x3 and x4, is relatively larger than that of the angle and angular velocity due to the respective units and reflects the inherent
Estimating the Probability of Wind Ramping Events: A Data-driven Approach
Wang, Cheng; Wei, Wei; Wang, Jianhui; Qiu, Feng
2016-01-01
This letter proposes a data-driven method for estimating the probability of wind ramping events without exploiting the exact probability distribution function (PDF) of wind power. Actual wind data validates the proposed method.
Estimating the concordance probability in a survival analysis with a discrete number of risk groups.
Heller, Glenn; Mo, Qianxing
2016-04-01
A clinical risk classification system is an important component of a treatment decision algorithm. A measure used to assess the strength of a risk classification system is discrimination, and when the outcome is survival time, the most commonly applied global measure of discrimination is the concordance probability. The concordance probability represents the pairwise probability of lower patient risk given longer survival time. The c-index and the concordance probability estimate have been used to estimate the concordance probability when patient-specific risk scores are continuous. In the current paper, the concordance probability estimate and an inverse probability censoring weighted c-index are modified to account for discrete risk scores. Simulations are generated to assess the finite sample properties of the concordance probability estimate and the weighted c-index. An application of these measures of discriminatory power to a metastatic prostate cancer risk classification system is examined.
Improved Variable Window Kernel Estimates of Probability Densities
Hall, Peter; Hu, Tien Chung; Marron, J. S.
1995-01-01
Variable window width kernel density estimators, with the width varying proportionally to the square root of the density, have been thought to have superior asymptotic properties. The rate of convergence has been claimed to be as good as those typical for higher-order kernels, which makes the variable width estimators more attractive because no adjustment is needed to handle the negativity usually entailed by the latter. However, in a recent paper, Terrell and Scott show that these results ca...
Sharp probability estimates for Shor's order-finding algorithm
Bourdon, P. S.; Williams, H. T.
2006-01-01
Let N be a (large positive integer, let b > 1 be an integer relatively prime to N, and let r be the order of b modulo N. Finally, let QC be a quantum computer whose input register has the size specified in Shor's original description of his order-finding algorithm. We prove that when Shor's algorithm is implemented on QC, then the probability P of obtaining a (nontrivial) divisor of r exceeds 0.7 whenever N exceeds 2^{11}-1 and r exceeds 39, and we establish that 0.7736 is an asymptotic lower...
Liu, Zhao; Zhu, Yunhong; Wu, Chenxue
2016-01-01
Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502
Percentile estimation using the normal and lognormal probability distribution
International Nuclear Information System (INIS)
Bement, T.R.
1980-01-01
Implicitly or explicitly percentile estimation is an important aspect of the analysis of aerial radiometric survey data. Standard deviation maps are produced for quadrangles which are surveyed as part of the National Uranium Resource Evaluation. These maps show where variables differ from their mean values by more than one, two or three standard deviations. Data may or may not be log-transformed prior to analysis. These maps have specific percentile interpretations only when proper distributional assumptions are met. Monte Carlo results are presented in this paper which show the consequences of estimating percentiles by: (1) assuming normality when the data are really from a lognormal distribution; and (2) assuming lognormality when the data are really from a normal distribution
METAPHOR: Probability density estimation for machine learning based photometric redshifts
Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.
2017-06-01
We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).
Development of an integrated system for estimating human error probabilities
Energy Technology Data Exchange (ETDEWEB)
Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.
1998-12-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.
Fusion probability and survivability in estimates of heaviest nuclei production
International Nuclear Information System (INIS)
Sagaidak, Roman
2012-01-01
A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation
Estimation of post-test probabilities by residents: Bayesian reasoning versus heuristics?
Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P; Ghali, William; Wright, Bruce; McLaughlin, Kevin
2014-08-01
Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of disease probability estimates. In this study our objective was to explore whether Internal Medicine residents use a Bayesian process to estimate disease probabilities by comparing their disease probability estimates to literature-derived Bayesian post-test probabilities. We gave 35 Internal Medicine residents four clinical vignettes in the form of a referral letter and asked them to estimate the post-test probability of the target condition in each case. We then compared these to literature-derived probabilities. For each vignette the estimated probability was significantly different from the literature-derived probability. For the two cases with low literature-derived probability our participants significantly overestimated the probability of these target conditions being the correct diagnosis, whereas for the two cases with high literature-derived probability the estimated probability was significantly lower than the calculated value. Our results suggest that residents generate inaccurate post-test probability estimates. Possible explanations for this include ineffective application of Bayesian reasoning, attribute substitution whereby a complex cognitive task is replaced by an easier one (e.g., a heuristic), or systematic rater bias, such as central tendency bias. Further studies are needed to identify the reasons for inaccuracy of disease probability estimates and to explore ways of improving accuracy.
Fusion probability and survivability in estimates of heaviest nuclei production
Directory of Open Access Journals (Sweden)
Sagaidak Roman N.
2012-02-01
Full Text Available Production of the heavy and heaviest nuclei (from Po to the region of superheavy elements close to Z=114 and N=184 in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing model coupled with the statistical model (SM of de-excitation of a compound nucleus (CN. Excitation functions for fission and evaporation residues (ER measured in very asymmetric combinations can be described rather well. One can scale and fix macroscopic (liquid-drop fission barriers for nuclei involved in the calculation of survivability with SM. In less asymmetric combinations, effects of fusion suppression caused by quasi-fission (QF are starting to appear in the entrance channel of reactions. QF effects could be semi-empirically taken into account using fusion probabilities deduced as the ratio of measured ER cross sections to the ones obtained in the assumption of absence of the fusion suppression in corresponding reactions. SM parameters (fission barriers obtained at the analysis of a very asymmetric combination leading to the production of (nearly the same CN should be used for this evaluation.
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Liu, W. F.
2013-01-01
Estimation of extreme response and failure probability of structures subjected to ultimate design loads is essential for structural design of wind turbines according to the new standard IEC61400-1. This task is focused on in the present paper in virtue of probability density evolution method (PDEM......), which underlies the schemes of random vibration analysis and structural reliability assessment. The short-term rare failure probability of 5-mega-watt wind turbines, for illustrative purposes, in case of given mean wind speeds and turbulence levels is investigated through the scheme of extreme value...... distribution instead of any other approximate schemes of fitted distribution currently used in statistical extrapolation techniques. Besides, the comparative studies against the classical fitted distributions and the standard Monte Carlo techniques are carried out. Numerical results indicate that PDEM exhibits...
International Nuclear Information System (INIS)
Arkhincheev, V. E.
2017-01-01
A new asymptotic form of the particle survival probability in media with absorbing traps has been established. It is shown that this drift mechanism determines a new temporal behavior of the probability of particle survival in media with absorbing traps over long time intervals.
Directory of Open Access Journals (Sweden)
Pradipta Panchadhyayee
2016-12-01
Full Text Available We have simulated the similar features of the well-known classical phenomena in quantum domain under the formalism of probability amplitude method. The identical pattern of interference fringes of a Fabry–Perot interferometer (especially on reflection mode is obtained through the power-broadened spectral line shape of the population distribution in the excited state with careful delineation of a coherently driven two-level atomic model. In a unit wavelength domain, such pattern can be substantially modified by controlling typical spatial field arrangement in one and two dimensions, which is found complementary to the findings of recent research on atom localization in sub-wavelength domain. The spatial dependence of temporal dynamics has also been studied at a particular condition, which is equivalent to that could be obtained under Raman–Nath diffraction controlled by spatial phase.
A new maximum likelihood blood velocity estimator incorporating spatial and temporal correlation
DEFF Research Database (Denmark)
Schlaikjer, Malene; Jensen, Jørgen Arendt
2001-01-01
and space. This paper presents a new estimator (STC-MLE), which incorporates the correlation property. It is an expansion of the maximum likelihood estimator (MLE) developed by Ferrara et al. With the MLE a cross-correlation analysis between consecutive RF-lines on complex form is carried out for a range...... of possible velocities. In the new estimator an additional similarity investigation for each evaluated velocity and the available velocity estimates in a temporal (between frames) and spatial (within frames) neighborhood is performed. An a priori probability density term in the distribution...... of the observations gives a probability measure of the correlation between the velocities. Both the MLE and the STC-MLE have been evaluated on simulated and in-vivo RF-data obtained from the carotid artery. Using the MLE 4.1% of the estimates deviate significantly from the true velocities, when the performance...
Estimating the state of large spatio-temporally chaotic systems
International Nuclear Information System (INIS)
Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.J.; Yorke, J.A.
2004-01-01
We consider the estimation of the state of a large spatio-temporally chaotic system from noisy observations and knowledge of a system model. Standard state estimation techniques using the Kalman filter approach are not computationally feasible for systems with very many effective degrees of freedom. We present and test a new technique (called a Local Ensemble Kalman Filter), generally applicable to large spatio-temporally chaotic systems for which correlations between system variables evaluated at different points become small at large separation between the points
Use of probabilistic methods for estimating failure probabilities and directing ISI-efforts
Energy Technology Data Exchange (ETDEWEB)
Nilsson, F; Brickstad, B [University of Uppsala, (Switzerland)
1988-12-31
Some general aspects of the role of Non Destructive Testing (NDT) efforts on the resulting probability of core damage is discussed. A simple model for the estimation of the pipe break probability due to IGSCC is discussed. It is partly based on analytical procedures, partly on service experience from the Swedish BWR program. Estimates of the break probabilities indicate that further studies are urgently needed. It is found that the uncertainties about the initial crack configuration are large contributors to the total uncertainty. Some effects of the inservice inspection are studied and it is found that the detection probabilities influence the failure probabilities. (authors).
Estimating deficit probabilities with price-responsive demand in contract-based electricity markets
International Nuclear Information System (INIS)
Galetovic, Alexander; Munoz, Cristian M.
2009-01-01
Studies that estimate deficit probabilities in hydrothermal systems have generally ignored the response of demand to changing prices, in the belief that such response is largely irrelevant. We show that ignoring the response of demand to prices can lead to substantial over or under estimation of the probability of an energy deficit. To make our point we present an estimation of deficit probabilities in Chile's Central Interconnected System between 2006 and 2010. This period is characterized by tight supply, fast consumption growth and rising electricity prices. When the response of demand to rising prices is acknowledged, forecasted deficit probabilities and marginal costs are shown to be substantially lower
Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models
Spitoni, C.; Verduijn, M.; Putter, H.
2012-01-01
In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional
Temporal validation for landsat-based volume estimation model
Renaldo J. Arroyo; Emily B. Schultz; Thomas G. Matney; David L. Evans; Zhaofei Fan
2015-01-01
Satellite imagery can potentially reduce the costs and time associated with ground-based forest inventories; however, for satellite imagery to provide reliable forest inventory data, it must produce consistent results from one time period to the next. The objective of this study was to temporally validate a Landsat-based volume estimation model in a four county study...
Estimating the probability that the Taser directly causes human ventricular fibrillation.
Sun, H; Haemmerich, D; Rahko, P S; Webster, J G
2010-04-01
This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.
Estimation of functional failure probability of passive systems based on subset simulation method
International Nuclear Information System (INIS)
Wang Dongqing; Wang Baosheng; Zhang Jianmin; Jiang Jing
2012-01-01
In order to solve the problem of multi-dimensional epistemic uncertainties and small functional failure probability of passive systems, an innovative reliability analysis algorithm called subset simulation based on Markov chain Monte Carlo was presented. The method is found on the idea that a small failure probability can be expressed as a product of larger conditional failure probabilities by introducing a proper choice of intermediate failure events. Markov chain Monte Carlo simulation was implemented to efficiently generate conditional samples for estimating the conditional failure probabilities. Taking the AP1000 passive residual heat removal system, for example, the uncertainties related to the model of a passive system and the numerical values of its input parameters were considered in this paper. And then the probability of functional failure was estimated with subset simulation method. The numerical results demonstrate that subset simulation method has the high computing efficiency and excellent computing accuracy compared with traditional probability analysis methods. (authors)
Estimating the Probability of Traditional Copying, Conditional on Answer-Copying Statistics.
Allen, Jeff; Ghattas, Andrew
2016-06-01
Statistics for detecting copying on multiple-choice tests produce p values measuring the probability of a value at least as large as that observed, under the null hypothesis of no copying. The posterior probability of copying is arguably more relevant than the p value, but cannot be derived from Bayes' theorem unless the population probability of copying and probability distribution of the answer-copying statistic under copying are known. In this article, the authors develop an estimator for the posterior probability of copying that is based on estimable quantities and can be used with any answer-copying statistic. The performance of the estimator is evaluated via simulation, and the authors demonstrate how to apply the formula using actual data. Potential uses, generalizability to other types of cheating, and limitations of the approach are discussed.
Arkhincheev, V E
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
Kruppa, Jochen; Liu, Yufeng; Biau, Gérard; Kohler, Michael; König, Inke R; Malley, James D; Ziegler, Andreas
2014-07-01
Probability estimation for binary and multicategory outcome using logistic and multinomial logistic regression has a long-standing tradition in biostatistics. However, biases may occur if the model is misspecified. In contrast, outcome probabilities for individuals can be estimated consistently with machine learning approaches, including k-nearest neighbors (k-NN), bagged nearest neighbors (b-NN), random forests (RF), and support vector machines (SVM). Because machine learning methods are rarely used by applied biostatisticians, the primary goal of this paper is to explain the concept of probability estimation with these methods and to summarize recent theoretical findings. Probability estimation in k-NN, b-NN, and RF can be embedded into the class of nonparametric regression learning machines; therefore, we start with the construction of nonparametric regression estimates and review results on consistency and rates of convergence. In SVMs, outcome probabilities for individuals are estimated consistently by repeatedly solving classification problems. For SVMs we review classification problem and then dichotomous probability estimation. Next we extend the algorithms for estimating probabilities using k-NN, b-NN, and RF to multicategory outcomes and discuss approaches for the multicategory probability estimation problem using SVM. In simulation studies for dichotomous and multicategory dependent variables we demonstrate the general validity of the machine learning methods and compare it with logistic regression. However, each method fails in at least one simulation scenario. We conclude with a discussion of the failures and give recommendations for selecting and tuning the methods. Applications to real data and example code are provided in a companion article (doi:10.1002/bimj.201300077). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes
2012-06-10
ESTIMATING BIRD/AIRCRAFT COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE...AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE RESEARCH PAPER Presented to the Faculty Department of Operational Sciences...COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES Brady J. Vaira, BS, MS Major, USAF Approved
Temporally stratified sampling programs for estimation of fish impingement
International Nuclear Information System (INIS)
Kumar, K.D.; Griffith, J.S.
1977-01-01
Impingement monitoring programs often expend valuable and limited resources and fail to provide a dependable estimate of either total annual impingement or those biological and physicochemical factors affecting impingement. In situations where initial monitoring has identified ''problem'' fish species and the periodicity of their impingement, intensive sampling during periods of high impingement will maximize information obtained. We use data gathered at two nuclear generating facilities in the southeastern United States to discuss techniques of designing such temporally stratified monitoring programs and their benefits and drawbacks. Of the possible temporal patterns in environmental factors within a calendar year, differences among seasons are most influential in the impingement of freshwater fishes in the Southeast. Data on the threadfin shad (Dorosoma petenense) and the role of seasonal temperature changes are utilized as an example to demonstrate ways of most efficiently and accurately estimating impingement of the species
Estimating spatio-temporal dynamics of size-structured populations
DEFF Research Database (Denmark)
Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste
2014-01-01
with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...
A procedure for estimation of pipe break probabilities due to IGSCC
International Nuclear Information System (INIS)
Bergman, M.; Brickstad, B.; Nilsson, F.
1998-06-01
A procedure has been developed for estimation of the failure probability of welds joints in nuclear piping susceptible to intergranular stress corrosion cracking. The procedure aims at a robust and rapid estimate of the failure probability for a specific weld with known stress state. Random properties are taken into account of the crack initiation rate, the initial crack length, the in-service inspection efficiency and the leak rate. A computer realization of the procedure has been developed for user friendly applications by design engineers. Some examples are considered to investigate the sensitivity of the failure probability to different input quantities. (au)
Rice yield estimation with multi-temporal Radarsat-2 data
Chen, Chi-Farn; Son, Nguyen-Thanh; Chen, Cheng-Ru
2015-04-01
Rice is the most important food crop in Taiwan. Monitoring rice crop yield is thus crucial for agronomic planners to formulate successful strategies to address national food security and rice grain export issues. However, there is a real challenge for this monitoring purpose because the size of rice fields in Taiwan was generally small and fragmented, and the cropping calendar was also different from region to region. Thus, satellite-based estimation of rice crop yield requires the data that have sufficient spatial and temporal resolutions. This study aimed to develop models to estimate rice crop yield from multi-temporal Radarsat-2 data (5 m resolution). Data processing were carried out for the first rice cropping season from February to July in 2014 in the western part of Taiwan, consisting of four main steps: (1) constructing time-series backscattering coefficient data, (2) spatiotemporal noise filtering of the time-series data, (3) establishment of crop yield models using the time-series backscattering coefficients and in-situ measured yield data, and (4) model validation using field data and government's yield statistics. The results indicated that backscattering behavior varied from region to region due to changes in cultural practices and cropping calendars. The highest correlation coefficient (R2 > 0.8) was obtained at the ripening period. The robustness of the established models was evaluated by comparisons between the estimated yields and in-situ measured yield data showed satisfactory results, with the root mean squared error (RMSE) smaller than 10%. Such results were reaffirmed by the correlation analysis between the estimated yields and government's rice yield statistics (R2 > 0.8). This study demonstrates advantages of using multi-temporal Radarsat-2 backscattering data for estimating rice crop yields in Taiwan prior to the harvesting period, and thus the methods were proposed for rice yield monitoring in other regions.
Unbiased multi-fidelity estimate of failure probability of a free plane jet
Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin
2017-11-01
Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.
Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.
Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng
2018-04-15
This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Comer, K.; Gaddy, C.D.; Seaver, D.A.; Stillwell, W.G.
1985-01-01
The US Nuclear Regulatory Commission and Sandia National Laboratories sponsored a project to evaluate psychological scaling techniques for use in generating estimates of human error probabilities. The project evaluated two techniques: direct numerical estimation and paired comparisons. Expert estimates were found to be consistent across and within judges. Convergent validity was good, in comparison to estimates in a handbook of human reliability. Predictive validity could not be established because of the lack of actual relative frequencies of error (which will be a difficulty inherent in validation of any procedure used to estimate HEPs). Application of expert estimates in probabilistic risk assessment and in human factors is discussed
International Nuclear Information System (INIS)
Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed
2016-01-01
In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.
Temporal Parameters Estimation for Wheelchair Propulsion Using Wearable Sensors
Directory of Open Access Journals (Sweden)
Manoela Ojeda
2014-01-01
Full Text Available Due to lower limb paralysis, individuals with spinal cord injury (SCI rely on their upper limbs for mobility. The prevalence of upper extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel. Mean absolute errors (MAE and mean absolute percentage of error (MAPE were calculated. Intraclass correlation coefficients and Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for monitoring temporal parameters of wheelchair propulsion.
High Spatio-Temporal Resolution Bathymetry Estimation and Morphology
Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.
2015-12-01
In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.
Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.
2016-06-28
This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged
Multifractals embedded in short time series: An unbiased estimation of probability moment
Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie
2016-12-01
An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.
Steam generator tubes rupture probability estimation - study of the axially cracked tube case
International Nuclear Information System (INIS)
Mavko, B.; Cizelj, L.; Roussel, G.
1992-01-01
The objective of the present study is to estimate the probability of a steam generator tube rupture due to the unstable propagation of axial through-wall cracks during a hypothetical accident. For this purpose the probabilistic fracture mechanics model was developed taking into account statistical distributions of influencing parameters. A numerical example considering a typical steam generator seriously affected by axial stress corrosion cracking in the roll transition area, is presented; it indicates the change of rupture probability with different assumptions focusing mostly on tubesheet reinforcing factor, crack propagation rate and crack detection probability. 8 refs., 4 figs., 4 tabs
Dopkins, Stephen; Varner, Kaitlin; Hoyer, Darin
2017-10-01
In word recognition semantic priming of test words increased the false-alarm rate and the mean of confidence ratings to lures. Such priming also increased the standard deviation of confidence ratings to lures and the slope of the z-ROC function, suggesting that the priming increased the standard deviation of the lure evidence distribution. The Unequal Variance Signal Detection (UVSD) model interpreted the priming as increasing the standard deviation of the lure evidence distribution. Without additional parameters the Dual Process Signal Detection (DPSD) model could only accommodate the results by fitting the data for related and unrelated primes separately, interpreting the priming, implausibly, as decreasing the probability of target recollection (DPSD). With an additional parameter, for the probability of false (lure) recollection the model could fit the data for related and unrelated primes together, interpreting the priming as increasing the probability of false recollection. These results suggest that DPSD estimates of target recollection probability will decrease with increases in the lure confidence/evidence standard deviation unless a parameter is included for false recollection. Unfortunately the size of a given lure confidence/evidence standard deviation relative to other possible lure confidence/evidence standard deviations is often unspecified by context. Hence the model often has no way of estimating false recollection probability and thereby correcting its estimates of target recollection probability.
BAYES-HEP: Bayesian belief networks for estimation of human error probability
International Nuclear Information System (INIS)
Karthick, M.; Senthil Kumar, C.; Paul, Robert T.
2017-01-01
Human errors contribute a significant portion of risk in safety critical applications and methods for estimation of human error probability have been a topic of research for over a decade. The scarce data available on human errors and large uncertainty involved in the prediction of human error probabilities make the task difficult. This paper presents a Bayesian belief network (BBN) model for human error probability estimation in safety critical functions of a nuclear power plant. The developed model using BBN would help to estimate HEP with limited human intervention. A step-by-step illustration of the application of the method and subsequent evaluation is provided with a relevant case study and the model is expected to provide useful insights into risk assessment studies
First Passage Probability Estimation of Wind Turbines by Markov Chain Monte Carlo
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.
2013-01-01
Markov Chain Monte Carlo simulation has received considerable attention within the past decade as reportedly one of the most powerful techniques for the first passage probability estimation of dynamic systems. A very popular method in this direction capable of estimating probability of rare events...... of the method by modifying the conditional sampler. In this paper, applicability of the original SS is compared to the recently introduced modifications of the method on a wind turbine model. The model incorporates a PID pitch controller which aims at keeping the rotational speed of the wind turbine rotor equal...... to its nominal value. Finally Monte Carlo simulations are performed which allow assessment of the accuracy of the first passage probability estimation by the SS methods....
The estimated lifetime probability of acquiring human papillomavirus in the United States.
Chesson, Harrell W; Dunne, Eileen F; Hariri, Susan; Markowitz, Lauri E
2014-11-01
Estimates of the lifetime probability of acquiring human papillomavirus (HPV) can help to quantify HPV incidence, illustrate how common HPV infection is, and highlight the importance of HPV vaccination. We developed a simple model, based primarily on the distribution of lifetime numbers of sex partners across the population and the per-partnership probability of acquiring HPV, to estimate the lifetime probability of acquiring HPV in the United States in the time frame before HPV vaccine availability. We estimated the average lifetime probability of acquiring HPV among those with at least 1 opposite sex partner to be 84.6% (range, 53.6%-95.0%) for women and 91.3% (range, 69.5%-97.7%) for men. Under base case assumptions, more than 80% of women and men acquire HPV by age 45 years. Our results are consistent with estimates in the existing literature suggesting a high lifetime probability of HPV acquisition and are supported by cohort studies showing high cumulative HPV incidence over a relatively short period, such as 3 to 5 years.
DEFF Research Database (Denmark)
Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria
2012-01-01
We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....
Time of Arrival Estimation in Probability-Controlled Generalized CDMA Systems
Directory of Open Access Journals (Sweden)
Hagit Messer
2007-11-01
Full Text Available In recent years, more and more wireless communications systems are required to provide also a positioning measurement. In code division multiple access (CDMA communication systems, the positioning accuracy is significantly degraded by the multiple access interference (MAI caused by other users in the system. This MAI is commonly managed by a power control mechanism, and yet, MAI has a major effect on positioning accuracy. Probability control is a recently introduced interference management mechanism. In this mechanism, a user with excess power chooses not to transmit some of its symbols. The information in the nontransmitted symbols is recovered by an error-correcting code (ECC, while all other users receive a more reliable data during these quiet periods. Previous research had shown that the implementation of a probability control mechanism can significantly reduce the MAI. In this paper, we show that probability control also improves the positioning accuracy. We focus on time-of-arrival (TOA based positioning systems. We analyze the TOA estimation performance in a generalized CDMA system, in which the probability control mechanism is employed, where the transmitted signal is noncontinuous with a symbol transmission probability smaller than 1. The accuracy of the TOA estimation is determined using appropriate modifications of the Cramer-Rao bound on the delay estimation. Keeping the average transmission power constant, we show that the TOA accuracy of each user does not depend on its transmission probability, while being a nondecreasing function of the transmission probability of any other user. Therefore, a generalized, noncontinuous CDMA system with a probability control mechanism can always achieve better positioning performance, for all users in the network, than a conventional, continuous, CDMA system.
A framework to estimate probability of diagnosis error in NPP advanced MCR
International Nuclear Information System (INIS)
Kim, Ar Ryum; Kim, Jong Hyun; Jang, Inseok; Seong, Poong Hyun
2018-01-01
Highlights: •As new type of MCR has been installed in NPPs, the work environment is considerably changed. •A new framework to estimate operators’ diagnosis error probabilities should be proposed. •Diagnosis error data were extracted from the full-scope simulator of the advanced MCR. •Using Bayesian inference, a TRC model was updated for use in advanced MCR. -- Abstract: Recently, a new type of main control room (MCR) has been adopted in nuclear power plants (NPPs). The new MCR, known as the advanced MCR, consists of digitalized human-system interfaces (HSIs), computer-based procedures (CPS), and soft controls while the conventional MCR includes many alarm tiles, analog indicators, hard-wired control devices, and paper-based procedures. These changes significantly affect the generic activities of the MCR operators, in relation to diagnostic activities. The aim of this paper is to suggest a framework to estimate the probabilities of diagnosis errors in the advanced MCR by updating a time reliability correlation (TRC) model. Using Bayesian inference, the TRC model was updated with the probabilities of diagnosis errors. Here, the diagnosis error data were collected from a full-scope simulator of the advanced MCR. To do this, diagnosis errors were determined based on an information processing model and their probabilities were calculated. However, these calculated probabilities of diagnosis errors were largely affected by context factors such as procedures, HSI, training, and others, known as PSFs (Performance Shaping Factors). In order to obtain the nominal diagnosis error probabilities, the weightings of PSFs were also evaluated. Then, with the nominal diagnosis error probabilities, the TRC model was updated. This led to the proposal of a framework to estimate the nominal probabilities of diagnosis errors in the advanced MCR.
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
Directory of Open Access Journals (Sweden)
Michael F Sloma
2017-11-01
Full Text Available Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
Sloma, Michael F; Mathews, David H
2017-11-01
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Estimation of component failure probability from masked binomial system testing data
International Nuclear Information System (INIS)
Tan Zhibin
2005-01-01
The component failure probability estimates from analysis of binomial system testing data are very useful because they reflect the operational failure probability of components in the field which is similar to the test environment. In practice, this type of analysis is often confounded by the problem of data masking: the status of tested components is unknown. Methods in considering this type of uncertainty are usually computationally intensive and not practical to solve the problem for complex systems. In this paper, we consider masked binomial system testing data and develop a probabilistic model to efficiently estimate component failure probabilities. In the model, all system tests are classified into test categories based on component coverage. Component coverage of test categories is modeled by a bipartite graph. Test category failure probabilities conditional on the status of covered components are defined. An EM algorithm to estimate component failure probabilities is developed based on a simple but powerful concept: equivalent failures and tests. By simulation we not only demonstrate the convergence and accuracy of the algorithm but also show that the probabilistic model is capable of analyzing systems in series, parallel and any other user defined structures. A case study illustrates an application in test case prioritization
Knock probability estimation through an in-cylinder temperature model with exogenous noise
Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.
2018-01-01
This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.
A method for estimating failure rates for low probability events arising in PSA
International Nuclear Information System (INIS)
Thorne, M.C.; Williams, M.M.R.
1995-01-01
The authors develop a method for predicting failure rates and failure probabilities per event when, over a given test period or number of demands, no failures have occurred. A Bayesian approach is adopted to calculate a posterior probability distribution for the failure rate or failure probability per event subsequent to the test period. This posterior is then used to estimate effective failure rates or probabilities over a subsequent period of time or number of demands. In special circumstances, the authors results reduce to the well-known rules of thumb, viz: 1/N and 1/T, where N is the number of demands during the test period for no failures and T is the test period for no failures. However, the authors are able to give strict conditions on the validity of these rules of thumb and to improve on them when necessary
International Nuclear Information System (INIS)
Johnson, D.P.; Toomay, T.L.; Davis, C.S.
1979-02-01
An inspection uncertainty analysis of published PVRC Specimen 201 data is reported to obtain an estimate of the probability of recording an indication as a function of imperfection height for ASME Section XI Code ultrasonic inspections of the nuclear reactor vessel plate seams and to demonstrate the advantages of inspection uncertainty analysis over conventional detection/nondetection counting analysis. This analysis found the probability of recording a significant defect with an ASME Section XI Code ultrasonic inspection to be very high, if such a defect should exist in the plate seams of a nuclear reactor vessel. For a one-inch high crack, for example, this analysis gives a best estimate recording probability of .985 and a 90% lower confidence bound recording probabilty of .937. It is also shown that inspection uncertainty analysis gives more accurate estimates and gives estimates over a much greater flaw size range than is possible with conventional analysis. There is reason to believe that the estimation procedure used is conservative, the estimation is based on data generated several years ago, on very small defects, in an environment that is different from the actual in-service inspection environment
International Nuclear Information System (INIS)
Wang Baosheng; Wang Dongqing; Zhang Jianmin; Jiang Jing
2012-01-01
In order to estimate the functional failure probability of passive systems, an innovative adaptive importance sampling methodology is presented. In the proposed methodology, information of variables is extracted with some pre-sampling of points in the failure region. An important sampling density is then constructed from the sample distribution in the failure region. Taking the AP1000 passive residual heat removal system as an example, the uncertainties related to the model of a passive system and the numerical values of its input parameters are considered in this paper. And then the probability of functional failure is estimated with the combination of the response surface method and adaptive importance sampling method. The numerical results demonstrate the high computed efficiency and excellent computed accuracy of the methodology compared with traditional probability analysis methods. (authors)
Mediators of the Availability Heuristic in Probability Estimates of Future Events.
Levi, Ariel S.; Pryor, John B.
Individuals often estimate the probability of future events by the ease with which they can recall or cognitively construct relevant instances. Previous research has not precisely identified the cognitive processes mediating this "availability heuristic." Two potential mediators (imagery of the event, perceived reasons or causes for the…
Estimating the Probability of a Rare Event Over a Finite Time Horizon
de Boer, Pieter-Tjerk; L'Ecuyer, Pierre; Rubino, Gerardo; Tuffin, Bruno
2007-01-01
We study an approximation for the zero-variance change of measure to estimate the probability of a rare event in a continuous-time Markov chain. The rare event occurs when the chain reaches a given set of states before some fixed time limit. The jump rates of the chain are expressed as functions of
Estimating success probability of a rugby goal kick and developing a ...
African Journals Online (AJOL)
The objective of this study was firstly to derive a formula to estimate the success probability of a particular rugby goal kick and, secondly to derive a goal kicker rating measure that could be used to rank rugby union goal kickers. Various factors that could influence the success of a particular goal kick were considered.
International Nuclear Information System (INIS)
Zio, E.; Pedroni, N.
2010-01-01
The quantitative reliability assessment of a thermal-hydraulic (T-H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T-H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T-H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure. In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an 'important direction' pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling. Two issues are still open with respect to LS: first, the method relies on the determination of the 'important direction', which requires additional runs of the T-H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models. The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T-H code to reduce the computational cost associated to the
International Nuclear Information System (INIS)
Hwang, Meejeong; Kang, Dae Il
2011-01-01
Highlights: ► This paper presents a method to estimate the common cause failure probabilities on the common cause component group with mixed testing schemes. ► The CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing. ► There are many CCCGs with specific mixed testing schemes in real plant operation. ► Therefore, a general formula which is applicable to both alternate periodic testing scheme and train level mixed testing scheme was derived. - Abstract: This paper presents a method to estimate the common cause failure (CCF) probabilities on the common cause component group (CCCG) with mixed testing schemes such as the train level mixed testing scheme or the alternate periodic testing scheme. In the train level mixed testing scheme, the components are tested in a non-staggered way within the same train, but the components are tested in a staggered way between the trains. The alternate periodic testing scheme indicates that all components in the same CCCG are tested in a non-staggered way during the planned maintenance period, but they are tested in a staggered way during normal plant operation. Since the CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing, CCF estimators have two kinds of formulas in accordance with the testing schemes. Thus, there are general formulas to estimate the CCF probability on the staggered testing scheme and non-staggered testing scheme. However, in real plant operation, there are many CCCGs with specific mixed testing schemes. Recently, Barros () and Kang () proposed a CCF factor estimation method to reflect the alternate periodic testing scheme and the train level mixed testing scheme. In this paper, a general formula which is applicable to both the alternate periodic testing scheme and the train level mixed testing scheme was derived.
International Nuclear Information System (INIS)
Seaver, D.A.; Stillwell, W.G.
1983-03-01
This report describes and evaluates several procedures for using expert judgment to estimate human-error probabilities (HEPs) in nuclear power plant operations. These HEPs are currently needed for several purposes, particularly for probabilistic risk assessments. Data do not exist for estimating these HEPs, so expert judgment can provide these estimates in a timely manner. Five judgmental procedures are described here: paired comparisons, ranking and rating, direct numerical estimation, indirect numerical estimation and multiattribute utility measurement. These procedures are evaluated in terms of several criteria: quality of judgments, difficulty of data collection, empirical support, acceptability, theoretical justification, and data processing. Situational constraints such as the number of experts available, the number of HEPs to be estimated, the time available, the location of the experts, and the resources available are discussed in regard to their implications for selecting a procedure for use
A novel approach to estimate the eruptive potential and probability in open conduit volcanoes.
