WorldWideScience

Sample records for estimating phytoplankton photosynthesis

  1. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  2. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  3. Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer

    Directory of Open Access Journals (Sweden)

    Taras K. Antal

    2001-09-01

    Full Text Available In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and meas

  4. Effects of ultraviolet light on photosynthesis and pigments of Antarctic marine phytoplankton

    International Nuclear Information System (INIS)

    Stephens, F.C.

    1989-01-01

    This field study was conducted at Palmer Station, Anvers Island, Antarctica, during November-December, 1987. The main objectives were to quantify the effects on photosynthetic rates and pigmentation of short-term and long-term exposures of Antarctic phytoplankton to different levels of UV radiation. Phytoplankton and ice algae were exposed to four levels of UV radiation in outdoor incubation chambers: near ambient UV; UV enhanced by approximately 5% over ambient levels; reduced UV-B; and essentially no UV. Results of 4-hour studies showed that rates of phytoplankton photosynthesis were generally inversely related to UV exposure. Higher photosynthetic rates were maintained over a greater range of irradiance levels when UV was removed in photosynthesis-irradiance studies. Photosynthetic pigments did not change with variations in either visible or UV light. After adaptation for 24 hours, photosynthetic rate measured under conditions of essentially no UV was approximately twice that measured under near ambient UV conditions. Results of photosynthesis-irradiance experiments indicate that photosynthetic efficiencies (α), maximum photosynthetic rates (P max ) and the index of inhibition (I b ) were inversely related to UV levels, probably due at least in part to the loss of chlorophyll a

  5. Size Class Dependent Relationships between Temperature and Phytoplankton Photosynthesis-Irradiance Parameters in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Alex Robinson

    2018-01-01

    Full Text Available Over the past decade, a number of methods have been developed to estimate size-class primary production from either in situ phytoplankton pigment data or remotely-sensed data. In this context, the first objective of this study was to compare two methods of estimating size class specific (micro-, nano-, and pico-phytoplankton photosynthesis-irradiance (PE parameters from pigment data. The second objective was to analyse the relationship between environmental variables (temperature, nitrate and PAR and PE parameters in the different size-classes. A large dataset was used of simultaneous measurements of the PE parameters (n = 1,260 and phytoplankton pigment markers (n = 2,326, from 3 different institutes. There were no significant differences in mean PE parameters of the different size classes between the chemotaxonomic method of Uitz et al. (2008 and the pigment markers and carbon-to-Chl a ratios method of Sathyendranath et al. (2009. For both methods, mean maximum photosynthetic rates (PmB for micro-phytoplankton were significantly lower than those for pico-phytoplankton and nano-phytoplankton. The mean light limited slope (αB for nano-phytoplankton were significantly higher than for the other size taxa. For micro-phytoplankton dominated samples identified using the Sathyendranath et al. (2009 method, both PmB and αB exhibited a significant, positive linear relationship with temperature, whereas for pico-phytoplankton the correlation with temperature was negative. Nano-phytoplankton dominated samples showed a positive correlation between PmB and temperature, whereas for αB and the light saturation parameter (Ek the correlations were not significant. For the Uitz et al. (2008 method, only micro-phytoplankton PmB, pico-phytoplankton αB, nano- and pico-phytoplankton Ek exhibited significant relationships with temperature. The temperature ranges occupied by the size classes derived using these methods differed. The Uitz et al. (2008 method

  6. Toxic effects of chlorinated organic compounds and potassium dichromate on growth rate and photosynthesis of marine phytoplankton

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Nyholm, Niels

    1992-01-01

    The toxic effects of potassium dichromate (K2Cr2O7), 3,4-dichloroaniline (DCA) and 2,4-dichlorophenol (DCP) on the photosynthesis of natural marine phytoplankton and five species of marine microalgae were investigated. Effect concentrations corresponding to a 50 % depression of photosynthesis (6h...

  7. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Science.gov (United States)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  8. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  9. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Sand-Jensen, K.

    2006-01-01

    cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long-term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates...... +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended......1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient...

  10. The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses.

    Science.gov (United States)

    Larkum, A W; Wood, W F

    1993-04-01

    Several species of marine benthic algae, four species of phytoplankton and two species of seagrass have been subjected to ultraviolet B irradiation for varying lengths of time and the effects on respiration, photosynthesis and fluorescence rise kinetics studied. No effect on respiration was found. Photosynthesis was inhibited to a variable degree in all groups of plants after irradiation over periods of up to 1 h and variable fluorescence was also inhibited in a similar way. The most sensitive plants were phytoplankton and deep-water benthic algae. Intertidal benthic algae were the least sensitive to UV-B irradiation and this may be related to adaptation, through the accumulation of UV-B screening compounds, to high light/high UV-B levels. Inhibition of variable fluorescence (Fv) of the fluorescence rise curve was a fast and sensitive indicator of UV-B damage. Two plants studied, a brown alga and a seagrass, showed very poor recovery of Fv over a period of 32 h.

  11. Photosynthesis-irradiance parameters of marine phytoplankton: synthesis of a global data set

    Science.gov (United States)

    Bouman, Heather A.; Platt, Trevor; Doblin, Martina; Figueiras, Francisco G.; Gudmundsson, Kristinn; Gudfinnsson, Hafsteinn G.; Huang, Bangqin; Hickman, Anna; Hiscock, Michael; Jackson, Thomas; Lutz, Vivian A.; Mélin, Frédéric; Rey, Francisco; Pepin, Pierre; Segura, Valeria; Tilstone, Gavin H.; van Dongen-Vogels, Virginie; Sathyendranath, Shubha

    2018-02-01

    The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).

  12. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  13. State of Climate 2011 - Global Ocean Phytoplankton

    Science.gov (United States)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; hide

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  14. Photoadaptations of photosynthesis and carbon metabolism by phytoplankton from McMurdo Sound, Antarctica. I. Species-specific and community responses to reduced irradiances

    International Nuclear Information System (INIS)

    Rivkin, R.B.; Voytek, M.A.

    1987-01-01

    Irradiance-dependent rates of photosynthesis and photosynthate labeling patterns were measured for phytoplankton in McMurdo Sound, Antarctica. Species-specific and traditional whole-water techniques were used to compare the physiological responses of algae collected in a high light environment at the ice edge and from a low light environment under the annual sea ice. There were differences among species within the same sample, for the same species isolated from high and low light environments, and when species-specific responses were compared with that of the natural assemblage. For algae collected beneath the sea ice, photosynthesis generally saturated at a lower irradiance, and the light-limited region of the P vs. I relationship had a steeper slope than for the same species collected at the ice edge. Low-light-adapted algae incorporated significantly less 14 C into proteins and more into low molecular weight compounds and lipids than the same species isolated from a high light environment. Under conditions where reduced rates of protein synthesis were coupled with high rates of carbon uptake, the measurement of photosynthesis may not accurately reflect the physiological condition of the phytoplankton

  15. Photophysiological and light absorption properties of phytoplankton communities in the river-dominated margin of the northern Gulf of Mexico

    Science.gov (United States)

    Chakraborty, Sumit; Lohrenz, Steven E.; Gundersen, Kjell

    2017-06-01

    Spatial and temporal variability in photophysiological properties of phytoplankton were examined in relationship to phytoplankton community composition in the river-dominated continental margin of the northern Gulf of Mexico (NGOM). Observations made during five research cruises in the NGOM included phytoplankton photosynthetic and optical properties and associated environmental conditions and phytoplankton community structure. Distinct patterns of spatial and temporal variability in photophysiological parameters were found for waters dominated by different phytoplankton groups. Photophysiological properties for locations associated with dominance by a particular group of phytoplankton showed evidence of photoacclimation as reflected by differences in light absorption and pigment characteristics in relationship to different light environments. The maximum rate of photosynthesis normalized to chlorophyll (PmaxB) was significantly higher for communities dominated (>60% biomass) by cyanobacteria + prochlorophyte (cyano + prochl). The initial slope of the photosynthesis-irradiance (P-E) curve normalized to chlorophyll (αB) was not clearly related to phytoplankton community structure and no significant differences were found in PmaxB and αB between different geographic regions. In contrast, maximum quantum yield of carbon fixation in photosynthesis (Φcmax) differed significantly between regions and was higher for diatom-dominated communities. Multiple linear regression models, specific for the different phytoplankton communities, using a combination of environmental and bio-optical proxies as predictor variables showed considerable promise for estimation of the photophysiological parameters on a regional scale. Such an approach may be utilized to develop size class-specific or phytoplankton group-specific primary productivity models for the NGOM.Plain Language SummaryThis study examined the relationships between phytoplankton community composition and associated

  16. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export

    Science.gov (United States)

    Poulton, Alex J.; Adey, Tim R.; Balch, William M.; Holligan, Patrick M.

    2007-03-01

    Recent measurements of surface coccolithophore calcification from the Atlantic Ocean (50°N-50°S) are compared to similar measurements from other oceanic settings. By combining the different data sets of surface measurements, we examine general and regional patterns of calcification relative to organic carbon production (photosynthesis) and other characteristics of the phytoplankton community. Generally, surface calcification and photosynthesis are positively correlated, although the strength of the relationship differs between biogeochemical provinces. Relationships between surface calcification, chlorophyll- a and calcite concentrations are also statistically significant, although again there is considerable regional variability. Such variability appears unrelated to phytoplankton community composition or hydrographic conditions, and may instead reflect variations in coccolithophore physiology. The contribution of inorganic carbon fixation (calcification) to total carbon fixation (calcification plus photosynthesis) is ˜1-10%, and we estimate a similar contribution from coccolithophores to total organic carbon fixation. However, these contributions vary between biogeochemical provinces, and occasionally coccolithophores may account for >20% of total carbon fixation in unproductive central subtropical gyres. Combining surface calcification and photosynthetic rates with standing stocks of calcite, particulate organic carbon, and estimated phytoplankton carbon allows us to examine the fates of these three carbon pools. The relative turnover times vary between different biogeochemical provinces, with no clear relationship to the overall productivity or phytoplankton community structure found in each province. Rather, interaction between coccolithophore physiology (coccolith production and detachment rates), species diversity (cell size), and food web dynamics (grazer ecology) may control the composition and turnover times of calcite particles in the upper ocean.

  17. Light utilization and photoinhibition of photosynthesis in marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G., Greene, R., Kolber, Z.

    1993-12-31

    Introduction to Phytoplankton. Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 {times} l0{sup 9} years ago in the form of marine single celled, planktonic procaryotes (Riding, 1992; Sarmiento and Bender, 1993). In the intervening eons, phytoplankton have evolved and diversified; presently they represent at least 11 classes of procaryotic and euacaryotic photoautotrophs. While the carbon of these organisms cumulatively amounts to only 1 to 2% of the global plant biomass, they fix between 35 and 50 gigatonnes ({times} 10{sup 9} metric tons) of carbon annually, about 40% of the global total (Falkowski and Woodhead, 1992). On average, each gram of phytoplankton chlorophyll converts about 6% of the photosynthetically active radiation (440 to 700 nm) incident on the sea surface to photochemical energy (Morel, 1978). Despite a great deal of variability in ocean environments, this photosynthetic conversion efficiency is relatively constant for integrated water column production (Morel, 1978; Falkowski, 1981; Platt, 1986; Morel, 1991). Here we review the factors determining light utilization efficiency of phytoplankton in the oceans, and the physiological acclimations which have evolved to optimize light utilization efficiency.

  18. The Ocean's Carbon Factory: Ocean Composition. The Growth Patterns of Phytoplankton Species

    Science.gov (United States)

    Gregg, Watson

    2000-01-01

    According to biological data recorded by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite, the ocean contains nearly half of all the Earth's photosynthesis activity. Through photosynthesis, plant life forms use carbon from the atmosphere, and in return, plants produce the oxygen that life requires. In effect, ocean chlorophyll works like a factory, taking carbon and "manufacturing" the air we breathe. Most ocean-bound photosynthesis is performed by single-celled plants called phytoplankton. "These things are so small," according to Michael Behrenfeld, a researcher at NASA Goddard Space Flight Center, "that if you take hundreds of them and stack them end-to-end, the length of that stack is only the thickness of a penny". The humble phytoplankton species plays a vital role in balancing the amounts of oxygen and carbon dioxide in the atmosphere. Therefore, understanding exactly how phytoplankton growth works is important.

  19. Multicellular Features of Phytoplankton

    Directory of Open Access Journals (Sweden)

    Adi Abada

    2018-04-01

    Full Text Available Microscopic marine phytoplankton drift freely in the ocean, harvesting sunlight through photosynthesis. These unicellular microorganisms account for half of the primary productivity on Earth and play pivotal roles in the biogeochemistry of our planet (Field et al., 1998. The major groups of microalgae that comprise the phytoplankton community are coccolithophores, diatoms and dinoflagellates. In present oceans, phytoplankton individuals and populations are forced to rapidly adjust, as key chemical and physical parameters defining marine habitats are changing globally. Here we propose that microalgal populations often display the characteristics of a multicellular-like community rather than a random collection of individuals. Evolution of multicellularity entails a continuum of events starting from single cells that go through aggregation or clonal divisions (Brunet and King, 2017. Phytoplankton may be an intermediate state between single cells and aggregates of physically attached cells that communicate and co-operate; perhaps an evolutionary snapshot toward multicellularity. In this opinion article, we journey through several studies conducted in two key phytoplankton groups, coccolithophores and diatoms, to demonstrate how observations in these studies could be interpreted in a multicellular context.

  20. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Neale, P.J.; Cullen, J.J.; Lesser, M.P.; Melis, A.

    1993-01-01

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO 2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance

  1. Optically-derived estimates of phytoplankton size class and taxonomic group biomass in the Eastern Subarctic Pacific Ocean

    Science.gov (United States)

    Zeng, Chen; Rosengard, Sarah Z.; Burt, William; Peña, M. Angelica; Nemcek, Nina; Zeng, Tao; Arrigo, Kevin R.; Tortell, Philippe D.

    2018-06-01

    We evaluate several algorithms for the estimation of phytoplankton size class (PSC) and functional type (PFT) biomass from ship-based optical measurements in the Subarctic Northeast Pacific Ocean. Using underway measurements of particulate absorption and backscatter in surface waters, we derived estimates of PSC/PFT based on chlorophyll-a concentrations (Chl-a), particulate absorption spectra and the wavelength dependence of particulate backscatter. Optically-derived [Chl-a] and phytoplankton absorption measurements were validated against discrete calibration samples, while the derived PSC/PFT estimates were validated using size-fractionated Chl-a measurements and HPLC analysis of diagnostic photosynthetic pigments (DPA). Our results showflo that PSC/PFT algorithms based on [Chl-a] and particulate absorption spectra performed significantly better than the backscatter slope approach. These two more successful algorithms yielded estimates of phytoplankton size classes that agreed well with HPLC-derived DPA estimates (RMSE = 12.9%, and 16.6%, respectively) across a range of hydrographic and productivity regimes. Moreover, the [Chl-a] algorithm produced PSC estimates that agreed well with size-fractionated [Chl-a] measurements, and estimates of the biomass of specific phytoplankton groups that were consistent with values derived from HPLC. Based on these results, we suggest that simple [Chl-a] measurements should be more fully exploited to improve the classification of phytoplankton assemblages in the Northeast Pacific Ocean.

  2. Earth's Most Important Producers: Meet the Phytoplankton!

    Science.gov (United States)

    Marrero, Meghan E.; Stevens, Nicole

    2011-01-01

    The ocean is home to some of Earth's most important producers. Single-celled organisms in the ocean are responsible for more than half of Earth's productivity, as well as most of its oxygen. Phytoplankton are single-celled, plantlike organisms. That is, they have chloroplasts and perform photosynthesis, but are not true plants, which are typically…

  3. Estimation of the toxicity of pollutants to marine phytoplanktonic and zooplanktonic organisms

    International Nuclear Information System (INIS)

    1989-01-01

    One of the basic components of the action plans sponsored by UNEP in the framework of the Regional Seas Programme is the assessment of the state of the marine environment and of its resources, and of the sources and trends of the pollution, and the impact of pollution on human health, marine ecosystems, and amenities. In order to ensure that the data obtained through this assessment can be compared on a world-wide basis and thus contribute to the Global Environment Monitoring System (GEMS) of UNEP, a set of Reference Methods and Guidelines for marine pollution studies are being developed as part of a programme of comprehensive technical support which includes the provision of expert advice, reference methods and materials, training and data quality assurance. This reference method describes procedures for estimating the toxicity of pollutants to marine phytoplankton and zooplankton. Procedures are given for estimating the media effective concentrations (EC50) of toxicants to phytoplankton, and the minimum algistatic concentration (MAC-5). For zooplankton, procedures are given for determining median lethal concentrations. Organisms are exposed to each of a range of concentrations of the test substance. For phytoplankton, the median effective concentration (EC50) is estimated in terms of the number of individuals surviving, the biomass of individuals surviving, or the chlorophyll content of the individuals surviving. For zooplankton, the media lethal concentration (LC50) is estimated by conventional log-probit analysis of the mortality data

  4. Observed and predicted measurements of photosynthesis in a phytoplankton culture exposed to natural irradiance

    International Nuclear Information System (INIS)

    Marra, J.; Heinemann, K.; Landriau, G. Jr.

    1985-01-01

    Photosynthesis-irradiance (P-I) curves were produced (using artificial illumination) from samples taken at one or more times per day from a continuous culture illuminated with sunlight. The continuous culture housed an oxygen electrode used to measure photosynthesis semi-continuously. Rates of photosynthesis predicted from P-I curves agreed with photosynthesis observed in the culture only for days of low irradiance. For sunny days or for days of variable irradiance, P-I curves predicted neither the morning photosynthesis maximum nor the afternoon depression. Daily integrals of predicted and observed photosynthesis, however, were probably within the possible errors of measurement. (orig.)

  5. Photosynthesis versus irradiance relationships in the Atlantic sector ...

    African Journals Online (AJOL)

    The results show substantial variability in the photosynthesis–irradiance (P vs E) parameters, with phytoplankton communities at stations that were considered iron (Fe)-limited showing low maximum photosynthetic capacity (PBmax) and low quantum efficiency of photosynthesis (αB) for ρNO3, but high PBmax and αB for ...

  6. SHORT-TERM EFFECT OF DIESEL OIL ON PHYTOPLANKTON

    African Journals Online (AJOL)

    PROF. EKWEME

    Short-term effect of Nigerian diesel oil was tested on the phytoplankton species in Great Kwa River ... aquatic environment. Plant life is the basis of all food web in nature and hence constitutes the makes this fundamental contribution by photosynthesis, utilizing radiant energy to .... (2 cells/ml) re-colonized the area. The three ...

  7. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton

    Directory of Open Access Journals (Sweden)

    M. J. Behrenfeld

    2009-05-01

    Full Text Available Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.

  8. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    Science.gov (United States)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  9. Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea

    Directory of Open Access Journals (Sweden)

    Mirosława Ostrowska

    2012-11-01

    Full Text Available A semi-empirical, physical models have been derived of the quantum yield ofthe deactivation processes (fluorescence, photosynthesis and heat productionof excited states in phytoplankton pigment molecules. Besides some alreadyknown models (photosynthesis and fluorescence, this novel approachincorporates the dependence of the dissipation yield of the excitation energyin phytoplankton pigment molecules on heat. The quantitative dependences ofthe quantum yields of these three processes on three fundamental parameters ofthe marine environment are defined: the chlorophyll concentration in the surface water layer Ca(0 (the basin trophicity,the irradiance PAR(z and the temperature temp(z at the study site.The model is complemented with two other relevant models describing thequantum yield of photosynthesis and of natural Sun-Induced Chlorophyll a Fluorescence (SICF in the sea, derived earlier by the author or with herparticipation on the basis of statistical analyses of a vast amount ofempirical material. The model described in the present paper enables theestimation of the quantum yields of phytoplankton pigment heat production forany region and season, in waters of any trophicity at different depths fromthe surface to depths of ca 60 m. The model can therefore be used to estimatethe yields of these deactivation processes in more than half the thickness ofthe euphotic zone in oligotrophic waters and in the whole thickness (anddeeper of this zone in mesotrophic and eutrophic waters. In particular theserelationships may be useful for a component analysis of the budget of lightenergy absorbed by phytoplankton pigments, namely, its utilization influorescence, photochemical quenching and nonphotochemical radiationlessdissipation - i.e. direct heat production.