De Gregorio, Sofia; Camarda, Marco
2016-07-26
In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
Langtimm, C.A.; O'Shea, T.J.; Pradel, R.; Beck, C.A.
1998-01-01
The population dynamics of large, long-lived mammals are particularly sensitive to changes in adult survival. Understanding factors affecting survival patterns is therefore critical for developing and testing theories of population dynamics and for developing management strategies aimed at preventing declines or extinction in such taxa. Few studies have used modern analytical approaches for analyzing variation and testing hypotheses about survival probabilities in large mammals. This paper reports a detailed analysis of annual adult survival in the Florida manatee (Trichechus manatus latirostris), an endangered marine mammal, based on a mark-recapture approach. Natural and boat-inflicted scars distinctively 'marked' individual manatees that were cataloged in a computer-based photographic system. Photo-documented resightings provided 'recaptures.' Using open population models, annual adult-survival probabilities were estimated for manatees observed in winter in three areas of Florida: Blue Spring, Crystal River, and the Atlantic coast. After using goodness-of-fit tests in Program RELEASE to search for violations of the assumptions of mark-recapture analysis, survival and sighting probabilities were modeled under several different biological hypotheses with Program SURGE. Estimates of mean annual probability of sighting varied from 0.948 for Blue Spring to 0.737 for Crystal River and 0.507 for the Atlantic coast. At Crystal River and Blue Spring, annual survival probabilities were best estimated as constant over the study period at 0.96 (95% CI = 0.951-0.975 and 0.900-0.985, respectively). On the Atlantic coast, where manatees are impacted more by human activities, annual survival probabilities had a significantly lower mean estimate of 0.91 (95% CI = 0.887-0.926) and varied unpredictably over the study period. For each study area, survival did not differ between sexes and was independent of relative adult age. The high constant adult-survival probabilities estimated
Energy Technology Data Exchange (ETDEWEB)
Kim, Myungsu; Lim, Heoksoon; Na, Janghwan; Chi, Moongoo [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon (Korea, Republic of)
2015-05-15
It is focusing on development of a new designing process which can be compatible to international standards such as IAEA1 and NRC2 suggest. Evaluation for the design effectiveness was found as one of the areas to improve. If a design doesn't meet a certain level of effectiveness, it should be re-designed accordingly. The effectiveness can be calculated with combination of probability of Interruption and probability of neutralization. System Analysis of Vulnerability to Intrusion (SAVI) has been developed by Sandia National Laboratories for that purpose. With SNL's timely detection methodology, SAVI has been used by U.S. nuclear utilities to meet the NRC requirements for PPS design effectiveness evaluation. For the SAVI calculation, probability of neutralization is a vital input element that must be supplied. This paper describes the elements to consider for neutralization, probability estimation methodology, and the estimation for APR1400 PPS design effectiveness evaluation process. Markov chain and Monte Carlo simulation are often used for simple numerical calculation to estimate P{sub N}. The results from both methods are not always identical even for the same situation. P{sub N} values for APR1400 evaluation were calculated based on Markov chain method and modified to be applicable for guards/adversaries ratio based analysis.
Michael, Andrew J.
2012-01-01
Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.
Directory of Open Access Journals (Sweden)
Jiang Ge
2017-01-01
Full Text Available System degradation was usually caused by multiple-parameter degradation. The assessment result of system reliability by universal generating function was low accurate when compared with the Monte Carlo simulation. And the probability density function of the system output performance cannot be got. So the reliability assessment method based on the probability density evolution with multi-parameter was presented for complexly degraded system. Firstly, the system output function was founded according to the transitive relation between component parameters and the system output performance. Then, the probability density evolution equation based on the probability conservation principle and the system output function was established. Furthermore, probability distribution characteristics of the system output performance was obtained by solving differential equation. Finally, the reliability of the degraded system was estimated. This method did not need to discrete the performance parameters and can establish continuous probability density function of the system output performance with high calculation efficiency and low cost. Numerical example shows that this method is applicable to evaluate the reliability of multi-parameter degraded system.
A method for the estimation of the probability of damage due to earthquakes
International Nuclear Information System (INIS)
Alderson, M.A.H.G.
1979-07-01
The available information on seismicity within the United Kingdom has been combined with building damage data from the United States to produce a method of estimating the probability of damage to structures due to the occurrence of earthquakes. The analysis has been based on the use of site intensity as the major damage producing parameter. Data for structural, pipework and equipment items have been assumed and the overall probability of damage calculated as a function of the design level. Due account is taken of the uncertainties of the seismic data. (author)
Directory of Open Access Journals (Sweden)
Martinásková Magdalena
2017-12-01
Full Text Available The article examines the use of Asymptotic Sampling (AS for the estimation of failure probability. The AS algorithm requires samples of multidimensional Gaussian random vectors, which may be obtained by many alternative means that influence the performance of the AS method. Several reliability problems (test functions have been selected in order to test AS with various sampling schemes: (i Monte Carlo designs; (ii LHS designs optimized using the Periodic Audze-Eglājs (PAE criterion; (iii designs prepared using Sobol’ sequences. All results are compared with the exact failure probability value.
A fast algorithm for estimating transmission probabilities in QTL detection designs with dense maps
Directory of Open Access Journals (Sweden)
Gilbert Hélène
2009-11-01
Full Text Available Abstract Background In the case of an autosomal locus, four transmission events from the parents to progeny are possible, specified by the grand parental origin of the alleles inherited by this individual. Computing the probabilities of these transmission events is essential to perform QTL detection methods. Results A fast algorithm for the estimation of these probabilities conditional to parental phases has been developed. It is adapted to classical QTL detection designs applied to outbred populations, in particular to designs composed of half and/or full sib families. It assumes the absence of interference. Conclusion The theory is fully developed and an example is given.
Demonstration Integrated Knowledge-Based System for Estimating Human Error Probabilities
Energy Technology Data Exchange (ETDEWEB)
Auflick, Jack L.
1999-04-21
Human Reliability Analysis (HRA) is currently comprised of at least 40 different methods that are used to analyze, predict, and evaluate human performance in probabilistic terms. Systematic HRAs allow analysts to examine human-machine relationships, identify error-likely situations, and provide estimates of relative frequencies for human errors on critical tasks, highlighting the most beneficial areas for system improvements. Unfortunately, each of HRA's methods has a different philosophical approach, thereby producing estimates of human error probabilities (HEPs) that area better or worse match to the error likely situation of interest. Poor selection of methodology, or the improper application of techniques can produce invalid HEP estimates, where that erroneous estimation of potential human failure could have potentially severe consequences in terms of the estimated occurrence of injury, death, and/or property damage.
Estimation of submarine mass failure probability from a sequence of deposits with age dates
Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.
2013-01-01
The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.
Annotated corpus and the empirical evaluation of probability estimates of grammatical forms
Directory of Open Access Journals (Sweden)
Ševa Nada
2003-01-01
Full Text Available The aim of the present study is to demonstrate the usage of an annotated corpus in the field of experimental psycholinguistics. Specifically, we demonstrate how the manually annotated Corpus of Serbian Language (Kostić, Đ. 2001 can be used for probability estimates of grammatical forms, which allow the control of independent variables in psycholinguistic experiments. We address the issue of processing Serbian inflected forms within two subparadigms of feminine nouns. In regression analysis, almost all processing variability of inflected forms has been accounted for by the amount of information (i.e. bits carried by the presented forms. In spite of the fact that probability distributions of inflected forms for the two paradigms differ, it was shown that the best prediction of processing variability is obtained by the probabilities derived from the predominant subparadigm which encompasses about 80% of feminine nouns. The relevance of annotated corpora in experimental psycholinguistics is discussed more in detail .
Estimating migratory connectivity of birds when re-encounter probabilities are heterogeneous
Cohen, Emily B.; Hostelter, Jeffrey A.; Royle, J. Andrew; Marra, Peter P.
2014-01-01
Understanding the biology and conducting effective conservation of migratory species requires an understanding of migratory connectivity – the geographic linkages of populations between stages of the annual cycle. Unfortunately, for most species, we are lacking such information. The North American Bird Banding Laboratory (BBL) houses an extensive database of marking, recaptures and recoveries, and such data could provide migratory connectivity information for many species. To date, however, few species have been analyzed for migratory connectivity largely because heterogeneous re-encounter probabilities make interpretation problematic. We accounted for regional variation in re-encounter probabilities by borrowing information across species and by using effort covariates on recapture and recovery probabilities in a multistate capture–recapture and recovery model. The effort covariates were derived from recaptures and recoveries of species within the same regions. We estimated the migratory connectivity for three tern species breeding in North America and over-wintering in the tropics, common (Sterna hirundo), roseate (Sterna dougallii), and Caspian terns (Hydroprogne caspia). For western breeding terns, model-derived estimates of migratory connectivity differed considerably from those derived directly from the proportions of re-encounters. Conversely, for eastern breeding terns, estimates were merely refined by the inclusion of re-encounter probabilities. In general, eastern breeding terns were strongly connected to eastern South America, and western breeding terns were strongly linked to the more western parts of the nonbreeding range under both models. Through simulation, we found this approach is likely useful for many species in the BBL database, although precision improved with higher re-encounter probabilities and stronger migratory connectivity. We describe an approach to deal with the inherent biases in BBL banding and re-encounter data to demonstrate
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Directory of Open Access Journals (Sweden)
Tomoaki Chiba
Full Text Available In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
International Nuclear Information System (INIS)
Morio, Jerome
2011-01-01
Importance sampling (IS) is a useful simulation technique to estimate critical probability with a better accuracy than Monte Carlo methods. It consists in generating random weighted samples from an auxiliary distribution rather than the distribution of interest. The crucial part of this algorithm is the choice of an efficient auxiliary PDF that has to be able to simulate more rare random events. The optimisation of this auxiliary distribution is often in practice very difficult. In this article, we propose to approach the IS optimal auxiliary density with non-parametric adaptive importance sampling (NAIS). We apply this technique for the probability estimation of spatial launcher impact position since it has currently become a more and more important issue in the field of aeronautics.
Directory of Open Access Journals (Sweden)
Isabel C. Pérez Hoyos
2016-04-01
Full Text Available Groundwater Dependent Ecosystems (GDEs are increasingly threatened by humans’ rising demand for water resources. Consequently, it is imperative to identify the location of GDEs to protect them. This paper develops a methodology to identify the probability of an ecosystem to be groundwater dependent. Probabilities are obtained by modeling the relationship between the known locations of GDEs and factors influencing groundwater dependence, namely water table depth and climatic aridity index. Probabilities are derived for the state of Nevada, USA, using modeled water table depth and aridity index values obtained from the Global Aridity database. The model selected results from the performance comparison of classification trees (CT and random forests (RF. Based on a threshold-independent accuracy measure, RF has a better ability to generate probability estimates. Considering a threshold that minimizes the misclassification rate for each model, RF also proves to be more accurate. Regarding training accuracy, performance measures such as accuracy, sensitivity, and specificity are higher for RF. For the test set, higher values of accuracy and kappa for CT highlight the fact that these measures are greatly affected by low prevalence. As shown for RF, the choice of the cutoff probability value has important consequences on model accuracy and the overall proportion of locations where GDEs are found.
Directory of Open Access Journals (Sweden)
P. M. A. Diaz
2016-06-01
Full Text Available This paper presents a method to estimate the temporal interaction in a Conditional Random Field (CRF based approach for crop recognition from multitemporal remote sensing image sequences. This approach models the phenology of different crop types as a CRF. Interaction potentials are assumed to depend only on the class labels of an image site at two consecutive epochs. In the proposed method, the estimation of temporal interaction parameters is considered as an optimization problem, whose goal is to find the transition matrix that maximizes the CRF performance, upon a set of labelled data. The objective functions underlying the optimization procedure can be formulated in terms of different accuracy metrics, such as overall and average class accuracy per crop or phenological stages. To validate the proposed approach, experiments were carried out upon a dataset consisting of 12 co-registered LANDSAT images of a region in southeast of Brazil. Pattern Search was used as the optimization algorithm. The experimental results demonstrated that the proposed method was able to substantially outperform estimates related to joint or conditional class transition probabilities, which rely on training samples.
Estimating the Probabilities of Default for Callable Bonds: A Duffie-Singleton Approach
David Wang
2005-01-01
This paper presents a model for estimating the default risks implicit in the prices of callable corporate bonds. The model considers three essential ingredients in the pricing of callable corporate bonds: stochastic interest rate, default risk, and call provision. The stochastic interest rate is modeled as a square-root diffusion process. The default risk is modeled as a constant spread, with the magnitude of this spread impacting the probability of a Poisson process governing the arrival of ...
Moser , Gabriele; Zerubia , Josiane; Serpico , Sebastiano B.
2006-01-01
International audience; In remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. This paper deals with the problem of probability density function (pdf) estimation in the context of synthetic aperture radar (SAR) amplitude data analysis. Several theoretical and heuristic models for the pdfs of SAR data have been proposed in the literature, which have been proved to be effective for different land-cov...
The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast
Directory of Open Access Journals (Sweden)
Tomáš Vaněk
2017-01-01
Full Text Available In this paper we propose a straightforward, flexible and intuitive computational framework for the multi-period probability of default estimation incorporating macroeconomic forecasts. The concept is based on Markov models, the estimated economic adjustment coefficient and the official economic forecasts of the Czech National Bank. The economic forecasts are taken into account in a separate step to better distinguish between idiosyncratic and systemic risk. This approach is also attractive from the interpretational point of view. The proposed framework can be used especially when calculating lifetime expected credit losses under IFRS 9.
Salama, Paul
2008-02-01
Multi-photon microscopy has provided biologists with unprecedented opportunities for high resolution imaging deep into tissues. Unfortunately deep tissue multi-photon microscopy images are in general noisy since they are acquired at low photon counts. To aid in the analysis and segmentation of such images it is sometimes necessary to initially enhance the acquired images. One way to enhance an image is to find the maximum a posteriori (MAP) estimate of each pixel comprising an image, which is achieved by finding a constrained least squares estimate of the unknown distribution. In arriving at the distribution it is assumed that the noise is Poisson distributed, the true but unknown pixel values assume a probability mass function over a finite set of non-negative values, and since the observed data also assumes finite values because of low photon counts, the sum of the probabilities of the observed pixel values (obtained from the histogram of the acquired pixel values) is less than one. Experimental results demonstrate that it is possible to closely estimate the unknown probability mass function with these assumptions.
Estimation of the common cause failure probabilities of the components under mixed testing schemes
International Nuclear Information System (INIS)
Kang, Dae Il; Hwang, Mee Jeong; Han, Sang Hoon
2009-01-01
For the case where trains or channels of standby safety systems consisting of more than two redundant components are tested in a staggered manner, the standby safety components within a train can be tested simultaneously or consecutively. In this case, mixed testing schemes, staggered and non-staggered testing schemes, are used for testing the components. Approximate formulas, based on the basic parameter method, were developed for the estimation of the common cause failure (CCF) probabilities of the components under mixed testing schemes. The developed formulas were applied to the four redundant check valves of the auxiliary feed water system as a demonstration study for their appropriateness. For a comparison, we estimated the CCF probabilities of the four redundant check valves for the mixed, staggered, and non-staggered testing schemes. The CCF probabilities of the four redundant check valves for the mixed testing schemes were estimated to be higher than those for the staggered testing scheme, and lower than those for the non-staggered testing scheme.
Estimation of probability of failure for damage-tolerant aerospace structures
Halbert, Keith
The majority of aircraft structures are designed to be damage-tolerant such that safe operation can continue in the presence of minor damage. It is necessary to schedule inspections so that minor damage can be found and repaired. It is generally not possible to perform structural inspections prior to every flight. The scheduling is traditionally accomplished through a deterministic set of methods referred to as Damage Tolerance Analysis (DTA). DTA has proven to produce safe aircraft but does not provide estimates of the probability of failure of future flights or the probability of repair of future inspections. Without these estimates maintenance costs cannot be accurately predicted. Also, estimation of failure probabilities is now a regulatory requirement for some aircraft. The set of methods concerned with the probabilistic formulation of this problem are collectively referred to as Probabilistic Damage Tolerance Analysis (PDTA). The goal of PDTA is to control the failure probability while holding maintenance costs to a reasonable level. This work focuses specifically on PDTA for fatigue cracking of metallic aircraft structures. The growth of a crack (or cracks) must be modeled using all available data and engineering knowledge. The length of a crack can be assessed only indirectly through evidence such as non-destructive inspection results, failures or lack of failures, and the observed severity of usage of the structure. The current set of industry PDTA tools are lacking in several ways: they may in some cases yield poor estimates of failure probabilities, they cannot realistically represent the variety of possible failure and maintenance scenarios, and they do not allow for model updates which incorporate observed evidence. A PDTA modeling methodology must be flexible enough to estimate accurately the failure and repair probabilities under a variety of maintenance scenarios, and be capable of incorporating observed evidence as it becomes available. This
On estimating probability of presence from use-availability or presence-background data.
Phillips, Steven J; Elith, Jane
2013-06-01
A fundamental ecological modeling task is to estimate the probability that a species is present in (or uses) a site, conditional on environmental variables. For many species, available data consist of "presence" data (locations where the species [or evidence of it] has been observed), together with "background" data, a random sample of available environmental conditions. Recently published papers disagree on whether probability of presence is identifiable from such presence-background data alone. This paper aims to resolve the disagreement, demonstrating that additional information is required. We defined seven simulated species representing various simple shapes of response to environmental variables (constant, linear, convex, unimodal, S-shaped) and ran five logistic model-fitting methods using 1000 presence samples and 10 000 background samples; the simulations were repeated 100 times. The experiment revealed a stark contrast between two groups of methods: those based on a strong assumption that species' true probability of presence exactly matches a given parametric form had highly variable predictions and much larger RMS error than methods that take population prevalence (the fraction of sites in which the species is present) as an additional parameter. For six species, the former group grossly under- or overestimated probability of presence. The cause was not model structure or choice of link function, because all methods were logistic with linear and, where necessary, quadratic terms. Rather, the experiment demonstrates that an estimate of prevalence is not just helpful, but is necessary (except in special cases) for identifying probability of presence. We therefore advise against use of methods that rely on the strong assumption, due to Lele and Keim (recently advocated by Royle et al.) and Lancaster and Imbens. The methods are fragile, and their strong assumption is unlikely to be true in practice. We emphasize, however, that we are not arguing against
Estimating the temporal distribution of exposure-related cancers
International Nuclear Information System (INIS)
Carter, R.L.; Sposto, R.; Preston, D.L.
1993-09-01
The temporal distribution of exposure-related cancers is relevant to the study of carcinogenic mechanisms. Statistical methods for extracting pertinent information from time-to-tumor data, however, are not well developed. Separation of incidence from 'latency' and the contamination of background cases are two problems. In this paper, we present methods for estimating both the conditional distribution given exposure-related cancers observed during the study period and the unconditional distribution. The methods adjust for confounding influences of background cases and the relationship between time to tumor and incidence. Two alternative methods are proposed. The first is based on a structured, theoretically derived model and produces direct inferences concerning the distribution of interest but often requires more-specialized software. The second relies on conventional modeling of incidence and is implemented through readily available, easily used computer software. Inferences concerning the effects of radiation dose and other covariates, however, are not always obtainable directly. We present three examples to illustrate the use of these two methods and suggest criteria for choosing between them. The first approach was used, with a log-logistic specification of the distribution of interest, to analyze times to bone sarcoma among a group of German patients injected with 224 Ra. Similarly, a log-logistic specification was used in the analysis of time to chronic myelogenous leukemias among male atomic-bomb survivors. We used the alternative approach, involving conventional modeling, to estimate the conditional distribution of exposure-related acute myelogenous leukemias among male atomic-bomb survivors, given occurrence between 1 October 1950 and 31 December 1985. All analyses were performed using Poisson regression methods for analyzing grouped survival data. (J.P.N.)
International Nuclear Information System (INIS)
Mickael, M.; Gardner, R.P.; Verghese, K.
1988-01-01
An improved method for calculating the total probability of particle scattering within the solid angle subtended by finite detectors is developed, presented, and tested. The limiting polar and azimuthal angles subtended by the detector are measured from the direction that most simplifies their calculation rather than from the incident particle direction. A transformation of the particle scattering probability distribution function (pdf) is made to match the transformation of the direction from which the limiting angles are measured. The particle scattering probability to the detector is estimated by evaluating the integral of the transformed pdf over the range of the limiting angles measured from the preferred direction. A general formula for transforming the particle scattering pdf is derived from basic principles and applied to four important scattering pdf's; namely, isotropic scattering in the Lab system, isotropic neutron scattering in the center-of-mass system, thermal neutron scattering by the free gas model, and gamma-ray Klein-Nishina scattering. Some approximations have been made to these pdf's to enable analytical evaluations of the final integrals. These approximations are shown to be valid over a wide range of energies and for most elements. The particle scattering probability to spherical, planar circular, and right circular cylindrical detectors has been calculated using the new and previously reported direct approach. Results indicate that the new approach is valid and is computationally faster by orders of magnitude
Evaluation and comparison of estimation methods for failure rates and probabilities
Energy Technology Data Exchange (ETDEWEB)
Vaurio, Jussi K. [Fortum Power and Heat Oy, P.O. Box 23, 07901 Loviisa (Finland)]. E-mail: jussi.vaurio@fortum.com; Jaenkaelae, Kalle E. [Fortum Nuclear Services, P.O. Box 10, 00048 Fortum (Finland)
2006-02-01
An updated parametric robust empirical Bayes (PREB) estimation methodology is presented as an alternative to several two-stage Bayesian methods used to assimilate failure data from multiple units or plants. PREB is based on prior-moment matching and avoids multi-dimensional numerical integrations. The PREB method is presented for failure-truncated and time-truncated data. Erlangian and Poisson likelihoods with gamma prior are used for failure rate estimation, and Binomial data with beta prior are used for failure probability per demand estimation. Combined models and assessment uncertainties are accounted for. One objective is to compare several methods with numerical examples and show that PREB works as well if not better than the alternative more complex methods, especially in demanding problems of small samples, identical data and zero failures. False claims and misconceptions are straightened out, and practical applications in risk studies are presented.
Verification of “Channel-Probability Model” of Grain Yield Estimation
Directory of Open Access Journals (Sweden)
ZHENG Hong-yan
2016-07-01
Full Text Available The "channel-probability model" of grain yield estimation was verified and discussed systematically by using the grain production data from 1949 to 2014 in 16 typical counties, and 6 typical districts, and 31 provinces of China. The results showed as follows:(1Due to the geographical spatial scale was large enough, different climate zones and different meteorological conditions could compensated, and grain yield estimation error was small in the scale of nation. Therefore, it was not necessary to modify the grain yield estimation error by mirco-trend and the climate year types in the scale of nation. However, the grain yield estimation in the scale of province was located at the same of a climate zone,the scale was small, so the impact of the meteorological conditions on grain yield was less complementary than the scale of nation. While the spatial scale of districts and counties was smaller, accordingly the compensation of the impact of the meteorological conditions on grain yield was least. Therefore, it was necessary to use mrico-trend amendment and the climate year types amendment to modify the grain yield estimation in districts and counties.(2Mirco-trend modification had two formulas, generally, when the error of grain yield estimation was less than 10%, it could be modified by Y×(1-K; while the error of grain yield estimation was more than 10%, it could be modified by Y/(1+K.(3Generally, the grain estimation had 5 grades, and some had 7 grades because of large error fluctuation. The parameters modified of super-high yield year and super-low yield year must be depended on the real-time crop growth and the meteorological condition. (4By plenty of demonstration analysis, it was proved that the theory and method of "channel-probability model" was scientific and practical. In order to improve the accuracy of grain yield estimation, the parameters could be modified with micro-trend amendment and the climate year types amendment. If the
Application of the Unbounded Probability Distribution of the Johnson System for Floods Estimation
Directory of Open Access Journals (Sweden)
Campos-Aranda Daniel Francisco
2015-09-01
Full Text Available Floods designs constitute a key to estimate the sizing of new water works and to review the hydrological security of existing ones. The most reliable method for estimating their magnitudes associated with certain return periods is to fit a probabilistic model to available records of maximum annual flows. Since such model is at first unknown, several models need to be tested in order to select the most appropriate one according to an arbitrary statistical index, commonly the standard error of fit. Several probability distributions have shown versatility and consistency of results when processing floods records and therefore, its application has been established as a norm or precept. The Johnson System has three families of distributions, one of which is the Log–Normal model with three parameters of fit, which is also the border between the bounded distributions and those with no upper limit. These families of distributions have four adjustment parameters and converge to the standard normal distribution, so that their predictions are obtained with such a model. Having contrasted the three probability distributions established by precept in 31 historical records of hydrological events, the Johnson system is applied to such data. The results of the unbounded distribution of the Johnson system (SJU are compared to the optimal results from the three distributions. It was found that the predictions of the SJU distribution are similar to those obtained with the other models in the low return periods ( 1000 years. Because of its theoretical support, the SJU model is recommended in flood estimation.
Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.
2017-01-01
Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.
International Nuclear Information System (INIS)
Esik, Olga; Tusnady, Gabor; Daubner, Kornel; Nemeth, Gyoergy; Fuezy, Marton; Szentirmay, Zoltan
1997-01-01
Purpose: The typically benign, but occasionally rapidly fatal clinical course of papillary thyroid cancer has raised the need for individual survival probability estimation, to tailor the treatment strategy exclusively to a given patient. Materials and methods: A retrospective study was performed on 400 papillary thyroid cancer patients with a median follow-up time of 7.1 years to establish a clinical database for uni- and multivariate analysis of the prognostic factors related to survival (Kaplan-Meier product limit method and Cox regression). For a more precise prognosis estimation, the effect of the most important clinical events were then investigated on the basis of a Markov renewal model. The basic concept of this approach is that each patient has an individual disease course which (besides the initial clinical categories) is affected by special events, e.g. internal covariates (local/regional/distant relapses). On the supposition that these events and the cause-specific death are influenced by the same biological processes, the parameters of transient survival probability characterizing the speed of the course of the disease for each clinical event and their sequence were determined. The individual survival curves for each patient were calculated by using these parameters and the independent significant clinical variables selected from multivariate studies, summation of which resulted in a mean cause-specific survival function valid for the entire group. On the basis of this Markov model, prediction of the cause-specific survival probability is possible for extrastudy cases, if it is supposed that the clinical events occur within new patients in the same manner and with the similar probability as within the study population. Results: The patient's age, a distant metastasis at presentation, the extent of the surgical intervention, the primary tumor size and extent (pT), the external irradiation dosage and the degree of TSH suppression proved to be
Estimation of delayed neutron emission probability by using the gross theory of nuclear β-decay
International Nuclear Information System (INIS)
Tachibana, Takahiro
1999-01-01
The delayed neutron emission probabilities (P n -values) of fission products are necessary in the study of reactor physics; e.g. in the calculation of total delayed neutron yields and in the summation calculation of decay heat. In this report, the P n -values estimated by the gross theory for some fission products are compared with experiment, and it is found that, on the average, the semi-gross theory somewhat underestimates the experimental P n -values. A modification of the β-decay strength function is briefly discussed to get more reasonable P n -values. (author)
Estimating the probability of allelic drop-out of STR alleles in forensic genetics
DEFF Research Database (Denmark)
Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt
2009-01-01
In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible. We present a statistical model for estimating the per locus and overall probability of allelic drop......-out using the results of all STR loci in the case sample as reference. The methodology of logistic regression is appropriate for this analysis, and we demonstrate how to incorporate this in a forensic genetic framework....
Directory of Open Access Journals (Sweden)
Cheng-Chin Liu
2016-01-01
Full Text Available Typhoon Morakot hit southern Taiwan in 2009, bringing 48-hr of heavy rainfall [close to the Probable Maximum Precipitation (PMP] to the Tsengwen Reservoir catchment. This extreme rainfall event resulted from the combined (co-movement effect of two climate systems (i.e., typhoon and southwesterly air flow. Based on the traditional PMP estimation method (i.e., the storm transposition method, STM, two PMP estimation approaches, i.e., Amplification Index (AI and Independent System (IS approaches, which consider the combined effect are proposed in this work. The AI approach assumes that the southwesterly air flow precipitation in a typhoon event could reach its maximum value. The IS approach assumes that the typhoon and southwesterly air flow are independent weather systems. Based on these assumptions, calculation procedures for the two approaches were constructed for a case study on the Tsengwen Reservoir catchment. The results show that the PMP estimates for 6- to 60-hr durations using the two approaches are approximately 30% larger than the PMP estimates using the traditional STM without considering the combined effect. This work is a pioneer PMP estimation method that considers the combined effect of a typhoon and southwesterly air flow. Further studies on this issue are essential and encouraged.
On the method of logarithmic cumulants for parametric probability density function estimation.
Krylov, Vladimir A; Moser, Gabriele; Serpico, Sebastiano B; Zerubia, Josiane
2013-10-01
Parameter estimation of probability density functions is one of the major steps in the area of statistical image and signal processing. In this paper we explore several properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition for a strong consistency of the MoLC estimates which represents an important asymptotic property of any statistical estimator. This result enables the demonstration of the strong consistency of MoLC estimates for a selection of widely used distribution families originating from (but not restricted to) synthetic aperture radar image processing. We then derive the analytical conditions of applicability of MoLC to samples for the distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K families of distributions. Supervised image classification experiments are considered for medical ultrasound and remote-sensing SAR imagery. The obtained results suggest that MoLC is a feasible and computationally fast yet not universally applicable alternative to MoM. MoLC becomes especially useful when the direct ML approach turns out to be unfeasible.
Estimated Probability of a Cervical Spine Injury During an ISS Mission
Brooker, John E.; Weaver, Aaron S.; Myers, Jerry G.
2013-01-01
Introduction: The Integrated Medical Model (IMM) utilizes historical data, cohort data, and external simulations as input factors to provide estimates of crew health, resource utilization and mission outcomes. The Cervical Spine Injury Module (CSIM) is an external simulation designed to provide the IMM with parameter estimates for 1) a probability distribution function (PDF) of the incidence rate, 2) the mean incidence rate, and 3) the standard deviation associated with the mean resulting from injury/trauma of the neck. Methods: An injury mechanism based on an idealized low-velocity blunt impact to the superior posterior thorax of an ISS crewmember was used as the simulated mission environment. As a result of this impact, the cervical spine is inertially loaded from the mass of the head producing an extension-flexion motion deforming the soft tissues of the neck. A multibody biomechanical model was developed to estimate the kinematic and dynamic response of the head-neck system from a prescribed acceleration profile. Logistic regression was performed on a dataset containing AIS1 soft tissue neck injuries from rear-end automobile collisions with published Neck Injury Criterion values producing an injury transfer function (ITF). An injury event scenario (IES) was constructed such that crew 1 is moving through a primary or standard translation path transferring large volume equipment impacting stationary crew 2. The incidence rate for this IES was estimated from in-flight data and used to calculate the probability of occurrence. The uncertainty in the model input factors were estimated from representative datasets and expressed in terms of probability distributions. A Monte Carlo Method utilizing simple random sampling was employed to propagate both aleatory and epistemic uncertain factors. Scatterplots and partial correlation coefficients (PCC) were generated to determine input factor sensitivity. CSIM was developed in the SimMechanics/Simulink environment with a
Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation
Sun, Ying; Wang, Huixia J.; Fuentes, Montserrat
2015-01-01
and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without
International Nuclear Information System (INIS)
Shigeru Aoki
2005-01-01
The secondary system such as pipings, tanks and other mechanical equipment is installed in the primary system such as building. The important secondary systems should be designed to maintain their function even if they are subjected to destructive earthquake excitations. The secondary system has many nonlinear characteristics. Impact and friction characteristic, which are observed in mechanical supports and joints, are common nonlinear characteristics. As impact damper and friction damper, impact and friction characteristic are used for reduction of seismic response. In this paper, analytical methods of the first excursion probability of the secondary system with impact and friction, subjected to earthquake excitation are proposed. By using the methods, the effects of impact force, gap size and friction force on the first excursion probability are examined. When the tolerance level is normalized by the maximum response of the secondary system without impact or friction characteristics, variation of the first excursion probability is very small for various values of the natural period. In order to examine the effectiveness of the proposed method, the obtained results are compared with those obtained by the simulation method. Some estimation methods for the maximum response of the secondary system with nonlinear characteristics have been developed. (author)
Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios
Energy Technology Data Exchange (ETDEWEB)
Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W
2005-04-21
Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.
Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.
2010-01-01
To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .
International Nuclear Information System (INIS)
Hahm, Dae-Gi; Park, Kwan-Soon; Koh, Hyun-Moo
2008-01-01
The awareness of a seismic hazard and risk is being increased rapidly according to the frequent occurrences of the huge earthquakes such as the 2008 Sichuan earthquake which caused about 70,000 confirmed casualties and a 20 billion U.S. dollars economic loss. Since an earthquake load contains various uncertainties naturally, the safety of a structural system under an earthquake excitation has been assessed by probabilistic approaches. In many structural applications for a probabilistic safety assessment, it is often regarded that the failure of a system will occur when the response of the structure firstly crosses the limit barrier within a specified interval of time. The determination of such a failure probability is usually called the 'first-passage problem' and has been extensively studied during the last few decades. However, especially for the structures which show a significant nonlinear dynamic behavior, an effective and accurate method for the estimation of such a failure probability is not fully established yet. In this study, we presented a new approach to evaluate the first-passage probability of an earthquake response of seismically isolated structures. The proposed method is applied to the seismic isolation system for the containment buildings of a nuclear power plant. From the numerical example, we verified that the proposed method shows accurate results with more efficient computational efforts compared to the conventional approaches
Estimation of probability of coastal flooding: A case study in the Norton Sound, Alaska
Kim, S.; Chapman, R. S.; Jensen, R. E.; Azleton, M. T.; Eisses, K. J.