  10. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  11. Retrieval of phytoplankton cell size from chlorophyll a specific absorption and scattering spectra of phytoplankton.

    Science.gov (United States)

    Zhou, Wen; Wang, Guifen; Li, Cai; Xu, Zhantang; Cao, Wenxi; Shen, Fang

    2017-10-20

    Phytoplankton cell size is an important property that affects diverse ecological and biogeochemical processes, and analysis of the absorption and scattering spectra of phytoplankton can provide important information about phytoplankton size. In this study, an inversion method for extracting quantitative phytoplankton cell size data from these spectra was developed. This inversion method requires two inputs: chlorophyll a specific absorption and scattering spectra of phytoplankton. The average equivalent-volume spherical diameter (ESD v ) was calculated as the single size approximation for the log-normal particle size distribution (PSD) of the algal suspension. The performance of this method for retrieving cell size was assessed using the datasets from cultures of 12 phytoplankton species. The estimations of a(λ) and b(λ) for the phytoplankton population using ESD v had mean error values of 5.8%-6.9% and 7.0%-10.6%, respectively, compared to the a(λ) and b(λ) for the phytoplankton populations using the log-normal PSD. The estimated values of C i ESD v were in good agreement with the measurements, with r 2 =0.88 and relative root mean square error (NRMSE)=25.3%, and relatively good performances were also found for the retrieval of ESD v with r 2 =0.78 and NRMSE=23.9%.

  12. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  13. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Directory of Open Access Journals (Sweden)

    Nina Schuback

    Full Text Available Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII, mol e- mol RCII(-1 s(-1 increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  14. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  15. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  16. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton

    Science.gov (United States)

    Yvon-Durocher, Gabriel; Allen, Andrew P.; Cellamare, Maria; Dossena, Matteo; Gaston, Kevin J.; Leitao, Maria; Montoya, José M.; Reuman, Daniel C.; Woodward, Guy; Trimmer, Mark

    2015-01-01

    Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities. PMID:26680314

  17. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.; Cardelú s, Clara; Moran, Xose Anxelu G.; Balagué , Vanessa; Forn, Irene; Marrasé , Cè lia; Massana, Ramon; Pedró s-Alió , Carlos; Sala, M. Montserrat; Simó , Rafel; Vaqué , Dolors; Estrada, Marta

    2016-01-01

    We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a

  18. Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean

    Science.gov (United States)

    Bailleul, B.; Park, J.; Brown, C. M.; Bidle, K. D.; Lee, S.; Falkowski, P. G.

    2016-02-01

    For decades, a lack of understanding of how respiration is influenced by light has been stymying our ability to quantitatively analyze how phytoplankton allocate carbon in situ and the biological mechanisms that participate to the fate of blooms. Using membrane inlet mass spectrometry (MIMS), the light dependencies of gross photosynthesis and oxygen uptake rates were measured during the bloom demises of two prymnesiophytes, in two open ocean regions. In the North Atlantic, dominated by Emiliania huxleyi, respiration was independent of irradiance and was higher than the gross photosynthetic rate at all irradiances. In the Amundsen Sea (Antarctica), dominated by Phaeocystis antarctica, the situation was very different. Dark respiration was one order of magnitude lower than the maximal gross photosynthetic rate. ut the oxygen uptake rate increased by 10 fold at surface irradiances, where it becomes higher than gross photosynthesis. Our results suggest that the light dependence of oxygen uptake in P. antarctica has two sources: one is independent of photosynthesis, and is possibly associated with the photo-reduction of O2 mediated by dissolved organic matter; the second reflects the activity of an oxidase fueled in the light with photosynthetic electron flow. Interestingly, these dramatic light-dependent changes in oxygen uptake were not reproduced in nutrient-replete P. antarctica cultures, in the laboratory. Our measurements highlight the importance of improving our understanding of oxygen consuming reactions in the euphotic zone, which is critical to investigating the physiology of phytoplankton and tracing the fate of phytoplankton blooms.

  19. A Remote Sensing Approach to Estimate Vertical Profile Classes of Phytoplankton in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Kun Xue

    2015-10-01

    Full Text Available The extension and frequency of algal blooms in surface waters can be monitored using remote sensing techniques, yet knowledge of their vertical distribution is fundamental to determine total phytoplankton biomass and understanding temporal variability of surface conditions and the underwater light field. However, different vertical distribution classes of phytoplankton may occur in complex inland lakes. Identification of the vertical profile classes of phytoplankton becomes the key and first step to estimate its vertical profile. The vertical distribution profile of phytoplankton is based on a weighted integral of reflected light from all depths and is difficult to determine by reflectance data alone. In this study, four Chla vertical profile classes (vertically uniform, Gaussian, exponential and hyperbolic were found to occur in three in situ vertical surveys (28 May, 19–24 July and 10–12 October in a shallow eutrophic lake, Lake Chaohu. We developed and validated a classification and regression tree (CART to determine vertical phytoplankton biomass profile classes. This was based on an algal bloom index (Normalized Difference algal Bloom Index, NDBI applied to both in situ remote sensing reflectance (Rrs and MODIS Rayleigh-corrected reflectance (Rrc data in combination with data of local wind speed. The results show the potential of retrieving Chla vertical profiles information from integrated information sources following a decision tree approach.

  20. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community.

    Directory of Open Access Journals (Sweden)

    Tim Eberlein

    Full Text Available We studied the effect of ocean acidification (OA on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study. From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2 of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.

  1. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    Science.gov (United States)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  2. Estimating Net Photosynthesis of Biological Soil Crusts in the Atacama Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lukas W. Lehnert

    2018-06-01

    Full Text Available Biological soil crusts (BSC encompassing green algae, cyanobacteria, lichens, bryophytes, heterotrophic bacteria and microfungi are keystone species in arid environments because of their role in nitrogen- and carbon-fixation, weathering and soil stabilization, all depending on the photosynthesis of the BSC. Despite their importance, little is known about the BSCs of the Atacama Desert, although especially crustose chlorolichens account for a large proportion of biomass in the arid coastal zone, where photosynthesis is mainly limited due to low water availability. Here, we present the first hyperspectral reflectance data for the most wide-spread BSC species of the southern Atacama Desert. Combining laboratory and field measurements, we establish transfer functions that allow us to estimate net photosynthesis rates for the most common BSC species. We found that spectral differences among species are high, and differences between the background soil and the BSC at inactive stages are low. Additionally, we found that the water absorption feature at 1420 nm is a more robust indicator for photosynthetic activity than the chlorophyll absorption bands. Therefore, we conclude that common vegetation indices must be taken with care to analyze the photosynthesis of BSC with multispectral data.

  3. Remote-Sensing Estimation of Phytoplankton Size Classes From GOCI Satellite Measurements in Bohai Sea and Yellow Sea

    Science.gov (United States)

    Sun, Deyong; Huan, Yu; Qiu, Zhongfeng; Hu, Chuanmin; Wang, Shengqiang; He, Yijun

    2017-10-01

    Phytoplankton size class (PSC), a measure of different phytoplankton functional and structural groups, is a key parameter to the understanding of many marine ecological and biogeochemical processes. In turbid waters where optical properties may be influenced by terrigenous discharge and nonphytoplankton water constituents, remote estimation of PSC is still a challenging task. Here based on measurements of phytoplankton diagnostic pigments, total chlorophyll a, and spectral reflectance in turbid waters of Bohai Sea and Yellow Sea during summer 2015, a customized model is developed and validated to estimate PSC in the two semienclosed seas. Five diagnostic pigments determined through high-performance liquid chromatography (HPLC) measurements are first used to produce weighting factors to model phytoplankton biomass (using total chlorophyll a as a surrogate) with relatively high accuracies. Then, a common method used to calculate contributions of microphytoplankton, nanophytoplankton, and picophytoplankton to the phytoplankton assemblage (i.e., Fm, Fn, and Fp) is customized using local HPLC and other data. Exponential functions are tuned to model the size-specific chlorophyll a concentrations (Cm, Cn, and Cp for microphytoplankton, nanophytoplankton, and picophytoplankton, respectively) with remote-sensing reflectance (Rrs) and total chlorophyll a as the model inputs. Such a PSC model shows two improvements over previous models: (1) a practical strategy (i.e., model Cp and Cn first, and then derive Cm as C-Cp-Cn) with an optimized spectral band (680 nm) for Rrs as the model input; (2) local parameterization, including a local chlorophyll a algorithm. The performance of the PSC model is validated using in situ data that were not used in the model development. Application of the PSC model to GOCI (Geostationary Ocean Color Imager) data leads to spatial and temporal distribution patterns of phytoplankton size classes (PSCs) that are consistent with results reported from

  4. Absorption of ultraviolet radiation by antarctic phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, M.; Mitchell, B.G. (Univ. of California-San Diego, La Jolla (United States))

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  5. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Birkeland, M. J.

    2006-01-01

    grown as nutrient-replete semicontinuous cultures for 2 weeks at 5, 15 and 25°C, during which growth rate was determined from changes in Chl a. Gross photosynthesis (GP) was measured as 14C assimilation at saturating light and respiration (R) was measured as O2 uptake along a temperature gradient from 0...

  6. Use of dissolved inorganic carbon isotopes to track photosynthesis, respiration, and nitrification along a 56 mile transect in the Sacramento River and San Francisco Bay

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.

    2013-12-01

    A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV

  7. Monitoring natural phytoplankton communities

    DEFF Research Database (Denmark)

    Haraguchi, L.; Jakobsen, H. H.; Lundholm, Nina

    2017-01-01

    -consuming and/or expensive, limiting sampling frequency. The use of faster methods, such as flow cytometry, has become more frequent in phytoplankton studies, although comparisons between this technique and traditional ones are still scarce. This study aimed to assess if natural phytoplankton communities...... carbon biomass with PFCM, applying the same conversion factors as for microscopy. Biomasses obtained with PFCM, estimated from live cells, were higher than microscopy for natural samples. We conclude that PFCM results are comparable to classical techniques, yet the data from PFCM had poor taxonomic...

  8. Longtime variation of phytoplankton in the South China Sea from the perspective of carbon fixation

    Science.gov (United States)

    Li, Teng; Bai, Yan; Chen, Xiaoyan; Zhu, Qiankun; Gong, Fang; Wang, Difeng

    2017-10-01

    The ocean is a huge carbon pool in the earth, and about half of the anthropogenic emissions of carbon dioxide are absorbed by the ocean each year. By converting inorganic carbon into organic carbon, the photosynthesis process of phytoplankton affords an important way for carbon sequestration in the ocean. According to previous researches, primary production (NPP) and the structure of phytoplankton community are important in regulate the efficiency of biological carbon pump. This study examined the spatiotemporal variability of satellite remote sensing derived chlorophyll a concentration (Chla), phytoplankton carbon biomass (Carbon), composition ratio of micro-, nano- and pico- phytoplankton, NPP and integrated particulate organic carbon (IPOC) during 1998-2007 in the South China Sea (SCS). Micro-, nano-phytoplankton and NPP showed similar seasonal variation with highest values in winter (January) (especially in the western ocean of Luzon Strait) and lowest values in summer (July) in SCS. Chla, phytoplankton carbon biomass, and IPOC showed different seasonal trends with one peak values occurred in winter and lowest in spring. Two sampling areas (A, N:17-21°, E:117.5-120° and B, N:12.5-15°, E:112-119°) in SCS were selected based on spatial distribution of the standard deviation of research parameters mentioned above. Compared to Chla, phytoplankton carbon biomass, NPP and IPOC, the interannual changes of phytoplankton community structure were remarkable in the two areas. The fraction of micro- and nano- phytoplankton in SCS tend to rise when La Nina events occur. Our results contribute to an understanding of the response of phytoplankton to climate change in the marginal sea. To quantify the efficiency of biological carbon pump in this area, more attention should be paid to the development of remote sensing algorithms of export NPP (or POC export flux) as well as the regulate mechanism of export NPP.

  9. Primary production of phytoplankton of Chascomus Pond (Prov. Buenos Aires (Argentina)). Critical evaluation of photosynthesis values obtained by O2 and 14 C methods

    International Nuclear Information System (INIS)

    Romero, M.C.; Arenas, P.M.

    1989-01-01

    The primary production of the phytoplankton of Chascomus pound was estimated with the dissolved oxygen and the assimilation of 14 CO 2 techniques, the laboratory, at light saturation. The bicarbonate consumptions by the phytoplankton was corrected by the excretion values, anaplerotic uptake of CO 2 by heterotrophic bacteria and for adsorption on suspended material. Gross production primary values fluctuated within 619,5 and 168,9 mg C.m -3 . h -1 , the net primary production within 564,8 (summer) and 93,8 (winter) mg C.m -3 . h -1 . Steemann Nielsen's technique subestimated the primary production in an average of the 21%; during the months of December, January and February those differences were only of the 8,6 and 1% respectively, implying that carrying out the respective corrections, both methods equalize themselves. (author)

  10. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland

    International Nuclear Information System (INIS)

    Jones, R.I.; Salonen, K.

    1985-01-01

    Bacterial utilization of photosynthetically fixed dissolved organic carbon (PDOC) released from natural phytoplankton assemblages was studied in two small, extremely humic, forest lakes in southern Finland. Bacterial activity (measured us uptake of 14 C-glucose) and phytoplankton photosynthesis (measured as light uptake of 14 CO 2 ) could be most effectively separated using Nuclepore filters of pore 1-2 μm. Released PDOC was 10-67% of total phytoplankton carbon fixation during in situ experiments, and represented about 0.1% of total DOC. Net uptake of PDOC by bacteria was found to be about 20% during 24 hour laboratory incubations, although about 40% of PDOC present at the start of an experiment could be utilized by bacteria during a 24 hour period. PDOC does not provide a quantitatively important substrate supply fo bacterial respiration in humic forest lakes. (author)

  11. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton

    Science.gov (United States)

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-01-01

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  12. Study of the lacustrine phytoplankton productivity dependence on solar radiation, on the basis of direct high-frequency measurements

    Science.gov (United States)

    Provenzale, Maria; Ojala, Anne; Heiskanen, Jouni; Erkkilä, Kukka-Maaria; Mammarella, Ivan; Hari, Pertti; Vesala, Timo

    2016-04-01

    One of the main components of the carbon cycle in lakes is phytoplankton. Its in situ photosynthesis and respiration are usually studied with traditional methods (dark and light bottle method, 14C labelling technique). These methods, relying on sampling and incubation, may lead to unrealistic results. They also have a poor temporal resolution, which does not allow the non-linear relationship between photosynthetically active solar radiation (PAR) and photosynthesis to be properly investigated. As a consequence, the phytoplankton net primary productivity (NPP) cannot be parameterised as a function of ambient variables. In 2008 an innovative free-water approach was proposed. It is based on non-dispersive infrared air CO2 probes that, by building an appropriate system, can be used to measure the CO2 concentration in the water at a high-frequency. At that time, the method was tested only on 3 days of data. Here, we deployed it on a boreal lake in Finland for four summers, in order to calculate the NPP and verify its dependence on PAR. The set-up was completed by an eddy-covariance system and water PAR and temperature sensors. In analogy with the procedure typically used in terrestrial ecology, we obtained the phytoplankton NPP computing the mass balance of CO2 in the mixed layer of the lake, i.e. the superficial layer where the conditions are homogeneous and most of the photosynthetic activity takes place. After calculating the NPP , we verified its dependence on PAR. The theoretical model we used was a saturating Michaelis-Menten curve, in which the variables are water temperature and PAR. The equation also contains parameters typical of the phytoplankton communities, which represent their maximum potential photosynthetic rate, their half-saturation constant and their basal respiration. These parameters allow the NPP to be parameterised as a function of T and PAR. For all the analysed year, we found a very good agreement between theory and data (R2 ranged from 0.80 to

  13. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

    International Nuclear Information System (INIS)

    Grodzinski, B.; Jiao, J.; Leonardos, E.D.

    1998-01-01

    The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 micromole C m-2 s-1, respectively, and 20 to 30 and 15 to 22 micromole C m-2 s-1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated

  14. Estimation of effects of photosynthesis response functions on rice yields and seasonal variation of CO2 fixation using a photosynthesis-sterility type of crop yield model

    International Nuclear Information System (INIS)

    Kaneko, D.; Moriwaki, Y.

    2008-01-01

    This study presents a crop production model improvement: the previously adopted Michaelis-Menten (MM) type photosynthesis response function (fsub(rad-MM)) was replaced with a Prioul-Chartier (PC) type function (fsub(rad-PC)). The authors' analysis reflects concerns regarding the background effect of global warming, under simultaneous conditions of high air temperature and strong solar radiation. The MM type function fsub(rad-MM) can give excessive values leading to an overestimate of photosynthesis rate (PSN) and grain yield for paddy-rice. The MM model is applicable to many plants whose (PSN) increases concomitant with increased insolation: wheat, maize, soybean, etc. For paddy rice, the PSN apparently shows a maximum PSN. This paper proves that the MM model overestimated the PSN for paddy rice for sufficient solar radiation: the PSN using the PC model yields 10% lower values. However, the unit crop production index (CPIsub(U)) is almost independent of the MM and PC models because of respective standardization of both PSN and crop production index using average PSNsub(0) and CPIsub(0). The authors improved the estimation method using a photosynthesis-and-sterility based crop situation index (CSIsub(E)) to produce a crop yield index (CYIsub(E)), which is used to estimate rice yields in place of the crop situation index (CSI); the CSI gives a percentage of rice yields compared to normal annual production. The model calculates PSN including biomass effects, low-temperature sterility, and high-temperature injury by incorporating insolation, effective air temperature, the normalized difference vegetation index (NDVI), and effects of temperature on photosynthesis. Based on routine observation data, the method enables automated crop-production monitoring in remote regions without special observations. This method can quantify grain production early to raise an alarm in Southeast Asian countries, which must confront climate fluctuation through this era of global

  15. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic.

    Directory of Open Access Journals (Sweden)

    Carlos Cáceres

    Full Text Available Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E. Our design included two phytoplankton size fractions (0.2-5 µm and >5 µm and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11-1.60 d(-1, especially in the case of the large fraction. Grazing rates were also high (0.15-1.29 d(-1, suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres.

  16. Phytoplankton Growth and Microzooplankton Grazing in the Subtropical Northeast Atlantic

    Science.gov (United States)

    Cáceres, Carlos; Taboada, Fernando González; Höfer, Juan; Anadón, Ricardo

    2013-01-01

    Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2–5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11–1.60 d−1), especially in the case of the large fraction. Grazing rates were also high (0.15–1.29 d−1), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres. PMID:23935946

  17. Temperature effects on Microalgal Photosynthesis-Light responses measured by O2 production, Pulse-Amplitude-Modulated Fluorescence, and 14C assimilation

    DEFF Research Database (Denmark)

    Hancke, Kasper; Hancke, Torunn; Olsen, Lasse M.

    2008-01-01

    Short-term temperature effects on photosynthesis were investigated by measuring O2 production, PSII-fluorescence kinetics, and 14C-incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum ( J....... C. Green, D. J. Hibberd et Pienaar) A. Larsen (Coccolithophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae), grown at 15 oC and 80 umol photons m-2 s-1. Photosynthesis versus irradiance curves were measured at seven temperatures (0oC to 30oC) by all three approaches. The maximum...

  18. Estimation of Maize photosynthesis Efficiency Under Deficit Irrigation and Mulch

    International Nuclear Information System (INIS)

    Al-Hadithi, S.