2010-12-01
Along the Norton Sound, Alaska, coastal communities have been exposed to flooding induced by the extra-tropical storms. Lack of observation data especially with long-term variability makes it difficult to assess the probability of coastal flooding critical in planning for development and evacuation of the coastal communities. We estimated the probability of coastal flooding with the help of an existing storm surge model using ADCIRC and a wave model using WAM for the Western Alaska which includes the Norton Sound as well as the adjacent Bering Sea and Chukchi Sea. The surface pressure and winds as well as ice coverage was analyzed and put in a gridded format with 3 hour interval over the entire Alaskan Shelf by Ocean Weather Inc. (OWI) for the period between 1985 and 2009. The OWI also analyzed the surface conditions for the storm events over the 31 year time period between 1954 and 1984. The correlation between water levels recorded by NOAA tide gage and local meteorological conditions at Nome between 1992 and 2005 suggested strong local winds with prevailing Southerly components period are good proxies for high water events. We also selected heuristically the local winds with prevailing Westerly components at Shaktoolik which locates at the eastern end of the Norton Sound provided extra selection of flood events during the continuous meteorological data record between 1985 and 2009. The frequency analyses were performed using the simulated water levels and wave heights for the 56 year time period between 1954 and 2009. Different methods of estimating return periods were compared including the method according to FEMA guideline, the extreme value statistics, and fitting to the statistical distributions such as Weibull and Gumbel. The estimates are similar as expected but with a variation.
Temporal overlap estimation based on interference spectrum in CARS microscopy
Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen
2018-01-01
Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.
International Nuclear Information System (INIS)
Kim, Yochan; Park, Jinkyun; Jung, Wondea
2017-01-01
Because it has been indicated that empirical data supporting the estimates used in human reliability analysis (HRA) is insufficient, several databases have been constructed recently. To generate quantitative estimates from human reliability data, it is important to appropriately sort the erroneous behaviors found in the reliability data. Therefore, this paper proposes a scheme to classify the erroneous behaviors identified by the HuREX (Human Reliability data Extraction) framework through a review of the relevant literature. A case study of the human error probability (HEP) calculations is conducted to verify that the proposed scheme can be successfully implemented for the categorization of the erroneous behaviors and to assess whether the scheme is useful for the HEP quantification purposes. Although continuously accumulating and analyzing simulator data is desirable to secure more reliable HEPs, the resulting HEPs were insightful in several important ways with regard to human reliability in off-normal conditions. From the findings of the literature review and the case study, the potential and limitations of the proposed method are discussed. - Highlights: • A taxonomy of erroneous behaviors is proposed to estimate HEPs from a database. • The cognitive models, procedures, HRA methods, and HRA databases were reviewed. • HEPs for several types of erroneous behaviors are calculated as a case study.
Energy Technology Data Exchange (ETDEWEB)
Jang, Seunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)
2016-10-15
The human failure events (HFEs) are considered in the development of system fault trees as well as accident sequence event trees in part of Probabilistic Safety Assessment (PSA). As a method for analyzing the human error, several methods, such as Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR), and Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) are used and new methods for human reliability analysis (HRA) are under developing at this time. This paper presents a dynamic HRA method for assessing the human failure events and estimation of human error probability for filtered containment venting system (FCVS) is performed. The action associated with implementation of the containment venting during a station blackout sequence is used as an example. In this report, dynamic HRA method was used to analyze FCVS-related operator action. The distributions of the required time and the available time were developed by MAAP code and LHS sampling. Though the numerical calculations given here are only for illustrative purpose, the dynamic HRA method can be useful tools to estimate the human error estimation and it can be applied to any kind of the operator actions, including the severe accident management strategy.
Directory of Open Access Journals (Sweden)
Vanessa M Adams
Full Text Available The need to integrate social and economic factors into conservation planning has become a focus of academic discussions and has important practical implications for the implementation of conservation areas, both private and public. We conducted a survey in the Daly Catchment, Northern Territory, to inform the design and implementation of a stewardship payment program. We used a choice model to estimate the likely level of participation in two legal arrangements--conservation covenants and management agreements--based on payment level and proportion of properties required to be managed. We then spatially predicted landholders' probability of participating at the resolution of individual properties and incorporated these predictions into conservation planning software to examine the potential for the stewardship program to meet conservation objectives. We found that the properties that were least costly, per unit area, to manage were also the least likely to participate. This highlights a tension between planning for a cost-effective program and planning for a program that targets properties with the highest probability of participation.
Estimation of the nuclear fuel assembly eigenfrequencies in the probability sense
Directory of Open Access Journals (Sweden)
Zeman V.
2014-12-01
Full Text Available The paper deals with upper and lower limits estimation of the nuclear fuel assembly eigenfrequencies, whose design and operation parameters are random variables. Each parameter is defined by its mean value and standard deviation or by a range of values. The gradient and three sigma criterion approach is applied to the calculation of the upper and lower limits of fuel assembly eigenfrequencies in the probability sense. Presented analytical approach used for the calculation of eigenfrequencies sensitivity is based on the modal synthesis method and the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and load-bearing skeleton linked by spacer grids. The method is applied for the Russian TVSA-T fuel assembly in the WWER1000/320 type reactor core in the Czech nuclear power plant Temelín.
An Estimation of a Passive Infra-Red Sensor Probability of Detection
International Nuclear Information System (INIS)
Osman, E.A.; El-Gazar, M.I.; Shaat, M.K.; El-Kafas, A.A.; Zidan, W.I.; Wadoud, A.A.
2009-01-01
Passive Infera-Red (PIR) sensors are one of many detection sensors are used to detect any intrusion process of the nuclear sites. In this work, an estimation of a PIR Sensor's Probability of Detection of a hypothetical facility is presented. sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensor test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The PIR sensor construction, operation and design for the investigated nuclear site are explained. Walking and running intrusion tests were carried out inside the field areas of the PIR sensor to evaluate the sensor performance during the intrusion process. 10 trials experimentally performed for achieving the intrusion process via a passive infra-red sensor's network system. The performance and intrusion senses of PIR sensors inside the internal zones was recorded and evaluated.
Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics
DEFF Research Database (Denmark)
Holland, Dominic; Wang, Yunpeng; Thompson, Wesley K
2016-01-01
Genome-wide Association Studies (GWAS) result in millions of summary statistics ("z-scores") for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric......-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities, relying only on summary statistics from GWAS substudies, and a scheme allowing...... for estimating the degree of polygenicity of the phenotype and predicting the proportion of chip heritability explainable by genome-wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N = 82,315) and putamen volume (N = 12,596), with approximately...
International Nuclear Information System (INIS)
Guikema, Seth D.
2007-01-01
Priors play an important role in the use of Bayesian methods in risk analysis, and using all available information to formulate an informative prior can lead to more accurate posterior inferences. This paper examines the practical implications of using five different methods for formulating an informative prior for a failure probability based on past data. These methods are the method of moments, maximum likelihood (ML) estimation, maximum entropy estimation, starting from a non-informative 'pre-prior', and fitting a prior based on confidence/credible interval matching. The priors resulting from the use of these different methods are compared qualitatively, and the posteriors are compared quantitatively based on a number of different scenarios of observed data used to update the priors. The results show that the amount of information assumed in the prior makes a critical difference in the accuracy of the posterior inferences. For situations in which the data used to formulate the informative prior is an accurate reflection of the data that is later observed, the ML approach yields the minimum variance posterior. However, the maximum entropy approach is more robust to differences between the data used to formulate the prior and the observed data because it maximizes the uncertainty in the prior subject to the constraints imposed by the past data
Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan
2017-08-01
We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.
Price, Aaron; Lee, H.
2010-01-01
Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
Spatio-temporal patterns of Cu contamination in mosses using geostatistical estimation
International Nuclear Information System (INIS)
Martins, Anabela; Figueira, Rui; Sousa, António Jorge; Sérgio, Cecília
2012-01-01
Several recent studies have reported temporal trends in metal contamination in mosses, but such assessments did not evaluate uncertainty in temporal changes, therefore providing weak statistical support for time comparisons. Furthermore, levels of contaminants in the environment change in both space and time, requiring space-time modelling methods for map estimation. We propose an indicator of spatial and temporal variation based on space-time estimation by indicator kriging, where uncertainty at each location is estimated from the local distribution function, thereby calculating variability intervals for comparison between several biomonitoring dates. This approach was exemplified using copper concentrations in mosses from four Portuguese surveys (1992, 1997, 2002 and 2006). Using this approach, we identified a general decrease in copper contamination, but spatial patterns were not uniform, and from the uncertainty intervals, changes could not be considered significant in the majority of the study area. - Highlights: ► We estimated copper contamination in mosses by spatio-temporal kriging between 1992 and 2006. ► We determined local distribution functions to define variation intervals at each location. ► Significance of temporal changes is assessed using an indicator based on uncertainty interval. ► There is general decrease in copper contamination, but spatial patterns are not uniform. - The contamination of copper in mosses was estimated by spatio-temporal kriging, with determination of uncertainty classes in the temporal variation.
Nilsson, Håkan; Juslin, Peter; Winman, Anders
2016-01-01
Costello and Watts (2014) present a model assuming that people's knowledge of probabilities adheres to probability theory, but that their probability judgments are perturbed by a random noise in the retrieval from memory. Predictions for the relationships between probability judgments for constituent events and their disjunctions and conjunctions, as well as for sums of such judgments were derived from probability theory. Costello and Watts (2014) report behavioral data showing that subjective probability judgments accord with these predictions. Based on the finding that subjective probability judgments follow probability theory, Costello and Watts (2014) conclude that the results imply that people's probability judgments embody the rules of probability theory and thereby refute theories of heuristic processing. Here, we demonstrate the invalidity of this conclusion by showing that all of the tested predictions follow straightforwardly from an account assuming heuristic probability integration (Nilsson, Winman, Juslin, & Hansson, 2009). We end with a discussion of a number of previous findings that harmonize very poorly with the predictions by the model suggested by Costello and Watts (2014). (c) 2015 APA, all rights reserved).
Estimating Recovery Failure Probabilities in Off-normal Situations from Full-Scope Simulator Data
Energy Technology Data Exchange (ETDEWEB)
Kim, Yochan; Park, Jinkyun; Kim, Seunghwan; Choi, Sun Yeong; Jung, Wondea [Korea Atomic Research Institute, Daejeon (Korea, Republic of)
2016-10-15
As part of this effort, KAERI developed the Human Reliability data EXtraction (HuREX) framework and is collecting full-scope simulator-based human reliability data into the OPERA (Operator PErformance and Reliability Analysis) database. In this study, with the series of estimation research for HEPs or PSF effects, significant information for a quantitative HRA analysis, recovery failure probabilities (RFPs), were produced from the OPERA database. Unsafe acts can occur at any time in safety-critical systems and the operators often manage the systems by discovering their errors and eliminating or mitigating them. To model the recovery processes or recovery strategies, there were several researches that categorize the recovery behaviors. Because the recent human error trends are required to be considered during a human reliability analysis, Jang et al. can be seen as an essential effort of the data collection. However, since the empirical results regarding soft controls were produced from a controlled laboratory environment with student participants, it is necessary to analyze a wide range of operator behaviors using full-scope simulators. This paper presents the statistics related with human error recovery behaviors obtained from the full-scope simulations that in-site operators participated in. In this study, the recovery effects by shift changes or technical support centers were not considered owing to a lack of simulation data.
Roesler, Elizabeth L.; Grabowski, Timothy B.
2018-01-01
Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.
Su, Nan-Yao; Lee, Sang-Hee
2008-04-01
Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.
Vehicle Trajectory Estimation Using Spatio-Temporal MCMC
Directory of Open Access Journals (Sweden)
Francois Bardet
2010-01-01
Full Text Available This paper presents an algorithm for modeling and tracking vehicles in video sequences within one integrated framework. Most of the solutions are based on sequential methods that make inference according to current information. In contrast, we propose a deferred logical inference method that makes a decision according to a sequence of observations, thus processing a spatio-temporal search on the whole trajectory. One of the drawbacks of deferred logical inference methods is that the solution space of hypotheses grows exponentially related to the depth of observation. Our approach takes into account both the kinematic model of the vehicle and a driver behavior model in order to reduce the space of the solutions. The resulting proposed state model explains the trajectory with only 11 parameters. The solution space is then sampled with a Markov Chain Monte Carlo (MCMC that uses a model-driven proposal distribution in order to control random walk behavior. We demonstrate our method on real video sequences from which we have ground truth provided by a RTK GPS (Real-Time Kinematic GPS. Experimental results show that the proposed algorithm outperforms a sequential inference solution (particle filter.
International Nuclear Information System (INIS)
Eedy, W.; Hart, D.
1988-05-01
The risk to human health from radioactive waste management sites can be calculated as the product of the probability of accidental exposure (intrusion) times the probability of a health effect from such exposure. This report reviews the literature and evaluates methods used to predict the probabilities for unintentional intrusion into radioactive waste management areas in Canada over a 10,000-year period. Methods to predict such probabilities are available. They generally assume a long-term stability in terms of existing resource uses and society in the management area. The major potential for errors results from the unlikeliness of these assumptions holding true over such lengthy periods of prediction
Hill, B. E.; La Femina, P. C.; Stamatakos, J.; Connor, C. B.
2002-12-01
Probability models that calculate the likelihood of new volcano formation in the Yucca Mountain (YM) area depend on the timing and location of past volcanic activity. Previous spatio-temporal patterns indicated a 10-4 to 10-3 probability of volcanic disruption of the proposed radioactive waste repository site at YM during the 10,000 year post-closure performance period (Connor et al. 2000, JGR 105:1). A recent aeromagnetic survey (Blakely et al. 2000, USGS OFR 00-188), however, identified up to 20 anomalies in alluvium-filled basins, which have characteristics indicative of buried basalt (O'Leary et al. 2002, USGS OFR 02-020). Independent evaluation of these data, combined with new ground magnetic surveys, shows that these anomalies may represent at least ten additional buried basaltic volcanoes, which have not been included in previous probability calculations. This interpretation, if true, nearly doubles the number of basaltic volcanoes within 30 km [19 mi] of YM. Moreover, the magnetic signature of about half of the recognized basaltic volcanoes in the YM area cannot be readily identified in areas where bedrock also produces large amplitude magnetic anomalies, suggesting that additional volcanoes may be present but undetected in the YM area. In the absence of direct age information, we evaluate the potential effects of alternative age assumptions on spatio-temporal probability models. Interpreted burial depths of >50 m [164 ft] suggest ages >2 Ma, based on sedimentation rates typical for these alluvial basins (Stamatakos et al., 1997, J. Geol. 105). Defining volcanic events as individual points, previous probability models generally used recurrence rates of 2-5 volcanoes/million years (v/Myr). If the identified anomalies are buried volcanoes that are all >5 Ma or uniformly distributed between 2-10 Ma, calculated probabilities of future volcanic disruption at YM change by <30%. However, a uniform age distribution between 2-5 Ma for the presumed buried volcanoes
de Uña-Álvarez, Jacobo; Meira-Machado, Luís
2015-06-01
Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. © 2015, The International Biometric Society.
Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas
2005-01-01
The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.
Hagihara, Rie; Jones, Rhondda E; Sobtzick, Susan; Cleguer, Christophe; Garrigue, Claire; Marsh, Helene
2018-01-01
The probability of an aquatic animal being available for detection is typically probability of detection is important for obtaining robust estimates of the population abundance and determining its status and trends. The dugong (Dugong dugon) is a bottom-feeding marine mammal and a seagrass community specialist. We hypothesized that the probability of a dugong being available for detection is dependent on water depth and that dugongs spend more time underwater in deep-water seagrass habitats than in shallow-water seagrass habitats. We tested this hypothesis by quantifying the depth use of 28 wild dugongs fitted with GPS satellite transmitters and time-depth recorders (TDRs) at three sites with distinct seagrass depth distributions: 1) open waters supporting extensive seagrass meadows to 40 m deep (Torres Strait, 6 dugongs, 2015); 2) a protected bay (average water depth 6.8 m) with extensive shallow seagrass beds (Moreton Bay, 13 dugongs, 2011 and 2012); and 3) a mixture of lagoon, coral and seagrass habitats to 60 m deep (New Caledonia, 9 dugongs, 2013). The fitted instruments were used to measure the times the dugongs spent in the experimentally determined detection zones under various environmental conditions. The estimated probability of detection was applied to aerial survey data previously collected at each location. In general, dugongs were least available for detection in Torres Strait, and the population estimates increased 6-7 fold using depth-specific availability correction factors compared with earlier estimates that assumed homogeneous detection probability across water depth and location. Detection probabilities were higher in Moreton Bay and New Caledonia than Torres Strait because the water transparency in these two locations was much greater than in Torres Strait and the effect of correcting for depth-specific detection probability much less. The methodology has application to visual survey of coastal megafauna including surveys using Unmanned
Estimating Probability of Default on Peer to Peer Market – Survival Analysis Approach
Directory of Open Access Journals (Sweden)
Đurović Andrija
2017-05-01
Full Text Available Arguably a cornerstone of credit risk modelling is the probability of default. This article aims is to search for the evidence of relationship between loan characteristics and probability of default on peer-to-peer (P2P market. In line with that, two loan characteristics are analysed: 1 loan term length and 2 loan purpose. The analysis is conducted using survival analysis approach within the vintage framework. Firstly, 12 months probability of default through the cycle is used to compare riskiness of analysed loan characteristics. Secondly, log-rank test is employed in order to compare complete survival period of cohorts. Findings of the paper suggest that there is clear evidence of relationship between analysed loan characteristics and probability of default. Longer term loans are more risky than the shorter term ones and the least risky loans are those used for credit card payoff.
Probability of fracture and life extension estimate of the high-flux isotope reactor vessel
International Nuclear Information System (INIS)
Chang, S.J.
1998-01-01
The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in ductile-brittle transition temperature (DBTT) for fracture, often denoted by RT NDT for carbon steel. This transition temperature can be calibrated by the drop-weight test and, sometimes, by the Charpy impact test. The life extension for the high-flux isotope reactor (HFIR) vessel is calculated by using the method of fracture mechanics that is incorporated with the effect of the DBTT change. The failure probability of the HFIR vessel is limited as the life of the vessel by the reactor core melt probability of 10 -4 . The operating safety of the reactor is ensured by periodic hydrostatic pressure test (hydrotest). The hydrotest is performed in order to determine a safe vessel static pressure. The fracture probability as a result of the hydrostatic pressure test is calculated and is used to determine the life of the vessel. Failure to perform hydrotest imposes the limit on the life of the vessel. The conventional method of fracture probability calculations such as that used by the NRC-sponsored PRAISE CODE and the FAVOR CODE developed in this Laboratory are based on the Monte Carlo simulation. Heavy computations are required. An alternative method of fracture probability calculation by direct probability integration is developed in this paper. The present approach offers simple and expedient ways to obtain numerical results without losing any generality. In this paper, numerical results on (1) the probability of vessel fracture, (2) the hydrotest time interval, and (3) the hydrotest pressure as a result of the DBTT increase are obtained
Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.
2017-10-01
This article is devoted to the development of a method for probability estimate of failure of an asynchronous motor as a part of electric drive with a frequency converter. The proposed method is based on a comprehensive method of diagnostics of vibration and electrical characteristics that take into account the quality of the supply network and the operating conditions. The developed diagnostic system allows to increase the accuracy and quality of diagnoses by determining the probability of failure-free operation of the electromechanical equipment, when the parameters deviate from the norm. This system uses an artificial neural networks (ANNs). The results of the system for estimator the technical condition are probability diagrams of the technical state and quantitative evaluation of the defects of the asynchronous motor and its components.
Bellemare, C.; Kroger, S.; van Soest, A.H.O.
2005-01-01
We combine the choice data of proposers and responders in the ultimatum game, their expectations elicited in the form of subjective probability questions, and the choice data of proposers ("dictator") in a dictator game to estimate a structural model of decision making under uncertainty.We use a
2014-01-01
Regression analysis techniques were used to develop a : set of equations for rural ungaged stream sites for estimating : discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent : annual exceedance probabilities, which are equivalent to : ann...
International Nuclear Information System (INIS)
El-Shanshoury, Gh.I.
2015-01-01
Assessing the adequacy of probability distributions for estimating the extreme events of air temperature in Dabaa region is one of the pre-requisite s for any design purpose at Dabaa site which can be achieved by probability approach. In the present study, three extreme value distributions are considered and compared to estimate the extreme events of monthly and annual maximum and minimum temperature. These distributions include the Gumbel/Frechet distributions for estimating the extreme maximum values and Gumbel /Weibull distributions for estimating the extreme minimum values. Lieblein technique and Method of Moments are applied for estimating the distribution para meters. Subsequently, the required design values with a given return period of exceedance are obtained. Goodness-of-Fit tests involving Kolmogorov-Smirnov and Anderson-Darling are used for checking the adequacy of fitting the method/distribution for the estimation of maximum/minimum temperature. Mean Absolute Relative Deviation, Root Mean Square Error and Relative Mean Square Deviation are calculated, as the performance indicators, to judge which distribution and method of parameters estimation are the most appropriate one to estimate the extreme temperatures. The present study indicated that the Weibull distribution combined with Method of Moment estimators gives the highest fit, most reliable, accurate predictions for estimating the extreme monthly and annual minimum temperature. The Gumbel distribution combined with Method of Moment estimators showed the highest fit, accurate predictions for the estimation of the extreme monthly and annual maximum temperature except for July, August, October and November. The study shows that the combination of Frechet distribution with Method of Moment is the most accurate for estimating the extreme maximum temperature in July, August and November months while t he Gumbel distribution and Lieblein technique is the best for October
Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems
International Nuclear Information System (INIS)
Helin, T; Burger, M
2015-01-01
A demanding challenge in Bayesian inversion is to efficiently characterize the posterior distribution. This task is problematic especially in high-dimensional non-Gaussian problems, where the structure of the posterior can be very chaotic and difficult to analyse. Current inverse problem literature often approaches the problem by considering suitable point estimators for the task. Typically the choice is made between the maximum a posteriori (MAP) or the conditional mean (CM) estimate. The benefits of either choice are not well-understood from the perspective of infinite-dimensional theory. Most importantly, there exists no general scheme regarding how to connect the topological description of a MAP estimate to a variational problem. The recent results by Dashti and others (Dashti et al 2013 Inverse Problems 29 095017) resolve this issue for nonlinear inverse problems in Gaussian framework. In this work we improve the current understanding by introducing a novel concept called the weak MAP (wMAP) estimate. We show that any MAP estimate in the sense of Dashti et al (2013 Inverse Problems 29 095017) is a wMAP estimate and, moreover, how the wMAP estimate connects to a variational formulation in general infinite-dimensional non-Gaussian problems. The variational formulation enables to study many properties of the infinite-dimensional MAP estimate that were earlier impossible to study. In a recent work by the authors (Burger and Lucka 2014 Maximum a posteriori estimates in linear inverse problems with logconcave priors are proper bayes estimators preprint) the MAP estimator was studied in the context of the Bayes cost method. Using Bregman distances, proper convex Bayes cost functions were introduced for which the MAP estimator is the Bayes estimator. Here, we generalize these results to the infinite-dimensional setting. Moreover, we discuss the implications of our results for some examples of prior models such as the Besov prior and hierarchical prior. (paper)
Effects of population variability on the accuracy of detection probability estimates
DEFF Research Database (Denmark)
Ordonez Gloria, Alejandro
2011-01-01
Observing a constant fraction of the population over time, locations, or species is virtually impossible. Hence, quantifying this proportion (i.e. detection probability) is an important task in quantitative population ecology. In this study we determined, via computer simulations, the ef- fect of...
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed
2012-01-01
We use large but sparse correlation and transition-difference-probability submatrices to find the best linear and differential approximations respectively on PRESENT-like ciphers. This outperforms the branch and bound algorithm when the number of low-weight differential and linear characteristics...
Quantitative estimation of the human error probability during soft control operations
International Nuclear Information System (INIS)
Lee, Seung Jun; Kim, Jaewhan; Jung, Wondea
2013-01-01
Highlights: ► An HRA method to evaluate execution HEP for soft control operations was proposed. ► The soft control tasks were analyzed and design-related influencing factors were identified. ► An application to evaluate the effects of soft controls was performed. - Abstract: In this work, a method was proposed for quantifying human errors that can occur during operation executions using soft controls. Soft controls of advanced main control rooms have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to identify the human error modes and quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests an evaluation framework for quantifying the execution error probability using soft controls. In the application result, it was observed that the human error probabilities of soft controls showed both positive and negative results compared to the conventional controls according to the design quality of advanced main control rooms
Schillaci, Michael A; Schillaci, Mario E
2009-02-01
The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (nresearchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.
Estimation of failure probability on real structure utilized by earthquake observation data
International Nuclear Information System (INIS)
Matsubara, Masayoshi
1995-01-01
The objective of this report is to propose the procedure which estimates the structural response on a real structure by utilizing earthquake observation data using Neural network system. We apply the neural network system to estimate the ground motion of the site by enormous earthquake data published from Japan Meteorological Agency. The proposed procedure has some possibility to estimate the correlation between earthquake and response adequately. (author)
Energy Technology Data Exchange (ETDEWEB)
Thompson, William L. [Bonneville Power Administration, Portland, OR (US). Environment, Fish and Wildlife
2001-07-01
Monitoring population numbers is important for assessing trends and meeting various legislative mandates. However, sampling across time introduces a temporal aspect to survey design in addition to the spatial one. For instance, a sample that is initially representative may lose this attribute if there is a shift in numbers and/or spatial distribution in the underlying population that is not reflected in later sampled plots. Plot selection methods that account for this temporal variability will produce the best trend estimates. Consequently, I used simulation to compare bias and relative precision of estimates of population change among stratified and unstratified sampling designs based on permanent, temporary, and partial replacement plots under varying levels of spatial clustering, density, and temporal shifting of populations. Permanent plots produced more precise estimates of change than temporary plots across all factors. Further, permanent plots performed better than partial replacement plots except for high density (5 and 10 individuals per plot) and 25% - 50% shifts in the population. Stratified designs always produced less precise estimates of population change for all three plot selection methods, and often produced biased change estimates and greatly inflated variance estimates under sampling with partial replacement. Hence, stratification that remains fixed across time should be avoided when monitoring populations that are likely to exhibit large changes in numbers and/or spatial distribution during the study period. Key words: bias; change estimation; monitoring; permanent plots; relative precision; sampling with partial replacement; temporary plots.
Directory of Open Access Journals (Sweden)
Fang Zheng
2013-04-01
Full Text Available Analysis of knee joint vibration or vibroarthrographic (VAG signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564 or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533. Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals.
Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry
2009-01-01
In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.
Methods for estimating the probability of cancer from occupational radiation exposure
International Nuclear Information System (INIS)
1996-04-01
The aims of this TECDOC are to present the factors which are generally accepted as being responsible for cancer induction, to examine the role of radiation as a carcinogen, to demonstrate how the probability of cancer causation by radiation may be calculated and to inform the reader of the uncertainties that are associated with the use of various risk factors and models in such calculations. 139 refs, 2 tabs
Migliorati, Giovanni
2015-08-28
We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability measure. The convergence estimates are given in mean-square sense with respect to the sampling measure. The noise may be correlated with the location of the evaluation and may have nonzero mean (offset). We consider both cases of bounded or square-integrable noise / offset. We prove conditions between the number of sampling points and the dimension of the underlying approximation space that ensure a stable and accurate approximation. Particular focus is on deriving estimates in probability within a given confidence level. We analyze how the best approximation error and the noise terms affect the convergence rate and the overall confidence level achieved by the convergence estimate. The proofs of our convergence estimates in probability use arguments from the theory of large deviations to bound the noise term. Finally we address the particular case of multivariate polynomial approximation spaces with any density in the beta family, including uniform and Chebyshev.
Directory of Open Access Journals (Sweden)
Paolo Casale
2007-06-01
Full Text Available Survival probabilities of loggerhead sea turtles (Caretta caretta are estimated for the first time in the Mediterranean by analysing 3254 tagging and 134 re-encounter data from this region. Most of these turtles were juveniles found at sea. Re-encounters were live resightings and dead recoveries and data were analysed with Barker’s model, a modified version of the Cormack-Jolly-Seber model which can combine recapture, live resighting and dead recovery data. An annual survival probability of 0.73 (CI 95% = 0.67-0.78; n=3254 was obtained, and should be considered as a conservative estimate due to an unknown, though not negligible, tag loss rate. This study makes a preliminary estimate of the survival probabilities of in-water developmental stages for the Mediterranean population of endangered loggerhead sea turtles and provides the first insights into the magnitude of the suspected human-induced mortality in the region. The model used here for the first time on sea turtles could be used to obtain survival estimates from other data sets with few or no true recaptures but with other types of re-encounter data, which are a common output of tagging programmes involving these wide-ranging animals.
Estimation of the human error probabilities in the human reliability analysis
International Nuclear Information System (INIS)
Liu Haibin; He Xuhong; Tong Jiejuan; Shen Shifei
2006-01-01
Human error data is an important issue of human reliability analysis (HRA). Using of Bayesian parameter estimation, which can use multiple information, such as the historical data of NPP and expert judgment data to modify the human error data, could get the human error data reflecting the real situation of NPP more truly. This paper, using the numeric compute program developed by the authors, presents some typical examples to illustrate the process of the Bayesian parameter estimation in HRA and discusses the effect of different modification data on the Bayesian parameter estimation. (authors)
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri
of the evolution of the PDF of a stochastic process; hence an alternative to the FPK. The considerable advantage of the introduced method over FPK is that its solution does not require high computational cost which extends its range of applicability to high order structural dynamic problems. The problem...... an alternative approach for estimation of the first excursion probability of any system is based on calculating the evolution of the Probability Density Function (PDF) of the process and integrating it on the specified domain. Clearly this provides the most accurate results among the three classes of the methods....... The solution of the Fokker-Planck-Kolmogorov (FPK) equation for systems governed by a stochastic differential equation driven by Gaussian white noise will give the sought time variation of the probability density function. However the analytical solution of the FPK is available for only a few dynamic systems...
International Nuclear Information System (INIS)
Nascimento, C.S. do; Mesquita, R.N. de
2009-01-01
Recent studies point human error as an important factor for many industrial and nuclear accidents: Three Mile Island (1979), Bhopal (1984), Chernobyl and Challenger (1986) are classical examples. Human contribution to these accidents may be better understood and analyzed by using Human Reliability Analysis (HRA), which has being taken as an essential part on Probabilistic Safety Analysis (PSA) of nuclear plants. Both HRA and PSA depend on Human Error Probability (HEP) for a quantitative analysis. These probabilities are extremely affected by the Performance Shaping Factors (PSF), which has a direct effect on human behavior and thus shape HEP according with specific environment conditions and personal individual characteristics which are responsible for these actions. This PSF dependence raises a great problem on data availability as turn these scarcely existent database too much generic or too much specific. Besides this, most of nuclear plants do not keep historical records of human error occurrences. Therefore, in order to overcome this occasional data shortage, a methodology based on Fuzzy Inference and expert judgment was employed in this paper in order to determine human error occurrence probabilities and to evaluate PSF's on performed actions by operators in a nuclear power plant (IEA-R1 nuclear reactor). Obtained HEP values were compared with reference tabled data used on current literature in order to show method coherence and valid approach. This comparison leads to a conclusion that this work results are able to be employed both on HRA and PSA enabling efficient prospection of plant safety conditions, operational procedures and local working conditions potential improvements (author)
Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy
2013-01-01
Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.
Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System
Directory of Open Access Journals (Sweden)
Cheng Wang
2016-12-01
Full Text Available Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented. The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages: footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected using three different gait data collection strategies from 15 healthy subjects, the proposed system achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results, nine temporal related gait parameters are calculated and these parameters are consistent with their corresponding normal gait temporal parameters and labeled data calculation results. The results verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation.
Landsman, V; Lou, W Y W; Graubard, B I
2015-05-20
We present a two-step approach for estimating hazard rates and, consequently, survival probabilities, by levels of general categorical exposure. The resulting estimator utilizes three sources of data: vital statistics data and census data are used at the first step to estimate the overall hazard rate for a given combination of gender and age group, and cohort data constructed from a nationally representative complex survey with linked mortality records, are used at the second step to divide the overall hazard rate by exposure levels. We present an explicit expression for the resulting estimator and consider two methods for variance estimation that account for complex multistage sample design: (1) the leaving-one-out jackknife method, and (2) the Taylor linearization method, which provides an analytic formula for the variance estimator. The methods are illustrated with smoking and all-cause mortality data from the US National Health Interview Survey Linked Mortality Files, and the proposed estimator is compared with a previously studied crude hazard rate estimator that uses survey data only. The advantages of a two-step approach and possible extensions of the proposed estimator are discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Tan, Elcin
A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the
International Nuclear Information System (INIS)
Liu, Heping; Shi, Jing; Qu, Xiuli
2013-01-01
Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate
Kheifets, Aaron; Freestone, David; Gallistel, C R
2017-07-01
In three experiments with mice ( Mus musculus ) and rats (Rattus norvigicus), we used a switch paradigm to measure quantitative properties of the interval-timing mechanism. We found that: 1) Rodents adjusted the precision of their timed switches in response to changes in the interval between the short and long feed latencies (the temporal goalposts). 2) The variability in the timing of the switch response was reduced or unchanged in the face of large trial-to-trial random variability in the short and long feed latencies. 3) The adjustment in the distribution of switch latencies in response to changes in the relative frequency of short and long trials was sensitive to the asymmetry in the Kullback-Leibler divergence. The three results suggest that durations are represented with adjustable precision, that they are timed by multiple timers, and that there is a trial-by-trial (episodic) record of feed latencies in memory. © 2017 Society for the Experimental Analysis of Behavior.
Directory of Open Access Journals (Sweden)
Qingwu Gao
2012-01-01
Full Text Available We discuss the uniformly asymptotic estimate of the finite-time ruin probability for all times in a generalized compound renewal risk model, where the interarrival times of successive accidents and all the claim sizes caused by an accident are two sequences of random variables following a wide dependence structure. This wide dependence structure allows random variables to be either negatively dependent or positively dependent.
International Nuclear Information System (INIS)
Carausu, A.
1996-01-01
A method for the fragility estimation of seismically isolated nuclear power plant structure is proposed. The relationship between the ground motion intensity parameter (e.g. peak ground velocity or peak ground acceleration) and the response of isolated structures is expressed in terms of a bi-linear regression line, whose coefficients are estimated by the least-square method in terms of available data on seismic input and structural response. The notion of high confidence low probability of failure (HCLPF) value is also used for deriving compound fragility curves for coupled subsystems. (orig.)
DEFF Research Database (Denmark)
Gardi, Jonathan Eyal; Nyengaard, Jens Randel; Gundersen, Hans Jørgen Gottlieb
2008-01-01
examined, which in turn leads to any of the known stereological estimates, including size distributions and spatial distributions. The unbiasedness is not a function of the assumed relation between the weight and the structure, which is in practice always a biased relation from a stereological (integral......, the desired number of fields are sampled automatically with probability proportional to the weight and presented to the expert observer. Using any known stereological probe and estimator, the correct count in these fields leads to a simple, unbiased estimate of the total amount of structure in the sections...... geometric) point of view. The efficiency of the proportionator depends, however, directly on this relation to be positive. The sampling and estimation procedure is simulated in sections with characteristics and various kinds of noises in possibly realistic ranges. In all cases examined, the proportionator...
International Nuclear Information System (INIS)
Lin, Cheng; Mu, Hao; Xiong, Rui; Shen, Weixiang
2016-01-01
Highlights: • A novel multi-model probability battery SOC fusion estimation approach was proposed. • The linear matrix inequality-based H∞ technique is employed to estimate the SOC. • The Bayes theorem has been employed to realize the optimal weight for the fusion. • The robustness of the proposed approach is verified by different batteries. • The results show that the proposed method can promote global estimation accuracy. - Abstract: Due to the strong nonlinearity and complex time-variant property of batteries, the existing state of charge (SOC) estimation approaches based on a single equivalent circuit model (ECM) cannot provide the accurate SOC for the entire discharging period. This paper aims to present a novel SOC estimation approach based on a multiple ECMs fusion method for improving the practical application performance. In the proposed approach, three battery ECMs, namely the Thevenin model, the double polarization model and the 3rd order RC model, are selected to describe the dynamic voltage of lithium-ion batteries and the genetic algorithm is then used to determine the model parameters. The linear matrix inequality-based H-infinity technique is employed to estimate the SOC from the three models and the Bayes theorem-based probability method is employed to determine the optimal weights for synthesizing the SOCs estimated from the three models. Two types of lithium-ion batteries are used to verify the feasibility and robustness of the proposed approach. The results indicate that the proposed approach can improve the accuracy and reliability of the SOC estimation against uncertain battery materials and inaccurate initial states.
Czech Academy of Sciences Publication Activity Database
Omelchenko, Vadym; Kaňková, Vlasta
2015-01-01
Roč. 84, č. 2 (2015), s. 267-281 ISSN 0862-9544 R&D Projects: GA ČR GA13-14445S Institutional support: RVO:67985556 Keywords : Stochastic programming problems * empirical estimates * light and heavy tailed distributions * quantiles Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2015/E/omelchenko-0454495.pdf
Edmonds, L. D.
2016-01-01
Since advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.
Estimating the benefits of single value and probability forecasting for flood warning
Directory of Open Access Journals (Sweden)
J. S. Verkade
2011-12-01
Full Text Available Flood risk can be reduced by means of flood forecasting, warning and response systems (FFWRS. These systems include a forecasting sub-system which is imperfect, meaning that inherent uncertainties in hydrological forecasts may result in false alarms and missed events. This forecasting uncertainty decreases the potential reduction of flood risk, but is seldom accounted for in estimates of the benefits of FFWRSs. In the present paper, a method to estimate the benefits of (imperfect FFWRSs in reducing flood risk is presented. The method is based on a hydro-economic model of expected annual damage (EAD due to flooding, combined with the concept of Relative Economic Value (REV. The estimated benefits include not only the reduction of flood losses due to a warning response, but also consider the costs of the warning response itself, as well as the costs associated with forecasting uncertainty. The method allows for estimation of the benefits of FFWRSs that use either deterministic or probabilistic forecasts. Through application to a case study, it is shown that FFWRSs using a probabilistic forecast have the potential to realise higher benefits at all lead-times. However, it is also shown that provision of warning at increasing lead-time does not necessarily lead to an increasing reduction of flood risk, but rather that an optimal lead-time at which warnings are provided can be established as a function of forecast uncertainty and the cost-loss ratio of the user receiving and responding to the warning.
Estimated Probability of Traumatic Abdominal Injury During an International Space Station Mission
Lewandowski, Beth E.; Brooker, John E.; Weavr, Aaron S.; Myers, Jerry G., Jr.; McRae, Michael P.
2013-01-01
The Integrated Medical Model (IMM) is a decision support tool that is useful to spaceflight mission planners and medical system designers when assessing risks and optimizing medical systems. The IMM project maintains a database of medical conditions that could occur during a spaceflight. The IMM project is in the process of assigning an incidence rate, the associated functional impairment, and a best and a worst case end state for each condition. The purpose of this work was to develop the IMM Abdominal Injury Module (AIM). The AIM calculates an incidence rate of traumatic abdominal injury per person-year of spaceflight on the International Space Station (ISS). The AIM was built so that the probability of traumatic abdominal injury during one year on ISS could be predicted. This result will be incorporated into the IMM Abdominal Injury Clinical Finding Form and used within the parent IMM model.
International Nuclear Information System (INIS)
Turati, Pietro; Pedroni, Nicola; Zio, Enrico
2016-01-01
The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.
Estimation of 2N(e)s from temporal allele frequency data
DEFF Research Database (Denmark)
Bollback, Jonathan Paul; York, Thomas L.; Nielsen, Rasmus
2008-01-01
We develop a new method for estimating effective population sizes, Ne, and selection coefficients, s, from time-series data of allele frequencies sampled from a single diallelic locus. The method is based on calculating transition probabilities, using a numerical solution of the diffusion process...
International Nuclear Information System (INIS)
Mottram, P.R.; Goldemund, M.H.
2001-08-01
This study has examined a large number of reactors and data for Nuclear Power Plants (NPPs) in Western Europe, Russia, the seven Central and Eastern European Countries (CEECs) seeking membership of the European Union, and the Newly Independent States (NIS) with operable NPPs. The potential threats from severe accidents at these NPPs causing fallout in the UK has been estimated using IAEA guidelines and Probabilistic Safety Assessments carried out in the specified countries. (author)
Lagroix, Hayley E P; Yanko, Matthew R; Spalek, Thomas M
2012-07-01
Many cognitive and perceptual phenomena, such as iconic memory and temporal integration, require brief displays. A critical requirement is that the image not remain visible after its offset. It is commonly believed that liquid crystal displays (LCD) are unsuitable because of their poor temporal response characteristics relative to cathode-ray-tube (CRT) screens. Remarkably, no psychophysical estimates of visible persistence are available to verify this belief. A series of experiments in which white stimuli on a black background produced discernible persistence on CRT but not on LCD screens, during both dark- and light-adapted viewing, falsified this belief. Similar estimates using black stimuli on a white background produced no visible persistence on either screen. That said, photometric measurements are available that seem to confirm the poor temporal characteristics of LCD screens, but they were obtained before recent advances in LCD technology. Using current LCD screens, we obtained photometric estimates of rise time far shorter (1-6 ms) than earlier estimates (20-150 ms), and approaching those of CRTs (<1 ms). We conclude that LCDs are preferable to CRTs when visible persistence is a concern, except when black-on-white displays are used.
Lin, S.; Li, J.; Liu, Q.
2018-04-01
Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.
DEFF Research Database (Denmark)
Skousgaard, Søren Glud; Hjelmborg, Jacob; Skytthe, Axel
2015-01-01
INTRODUCTION: Primary hip osteoarthritis, radiographic as well as symptomatic, is highly associated with increasing age in both genders. However, little is known about the mechanisms behind this, in particular if this increase is caused by genetic factors. This study examined the risk and heritab......INTRODUCTION: Primary hip osteoarthritis, radiographic as well as symptomatic, is highly associated with increasing age in both genders. However, little is known about the mechanisms behind this, in particular if this increase is caused by genetic factors. This study examined the risk...... and heritability of primary osteoarthritis of the hip leading to a total hip arthroplasty, and if this heritability increased with increasing age. METHODS: In a nationwide population-based follow-up study 118,788 twins from the Danish Twin Register and 90,007 individuals from the Danish Hip Arthroplasty Register...... not have had a total hip arthroplasty at the time of follow-up. RESULTS: There were 94,063 twins eligible for analyses, comprising 835 cases of 36 concordant and 763 discordant twin pairs. The probability increased particularly from 50 years of age. After sex and age adjustment a significant additive...
Directory of Open Access Journals (Sweden)
Çiğdem ÖZARİ
2018-01-01
Full Text Available In this study, we have worked on developing a brand-new index called Fuzzy-bankruptcy index. The aim of this index is to find out the default probability of any company X, independent from the sector it belongs. Fuzzy logic is used to state the financial ratiointerruption change related with time and inside different sectors, the new index is created to eliminate the number of the relativity of financial ratios. The four input variables inside the five main input variables used for the fuzzy process, are chosen from both factor analysis and clustering and the last input variable calculated from Merton Model. As we analyze in the past cases of the default history of companies, one could explore different reasons such as managerial arrogance, fraud and managerial mistakes, that are responsible for the very poor endings of prestigious companies like Enron, K-Mart. Because of these kind of situations, we try to design a model which one could be able to get a better view of a company’s financial position, and it couldbe prevent credit loan companies from investing in the wrong company and possibly from losing all investments using our Fuzzy-bankruptcy index.
Cheek, Kim A.
2017-08-01
Ideas about temporal (and spatial) scale impact students' understanding across science disciplines. Learners have difficulty comprehending the long time periods associated with natural processes because they have no referent for the magnitudes involved. When people have a good "feel" for quantity, they estimate cardinal number magnitude linearly. Magnitude estimation errors can be explained by confusion about the structure of the decimal number system, particularly in terms of how powers of ten are related to one another. Indonesian children regularly use large currency units. This study investigated if they estimate long time periods accurately and if they estimate those time periods the same way they estimate analogous currency units. Thirty-nine children from a private International Baccalaureate school estimated temporal magnitudes up to 10,000,000,000 years in a two-part study. Artifacts children created were compared to theoretical model predictions previously used in number magnitude estimation studies as reported by Landy et al. (Cognitive Science 37:775-799, 2013). Over one third estimated the magnitude of time periods up to 10,000,000,000 years linearly, exceeding what would be expected based upon prior research with children this age who lack daily experience with large quantities. About half treated successive powers of ten as a count sequence instead of multiplicatively related when estimating magnitudes of time periods. Children generally estimated the magnitudes of long time periods and familiar, analogous currency units the same way. Implications for ways to improve the teaching and learning of this crosscutting concept/overarching idea are discussed.
Directory of Open Access Journals (Sweden)
William H. Farmer
2017-10-01
New hydrological insights for the region: Several methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index and geospatial tools (kriging and topological kriging. These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.
You, Jongmin; Jeong, Jechang
2010-02-01
The H.264/AVC (advanced video coding) is used in a wide variety of applications including digital broadcasting and mobile applications, because of its high compression efficiency. The variable block mode scheme in H.264/AVC contributes much to its high compression efficiency but causes a selection problem. In general, rate-distortion optimization (RDO) is the optimal mode selection strategy, but it is computationally intensive. For this reason, the H.264/AVC encoder requires a fast mode selection algorithm for use in applications that require low-power and real-time processing. A probable mode prediction algorithm for the H.264/AVC encoder is proposed. To reduce the computational complexity of RDO, the proposed method selects probable modes among all allowed block modes using removable SKIP mode distortion estimation. Removable SKIP mode distortion is used to estimate whether or not a further divided block mode is appropriate for a macroblock. It is calculated using a no-motion reference block with a few computations. Then the proposed method reduces complexity by performing the RDO process only for probable modes. Experimental results show that the proposed algorithm can reduce encoding time by an average of 55.22% without significant visual quality degradation and increased bit rate.
Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry
2008-01-01
Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).
Estimation of default probability for corporate entities in Republic of Serbia
Directory of Open Access Journals (Sweden)
Vujnović Miloš
2016-01-01
Full Text Available In this paper a quantitative PD model development has been excercised according to the Basel Capital Accord standards. The modeling dataset is based on the financial statements information from the Republic of Serbia. The goal of the paper is to develop a credit scoring model capable of producing PD estimate with high predictive power on the sample of corporate entities. The modeling is based on 5 years of end-of-year financial statements data of available Serbian corporate entities. Weight of evidence (WOE approach has been applied to quantitatively transform and prepare financial ratios. Correlation analysis has been utilized to reduce long list of variables and to remove highly interdependent variables from training and validation datasets. According to the best banking practice and academic literature, the final model is provided by using adjusted stepwise Logistic regression. The finally proposed model and its financial ratio constituents have been discussed and benchmarked against examples from relevant academic literature.
Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.
2012-01-01
In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow
Embedded Vehicle Speed Estimation System Using an Asynchronous Temporal Contrast Vision Sensor
Directory of Open Access Journals (Sweden)
D. Bauer
2007-01-01
Full Text Available This article presents an embedded multilane traffic data acquisition system based on an asynchronous temporal contrast vision sensor, and algorithms for vehicle speed estimation developed to make efficient use of the asynchronous high-precision timing information delivered by this sensor. The vision sensor features high temporal resolution with a latency of less than 100 ÃŽÂ¼s, wide dynamic range of 120 dB of illumination, and zero-redundancy, asynchronous data output. For data collection, processing and interfacing, a low-cost digital signal processor is used. The speed of the detected vehicles is calculated from the vision sensor's asynchronous temporal contrast event data. We present three different algorithms for velocity estimation and evaluate their accuracy by means of calibrated reference measurements. The error of the speed estimation of all algorithms is near zero mean and has a standard deviation better than 3% for both traffic flow directions. The results and the accuracy limitations as well as the combined use of the algorithms in the system are discussed.
DEFF Research Database (Denmark)
Sergeant, E.S.G.; Nielsen, Søren S.; Toft, Nils
2008-01-01
of this study was to develop a method to estimate the probability of low within-herd prevalence of paratuberculosis for Danish dairy herds. A stochastic simulation model was developed using the R(R) programming environment. Features of this model included: use of age-specific estimates of test......-sensitivity and specificity; use of a distribution of observed values (rather than a fixed, low value) for design prevalence; and estimates of the probability of low prevalence (Pr-Low) based on a specific number of test-positive animals, rather than for a result less than or equal to a specified cut-point number of reactors....... Using this model, five herd-testing strategies were evaluated: (1) milk-ELISA on all lactating cows; (2) milk-ELISA on lactating cows 4 years old; (4) faecal culture on all lactating cows; and (5) milk-ELISA plus faecal culture in series on all lactating cows. The five testing strategies were evaluated...
International Nuclear Information System (INIS)
Emery, L.
1993-01-01
A method of determining the deQing requirement of individual cavity higher-order modes (HOM) for a multi-cavity RF system is presented and applied to the APS ring. Since HOM resonator frequency values are to some degree uncertain, the HOM frequencies should be regarded as random variables in predicting the stability of the coupled bunch beam modes. A Monte Carlo simulation provides a histogram of the growth rates from which one obtains an estimate of the probability of instability. The damping of each HOM type is determined such that the damping effort is economized, i.e. no single HOM dominates the specified growth rate histogram
International Nuclear Information System (INIS)
Kim, Yochan; Park, Jinkyun; Jung, Wondea; Jang, Inseok; Hyun Seong, Poong
2015-01-01
Despite recent efforts toward data collection for supporting human reliability analysis, there remains a lack of empirical basis in determining the effects of performance shaping factors (PSFs) on human error probabilities (HEPs). To enhance the empirical basis regarding the effects of the PSFs, a statistical methodology using a logistic regression and stepwise variable selection was proposed, and the effects of the PSF on HEPs related with the soft controls were estimated through the methodology. For this estimation, more than 600 human error opportunities related to soft controls in a computerized control room were obtained through laboratory experiments. From the eight PSF surrogates and combinations of these variables, the procedure quality, practice level, and the operation type were identified as significant factors for screen switch and mode conversion errors. The contributions of these significant factors to HEPs were also estimated in terms of a multiplicative form. The usefulness and limitation of the experimental data and the techniques employed are discussed herein, and we believe that the logistic regression and stepwise variable selection methods will provide a way to estimate the effects of PSFs on HEPs in an objective manner. - Highlights: • It is necessary to develop an empirical basis for the effects of the PSFs on the HEPs. • A statistical method using a logistic regression and variable selection was proposed. • The effects of PSFs on the HEPs of soft controls were empirically investigated. • The significant factors were identified and their effects were estimated
Zamir, Ehud; Kong, George Y X; Kowalski, Tanya; Coote, Michael; Ang, Ghee Soon
2016-07-01
We hypothesize that: (1) Anterior chamber depth (ACD) is correlated with the relative anteroposterior position of the pupillary image, as viewed from the temporal side. (2) Such a correlation may be used as a simple quantitative tool for estimation of ACD. Two hundred sixty-six phakic eyes had lateral digital photographs taken from the temporal side, perpendicular to the visual axis, and underwent optical biometry (Nidek AL scanner). The relative anteroposterior position of the pupillary image was expressed using the ratio between: (1) lateral photographic temporal limbus to pupil distance ("E") and (2) lateral photographic temporal limbus to cornea distance ("Z"). In the first chronological half of patients (Correlation Series), E:Z ratio (EZR) was correlated with optical biometric ACD. The correlation equation was then used to predict ACD in the second half of patients (Prediction Series) and compared to their biometric ACD for agreement analysis. A strong linear correlation was found between EZR and ACD, R = -0.91, R 2 = 0.81. Bland-Altman analysis showed good agreement between predicted ACD using this method and the optical biometric ACD. The mean error was -0.013 mm (range -0.377 to 0.336 mm), standard deviation 0.166 mm. The 95% limits of agreement were ±0.33 mm. Lateral digital photography and EZR calculation is a novel method to quantitatively estimate ACD, requiring minimal equipment and training. EZ ratio may be employed in screening for angle closure glaucoma. It may also be helpful in outpatient medical clinic settings, where doctors need to judge the safety of topical or systemic pupil-dilating medications versus their risk of triggering acute angle closure glaucoma. Similarly, non ophthalmologists may use it to estimate the likelihood of acute angle closure glaucoma in emergency presentations.
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.
2009-01-01
To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.
Ali, Hussain; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Sharawi, Mohammad S.; Alouini, Mohamed-Slim
2017-01-01
Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.
Ali, Hussain
2017-01-09
Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.
A Streaming Algorithm for Online Estimation of Temporal and Spatial Extent of Delays
Directory of Open Access Journals (Sweden)
Kittipong Hiriotappa
2017-01-01
Full Text Available Knowing traffic congestion and its impact on travel time in advance is vital for proactive travel planning as well as advanced traffic management. This paper proposes a streaming algorithm to estimate temporal and spatial extent of delays online which can be deployed with roadside sensors. First, the proposed algorithm uses streaming input from individual sensors to detect a deviation from normal traffic patterns, referred to as anomalies, which is used as an early indication of delay occurrence. Then, a group of consecutive sensors that detect anomalies are used to temporally and spatially estimate extent of delay associated with the detected anomalies. Performance evaluations are conducted using a real-world data set collected by roadside sensors in Bangkok, Thailand, and the NGSIM data set collected in California, USA. Using NGSIM data, it is shown qualitatively that the proposed algorithm can detect consecutive occurrences of shockwaves and estimate their associated delays. Then, using a data set from Thailand, it is shown quantitatively that the proposed algorithm can detect and estimate delays associated with both recurring congestion and incident-induced nonrecurring congestion. The proposed algorithm also outperforms the previously proposed streaming algorithm.
Shaikh, Nader; Hoberman, Alejandro; Hum, Stephanie W; Alberty, Anastasia; Muniz, Gysella; Kurs-Lasky, Marcia; Landsittel, Douglas; Shope, Timothy
2018-06-01
Accurately estimating the probability of urinary tract infection (UTI) in febrile preverbal children is necessary to appropriately target testing and treatment. To develop and test a calculator (UTICalc) that can first estimate the probability of UTI based on clinical variables and then update that probability based on laboratory results. Review of electronic medical records of febrile children aged 2 to 23 months who were brought to the emergency department of Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania. An independent training database comprising 1686 patients brought to the emergency department between January 1, 2007, and April 30, 2013, and a validation database of 384 patients were created. Five multivariable logistic regression models for predicting risk of UTI were trained and tested. The clinical model included only clinical variables; the remaining models incorporated laboratory results. Data analysis was performed between June 18, 2013, and January 12, 2018. Documented temperature of 38°C or higher in children aged 2 months to less than 2 years. With the use of culture-confirmed UTI as the main outcome, cutoffs for high and low UTI risk were identified for each model. The resultant models were incorporated into a calculation tool, UTICalc, which was used to evaluate medical records. A total of 2070 children were included in the study. The training database comprised 1686 children, of whom 1216 (72.1%) were female and 1167 (69.2%) white. The validation database comprised 384 children, of whom 291 (75.8%) were female and 200 (52.1%) white. Compared with the American Academy of Pediatrics algorithm, the clinical model in UTICalc reduced testing by 8.1% (95% CI, 4.2%-12.0%) and decreased the number of UTIs that were missed from 3 cases to none. Compared with empirically treating all children with a leukocyte esterase test result of 1+ or higher, the dipstick model in UTICalc would have reduced the number of treatment delays by 10.6% (95% CI
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo [Div. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of)
2016-10-15
This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.
PDE-Foam - a probability-density estimation method using self-adapting phase-space binning
Dannheim, Dominik; Voigt, Alexander; Grahn, Karl-Johan; Speckmayer, Peter
2009-01-01
Probability-Density Estimation (PDE) is a multivariate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. To efficiently use large event samples to estimate the probability density, a binary search tree (range searching) is used in the PDE-RS implementation. It is a generalisation of standard likelihood methods and a powerful classification tool for problems with highly non-linearly correlated observables. In this paper, we present an innovative improvement of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multidimensional phase space, minimizing the variance of the signal and background densities inside the cells. The binned density information is stored in binary trees, allowing for a very ...
International Nuclear Information System (INIS)
Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo
2016-01-01
This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage
Directory of Open Access Journals (Sweden)
Jong Kyeom Lee
2016-10-01
Full Text Available This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.
Directory of Open Access Journals (Sweden)
S. Lin
2018-04-01
Full Text Available Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km. The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012 Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1 the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR is about 50 % (R2 = 0.52 and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64; 2 estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day, which has better performance than using MODIS 1-km NDVI/EVI product import; 3 using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.
Ettinger, Susanne; Mounaud, Loïc; Magill, Christina; Yao-Lafourcade, Anne-Françoise; Thouret, Jean-Claude; Manville, Vern; Negulescu, Caterina; Zuccaro, Giulio; De Gregorio, Daniela; Nardone, Stefano; Uchuchoque, Juan Alexis Luque; Arguedas, Anita; Macedo, Luisa; Manrique Llerena, Nélida
2016-10-01
The focus of this study is an analysis of building vulnerability through investigating impacts from the 8 February 2013 flash flood event along the Avenida Venezuela channel in the city of Arequipa, Peru. On this day, 124.5 mm of rain fell within 3 h (monthly mean: 29.3 mm) triggering a flash flood that inundated at least 0.4 km2 of urban settlements along the channel, affecting more than 280 buildings, 23 of a total of 53 bridges (pedestrian, vehicle and railway), and leading to the partial collapse of sections of the main road, paralyzing central parts of the city for more than one week. This study assesses the aspects of building design and site specific environmental characteristics that render a building vulnerable by considering the example of a flash flood event in February 2013. A statistical methodology is developed that enables estimation of damage probability for buildings. The applied method uses observed inundation height as a hazard proxy in areas where more detailed hydrodynamic modeling data is not available. Building design and site-specific environmental conditions determine the physical vulnerability. The mathematical approach considers both physical vulnerability and hazard related parameters and helps to reduce uncertainty in the determination of descriptive parameters, parameter interdependency and respective contributions to damage. This study aims to (1) enable the estimation of damage probability for a certain hazard intensity, and (2) obtain data to visualize variations in damage susceptibility for buildings in flood prone areas. Data collection is based on a post-flood event field survey and the analysis of high (sub-metric) spatial resolution images (Pléiades 2012, 2013). An inventory of 30 city blocks was collated in a GIS database in order to estimate the physical vulnerability of buildings. As many as 1103 buildings were surveyed along the affected drainage and 898 buildings were included in the statistical analysis. Univariate and
An adaptive spatio-temporal smoothing model for estimating trends and step changes in disease risk
Rushworth, Alastair; Lee, Duncan; Sarran, Christophe
2014-01-01
Statistical models used to estimate the spatio-temporal pattern in disease\\ud risk from areal unit data represent the risk surface for each time period with known\\ud covariates and a set of spatially smooth random effects. The latter act as a proxy\\ud for unmeasured spatial confounding, whose spatial structure is often characterised by\\ud a spatially smooth evolution between some pairs of adjacent areal units while other\\ud pairs exhibit large step changes. This spatial heterogeneity is not c...
Directory of Open Access Journals (Sweden)
S. Salihin
2017-10-01
Full Text Available This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD which was estimated by Global Positioning System (GPS processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Pedersen, Dorthe
2005-01-01
in four-dimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection......, and a texture model pruning strategy. Cross-validation carried out on clinical-quality scans of twelve volunteers indicates that ejection fraction and cardiac blood pool volumes can be estimated automatically and rapidly with accuracy on par with typical inter-observer variability....
Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.
2018-06-01
Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.
A case of lung cancer in a miner - An estimation of radon exposure and discussion of probable causes
International Nuclear Information System (INIS)
Snihs, J.O.; Walinder, Gunnar.
1977-01-01
One particular lung cancer case which was brought before the National Swedish Social Insurance Board as a possible case of industrial injury due to exposure to radon is described. The man concerned had worked in two mines during the period 1917-1944 and he was found to be suffering from lung cancer in 1961 when he was 69 years of age. He had been a moderate smoker for the previous 20 years, he had a healed lung tuberculosis and confirmed silicosis in stage 1. The mines in which he worked have been out of use for many years and they have bot been accessible for measurements of radon concentrations. The estimation of the radon concentrations is discussed on the basis of experience of the causes of radon occurrence in other mines with regard to their geology, ventilation and depth and the extent to which mine water was present. The estimated exposure was 600 WLM. With the given conditions there is a discussion on the partial and combined probabilities of lung cancer in the above case taking into account the type of lung cancer, the estimated exposure to radon and his smoking, silicosis, tuberculosis and age
On the expected value and variance for an estimator of the spatio-temporal product density function
DEFF Research Database (Denmark)
Rodríguez-Corté, Francisco J.; Ghorbani, Mohammad; Mateu, Jorge
Second-order characteristics are used to analyse the spatio-temporal structure of the underlying point process, and thus these methods provide a natural starting point for the analysis of spatio-temporal point process data. We restrict our attention to the spatio-temporal product density function......, and develop a non-parametric edge-corrected kernel estimate of the product density under the second-order intensity-reweighted stationary hypothesis. The expectation and variance of the estimator are obtained, and closed form expressions derived under the Poisson case. A detailed simulation study is presented...... to compare our close expression for the variance with estimated ones for Poisson cases. The simulation experiments show that the theoretical form for the variance gives acceptable values, which can be used in practice. Finally, we apply the resulting estimator to data on the spatio-temporal distribution...
International Nuclear Information System (INIS)
Khayat, Omid; Afarideh, Hossein; Mohammadnia, Meisam
2015-01-01
In the solid state nuclear track detectors of chemically etched type, nuclear tracks with center-to-center neighborhood of distance shorter than two times the radius of tracks will emerge as overlapping tracks. Track overlapping in this type of detectors causes tracks count losses and it becomes rather severe in high track densities. Therefore, tracks counting in this condition should include a correction factor for count losses of different tracks overlapping orders since a number of overlapping tracks may be counted as one track. Another aspect of the problem is the cases where imaging the whole area of the detector and counting all tracks are not possible. In these conditions a statistical generalization method is desired to be applicable in counting a segmented area of the detector and the results can be generalized to the whole surface of the detector. Also there is a challenge in counting the tracks in densely overlapped tracks because not sufficient geometrical or contextual information are available. It this paper we present a statistical counting method which gives the user a relation between the tracks overlapping probabilities on a segmented area of the detector surface and the total number of tracks. To apply the proposed method one can estimate the total number of tracks on a solid state detector of arbitrary shape and dimensions by approximating the tracks averaged area, whole detector surface area and some orders of tracks overlapping probabilities. It will be shown that this method is applicable in high and ultra high density tracks images and the count loss error can be enervated using a statistical generalization approach. - Highlights: • A correction factor for count losses of different tracks overlapping orders. • For the cases imaging the whole area of the detector is not possible. • Presenting a statistical generalization method for segmented areas. • Giving a relation between the tracks overlapping probabilities and the total tracks
Directory of Open Access Journals (Sweden)
Emil Bayramov
2016-05-01
Full Text Available The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution images acquired during 2006–2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2–10 (3471.04 sq km, 11–20 (971.66 sq km, 21–50 (692.44 sq km, 51–128 (191.38 sq km. The most critical oil leak sources with the frequency range of 41–128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.
Evaluation of spatial and temporal characteristics of GNSS-derived ZTD estimates in Nigeria
Isioye, Olalekan Adekunle; Combrinck, Ludwig; Botai, Joel
2018-05-01
This study presents an in-depth analysis to comprehend the spatial and temporal variability of zenith tropospheric delay (ZTD) over Nigeria during the period 2010-2014, using estimates from Global Navigation Satellite Systems (GNSS) data. GNSS data address the drawbacks in traditional techniques (e.g. radiosondes) by means of observing periodicities in ZTD. The ZTD estimates show weak spatial dependence among the stations, though this can be attributed to the density of stations in the network. Tidal oscillations are noticed at the GNSS stations. These oscillations have diurnal and semi-diurnal components. The diurnal components as seen from the ZTD are the principal source of the oscillations. This upshot may perhaps be ascribed to temporal variations in atmospheric water vapour on a diurnal scale. In addition, the diurnal ZTD cycles exhibited noteworthy seasonal dependence, with larger amplitudes in the rainy (wet) season and smaller ones in the harmattan (dry) season. Notably, the stations in the northern part of the country reach very high amplitudes in the months of June, July and August at the peak of the wet season, characterized by very high rainfall. This pinpoints the fact that in view of the small amount of atmospheric water vapour in the atmosphere, usually around 10%, its variations greatly influence the corresponding diurnal and seasonal discrepancies of ZTD. This study further affirms the prospective relevance of ground-based GNSS data to atmospheric studies. GNSS data analysis is therefore recommended as a tool for future exploration of Nigerian weather and climate.
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-07-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.
Dikbas, Salih; Altunbasak, Yucel
2013-08-01
In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.
2015-01-01
Traditionally, the Iowa DOT has used the Iowa Runoff Chart and single-variable regional regression equations (RREs) from a USGS report : (published in 1987) as the primary methods to estimate annual exceedance-probability discharge : (AEPD) for small...
International Nuclear Information System (INIS)
Corana, A.; Bortolan, G.; Casaleggio, A.
2004-01-01
We present and compare two automatic methods for dimension estimation from time series. Both methods, based on conceptually different approaches, work on the derivative of the bi-logarithmic plot of the correlation integral versus the correlation length (log-log plot). The first method searches for the most probable dimension values (MPDV) and associates to each of them a possible scaling region. The second one searches for the most flat intervals (MFI) in the derivative of the log-log plot. The automatic procedures include the evaluation of the candidate scaling regions using two reliability indices. The data set used to test the methods consists of time series from known model attractors with and without the addition of noise, structured time series, and electrocardiographic signals from the MIT-BIH ECG database. Statistical analysis of results was carried out by means of paired t-test, and no statistically significant differences were found in the large majority of the trials. Consistent results are also obtained dealing with 'difficult' time series. In general for a more robust and reliable estimate, the use of both methods may represent a good solution when time series from complex systems are analyzed. Although we present results for the correlation dimension only, the procedures can also be used for the automatic estimation of generalized q-order dimensions and pointwise dimension. We think that the proposed methods, eliminating the need of operator intervention, allow a faster and more objective analysis, thus improving the usefulness of dimension analysis for the characterization of time series obtained from complex dynamical systems
Directory of Open Access Journals (Sweden)
Neeta Nathani
2017-08-01
Full Text Available The Cognitive Radio usage has been estimated as non-emergency service with low volume traffic. Present work proposes an infrastructure based Cognitive Radio network and probability of success of CR traffic in licensed band. The Cognitive Radio nodes will form cluster. The cluster nodes will communicate on Industrial, Scientific and Medical band using IPv6 over Low-Power Wireless Personal Area Network based protocol from sensor to Gateway Cluster Head. For Cognitive Radio-Media Access Control protocol for Gateway to Cognitive Radio-Base Station communication, it will use vacant channels of licensed band. Standalone secondary users of Cognitive Radio Network shall be considered as a Gateway with one user. The Gateway will handle multi-channel multi radio for communication with Base Station. Cognitive Radio Network operators shall define various traffic data accumulation counters at Base Station for storing signal strength, Carrier-to-Interference and Noise Ratio, etc. parameters and record channel occupied/vacant status. The researches has been done so far using hour as interval is too long for parameters like holding time expressed in minutes and hence channel vacant/occupied status time is only probabilistically calculated. In the present work, an infrastructure based architecture has been proposed which polls channel status each minute in contrary to hourly polling of data. The Gateways of the Cognitive Radio Network shall monitor status of each Primary User periodically inside its working range and shall inform to Cognitive Radio- Base Station for preparation of minutewise database. For simulation, the occupancy data for all primary user channels were pulled in one minute interval from a live mobile network. Hourly traffic data and minutewise holding times has been analyzed to optimize the parameters of Seasonal Auto Regressive Integrated Moving Average prediction model. The blocking probability of an incoming Cognitive Radio call has been
DEFF Research Database (Denmark)
Rojas-Nandayapa, Leonardo
Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... analytic expression for the distribution function of a sum of random variables. The presence of heavy-tailed random variables complicates the problem even more. The objective of this dissertation is to provide better approximations by means of sharp asymptotic expressions and Monte Carlo estimators...