    2004-01-01

    This research aims at estimating maize photosynthesis efficiency under deficit irrigation and soil mulching. A split-split plot design experiment was conducted with three replicates during the fall season 2000 and spring season 2001 at the experimental Station of Soil Dept./ Iraq Atomic Energy Commission. The main plots were assigned to full and deficit irrigation treatments: (C) control. The deficit irrigation treatment included the omission of one irrigation at establishment (S1, 15 days), vegetation (S2, 35 days), flowering (S3, 40 days) and yield formation (S4, 30 days) stages. The sub-plots were allocated for the two varieties, Synthetic 5012 (V1) and Haybrid 2052 (V2). The sub-sub-plots were assigned to mulch (M1) with wheat straw and no mulch (M0). Results showed that the deficit irrigation did not affect photosynthesis efficiency in both seasons, which ranged between 1.90 to 2.15% in fall season and between 1.18 and 1.45% in spring season. The hybrid variety was superior 9.39 and 9.15% over synthetic variety in fall and spring seasons, respectively. Deficit irrigation, varieties and mulch had no significant effects on harvest index in both seasons. This indicates that the two varieties were stable in their partitioning efficiency of nutrient matter between plant organ and grains under the condition of this experiment. (Author) 21 refs., 3 figs., 6 tabs

  19. Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment

    Science.gov (United States)

    Jones, Nicole L.; Thompson, Janet K.; Arrigo, Kevin R.; Monismith, Stephen G.

    2009-01-01

    Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community.

  20. Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth

    KAUST Repository

    Coello-Camba, A.; Llabré s, M.; Duarte, Carlos M.; Agusti, Susana

    2017-01-01

    Warming over Antarctica is leading to changes in the zooplankton communities inhabiting the Southern Ocean. It has been observed that zooplankton not only regulates phytoplankton through grazing, but also through the recycling of nutrients that are essential for phytoplankton growth. In this way, the effects of warming on zooplankton populations will change the amount or proportion at which recycled nutrients are restored. To estimate how the recycled nutrients released by zooplankton populations, dominated by krill (Euphausia superba), amphipods or copepods, affect the phytoplankton uptake and communities, we performed four incubation experiments: two close to the Antarctic Peninsula and two at the Southern Atlantic Ocean. Our results showed a stimulating effect of the addition of metabolites on ammonia removal rates and on the net growth of phytoplankton communities, with different responses amongst the different phytoplankton groups. According to our results, phytoplankton net growth and community composition may be altered if this relevant source of nutrients is lost due to projected changes in the abundance or distribution of these zooplankton populations.

  1. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  2. Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth

    KAUST Repository

    Coello-Camba, A.

    2017-04-24

    Warming over Antarctica is leading to changes in the zooplankton communities inhabiting the Southern Ocean. It has been observed that zooplankton not only regulates phytoplankton through grazing, but also through the recycling of nutrients that are essential for phytoplankton growth. In this way, the effects of warming on zooplankton populations will change the amount or proportion at which recycled nutrients are restored. To estimate how the recycled nutrients released by zooplankton populations, dominated by krill (Euphausia superba), amphipods or copepods, affect the phytoplankton uptake and communities, we performed four incubation experiments: two close to the Antarctic Peninsula and two at the Southern Atlantic Ocean. Our results showed a stimulating effect of the addition of metabolites on ammonia removal rates and on the net growth of phytoplankton communities, with different responses amongst the different phytoplankton groups. According to our results, phytoplankton net growth and community composition may be altered if this relevant source of nutrients is lost due to projected changes in the abundance or distribution of these zooplankton populations.

  3. Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Mayot, Nicolas; D'Ortenzio, Fabrizio; Uitz, Julia; Gentili, Bernard; Ras, Joséphine; Vellucci, Vincenzo; Golbol, Melek; Antoine, David; Claustre, Hervé

    2017-12-01

    Satellite ocean color observations revealed that unusually deep convection events in 2005, 2006, 2010, and 2013 led to an increased phytoplankton biomass during the spring bloom over a large area of the northwestern Mediterranean Sea (NWM). Here we investigate the effects of these events on the seasonal phytoplankton community structure, we quantify their influence on primary production, and we discuss the potential biogeochemical impact. For this purpose, we compiled in situ phytoplankton pigment data from five ship surveys performed in the NWM and from monthly cruises at a fixed station in the Ligurian Sea. We derived primary production rates from a light photosynthesis model applied to these in situ data. Our results confirm that the maximum phytoplankton biomass during the spring bloom is larger in years associated with intense deep convection events (+51%). During these enhanced spring blooms, the contribution of diatoms to total phytoplankton biomass increased (+33%), as well as the primary production rate (+115%). The occurrence of a highly productive bloom is also related to an increase in the phytoplankton bloom area (+155%) and in the relative contribution of diatoms to primary production (+63%). Therefore, assuming that deep convection in the NWM could be significantly weakened by future climate changes, substantial decreases in the spring production of organic carbon and of its export to deep waters can be expected.

  4. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific

    Science.gov (United States)

    Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro

    2018-06-01

    Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.

  5. Phytoplankton-Environmental Interactions in Reservoirs. Volume I. Papers Presented at Workshop, 10-12 April 1979, Monterey, California.

    Science.gov (United States)

    1981-09-01

    Antarctic waters. Symp. Antarctic Oceanography. Santiago , Chile . Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063...photorespiration is largely dependent on the partial pressure of car- bon dioxide and oxygen concentrations . When CO2 limits photosynthesis and oxygen...hardness and alkalinity concentrations (> 200 mg/i as CaCO 3). As CO2 is removed from the alkalinity _ystem, pH increases and most alkalinity is

  6. Assessing Pigment-Based Phytoplankton Community Distributions in the Red Sea

    KAUST Repository

    Kheireddine, Malika

    2017-05-10

    Pigment-based phytoplankton community composition and primary production were investigated for the first time in the Red Sea in February-April 2015 to demonstrate how the strong south to north environmental gradients determine phytoplankton community structure in Red Sea offshore regions (along the central axis). Taxonomic pigments were used as size group markers of pico, nano-, and microphytoplankton. Phytoplankton primary production rates associated with the three phytoplankton groups (pico-, nano-, and microphytoplankton) were estimated using a bio-optical model. Pico- (Synechococcus and Prochlorococcus sp.) and Nanophytoplankton (Prymnesiophytes and Pelagophytes) were the dominant size groups and contributed to 49 and 38%, respectively, of the phytoplankton biomass. Microphytoplankton (diatoms) contributed to 13% of the phytoplankton biomass within the productive layer (1.5 Zeu). Sub-basin and mesoscale structures (cyclonic eddy and mixing) were exceptions to this general trend. In the southern Red Sea, diatoms and picophytoplankton contributed to 27 and 31% of the phytoplankton biomass, respectively. This result induced higher primary production rates (430 ± 50 mgC m−2 d−1) in this region (opposed to CRS and NRS). The cyclonic eddy contained the highest microphytoplankton proportion (45% of TChla) and the lowest picophytoplankton contribution (17% of TChla) while adjacent areas were dominated by pico- and nano-phytoplankton. We estimated that the cyclonic eddy is an area of enhanced primary production, which is up to twice those of the central part of the basin. During the mixing of the water column in the extreme north of the basin, we observed the highest TChla integrated (40 mg m−2) and total primary production rate (640 mgC m−2 d−1) associated with the highest nanophytoplankton contribution (57% of TChla). Microphytoplankton were a major contributor to total primary production (54%) in the cyclonic eddy. The contribution of picophytoplankton

  7. Assessing Pigment-Based Phytoplankton Community Distributions in the Red Sea

    KAUST Repository

    Kheireddine, Malika; Ouhssain, Mustapha; Claustre, Hervé ; Uitz, Julia; Gentili, Bernard; Jones, Burton

    2017-01-01

    Pigment-based phytoplankton community composition and primary production were investigated for the first time in the Red Sea in February-April 2015 to demonstrate how the strong south to north environmental gradients determine phytoplankton community structure in Red Sea offshore regions (along the central axis). Taxonomic pigments were used as size group markers of pico, nano-, and microphytoplankton. Phytoplankton primary production rates associated with the three phytoplankton groups (pico-, nano-, and microphytoplankton) were estimated using a bio-optical model. Pico- (Synechococcus and Prochlorococcus sp.) and Nanophytoplankton (Prymnesiophytes and Pelagophytes) were the dominant size groups and contributed to 49 and 38%, respectively, of the phytoplankton biomass. Microphytoplankton (diatoms) contributed to 13% of the phytoplankton biomass within the productive layer (1.5 Zeu). Sub-basin and mesoscale structures (cyclonic eddy and mixing) were exceptions to this general trend. In the southern Red Sea, diatoms and picophytoplankton contributed to 27 and 31% of the phytoplankton biomass, respectively. This result induced higher primary production rates (430 ± 50 mgC m−2 d−1) in this region (opposed to CRS and NRS). The cyclonic eddy contained the highest microphytoplankton proportion (45% of TChla) and the lowest picophytoplankton contribution (17% of TChla) while adjacent areas were dominated by pico- and nano-phytoplankton. We estimated that the cyclonic eddy is an area of enhanced primary production, which is up to twice those of the central part of the basin. During the mixing of the water column in the extreme north of the basin, we observed the highest TChla integrated (40 mg m−2) and total primary production rate (640 mgC m−2 d−1) associated with the highest nanophytoplankton contribution (57% of TChla). Microphytoplankton were a major contributor to total primary production (54%) in the cyclonic eddy. The contribution of picophytoplankton

  8. Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton

    International Nuclear Information System (INIS)

    Chavez, F.P.; Buck, K.R.; Coale, K.H.; Martin, J.H.; DiTullio, G.R.; Welschmeyer, N.A.; Barber, R.T.; Jacobson, A.C.

    1991-01-01

    Concentrations of phytoplankton and NO 3 are consistently low and high in surface waters of the oceanic eastern and central equatorial Pacific, and phytoplankton populations are dominated by small solitary phytoplankton. Growth rates of natural phytoplankton populations, needed to assess the relative importance of many of the processes considered in the equatorial Pacific, were estimated by several methods. The growth rates of natural phytoplankton populations were found to be ∼0.7 d -1 or 1 biomass doubling d -1 and were similar for all methods. To keep this system in its observed balance requires that loss rates approximate observed growth rates. Grazing rates, measured with a dilution grazing experiment, were high, accounting for a large fraction of the daily production. Additions of various forms of Fe to 5-7-d incubations utilizing ultraclean techniques resulted in significant shifts in autotrophic and heterotrophic assemblages between initial samples, controls, and Fe enrichments, which were presumably due to Fe, grazing by both protistan and metazoan components, and incubation artifacts. Estimated growth rates of small pennate diatoms showed increases in Fe enrichments with respect to controls. The growth rates of the pennate diatoms were similar to those estimated for the larger size fraction of the natural populations

  9. Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom.

    Science.gov (United States)

    Dai, Yanran; Wu, Juan; Ma, Xiaohang; Zhong, Fei; Cui, Naxin; Cheng, Shuiping

    2017-02-01

    We assembled mesocosms to address the coherent mechanisms that an increasing phosphorus (P) concentration in water columns coupled with the phytoplankton bloom and identify the performance gap of regulating phytoplankton growth between two macrophyte species, Ceratophyllum demersum L. and Vallisneria spiralis L. Intense alkaline phosphatase activities (APA) were observed in the unplanted control, with their predominant part, phytoplankton APA (accounting for up to 44.7% of the total APA), and another large share, bacterial APA. These correspond with the large average concentration of total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive (SRP) as well as high phytoplankton density in the water column. The consistency among P concentrations, phytoplankton density and APA, together with the positive impact of phytoplankton density on total APA revealed by the structural equation modelling (SEM), indicates that facilitated APA levels in water is an essential strategy for phytoplankton to enhance the available P. Furthermore, a positive interaction between phytoplankton APA and bacteria APA was detected, suggesting a potential collaboration between phytoplankton and bacteria to boost available P content in the water column. Both macrophyte species had a prominent performance on regulating phytoplankton proliferation. The phytoplankton density and quantum yield in C. demersum systems were all significantly lower (33.8% and 24.0%) than those in V. spiralis systems. Additionally, a greater decoupling effect of C. demersum on the relationship between P, APA, phytoplankton density, bacteria dynamic and quantum yield was revealed by SEM. These results imply that the preferred tactic of different species could lead to the performance gap. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    International Nuclear Information System (INIS)

    Coveney, M.F.

    1982-01-01

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H 14 CO 3 uptake experiments to measure 14 C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14 C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14 C uptake per m 2 lake surface. From 28 to 80 % of 14 C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14 CO 2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  11. Ecotoxicology of bromoacetic acid on estuarine phytoplankton

    International Nuclear Information System (INIS)

    Gordon, Ana R.; Richardson, Tammi L.; Pinckney, James L.

    2015-01-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC 50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC 50 s for cultured Thalassiosira pseudonana were 194 mg L −1 , 240 mg L −1 for Dunaliella tertiolecta and 209 mg L −1 for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC 50 of 80 mg L −1 . Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC 50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria. - Highlights: • Bromoacetic acid exposure resulted in lethal impacts to estuarine phytoplankton. • Cultured phytoplankton were less sensitive to bromoacetic acid than natural communities. • Lab results should be confirmed with field experiments whenever possible. - The toxicology of haloacetic acids has been studied in freshwater ecosystems, and urbanization of the coastal zone is making effects in marine ecosystems equally relevant.

  12. Solar UVR-induced DNA damage and inhibition of photosynthesis in phytoplankton from Andean lakes of Argentina

    NARCIS (Netherlands)

    Villafane, VE; Buma, AGJ; Boelen, P; Helbling, EW

    2004-01-01

    During January 1999, studies were carried out in temperate lakes of the Andean region of Argentina (41degreesS, 71degreesW) to determine the short-term effects of solar ultraviolet radiation (UVR, 280-400 nm) upon natural phytoplankton assemblages. Organisms from one 'clear' (Lake Moreno) and two

  13. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    OpenAIRE

    ROSATI, A.; DEJONG, T. M.

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  14. Biogeochemical provinces in the global ocean based on phytoplankton growth limitation

    Science.gov (United States)

    Hashioka, T.; Hirata, T.; Aita, M. N.; Chiba, S.

    2016-02-01

    The biogeochemical province is one of the useful concepts for the comprehensive understanding of regional differences of the marine ecosystem. Various biogeochemical provinces for lower-trophic level ecosystem have been proposed using a similarity-based classification of seasonal variations of chl-a concentration typified by Longhurst 1995 and 2006. Such categorizations well capture the regional differences of seasonality as "total phytoplankton". However, background biogeochemical mechanism to characterize the province boundary is not clear. Namely, the dominant phytoplankton group is different among regions and seasons, and their physiological characteristics are significantly different among groups. Recently some pieces of new biogeochemical information are available. One is an estimation of phytoplankton community structure from satellite observation, and it makes clear the key phytoplankton type in each region. Another is an estimation of limitation factors for phytoplankton growth (e.g., nutrients, temperature, light) in each region from modeling studies. In this study, we propose new biogeochemical provinces as a combination between the dominance of phytoplankton (i.e., diatoms, nano-, pico-phytoplankton or coexistence of two/three types) and their growth limitation factors (particularly we focused on nutrient limitation; N, P, Si or Fe). In this combination, we classified the global ocean into 23 biogeochemical provinces. The result suggests that even if the same type of phytoplankton dominates, the background mechanism could be different among regions. On the contrary, even if the regions geographically separate, the background mechanism could be similar among regions. This is important to understand that region/boundary does respond to environmental change. This biogeochemical province is useful for identification of key areas for future observation.

  15. Use of hyperspectral remote sensing to estimate the gross photosynthesis of agricultural fields

    International Nuclear Information System (INIS)

    Strachan, I.B.; Pattey, E.; Salustro, C.; Miller, J.R.

    2008-01-01

    Optimization of crop growth and yield is achieved through the use of effective management practices. However, transient weather conditions will modify crop growth and yield. To assess crop development it is therefore essential to understand the current crop ecophysiological status. Such information can be monitored continuously using micrometeorological instrumented towers over agricultural surfaces. The spatial coverage of this approach is limited to the upwind area contributing to the flux. Remote sensing becomes key in deriving carbon exchanges and crop vigour over larger spatial areas. Derived from ground-based hyperspectral reflectance measurements from five growing seasons, a relationship between the eddy covariance estimates of gross photosynthesis and the product of the standardized photochemical reflectance index and the integrated modified triangular index was expanded to the field scale through the use of Compact Airborne Spectrographic Imager (CASI) data for corn and wheat over two consecutive seasons in the same field. Imagery-derived maps of gross photosynthesis successfully identified areas of potential stress that were known to be correlated with lower yield. Results were further verified using an independent flux dataset. This approach, modified from previous attempts in natural ecosystems, offers additional promise for managed systems. (author)

  16. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions.

    Science.gov (United States)

    Ogawa, Takako; Misumi, Masahiro; Sonoike, Kintake

    2017-09-01

    Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v /F m , some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.

  17. Deuterium depleted water effect on seawater spectral energy and marine phytoplankton

    International Nuclear Information System (INIS)

    Mirza, Maria; Zaharia, Mihaela; Cristescu, T.M.; Titescu, Gh.

    2002-01-01

    Solar radiation is the primary source of new energy in most aquatic ecosystems and it is the sun variability in amount and spectral distribution that drives many of the changes in material flux on different time and space scales. The dependency of ecosystem dynamics on sunlight is largely attributable to the simple fact that plants require solar radiation to carry out photosynthesis. The resulting primary production (the rate of the plant growth and reproduction) is an index of aquatic processes, including food web dynamics and biogeochemical cycling of compounds that affect everything from aquatic chemistry to regional and global weather patterns. Light dependent processes in plants (photo-synthesis, photoinhibition, phototaxis and photoprotection) and in aquatic environment, animal vision and microbial mediation of the photo-dissociation of chemical have evolved over millennia and most of them are regulated or at least influenced by the spectral composition of the light field The paper deals with the investigation of relations between water spectral energy modified by deuterium depleted water (DDW) and the microphyte alga Tetraselmis suecica or the total marine micro-phytoplankton growth. (authors)

  18. Ecotoxicology of bromoacetic acid on estuarine phytoplankton.

    Science.gov (United States)

    Gordon, Ana R; Richardson, Tammi L; Pinckney, James L

    2015-11-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC50s for cultured Thalassiosira pseudonana were 194 mg L(-1), 240 mg L(-1) for Dunaliella tertiolecta and 209 mg L(-1) for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC50 of 80 mg L(-1). Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Could photosynthesis function on Proxima Centauri b?

    Science.gov (United States)

    Ritchie, Raymond J.; Larkum, Anthony W. D.; Ribas, Ignasi

    2018-04-01

    Could oxygenic and/or anoxygenic photosynthesis exist on planet Proxima Centauri b? Proxima Centauri (spectral type - M5.5 V, 3050 K) is a red dwarf, whereas the Sun is type G2 V (5780 K). The light regimes on Earth and Proxima Centauri b are compared with estimates of the planet's suitability for Chlorophyll a (Chl a) and Chl d-based oxygenic photosynthesis and for bacteriochlorophyll (BChl)-based anoxygenic photosynthesis. Proxima Centauri b has low irradiance in the oxygenic photosynthesis range (400-749 nm: 64-132 µmol quanta m-2 s-1). Much larger amounts of light would be available for BChl-based anoxygenic photosynthesis (350-1100 nm: 724-1538 µmol quanta m-2 s-1). We estimated primary production under these light regimes. We used the oxygenic algae Synechocystis PCC6803, Prochlorothrix hollandica, Acaryochloris marina, Chlorella vulgaris, Rhodomonas sp. and Phaeodactylum tricornutum and the anoxygenic photosynthetic bacteria Rhodopseudomonas palustris (BChl a), Afifella marina (BChl a), Thermochromatium tepidum (BChl a), Chlorobaculum tepidum (BChl a + c) and Blastochloris viridis (BChl b) as representative photosynthetic organisms. Proxima Centauri b has only ~3% of the PAR (400-700 nm) of Earth irradiance, but we found that potential gross photosynthesis (P g) on Proxima Centauri b could be surprisingly high (oxygenic photosynthesis: earth ~0.8 gC m-2 h-1 Proxima Centauri b ~0.14 gC m-2 h-1). The proportion of PAR irradiance useable by oxygenic photosynthetic organisms (the sum of Blue + Red irradiance) is similar for the Earth and Proxima Centauri b. The oxygenic photic zone would be only ~10 m deep in water compared with ~200 m on Earth. The P g of an anoxic Earth (gC m-2 h-1) is ~0.34-0.59 (land) and could be as high as ~0.29-0.44 on Proxima Centauri b. 1 m of water does not affect oxygenic or anoxygenic photosynthesis on Earth, but on Proxima Centauri b oxygenic P g is reduced by ~50%. Effective elimination of near IR limits P g by photosynthetic

  20. The development and decline of phytoplankton blooms in the southern Benguela upwelling region

    International Nuclear Information System (INIS)

    Brown, P.C.

    1986-10-01

    Productivity/chlorophyll a relationship are investigated with a view to estimating phytoplankton productivity from extensive chlorophyll a measurements in the southern Benguela region. Phytoplankton bloom dynamics in newly upwelled water off the Cape Peninsula are investigated on five different occasions during the upwelling season. A drogue was used to tag a 'parcel' of upwelled water which was monitored for between 4 and 8 days. In upwelling source water, mean chlorophyll a concentrations were typically low (0.7 mg.m -3 ) and nutrient concentrations were high (nitrates, silicates and phosphates were 20.8, 16.6 and 1.88 mmol.m -3 respectively). Along the drogue tracks nutrients decreased rapidly in the euphotic zone as chlorophyll increased to peak at concentrations of up to 26 mg.m -3 . Elemental changes in nitrates, silicates, phosphates and oxygen were used to estimate primary productivity. These 'Redfield productivity estimates' were similar to 14 C-uptake productivity but lower than estimates obtained from changes in particle volume. Daily rates of 14 C-uptake water column productivity ranged between 0.94 and 14.01 g C.m -2 .d -1 (mean 3.80 g C.m -2 .d -1 ) and were similar to or higher than productivity estimates reported for other upwelling areas. Phytoplankton biomass in the upper 50 metres ranged between 8 and 506 mg chll a. m -2 (mean 208 mg chll a.m -2 ). The temporal scale of phytoplankton bloom development was investigated in terms of changes in chlorophyll a concentrations in the euphotic zone. The build up and decline of the primary phytoplankton (diatom) bloom in newly upwelled water occurred within 6-8 days. The initiation of blooming was controlled by the stability of the water body. The decline of the bloom was associated with reduced nutrient levels and is considered to result mainly from phytoplankton cells sinking out of the surface layers

  1. Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton.

    Science.gov (United States)

    Chakraborty, Subhendu; Tiwari, P K; Misra, A K; Chattopadhyay, J

    2015-06-01

    The production of toxins by some species of phytoplankton is known to have several economic, ecological, and human health impacts. However, the role of toxins on the spatial distribution of phytoplankton is not well understood. In the present study, the spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton is investigated. We analyze the linear stability of the system and obtain the condition for Turing instability. In the presence of toxic effect, we find that the distribution of nutrient and phytoplankton becomes inhomogeneous in space and results in different patterns, like stripes, spots, and the mixture of them depending on the toxicity level. We also observe that the distribution of nutrient and phytoplankton shows spatiotemporal oscillation for certain toxicity level. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Estimation of chromophoric dissolved organic matter (CDOM) and photosynthetic activity of estuarine phytoplankton using a multiple-fixed-wavelength spectral fluorometer.

    Science.gov (United States)

    Goldman, Emily A; Smith, Erik M; Richardson, Tammi L

    2013-03-15

    The utility of a multiple-fixed-wavelength spectral fluorometer, the Algae Online Analyser (AOA), as a means of quantifying chromophoric dissolved organic matter (CDOM) and phytoplankton photosynthetic activity was tested using algal cultures and natural communities from North Inlet estuary, South Carolina. Comparisons of AOA measurements of CDOM to those by spectrophotometry showed a significant linear relationship, but increasing amounts of background CDOM resulted in progressively higher over-estimates of chromophyte contributions to a simulated mixed algal community. Estimates of photosynthetic activity by the AOA at low irradiance (≈ 80 μmol quanta m(-2) s(-1)) agreed well with analogous values from the literature for the chlorophyte, Dunaliella tertiolecta, but were substantially lower than previous measurements of the maximum quantum efficiency of photosystem II (F(v)/F(m)) in Thalassiosira weissflogii (a diatom) and Rhodomonas salina (a cryptophyte). When cells were exposed to high irradiance (1500 μmol quanta m(-2) s(-1)), declines in photosynthetic activity with time measured by the AOA mirrored estimates of cellular fluorescence capacity using the herbicide 3'-(3, 4-dichlorophenyl)-1',1'-dimethyl urea (DCMU). The AOA shows promise as a tool for the continuous monitoring of phytoplankton community composition, CDOM, and the group-specific photosynthetic activity of aquatic ecosystems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Contribution of phytoplankton photosynthesis to a mangrove ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Pant, A.; Dhargalkar, V.K.; Bhosle, N.B.; Untawale, A.G.

    Primary production in a fringing mangrove ecosystem was measured using two techniques. The first estimated gross oxygen production and community metabolism based on the diel difference in dissolved oxygen concentrations. The second estimated carbon...

  4. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  5. Effects of Nutrient Dynamics, Light and Temperature on the Patchiness of Phytoplankton and Primary Production in the Estuarine and Coastal Zones of Liaodong Bay, China: A Typical Case Study

    Science.gov (United States)

    Pei, S.; Laws, E. A.; Ye, S.

    2017-12-01

    Fluvial inputs of nutrients and efficient nutrient recycling mechanisms make estuarine and coastal zones highly productive bodies of water. For the same reasons, they are susceptible to eutrophication problems. In China, eutrophication problems along coasts are becoming serious because of discharges of domestic sewage and industrial wastewater and runoff of agricultural fertilizer. Addressing these problems requires an informed assessment of the factors that controlling algal production. Our study aims at determining the factors that controlling patchiness of phytoplankton and primary production in Liaodong Bay, China that receives large inputs of nutrients from human activities in its watershed, and examining the variation patterns of phytoplankton photosynthesis under both stressors of climate change and human activities. Results of our field study suggest that nutrient concentrations were above growth-rate-saturating concentrations throughout Liaodong bay, with the possible exception of phosphate at some stations. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. Two large patches of high biomass and production with dimensions on the order of 10 km reflect the effects of water temperature and variation of light penetration restricted by water turbidity. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Popt), light-conditioned Popt values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). In this model, light-conditioned Popt values increased with temperatures from 22°C to roughly 25°C but declined precipitously at higher temperatures. The relatively high Popt values and low ratios of light absorbed to photosynthesis at coastal stations suggest the highly efficient usage of absorbed light by

  6. Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans

    Science.gov (United States)

    Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong

    2018-05-01

    The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.

  7. The Importance of Phytoplankton Biomolecule Availability for Secondary Production

    Directory of Open Access Journals (Sweden)

    Elina T. Peltomaa

    2017-10-01

    Full Text Available The growth and reproduction of animals is affected by their access to resources. In aquatic ecosystems, the availability of essential biomolecules for filter-feeding zooplankton depends greatly on phytoplankton. Here, we analyzed the biochemical composition, i.e., the fatty acid, sterol and amino acid profiles and concentrations as well as protein, carbon, nitrogen, and phosphorus content of 17 phytoplankton monocultures representing the seven most abundant phytoplankton classes in boreal and sub-arctic lakes. To examine how the differences in the biochemical composition between phytoplankton classes affect their nutritional quality for consumers, we assessed the performance of Daphnia, on these diets. Furthermore, we defined the most important biomolecules regulating the somatic growth and reproduction of Daphnia, expecting that higher concentrations of certain biomolecules are needed for reproduction than for growth. Finally, we combined these results with phytoplankton field data from over 900 boreal and sub-arctic lakes in order to estimate whether the somatic growth of Daphnia is sterol-limited when the natural phytoplankton communities are cyanobacteria-dominated. Our analysis shows that Daphnia grows best with phytoplankton rich in sterols, ω-3 fatty acids, protein, and amino acids. Their reproduction follows food sterol and ω-3 concentration as well as C:P-ratio being two times higher in Daphnia feeding on cryptophytes than any other diet. Interestingly, we found that a high dietary ω-6 fatty acid concentration decreases both somatic growth and reproduction of Daphnia. When combined with phytoplankton community composition field data, our results indicate that zooplankton is constantly limited by sterols in lakes dominated by cyanobacteria (≥40% of total phytoplankton biomass, and that the absence of cryptophytes can severely hinder zooplankton production in nature.

  8. FlowCam: Quantification and Classification of Phytoplankton by Imaging Flow Cytometry.

    Science.gov (United States)

    Poulton, Nicole J

    2016-01-01

    The ability to enumerate, classify, and determine biomass of phytoplankton from environmental samples is essential for determining ecosystem function and their role in the aquatic community and microbial food web. Traditional micro-phytoplankton quantification methods using microscopic techniques require preservation and are slow, tedious and very laborious. The availability of more automated imaging microscopy platforms has revolutionized the way particles and cells are detected within their natural environment. The ability to examine cells unaltered and without preservation is key to providing more accurate cell concentration estimates and overall phytoplankton biomass. The FlowCam(®) is an imaging cytometry tool that was originally developed for use in aquatic sciences and provides a more rapid and unbiased method for enumerating and classifying phytoplankton within diverse aquatic environments.

  9. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models.

    Science.gov (United States)

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina

    2016-01-01

    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Phytoplankton calcification as an effective mechanism to prevent cellular calcium poisoning

    Science.gov (United States)

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-08-01

    Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to prevent cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations.

  11. Phytoplankton and Climate

    Science.gov (United States)

    Moisan, John R.

    2009-01-01

    Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.

  12. Phytoplankton community and limnology of Chatla floodplain wetland of Barak valley, Assam, North-East India

    Directory of Open Access Journals (Sweden)

    Sultana Laskar H.

    2013-09-01

    Full Text Available Phytoplankton diversity was investigated over a period of two years (2006 to 2008 in Chatla floodplain wetland in Barak valley, Assam, North-East India. Site 1 and site 2 are two inlets and site 3 is a lentic system associated with vegetation cover of Calamus tenuis and Baringtonia acutangula. The floodplain has a unique hydrology because of the presence of different types of habitats (inlets, fisheries, beels and outlets which maintains a network among the floodplains, rivers and streams. Phytoplankton community composition, density and diversity were studied in relation to environmental variables. All the variables were estimated by following standard methods. Phytoplankton was collected by plankton net and quantitative estimation was made by using Sedgwick Rafter counting cell. Phytoplankton community comprised 53 taxa represented by Chlorophyceae (31, Cyanophyceae (11, Bacillariophyceae (7, Euglenophyceae (1 and Dinophyceae (3. Phytoplankton taxa was dominated by Volvox sp., Nostoc sp., Eunotia sp., Navicula sp., Euglena spp. and density was found highest in site 3 and lowest in site 1. Shannon diversity index (H′ for phytoplankton community varied between 2.4 to 2.65 indicating fairly high species diversity. The varying magnitude of correlationship among environmental variables and phytoplankton species density as shown by Canonical correspondence analysis (CCA indicated that some of the environmental variables (water temperature, transparency, rainfall, nitrate and ammonia are the driving factors for governing the phytoplankton species assemblages in Chatla floodplain wetland. Fluctuation of phytoplankton density and community composition in different habitats indicated various niche apportionment as well as anthropogenic influences.

  13. Photosynthesis and Bioconversion

    International Nuclear Information System (INIS)

    Broda, E.

    1983-01-01

    This text summarises a talk held by Engelbert Broda at a conference on non-convential energy sources. The talk about photosynthesis and bioconversion is devided in 6 sections: the great physicist and photosynthesis; the influence of photosynthesis on the biosphere (in the past, present and future); the light reactions in photosynthesis; the dark reactions in photosynthesis; bioconversion; respiration and photorespiration. (nowak)

  14. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea

    Science.gov (United States)

    Xiao, Wupeng; Wang, Lei; Laws, Edward; Xie, Yuyuan; Chen, Jixin; Liu, Xin; Chen, Bingzhang; Huang, Bangqin

    2018-03-01

    A basic albeit elusive goal of ocean science is to predict the structure of biological communities from the multitude of environmental conditions they experience. Estimates of the realized niche-based traits (realized traits) of phytoplankton species or functional groups in temperate seas have shown that response traits can help reveal the mechanisms responsible for structuring phytoplankton communities, but such approaches have not been tested in tropical and subtropical marginal seas. Here, we used decadal-scale studies of pigment-based phytoplankton groups and environmental conditions in the South China Sea to test whether realized traits could explain the biogeographic patterns of phytoplankton variability. We estimated the mean and breadth of the phytoplankton realized niches based on responses of the group-specific phytoplankton composition to key environmental factors, and we showed that variations of major phytoplankton groups in this system can be explained by different adaptive trade-offs to constraints imposed by temperature, irradiance, and nutrient concentrations. Differences in the patterns of trade-offs clearly separated the dominant groups from one another and generated four sets of realized traits that mirrored the observed biogeographic distribution patterns. The phytoplankton realized niches and their associated traits that we characterized in the present study could help to predict responses of phytoplankton to changes in environmental conditions in the South China Sea and could be incorporated into global biogeochemical models to anticipate shifts in community structure under future climate scenarios.

  15. Distribution of nutrients, chlorophyll and phytoplankton primary ...

    African Journals Online (AJOL)

    Distribution of nutrients, chlorophyll and phytoplankton primary production in ... Two cruises were undertaken in the vicinity of the Cape Frio upwelling cell ... and concentrations of nitrate, phosphate, silicate, oxygen and chlorophyll a. ... Estimates of the annual primary production for each of the water bodies were calculated.

  16. Under Sea Ice phytoplankton bloom detection and contamination in Antarctica

    Science.gov (United States)

    Zeng, C.; Zeng, T.; Xu, H.

    2017-12-01

    Previous researches reported compelling sea ice phytoplankton bloom in Arctic, while seldom reports studied about Antarctic. Here, lab experiment showed sea ice increased the visible light albedo of the water leaving radiance. Even a new formed sea ice of 10cm thickness increased water leaving radiance up to 4 times of its original bare water. Given that phytoplankton preferred growing and accumulating under the sea ice with thickness of 10cm-1m, our results showed that the changing rate of OC4 estimated [Chl-a] varied from 0.01-0.5mg/m3 to 0.2-0.3mg/m3, if the water covered by 10cm sea ice. Going further, varying thickness of sea ice modulated the changing rate of estimating [Chl-a] non-linearly, thus current routine OC4 model cannot estimate under sea ice [Chl-a] appropriately. Besides, marginal sea ice zone has a large amount of mixture regions containing sea ice, water and snow, where is favorable for phytoplankton. We applied 6S model to estimate the sea ice/snow contamination on sub-pixel water leaving radiance of 4.25km spatial resolution ocean color products. Results showed that sea ice/snow scale effectiveness overestimated [Chl-a] concentration based on routine band ratio OC4 model, which contamination increased with the rising fraction of sea ice/snow within one pixel. Finally, we analyzed the under sea ice bloom in Antarctica based on the [Chl-a] concentration trends during 21 days after sea ice retreating. Regardless of those overestimation caused by sea ice/snow sub scale contamination, we still did not see significant under sea ice blooms in Antarctica in 2012-2017 compared with Arctic. This research found that Southern Ocean is not favorable for under sea ice blooms and the phytoplankton bloom preferred to occur in at least 3 weeks after sea ice retreating.

  17. Improving estimation of phytoplankton isotopic values from bulk POM samples in rivers

    Science.gov (United States)

    Background/Questions/MethodsResponses of phytoplankton to excessive nutrients in rivers cause many ecological problems, including harmful algal blooms, hypoxia and even food web collapse, posing serious risks to fish and human health. Successful remediation requires identificati...

  18. Cell volumes of marine phytoplankton from globally distributed coastal data sets

    Digital Repository Service at National Institute of Oceanography (India)

    Harrison, P.J; Zingone, A.; Mickelson, M.J; Lehtinen, S.; Ramaiah, N.; Kraberg, A.C; Sun, J; McQuatters-Gollop, A.; Jakobsen, H.H.

    volumes are the single largest source of uncertainty in community phytoplankton carbon estimates and greatly exceeds the uncertainty associated with the different volume to carbon estimates. Small diatoms have 10 times more carbon density than large...

  19. Effects of complex effluents on photosynthesis in Lake Erie and Lake Huron

    International Nuclear Information System (INIS)

    Bridgham, S.D.; McNaught, D.C.; Meadows, C.

    1988-01-01

    Phytoplankton are the base of the food chain in most large lake ecosystems; if affected by environmental pollutants, significant ecosystem changes can result with potential impact on higher trophic levels. The research determined the effects of a complex effluent discharge from the River Raisin in Monroe County, Michigan, on the Lake Erie ecosystem. The river flows through southern Michigan and has large nutrient and industrial inputs, especially in the Monroe Harbor area. The functional parameters measured were bacterial uptake rate of acetate, zooplankton feeding and reproduction rates, and primary production. The results of the effects of complex effluents on gross photosynthesis, measured as carbon-14 ((14)C) uptake, are presented in the paper

  20. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.

    Science.gov (United States)

    Naumburg, Elke; Ellsworth, David S

    2002-04-01

    Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological

  1. Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning

    Science.gov (United States)

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-11-01

    Marine phytoplankton have developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological timescales. For example, the Cretaceous (145 to 66 Ma), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to 4 times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly ornate physical structures of coccoliths remain elusive.

  2. Estimation of new production in the North Sea: consequences for temporal and spatial variability of phytoplankton

    DEFF Research Database (Denmark)

    Richardson, Katherine; Bo Pedersen, Flemming

    1998-01-01

    By coupling knowledge of oceanographic processes and phytoplankton responses to light and nutrient availability, we estimate a total potential new (sensu Dugdale and Goering,1967) production for the North Sea of approximately 15.6 million tons C per year. In a typical year, about 40......% of this production will be associated with the spring bloom in the surface waters of the seasonally stratified (central and northern) North Sea. About 40% is predicted to occur in the coastal waters while the remaining new production is predicted to take place in sub-surface chlorophyll peaks occuring in association...... with fronts in the North Sea during summer month. By considering the inter-annual variation in heat, wind and nutrient availability (light and tidal energy input are treated as non-varying from year to year), the inter-annual variability in the new production occuring in these different regions is estimated...