Energy Technology Data Exchange (ETDEWEB)
O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton, London SM2 5PT (United Kingdom)
2016-01-15
Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking
Warren B. Cohen; Hans-Erik Andersen; Sean P. Healey; Gretchen G. Moisen; Todd A. Schroeder; Christopher W. Woodall; Grant M. Domke; Zhiqiang Yang; Robert E. Kennedy; Stephen V. Stehman; Curtis Woodcock; Jim Vogelmann; Zhe Zhu; Chengquan. Huang
2015-01-01
We are developing a system that provides temporally consistent biomass estimates for national greenhouse gas inventory reporting to the United Nations Framework Convention on Climate Change. Our model-assisted estimation framework relies on remote sensing to scale from plot measurements to lidar strip samples, to Landsat time series-based maps. As a demonstration, new...
International Nuclear Information System (INIS)
Mahfouz, Z.; Verloock, L.; Joseph, W.; Tanghe, E.; Gati, A.; Wiart, J.; Lautru, D.; Hanna, V. F.; Martens, L.
2013-01-01
The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed down-link packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days. (authors)
Ebrahimian, Hossein; Jalayer, Fatemeh
2017-08-29
In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the model parameters, conditioned on the available catalogue of events occurred before the forecasting interval, but also the uncertainty in the sequence of events that are going to happen during the forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after each of the three main events within the sequence, which can predict the seismicity within plus/minus two standard deviations from the mean estimate within the few hours elapsed after the main event.
Mahfouz, Zaher; Verloock, Leen; Joseph, Wout; Tanghe, Emmeric; Gati, Azeddine; Wiart, Joe; Lautru, David; Hanna, Victor Fouad; Martens, Luc
2013-12-01
The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed downlink packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days.
Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan
2016-08-15
This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.
The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.
Strohmeier, Daniel; Bekhti, Yousra; Haueisen, Jens; Gramfort, Alexandre
2016-10-01
Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l 1 -norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l 0.5 -quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.
Estimating Activity Patterns Using Spatio-temporal Data of Cellphone Networks
Directory of Open Access Journals (Sweden)
Zahedi Seyedmostafa
2016-01-01
Full Text Available The tendency towards using activity-based models to predict trip demand has increased dramatically over recent years, but these models have suffered insufficient data for calibration. This paper discusses ways to process the cellphone spatio-temporal data in a manner that makes it comprehensible for traffic interpretations and proposes methods on how to infer urban mobility and activity patterns from the aforementioned data. Movements of each subscriber is described by a sequence of stays and trips and each stay is labeled by an activity. The type of activities are estimated using features such as land use, duration of stay, frequency of visit, arrival time to that activity and its distance from home. Finally, the chains of trips are identified and different patterns that citizens follow to participate in activities are determined. The data comprises 144 million records of the location of 300,000 citizens of Shiraz at five-minute intervals.
DEFF Research Database (Denmark)
Ettema, Jehan Frans; Østergaard, Søren; Kristensen, Anders Ringgaard
2009-01-01
, the data has been used to estimate the random effect of herd on disease prevalence and to find conditional probabilities of cows being lame, given the presence of the three diseases. By considering the 50 herds representative for the Danish population, the estimates for risk factors, conditional...
Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.
2017-08-14
A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.
Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2015-05-15
The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.
Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
2016-01-01
Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809
Directory of Open Access Journals (Sweden)
Matthias Deliano
Full Text Available Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.
International Nuclear Information System (INIS)
Arab, M.N.; Ayaz, M.
2004-01-01
The performance of transmission line insulator is greatly affected by dust, fumes from industrial areas and saline deposit near the coast. Such pollutants in the presence of moisture form a coating on the surface of the insulator, which in turn allows the passage of leakage current. This leakage builds up to a point where flashover develops. The flashover is often followed by permanent failure of insulation resulting in prolong outages. With the increase in system voltage owing to the greater demand of electrical energy over the past few decades, the importance of flashover due to pollution has received special attention. The objective of the present work was to study the performance of overhead line insulators in the presence of contaminants such as induced salts. A detailed review of the literature and the mechanisms of insulator flashover due to the pollution are presented. Experimental investigations on the behavior of overhead line insulators under industrial salt contamination are carried out. A special fog chamber was designed in which the contamination testing of insulators was carried out. Flashover behavior under various degrees of contamination of insulators with the most common industrial fume components such as Nitrate and Sulphate compounds was studied. Substituting the normal distribution parameter in the probability distribution function based on maximum likelihood develops a statistical method. The method gives a high accuracy in the estimation of the 50% flashover voltage, which is then used to evaluate the critical flashover index at various contamination levels. The critical flashover index is a valuable parameter in insulation design for numerous applications. (author)
Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.
2013-01-01
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.
INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
Opitz, Thomas
2018-05-25
This work is motivated by the challenge organized for the 10th International Conference on Extreme-Value Analysis (EVA2017) to predict daily precipitation quantiles at the 99.8% level for each month at observed and unobserved locations. Our approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation intensities that incorporates spatial and temporal random effects. Then, we use the Bernoulli and generalized Pareto (GP) distributions to model the rate and size of threshold exceedances, respectively, which we also assume to vary in space and time. The latent random effects are modeled additively using Gaussian process priors, which provide high flexibility and interpretability. We develop a penalized complexity (PC) prior specification for the tail index that shrinks the GP model towards the exponential distribution, thus preventing unrealistically heavy tails. Fast and accurate estimation of the posterior distributions is performed thanks to the integrated nested Laplace approximation (INLA). We illustrate this methodology by modeling the daily precipitation data provided by the EVA2017 challenge, which consist of observations from 40 stations in the Netherlands recorded during the period 1972–2016. Capitalizing on INLA’s fast computational capacity and powerful distributed computing resources, we conduct an extensive cross-validation study to select the model parameters that govern the smoothness of trends. Our results clearly outperform simple benchmarks and are comparable to the best-scoring approaches of the other teams.
Directory of Open Access Journals (Sweden)
Steve Wathen
Full Text Available Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians, and plants within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness or declined consistently with increasing elevation (herpetofauna and birds. Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.
Migliorati, Giovanni; Nobile, Fabio; Tempone, Raul
2015-01-01
We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability
Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.
2010-01-01
A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].
International Nuclear Information System (INIS)
Larbi, M.; Besnier, P.; Pecqueux, B.
2014-01-01
This paper treats about the risk analysis of an EMC default using a statistical approach based on reliability methods. A probability of failure (i.e. probability of exceeding a threshold) of an induced current by crosstalk is computed by taking into account uncertainties on input parameters influencing extreme levels of interference in the context of transmission lines. Results are compared to Monte Carlo simulation (MCS). (authors)
Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.
Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun
2018-01-01
Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.
Macedo, Lucas Saran; Kawakubo, Fernando Shinji
2017-10-01
Agricultural production is one of the most important Brazilian economic activities accounting for about 21,5% of total Gross Domestic Product. In this scenario, the use of satellite images for estimating biophysical parameters along the phenological development of agricultural crops allows the conclusion about the sanity of planting and helps the projection on design production trends. The objective of this study is to analyze the temporal patterns and variation of six vegetion indexes obtained from the bands of Sentinel 2A satellite, associated with greenness (NDVI and ClRE), senescence (mARI and PSRI) and water content (DSWI and NDWI) to estimate maize production. The temporal pattern of the indices was analyzed in function of productivity data collected in-situ. The results obtained evidenced the importance of the SWIR and Red Edge ranges with Pearson correlation values of the temporal mean for NDWI 0.88 and 0.76 for CLRE.
Hofmann, K.M.; Gavrilla, D.M.
2009-01-01
We present a system for the estimation of unconstrained 3D human upper body movement from multiple cameras. Its main novelty lies in the integration of three components: single frame pose recovery, temporal integration and model adaptation. Single frame pose recovery consists of a hypothesis
International Nuclear Information System (INIS)
Soloviov, Vladyslav; Pysmenniy, Yevgen
2015-01-01
This paper describes some general methodological aspects of the assessment of the damage to human life and health caused by a hypothetical nuclear accident at the nuclear power plant (NPP). Probability estimation of death (due to cancer and non-cancer effects of radiation injury), disability and incapacity of individuals were made by taking into account the regulations of Ukraine. According to the assessment, the probability of death due to cancer and non-cancer effects of radiation damage to individuals who received radiation dose of 1 Sv is equal to 0.09. Probability of disability of 1, 2 or 3 group regardless of the radiation dose is 0.009, 0.0054, 0.027, respectively. Probability of temporary disability of the individual who received dose equal to 33 mSv (the level of potential exposure in a hypothetical nuclear accident at the NPP) is equal 0.16. This probability estimation of potential harm to human health and life caused by a hypothetical nuclear accident can be used for NPP in different countries using requirements of regulations in these countries. And also to estimate the amount of insurance payments due to the nuclear damage in the event of a nuclear accident at the NPP or other nuclear industry enterprise. (author)
Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen
2013-02-01
The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.
Directory of Open Access Journals (Sweden)
Kyu-Sung Hwang
2017-01-01
Full Text Available We study the secrecy outage probability of the amplify-and-forward (AF relaying protocol, which consists of one source, one destination, multiple relays, and multiple eavesdroppers. In this system, the aim is to transmit the confidential messages from a source to a destination via the selected relay in presence of eavesdroppers. Moreover, partial relay selection scheme is utilized for relay selection based on outdated channel state information where only neighboring channel information (source-relays is available and passive eavesdroppers are considered where a transmitter does not have any knowledge of eavesdroppers’ channels. Specifically, we offer the exact secrecy outage probability of the proposed system in a one-integral form as well as providing the asymptotic secrecy outage probability in a closed-form. Numerical examples are given to verify our provided analytical results for different system conditions.
Statistical model estimating the occurrence of otitis media from temporal bone pneumatization
DEFF Research Database (Denmark)
Homøe, P; Lynnerup, N; Rasmussen, N
1994-01-01
In order to investigate the relationship between the pneumatization of temporal bones and the occurrence of otitis media in Greenlandic Inuit, 36 Greenlandic Inuit were examined by radiography of the temporal bones. The pneumatized cell area was measured planimetrically. All subjects answered...
Estimation of PHI (γ,n) average probability for complex nuclei in the quasi-deuteron region
International Nuclear Information System (INIS)
Ferreira, M.C. da S.
1977-01-01
The average probabilities of (γ,n) reactions for complexe nuclei of 6 C 12 , 19 F 19 , 25 Mn 55 , 79 Au 197 and 92 U 238 , in the energy range from giant resonance end to photomesonic threshold (quasi-deuteron region), using values of cross sections per quantum equivalent to 300 Mev produced by Bremsstrahlung photons in the Frascati and Orsay accelerators were determined. The probabilities were also calculated using nuclear transparence for protons and neutrons, resultants from quasi-deuteron disintegration. The transparence formulaes were determined by optical model. (M.C.K.) [pt
Directory of Open Access Journals (Sweden)
X. Wang
2012-10-01
Full Text Available To make first-order estimates of the probability of moraine-dammed lake outburst flood (MDLOF and prioritize the probabilities of breaching posed by potentially dangerous moraine-dammed lakes (PDMDLs in the Chinese Himalayas, an objective approach is presented. We first select five indicators to identify PDMDLs according to four predesigned criteria. The climatic background was regarded as the climatic precondition of the moraine-dam failure, and under different climatic preconditions, we distinguish the trigger mechanisms of MDLOFs and subdivide them into 17 possible breach modes, with each mode having three or four components; we combined the precondition, modes and components to construct a decision-making tree of moraine-dam failure. Conversion guidelines were established so as to quantify the probabilities of components of a breach mode employing the historic performance method combined with expert knowledge and experience. The region of the Chinese Himalayas was chosen as a study area where there have been frequent MDLOFs in recent decades. The results show that the breaching probabilities (P of 142 PDMDLs range from 0.037 to 0.345, and they can be further categorized as 43 lakes with very high breach probabilities (P ≥ 0.24, 47 lakes with high breach probabilities (0.18 ≤ P < 0.24, 24 lakes with mid-level breach probabilities (0.12 ≤ P < 0.18, 24 lakes with low breach probabilities (0.06 ≤ P < 0.12, and four lakes with very low breach probabilities (p < 0.06.
DEFF Research Database (Denmark)
Kim, Seung-Woo; Suh, Kyung-Duck; Burcharth, Hans F.
2010-01-01
The breakwaters are designed by considering the cost optimization because a human risk is seldom considered. Most breakwaters, however, were constructed without considering the cost optimization. In this study, the optimum return period, target failure probability and the partial safety factors...
International Nuclear Information System (INIS)
Pensado, Osvaldo; Mancillas, James
2007-01-01
An approach is described to estimate mean consequences and confidence bounds on the mean of seismic events with low probability of breaching components of the engineered barrier system. The approach is aimed at complementing total system performance assessment models used to understand consequences of scenarios leading to radionuclide releases in geologic nuclear waste repository systems. The objective is to develop an efficient approach to estimate mean consequences associated with seismic events of low probability, employing data from a performance assessment model with a modest number of Monte Carlo realizations. The derived equations and formulas were tested with results from a specific performance assessment model. The derived equations appear to be one method to estimate mean consequences without having to use a large number of realizations. (authors)
Directory of Open Access Journals (Sweden)
Olariu E
2017-09-01
Full Text Available Elena Olariu,1 Kevin K Cadwell,1 Elizabeth Hancock,1 David Trueman,1 Helene Chevrou-Severac2 1PHMR Ltd, London, UK; 2Takeda Pharmaceuticals International AG, Zurich, Switzerland Objective: Although Markov cohort models represent one of the most common forms of decision-analytic models used in health care decision-making, correct implementation of such models requires reliable estimation of transition probabilities. This study sought to identify consensus statements or guidelines that detail how such transition probability matrices should be estimated. Methods: A literature review was performed to identify relevant publications in the following databases: Medline, Embase, the Cochrane Library, and PubMed. Electronic searches were supplemented by manual-searches of health technology assessment (HTA websites in Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and the UK. One reviewer assessed studies for eligibility. Results: Of the 1,931 citations identified in the electronic searches, no studies met the inclusion criteria for full-text review, and no guidelines on transition probabilities in Markov models were identified. Manual-searching of the websites of HTA agencies identified ten guidelines on economic evaluations (Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and UK. All identified guidelines provided general guidance on how to develop economic models, but none provided guidance on the calculation of transition probabilities. One relevant publication was identified following review of the reference lists of HTA agency guidelines: the International Society for Pharmacoeconomics and Outcomes Research taskforce guidance. This provided limited guidance on the use of rates and probabilities. Conclusions: There is limited formal guidance available on the estimation of transition probabilities for use in decision-analytic models. Given the increasing importance of cost
Directory of Open Access Journals (Sweden)
Nils Ternès
2017-05-01
Full Text Available Abstract Background Thanks to the advances in genomics and targeted treatments, more and more prediction models based on biomarkers are being developed to predict potential benefit from treatments in a randomized clinical trial. Despite the methodological framework for the development and validation of prediction models in a high-dimensional setting is getting more and more established, no clear guidance exists yet on how to estimate expected survival probabilities in a penalized model with biomarker-by-treatment interactions. Methods Based on a parsimonious biomarker selection in a penalized high-dimensional Cox model (lasso or adaptive lasso, we propose a unified framework to: estimate internally the predictive accuracy metrics of the developed model (using double cross-validation; estimate the individual survival probabilities at a given timepoint; construct confidence intervals thereof (analytical or bootstrap; and visualize them graphically (pointwise or smoothed with spline. We compared these strategies through a simulation study covering scenarios with or without biomarker effects. We applied the strategies to a large randomized phase III clinical trial that evaluated the effect of adding trastuzumab to chemotherapy in 1574 early breast cancer patients, for which the expression of 462 genes was measured. Results In our simulations, penalized regression models using the adaptive lasso estimated the survival probability of new patients with low bias and standard error; bootstrapped confidence intervals had empirical coverage probability close to the nominal level across very different scenarios. The double cross-validation performed on the training data set closely mimicked the predictive accuracy of the selected models in external validation data. We also propose a useful visual representation of the expected survival probabilities using splines. In the breast cancer trial, the adaptive lasso penalty selected a prediction model with 4
Prah, Philip; Hickson, Ford; Bonell, Chris; McDaid, Lisa M; Johnson, Anne M; Wayal, Sonali; Clifton, Soazig; Sonnenberg, Pam; Nardone, Anthony; Erens, Bob; Copas, Andrew J; Riddell, Julie; Weatherburn, Peter; Mercer, Catherine H
2016-01-01
Objective: To examine sociodemographic and behavioural differences between men whohave sex with men (MSM) participating in recent UK convenience surveys and a national probability sample survey.\\ud Methods: We compared 148 MSM aged 18–64 years interviewed for Britain's third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) undertaken in 2010–2012, with men inthe same age range participating in contemporaneous convenience surveys of MSM: 15 500 British resident men in the European...
Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar
Directory of Open Access Journals (Sweden)
Shouguo Yang
2015-12-01
Full Text Available A novel spatio-temporal 2-dimensional (2-D processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD and direction of arrival (DOA, and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.
Ben Issaid, Chaouki; Park, Kihong; Alouini, Mohamed-Slim
2017-01-01
When assessing the performance of the free space optical (FSO) communication systems, the outage probability encountered is generally very small, and thereby the use of nave Monte Carlo simulations becomes prohibitively expensive. To estimate these rare event probabilities, we propose in this work an importance sampling approach which is based on the exponential twisting technique to offer fast and accurate results. In fact, we consider a variety of turbulence regimes, and we investigate the outage probability of FSO communication systems, under a generalized pointing error model based on the Beckmann distribution, for both single and multihop scenarios. Selected numerical simulations are presented to show the accuracy and the efficiency of our approach compared to naive Monte Carlo.
Ben Issaid, Chaouki
2017-07-28
When assessing the performance of the free space optical (FSO) communication systems, the outage probability encountered is generally very small, and thereby the use of nave Monte Carlo simulations becomes prohibitively expensive. To estimate these rare event probabilities, we propose in this work an importance sampling approach which is based on the exponential twisting technique to offer fast and accurate results. In fact, we consider a variety of turbulence regimes, and we investigate the outage probability of FSO communication systems, under a generalized pointing error model based on the Beckmann distribution, for both single and multihop scenarios. Selected numerical simulations are presented to show the accuracy and the efficiency of our approach compared to naive Monte Carlo.
Prah, Philip; Hickson, Ford; Bonell, Chris; McDaid, Lisa M; Johnson, Anne M; Wayal, Sonali; Clifton, Soazig; Sonnenberg, Pam; Nardone, Anthony; Erens, Bob; Copas, Andrew J; Riddell, Julie; Weatherburn, Peter; Mercer, Catherine H
2016-09-01
To examine sociodemographic and behavioural differences between men who have sex with men (MSM) participating in recent UK convenience surveys and a national probability sample survey. We compared 148 MSM aged 18-64 years interviewed for Britain's third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) undertaken in 2010-2012, with men in the same age range participating in contemporaneous convenience surveys of MSM: 15 500 British resident men in the European MSM Internet Survey (EMIS); 797 in the London Gay Men's Sexual Health Survey; and 1234 in Scotland's Gay Men's Sexual Health Survey. Analyses compared men reporting at least one male sexual partner (past year) on similarly worded questions and multivariable analyses accounted for sociodemographic differences between the surveys. MSM in convenience surveys were younger and better educated than MSM in Natsal-3, and a larger proportion identified as gay (85%-95% vs 62%). Partner numbers were higher and same-sex anal sex more common in convenience surveys. Unprotected anal intercourse was more commonly reported in EMIS. Compared with Natsal-3, MSM in convenience surveys were more likely to report gonorrhoea diagnoses and HIV testing (both past year). Differences between the samples were reduced when restricting analysis to gay-identifying MSM. National probability surveys better reflect the population of MSM but are limited by their smaller samples of MSM. Convenience surveys recruit larger samples of MSM but tend to over-represent MSM identifying as gay and reporting more sexual risk behaviours. Because both sampling strategies have strengths and weaknesses, methods are needed to triangulate data from probability and convenience surveys. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Prah, Philip; Hickson, Ford; Bonell, Chris; McDaid, Lisa M; Johnson, Anne M; Wayal, Sonali; Clifton, Soazig; Sonnenberg, Pam; Nardone, Anthony; Erens, Bob; Copas, Andrew J; Riddell, Julie; Weatherburn, Peter; Mercer, Catherine H
2016-01-01
Objective To examine sociodemographic and behavioural differences between men who have sex with men (MSM) participating in recent UK convenience surveys and a national probability sample survey. Methods We compared 148 MSM aged 18–64 years interviewed for Britain's third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) undertaken in 2010–2012, with men in the same age range participating in contemporaneous convenience surveys of MSM: 15 500 British resident men in the European MSM Internet Survey (EMIS); 797 in the London Gay Men's Sexual Health Survey; and 1234 in Scotland's Gay Men's Sexual Health Survey. Analyses compared men reporting at least one male sexual partner (past year) on similarly worded questions and multivariable analyses accounted for sociodemographic differences between the surveys. Results MSM in convenience surveys were younger and better educated than MSM in Natsal-3, and a larger proportion identified as gay (85%–95% vs 62%). Partner numbers were higher and same-sex anal sex more common in convenience surveys. Unprotected anal intercourse was more commonly reported in EMIS. Compared with Natsal-3, MSM in convenience surveys were more likely to report gonorrhoea diagnoses and HIV testing (both past year). Differences between the samples were reduced when restricting analysis to gay-identifying MSM. Conclusions National probability surveys better reflect the population of MSM but are limited by their smaller samples of MSM. Convenience surveys recruit larger samples of MSM but tend to over-represent MSM identifying as gay and reporting more sexual risk behaviours. Because both sampling strategies have strengths and weaknesses, methods are needed to triangulate data from probability and convenience surveys. PMID:26965869
International Nuclear Information System (INIS)
Garvie, N.W.; Salehzahi, F.; Kuitert, L.
2002-01-01
Full text: The PIOPED survey confirmed the significance of the high probability ventilation/perfusion scan (HP V/Q scan) in establishing the diagnosis of pulmonary embolism (PE). In an interesting sentence, however, the authors indicated that 'the clinicians' assessment of the likelihood of PE (prior probability)' can substantially increase the predictive value of the investigation. The criteria used for this assessment were not published, and this statement conflicts with the belief that the clinical diagnosis of pulmonary embolism is unreliable. A medical history was obtained from 668 patients undergoing V/Q lung scans for suspected PE, and certain clinical features linked to PE were, when present, documented. These included pleuritic chest pain, haemoptysis, dyspnoea, clinical evidence of DVT, recent surgery and right ventricular strain pattern an ECG. D-Dimer levels and initial arterial oxygen saturation (PaO2) levels were also obtained. The prevalence of these clinical and biochemical criteria was then compared between HP (61) and normal (171) scans after exclusion of all equivocal or intermediate scan outcomes (436), (where lung scintigraphy was unable to provide a definite diagnosis). D-Dimer and/or oxygen saturation levels, were similarly compared in each group. A true positive result was scored for each clinical or biochemical criterion when linked with a high probability scan and, conversely, a false positive score when the scan outcome was normal. In this fashion, the positive predictive value (PPV) and, when appropriate, the negative predictive value (NPV) was obtained for each risk factor. In the context of PE, DVT and post-operative status prove the more reliable predictors of a high probability outcome. Where both features were present, the PPV rose to 0.57. A normal D-Dimer level was a better excluder of PE than a normal oxygen saturation level (NPV 0.78-v-0.44). Conversely, a raised D-Dimer, or reduced oxygen saturation, were both a little value in
Directory of Open Access Journals (Sweden)
Pablo J. Villacorta
2016-07-01
Full Text Available Markov chains are well-established probabilistic models of a wide variety of real systems that evolve along time. Countless examples of applications of Markov chains that successfully capture the probabilistic nature of real problems include areas as diverse as biology, medicine, social science, and engineering. One interesting feature which characterizes certain kinds of Markov chains is their stationary distribution, which stands for the global fraction of time the system spends in each state. The computation of the stationary distribution requires precise knowledge of the transition probabilities. When the only information available is a sequence of observations drawn from the system, such probabilities have to be estimated. Here we review an existing method to estimate fuzzy transition probabilities from observations and, with them, obtain the fuzzy stationary distribution of the resulting fuzzy Markov chain. The method also works when the user directly provides fuzzy transition probabilities. We provide an implementation in the R environment that is the first available to the community and serves as a proof of concept. We demonstrate the usefulness of our proposal with computational experiments on a toy problem, namely a time-homogeneous Markov chain that guides the randomized movement of an autonomous robot that patrols a small area.
Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios
2016-06-01
Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.
2017-03-23
Logistic Regression to Estimate the Median Will-Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle, B.S...not the other. We are able to give logistic regression models to program managers that identify several program characteristics for either...considered acceptable. We recommend the use of our logistic models as a tool to manage a portfolio of programs in order to gain potential elusive
Yang, Tao; Wang, Chao; Yu, Zhongbo; Xu, Feng
2013-10-01
Since the launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided us with a new method to estimate terrestrial water storage (TWS) variations by measuring earth gravity change with unprecedented accuracy. Thus far, a number of standardized GRACE-born TWS products are published by different international research teams. However, no characterization of spatio-temporal patterns for different GRACE hydrology products from the global perspective could be found. It is still a big challenge for the science community to identify the reliable global measurement of TWS anomalies due to our limited knowledge on the true value. Hence, it is urgently necessary to evaluate the uncertainty for various global estimates of the GRACE-born TWS changes by a number of international research organizations. Toward this end, this article presents an in-depth analysis for various GRACE-born and GLDAS-based estimates for changes of global terrestrial water storage. The work characterizes the inter-annual and intra-annual variability, probability density variations, and spatial patterns among different GRACE-born TWS estimates over six major continents, and compares them with results from GLDAS simulations. The underlying causes of inconsistency between GRACE- and GLDAS-born TWS estimates are thoroughly analyzed with an aim to improve our current knowledge in monitoring global TWS change. With a comprehensive consideration of the advantages and disadvantages among GRACE- and GLDAS-born TWS anomalies, a summary is thereafter recommended as a rapid reference for scientists, end-users, and policy-makers in the practices of global TWS change research. To our best knowledge, this work is the first attempt to characterize difference and uncertainty among various GRACE-born terrestrial water storage changes over the major continents estimated by a number of international research organizations. The results can provide beneficial reference to usage of
Fetterly, Kenneth A; Favazza, Christopher P
2016-08-07
Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9× greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the
Improving Ranking Using Quantum Probability
Melucci, Massimo
2011-01-01
The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...
A Spatio-Temporal Based Estimation of Sequestered Carbon in the ...
African Journals Online (AJOL)
The vegetation in the Tarkwa Mining Area (TMA) has experienced changes as a result of population growth, urbanization, mining activities and illegal chainsaw operations and this has led to an increase in temperature over the past years. Therefore, studying its forest biomass carbon (C) stock and its spatio-temporal ...
Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.
Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H
2016-01-01
Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.
INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
Opitz, Thomas; Huser, Raphaë l; Bakka, Haakon; Rue, Haavard
2018-01-01
approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for
International Nuclear Information System (INIS)
Carta, Jose A.; Ramirez, Penelope; Velazquez, Sergio
2008-01-01
Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error ε made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R 2 statistic (R a 2 ). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R a 2 statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R a 2 increases
Energy Technology Data Exchange (ETDEWEB)
Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Ramirez, Penelope; Velazquez, Sergio [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain)
2008-10-15
Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error {epsilon} made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R{sup 2} statistic (R{sub a}{sup 2}). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R{sub a}{sup 2} statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R{sub a}{sup 2} increases. (author)
Energy Technology Data Exchange (ETDEWEB)
Nishiwaki, Yasushi [Nuclear Reactor Laboratory, Tokyo Institute of Technology, Tokyo (Japan); Nuclear Reactor Laboratoroy, Kinki University, Fuse City, Osaka Precture (Japan)
1961-11-25
Since it has been observed in Spring of 1954 that a considerable amount of fission products mixture fell with the rain following a large scale nuclear detonation conducted in Bikini area in the South Pacific by the United States Atomic Energy Commission, it has become important, especially from the health physics standpoint, to estimate the effective average age of the fission products mixture after the nuclear detonation. If the energy transferred to the atmospheric air at the time of nuclear detonation is large enough (order of megaton at the distance of about 4000 km), the probable time and test site of nuclear detonation may be estimated with considerable accuracy, from the records of the pressure wave caused by the detonation in the microbarographs at different meteorological stations. Even in this case, in order to estimate the possible correlation between the artificial radioactivity observed in the rain and the probable detonation, it is often times desirable to estimate the effective age of the fission products mixture in the rain from the decay measurement of the radioactivity.
International Nuclear Information System (INIS)
Nishiwaki, Yasushi
1961-01-01
Since it has been observed in Spring of 1954 that a considerable amount of fission products mixture fell with the rain following a large scale nuclear detonation conducted in Bikini area in the South Pacific by the United States Atomic Energy Commission, it has become important, especially from the health physics standpoint, to estimate the effective average age of the fission products mixture after the nuclear detonation. If the energy transferred to the atmospheric air at the time of nuclear detonation is large enough (order of megaton at the distance of about 4000 km), the probable time and test site of nuclear detonation may be estimated with considerable accuracy, from the records of the pressure wave caused by the detonation in the microbarographs at different meteorological stations. Even in this case, in order to estimate the possible correlation between the artificial radioactivity observed in the rain and the probable detonation, it is often times desirable to estimate the effective age of the fission products mixture in the rain from the decay measurement of the radioactivity
Karim, Mohammad Ehsanul; Platt, Robert W
2017-06-15
Correct specification of the inverse probability weighting (IPW) model is necessary for consistent inference from a marginal structural Cox model (MSCM). In practical applications, researchers are typically unaware of the true specification of the weight model. Nonetheless, IPWs are commonly estimated using parametric models, such as the main-effects logistic regression model. In practice, assumptions underlying such models may not hold and data-adaptive statistical learning methods may provide an alternative. Many candidate statistical learning approaches are available in the literature. However, the optimal approach for a given dataset is impossible to predict. Super learner (SL) has been proposed as a tool for selecting an optimal learner from a set of candidates using cross-validation. In this study, we evaluate the usefulness of a SL in estimating IPW in four different MSCM simulation scenarios, in which we varied the specification of the true weight model specification (linear and/or additive). Our simulations show that, in the presence of weight model misspecification, with a rich and diverse set of candidate algorithms, SL can generally offer a better alternative to the commonly used statistical learning approaches in terms of MSE as well as the coverage probabilities of the estimated effect in an MSCM. The findings from the simulation studies guided the application of the MSCM in a multiple sclerosis cohort from British Columbia, Canada (1995-2008), to estimate the impact of beta-interferon treatment in delaying disability progression. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Gogolak, C.V.
1986-11-01
The concentration of a contaminant measured in a particular medium might be distributed as a positive random variable when it is present, but it may not always be present. If there is a level below which the concentration cannot be distinguished from zero by the analytical apparatus, a sample from such a population will be censored on the left. The presence of both zeros and positive values in the censored portion of such samples complicates the problem of estimating the parameters of the underlying positive random variable and the probability of a zero observation. Using the method of maximum likelihood, it is shown that the solution to this estimation problem reduces largely to that of estimating the parameters of the distribution truncated at the point of censorship. The maximum likelihood estimate of the proportion of zero values follows directly. The derivation of the maximum likelihood estimates for a lognormal population with zeros is given in detail, and the asymptotic properties of the estimates are examined. The estimation method was used to fit several different distributions to a set of severely censored 85 Kr monitoring data from six locations at the Savannah River Plant chemical separations facilities
Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J
2014-02-01
Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model
2018-01-30
home range maintenance or attraction to or avoidance of landscape features, including roads (Morales et al. 2004, McClintock et al. 2012). For example...radiotelemetry and extensive road survey data are used to generate the first density estimates available for the species. The results show that southern...secretive snakes that combines behavioral observations of snake road crossing speed, systematic road survey data, and simulations of spatial
DEFF Research Database (Denmark)
Cryer, Colin; Miller, Ted R; Lyons, Ronan A
2017-01-01
in regions of Canada, Denmark, Greece, Spain and the USA. International Classification of Diseases (ICD)-9 or ICD-10 4-digit/character injury diagnosis-specific ED attendance and inpatient admission counts were provided, based on a common protocol. Diagnosis-specific and region-specific PrAs with 95% CIs...... diagnoses with high estimated PrAs. These diagnoses can be used as the basis for more valid international comparisons of life-threatening injury, based on hospital discharge data, for countries with well-developed healthcare and data collection systems....
Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.
International Nuclear Information System (INIS)
Wassef, W.A.
1982-01-01
Estimates and techniques that are valid to calculate the linear extrapolation distance for an infinitely long circular cylindrical absorbing region are reviewed. Two estimates, in particular, are put into consideration, that is the most probable and the value resulting from an approximate technique based on matching the integral transport equation inside the absorber with the diffusion approximation in the surrounding infinite scattering medium. Consequently, the effective diffusion parameters and the blackness of the cylinder are derived and subjected to comparative studies. A computer code is set up to calculate and compare the different parameters, which is useful in reactor analysis and serves to establish a beneficial estimates that are amenable to direct application to reactor design codes
Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media
Watson, Keri B.; Wood, Spencer A.; Ricketts, Taylor H.