  3. Phytoplankton blooms: an overlooked marine source of natural endocrine disrupting chemicals.

    Science.gov (United States)

    Gong, Yinhan; Wang, Xiaochong; Indran, Inthrani Raja; Zhang, Shi-Jun; Lv, Zhengbing; Li, Jun; Holmes, Michael; Tang, Ying Zhong; Yong, E L

    2014-09-01

    We had previously reported high androgenic and estrogenic activities in seawaters in confined clusters close to Singapore. Further investigations revealed a hitherto unsuspected link between estrogenic/androgenic activity and net phytoplankton count. The primary objective of this study was to investigate the cause of a correlation between net phytoplankton and endocrine activity, and corroborate this observation, and rule out other possible confounding factors. Our secondary objective was to study if these estrogenic secretions can impact human health. Five species of phytoplankton, Gymnodinium catenatum, Prorocentrum minimum, Alexandrium leei, Chattonella marina, and Fibrocapsa japonica, were isolated from Singapore waters and mass cultured and the cells and culture media screened for estrogenic and androgenic activity using human cell-based bioassays. The raphidophytes C. marina and F. japonica displayed significant estrogenic activity whilst the dinoflagellates G. catenatum and P. minimum displayed significant androgenic activity in both the cell extracts and the cell culture media extract. Our data shows that selected phytoplankton isolates are potent secretors of estrogenic and androgenic substances, which are potential endocrine disrupting chemicals (EDCs). As the harmful nature of EDCs is largely due to their bioaccumulation in the aquatic food chain our findings imply that the impact of these phytoplankton secretions needs to be investigated especially for seafoods, which are only a single trophic level away from phytoplankton. Alternatively, should these phytoplankton-origin EDCs not accumulate through marine food chains to significantly impact humans or marine mammals, our results indicate that functional assays could greatly over-estimate the risk from naturally occurring EDCs produced by marine phytoplankton. It remains to be determined if these EDCs affect zooplankton and other organisms that directly feed on marine phytoplankton, or if the secreted

  4. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  5. Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Misra, A. K.

    2015-01-01

    The production of toxins by some species of phytoplankton is known to have several economic, ecological, and human health impacts. However, the role of toxins on the spatial distribution of phytoplankton is not well understood. In the present study, the spatial dynamics of a nutrient-phytoplankto...... patterns, like stripes, spots, and the mixture of them depending on the toxicity level. We also observe that the distribution of nutrient and phytoplankton shows spatiotemporal oscillation for certain toxicity level. (C) 2015 Elsevier Inc. All rights reserved....

  6. Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources

    International Nuclear Information System (INIS)

    Raven, J.A.; Johnston, A.M.

    1991-01-01

    Most of the marine phytoplankton species for which data are available are rate saturated for photosynthesis and probably for growth with inorganic C at normal seawater concentrations; 2 of the 17 species are not saturated. Photosynthesis in these two species can probably be explained by the 17 species not saturated. Photosynthesis in these two species can probably be explained by assuming that CO 2 reaches the site of its reaction with RUBISCO (ribulose bisphosphate carboxylase-oxygenase) by passive diffusion. The kinetics of CO 2 fixation by intact cells are explicable by RUBISCO kinetics typical of algae, and a CO 2 -saturated in vivo RUBISCO activity not more than twice the in vivo light- and inorganic-C-saturated rate of photosynthesis. For the other species, the high affinity in vivo for inorganic C could be other species, the high affinity in vivo for inorganic C could be explained by postulating active influx of inorganic C yielding a higher concentration of CO 2 available to RUBISCO during steady state photosynthesis than in the medium. Although such a higher concentration of internal CO 2 in cells with high affinity for inorganic C is found at low levels of external inorganic C, the situation is more equivocal at normal seawater concentrations. In theory, the occurrence of a CO 2 -concentrating mechanism rather than passive CO 2 entry could reduce the photon, N, Fe, Mn, and Mo costs of growth, but increase the Zn and Se costs. Thus far, data on costs are available only for photons and N; these data generally agree with the predicted lower costs for cells with high affinity for inorganic C

  7. Regulation in photosynthesis

    International Nuclear Information System (INIS)

    Heber, U.

    1989-01-01

    This short paper focus on an overall perspective of photosynthesis. The author points out that although much progress has been made into the molecular mechanisms of photosynthesis, the picture is still far from complete. The study of interactions in photosynthesis is important because such a complex process must have regulatory mechanisms. The author also discusses the importance of photosynthesis study in the practical world of survival of man and production of food

  8. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    Science.gov (United States)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  9. Sea Soup: Phytoplankton.

    Science.gov (United States)

    Cerullo, Mary M.

    This guide, designed for students in grades 3-7, answers intriguing questions about phytoplankton, tiny drifters that have shaped our world. Invisible to the naked eye, phytoplankton are the source of our atmosphere, our climate, our ocean food chain, much of our oil supply, and more. They're also food for zooplankton. Photomicroscopy serves up…

  10. Phytoplankton growth balanced by clam and zooplankton grazing and net transport into the low-salinity zone of the San Francisco Estuary

    Science.gov (United States)

    Kimmerer, Wim J.; Thompson, Janet K.

    2014-01-01

    We estimated the influence of planktonic and benthic grazing on phytoplankton in the strongly tidal, river-dominated northern San Francisco Estuary using data from an intensive study of the low salinity foodweb in 2006–2008 supplemented with long-term monitoring data. A drop in chlorophyll concentration in 1987 had previously been linked to grazing by the introduced clam Potamocorbula amurensis, but numerous changes in the estuary may be linked to the continued low chlorophyll. We asked whether phytoplankton continued to be suppressed by grazing and what proportion of the grazing was by benthic bivalves. A mass balance of phytoplankton biomass included estimates of primary production and grazing by microzooplankton, mesozooplankton, and clams. Grazing persistently exceeded net phytoplankton growth especially for larger cells, and grazing by microzooplankton often exceeded that by clams. A subsidy of phytoplankton from other regions roughly balanced the excess of grazing over growth. Thus, the influence of bivalve grazing on phytoplankton biomass can be understood only in the context of limits on phytoplankton growth, total grazing, and transport.

  11. Mercury methylation and bacterial activity associated to tropical phytoplankton

    International Nuclear Information System (INIS)

    Coelho-Souza, Sergio A.; Guimaraes, Jean R.D.; Mauro, Jane B.N.; Miranda, Marcio R.; Azevedo, Sandra M.F.O.

    2006-01-01

    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl- 203 Hg formation from added inorganic 203 Hg and 3 H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H 2 35 S produced from added Na 2 35 SO 4 . There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw -1 h -1 for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10 3 nmol gdw -1 h -1 at a concentration of 1000 nM leucine) and sulfate-reduction (∼21% H 2 35 S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected

  12. Mercury methylation and bacterial activity associated to tropical phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Souza, Sergio A. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Guimaraes, Jean R.D. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil)]. E-mail: jeanrdg@biof.ufrj.br; Mauro, Jane B.N. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Miranda, Marcio R. [Laboratorio de Tracadores Wolfgang Pfeiffer, SL 62, Instituto de Biofisica Carlos Chagas Filho, Bloco G, Ilha do Fundao, Universidade Federal do Rio de Janeiro (IBCCF/UFRJ), RJ, CEP 21949-900 (Brazil); Azevedo, Sandra M.F.O. [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, IBCCF/UFRJ, RJ (Brazil)

    2006-07-01

    The methylated form of mercury (Hg), methylmercury (MeHg), is one of the most toxic pollutants. Biotic and/or abiotic methylation, often associated to sulfate-reducing bacteria metabolism, occurs in aquatic environments and in many tropical areas, mostly in the periphyton associated to floating macrophyte roots. Data about mercury methylation by phytoplankton are scarce and the aim of this study was to verify the biotic influence in the methylation process in Microcystis aeruginosa and Sineccocystis sp. laboratory strains and in natural populations of phytoplankton from two different aquatic systems, the mesotrophic Ribeirao das Lajes reservoir and hypereutrophic oligohaline Jacarepagua lagoon, Rio de Janeiro state, Brazil. Adapted radiochemical techniques were used to measure sulfate-reduction, mercury methylation and bacterial activity in phytoplankton samples. Methyl-{sup 203}Hg formation from added inorganic {sup 203}Hg and {sup 3}H-Leucine uptake were measured by liquid scintillation as well as sulfate-reduction, estimated as H{sub 2} {sup 35}S produced from added Na{sub 2} {sup 35}SO{sub 4}. There was no significant difference in low methylation potentials (0.37%) among the two cyanobacterium species studied in laboratory conditions. At Ribeirao das Lajes reservoir, there was no significant difference in methylation, bacterial activity and sulfate-reduction of surface sediment between the sampling points. Methylation in sediments (3-4%) was higher than in phytoplankton (1.5%), the opposite being true for bacterial activity (sediment mean 6.6 against 150.3 nmol gdw{sup -1} h{sup -1} for phytoplankton samples). At Jacarepagua lagoon, an expressive bacterial activity (477.1 x 10{sup 3} nmol gdw{sup -1} h{sup -1} at a concentration of 1000 nM leucine) and sulfate-reduction ({approx}21% H{sub 2} {sup 35}S trapped) associated to phytoplankton (mostly cyanobacteria M. aeruginosa) was observed, but mercury methylation was not detected.

  13. Latitudinal phytoplankton distribution and the neutral theory of biodiversity

    KAUST Repository

    Chust, Guillem

    2012-11-16

    Recent studies have suggested that global diatom distributions are not limited by dispersal, in the case of both extant species and fossil species, but rather that environmental filtering explains their spatial patterns. Hubbell\\'s neutral theory of biodiversity provides a framework in which to test these alternatives. Our aim is to test whether the structure of marine phytoplankton (diatoms, dinoflagellates and coccolithophores) assemblages across the Atlantic agrees with neutral theory predictions. We asked: (1) whether intersite variance in phytoplankton diversity is explained predominantly by dispersal limitation or by environmental conditions; and (2) whether species abundance distributions are consistent with those expected by the neutral model. Location: Meridional transect of the Atlantic (50° N-50° S). Methods: We estimated the relative contributions of environmental factors and geographic distance to phytoplankton composition using similarity matrices, Mantel tests and variation partitioning of the species composition based upon canonical ordination methods. We compared the species abundance distribution of phytoplankton with the neutral model using Etienne\\'s maximum-likelihood inference method. Results: Phytoplankton communities are slightly more determined by niche segregation (24%), than by dispersal limitation and ecological drift (17%). In 60% of communities, the assumption of neutrality in species\\' abundance distributions could not be rejected. In tropical zones, where oceanic gyres enclose large stable water masses, most communities showed low species immigration rates; in contrast, we infer that communities in temperate areas, out of oligotrophic gyres, have higher rates of species immigration. Conclusions: Phytoplankton community structure is consistent with partial niche assembly and partial dispersal and drift assembly (neutral processes). The role of dispersal limitation is almost as important as habitat filtering, a fact that has been

  14. Climate changes and photosynthesis

    Directory of Open Access Journals (Sweden)

    G.Sh Tkemaladze

    2016-06-01

    Solar energy is environmentally friendly and its conversion to energy of chemical substances is carried out only by photosynthesis – effective mechanism characteristic of plants. However, microorganism photosynthesis occurs more frequently than higher plant photosynthesis. More than half of photosynthesis taking place on the earth surface occurs in single-celled organisms, especially algae, in particular, diatomic organisms.

  15. Multi-Spectral Remote Sensing of Phytoplankton Pigment Absorption Properties in Cyanobacteria Bloom Waters: A Regional Example in the Western Basin of Lake Erie

    Directory of Open Access Journals (Sweden)

    Guoqing Wang

    2017-12-01

    Full Text Available Phytoplankton pigments absorb sunlight for photosynthesis, protect the chloroplast from damage caused by excess light energy, and influence the color of the water. Some pigments act as bio-markers and are important for separation of phytoplankton functional types. Among many efforts that have been made to obtain information on phytoplankton pigments from bio-optical properties, Gaussian curves decomposed from phytoplankton absorption spectrum have been used to represent the light absorption of different pigments. We incorporated the Gaussian scheme into a semi-analytical model and obtained the Gaussian curves from remote sensing reflectance. In this study, a series of sensitivity tests were conducted to explore the potential of obtaining the Gaussian curves from multi-spectral satellite remote sensing. Results showed that the Gaussian curves can be retrieved with 35% or less mean unbiased absolute percentage differences from MEdium Resolution Imaging Spectrometer (MERIS and Moderate Resolution Imaging Spectroradiometer (MODIS-like sensors. Further, using Lake Erie as an example, the spatial distribution of chlorophyll a and phycocyanin concentrations were obtained from the Gaussian curves and used as metrics for the spatial extent of an intense cyanobacterial bloom occurred in Lake Erie in 2014. The seasonal variations of Gaussian absorption properties in 2011 were further obtained from MERIS imagery. This study shows that it is feasible to obtain Gaussian curves from multi-spectral satellite remote sensing data, and the obtained chlorophyll a and phycocyanin concentrations from these Gaussian peak heights demonstrated potential application to monitor harmful algal blooms (HABs and identification of phytoplankton groups from satellite ocean color remote sensing semi-analytically.

  16. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  17. Effects of UV on photosynthesis of Antarctic phytoplankton: models and their application to coastal and pelagic assemblages Efecto de la radiación UV sobre la fotosíntesis de fitoplancton antártico: modelos y su aplicación a ensambles costeros y pelágicos

    Directory of Open Access Journals (Sweden)

    PATRICK J. NEALE

    2001-06-01

    Full Text Available We have characterized the photosynthetic response to ultraviolet radiation (UV of natural phytoplankton assemblages in Antarctic (Southern Ocean waters. Biological weighting functions (BWFs and exposure response curves for inhibition of photosynthesis by UV were measured during spring-time ozone depletion (October-November. Two different models were developed to relate photosynthesis to UV exposure. A model that is a function of the duration of exposure (BWF H applied to assemblages in the well-mixed open waters of the Weddell-Scotia Confluence (WSC, 60° S, 50° W, since responses were a function of cumulative exposure and recovery rates were slow. These assemblages had a variable but generally high sensitivity to UV. A steady-state model (BWF E applied in the shallow waters near the Antarctic Peninsula (Palmer Station, 64° S, 64° W, where inhibition was a function of irradiance (reciprocity failed, and recovery was rapid. Using information on the time-dependence of photosynthesis in assemblages with active repair, inferences were drawn on the relative contribution of damage and recovery processes to the UV weights. BWFs for Palmer phytoplankton sampled during periods of pack-ice cover had both higher damage and higher repair than BWFs for WSC assemblages. BWFs for Palmer phytoplankton sampled during open water periods had about the same damage weights as Weddell-Scotia assemblages but had a higher repair rate. Solar exposures of more than 10 min were predicted to have generally less effect on Palmer phytoplankton than the WSC phytoplanktonSe caracterizó la respuesta fotosintética a radiación ultravioleta (RUV en poblaciones naturales de fitoplancton del Océano Antártico. Se midieron las funciones espectrales de peso biológico (BWFs y curvas de inhibición de fotosíntesis en respuesta a la exposición de RUV durante la temporada de mayor disminución de la capa de ozono (octubre-noviembre. Se desarrollaron dos modelos distintos que

  18. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.

    2016-10-11

    We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1), averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE) and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1)–1 (±0.001 SE, range 0.001-0.045) and showed the lowest values in spring (April-June). The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (±58.4 SE) and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m–3 h–1 (±0.13 SE) with highest values in winter (up to 8.50 mg C m–3 h–1) and lowest values in summer (summer average, 0.30 mg C m–3 h–1), while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE) and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August). 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  19. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2016-09-01

    Full Text Available We carried out monthly photosynthesis-irradiance (P-E experiments with the 14C-method for 12 years (2003–2014 to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1, averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1–1 (±0.001 SE, range 0.001-0.045 and showed the lowest values in spring (April-June. The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (± 58.4 SE and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m-3 h–1 (±0.13 SE with highest values in winter (up to 8.50 mg C m-3 h–1 and lowest values in summer (summer average, 0.30 mg C m-3 h–1, while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August. 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  20. Scattering of phytoplankton cells from cytometry during a microcosm experiment

    Science.gov (United States)

    Moutier, W.; Duforêt-Gaurier, L.; Loisel, H.; Thyssen, M.; Mériaux, X.; Desailly, D.; Courcot, L.; Dugenne, M.

    2016-02-01

    This study presents an application of the CytoSense flow cytometer (CytoBuoy b.v., NL) as a powerful tool to analyze optical properties of phytoplankton cells. Recently, Duforêt et al., (2015) developed a methodology to derive the forward, sideward and backward cross section (σFWS, σSWS and σbb, respectively) of individual particles from the CytoSense. For the first time, this methodology was applied to phytoplankton cultures. A 20 day microcosm experiment was conducted on two phytoplankton species (Chlamydomonas concordia and Thalassiosira pseudonana). We realized daily sampling for biogeochemical and flow cytometer analysis and carried out optical measurements. Scanning electron migrographs (SEM) were performed at different life stages to investigate the cells morphology.First, CytoSense estimates were tested against radiative transfer computations. The comparison exercise, is based on radiative transfer simulations because for phytoplankton cultures, in situ measurements of σFWS and σSWS, particle by particle, are not available in literature. For that purpose, we build a database of 590,000 simulations, considering homogeneous and multi-layered spheres, to represent the optical properties of a large diversity of phytoplankton cells. Comparison showed that the CytoSense estimates for the cultures are consistent with values predicted by the theory. Second, the flow cytometer was used to analyze the temporal course of the forward and the sideward efficiency during the entire life-cycle. Results showed differences between the two species. From an ACP analysis, the variation of the optical properties were associated with the chlorophyll-a concentration by living cell, the thickness of the frustule and the aggregate formation. To finish, the bulk backscattering coefficient was rebuilt from σbb of individual cells and compare with the bb measured by a WET Labs ECO-BB9. Relative errors (RE) were between 0.3 and 0.47 and the mean RE was of 0.36. A such work shows

  1. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    Science.gov (United States)

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  2. Heterotrophic utilization of extracellular products of phytoplankton in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gomes, H.; Pant, A; Goes, J.I.; Parulekar, A

    Bacterial uptake of algal exudates has been estimated in a tropical estuary, Dona Paula, Goa, India, where the seasonal fluctuations in hydrographic and nutrient parameters as well as dissolved organic matter concentrations and phytoplankton species...

  3. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  4. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    Directory of Open Access Journals (Sweden)

    Jason M Smith

    Full Text Available Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA, are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1 to those in well-lit layers (<1 nmol L-1 d-1. During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  5. Photoreception in Phytoplankton.

    Science.gov (United States)

    Colley, Nansi Jo; Nilsson, Dan-Eric

    2016-11-01

    In many species of phytoplankton, simple photoreceptors monitor ambient lighting. Photoreceptors provide a number of selective advantages including the ability to assess the time of day for circadian rhythms, seasonal changes, and the detection of excessive light intensities and harmful UV light. Photoreceptors also serve as depth gauges in the water column for behaviors such as diurnal vertical migration. Photoreceptors can be organized together with screening pigment into visible eyespots. In a wide variety of motile phytoplankton, including Chlamydomonas, Volvox, Euglena, and Kryptoperidinium, eyespots are light-sensitive organelles residing within the cell. Eyespots are composed of photoreceptor proteins and typically red to orange carotenoid screening pigments. This association of photosensory pigment with screening pigment allows for detection of light directionality, needed for light-guided behaviors such as positive and negative phototaxis. In Chlamydomonas, the eyespot is located in the chloroplast and Chlamydomonas expresses a number of photosensory pigments including the microbial channelrhodopsins (ChR1 and ChR2). Dinoflagellates are unicellular protists that are ecologically important constituents of the phytoplankton. They display a great deal of diversity in morphology, nutritional modes and symbioses, and can be photosynthetic or heterotrophic, feeding on smaller phytoplankton. Dinoflagellates, such as Kryptoperidinium foliaceum, have eyespots that are used for light-mediated tasks including phototaxis. Dinoflagellates belonging to the family Warnowiaceae have a more elaborate eye. Their eye-organelle, called an ocelloid, is a large, elaborate structure consisting of a focusing lens, highly ordered retinal membranes, and a shield of dark pigment. This complex eye-organelle is similar to multicellular camera eyes, such as our own. Unraveling the molecular makeup, structure and function of dinoflagellate eyes, as well as light-guided behaviors in

  6. Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition

    NARCIS (Netherlands)

    Dijkman, N.A.; Kromkamp, J.C.