2016-01-01
Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18–20.2 at 95% confidence) to Vermont’s tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making. PMID:27611325
Spatio-Temporal Audio Enhancement Based on IAA Noise Covariance Matrix Estimates
DEFF Research Database (Denmark)
Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll
2014-01-01
A method for estimating the noise covariance matrix in a mul- tichannel setup is proposed. The method is based on the iter- ative adaptive approach (IAA), which only needs short seg- ments of data to estimate the covariance matrix. Therefore, the method can be used for fast varying signals....... The method is based on an assumption of the desired signal being harmonic, which is used for estimating the noise covariance matrix from the covariance matrix of the observed signal. The noise co- variance estimate is used in the linearly constrained minimum variance (LCMV) filter and compared...
Ni, Ying; Li, Keping
2014-01-01
Rear-end accidents are the most common accident type at signalized intersections, because the diversity of actions taken increases due to signal change. Green signal countdown devices (GSCDs), which have been widely installed in Asia, are thought to have the potential of improving capacity and reducing accidents, but some negative effects on intersection safety have been observed in practice; for example, an increase in rear-end accidents. A microscopic modeling approach was applied to estimate rear-end accident probability during the phase transition interval in the study. The rear-end accident probability is determined by the following probabilities: (1) a leading vehicle makes a "stop" decision, which was formulated by using a binary logistic model, and (2) the following vehicle fails to stop in the available stopping distance, which is closely related to the critical deceleration used by the leading vehicle. Based on the field observation carried out at 2 GSCD intersections and 2 NGSCD intersections (i.e., intersections without GSCD devices) along an arterial in Suzhou, the rear-end probabilities at GSCD and NGSCD intersections were calculated using Monte Carlo simulation. The results suggested that, on the one hand, GSCDs caused significantly negative safety effects during the flashing green interval, especially for vehicles in a zone ranging from 15 to 70 m; on the other hand, GSCD devices were helpful in reducing rear-end accidents during the yellow interval, especially in a zone from 0 to 50 m. GSCDs helped shorten indecision zones and reduce rear-end collisions near the stop line during the yellow interval, but they easily resulted in risky car following behavior and much higher rear-end collision probabilities at indecision zones during both flashing green and yellow intervals. GSCDs are recommended to be cautiously installed and education on safe driving behavior should be available.
Cross, Robert
2005-01-01
Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.
Pisarenko, V. F.; Rodkin, M. V.; Rukavishnikova, T. A.
2017-11-01
The most general approach to studying the recurrence law in the area of the rare largest events is associated with the use of limit law theorems of the theory of extreme values. In this paper, we use the Generalized Pareto Distribution (GPD). The unknown GPD parameters are typically determined by the method of maximal likelihood (ML). However, the ML estimation is only optimal for the case of fairly large samples (>200-300), whereas in many practical important cases, there are only dozens of large events. It is shown that in the case of a small number of events, the highest accuracy in the case of using the GPD is provided by the method of quantiles (MQs). In order to illustrate the obtained methodical results, we have formed the compiled data sets characterizing the tails of the distributions for typical subduction zones, regions of intracontinental seismicity, and for the zones of midoceanic (MO) ridges. This approach paves the way for designing a new method for seismic risk assessment. Here, instead of the unstable characteristics—the uppermost possible magnitude M max—it is recommended to use the quantiles of the distribution of random maxima for a future time interval. The results of calculating such quantiles are presented.
Aller, D.; Hohl, R.; Mair, F.; Schiesser, H.-H.
2003-04-01
Extreme hailfall can cause massive damage to building structures. For the insurance and reinsurance industry it is essential to estimate the probable maximum hail loss of their portfolio. The probable maximum loss (PML) is usually defined with a return period of 1 in 250 years. Statistical extrapolation has a number of critical points, as historical hail loss data are usually only available from some events while insurance portfolios change over the years. At the moment, footprints are derived from historical hail damage data. These footprints (mean damage patterns) are then moved over a portfolio of interest to create scenario losses. However, damage patterns of past events are based on the specific portfolio that was damaged during that event and can be considerably different from the current spread of risks. A new method for estimating the probable maximum hail loss to a building portfolio is presented. It is shown that footprints derived from historical damages are different to footprints of hail kinetic energy calculated from radar reflectivity measurements. Based on the relationship between radar-derived hail kinetic energy and hail damage to buildings, scenario losses can be calculated. A systematic motion of the hail kinetic energy footprints over the underlying portfolio creates a loss set. It is difficult to estimate the return period of losses calculated with footprints derived from historical damages being moved around. To determine the return periods of the hail kinetic energy footprints over Switzerland, 15 years of radar measurements and 53 years of agricultural hail losses are available. Based on these data, return periods of several types of hailstorms were derived for different regions in Switzerland. The loss set is combined with the return periods of the event set to obtain an exceeding frequency curve, which can be used to derive the PML.
Van Leijenhorst, Linda; Westenberg, P Michiel; Crone, Eveline A
2008-01-01
Decision making, or the process of choosing between competing courses of actions, is highly sensitive to age-related change, showing development throughout adolescence. In this study, we tested whether the development of decision making under risk is related to changes in risk-estimation abilities. Participants (N = 93) between ages 8-30 performed a child friendly gambling task, the Cake Gambling task, which was inspired by the Cambridge Gambling Task (Rogers et al., 1999), which has previously been shown to be sensitive to orbitofrontal cortex (OFC) damage. The task allowed comparisons of the contributions to risk perception of (1) the ability to estimate probabilities and (2) evaluate rewards. Adult performance patterns were highly similar to those found in previous reports, showing increased risk taking with increases in the probability of winning and the magnitude of potential reward. Behavioral patterns in children and adolescents did not differ from adult patterns, showing a similar ability for probability estimation and reward evaluation. These data suggest that participants 8 years and older perform like adults in a gambling task, previously shown to depend on the OFC in which all the information needed to make an advantageous decision is given on each trial and no information needs to be inferred from previous behavior. Interestingly, at all ages, females were more risk-averse than males. These results suggest that the increase in real-life risky behavior that is seen in adolescence is not a consequence of changes in risk perception abilities. The findings are discussed in relation to theories about the protracted development of the prefrontal cortex.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Yeung, Ivan W. T. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)
2016-01-15
Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the
Barik, M. G.; Al-Hamdan, M. Z.; Crosson, W. L.; Yang, C. A.; Coffield, S. R.
2017-12-01
Satellite-derived environmental data, available in a range of spatio-temporal scales, are contributing to the growing use of health impact assessments of air pollution in the public health sector. Models developed using correlation of Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD) with ground measurements of fine particulate matter less than 2.5 microns (PM2.5) are widely applied to measure PM2.5 spatial and temporal variability. In the public health sector, associations of PM2.5 with respiratory and cardiovascular diseases are often investigated to quantify air quality impacts on these health concerns. In order to improve predictability of PM2.5 estimation using correlation models, we have included meteorological variables, higher-resolution AOD products and instantaneous PM2.5 observations into statistical estimation models. Our results showed that incorporation of high-resolution (1-km) Multi-Angle Implementation of Atmospheric Correction (MAIAC)-generated MODIS AOD, meteorological variables and instantaneous PM2.5 observations improved model performance in various parts of California (CA), USA, where single variable AOD-based models showed relatively weak performance. In this study, we further asked whether these improved models actually would be more successful for exploring associations of public health outcomes with estimated PM2.5. To answer this question, we geospatially investigated model-estimated PM2.5's relationship with respiratory and cardiovascular diseases such as asthma, high blood pressure, coronary heart disease, heart attack and stroke in CA using health data from the Centers for Disease Control and Prevention (CDC)'s Wide-ranging Online Data for Epidemiologic Research (WONDER) and the Behavioral Risk Factor Surveillance System (BRFSS). PM2.5 estimation from these improved models have the potential to improve our understanding of associations between public health concerns and air quality.
Joint Spatio-Temporal Filtering Methods for DOA and Fundamental Frequency Estimation
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Benesty, Jacob
2015-01-01
some attention in the community and is quite promising for several applications. The proposed methods are based on optimal, adaptive filters that leave the desired signal, having a certain DOA and fundamental frequency, undistorted and suppress everything else. The filtering methods simultaneously...... operate in space and time, whereby it is possible resolve cases that are otherwise problematic for pitch estimators or DOA estimators based on beamforming. Several special cases and improvements are considered, including a method for estimating the covariance matrix based on the recently proposed...
Blood velocity estimation using spatio-temporal encoding based on frequency division approach
DEFF Research Database (Denmark)
Gran, Fredrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt
2005-01-01
In this paper a feasibility study of using a spatial encoding technique based on frequency division for blood flow estimation is presented. The spatial encoding is carried out by dividing the available bandwidth of the transducer into a number of narrow frequency bands with approximately disjoint...... spectral support. By assigning one band to one virtual source, all virtual sources can be excited simultaneously. The received echoes are beamformed using Synthetic Transmit Aperture beamforming. The velocity of the moving blood is estimated using a cross- correlation estimator. The simulation tool Field...
Energy Technology Data Exchange (ETDEWEB)
Cologne, John B [Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 (Japan); Pawel, David J [Office of Radiation and Indoor Air, US Environmental Protection Agency, 1200 Pennsylvania Ave NW, Washington DC 20460 (United States); Sharp, Gerald B [Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 (Japan); Fujiwara, Saeko [Department of Clinical Studies, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 (Japan)
2004-06-01
Exposure to other risk factors is an important consideration in assessing the role played by radiation in producing disease. A cross-sectional study of atomic-bomb survivors suggested an interaction between whole-body radiation exposure and chronic hepatitis-C viral (HCV) infection in the etiology of chronic liver disease (chronic hepatitis and cirrhosis), but did not allow determination of the joint-effect mechanism. Different estimates of probability of causation (POC) conditional on HCV status resulted from additive and multiplicative models. We therefore estimated the risk for radiation conditional on HCV status using a more general, mixture model that does not require choosing between additivity or multiplicativity, or deciding whether there is interaction, in the face of the large uncertainty. The results support the conclusion that POC increases with radiation dose in persons without HCV infection, but are inconclusive regarding individuals with HCV infection, the lower confidence bound on estimated POC for radiation with HCV infection being zero over the entire dose range. Although the mixture model may not reflect the true joint-effect mechanism, it avoids restrictive model assumptions that cannot be validated using the available data yet have a profound influence on estimated POC. These considerations apply more generally, given that the additive and multiplicative models are often used in POC related work. We therefore consider that an empirical approach may be preferable to assuming a specific mechanistic model for estimating POC in epidemiological studies where the joint-effect mechanism is in doubt.
International Nuclear Information System (INIS)
Cologne, John B; Pawel, David J; Sharp, Gerald B; Fujiwara, Saeko
2004-01-01
Exposure to other risk factors is an important consideration in assessing the role played by radiation in producing disease. A cross-sectional study of atomic-bomb survivors suggested an interaction between whole-body radiation exposure and chronic hepatitis-C viral (HCV) infection in the etiology of chronic liver disease (chronic hepatitis and cirrhosis), but did not allow determination of the joint-effect mechanism. Different estimates of probability of causation (POC) conditional on HCV status resulted from additive and multiplicative models. We therefore estimated the risk for radiation conditional on HCV status using a more general, mixture model that does not require choosing between additivity or multiplicativity, or deciding whether there is interaction, in the face of the large uncertainty. The results support the conclusion that POC increases with radiation dose in persons without HCV infection, but are inconclusive regarding individuals with HCV infection, the lower confidence bound on estimated POC for radiation with HCV infection being zero over the entire dose range. Although the mixture model may not reflect the true joint-effect mechanism, it avoids restrictive model assumptions that cannot be validated using the available data yet have a profound influence on estimated POC. These considerations apply more generally, given that the additive and multiplicative models are often used in POC related work. We therefore consider that an empirical approach may be preferable to assuming a specific mechanistic model for estimating POC in epidemiological studies where the joint-effect mechanism is in doubt
Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio
2015-04-01
The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating
DEFF Research Database (Denmark)
Bianchi, Federica; Santurette, Sébastien; Fereczkowski, Michal
2015-01-01
Recent physiological studies in animals showed that noise-induced sensorineural hearing loss (SNHL) increased the amplitude of envelope coding in single auditory-nerve fibers. The present study investigated whether SNHL in human listeners was associated with enhanced temporal envelope coding...... resolvability. For the unresolved conditions, all five HI listeners performed as good as or better than NH listeners with matching musical experience. Two HI listeners showed lower amplitude-modulation detection thresholds than NH listeners for low modulation rates, and one of these listeners also showed a loss......, whether this enhancement affected pitch discrimination performance, and whether loss of compression following SNHL was a potential factor in envelope coding enhancement. Envelope processing was assessed in normal-hearing (NH) and hearing-impaired (HI) listeners in a behavioral amplitude...
Estimating the temporal evolution of Alzheimer's disease pathology with autopsy data.
Royall, Donald R; Palmer, Raymond F
2012-01-01
The temporal growth of Alzheimer's disease (AD) neuropathology cannot be easily determined because autopsy data are available only after death. We combined autopsy data from 471 participants in the Honolulu-Asia Aging Study (HAAS) into latent factor measures of neurofibrillary tangle and neuritic plaque counts. These were associated with intercept and slope parameters from a latent growth curve (LGC) model of 9-year change in cognitive test performance in 3244 autopsied and non-autopsied HAAS participants. Change in cognition fully mediated the association between baseline cognitive performance and AD lesions counts. The mediation effect of cognitive change on both AD lesion models effectively dates them within the period of cognitive surveillance. Additional analyses could lead to an improved understanding of lesion propagation in AD.
Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode
Energy Technology Data Exchange (ETDEWEB)
Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao, E-mail: qlyang@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)
2015-08-28
A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.
Diwan, Vishal; Stålsby Lundborg, Cecilia; Tamhankar, Ashok J
2013-01-01
The presence of antibiotics in the environment and their subsequent impact on resistance development has raised concerns globally. Hospitals are a major source of antibiotics released into the environment. To reduce these residues, research to improve knowledge of the dynamics of antibiotic release from hospitals is essential. Therefore, we undertook a study to estimate seasonal and temporal variation in antibiotic release from two hospitals in India over a period of two years. For this, 6 sampling sessions of 24 hours each were conducted in the three prominent seasons of India, at all wastewater outlets of the two hospitals, using continuous and grab sampling methods. An in-house wastewater sampler was designed for continuous sampling. Eight antibiotics from four major antibiotic groups were selected for the study. To understand the temporal pattern of antibiotic release, each of the 24-hour sessions were divided in three sub-sampling sessions of 8 hours each. Solid phase extraction followed by liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to determine the antibiotic residues. Six of the eight antibiotics studied were detected in the wastewater samples. Both continuous and grab sampling methods indicated that the highest quantities of fluoroquinolones were released in winter followed by the rainy season and the summer. No temporal pattern in antibiotic release was detected. In general, in a common timeframe, continuous sampling showed less concentration of antibiotics in wastewater as compared to grab sampling. It is suggested that continuous sampling should be the method of choice as grab sampling gives erroneous results, it being indicative of the quantities of antibiotics present in wastewater only at the time of sampling. Based on our studies, calculations indicate that from hospitals in India, an estimated 89, 1 and 25 ng/L/day of fluroquinolones, metronidazole and sulfamethoxazole respectively, might be getting released into the
Popov, V. D.; Khamidullina, N. M.
2006-10-01
In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.
Holbrook, Christopher M.; Johnson, Nicholas S.; Steibel, Juan P.; Twohey, Michael B.; Binder, Thomas R.; Krueger, Charles C.; Jones, Michael L.
2014-01-01
Improved methods are needed to evaluate barriers and traps for control and assessment of invasive sea lamprey (Petromyzon marinus) in the Great Lakes. A Bayesian state-space model provided reach-specific probabilities of movement, including trap capture and dam passage, for 148 acoustic tagged invasive sea lamprey in the lower Cheboygan River, Michigan, a tributary to Lake Huron. Reach-specific movement probabilities were combined to obtain estimates of spatial distribution and abundance needed to evaluate a barrier and trap complex for sea lamprey control and assessment. Of an estimated 21 828 – 29 300 adult sea lampreys in the river, 0%–2%, or 0–514 untagged lampreys, could have passed upstream of the dam, and 46%–61% were caught in the trap. Although no tagged lampreys passed above the dam (0/148), our sample size was not sufficient to consider the lock and dam a complete barrier to sea lamprey. Results also showed that existing traps are in good locations because 83%–96% of the population was vulnerable to existing traps. However, only 52%–69% of lampreys vulnerable to traps were caught, suggesting that traps can be improved. The approach used in this study was a novel use of Bayesian state-space models that may have broader applications, including evaluation of barriers for other invasive species (e.g., Asian carp (Hypophthalmichthys spp.)) and fish passage structures for other diadromous fishes.
Joint sensor location/power rating optimization for temporally-correlated source estimation
Bushnaq, Osama M.
2017-12-22
The optimal sensor selection for scalar state parameter estimation in wireless sensor networks is studied in the paper. A subset of N candidate sensing locations is selected to measure a state parameter and send the observation to a fusion center via wireless AWGN channel. In addition to selecting the optimal sensing location, the sensor type to be placed in these locations is selected from a pool of T sensor types such that different sensor types have different power ratings and costs. The sensor transmission power is limited based on the amount of energy harvested at the sensing location and the type of the sensor. The Kalman filter is used to efficiently obtain the MMSE estimator at the fusion center. Sensors are selected such that the MMSE estimator error is minimized subject to a prescribed system budget. This goal is achieved using convex relaxation and greedy algorithm approaches.
DEFF Research Database (Denmark)
Rein, Arno; Bauer, S; Dietrich, P
2009-01-01
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates. often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative. a further complication may ari...
Using pairs of physiological models to estimate temporal variation in amphibian body temperature.
Roznik, Elizabeth A; Alford, Ross A
2014-10-01
Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures
International Nuclear Information System (INIS)
Casanova, R; Yang, L; Hairston, W D; Laurienti, P J; Maldjian, J A
2009-01-01
Recently we have proposed the use of Tikhonov regularization with temporal smoothness constraints to estimate the BOLD fMRI hemodynamic response function (HRF). The temporal smoothness constraint was imposed on the estimates by using second derivative information while the regularization parameter was selected based on the generalized cross-validation function (GCV). Using one-dimensional simulations, we previously found this method to produce reliable estimates of the HRF time course, especially its time to peak (TTP), being at the same time fast and robust to over-sampling in the HRF estimation. Here, we extend the method to include simultaneous temporal and spatial smoothness constraints. This method does not need Gaussian smoothing as a pre-processing step as usually done in fMRI data analysis. We carried out two-dimensional simulations to compare the two methods: Tikhonov regularization with temporal (Tik-GCV-T) and spatio-temporal (Tik-GCV-ST) smoothness constraints on the estimated HRF. We focus our attention on quantifying the influence of the Gaussian data smoothing and the presence of edges on the performance of these techniques. Our results suggest that the spatial smoothing introduced by regularization is less severe than that produced by Gaussian smoothing. This allows more accurate estimates of the response amplitudes while producing similar estimates of the TTP. We illustrate these ideas using real data. (note)
Christensen, Jette; Stryhn, Henrik; Vallières, André; El Allaki, Farouk
2011-05-01
In 2008, Canada designed and implemented the Canadian Notifiable Avian Influenza Surveillance System (CanNAISS) with six surveillance activities in a phased-in approach. CanNAISS was a surveillance system because it had more than one surveillance activity or component in 2008: passive surveillance; pre-slaughter surveillance; and voluntary enhanced notifiable avian influenza surveillance. Our objectives were to give a short overview of two active surveillance components in CanNAISS; describe the CanNAISS scenario tree model and its application to estimation of probability of populations being free of NAI virus infection and sample size determination. Our data from the pre-slaughter surveillance component included diagnostic test results from 6296 serum samples representing 601 commercial chicken and turkey farms collected from 25 August 2008 to 29 January 2009. In addition, we included data from a sub-population of farms with high biosecurity standards: 36,164 samples from 55 farms sampled repeatedly over the 24 months study period from January 2007 to December 2008. All submissions were negative for Notifiable Avian Influenza (NAI) virus infection. We developed the CanNAISS scenario tree model, so that it will estimate the surveillance component sensitivity and the probability of a population being free of NAI at the 0.01 farm-level and 0.3 within-farm-level prevalences. We propose that a general model, such as the CanNAISS scenario tree model, may have a broader application than more detailed models that require disease specific input parameters, such as relative risk estimates. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua
2018-01-01
Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance
DEFF Research Database (Denmark)
Richardson, Katherine; Bo Pedersen, Flemming
1998-01-01
By coupling knowledge of oceanographic processes and phytoplankton responses to light and nutrient availability, we estimate a total potential new (sensu Dugdale and Goering,1967) production for the North Sea of approximately 15.6 million tons C per year. In a typical year, about 40......% of this production will be associated with the spring bloom in the surface waters of the seasonally stratified (central and northern) North Sea. About 40% is predicted to occur in the coastal waters while the remaining new production is predicted to take place in sub-surface chlorophyll peaks occuring in association...... with fronts in the North Sea during summer month. By considering the inter-annual variation in heat, wind and nutrient availability (light and tidal energy input are treated as non-varying from year to year), the inter-annual variability in the new production occuring in these different regions is estimated...
Grinand, C.; Maire, G. Le; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M.
2017-02-01
Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.
Directory of Open Access Journals (Sweden)
E. Delogu
2012-08-01
Full Text Available Evapotranspiration estimates can be derived from remote sensing data and ancillary, mostly meterorological, information. For this purpose, two types of methods are classically used: the first type estimates a potential evapotranspiration rate from vegetation indices, and adjusts this rate according to water availability derived from either a surface temperature index or a first guess obtained from a rough estimate of the water budget, while the second family of methods relies on the link between the surface temperature and the latent heat flux through the surface energy budget. The latter provides an instantaneous estimate at the time of satellite overpass. In order to compute daily evapotranspiration, one needs an extrapolation algorithm. Since no image is acquired during cloudy conditions, these methods can only be applied during clear sky days. In order to derive seasonal evapotranspiration, one needs an interpolation method. Two combined interpolation/extrapolation methods based on the self preservation of evaporative fraction and the stress factor are compared to reconstruct seasonal evapotranspiration from instantaneous measurements acquired in clear sky conditions. Those measurements are taken from instantaneous latent heat flux from 11 datasets in Southern France and Morocco. Results show that both methods have comparable performances with a clear advantage for the evaporative fraction for datasets with several water stress events. Both interpolation algorithms tend to underestimate evapotranspiration due to the energy limiting conditions that prevail during cloudy days. Taking into account the diurnal variations of the evaporative fraction according to an empirical relationship derived from a previous study improved the performance of the extrapolation algorithm and therefore the retrieval of the seasonal evapotranspiration for all but one datasets.
DEFF Research Database (Denmark)
Asmussen, Søren; Albrecher, Hansjörg
The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...... updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber–Shiu functions and dependence....
Spatial and temporal estimation of runoff in a semi-arid microwatershed of Southern India.
Rejani, R; Rao, K V; Osman, M; Chary, G R; Pushpanjali; Reddy, K Sammi; Rao, Ch Srinivasa
2015-08-01
In a semi-arid microwatershed of Warangal district in Southern India, daily runoff was estimated spatially using Soil Conservation Service (SCS)-curve number (CN) method coupled with GIS. The groundwater status in this region is over-exploited, and precise estimation of runoff is very essential to plan interventions for this ungauged microwatershed. Rainfall is the most important factor governing runoff, and 75.8% of the daily rainfall and 92.1% of the rainy days which occurred were below 25 mm/day. The declines in rainfall and rainy days observed in recent years were 9.8 and 8.4%, respectively. The surface runoff estimated from crop land for a period of 57 years varied from 0 to 365 mm with a mean annual runoff of 103.7 mm or 14.1% of the mean annual rainfall. The mean annual runoff showed a significant reduction from 108.7 to 82.9 mm in recent years. The decadal variation of annual runoff from crop land over the years varied from 49.2 to 89.0% which showed the caution needed while planning watershed management works in this microwatershed. Among the four land use land cover conditions prevailing in the area, the higher runoff (20% of the mean annual rainfall) was observed from current fallow in clayey soil and lower runoff of 8.7% from crop land in loamy soil due to the increased canopy coverage. The drought years which occurred during recent years (1991-2007) in crop land have increased by 3.5%, normal years have increased by 15.6%, and the above normal years have decreased by 19.1%. This methodology can be adopted for estimating the runoff potential from similar ungauged watersheds with deficient data. It is concluded that in order to ensure long-term and sustainable groundwater utilization in the region, proper estimation of runoff and implementation of suitable water harvesting measures are the need of the hour.
Generalized Probability-Probability Plots
Mushkudiani, N.A.; Einmahl, J.H.J.
2004-01-01
We introduce generalized Probability-Probability (P-P) plots in order to study the one-sample goodness-of-fit problem and the two-sample problem, for real valued data.These plots, that are constructed by indexing with the class of closed intervals, globally preserve the properties of classical P-P
Temporal scaling in information propagation
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-01
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Shiryaev, Albert N
2016-01-01
This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.
Earth Data Analysis Center, University of New Mexico — USFS, State Forestry, BLM, and DOI fire occurrence point locations from 1987 to 2008 were combined and converted into a fire occurrence probability or density grid...
Estimation of Vegetable Crop Parameter by Multi-temporal UAV-Borne Images
Directory of Open Access Journals (Sweden)
Thomas Moeckel
2018-05-01
Full Text Available 3D point cloud analysis of imagery collected by unmanned aerial vehicles (UAV has been shown to be a valuable tool for estimation of crop phenotypic traits, such as plant height, in several species. Spatial information about these phenotypic traits can be used to derive information about other important crop characteristics, like fresh biomass yield, which could not be derived directly from the point clouds. Previous approaches have often only considered single date measurements using a single point cloud derived metric for the respective trait. Furthermore, most of the studies focused on plant species with a homogenous canopy surface. The aim of this study was to assess the applicability of UAV imagery for capturing crop height information of three vegetables (crops eggplant, tomato, and cabbage with a complex vegetation canopy surface during a complete crop growth cycle to infer biomass. Additionally, the effect of crop development stage on the relationship between estimated crop height and field measured crop height was examined. Our study was conducted in an experimental layout at the University of Agricultural Science in Bengaluru, India. For all the crops, the crop height and the biomass was measured at five dates during one crop growth cycle between February and May 2017 (average crop height was 42.5, 35.5, and 16.0 cm for eggplant, tomato, and cabbage. Using a structure from motion approach, a 3D point cloud was created for each crop and sampling date. In total, 14 crop height metrics were extracted from the point clouds. Machine learning methods were used to create prediction models for vegetable crop height. The study demonstrates that the monitoring of crop height using an UAV during an entire growing period results in detailed and precise estimates of crop height and biomass for all three crops (R2 ranging from 0.87 to 0.97, bias ranging from −0.66 to 0.45 cm. The effect of crop development stage on the predicted crop height was
Czech Academy of Sciences Publication Activity Database
Papáček, Š.; Kaňa, Radek; Matonoha, Ctirad
2013-01-01
Roč. 57, 7-8 (2013), s. 1907-1912 ISSN 0895-7177 R&D Projects: GA ČR GP206/09/P094; GA ČR GA201/09/1957; GA MŠk(CZ) ED2.1.00/03.0110 Grant - others:GA JU(CZ) 152/2010/Z Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z10300504 Keywords : parameter estimation * FRAP * boundary value problem * optimization Subject RIV: BA - General Mathematics; EE - Microbiology, Virology (MBU-M) Impact factor: 2.020, year: 2013
Directory of Open Access Journals (Sweden)
Hjertqvist Marika
2011-02-01
Full Text Available Abstract Background The fox tapeworm Echinococcus multilocularis has foxes and other canids as definitive host and rodents as intermediate hosts. However, most mammals can be accidental intermediate hosts and the larval stage may cause serious disease in humans. The parasite has never been detected in Sweden, Finland and mainland Norway. All three countries require currently an anthelminthic treatment for dogs and cats prior to entry in order to prevent introduction of the parasite. Documentation of freedom from E. multilocularis is necessary for justification of the present import requirements. Methods The probability that Sweden, Finland and mainland Norway were free from E. multilocularis and the sensitivity of the surveillance systems were estimated using scenario trees. Surveillance data from five animal species were included in the study: red fox (Vulpes vulpes, raccoon dog (Nyctereutes procyonoides, domestic pig, wild boar (Sus scrofa and voles and lemmings (Arvicolinae. Results The cumulative probability of freedom from EM in December 2009 was high in all three countries, 0.98 (95% CI 0.96-0.99 in Finland and 0.99 (0.97-0.995 in Sweden and 0.98 (0.95-0.99 in Norway. Conclusions Results from the model confirm that there is a high probability that in 2009 the countries were free from E. multilocularis. The sensitivity analyses showed that the choice of the design prevalences in different infected populations was influential. Therefore more knowledge on expected prevalences for E. multilocularis in infected populations of different species is desirable to reduce residual uncertainty of the results.
Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten
1999-05-01
Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.
Directory of Open Access Journals (Sweden)
Gastón S. Milanesi
2016-11-01
probabilities of financial distress. The exotic barrier options make an alternative approach for predicting financial distress, and its structure fits better to the firm valuevolatility relationship. The paper proposes a “naive” barrier option model, because it simplifies the estimation of the unobservable variables, like firm asset’s value and risk. First, a simple call and barrier option models are developed in order to value the firm’s capital and estimate the financial distress probability. Using an hypothetical case, it is proposed a sensibility exercise over period and volatility. Similar exercise is applied to estimate the capital value and financial distress probability over two firms of Argentinian capitals, with different leverage degree, confirming the consistency in the relationship between volatility-value-financial distress probability of the proposed model. Finally, the main conclusions are shown.
Miguel-Carrera, Jonatan; García-Porrua, Carlos; de Toro Santos, Francisco Javier; Picallo-Sánchez, Jose Antonio
2018-03-01
To study the prevalence of osteoporosis and fracture probability in patients diagnosed with prostate cancer. Observational descriptive transversal study. SITE: Study performed from Primary Care of Lugo in collaboration with Rheumatology and Urology Services of our referral hospital. Patients diagnosed with prostate cancer without bone metastatic disease from January to December 2012. Epidemiologic, clinical, laboratory and densitometric variables involved in osteoporosis were collected. The likelihood of fracture was estimated by FRAX ® Tool. Eighty-three patients met the inclusion criteria. None was excluded. The average age was 67 years. The Body Mass Index was 28.28. Twenty-five patients (30.1%) had previous osteoporotic fractures. Other prevalent risk factors were alcohol (26.5%) and smoking (22.9%). Eighty-two subjects had vitamin D below normal level (98.80%). Femoral Neck densitometry showed that 8.9% had osteoporosis and 54% osteopenia. The average fracture risk in this population, estimated by FRAX ® , was 2.63% for hip fracture and 5.28% for major fracture. Cut level for FRAX ® major fracture value without DXA >5% and ≥7.5% proposed by Azagra et al. showed 24 patients (28.92%) and 8 patients (9.64%) respectively. The prevalence of osteoporosis in this population was very high. The more frequent risk factors associated with osteoporosis were: previous osteoporotic fracture, alcohol consumption, smoking and family history of previous fracture. The probability of fracture using femoral neck FRAX ® tool was low. Vitamin D deficiency was very common (98.8%). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Quantum Probabilities as Behavioral Probabilities
Directory of Open Access Journals (Sweden)
Vyacheslav I. Yukalov
2017-03-01
Full Text Available We demonstrate that behavioral probabilities of human decision makers share many common features with quantum probabilities. This does not imply that humans are some quantum objects, but just shows that the mathematics of quantum theory is applicable to the description of human decision making. The applicability of quantum rules for describing decision making is connected with the nontrivial process of making decisions in the case of composite prospects under uncertainty. Such a process involves deliberations of a decision maker when making a choice. In addition to the evaluation of the utilities of considered prospects, real decision makers also appreciate their respective attractiveness. Therefore, human choice is not based solely on the utility of prospects, but includes the necessity of resolving the utility-attraction duality. In order to justify that human consciousness really functions similarly to the rules of quantum theory, we develop an approach defining human behavioral probabilities as the probabilities determined by quantum rules. We show that quantum behavioral probabilities of humans do not merely explain qualitatively how human decisions are made, but they predict quantitative values of the behavioral probabilities. Analyzing a large set of empirical data, we find good quantitative agreement between theoretical predictions and observed experimental data.
Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente
2017-04-29
Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Toshio, E-mail: nakamura@nendai.nagoya-u.ac.jp [Center for Chronological Research, Nagoya University, Chikusa, Nagoya, Aichi 464-8602 (Japan); Koike, Hiroko [Kyushu University Museum, Kyushu University, Hakozaki, Fukuoka, Fukuoka 814-0180 (Japan); Aizawa, Jun; Okuno, Mitsuru [Department of Earth System Science, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180 (Japan)
2015-10-15
In this study, {sup 14}C analysis by accelerator mass spectrometry (AMS) was applied to age estimation based on temporal variations in bomb-produced-{sup 14}C contents of a full elephant tusk registered at Kyushu University. The tusk measured 175 cm long and 13.8 cm in diameter at the root. Thirty tusk-fragment samples were used for {sup 14}C analysis with AMS to estimate the formation ages of different positions according to catalogued global {sup 14}C contents (F{sup 14}C). The F{sup 14}C value of the tip of the tusk suggested that the elephant was born around 1980, while that of the root suggested death around 1994, a lifespan of at least 14 years, rather shorter period than the average lifetime of an elephant (ca. 80 years). In addition, the F{sup 14}C values of fragments collected along a cross-sectional line suggested that the outer part of the tusk formed first with inner parts being deposited gradually with growth.
International Nuclear Information System (INIS)
Nakamura, Toshio; Koike, Hiroko; Aizawa, Jun; Okuno, Mitsuru
2015-01-01
In this study, "1"4C analysis by accelerator mass spectrometry (AMS) was applied to age estimation based on temporal variations in bomb-produced-"1"4C contents of a full elephant tusk registered at Kyushu University. The tusk measured 175 cm long and 13.8 cm in diameter at the root. Thirty tusk-fragment samples were used for "1"4C analysis with AMS to estimate the formation ages of different positions according to catalogued global "1"4C contents (F"1"4C). The F"1"4C value of the tip of the tusk suggested that the elephant was born around 1980, while that of the root suggested death around 1994, a lifespan of at least 14 years, rather shorter period than the average lifetime of an elephant (ca. 80 years). In addition, the F"1"4C values of fragments collected along a cross-sectional line suggested that the outer part of the tusk formed first with inner parts being deposited gradually with growth.