    2006-01-01

    Phospholipid-derived fatty acids (PLFA) are widely used as chemotaxonomic markers in microbial ecology. In this paper we explore the use of PLFA as chemotaxonomic markers for phytoplankton species. The PLFA composition was determined for 23 species relevant to estuarine phytoplankton. The taxonomic

  7. In situ phytoplankton distributions in the Amundsen Sea Polynya measured by autonomous gliders

    Directory of Open Access Journals (Sweden)

    Oscar Schofield

    2015-10-01

    Full Text Available Abstract The Amundsen Sea Polynya is characterized by large phytoplankton blooms, which makes this region disproportionately important relative to its size for the biogeochemistry of the Southern Ocean. In situ data on phytoplankton are limited, which is problematic given recent reports of sustained change in the Amundsen Sea. During two field expeditions to the Amundsen Sea during austral summer 2010–2011 and 2014, we collected physical and bio-optical data from ships and autonomous underwater gliders. Gliders documented large phytoplankton blooms associated with Antarctic Surface Waters with low salinity surface water and shallow upper mixed layers (< 50 m. High biomass was not always associated with a specific water mass, suggesting the importance of upper mixed depth and light in influencing phytoplankton biomass. Spectral optical backscatter and ship pigment data suggested that the composition of phytoplankton was spatially heterogeneous, with the large blooms dominated by Phaeocystis and non-bloom waters dominated by diatoms. Phytoplankton growth rates estimated from field data (≤ 0.10 day−1 were at the lower end of the range measured during ship-based incubations, reflecting both in situ nutrient and light limitations. In the bloom waters, phytoplankton biomass was high throughout the 50-m thick upper mixed layer. Those biomass levels, along with the presence of colored dissolved organic matter and detritus, resulted in a euphotic zone that was often < 10 m deep. The net result was that the majority of phytoplankton were light-limited, suggesting that mixing rates within the upper mixed layer were critical to determining the overall productivity; however, regional productivity will ultimately be controlled by water column stability and the depth of the upper mixed layer, which may be enhanced with continued ice melt in the Amundsen Sea Polynya.

  8. Photo-oxidation: Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W.W.C.; Laane, R.W.P.M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  9. Photo-oxidation : Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W. W. C.; Laane, R. W. P. M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  10. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Significance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern Sweden

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Jonasson, S.

    2007-01-01

    While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ...... ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially, increased frequency of freeze-thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R-2-values ranging from 0.81 to 0.......85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold...

  12. Does ecosystem variability explain phytoplankton diversity? Solving an ecological puzzle with long-term data sets

    Science.gov (United States)

    Sarker, Subrata; Lemke, Peter; Wiltshire, Karen H.

    2018-05-01

    Explaining species diversity as a function of ecosystem variability is a long-term discussion in community-ecology research. Here, we aimed to establish a causal relationship between ecosystem variability and phytoplankton diversity in a shallow-sea ecosystem. We used long-term data on biotic and abiotic factors from Helgoland Roads, along with climate data to assess the effect of ecosystem variability on phytoplankton diversity. A point cumulative semi-variogram method was used to estimate the long-term ecosystem variability. A Markov chain model was used to estimate dynamical processes of species i.e. occurrence, absence and outcompete probability. We identified that the 1980s was a period of high ecosystem variability while the last two decades were comparatively less variable. Ecosystem variability was found as an important predictor of phytoplankton diversity at Helgoland Roads. High diversity was related to low ecosystem variability due to non-significant relationship between probability of a species occurrence and absence, significant negative relationship between probability of a species occurrence and probability of a species to be outcompeted by others, and high species occurrence at low ecosystem variability. Using an exceptional marine long-term data set, this study established a causal relationship between ecosystem variability and phytoplankton diversity.

  13. Triclosan alterations of estuarine phytoplankton community structure.

    Science.gov (United States)

    Pinckney, James L; Thompson, Laura; Hylton, Sarah

    2017-06-15

    Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl -1 . The EC 50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l -1 . Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l -1 . This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.; Alnajjar, Mohammad Ahmad; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  15. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  16. Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-color observations in the Red Sea

    KAUST Repository

    Racault, Marie-Fanny

    2015-02-18

    Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplankton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data coverage, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phytoplankton growth during the winter period (relative to the summer

  17. Effect of Phytoplankton Richness on Phytoplankton Biomass Is Weak Where the Distribution of Herbivores is Patchy.

    Science.gov (United States)

    Weis, Jerome J

    2016-01-01

    Positive effects of competitor species richness on competitor productivity can be more pronounced at a scale that includes heterogeneity in 'bottom-up' environmental factors, such as the supply of limiting nutrients. The effect of species richness is not well understood in landscapes where variation in 'top-down' factors, such as the abundance of predators or herbivores, has a strong influence competitor communities. I asked how phytoplankton species richness directly influenced standing phytoplankton biomass in replicate microcosm regions where one patch had a population of herbivores (Daphnia pulicaria) and one patch did not have herbivores. The effect of phytoplankton richness on standing phytoplankton biomass was positive but weak and not statistically significant at this regional scale. Among no-Daphnia patches, there was a significant positive effect of phytoplankton richness that resulted from positive selection effects for two dominant and productive species in polycultures. Among with-Daphnia patches there was not a significant effect of phytoplankton richness. The same two species dominated species-rich polycultures in no- and with-Daphnia patches but both species were relatively vulnerable to consumption by Daphnia. Consistent with previous studies, this experiment shows a measurable positive influence of primary producer richness on biomass when herbivores were absent. It also shows that given the patchy distribution of herbivores at a regional scale, a regional positive effect was not detected.

  18. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    Science.gov (United States)

    Smith, Jason M; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  19. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  20. Photosynthesis in the Archean era.

    Science.gov (United States)

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.

  1. Improving Photosynthesis

    Science.gov (United States)

    Evans, John R.

    2013-01-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO2, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO2 around Rubisco or by modifying the kinetic properties of Rubisco. The C4 photosynthetic pathway is a CO2-concentrating mechanism that generally enables C4 plants to achieve greater efficiency in their use of light, nitrogen, and water than C3 plants. To capitalize on these advantages, attempts have been made to engineer the C4 pathway into C3 rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO2 leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  2. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  3. Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types

    Directory of Open Access Journals (Sweden)

    M. Noguchi-Aita

    2011-02-01

    Full Text Available Error-quantified, synoptic-scale relationships between chlorophyll-a (Chl-a and phytoplankton pigment groups at the sea surface are presented. A total of ten pigment groups were considered to represent three Phytoplankton Size Classes (PSCs, micro-, nano- and picoplankton and seven Phytoplankton Functional Types (PFTs, i.e. diatoms, dinoflagellates, green algae, prymnesiophytes (haptophytes, pico-eukaryotes, prokaryotes and Prochlorococcus sp.. The observed relationships between Chl-a and PSCs/PFTs were well-defined at the global scale to show that a community shift of phytoplankton at the basin and global scales is reflected by a change in Chl-a of the total community. Thus, Chl-a of the total community can be used as an index of not only phytoplankton biomass but also of their community structure. Within these relationships, we also found non-monotonic variations with Chl-a for certain pico-sized phytoplankton (pico-eukaryotes, Prokaryotes and Prochlorococcus sp. and nano-sized phytoplankton (Green algae, prymnesiophytes. The relationships were quantified with a least-square fitting approach in order to enable an estimation of the PFTs from Chl-a where PFTs are expressed as a percentage of the total Chl-a. The estimated uncertainty of the relationships depends on both PFT and Chl-a concentration. Maximum uncertainty of 31.8% was found for diatoms at Chl-a = 0.49 mg m−3. However, the mean uncertainty of the relationships over all PFTs was 5.9% over the entire Chl-a range observed in situ (0.02 < Chl-a < 4.26 mg m−3. The relationships were applied to SeaWiFS satellite Chl-a data from 1998 to 2009 to show the global climatological fields of the surface distribution of PFTs. Results show that microplankton are present in the mid and high latitudes, constituting only ~10.9% of the entire phytoplankton community in the mean field for 1998–2009, in which diatoms explain ~7.5%. Nanoplankton are ubiquitous throughout the global surface oceans

  4. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Five Lectures on Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    These five lectures were held by E. Broda during the International Symposium on Alternative Energies, in September 1979. Lecture 1 – The Great Physicists and Photosynthesis; Lecture 2 – The Influence of Photosynthesis on the Biosphere. Past, Present and Future; Lecture 3 – The Origin of Photosynthesis; Lecture 4 – The Evolution from Photosynthetic Bacteria to Plants; Lecture 5 – Respiration and Photorespiration. (nowak)

  7. Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms.

    Science.gov (United States)

    Knauert, Stefanie; Escher, Beate; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2008-09-01

    Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance.

  8. Optical assessment of phytoplankton nutrient depletion

    DEFF Research Database (Denmark)

    Heath, M.R.; Richardson, Katherine; Kiørboe, Thomas

    1990-01-01

    The ratio of light absorption at 480 and 665 nm by 90% acetone extracts of marine phytoplankton pigments has been examined as a potential indicator of phytoplankton nutritional status in both laboratory and field studies. The laboratory studies demonstrated a clear relationship between nutritiona......-replete and nutrient-depleted cells. The field data suggest that the absorption ratio may be a useful indicator of nutritional status of natural phytoplankton populations, and can be used to augment the interpretation of other data....

  9. Tolerance of polar phytoplankton communities to metals

    International Nuclear Information System (INIS)

    Echeveste, P.; Tovar-Sánchez, A.; Agustí, S.

    2014-01-01

    Large amounts of pollutants reach polar regions, particularly the Arctic, impacting their communities. In this study we analyzed the toxic levels of Hg, Cd and Pb to natural phytoplankton communities of the Arctic and Southern Oceans, and compared their sensitivities with those observed on phytoplankton natural communities from temperate areas. Mercury was the most toxic metal for both Arctic and Antarctic communities, while both Cd and Pb were toxic only for the Antarctic phytoplankton. Total cell abundance of the populations forming the Arctic community increased under high Cd and Pb concentrations, probably due to a decrease of the grazing pressure or the increase of the most resistant species, although analysis of individual cells indicated that cell death was already induced at the highest levels. These results suggest that phytoplankton may have acquired adapting mechanisms to face high levels of Pb and Cd in the Arctic Ocean. Highlights: • First study analyzing the toxicity of Hg, Cd or Pb to natural polar phytoplankton. • Arctic Ocean communities highly resistant to Cd and Pb, but not to Hg. • Southern Ocean communities sensitive to Cd, Pb and Hg. • Both communities incorporated Pb at a similar level. • Arctic phytoplankton may have acquired adapting mechanisms against Cd and Pb. -- Polar phytoplankton communities are tolerant to Cd and Pb, specially the Arctic ones, suggesting the acquisition of adapting mechanisms to face metals' toxicity

  10. Phytoplankton Monitoring Network - Phytoplankton Analysis with Associated Collection Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A qualitative collection of data that includes salinity, temperature, phytoplankton counts and abundance ratios obtained from surface tows in the estuarine and...

  11. Fruit photosynthesis in Satsuma mandarin.

    Science.gov (United States)

    Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi

    2015-12-01

    To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Uncertainty Analysis of Phytoplankton Dynamics in Coastal Waters

    NARCIS (Netherlands)

    Niu, L.

    2015-01-01

    There is an increasing concern about the interactions between phytoplankton and coastal ecosystems, especially on the negative effects from coastal eutrophication and phytoplankton blooms. As the key indicator of the coastal ecosystem, phytoplankton plays an important role in the whole impact-effect

  13. Indicators: Phytoplankton

    Science.gov (United States)

    Phytoplankton are free-floating, microscopic algae that inhabit the sunlit, upper layer of most freshwater and marine environments. They are usually responsible for the color and clarity of lakes, wetlands, rivers, streams and estuaries.

  14. Teaching Photosynthesis with ELL Students

    Science.gov (United States)

    Piper, Susan; Shaw, Edward Lewis, Jr.

    2010-01-01

    Although the teaching of photosynthesis occurs yearly in elementary classrooms, one thing that makes it challenging is the inclusion of English language learners (ELLs). This article presents several activities for teaching and assessing of photosynthesis in a third grade classroom. The activities incorporate the photosynthesis content, teaching…

  15. A prospective study of marine phytoplankton and reported ...

    Science.gov (United States)

    BACKGROUND: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted.OBJECTIVE: We evaluated the association between phytoplankton cell counts and subsequent illness among recreational beachgoers.METHODS:We recruited beachgoers at Boquer6n Beach, Puerto Rico, during the summer of 2009. We conducted interviews at three time points to assess baseline health, water activities, and subsequent illness. Daily water samples were quantitatively assayed for phytoplankton cell count. Logistic regression models, adjusted for age and sex, were used to assess the association between exposure to three categories of phytoplankton concentration and subsequent illness.RESULTS: During 26 study days, 15,726 individuals successfully completed all three interviews. Daily total phytoplankton cell counts ranged from 346 to 2,012 cells/ml (median, 712 cells/ml). The category with the highest (≥75th percentile) total phytoplankton cell count was associated with eye irritation [adjusted odds ratio (OR) = 1.30; 95% confidence interval (Cl): 1.01, 1.66], rash (OR = 1.27; 95% Cl: 1.02, 1.57), and earache (OR = 1.25; 95% Cl: 0.88, 1.77). In phytoplankton group-specific analyses, the category with the highest Cyanobacteria counts was associated with respiratory illness (OR = 1.37; 95% Cl: 1.12, 1

  16. Primary production in a tropical large lake: The role of phytoplankton composition

    International Nuclear Information System (INIS)

    Darchambeau, F.; Sarmento, H.; Descy, J.-P.

    2014-01-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ 14 C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P Bm ) was found, ranging between 1.15 and 7.21 g carbon g −1 chlorophyll a h −1 , and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I k ) ranged between 91 and 752 μE m −2 s −1 and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m −2 (annual mean) and from 143 to 278 g carbon m −2 y −1 , respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m −2 y −1 . • Pelagic production was highly

  17. PHYTOPLANKTON OF CASPIAN

    Directory of Open Access Journals (Sweden)

    Aysha Sharapatinovna Gasanova

    2015-01-01

    Full Text Available Aim. The composition of the species of the phytoplankton in the Russian sector of the Caspian Sea in conditions of transgression, anthropogenic and chemical contamination has been studied.Location.The Russian sector of the Caspian SeaMethods. The phytoplankton samples were collected at the depths of 8 – 50m by the use of the Nansen bathometer and subsequently were fixed in 4% formalin. The office processing was carried out in a box of Nozhotta type, which has the volume of 0.1 ml and the triplicate surface, under the light microscope of Biolam P15. The system of domestic diamotologists was used during the classification of Bacillariaphyta, as for the classification of Dinophyta, the Dodge scheme was applied. Cyanophyta algae were classified according to the system of A.A. Elenkina with the amendments adopted by A.I. Proshkin-Lavrenko and V.V. Makarova. The classification of the Chlorophyta division has been done according to the Smith system.Results, main conclusions. Presented the taxonomic structure and the lists of species of the phytoplankton community in the sea coastal shallow waters Russian sector of the Caspian Sea have been presented. A high floristic diversity and domination of small cell forms are characteristics of the modern structure of the coastal shoal waters of the Dagestan part of the Caspian Sea. The auttaclimatizant of 1934, Pseudosolenia calcaravis, has not been discovered in the plankton of the researched water area. The phytoplankton community has been represented by 58 species of six groups: Cyanophyta, Bacillariaphyta, Dinophyta, Euglenophyta, Chlorophyta and the small flagellate. Bacillariaphyta were the basis of both the taxonomic diversity and the biomass. Cyanophita prevailed in number.

  18. The Evolution of Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This Review was written by Engelbert Broda, an Austrian Chemist and Physicist, on February the 10th 1976. The merits of the inductive and the deductive approach in tracing the pathways of evolution are discussed. Using the latter approach, it is concluded that photosynthesis followed fermentation as a method of obtaining energy-rich compounds, especially ATP. Photosynthesis probably arose by utilization of membranes for bioenergetic processes. Originally photosynthesis served photophosphorylation (ATP production), later reducing power was also made, either by open-ended, light-powered, electron flow or driven by ATP; ultimate electron donors were at first hydrogen or sulfur compounds, and later water, the last-named capability Was acquired by prokaryotic algae the earliest plants, similar to the recent blue-greens. When free oxygen entered the atmosphere for the first time, various forms of respiration (oxidative phosphorylation) became possible. Mechanistically, respiration evolved from photosynthesis (‘conversion hypotheses’). Prokaryotic algae are probably the ancestors of the chloroplasts in the eukaryotes, In the evolution of the eukaryotes, not much change in the basic processes of photosynthesis occurred.(author)

  19. Hydrography, phytoplankton biomass and photosynthesis in shelf and oceanic waters off southeastern Brazil during autumn (may/june, 1983

    Directory of Open Access Journals (Sweden)

    Frederico Pereira Brandini

    1988-01-01

    Full Text Available Spatial distribution of chlorophyll-a, phytoplankton photosynthesis and nutrients were studied in relation to the hydrographic environment of the southeastern Brazil from May 3 to June 31 of 1983 during an oceanographia cruise conducted by the R/V "Almirante Saldanha" of the Brazilian Navy. Temperature and salinity at 5 meters depth ranged from 21 to 25º C and from 33.00 to 37.11, respectively. The concentration of nutrients varied, nitrate + nitrite-N from 1.0-3.0 µg-at/l, phosphate-P 0.1-0.9 µg-at/l and silicate-Si 5-25 µg-at/l. The chlorophyll-a concentrations along the coast varied from 0.35 to 1.48 mg/m³ with maxima in front of Paranaguá Bay (PR and over the southern shelf of Santa Catarina State. Low concentrations around 0.20 mg/m³ of uniform distribution were observed in shelf and off-shelf areas. Comparatively high concentrations were measured over the shelf break zone in front of Paranaguá Bay indicationg the occurrence of shelf break upwelling of deep nutrient rich waters. The pattern of vertical distribution was stratified and irregular in coastal stations and uniform in shelf and oceanic waters although some subsurface peaks were sometimes detected. The integrated chlorophyll values within the euphotic layer varied between 2.70 and 28.06 mg/m². The surface photo synthetic capacity varied from 0.4 to 7.7 mgC/mgChl.a/hr with higher values obtained in coastal areas.. The vertical distributions were variable in coastal areas and more uniform in mid-shelf stations. Sub-surface maxima of photosynthesis were detected in both nearshore and off-shore stations, and surface inhibition was not observed.Os padrões de distribuição espacial de parâmetros hidrográficos, clorofila-a e fotossíntese do fitoplancton são estudados em relação ao regime oceanográfico da região sueste do Brasil nos meses de maio e junho de 1983. A região oceânica foi totalmente dominada pela Agua Tropical da Corrente do Brasil (AT com caracter

  20. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  1. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  2. Phytoplankton assemblage of a small, shallow, tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-12-01

    I measured physico-chemical properties and phytoplankton in the small, shallow tropical reservoir of Oyun (Offa, Nigeria) between January 2002 and December 2003. I identified 25 phytoplankton genera in three sampling stations. Bacillariophyceae dominated (75.3%), followed by Chlorophyceae (12.2%), Cyanobacteria (11.1%) and Desmidiaceae (0.73%). The high amount of nutrients (e.g. nitrate, phosphate, sulphate and silica) explain phytoplankton heterogeneity (p<0.05). Phytoplankton was abundant during the rainy season, but the transition period had the richest assemblage and abundance. Fluctuations in phytoplankton density were a result of seasonal changes in concentration of nutrients, grazing pressure and reservoir hydrology. The reservoir is eutrophic with excellent water quality and a diverse phytoplankton assemblage: fish production would be high. These conditions resulted from strategies such as watershed best management practices (BMPs) to control eutrophication and sedimentation, and priorities for water usage established through legislation. Additional measures are recommended to prevent oligotrophy, hypereutrophy, excessive phytoplankton bloom, toxic cyanobacteria, and run-off of organic waste and salts.