Grinstead, Charles M; Snell, J Laurie
2011-01-01
This book explores four real-world topics through the lens of probability theory. It can be used to supplement a standard text in probability or statistics. Most elementary textbooks present the basic theory and then illustrate the ideas with some neatly packaged examples. Here the authors assume that the reader has seen, or is learning, the basic theory from another book and concentrate in some depth on the following topics: streaks, the stock market, lotteries, and fingerprints. This extended format allows the authors to present multiple approaches to problems and to pursue promising side discussions in ways that would not be possible in a book constrained to cover a fixed set of topics. To keep the main narrative accessible, the authors have placed the more technical mathematical details in appendices. The appendices can be understood by someone who has taken one or two semesters of calculus.
Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V
1997-01-01
This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.
Directory of Open Access Journals (Sweden)
Laode M Golok Jaya
2017-07-01
Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.
The perception of probability.
Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E
2014-01-01
We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney
2016-01-01
In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.
Muths, Erin L.; Scherer, R. D.; Amburgey, S. M.; Matthews, T.; Spencer, A. W.; Corn, P.S.
2016-01-01
In an era of shrinking budgets yet increasing demands for conservation, the value of existing (i.e., historical) data are elevated. Lengthy time series on common, or previously common, species are particularly valuable and may be available only through the use of historical information. We provide first estimates of the probability of survival and longevity (0.67–0.79 and 5–7 years, respectively) for a subalpine population of a small-bodied, ostensibly common amphibian, the Boreal Chorus Frog (Pseudacris maculata (Agassiz, 1850)), using historical data and contemporary, hypothesis-driven information–theoretic analyses. We also test a priori hypotheses about the effects of color morph (as suggested by early reports) and of drought (as suggested by recent climate predictions) on survival. Using robust mark–recapture models, we find some support for early hypotheses regarding the effect of color on survival, but we find no effect of drought. The congruence between early findings and our analyses highlights the usefulness of historical information in providing raw data for contemporary analyses and context for conservation and management decisions.
International Nuclear Information System (INIS)
Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Hung-Yu; Hsu, Hsuan-Chih; Chang, PaoShu; Chen, Wen-Cheng
2012-01-01
With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3 + xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R 2 , the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD 50 ) and the slope of the dose–response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD 50 =43.6 Gy and m=0.18 with the SEF data, and TD 50 =44.1 Gy and m=0.11 with the QoL data. The rate of grade 3 + xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Our study shows the agreement between the NTCP parameter modeling based on SEF and
2012-01-01
Background With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Methods Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R2, the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Results Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50) and the slope of the dose–response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Conclusions Our study shows the agreement between the NTCP
Directory of Open Access Journals (Sweden)
Lee Tsair-Fwu
2012-12-01
Full Text Available Abstract Background With advances in modern radiotherapy (RT, many patients with head and neck (HN cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB model to derive parameters for the normal tissue complication probability (NTCP for xerostomia based on scintigraphy assessments and quality of life (QoL questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC guidelines against prospectively collected QoL and salivary scintigraphic data. Methods Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R2, the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Results Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50 and the slope of the dose–response curve (m were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Conclusions Our study shows the agreement
International Nuclear Information System (INIS)
Daly, Megan E.; Luxton, Gary; Choi, Clara Y.H.; Gibbs, Iris C.; Chang, Steven D.; Adler, John R.; Soltys, Scott G.
2012-01-01
Purpose: To determine whether normal tissue complication probability (NTCP) analyses of the human spinal cord by use of the Lyman-Kutcher-Burman (LKB) model, supplemented by linear–quadratic modeling to account for the effect of fractionation, predict the risk of myelopathy from stereotactic radiosurgery (SRS). Methods and Materials: From November 2001 to July 2008, 24 spinal hemangioblastomas in 17 patients were treated with SRS. Of the tumors, 17 received 1 fraction with a median dose of 20 Gy (range, 18–30 Gy) and 7 received 20 to 25 Gy in 2 or 3 sessions, with cord maximum doses of 22.7 Gy (range, 17.8–30.9 Gy) and 22.0 Gy (range, 20.2–26.6 Gy), respectively. By use of conventional values for α/β, volume parameter n, 50% complication probability dose TD 50 , and inverse slope parameter m, a computationally simplified implementation of the LKB model was used to calculate the biologically equivalent uniform dose and NTCP for each treatment. Exploratory calculations were performed with alternate values of α/β and n. Results: In this study 1 case (4%) of myelopathy occurred. The LKB model using radiobiological parameters from Emami and the logistic model with parameters from Schultheiss overestimated complication rates, predicting 13 complications (54%) and 18 complications (75%), respectively. An increase in the volume parameter (n), to assume greater parallel organization, improved the predictive value of the models. Maximum-likelihood LKB fitting of α/β and n yielded better predictions (0.7 complications), with n = 0.023 and α/β = 17.8 Gy. Conclusions: The spinal cord tolerance to the dosimetry of SRS is higher than predicted by the LKB model using any set of accepted parameters. Only a high α/β value in the LKB model and only a large volume effect in the logistic model with Schultheiss data could explain the low number of complications observed. This finding emphasizes that radiobiological models traditionally used to estimate spinal cord NTCP
Xi, Min; Kong, Fanlong; Li, Yue; Kong, Fanting
2017-12-01
Dissolved organic carbon (DOC) is an important component for both carbon cycle and energy balance. The concentration, UV absorbance, and export flux of DOC in the natural environment dominate many important transport processes. To better understand the temporal and spatial variation of DOC, 7 sites along the Lower Dagu River were chosen to conduct a comprehensive measurement from March 2013 to February 2014. Specifically, water samples were collected from the Lower Dagu River between the 26th and 29th of every month during the experimental period. The DOC concentration (CDOC) and UV absorbance were analyzed using a total organic carbon analyzer and the ultraviolet-visible absorption spectrum, and the DOC export flux was estimated with a simple empirical model. The results showed that the CDOC of the Lower Dagu River varied from 1.32 to 12.56 mg/L, consistent with global rivers. The CDOC and UV absorbance showed significant spatial variation in the Dagu River during the experiential period because of the upstream natural processes and human activities in the watershed. The spatial variation is mainly due to dam or reservoir constructions, riverside ecological environment changes, and non-point source or wastewater discharge. The seasonal variation of CDOC was mainly related to the source of water DOC, river runoff, and temperature, and the UV absorbance and humification degree of DOC had no obvious differences among months ( P<0.05). UV absorbance was applied to test the CDOC in Lower Dagu River using wave lengths of 254 and 280 nm. The results revealed that the annual DOC export flux varied from 1.6 to 3.76 × 105 g C/km2/yr in a complete hydrological year, significantly lower than the global average. It is worth mentioning that the DOC export flux was mainly concentrated in summer (˜90% of all-year flux in July and August), since the runoff in the Dagu River took place frequently in summer. These observations implied environment change could bring the temporal
Soenario, Ivan; Helbich, Marco; Schmitz, Oliver; Strak, Maciek; Hoek, Gerard; Karssenberg, Derek
2017-04-01
Air pollution has been associated with adverse health effects (e.g., cardiovascular and respiration diseases) in the urban environments. Therefore, the assessment of people's exposure to air pollution is central in epidemiological studies. The estimation of exposures on an individual level can be done by combining location information across space and over time with spatio-temporal data on air pollution concentrations. When detailed information on peoples' space-time paths (e.g. commuting patterns calculated by means of spatial routing algorithms or tracked through GPS) and peoples' major activity locations (e.g. home location, work location) are available, it is possible to calculate more precise personal exposure levels depending on peoples' individual space-time mobility patterns. This requires air pollution values not only at a high level of spatial accuracy and high temporal granularity but such data also needs to be available on a nation-wide scale. As current data is seriously limited in this respect, we introduce a novel data set of NO2 levels across the Netherlands. The provided NO2 concentrations are accessible on hourly timestamps on a 5 meter grid cell resolution for weekdays and weekends, and each month of the year. We modeled a single Land Use Regression model using a five year average of NO2 data from the Dutch NO2 measurement network consisting of N=46 sampling locations distributed over the country. Predictor variables for this model were selected in a data-driven manner using an Elastic Net and Best Subset Selection procedure from 70 candidate predictors including traffic, industry, infrastructure and population-based variables. Subsequently, to model NO2 for each time scale (hour, week, month), the LUR coefficients were fitted using the NO2 data, aggregated per time scale. Model validation was grounded on independent data collected in an ad hoc measurement campaign. Our results show a considerable difference in urban concentrations between
Directory of Open Access Journals (Sweden)
Jianhui Xu
2016-09-01
Full Text Available The deteriorating air quality in the Yangtze delta region is attracting growing public concern. In this paper, seasonal estimation models of the surface particulate matter (PM were established by using aerosol optical thickness (AOT retrievals from the moderate resolution imaging spectro-radiometer (MODIS on board NASA’s Terra satellite. The change of the regional distribution of the atmospheric mixed layer, relative humidity and meteorological elements have been taken into account in these models. We also used PM mass concentrations of ground measurements to evaluate the estimation accuracy of those models. The results show that model estimation of PM2.5 and PM10 mass concentrations were in good agreement with the ground-based observation of PM mass concentrations (p < 0.01, the R2 value of the PM2.5 concentrations experimental model for four seasons are 0.48, 0.62, 0.61 and 0.52 respectively. The R2 value of PM10 concentrations experimental model for four seasons are 0.57, 0.56, 0.64 and 0.68 respectively. At the same time, spatial and temporal variations of PM2.5 and PM10 mass concentrations were analysed over the Yangtze delta region from 2000 to 2013. The results show that PM2.5 and PM10 show a trend of increase in the Yangtze delta region from 2000 to 2013 and change periodically. The maximum mass concentration of PM2.5 and PM10 was in January–February, and the minimum was in July–August. The highest values of PM2.5 and PM10 mass concentration are in the region of urban agglomeration which is grouped to a delta-shaped region by Shanghai, Hangzhou and Nanjing, while the low values are in the forest far away from the city. PM mass concentration over main cities and rural areas increased gradually year by year, and were increasing more quickly in urban areas than in rural areas.
Rejani, R; Rao, K V; Osman, M; Srinivasa Rao, Ch; Reddy, K Sammi; Chary, G R; Pushpanjali; Samuel, Josily
2016-03-01
The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3% of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3% of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
Directory of Open Access Journals (Sweden)
Javier Llorca
2004-10-01
Full Text Available Objetivo: Mostrar el efecto de los riesgos competitivos de muerte en el análisis de supervivencia. Métodos: Se presenta un ejemplo sobre la supervivencia libre de rechazo tras un trasplante cardíaco, en el que la muerte antes de desarrollar el rechazo actúa como riesgo competitivo. Mediante una simulación se comparan el estimador de Kaplan-Meier y el modelo de decrementos múltiples. Resultados: El método de Kaplan-Meier sobrestima el riesgo de rechazo. A continuación, se expone la aplicación del modelo de decrementos múltiples para el análisis de acontecimientos secundarios (en el ejemplo, la muerte tras el rechazo. Finalmente, se discuten las asunciones propias del método de Kaplan-Meier y las razones por las que no puede ser aplicado en presencia de riesgos competitivos. Conclusiones: El análisis de supervivencia debe ajustarse por los riesgos competitivos de muerte para evitar la sobrestimación del riesgo de fallo que se produce con el método de Kaplan-Meier.Objective: To show the impact of competing risks of death on survival analysis. Method: We provide an example of survival time without chronic rejection after heart transplantation, where death before rejection acts as a competing risk. Using a computer simulation, we compare the Kaplan-Meier estimator and the multiple decrement model. Results: The Kaplan-Meier method overestimated the probability of rejection. Next, we illustrate the use of the multiple decrement model to analyze secondary end points (in our example: death after rejection. Finally, we discuss Kaplan-Meier assumptions and why they fail in the presence of competing risks. Conclusions: Survival analysis should be adjusted for competing risks of death to avoid overestimation of the risk of rejection produced with the Kaplan-Meier method.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zulin, E-mail: zulin.zhang@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Le Velly, Morgane [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Robert Gordon University, Institute for Innovation Design and Sustainability (IDEAS), Riverside East, Garthdee, Aberdeen AB10 7GJ (United Kingdom); Rhind, Stewart M.; Kyle, Carol E.; Hough, Rupert L. [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Duff, Elizabeth I. [Biomathematics and Statistics Scotland, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); McKenzie, Craig [Robert Gordon University, Institute for Innovation Design and Sustainability (IDEAS), Riverside East, Garthdee, Aberdeen AB10 7GJ (United Kingdom)
2015-05-15
Temporal concentration trends of BPA in soils were investigated following sewage sludge application to pasture (study 1: short term sludge application; study 2: long term multiple applications over 13 years). The background levels of BPA in control soils were similar, ranging between 0.67–10.57 ng g{sup −1} (mean: 3.02 ng g{sup −1}) and 0.51–6.58 ng g{sup −1} (mean: 3.22 ng g{sup −1}) for studies 1 and 2, respectively. Concentrations in both treated and control plots increased over the earlier sampling times of the study to a maximum and then decreased over later sampling times, suggesting other sources of BPA to both the treated and control soils over the study period. In study 1 there was a significant treatment effect of sludge application in the autumn (p = 0.002) although no significant difference was observed between treatment and control soils in the spring. In study 2 treated soils contained considerably higher BPA concentrations than controls ranging between 12.89–167.9 ng g{sup −1} (mean: 63.15 ng g{sup −1}). This and earlier studies indicate the long-term accumulation of multiple contaminants by multiple sewage sludge applications over a prolonged period although the effects of the presence of such contaminant mixtures have not yet been elucidated. Fugacity modelling was undertaken to estimate partitioning of Bisphenol A (soil plus sewage: pore water: soil air partitioning) and potential uptake into a range of food crops. While Bisphenol A sorbs strongly to the sewage-amended soil, 4% by mass was predicted to enter soil pore water resulting in significant uptake by crops particularly leafy vegetables (3.12–75.5 ng g{sup −1}), but also for root crops (1.28–31.0 ng g{sup −1}) with much lower uptake into cereal grains (0.62–15.0 ng g{sup −1}). This work forms part of a larger programme of research aimed at assessing the risks associated with the long-term application of sewage sludge to agricultural soils. - Highlights:
Directory of Open Access Journals (Sweden)
Griot C
2008-10-01
Full Text Available Abstract Background The design of veterinary and public health surveillance systems has been improved by the ability to combine Geographical Information Systems (GIS, mathematical models and up to date epidemiological knowledge. In Switzerland, an early warning system was developed for detecting the incursion of the bluetongue disease virus (BT and to monitor the frequency of its vectors. Based on data generated by this surveillance system, GIS and transmission models were used in order to determine suitable seasonal vector habitat locations and risk periods for a larger and more targeted surveillance program. Results Combined thematic maps of temperature, humidity and altitude were created to visualize the association with Culicoides vector habitat locations. Additional monthly maps of estimated basic reproduction number transmission rates (R0 were created in order to highlight areas of Switzerland prone to higher BT outbreaks in relation to both vector activity and transmission levels. The maps revealed several foci of higher risk areas, especially in northern parts of Switzerland, suitable for both vector presence and vector activity for 2006. Results showed a variation of R0 values comparing 2005 and 2006 yet suggested that Switzerland was at risk of an outbreak of BT, especially if the incursion arrived in a suitable vector activity period. Since the time of conducting these analyses, this suitability has proved to be the case with the recent outbreaks of BT in northern Switzerland. Conclusion Our results stress the importance of environmental factors and their effect on the dynamics of a vector-borne disease. In this case, results of this model were used as input parameters for creating a national targeted surveillance program tailored to both the spatial and the temporal aspect of the disease and its vectors. In this manner, financial and logistic resources can be used in an optimal way through seasonally and geographically adjusted
International Nuclear Information System (INIS)
Lowther, A.B.; Skalski, J.
1997-09-01
Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake river fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging. These models do not utilize available capture history data from this second year and, thus, produce negatively biased estimates of survival probabilities. A new multinomial likelihood model was developed that results in biologically relevant, unbiased estimates of survival probabilities using the full two years of capture history data. This model was applied to 1995 Snake River fall chinook hatchery releases to estimate the true survival probability from one of three upstream release points (Asotin, Billy Creek, and Pittsburgh Landing) to Lower Granite Dam. In the data analyzed here, residualization is not a common physiological response and thus the use of CJS models did not result in appreciably different results than the true survival probability obtained using the new multinomial likelihood model
DEFF Research Database (Denmark)
Bloch, Sune Land; Sørensen, Mads Sølvsten
2014-01-01
remodeling around the inner ear space and to compare it with that of otosclerosis in a contemporary context of temporal bone dynamics. MATERIALS AND METHODS: From the temporal bone collection of Massachusetts Eye and Ear Infirmary, 15 of 29 temporal bones with Paget's disease were selected to obtain...... an independent sample. All volume distributions were obtained along the normal axis of capsular bone remodeling activity by the use of vector-based stereology. RESULTS: Pagetic bone remodeling was distributed centrifugally around the inner ear space at the individual and the general level. This pattern...
Hevesi, Joseph A.; Johnson, Tyler D.
2016-10-17
A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm
Energy Technology Data Exchange (ETDEWEB)
Merkulov, N.E.; Lysenkov, P.P.
1981-01-01
Estimated are the reliable predicted reserves of oil and gas of the Chechen-Ingushetia by methods of probability calculations. Calculations were made separately for each oil-bearing lithologic-stratigraphic horizon. The computation results are summarized in a table, and graphs are constructed.
Jusyte, Aiste; Schneidt, Alexander; Schönenberg, Michael
2015-06-01
Prior studies suggest that particularly negative emotional events tend to be experienced as temporally dilated. Perceptual characteristics of the threat cue (averted or directed angry face), state as well as individual anxiety levels have been shown to contribute to the temporal distortions, but the interplay between these factors is not well understood. The present study investigated the relative contributions of these factors in a first study using clinical sample with social anxiety disorder (SAD) and healthy controls (HC). Participants performed a temporal bisection task (TBT) before and after a stress provocation phase, which served to induce state anxiety. During the TBT task, angry and neutral faces with averted vs. direct gaze were presented for the length of 600, 800, 1000, 1200, 1400, 1600 ms, and judged regarding their similarity to the standard durations. A temporal overestimation effect for angry vs. neutral facial expressions was evident in both the HC and the SAD groups. An effect of experimentally induced state anxiety was evident solely in the SAD group, reflected in an overall increased temporal overestimation of angry vs. neutral expressions following the mood manipulation. The clinical sample may represent a high-functioning group, as the study was conducted on college students. Replication in more heterogeneous SAD samples is needed in order to draw further conclusions. These results may be relevant for the understanding of the etiology and maintenance of SAD and potentially for the development of novel intervention methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Cikota, Aleksandar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching b. München (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marleau, Francine, E-mail: acikota@eso.org [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck (Austria)
2016-03-10
We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.
PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT
We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...
Holmberg, Christine; Waters, Erika A; Whitehouse, Katie; Daly, Mary; McCaskill-Stevens, Worta
2015-11-01
Decision-making experts emphasize that understanding and using probabilistic information are important for making informed decisions about medical treatments involving complex risk-benefit tradeoffs. Yet empirical research demonstrates that individuals may not use probabilities when making decisions. To explore decision making and the use of probabilities for decision making from the perspective of women who were risk-eligible to enroll in the Study of Tamoxifen and Raloxifene (STAR). We conducted narrative interviews with 20 women who agreed to participate in STAR and 20 women who declined. The project was based on a narrative approach. Analysis included the development of summaries of each narrative, and thematic analysis with developing a coding scheme inductively to code all transcripts to identify emerging themes. Interviewees explained and embedded their STAR decisions within experiences encountered throughout their lives. Such lived experiences included but were not limited to breast cancer family history, a personal history of breast biopsies, and experiences or assumptions about taking tamoxifen or medicines more generally. Women's explanations of their decisions about participating in a breast cancer chemoprevention trial were more complex than decision strategies that rely solely on a quantitative risk-benefit analysis of probabilities derived from populations In addition to precise risk information, clinicians and risk communicators should recognize the importance and legitimacy of lived experience in individual decision making. © The Author(s) 2015.
2015-01-01
Traditionally, the Iowa Department of Transportation : has used the Iowa Runoff Chart and single-variable regional-regression equations (RREs) from a U.S. Geological Survey : report (published in 1987) as the primary methods to estimate : annual exce...
Gagnon, Dany H; Jouval, Camille; Chénier, Félix
2016-06-14
Using ground reaction forces recorded while propelling a manual wheelchair on an instrumented treadmill may represent a valuable alternative to using an instrumented pushrim to calculate temporal and kinetic parameters during propulsion. Sixteen manual wheelchair users propelled their wheelchair equipped with instrumented pushrims (i.e., SMARTWheel) on an instrumented dual-belt treadmill set a 1m/s during a 1-minute period. Spatio-temporal (i.e., duration of the push and recovery phase) and kinetic measures (i.e. propulsive moments) were calculated for 20 consecutive strokes for each participant. Strong associations were confirmed between the treadmill and the instrumented pushrim for the mean duration of the push phase (r=0.98) and of the recovery phase (r=0.99). Good agreement between these two measurement instruments was also confirmed with mean differences of only 0.028s for the push phase and 0.012s for the recovery phase. Strong associations were confirmed between the instrumented wheelchair pushrim and treadmill for mean (r=0.97) and peak (r=0.96) propulsive moments. Good agreement between these two measurement instruments was also confirmed with mean differences of 0.50Nm (mean moment) and 0.71Nm (peak moment). The use of a dual-belt instrumented treadmill represents an alternative to characterizing temporal parameters and propulsive moments during manual wheelchair propulsion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhai, Zhiqiang; Song, Guohua; Lu, Hongyu; He, Weinan; Yu, Lei
2017-09-01
Vehicle-specific power (VSP) has been found to be highly correlated with vehicle emissions. It is used in many studies on emission modeling such as the MOVES (Motor Vehicle Emissions Simulator) model. The existing studies develop specific VSP distributions (or OpMode distribution in MOVES) for different road types and various average speeds to represent the vehicle operating modes on road. However, it is still not clear if the facility- and speed-specific VSP distributions are consistent temporally and spatially. For instance, is it necessary to update periodically the database of the VSP distributions in the emission model? Are the VSP distributions developed in the city central business district (CBD) area applicable to its suburb area? In this context, this study examined the temporal and spatial consistency of the facility- and speed-specific VSP distributions in Beijing. The VSP distributions in different years and in different areas are developed, based on real-world vehicle activity data. The root mean square error (RMSE) is employed to quantify the difference between the VSP distributions. The maximum differences of the VSP distributions between different years and between different areas are approximately 20% of that between different road types. The analysis of the carbon dioxide (CO 2 ) emission factor indicates that the temporal and spatial differences of the VSP distributions have no significant impact on vehicle emission estimation, with relative error of less than 3%. The temporal and spatial differences have no significant impact on the development of the facility- and speed-specific VSP distributions for the vehicle emission estimation. The database of the specific VSP distributions in the VSP-based emission models can maintain in terms of time. Thus, it is unnecessary to update the database regularly, and it is reliable to use the history vehicle activity data to forecast the emissions in the future. In one city, the areas with less data can still
Vimal Ranchhod; Arden Finn
2014-01-01
What effect did the introduction of the Employment Tax Incentive (ETI) have on youth employment probabilities in South Africa in the short run? The ETI came into effect on the 1st of January 2014. Its purpose is to stimulate youth employment levels and ease the challenges that many youth experience in finding their first jobs. Under the ETI, firms that employ youth are eligible to claim a deduction from their taxes due, for the portion of their wage bill that is paid to certain groups of yout...
Probability Aggregates in Probability Answer Set Programming
Saad, Emad
2013-01-01
Probability answer set programming is a declarative programming that has been shown effective for representing and reasoning about a variety of probability reasoning tasks. However, the lack of probability aggregates, e.g. {\\em expected values}, in the language of disjunctive hybrid probability logic programs (DHPP) disallows the natural and concise representation of many interesting problems. In this paper, we extend DHPP to allow arbitrary probability aggregates. We introduce two types of p...
Dripps, W.R.; Bradbury, K.R.
2007-01-01
Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating recharge distributions are data intensive, require extensive parameterization, and take a significant investment of time in order to establish. The Wisconsin Geological and Natural History Survey (WGNHS) has developed a simple daily soil-water balance (SWB) model that uses readily available soil, land cover, topographic, and climatic data in conjunction with a geographic information system (GIS) to estimate the temporal and spatial distribution of groundwater recharge at the watershed scale for temperate humid areas. To demonstrate the methodology and the applicability and performance of the model, two case studies are presented: one for the forested Trout Lake watershed of north central Wisconsin, USA and the other for the urban-agricultural Pheasant Branch Creek watershed of south central Wisconsin, USA. Overall, the SWB model performs well and presents modelers and planners with a practical tool for providing recharge estimates for modeling and water resource planning purposes in humid areas. ?? Springer-Verlag 2007.
Directory of Open Access Journals (Sweden)
Boram Kwon
2016-09-01
Full Text Available This study investigated the effects of interspecific and temporal variation of specific leaf area (SLA, cm2·g−1 on leaf area index (LAI estimation for three deciduous broadleaved forests (Gwangneung (GN, Taehwa (TH, and Gariwang (GRW in Korea with varying ages and composition of tree species. In fall of 2014, fallen leaves were periodically collected using litter traps and classified by species. LAI was estimated by obtaining SLAs using four calculation methods (A: including both interspecific and temporal variation in SLA; B: species specific mean SLA; C: period-specific mean SLA; and D: overall mean, then multiplying the SLAs by the amount of leaves. SLA varied across different species in all plots, and SLAs of upper canopy species were less than those of lower canopy species. The LAIs calculated using method A, the reference method, were GN 6.09, TH 5.42, and GRW 4.33. LAIs calculated using method B showed a difference of up to 3% from the LAI of method A, but LAIs calculated using methods C and D were overestimated. Therefore, species specific SLA must be considered for precise LAI estimation for broadleaved forests that include multiple species.
Rushworth, Alastair; Lee, Duncan; Mitchell, Richard
2014-07-01
It has long been known that air pollution is harmful to human health, as many epidemiological studies have been conducted into its effects. Collectively, these studies have investigated both the acute and chronic effects of pollution, with the latter typically based on individual level cohort designs that can be expensive to implement. As a result of the increasing availability of small-area statistics, ecological spatio-temporal study designs are also being used, with which a key statistical problem is allowing for residual spatio-temporal autocorrelation that remains after the covariate effects have been removed. We present a new model for estimating the effects of air pollution on human health, which allows for residual spatio-temporal autocorrelation, and a study into the long-term effects of air pollution on human health in Greater London, England. The individual and joint effects of different pollutants are explored, via the use of single pollutant models and multiple pollutant indices. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Scaling Qualitative Probability
Burgin, Mark
2017-01-01
There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...
International Nuclear Information System (INIS)
Wilson, G.E.; Boyack, B.E.; Duffey, R.B.; Griffith, P.; Katsma, K.R.; Lellouche, G.S.; Rohatgi, U.S.; Wulff, W.; Zuber, N.
1988-01-01
Issue of a revised rule for loss of coolant accident/emergency core cooling system (LOCA/ECCS) analysis of light water reactors will allow the use of best estimate (BE) computer codes in safety analysis, with uncertainty analysis. This paper describes a systematic methodology, CSAU (Code Scaling, Applicability and Uncertainty), which will provide uncertainty bounds in a cost effective, auditable, rational and practical manner. 8 figs., 2 tabs
Ramos-Zapata, José A; Guadarrama, Patricia; Navarro-Alberto, Jorge; Orellana, Roger
2011-02-01
The present study was aimed at comparing the number of arbuscular mycorrhizal fungi (AMF) propagules found in soil from a mature tropical forest and that found in an abandoned cornfield in Noh-Bec Quintana Roo, Mexico, during three seasons. Agricultural practices can dramatically reduce the availability and viability of AMF propagules, and in this way delay the regeneration of tropical forests in abandoned agricultural areas. In addition, rainfall seasonality, which characterizes deciduous tropical forests, may strongly influence AMF propagules density. To compare AMF propagule numbers between sites and seasons (summer rainy, winter rainy and dry season), a "most probable number" (MPN) bioassay was conducted under greenhouse conditions employing Sorgum vulgare L. as host plant. Results showed an average value of 3.5 ± 0.41 propagules in 50 ml of soil for the mature forest while the abandoned cornfield had 15.4 ± 5.03 propagules in 50 ml of soil. Likelihood analysis showed no statistical differences in MPN of propagules between seasons within each site, or between sites, except for the summer rainy season for which soil from the abandoned cornfield had eight times as many propagules compared to soil from the mature forest site for this season. Propagules of arbuscular mycorrhizal fungi remained viable throughout the sampling seasons at both sites. Abandoned areas resulting from traditional slash and burn agriculture practices involving maize did not show a lower number of AMF propagules, which should allow the establishment of mycotrophic plants thus maintaining the AMF inoculum potential in these soils.
Kapfer, Paul M.; Streby, Henry M.; Gurung, B.; Simcharoen, A.; McDougal, C.C.; Smith, J.L.D.
2011-01-01
Attempts to conserve declining tiger Panthera tigris populations and distributions have experienced limited success. The poaching of tiger prey is a key threat to tiger persistence; a clear understanding of tiger diet is a prerequisite to conserve dwindling populations. We used unpublished data on tiger diet in combination with two previously published studies to examine fine-scale spatio-temporal changes in tiger diet relative to prey abundance in Chitwan National Park, Nepal, and aggregated data from the three studies to examine the effect that study duration and the size of the study area have on estimates of tiger diet. Our results correspond with those of previous studies: in all three studies, tiger diet was dominated by members of Cervidae; small to medium-sized prey was important in one study. Tiger diet was unrelated to prey abundance, and the aggregation of studies indicates that increasing study duration and study area size both result in increased dietary diversity in terms of prey categories consumed, and increasing study duration changed which prey species contributed most to tiger diet. Based on our results, we suggest that managers focus their efforts on minimizing the poaching of all tiger prey, and that future studies of tiger diet be of long duration and large spatial extent to improve our understanding of spatio-temporal variation in estimates of tiger diet. ?? 2011 Wildlife Biology, NKV.
Adin, A; Lee, D; Goicoa, T; Ugarte, María Dolores
2018-01-01
Disease risk maps for areal unit data are often estimated from Poisson mixed models with local spatial smoothing, for example by incorporating random effects with a conditional autoregressive prior distribution. However, one of the limitations is that local discontinuities in the spatial pattern are not usually modelled, leading to over-smoothing of the risk maps and a masking of clusters of hot/coldspot areas. In this paper, we propose a novel two-stage approach to estimate and map disease risk in the presence of such local discontinuities and clusters. We propose approaches in both spatial and spatio-temporal domains, where for the latter the clusters can either be fixed or allowed to vary over time. In the first stage, we apply an agglomerative hierarchical clustering algorithm to training data to provide sets of potential clusters, and in the second stage, a two-level spatial or spatio-temporal model is applied to each potential cluster configuration. The superiority of the proposed approach with regard to a previous proposal is shown by simulation, and the methodology is applied to two important public health problems in Spain, namely stomach cancer mortality across Spain and brain cancer incidence in the Navarre and Basque Country regions of Spain.
International Nuclear Information System (INIS)
Wilson, Brandon M; Smith, Barton L
2013-01-01
Uncertainties are typically assumed to be constant or a linear function of the measured value; however, this is generally not true. Particle image velocimetry (PIV) is one example of a measurement technique that has highly nonlinear, time varying local uncertainties. Traditional uncertainty methods are not adequate for the estimation of the uncertainty of measurement statistics (mean and variance) in the presence of nonlinear, time varying errors. Propagation of instantaneous uncertainty estimates into measured statistics is performed allowing accurate uncertainty quantification of time-mean and statistics of measurements such as PIV. It is shown that random errors will always elevate the measured variance, and thus turbulent statistics such as u'u'-bar. Within this paper, nonlinear, time varying errors are propagated from instantaneous measurements into the measured mean and variance using the Taylor-series method. With these results and knowledge of the systematic and random uncertainty of each measurement, the uncertainty of the time-mean, the variance and covariance can be found. Applicability of the Taylor-series uncertainty equations to time varying systematic and random errors and asymmetric error distributions are demonstrated with Monte-Carlo simulations. The Taylor-series uncertainty estimates are always accurate for uncertainties on the mean quantity. The Taylor-series variance uncertainty is similar to the Monte-Carlo results for cases in which asymmetric random errors exist or the magnitude of the instantaneous variations in the random and systematic errors is near the ‘true’ variance. However, the Taylor-series method overpredicts the uncertainty in the variance as the instantaneous variations of systematic errors are large or are on the same order of magnitude as the ‘true’ variance. (paper)
Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu
2015-12-01
Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.
International Nuclear Information System (INIS)
Karamyan, S.A.; Adam, J.; Belov, A.G.; Chaloun, P.; Norseev, Yu.V.; Stegajlov, V.I.
1997-01-01
Fission-fragment mass distribution has been measured by the cumulative yields of radionuclides detected in the 232 Th(γ,f)-reaction at the Bremsstrahlung endpoint energies of 12 and 24 MeV. The yield upper limits have been estimated for the light nuclei 24 Na, 28 Mg, 38 S etc. at the Th and Ta targets exposure to the 24 MeV Bremsstrahlung. The results are discussed in terms of the multimodal fission phenomena and cluster emission >from a deformed fissioning system or from a compound nucleus
Energy Technology Data Exchange (ETDEWEB)
Blackwood, R. L.