  3. Phytoplankton Assessment in Danube Delta Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    SPIRIDON Cosmin

    2016-12-01

    Full Text Available The term ”plankton” refers to those microscopic aquatic forms having little or no resistance to currents and living free-floating and suspended, in open or pelagic waters. Phytoplankton development has different consequences depending on biomass quality and quantity, the overgrowth result being eutrophication process. The eutrophication intensity can cause both a lower water transparency, by excessive algal growth, to fish death in the area. In this study, it was presented the ecological status and phytoplankton biomass dynamic, in the Danube branches from upstream to downstream. The measurements have been made in 2013, in March, June, September and November, using spectrofluorometer for algal biomass determination and a microscope for qualitative analyses of phytoplankton species. Shannon-Wiener index was calculated to compare phytoplankton species diversity. Also, the biodegradable organic matter loading the ecosystem was determined by computing the Saprobic index. The values obtained do not exceed the eutrophication limits according to the Water Framework Directive, transposed into Romanian legislation by Order 161/2006, with normal concentrations for rheophile ecosystems, as Danube's branches. In this area, water currents and high water turbidity inhibit phytoplankton growth, in contrast to lacustrine ecosystems, where light penetration to depths favors the development of different phytoplankton groups.

  4. Bivalve grazing can shape phytoplankton communities

    Science.gov (United States)

    Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.

    2016-01-01

    The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.

  5. Distribution of phytoplankton pigments in Auranga, Ambika, Purna and Mindola estuaries of Gujarat

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, B.N.; JiyalalRam, M.J.; Abidi, S.A.H.; Nair, V.R.

    Estimation of phytoplankton pigments in four estuaries of South Gujarat indicates that all are fairly productive systems. Mean surface values of pooled chlorophyll fractions for Auranga, Ambika, Purna and Mindola were 12.98, 11.7, 13.98 and 33.46 mg...

  6. Estimation of Phytoplankton Responses to Hurricane Gonu over the Arabian Sea Based on Ocean Color Data

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2008-08-01

    Full Text Available In this study the authors investigated phytoplankton variations in the Arabian Sea associated with Hurricane Gonu using remote-sensing data of chlorophyll-a (Chl-a, sea surface temperature (SST and winds. Additional data sets used for the study included the hurricane and Conductivity-Temperature-Depth data. Hurricane Gonu, presenting extremely powerful wind intensity, originated over the central Arabian Sea (near 67.7ºE, 15.1ºN on June 2, 2007; it traveled along a northwestward direction and made landfall in Iran around June 7. Before Hurricane Gonu, Chl-a data indicated relatively low phytoplankton biomass (0.05-0.2 mg m-3, along with generally high SST (>28.5 ºC and weak wind (<10 m s-1 in the Arabian Sea. Shortly after Gonu’s passage, two phytoplankton blooms were observed northeast of Oman (Chl-a of 3.5 mg m-3 and in the eastern central Arabian Sea (Chl-a of 0.4 mg m-3, with up to 10-fold increase in surface Chl-a concentrations, respectively. The Chl-a in the two post-hurricane blooms were 46% and 42% larger than those in June of other years, respectively. The two blooms may be attributed to the storm-induced nutrient uptake, since hurricane can influence intensively both dynamical and biological processes through vertical mixing and Ekman Pumping.

  7. Phytoplankton chlorophyll

    NARCIS (Netherlands)

    van de Poll, W.H.; Kulk, G.; Timmermans, K.R.; Brussaard, C.P.D.; van der Woerd, H.J.; Kehoe, M.J.; Mojica, K.D.A.; Visser, R.J.W.; Rozema, P.D.; Buma, A.G.J.

    2013-01-01

    Relationships between sea surface temperature (SST, > 10 m) and vertical density stratification, nutrient concentrations, and phytoplankton biomass, composition, and chlorophyll a (Chl a) specific absorption were assessed in spring and summer from latitudes 29 to 63 degrees N in the northeast

  8. Climate Variability and Phytoplankton in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  9. Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes

    Directory of Open Access Journals (Sweden)

    Shuibo Hu

    2018-03-01

    Full Text Available The size of phytoplankton not only influences its physiology, metabolic rates and marine food web, but also serves as an indicator of phytoplankton functional roles in ecological and biogeochemical processes. Therefore, some algorithms have been developed to infer the synoptic distribution of phytoplankton cell size, denoted as phytoplankton size classes (PSCs, in surface ocean waters, by the means of remotely sensed variables. This study, using the NASA bio-Optical Marine Algorithm Data set (NOMAD high performance liquid chromatography (HPLC database, and satellite match-ups, aimed to compare the effectiveness of modeling techniques, including partial least square (PLS, artificial neural networks (ANN, support vector machine (SVM and random forests (RF, and feature selection techniques, including genetic algorithm (GA, successive projection algorithm (SPA and recursive feature elimination based on support vector machine (SVM-RFE, for inferring PSCs from remote sensing data. Results showed that: (1 SVM-RFE worked better in selecting sensitive features; (2 RF performed better than PLS, ANN and SVM in calibrating PSCs retrieval models; (3 machine learning techniques produced better performance than the chlorophyll-a based three-component method; (4 sea surface temperature, wind stress, and spectral curvature derived from the remote sensing reflectance at 490, 510, and 555 nm were among the most sensitive features to PSCs; and (5 the combination of SVM-RFE feature selection techniques and random forests regression was recommended for inferring PSCs. This study demonstrated the effectiveness of machine learning techniques in selecting sensitive features and calibrating models for PSCs estimations with remote sensing.

  10. Phytoplankton and the Macondo oil spill: A comparison of the 2010 phytoplankton assemblage to baseline conditions on the Louisiana shelf.

    Science.gov (United States)

    Parsons, M L; Morrison, W; Rabalais, N N; Turner, R E; Tyre, K N

    2015-12-01

    The Macondo oil spill was likely the largest oil spill to ever occur in United States territorial waters. We report herein our findings comparing the available baseline phytoplankton data from coastal waters west of the Mississippi River, and samples collected monthly from the same sampling stations, during and after the oil spill (May-October, 2010). Our results indicate that overall, the phytoplankton abundance was 85% lower in 2010 versus the baseline, and that the species composition of the phytoplankton community moved towards diatoms and cyanobacteria and away from ciliates and phytoflagellates. The results of this study reaffirm the view that phytoplankton responses will vary by the seasonal timing of the oil spill and the specific composition of the spilled oil. The trophic impacts of the purported lower abundance of phytoplankton in 2010 coupled with the observed assemblage shift remain unknown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Physicochemical Flux and Phytoplankton diversity in Shagari ...

    African Journals Online (AJOL)

    USER

    2007-03-20

    Mar 20, 2007 ... distribution of phytoplankton species were also determined. Phytoplankton classes ... could have a significant impact on water quality. (Carpenter and Kitchell ..... Environmental Impact assessment Report on proposed Shagari ...

  12. Community structure characteristics of phytoplankton in zhalong wetland, china

    International Nuclear Information System (INIS)

    Zhang, N.; Zang, S.S.

    2015-01-01

    In autumn 2010, the phytoplankton samples were collected in Zhalong Wetland. A total of 347 species belonging to 78 genera,6 phyla were identified, Chlorophyta and Bacillariophyta were dominated phytoplankton communities, including 143 species of Chlorophyta, 116 species of Bacillariophyta, 45 species of Cyanophyta, 39 species of Euglenophyta, 3 species of Pyrrophyta, 1 species of Chrysophyta. In the core area 66 genera, 222 species were identified, in the buffer area 63 genera, 210 species were identified, in the experiment area 63 genera, 167 species were identified. The dominant species in Zhalong Wetland included Cyclotella meneghiniana, Chlorella vulgaris, Trachelomonas volvocina, Nitzschia sp.. The average phytoplankton density was 12.13*10/sup 6/ in Zhalong Wetland, the phytoplankton density of Bacillariophyta was highest (32.82*10/sup 6/ ind L/sup -1/), and then Chlorophyta (23.73*10/sup 6/ ind L/sup -1/) and Cyanophyta (11.43*106 ind L-1), respectively. The results of cluster analysis showed that phytoplankton community structure could be divided into three types, and within-group similarities of phytoplankton community structure was not high, but inter-group non-similarity was high. Based on the species composition, phytoplankton density, phytoplankton pollution indicator, it suggested that Zhalong Wetland was mesotrophic state. (author)

  13. Photosynthetic parameters and primary production, with focus on large phytoplankton, in a temperate mid-shelf ecosystem

    KAUST Repository

    Moran, Xose Anxelu G.

    2015-01-09

    Annual variability of photosynthetic parameters and primary production (PP), with a special focus on large (i.e. >2μm) phytoplankton was assessed by monthly photosynthesis-irradiance experiments at two depths of the southern Bay of Biscay continental shelf in 2003. Integrated chl a (22-198mgm-2) was moderately dominated by large cells on an annual basis. The March through May dominance of diatoms was replaced by similar shares of dinoflagellates and other flagellates during the rest of the year. Variability of photosynthetic parameters was similar for total and large phytoplankton, but stratification affected the initial slope αB [0.004-0.049mgCmg chl a-1h-1 (μmol photons m-2s-1)-1] and maximum photosynthetic rates PmB (0.1-10.7mgCmg chl a-1h-1) differently. PmB, correlated positively with αB only for the large fraction. PmB tended to respond faster to ambient irradiance than αB, which was negatively correlated with diatom abundance in the >2μm fraction. Integrated PP rates were relatively low, averaging 387 (132-892) for the total and 207 (86-629) mg C m-2d-1 for the large fraction, probably the result of inorganic nutrient limitation. Although similar mean annual contributions of large phytoplankton to total values were found for biomass and PP (~58%), water-column production to biomass ratios (2-26mgCmg chl-1d-1) and light utilization efficiency of the >2μm fraction (0.09-0.84gCg chl-1mol photons-1m2) were minimum during the spring bloom. Our results indicate that PP peaks in the area are not necessarily associated to maximum standing stocks.

  14. Photosynthetic parameters and primary production, with focus on large phytoplankton, in a temperate mid-shelf ecosystem

    KAUST Repository

    Moran, Xose Anxelu G.; Scharek, Renate

    2015-01-01

    Annual variability of photosynthetic parameters and primary production (PP), with a special focus on large (i.e. >2μm) phytoplankton was assessed by monthly photosynthesis-irradiance experiments at two depths of the southern Bay of Biscay continental shelf in 2003. Integrated chl a (22-198mgm-2) was moderately dominated by large cells on an annual basis. The March through May dominance of diatoms was replaced by similar shares of dinoflagellates and other flagellates during the rest of the year. Variability of photosynthetic parameters was similar for total and large phytoplankton, but stratification affected the initial slope αB [0.004-0.049mgCmg chl a-1h-1 (μmol photons m-2s-1)-1] and maximum photosynthetic rates PmB (0.1-10.7mgCmg chl a-1h-1) differently. PmB, correlated positively with αB only for the large fraction. PmB tended to respond faster to ambient irradiance than αB, which was negatively correlated with diatom abundance in the >2μm fraction. Integrated PP rates were relatively low, averaging 387 (132-892) for the total and 207 (86-629) mg C m-2d-1 for the large fraction, probably the result of inorganic nutrient limitation. Although similar mean annual contributions of large phytoplankton to total values were found for biomass and PP (~58%), water-column production to biomass ratios (2-26mgCmg chl-1d-1) and light utilization efficiency of the >2μm fraction (0.09-0.84gCg chl-1mol photons-1m2) were minimum during the spring bloom. Our results indicate that PP peaks in the area are not necessarily associated to maximum standing stocks.

  15. Phytoplankton global mapping from space with a support vector machine algorithm

    Science.gov (United States)

    de Boissieu, Florian; Menkes, Christophe; Dupouy, Cécile; Rodier, Martin; Bonnet, Sophie; Mangeas, Morgan; Frouin, Robert J.

    2014-11-01

    In recent years great progress has been made in global mapping of phytoplankton from space. Two main trends have emerged, the recognition of phytoplankton functional types (PFT) based on reflectance normalized to chlorophyll-a concentration, and the recognition of phytoplankton size class (PSC) based on the relationship between cell size and chlorophyll-a concentration. However, PFTs and PSCs are not decorrelated, and one approach can complement the other in a recognition task. In this paper, we explore the recognition of several dominant PFTs by combining reflectance anomalies, chlorophyll-a concentration and other environmental parameters, such as sea surface temperature and wind speed. Remote sensing pixels are labeled thanks to coincident in-situ pigment data from GeP&CO, NOMAD and MAREDAT datasets, covering various oceanographic environments. The recognition is made with a supervised Support Vector Machine classifier trained on the labeled pixels. This algorithm enables a non-linear separation of the classes in the input space and is especially adapted for small training datasets as available here. Moreover, it provides a class probability estimate, allowing one to enhance the robustness of the classification results through the choice of a minimum probability threshold. A greedy feature selection associated to a 10-fold cross-validation procedure is applied to select the most discriminative input features and evaluate the classification performance. The best classifiers are finally applied on daily remote sensing datasets (SeaWIFS, MODISA) and the resulting dominant PFT maps are compared with other studies. Several conclusions are drawn: (1) the feature selection highlights the weight of temperature, chlorophyll-a and wind speed variables in phytoplankton recognition; (2) the classifiers show good results and dominant PFT maps in agreement with phytoplankton distribution knowledge; (3) classification on MODISA data seems to perform better than on SeaWIFS data

  16. Ecological niches of open ocean phytoplankton taxa

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Vogt, Meike; Payne, Mark

    2015-01-01

    We characterize the realized ecological niches of 133 phytoplankton taxa in the open ocean based on observations from the MAREDAT initiative and a statistical species distribution model (MaxEnt). The models find that the physical conditions (mixed layer depth, temperature, light) govern large...... conditions in the open ocean. Our estimates of the realized niches roughly match the predictions of Reynolds' C-S-R model for the global ocean, namely that taxa classified as nutrient stress tolerant have niches at lower nutrient and higher irradiance conditions than light stress tolerant taxa. Yet...

  17. PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Donald A. [Pennsylvania State Univ., University Park, PA (United States)

    2002-06-21

    The Gordon Research Conference (GRC) on PHOTOSYNTHESIS was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  18. Phytoplankton abundance in relation to the quality of the coastal water – Arabian Gulf, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mostafa Abdel Mohsen El Gammal

    2017-12-01

    Full Text Available Phytoplankton abundance in relation to some physicochemical characters of the costal water of Arabian Gulf (Saudi Arabia was studied for one year. The sampling program included 15 locations in Dammam, Saihat, Al-Qatif, Al-Awamia and Safwa. Water samples were analyzed monthly for these parameters; temperature, pH, salinity, dissolved oxygen, nitrite, nitrate, ammonia, carbon dioxide, total chloride, reactive orthophosphate and total phosphorus and alkalinity, also phytoplankton communities were identified and Chlorophyll a was estimated. The results showed that, the high phytoplankton density attaining the maximum (190.3 × 104/m3 during May and June, and the minimum (10.4 × 104/m3 during November and December. Forty Five species belonging to 5 phytoplankton groups were recorded. Bacillariophyceae was the first dominant group forming 48% of the total phytoplankton communities (23 species. The dominant species of Bacillariophyceae were Pleurosigma strigosum, Pleurosigma elongatum, Lyrella clavata, Rhizosolenia shrubsolei, Cylindrotheca closterium, Nitzschia panduriform, Nitzschia longissimia, Amphora sp and Stephanopyxis. Dinophyceae was the second dominant group and formed 31% of the total phytoplankton communities (10 species; the dominant species were Ceratium fusus, Heterosigma sp, Ceratium furca, Prorocentrum triestium, Protoperidinium sp, Gyrodinium spirale, Noctiluca scintillans and Scrippsiella trochoidea. Cyanophyceae formed 13% (5 species where Nostoc sp, Oscillatoria and Merismopedia sp were the dominant species. Chlorophyceae had 8% (6 species; Scendesmus sp., Chlorella sp., Chlamydomonas sp., Dunaliella salina and Nannochloropsis sp were the dominant species. The Euglinophyceae was rare only one species (Euglina sp. The relationship was positive between the phytoplankton, chlorophyll a and carbon dioxide while negative amongst dissolved oxygen and total nitrogen. This research indicated that the relation between water quality

  19. Photosynthesis solutions to enhance productivity.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Nixon, Peter J

    2017-09-26

    The concept that photosynthesis is a highly inefficient process in terms of conversion of light energy into biomass is embedded in the literature. It is only in the past decade that the processes limiting photosynthetic efficiency have been understood to an extent that allows a step change in our ability to manipulate light energy assimilation into carbon gain. We can therefore envisage that future increases in the grain yield potential of our major crops may depend largely on increasing the efficiency of photosynthesis. The papers in this issue provide new insights into the nature of current limitations on photosynthesis and identify new targets that can be used for crop improvement, together with information on the impacts of a changing environment on the productivity of photosynthesis on land and in our oceans.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  20. Primary production in a tropical large lake: The role of phytoplankton composition

    Energy Technology Data Exchange (ETDEWEB)

    Darchambeau, F., E-mail: francois.darchambeau@ulg.ac.be [Chemical Oceanography Unit, University of Liège, Liège (Belgium); Sarmento, H., E-mail: hugo.sarmento@gmail.com [Department of Hydrobiology, Federal University of São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Descy, J.-P., E-mail: jean-pierre.descy@unamur.be [Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur (Belgium)

    2014-03-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ {sup 14}C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P{sub Bm}) was found, ranging between 1.15 and 7.21 g carbon g{sup −1} chlorophyll a h{sup −1}, and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I{sub k}) ranged between 91 and 752 μE m{sup −2} s{sup −1} and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m{sup −2} (annual mean) and from 143 to 278 g carbon m{sup −2} y{sup −1}, respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m

  1. Artificial Photosynthesis: Beyond Mimicking Nature

    International Nuclear Information System (INIS)

    Dau, Holger; Fujita, Etsuko; Sun, Licheng

    2017-01-01

    In this Editorial, Guest Editors Holger Dau, Etsuko Fujita, and Licheng Sun introduce the Special Issue of ChemSusChem on “Artificial Photosynthesis for Sustainable Fuels”. Here, they discuss the need for non-fossil based fuels, introduce both biological and artificial photosynthesis, and outline various important concepts in artificial photosynthesis, including molecular and solid-state catalysts for water oxidation and hydrogen evolution, catalytic CO 2 reduction, and photoelectrochemical systems.

  2. Annual cycle of Scots pine photosynthesis

    Directory of Open Access Journals (Sweden)

    P. Hari

    2017-12-01

    Full Text Available Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity, using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L. photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  3. Annual cycle of Scots pine photosynthesis

    Science.gov (United States)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  4. Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea

    Science.gov (United States)

    Zhang, Chao; Gao, Huiwang; Yao, Xiaohong; Shi, Zongbo; Shi, Jinhui; Yu, Yang; Meng, Ling; Guo, Xinyu

    2018-02-01

    In this study, five on-board microcosm experiments were performed in the subtropical gyre, the Kuroshio Extension region of the northwest Pacific Ocean (NWPO), and the Yellow Sea (YS) in order to investigate phytoplankton growth following the addition of artificially modified mineral dust (AM dust) and various nutrients (nitrogen (N), phosphorus (P), iron (Fe), N + P, and N + P + Fe). The two experiments carried out with AM-dust addition in the subtropical gyre showed a maximum chlorophyll a (Chl a) concentration increase of 1.7- and 2.8-fold, while the cell abundance of large-sized phytoplankton ( > 5 µm) showed a 1.8- and 3.9-fold increase, respectively, relative to the controls. However, in the Kuroshio Extension region and the YS, the increases in maximum Chl a and cell abundance of large-sized phytoplankton following AM-dust addition were at most 1.3-fold and 1.7-fold larger than those in the controls, respectively. A net conversion efficiency index (NCEI) newly proposed in this study, size-fractionated Chl a, and the abundance of large-sized phytoplankton were analysed to determine which nutrients contribute to supporting phytoplankton growth. Our results demonstrate that a combination of nutrients, N-P or N + P + Fe, is responsible for phytoplankton growth in the subtropical gyre following AM-dust addition. Single nutrient addition, i.e., N in the Kuroshio Extension region and P or N in the YS, controls the phytoplankton growth following AM-dust addition. In the AM-dust-addition experiments, in which the increased N-P or P was identified to determine phytoplankton growth, the dissolved inorganic P from AM dust (8.6 nmol L-1) was much lower than the theoretically estimated minimum P demand (˜ 20 nmol L-1) for phytoplankton growth. These observations suggest that additional supply augments the bioavailable P stock in incubated seawater with AM-dust addition, most likely due to an enhanced solubility of P from AM dust or the remineralization of the dissolved

  5. Photosynthesis in high definition

    Science.gov (United States)

    Hilton, Timothy W.