1980-05-15
There are now available sufficient data from in-situ, pre-mining stress measurements to allow a first attempt at predicting the maximum stress magnitudes likely to occur in a given mining context. The sub-horizontal (lateral) stress generally dominates the stress field, becoming critical to stope stability in many cases. For cut-and-fill mining in particular, where developed fill pressures are influenced by lateral displacement of pillars or stope backs, extraction maximization planning by mathematical modelling techniques demands the best available estimate of pre-mining stresses. While field measurements are still essential for this purpose, in the present paper it is suggested that the worst stress case can be predicted for preliminary design or feasibility study purposes. In the Eurpoean continent the vertical component of pre-mining stress may be estimated by adding 2 MPa to the pressure due to overburden weight. The maximum lateral stress likely to be encountered is about 57 MPa at depths of some 800m to 1000m below the surface.
Directory of Open Access Journals (Sweden)
Bin Hu
2014-01-01
Full Text Available A few broadly neutralizing antibodies, isolated from HIV-1 infected individuals, recognize epitopes in the membrane proximal external region (MPER of gp41 that are transiently exposed during viral entry. The best characterized, 4E10 and 2F5, are polyreactive, binding to the viral membrane and their epitopes in the MPER. We present a model to calculate, for any antibody concentration, the probability that during the pre-hairpin intermediate, the transient period when the epitopes are first exposed, a bound antibody will disable a trivalent gp41 before fusion is complete. When 4E10 or 2F5 bind to the MPER, a conformational change is induced that results in a stably bound complex. The model predicts that for these antibodies to be effective at neutralization, the time to disable an epitope must be shorter than the time the antibody remains bound in this conformation, about five minutes or less for 4E10 and 2F5. We investigate the role of avidity in neutralization and show that 2F5 IgG, but not 4E10, is much more effective at neutralization than its Fab fragment. We attribute this to 2F5 interacting more stably than 4E10 with the viral membrane. We use the model to elucidate the parameters that determine the ability of these antibodies to disable epitopes and propose an extension of the model to analyze neutralization data. The extended model predicts the dependencies of IC50 for neutralization on the rate constants that characterize antibody binding, the rate of fusion of gp41, and the number of gp41 bridging the virus and target cell at the start of the pre-hairpin intermediate. Analysis of neutralization experiments indicate that only a small number of gp41 bridges must be disabled to prevent fusion. However, the model cannot determine the exact number from neutralization experiments alone.
Sudhanshu Panda; Devendra Amatya; Young Kim; Ge Sun
2016-01-01
Evapotranspiration (ET) is one of the most important hydrologic parameters for vegetationÂ growth, carbon sequestration, and other associated biodiversity study and analysis. PlantÂ stomatal conductance, leaf area index, canopy temperature, soil moisture, and wind speedÂ values generally correlate well with ET. It is difficult to estimate these hydrologic parametersÂ of...
Fieuzal, R.; Marais Sicre, C.; Baup, F.
2017-05-01
The yield forecasting of corn constitutes a key issue in agricultural management, particularly in the context of demographic pressure and climate change. This study presents two methods to estimate yields using artificial neural networks: a diagnostic approach based on all the satellite data acquired throughout the agricultural season, and a real-time approach, where estimates are updated after each image was acquired in the microwave and optical domains (Formosat-2, Spot-4/5, TerraSAR-X, and Radarsat-2) throughout the crop cycle. The results are based on the Multispectral Crop Monitoring experimental campaign conducted by the CESBIO (Centre d'Études de la BIOsphère) laboratory in 2010 over an agricultural region in southwestern France. Among the tested sensor configurations (multi-frequency, multi-polarization or multi-source data), the best yield estimation performance (using the diagnostic approach) is obtained with reflectance acquired in the red wavelength region, with a coefficient of determination of 0.77 and an RMSE of 6.6 q ha-1. In the real-time approach the combination of red reflectance and CHH backscattering coefficients provides the best compromise between the accuracy and earliness of the yield estimate (more than 3 months before the harvest), with an R2 of 0.69 and an RMSE of 7.0 q ha-1 during the development of the central stem. The two best yield estimates are similar in most cases (for more than 80% of the monitored fields), and the differences are related to discrepancies in the crop growth cycle and/or the consequences of pests.
Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.
2017-12-01
Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related
Directory of Open Access Journals (Sweden)
Thomas J Rodhouse
Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas] population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones" with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
DEFF Research Database (Denmark)
Rønjom, Marianne Feen; Brink, Carsten; Laugaard Lorenzen, Ebbe
2015-01-01
volume, Dmean and estimated risk of HT. Bland-Altman plots were used for assessment of the systematic (mean) and random [standard deviation (SD)] variability of the three parameters, and a method for displaying the spatial variation in delineation differences was developed. Results. Intra......-observer variability resulted in a mean difference in thyroid volume and Dmean of 0.4 cm(3) (SD ± 1.6) and -0.5 Gy (SD ± 1.0), respectively, and 0.3 cm(3) (SD ± 1.8) and 0.0 Gy (SD ± 1.3) for inter-observer variability. The corresponding mean differences of NTCP values for radiation-induced HT due to intra- and inter...
Directory of Open Access Journals (Sweden)
Zhi Yang
2016-10-01
Full Text Available Rice growth monitoring is very important as rice is one of the staple crops of the world. Rice variables as quantitative indicators of rice growth are critical for farming management and yield estimation, and synthetic aperture radar (SAR has great advantages for monitoring rice variables due to its all-weather observation capability. In this study, eight temporal RADARSAT-2 full-polarimetric SAR images were acquired during rice growth cycle and a modified water cloud model (MWCM was proposed, in which the heterogeneity of the rice canopy in the horizontal direction and its phenological changes were considered when the double-bounce scattering between the rice canopy and the underlying surface was firstly considered as well. Then, three scattering components from an improved polarimetric decomposition were coupled with the MWCM, instead of the backscattering coefficients. Using a genetic algorithm, eight rice variables were estimated, such as the leaf area index (LAI, rice height (h, and the fresh and dry biomass of ears (Fe and De. The accuracy validation showed the MWCM was suitable for the estimation of rice variables during the whole growth season. The validation results showed that the MWCM could predict the temporal behaviors of the rice variables well during the growth cycle (R2 > 0.8. Compared with the original water cloud model (WCM, the relative errors of rice variables with the MWCM were much smaller, especially in the vegetation phase (approximately 15% smaller. Finally, it was discussed that the MWCM could be used, theoretically, for extensive applications since the empirical coefficients in the MWCM were determined in general cases, but more applications of the MWCM are necessary in future work.
Usman, M.; Liedl, R.; Awan, U. K.
2015-06-01
Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings
Time Dependence of Collision Probabilities During Satellite Conjunctions
Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.
2017-01-01
The NASA Conjunction Assessment Risk Analysis (CARA) team has recently implemented updated software to calculate the probability of collision (P (sub c)) for Earth-orbiting satellites. The algorithm can employ complex dynamical models for orbital motion, and account for the effects of non-linear trajectories as well as both position and velocity uncertainties. This “3D P (sub c)” method entails computing a 3-dimensional numerical integral for each estimated probability. Our analysis indicates that the 3D method provides several new insights over the traditional “2D P (sub c)” method, even when approximating the orbital motion using the relatively simple Keplerian two-body dynamical model. First, the formulation provides the means to estimate variations in the time derivative of the collision probability, or the probability rate, R (sub c). For close-proximity satellites, such as those orbiting in formations or clusters, R (sub c) variations can show multiple peaks that repeat or blend with one another, providing insight into the ongoing temporal distribution of risk. For single, isolated conjunctions, R (sub c) analysis provides the means to identify and bound the times of peak collision risk. Additionally, analysis of multiple actual archived conjunctions demonstrates that the commonly used “2D P (sub c)” approximation can occasionally provide inaccurate estimates. These include cases in which the 2D method yields negligibly small probabilities (e.g., P (sub c)) is greater than 10 (sup -10)), but the 3D estimates are sufficiently large to prompt increased monitoring or collision mitigation (e.g., P (sub c) is greater than or equal to 10 (sup -5)). Finally, the archive analysis indicates that a relatively efficient calculation can be used to identify which conjunctions will have negligibly small probabilities. This small-P (sub c) screening test can significantly speed the overall risk analysis computation for large numbers of conjunctions.
Briggs, William M.
2012-01-01
The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.
Directory of Open Access Journals (Sweden)
Julia Neelmeijer
2014-09-01
Full Text Available We use 124 scenes of TerraSAR–X data that were acquired in 2009 and 2010 to analyse the spatial and temporal variability in surface kinematics of the debris-covered Inylchek Glacier, located in the Tien Shan mountain range in Central Asia. By applying the feature tracking method to the intensity information of the radar data and combining the results from the ascending and descending orbits, we derive the surface velocity field of the glaciated area. Analysing the seasonal variations over the upper part of the Southern Inylchek branch, we find a temperature-related increase in velocity from 25 cm/d up to 50 cm/d between spring and summer, with the peak occurring in June. Another prominent velocity peak is observable one month later in the lower part of the Southern Inylchek branch. This area shows generally little motion, with values of approximately 5–10 cm/d over the year, but yields surface kinematics of up to 25 cm/d during the peak period. Comparisons of the dates of annual glacial lake outburst floods (GLOFs of the proglacial Lake Merzbacher suggest that this lower part is directly influenced by the drainage, leading to the observed mini-surge, which has over twice the normal displacement rate. With regard to the GLOF and the related response of Inylchek Glacier, we conclude that X–band radar systems such as TerraSAR–X have a high potential for detecting and characterising small-scale glacial surface kinematic variations and should be considered for future inter-annual glacial monitoring tasks.
Janković, Bojan
2009-10-01
The decomposition process of sodium bicarbonate (NaHCO3) has been studied by thermogravimetry in isothermal conditions at four different operating temperatures (380 K, 400 K, 420 K, and 440 K). It was found that the experimental integral and differential conversion curves at the different operating temperatures can be successfully described by the isothermal Weibull distribution function with a unique value of the shape parameter ( β = 1.07). It was also established that the Weibull distribution parameters ( β and η) show independent behavior on the operating temperature. Using the integral and differential (Friedman) isoconversional methods, in the conversion (α) range of 0.20 ≤ α ≤ 0.80, the apparent activation energy ( E a ) value was approximately constant ( E a, int = 95.2 kJmol-1 and E a, diff = 96.6 kJmol-1, respectively). The values of E a calculated by both isoconversional methods are in good agreement with the value of E a evaluated from the Arrhenius equation (94.3 kJmol-1), which was expressed through the scale distribution parameter ( η). The Málek isothermal procedure was used for estimation of the kinetic model for the investigated decomposition process. It was found that the two-parameter Šesták-Berggren (SB) autocatalytic model best describes the NaHCO3 decomposition process with the conversion function f(α) = α0.18(1-α)1.19. It was also concluded that the calculated density distribution functions of the apparent activation energies ( ddfE a ’s) are not dependent on the operating temperature, which exhibit the highly symmetrical behavior (shape factor = 1.00). The obtained isothermal decomposition results were compared with corresponding results of the nonisothermal decomposition process of NaHCO3.
Koo, Reginald; Jones, Martin L.
2011-01-01
Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.
Goldberg, Samuel
1960-01-01
Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.
Directory of Open Access Journals (Sweden)
Si-Bo Duan
2014-04-01
Full Text Available The diurnal cycle of land surface temperature (LST is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time. The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale.
Sure, A.; Dikshit, O.
2017-12-01
Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.
Quantum probability measures and tomographic probability densities
Amosov, GG; Man'ko, [No Value
2004-01-01
Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the
Directory of Open Access Journals (Sweden)
C. Déandreis
2012-06-01
Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.
The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m^{−2} for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m^{−2}. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO_{4} m^{−3} in our model.
The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate
Liu, Yang; Paciorek, Christopher J; Koutrakis, Petros
2009-06-01
Studies of chronic health effects due to exposures to particulate matter with aerodynamic diameters meteorologic information to estimate ground-level PM(2.5) concentrations. We developed a two-stage generalized additive model (GAM) for U.S. Environmental Protection Agency PM(2.5) concentrations in a domain centered in Massachusetts. The AOD model represents conditions when AOD retrieval is successful; the non-AOD model represents conditions when AOD is missing in the domain. The AOD model has a higher predicting power judged by adjusted R(2) (0.79) than does the non-AOD model (0.48). The predicted PM(2.5) concentrations by the AOD model are, on average, 0.8-0.9 microg/m(3) higher than the non-AOD model predictions, with a more smooth spatial distribution, higher concentrations in rural areas, and the highest concentrations in areas other than major urban centers. Although AOD is a highly significant predictor of PM(2.5), meteorologic parameters are major contributors to the better performance of the AOD model. GOES aerosol/smoke product (GASP) AOD is able to summarize a set of weather and land use conditions that stratify PM(2.5) concentrations into two different spatial patterns. Even if land use regression models do not include AOD as a predictor variable, two separate models should be fitted to account for different PM(2.5) spatial patterns related to AOD availability.
Directory of Open Access Journals (Sweden)
Qiang Zhu
2017-07-01
Full Text Available We improved the CASA model based on differences in the types of land use, the values of the maximum light use efficiency, and the calculation methods of solar radiation. Then, the parameters of the model were examined and recombined into 16 cases. We estimated the net primary productivity (NPP using the NDVI3g dataset, meteorological data, and vegetation classification data from the Greater Khingan Mountain region, China. We assessed the accuracy and temporal-spatial distribution characteristics of NPP in the Greater Khingan Mountain region from 1982 to 2013. Based on a comparison of the results of the 16 cases, we found that different values of maximum light use efficiency affect the estimation more than differences in the fraction of photosynthetically active radiation (FPAR. However, the FPARmax and the constant Tε2 values did not show marked effects. Different schemes were used to assess different model combinations. Models using a combination of parameters established by scholars from China and the United States produced different results and had large errors. These ideas are meaningful references for the estimation of NPP in other regions. The results reveal that the annual average NPP in the Greater Khingan Mountain region was 760 g C/m2·a in 1982–2013 and that the inter-annual fluctuations were not dramatic. The NPP estimation results of the 16 cases exhibit an increasing trend. In terms of the spatial distribution of the changes, the model indicated that the values in 75% of this area seldom or never increased. Prominent growth occurred in the areas of Taipingling, Genhe, and the Oroqen Autonomous Banner. Notably, NPP decreased in the southeastern region of the Greater Khingan Mountains, the Hulunbuir Pasture Land, and Holingol.
Ho, Tung-Cheng; Satake, Kenji; Watada, Shingo
2017-12-01
Systemic travel time delays of up to 15 min relative to the linear long waves for transoceanic tsunamis have been reported. A phase correction method, which converts the linear long waves into dispersive waves, was previously proposed to consider seawater compressibility, the elasticity of the Earth, and gravitational potential change associated with tsunami motion. In the present study, we improved this method by incorporating the effects of ocean density stratification, actual tsunami raypath, and actual bathymetry. The previously considered effects amounted to approximately 74% for correction of the travel time delay, while the ocean density stratification, actual raypath, and actual bathymetry, contributed to approximately 13%, 4%, and 9% on average, respectively. The improved phase correction method accounted for almost all the travel time delay at far-field stations. We performed single and multiple time window inversions for the 2011 Tohoku tsunami using the far-field data (>3 h travel time) to investigate the initial sea surface displacement. The inversion result from only far-field data was similar to but smoother than that from near-field data and all stations, including a large sea surface rise increasing toward the trench followed by a migration northward along the trench. For the forward simulation, our results showed good agreement between the observed and computed waveforms at both near-field and far-field tsunami gauges, as well as with satellite altimeter data. The present study demonstrates that the improved method provides a more accurate estimate for the waveform inversion and forward prediction of far-field data.
Toward a generalized probability theory: conditional probabilities
International Nuclear Information System (INIS)
Cassinelli, G.
1979-01-01
The main mathematical object of interest in the quantum logic approach to the foundations of quantum mechanics is the orthomodular lattice and a set of probability measures, or states, defined by the lattice. This mathematical structure is studied per se, independently from the intuitive or physical motivation of its definition, as a generalized probability theory. It is thought that the building-up of such a probability theory could eventually throw light on the mathematical structure of Hilbert-space quantum mechanics as a particular concrete model of the generalized theory. (Auth.)
Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic
DEFF Research Database (Denmark)
Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand
2012-01-01
We present a novel approach and implementation for ana- lysing weighted timed automata (WTA) with respect to the weighted metric temporal logic (WMTL≤ ). Based on a stochastic semantics of WTAs, we apply statistical model checking (SMC) to estimate and test probabilities of satisfaction with desi......We present a novel approach and implementation for ana- lysing weighted timed automata (WTA) with respect to the weighted metric temporal logic (WMTL≤ ). Based on a stochastic semantics of WTAs, we apply statistical model checking (SMC) to estimate and test probabilities of satisfaction...
DECOFF Probabilities of Failed Operations
DEFF Research Database (Denmark)
Gintautas, Tomas
2015-01-01
A statistical procedure of estimation of Probabilities of Failed Operations is described and exemplified using ECMWF weather forecasts and SIMO output from Rotor Lift test case models. Also safety factor influence is investigated. DECOFF statistical method is benchmarked against standard Alpha-factor...
Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2014-01-01
The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions
Philosophical theories of probability
Gillies, Donald
2000-01-01
The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.
A hydroclimatological approach to predicting regional landslide probability using Landlab
Strauch, Ronda; Istanbulluoglu, Erkan; Nudurupati, Sai Siddhartha; Bandaragoda, Christina; Gasparini, Nicole M.; Tucker, Gregory E.
2018-02-01
We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m), and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.
A hydroclimatological approach to predicting regional landslide probability using Landlab
Directory of Open Access Journals (Sweden)
R. Strauch
2018-02-01
Full Text Available We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m, and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.
Benci, Vieri; Horsten, Leon; Wenmackers, Sylvia
We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned
Interpretations of probability
Khrennikov, Andrei
2009-01-01
This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.
Directory of Open Access Journals (Sweden)
Mingzhao Yu
2016-12-01
Full Text Available Aerodynamic roughness length is an important parameter for surface fluxes estimates. This paper developed an innovative method for estimation of aerodynamic roughness length (z0m over farmland with a new vegetation index, the Hot-darkspot Vegetation Index (HDVI. To obtain this new index, the normalized-difference hot-darkspot index (NDHD is introduced using a semi-empirical, kernel-driven bidirectional reflectance model with multi-temporal Proba-V 300-m top-of-canopy (TOC reflectance products. A linear relationship between HDVI and z0m was found during the crop growth period. Wind profiles data from two field automatic weather station (AWS were used to calibrate the model: one site is in Guantao County in Hai Basin, in which double-cropping systems and crop rotations with summer maize and winter wheat are implemented; the other is in the middle reach of the Heihe River Basin from the Heihe Watershed Allied Telemetry Experimental Research (HiWATER project, with the main crop of spring maize. The iterative algorithm based on Monin–Obukhov similarity theory is employed to calculate the field z0m from time series. Results show that the relationship between HDVI and z0m is more pronounced than that between NDVI and z0m for spring maize at Yingke site, with an R2 value that improved from 0.636 to 0.772. At Guantao site, HDVI also exhibits better performance than NDVI, with R2 increasing from 0.630 to 0.793 for summer maize and from 0.764 to 0.790 for winter wheat. HDVI can capture the impacts of crop residue on z0m, whereas NDVI cannot.
Härkänen, Tommi; Kaikkonen, Risto; Virtala, Esa; Koskinen, Seppo
2014-11-06
To assess the nonresponse rates in a questionnaire survey with respect to administrative register data, and to correct the bias statistically. The Finnish Regional Health and Well-being Study (ATH) in 2010 was based on a national sample and several regional samples. Missing data analysis was based on socio-demographic register data covering the whole sample. Inverse probability weighting (IPW) and doubly robust (DR) methods were estimated using the logistic regression model, which was selected using the Bayesian information criteria. The crude, weighted and true self-reported turnout in the 2008 municipal election and prevalences of entitlements to specially reimbursed medication, and the crude and weighted body mass index (BMI) means were compared. The IPW method appeared to remove a relatively large proportion of the bias compared to the crude prevalence estimates of the turnout and the entitlements to specially reimbursed medication. Several demographic factors were shown to be associated with missing data, but few interactions were found. Our results suggest that the IPW method can improve the accuracy of results of a population survey, and the model selection provides insight into the structure of missing data. However, health-related missing data mechanisms are beyond the scope of statistical methods, which mainly rely on socio-demographic information to correct the results.
Li, Hui; Faruque, Fazlay; Williams, Worth; Al-Hamdan, Mohammad; Luvall, Jeffrey C.; Crosson, William; Rickman, Douglas; Limaye, Ashutosh
2009-01-01
Aerosol optical depth (AOD), an indirect estimate of particle matter using satellite observations, has shown great promise in improving estimates of PM 2.5 air quality surface. Currently, few studies have been conducted to explore the optimal way to apply AOD data to improve the model accuracy of PM 2.5 surface estimation in a real-time air quality system. We believe that two major aspects may be worthy of consideration in that area: 1) the approach to integrate satellite measurements with ground measurements in the pollution estimation, and 2) identification of an optimal temporal scale to calculate the correlation of AOD and ground measurements. This paper is focused on the second aspect on the identifying the optimal temporal scale to correlate AOD with PM2.5. Five following different temporal scales were chosen to evaluate their impact on the model performance: 1) within the last 3 days, 2) within the last 10 days, 3) within the last 30 days, 4) within the last 90 days, and 5) the time period with the highest correlation in a year. The model performance is evaluated for its accuracy, bias, and errors based on the following selected statistics: the Mean Bias, the Normalized Mean Bias, the Root Mean Square Error, Normalized Mean Error, and the Index of Agreement. This research shows that the model with the temporal scale of within the last 30 days displays the best model performance in this study area using 2004 and 2005 data sets.
VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS
Directory of Open Access Journals (Sweden)
Smirnov Vladimir Alexandrovich
2012-10-01
Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
International Nuclear Information System (INIS)
Fraassen, B.C. van
1979-01-01
The interpretation of probabilities in physical theories are considered, whether quantum or classical. The following points are discussed 1) the functions P(μ, Q) in terms of which states and propositions can be represented, are classical (Kolmogoroff) probabilities, formally speaking, 2) these probabilities are generally interpreted as themselves conditional, and the conditions are mutually incompatible where the observables are maximal and 3) testing of the theory typically takes the form of confronting the expectation values of observable Q calculated with probability measures P(μ, Q) for states μ; hence, of comparing the probabilities P(μ, Q)(E) with the frequencies of occurrence of the corresponding events. It seems that even the interpretation of quantum mechanics, in so far as it concerns what the theory says about the empirical (i.e. actual, observable) phenomena, deals with the confrontation of classical probability measures with observable frequencies. This confrontation is studied. (Auth./C.F.)
The quantum probability calculus
International Nuclear Information System (INIS)
Jauch, J.M.
1976-01-01
The Wigner anomaly (1932) for the joint distribution of noncompatible observables is an indication that the classical probability calculus is not applicable for quantum probabilities. It should, therefore, be replaced by another, more general calculus, which is specifically adapted to quantal systems. In this article this calculus is exhibited and its mathematical axioms and the definitions of the basic concepts such as probability field, random variable, and expectation values are given. (B.R.H)
Choice Probability Generating Functions
DEFF Research Database (Denmark)
Fosgerau, Mogens; McFadden, Daniel L; Bierlaire, Michel
This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications....
Probability of satellite collision
Mccarter, J. W.
1972-01-01
A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.
Choice probability generating functions
DEFF Research Database (Denmark)
Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel
2013-01-01
This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications. The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended...
Florescu, Ionut
2013-01-01
THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introductio
Ash, Robert B; Lukacs, E
1972-01-01
Real Analysis and Probability provides the background in real analysis needed for the study of probability. Topics covered range from measure and integration theory to functional analysis and basic concepts of probability. The interplay between measure theory and topology is also discussed, along with conditional probability and expectation, the central limit theorem, and strong laws of large numbers with respect to martingale theory.Comprised of eight chapters, this volume begins with an overview of the basic concepts of the theory of measure and integration, followed by a presentation of var
Probability, Statistics, and Stochastic Processes
Olofsson, Peter
2012-01-01
This book provides a unique and balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and
Freund, John E
1993-01-01
Thorough, lucid coverage of permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, binomial distribution, geometric distribution, standard deviation, law of large numbers, and much more. Exercises with some solutions. Summary. Bibliography. Includes 42 black-and-white illustrations. 1973 edition.
Probability, Nondeterminism and Concurrency
DEFF Research Database (Denmark)
Varacca, Daniele
Nondeterminism is modelled in domain theory by the notion of a powerdomain, while probability is modelled by that of the probabilistic powerdomain. Some problems arise when we want to combine them in order to model computation in which both nondeterminism and probability are present. In particula...
Rocchi, Paolo
2014-01-01
The problem of probability interpretation was long overlooked before exploding in the 20th century, when the frequentist and subjectivist schools formalized two conflicting conceptions of probability. Beyond the radical followers of the two schools, a circle of pluralist thinkers tends to reconcile the opposing concepts. The author uses two theorems in order to prove that the various interpretations of probability do not come into opposition and can be used in different contexts. The goal here is to clarify the multifold nature of probability by means of a purely mathematical approach and to show how philosophical arguments can only serve to deepen actual intellectual contrasts. The book can be considered as one of the most important contributions in the analysis of probability interpretation in the last 10-15 years.
Factors influencing reporting and harvest probabilities in North American geese
Zimmerman, G.S.; Moser, T.J.; Kendall, W.L.; Doherty, P.F.; White, Gary C.; Caswell, D.F.
2009-01-01
We assessed variation in reporting probabilities of standard bands among species, populations, harvest locations, and size classes of North American geese to enable estimation of unbiased harvest probabilities. We included reward (US10,20,30,50, or100) and control (0) banded geese from 16 recognized goose populations of 4 species: Canada (Branta canadensis), cackling (B. hutchinsii), Ross's (Chen rossii), and snow geese (C. caerulescens). We incorporated spatially explicit direct recoveries and live recaptures into a multinomial model to estimate reporting, harvest, and band-retention probabilities. We compared various models for estimating harvest probabilities at country (United States vs. Canada), flyway (5 administrative regions), and harvest area (i.e., flyways divided into northern and southern sections) scales. Mean reporting probability of standard bands was 0.73 (95 CI 0.690.77). Point estimates of reporting probabilities for goose populations or spatial units varied from 0.52 to 0.93, but confidence intervals for individual estimates overlapped and model selection indicated that models with species, population, or spatial effects were less parsimonious than those without these effects. Our estimates were similar to recently reported estimates for mallards (Anas platyrhynchos). We provide current harvest probability estimates for these populations using our direct measures of reporting probability, improving the accuracy of previous estimates obtained from recovery probabilities alone. Goose managers and researchers throughout North America can use our reporting probabilities to correct recovery probabilities estimated from standard banding operations for deriving spatially explicit harvest probabilities.
Billingsley, Patrick
2012-01-01
Praise for the Third Edition "It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006) A complete and comprehensive classic in probability and measure theory Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this
International Nuclear Information System (INIS)
Bitsakis, E.I.; Nicolaides, C.A.
1989-01-01
The concept of probability is now, and always has been, central to the debate on the interpretation of quantum mechanics. Furthermore, probability permeates all of science, as well as our every day life. The papers included in this volume, written by leading proponents of the ideas expressed, embrace a broad spectrum of thought and results: mathematical, physical epistemological, and experimental, both specific and general. The contributions are arranged in parts under the following headings: Following Schroedinger's thoughts; Probability and quantum mechanics; Aspects of the arguments on nonlocality; Bell's theorem and EPR correlations; Real or Gedanken experiments and their interpretation; Questions about irreversibility and stochasticity; and Epistemology, interpretation and culture. (author). refs.; figs.; tabs
Díaz Fernández, Ester
2010-01-01
In this thesis, new models and methodologies are introduced for the analysis of dynamic processes characterized by image sequences with spatial temporal overlapping. The spatial temporal overlapping exists in many natural phenomena and should be addressed properly in several Science disciplines such as Microscopy, Material Sciences, Biology, Geostatistics or Communication Networks. This work is related to the Point Process and Random Closed Set theories, within Stochastic Ge...
Dynamic SEP event probability forecasts
Kahler, S. W.; Ling, A.
2015-10-01
The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.
Shorack, Galen R
2017-01-01
This 2nd edition textbook offers a rigorous introduction to measure theoretic probability with particular attention to topics of interest to mathematical statisticians—a textbook for courses in probability for students in mathematical statistics. It is recommended to anyone interested in the probability underlying modern statistics, providing a solid grounding in the probabilistic tools and techniques necessary to do theoretical research in statistics. For the teaching of probability theory to post graduate statistics students, this is one of the most attractive books available. Of particular interest is a presentation of the major central limit theorems via Stein's method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function. The bootstrap and trimming are both presented. Martingale coverage includes coverage of censored data martingales. The text includes measure theoretic...
Concepts of probability theory
Pfeiffer, Paul E
1979-01-01
Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.
Probability and Bayesian statistics
1987-01-01
This book contains selected and refereed contributions to the "Inter national Symposium on Probability and Bayesian Statistics" which was orga nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...
Probability and Statistical Inference
Prosper, Harrison B.
2006-01-01
These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.
Hartmann, Stephan
2011-01-01
Many results of modern physics--those of quantum mechanics, for instance--come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fie...
Grimmett, Geoffrey
2014-01-01
Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit th...
Hemmo, Meir
2012-01-01
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Survival estimates for Florida manatees from the photo-identification of individuals
Langtimm, C.A.; Beck, C.A.; Edwards, H.H.; Fick-Child, K. J.; Ackerman, B.B.; Barton, S.L.; Hartley, W.C.
2004-01-01
We estimated adult survival probabilities for the endangered Florida manatee (Trichechus manatus latirostris) in four regional populations using photo-identification data and open-population capture-recapture statistical models. The mean annual adult survival probability over the most recent 10-yr period of available estimates was as follows: Northwest - 0.956 (SE 0.007), Upper St. Johns River - 0.960 (0.011), Atlantic Coast - 0.937 (0.008), and Southwest - 0.908 (0.019). Estimates of temporal variance independent of sampling error, calculated from the survival estimates, indicated constant survival in the Upper St. Johns River, true temporal variability in the Northwest and Atlantic Coast, and large sampling variability obscuring estimates for the Southwest. Calf and subadult survival probabilities were estimated for the Upper St. Johns River from the only available data for known-aged individuals: 0.810 (95% CI 0.727-0.873) for 1st year calves, 0.915 (0.827-0.960) for 2nd year calves, and 0.969 (0.946-0.982) for manatee 3 yr or older. These estimates of survival probabilities and temporal variance, in conjunction with estimates of reproduction probabilities from photoidentification data can be used to model manatee population dynamics, estimate population growth rates, and provide an integrated measure of regional status.
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Quantum computing and probability.
Ferry, David K
2009-11-25
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.
Quantum computing and probability
International Nuclear Information System (INIS)
Ferry, David K
2009-01-01
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction. (viewpoint)
Irreversibility and conditional probability
International Nuclear Information System (INIS)
Stuart, C.I.J.M.
1989-01-01
The mathematical entropy - unlike physical entropy - is simply a measure of uniformity for probability distributions in general. So understood, conditional entropies have the same logical structure as conditional probabilities. If, as is sometimes supposed, conditional probabilities are time-reversible, then so are conditional entropies and, paradoxically, both then share this symmetry with physical equations of motion. The paradox is, of course that probabilities yield a direction to time both in statistical mechanics and quantum mechanics, while the equations of motion do not. The supposed time-reversibility of both conditionals seems also to involve a form of retrocausality that is related to, but possibly not the same as, that described by Costa de Beaurgard. The retrocausality is paradoxically at odds with the generally presumed irreversibility of the quantum mechanical measurement process. Further paradox emerges if the supposed time-reversibility of the conditionals is linked with the idea that the thermodynamic entropy is the same thing as 'missing information' since this confounds the thermodynamic and mathematical entropies. However, it is shown that irreversibility is a formal consequence of conditional entropies and, hence, of conditional probabilities also. 8 refs. (Author)
Isaac, Richard
1995-01-01
The ideas of probability are all around us. Lotteries, casino gambling, the al most non-stop polling which seems to mold public policy more and more these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairl...
Experimental Probability in Elementary School
Andrew, Lane
2009-01-01
Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.
Probability of spent fuel transportation accidents
International Nuclear Information System (INIS)
McClure, J.D.
1981-07-01
The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile
UT Biomedical Informatics Lab (BMIL) probability wheel
Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.
A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.
Choice probability generating functions
DEFF Research Database (Denmark)
Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel
2010-01-01
This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice...... probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications....... The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended to competing risk survival models....
Probability and stochastic modeling
Rotar, Vladimir I
2012-01-01
Basic NotionsSample Space and EventsProbabilitiesCounting TechniquesIndependence and Conditional ProbabilityIndependenceConditioningThe Borel-Cantelli TheoremDiscrete Random VariablesRandom Variables and VectorsExpected ValueVariance and Other Moments. Inequalities for DeviationsSome Basic DistributionsConvergence of Random Variables. The Law of Large NumbersConditional ExpectationGenerating Functions. Branching Processes. Random Walk RevisitedBranching Processes Generating Functions Branching Processes Revisited More on Random WalkMarkov ChainsDefinitions and Examples. Probability Distributions of Markov ChainsThe First Step Analysis. Passage TimesVariables Defined on a Markov ChainErgodicity and Stationary DistributionsA Classification of States and ErgodicityContinuous Random VariablesContinuous DistributionsSome Basic Distributions Continuous Multivariate Distributions Sums of Independent Random Variables Conditional Distributions and ExpectationsDistributions in the General Case. SimulationDistribution F...
Collision Probability Analysis
DEFF Research Database (Denmark)
Hansen, Peter Friis; Pedersen, Preben Terndrup
1998-01-01
It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...... characteristics are: ship speed, ship manoeuvrability, the layout of the navigational bridge, the radar system, the number and the training of navigators, the presence of a look out etc. The main parameters affecting the navigational environment are ship traffic density, probability distributions of wind speeds...... probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...