    2018-01-01

    Photosynthesis is the foundation for almost all known life, but quantifying it at scales above a single plant is difficult. A new satellite illuminates plants' molecular machinery at much-improved spatial resolution, taking us one step closer to combined `inside-outside' insights into large-scale photosynthesis.

  6. Determination of phytoplankton abundances (Chlorophyll-a) in the optically complex inland water - The Baltic Sea.

    Science.gov (United States)

    Zhang, Daoxi; Lavender, Samantha; Muller, Jan-Peter; Walton, David; Karlson, Bengt; Kronsell, Johan

    2017-12-01

    A novel approach, termed Summed Positive Peaks (SPP), is proposed for determining phytoplankton abundances (Chlorophyll-a or Chl-a) and surface phytoplankton bloom extent in the optically complex Baltic Sea. The SPP approach is established on the basis of a baseline subtraction method using Rayleigh corrected top-of-atmosphere data from the Medium Resolution Imaging Spectrometer (MERIS) measurements. It calculates the reflectance differences between phytoplankton related signals observed in the MERIS red and near infrared (NIR) bands, such as sun-induced chlorophyll fluorescence (SICF) and the backscattering at 709nm, and considers the summation of the positive line heights for estimating Chl-a concentrations. The SPP algorithm is calibrated against near coincident in situ data collected from three types of phytoplankton dominant waters encountered in the Baltic Sea during 2010 (N=379). The validation results show that the algorithm is capable of retrieving Chl-a concentrations ranging from 0.5 to 3mgm -3 , with an RMSE of 0.24mgm -3 (R 2 =0.69, N=264). Additionally, the comparison results with several Chl-a algorithms demonstrates the robustness of the SPP approach and its sensitivity to low to medium biomass waters. Based on the red and NIR reflectance features, a flagging method is also proposed to distinguish intensive surface phytoplankton blooms from the background water. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Trophic pathways of phytoplankton size classes through the zooplankton food web over the spring transition period in the north-west Mediterranean Sea

    Science.gov (United States)

    Hunt, Brian P. V.; Carlotti, François; Donoso, Katty; Pagano, Marc; D'Ortenzio, Fabrizio; Taillandier, Vincent; Conan, Pascal

    2017-08-01

    Knowledge of the relative contributions of phytoplankton size classes to zooplankton biomass is necessary to understand food-web functioning and response to climate change. During the Deep Water formation Experiment (DEWEX), conducted in the north-west Mediterranean Sea in winter (February) and spring (April) of 2013, we investigated phytoplankton-zooplankton trophic links in contrasting oligotrophic and eutrophic conditions. Size fractionated particulate matter (pico-POM, nano-POM, and micro-POM) and zooplankton (64 to >4000 μm) composition and carbon and nitrogen stable isotope ratios were measured inside and outside the nutrient-rich deep convection zone in the central Liguro-Provencal basin. In winter, phytoplankton biomass was low (0.28 mg m-3) and evenly spread among picophytoplankton, nanophytoplankton, and microphytoplankton. Using an isotope mixing model, we estimated average contributions to zooplankton biomass by pico-POM, nano-POM, and micro-POM of 28, 59, and 15%, respectively. In spring, the nutrient poor region outside the convection zone had low phytoplankton biomass (0.58 mg m-3) and was dominated by pico/nanophytoplankton. Estimated average contributions to zooplankton biomass by pico-POM, nano-POM, and micro-POM were 64, 28 and 10%, respectively, although the model did not differentiate well between pico-POM and nano-POM in this region. In the deep convection zone, spring phytoplankton biomass was high (1.34 mg m-3) and dominated by micro/nano phytoplankton. Estimated average contributions to zooplankton biomass by pico-POM, nano-POM, and micro-POM were 42, 42, and 20%, respectively, indicating that a large part of the microphytoplankton biomass may have remained ungrazed.Plain Language SummaryThe grazing of zooplankton on algal phytoplankton is a critical step in the transfer of energy through all ocean food webs. Although microscopic, phytoplankton span an enormous size range. The smallest picophytoplankton are generally thought to be too

  8. The dynamics of temperature and light on the growth of phytoplankton.

    Science.gov (United States)

    Chen, Ming; Fan, Meng; Liu, Rui; Wang, Xiaoyu; Yuan, Xing; Zhu, Huaiping

    2015-11-21

    Motivated by some lab and field observations of the hump shaped effects of water temperature and light on the growth of phytoplankton, a bottom-up nutrient phytoplankton model, which incorporates the combined effects of temperature and light, is proposed and analyzed to explore the dynamics of phytoplankton bloom. The population growth model reasonably captures such observed dynamics qualitatively. An ecological reproductive index is defined to characterize the growth of the phytoplankton which also allows a comprehensive analysis of the role of temperature and light on the growth and reproductive characteristics of phytoplankton in general. The model provides a framework to study the mechanisms of phytoplankton dynamics in shallow lake and may even be employed to study the controlled phytoplankton bloom. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dynamics of living phytoplankton: Implications for paleoenvironmental reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, A B [Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)], E-mail: abarbosa@ualg.pt

    2009-01-01

    Phytoplankton is the dominant primary producer in aquatic ecosystems and is considered a gauge of ecological condition and change. Some phytoplankton groups, namely diatoms, dinoflagellates, and coccolithophores, produce morphological or chemical fossils that can be used for paleoenvironmental reconstruction. This study aims to review the processes that regulate dynamics in living phytoplankton and to highlight how this knowledge is used in paleoecological studies. The distribution patterns of phytoplankton in present-day aquatic ecosystems are shaped by the interplay between processes that regulate cell growth and cell death. Cell growth and cell death are regulated by the internal environment of phytoplankton (e.g., specific environmental tolerances, resource uptake properties, cell size, density and morphology, alternative nutritional strategies such as mixotrophy or N{sub 2} uptake, motility, intracellular storage capacities, grazing resistance properties), and by its external environment. The external environment includes variables dependent on the availability of resources (e.g., light intensity, concentration of CO{sub 2} and dissolved inorganic macronutrients and micronutrients, availability of living prey in case of mixotrophs) and variables independent of resources (e.g., temperature, salinity, turbulence, ultraviolet radiation, bioactive compounds, activity of grazers, viruses, and eukaryotic parasites). The importance of recently described loss processes, such as grazing by phagotrophic protists, viral lyses, and programmed cell death, is discussed in the context of its potential impact upon phytoplankton vertical fluxes. Examples of the use of different phytoplankton metrics (e.g. abundance, species composition, species morphology, and elemental composition) to infer contemporaneous as well as past environmental and ecological conditions are critically evaluated.

  10. Dynamics of living phytoplankton: Implications for paleoenvironmental reconstructions

    International Nuclear Information System (INIS)

    Barbosa, A B

    2009-01-01

    Phytoplankton is the dominant primary producer in aquatic ecosystems and is considered a gauge of ecological condition and change. Some phytoplankton groups, namely diatoms, dinoflagellates, and coccolithophores, produce morphological or chemical fossils that can be used for paleoenvironmental reconstruction. This study aims to review the processes that regulate dynamics in living phytoplankton and to highlight how this knowledge is used in paleoecological studies. The distribution patterns of phytoplankton in present-day aquatic ecosystems are shaped by the interplay between processes that regulate cell growth and cell death. Cell growth and cell death are regulated by the internal environment of phytoplankton (e.g., specific environmental tolerances, resource uptake properties, cell size, density and morphology, alternative nutritional strategies such as mixotrophy or N 2 uptake, motility, intracellular storage capacities, grazing resistance properties), and by its external environment. The external environment includes variables dependent on the availability of resources (e.g., light intensity, concentration of CO 2 and dissolved inorganic macronutrients and micronutrients, availability of living prey in case of mixotrophs) and variables independent of resources (e.g., temperature, salinity, turbulence, ultraviolet radiation, bioactive compounds, activity of grazers, viruses, and eukaryotic parasites). The importance of recently described loss processes, such as grazing by phagotrophic protists, viral lyses, and programmed cell death, is discussed in the context of its potential impact upon phytoplankton vertical fluxes. Examples of the use of different phytoplankton metrics (e.g. abundance, species composition, species morphology, and elemental composition) to infer contemporaneous as well as past environmental and ecological conditions are critically evaluated.

  11. Contrasting Photophysiological Characteristics of Phytoplankton Assemblages in the Northern South China Sea.

    Science.gov (United States)

    Jin, Peng; Gao, Guang; Liu, Xin; Li, Futian; Tong, Shanying; Ding, Jiancheng; Zhong, Zhihai; Liu, Nana; Gao, Kunshan

    2016-01-01

    The growth of phytoplankton and thus marine primary productivity depend on photophysiological performance of phytoplankton cells that respond to changing environmental conditions. The South China Sea (SCS) is the largest marginal sea of the western Pacific and plays important roles in modulating regional climate and carbon budget. However, little has been documented on photophysiological characteristics of phytoplankton in the SCS. For the first time, we investigated photophysiological characteristics of phytoplankton assemblages in the northern South China Sea (NSCS) using a real-time in-situ active chlorophyll a fluorometry, covering 4.0 × 105 km2. The functional absorption cross section of photosystem II (PSII) in darkness (σPSII) or under ambient light (σPSII') (A2 quanta-1) increased from the surface to deeper waters at all the stations during the survey period (29 July to 23 August 2012). While the maximum (Fv/Fm, measured in darkness) or effective (Fq'/Fm', measured under ambient light) photochemical efficiency of PSII appeared to increase with increasing depth at most stations, it showed inverse relationship with depth in river plume areas. The functional absorption cross section of PSII changes could be attributed to light-adapted genotypic feature due to niche-partition and the alteration of photochemical efficiency of PSII could be attributed to photo-acclimation. The chlorophyll a fluorometry can be taken as an analog to estimate primary productivity, since areas of higher photochemical efficiency of PSII coincided with those of higher primary productivity reported previously in the NSCS.

  12. Empirical relationships between phytoplankton and zooplankton biomass in Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmy, K.V.

    and temperature, zooplankton and phytoplankton, zooplankton and PO sub(4)-P and phytoplankton and PO sub(4)-P. Linear regression model is found to be significant at 1% level of significance. Since zooplankton and phytoplankton are significantly positively...

  13. Seasonal patterns of phytoplankton biomass and productivity in a tropical estuarine complex (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.; Goes, J.I.

    Phytoplankton cell numbers and chlorophyll a determinations were made during the premonsoon, monsoon and postmonsoon periods in the Mandovi-Zuari estuarine complex (west coast of India). Primary productivity estimates agreed well with chlorophyll a...

  14. Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula

    Science.gov (United States)

    Arrigo, Kevin R.; van Dijken, Gert L.; Alderkamp, Anne-Carlijn; Erickson, Zachary K.; Lewis, Kate M.; Lowry, Kate E.; Joy-Warren, Hannah L.; Middag, Rob; Nash-Arrigo, Janice E.; Selz, Virginia; van de Poll, Willem

    2017-12-01

    The Palmer Long-Term Ecological Research program has sampled waters of the western Antarctic Peninsula (wAP) annually each summer since 1990. However, information about the wAP prior to the peak of the phytoplankton bloom in January is sparse. Here we present results from a spring process cruise that sampled the wAP in the early stages of phytoplankton bloom development in 2014. Sea ice concentrations were high on the shelf relative to nonshelf waters, especially toward the south. Macronutrients were high and nonlimiting to phytoplankton growth in both shelf and nonshelf waters, while dissolved iron concentrations were high only on the shelf. Phytoplankton were in good physiological condition throughout the wAP, although biomass on the shelf was uniformly low, presumably because of heavy sea ice cover. In contrast, an early stage phytoplankton bloom was observed beneath variable sea ice cover just seaward of the shelf break. Chlorophyll a concentrations in the bloom reached 2 mg m-3 within a 100-150 km band between the SBACC and SACCF. The location of the bloom appeared to be controlled by a balance between enhanced vertical mixing at the position of the two fronts and increased stratification due to melting sea ice between them. Unlike summer, when diatoms overwhelmingly dominate the phytoplankton population of the wAP, the haptophyte Phaeocystis antarctica dominated in spring, although diatoms were common. These results suggest that factors controlling phytoplankton abundance and composition change seasonally and may differentially affect phytoplankton populations as environmental conditions within the wAP region continue to change.

  15. Dynamic photosynthesis in different environmental conditions.

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Impact of El Niño Variability on Oceanic Phytoplankton

    Directory of Open Access Journals (Sweden)

    Marie-Fanny Racault

    2017-05-01

    Full Text Available Oceanic phytoplankton respond rapidly to a complex spectrum of climate-driven perturbations, confounding attempts to isolate the principal causes of observed changes. A dominant mode of variability in the Earth-climate system is that generated by the El Niño phenomenon. Marked variations are observed in the centroid of anomalous warming in the Equatorial Pacific under El Niño, associated with quite different alterations in environmental and biological properties. Here, using observational and reanalysis datasets, we differentiate the regional physical forcing mechanisms, and compile a global atlas of associated impacts on oceanic phytoplankton caused by two extreme types of El Niño. We find robust evidence that during Eastern Pacific (EP and Central Pacific (CP types of El Niño, impacts on phytoplankton can be felt everywhere, but tend to be greatest in the tropics and subtropics, encompassing up to 67% of the total affected areas, with the remaining 33% being areas located in high-latitudes. Our analysis also highlights considerable and sometimes opposing regional effects. During EP El Niño, we estimate decreases of −56 TgC/y in the tropical eastern Pacific Ocean, and −82 TgC/y in the western Indian Ocean, and increase of +13 TgC/y in eastern Indian Ocean, whereas during CP El Niño, we estimate decreases −68 TgC/y in the tropical western Pacific Ocean and −10 TgC/y in the central Atlantic Ocean. We advocate that analysis of the dominant mechanisms forcing the biophysical under El Niño variability may provide a useful guide to improve our understanding of projected changes in the marine ecosystem in a warming climate and support development of adaptation and mitigation plans.

  17. Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew

    2009-01-01

    Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.

  18. Dynamics of phytoplankton blooms in turbulent vortex cells

    DEFF Research Database (Denmark)

    Lindemann, Christian; Visser, Andre; Mariani, Patrizio

    2017-01-01

    the effects of turbulent transport on the phytoplankton population growth and its spatial structure in a vertical two-dimensional vortex flow field. In particular, we focus on how turbulent flow velocities and sinking influence phytoplankton growth and biomass aggregation. Our results indicate that conditions...... can be maintained with increasing turbulent flow velocities, allowing the apparently counter-intuitive persistence of fast sinking phytoplankton populations in highly turbulent and deep mixed layers. These dynamics demonstrate the role of considering advective transport within a turbulent vortex...

  19. Phytoplankton composition of Sazlidere Dam lake, Istanbul, Turkey

    Directory of Open Access Journals (Sweden)

    Nese Yilmaz

    2013-05-01

    Full Text Available The phytoplankton composition of Sazlidere Dam lake was studied at 5 sampling sites between December 2003 - November 2005. A total of 67 taxa were recorded, representing Bacillariophyta (31, Chlorophyta (18, Cyanophyta (9, Chrysophyta (1, Cryptophyta (1, Dinophyta (3 and Euglenophyta (4. Bacillariophyta members constituted the dominant phytoplankton group in terms of species number. Nygaard’s compound index value and composition of phytoplankton indicate that the trophic state of Sazlidere Dam lake was changing from oligotrophic to mesotrophic.

  20. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  1. Function assessment of coastal ecosystem based on phytoplankton community structure

    DEFF Research Database (Denmark)

    Haraguchi, Lumi

    2018-01-01

    on phytoplankton community structure; and 3) investigating the role of planktonic communities on the cycling of dissolved organic matter. Those objectives were addressed focusing the temperate mesohaline estuary of Roskilde Fjord (Denmark). Paper I, explores the use of Pulse-shape recording flow cytometry (PFCM...... as an energy reservoir, buffering changes in the nutrient supply. Finally, the results embedded in this thesis demonstrate the importance of integrating different time scales to understand functioning of phytoplankton communities. Phytoplankton dynamics should not be regarded just in light of inorganic......This Ph.D. project aimed to improve the knowledge on phytoplankton community structure and its influence in the carbon transfer and nutrient cycling in coastal waters, by: 1) assessing the importance of phytoplankton

  2. Phytoplankton responses to aluminum enrichment in the South China Sea.

    Science.gov (United States)

    Zhou, Linbin; Liu, Jiaxing; Xing, Shuai; Tan, Yehui; Huang, Liangmin

    2018-04-01

    Compared to extensive studies reporting the aluminum (Al) toxicity to terrestrial plants and freshwater organisms, very little is known about how marine phytoplankton responds to Al in the field. Here we report the marine phytoplankton responses to Al enrichment in the South China Sea (SCS) using on-deck bottle incubation experiments during eight cruises from May 2010 to November 2013. Generally, Al addition alone enhanced the growth of diatom and Trichodesmium, and nitrogen fixation, but it inhibited the growth of dinoflagellates and Synechococcus. Nevertheless, Al addition alone did not influence the chlorophyll a concentration of the entire phytoplankton assemblages. By adding nitrate and phosphate simultaneously, Al enrichment led to substantial increases in chlorophyll a concentration (especially that of the picophytoplanktonenrichment. Further, by simultaneously adding different macronutrients and/or sufficient trace metals including iron, we found that the phytoplankton responses to Al enrichment were relevant to nutrients coexisting in the environment. Al enrichment may give some phytoplankton a competitive edge over using nutrients, especially the limited ones. The possible influences of Al on the competitors and grazers (predators) of some phytoplankton might indirectly contribute to the positive responses of the phytoplankton to Al enrichment. Our results indicate that Al may influence marine carbon cycle by impacting phytoplankton growth and structure in natural seawater. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Phytoplankton diversity in the bioremediation pool in PTAPB-BATAN Yogyakarta

    International Nuclear Information System (INIS)

    Wijiyono; Artiningsih, Sri

    2013-01-01

    Research has been done on Phytoplankton Diversity in Bioremediation Pool in PTAPB-BATAN Yogyakarta. This study aims to determine the diversity of phytoplankton and phytoplankton species are numerous in the bioremediation pool in PTAPB BATAN. This study is an observational study conducted from September to November 2012. The population in this study is all kinds of phytoplankton that live in the bioremediation pool. The sample was filtered with all phytoplankton plankton net at each sampling point. This study was conducted to determine the point of sampling as much as 3 points, namely at the inlet, the center of the pond, and exit channel, with each point done 3 times repetition. Sampling was done by taking as much as 50 liters of water at each sample point, the water sample is filtered directly into the plankton net. Filtered water put into flakon bottles. Observation and identification of plankton were done in the laboratory. The research found as many as 21 species of phytoplankton consisting of Scenedesmus acuminatus, Scenedesmus quadricauda, Closterium moniiferum, Pleurosigma sp., Rivularia bullata, Chroococcus sp., Cocconeis sp., Pinnularia viridis, Navicula sp., Spirogyra sp., Thiopedia rosea, Cyclotella sp., Minidiscus sp., Achnantes sp., ChIorella sp., Oscillatoria sp., Hemiaulus sp., Surirella sp., Chattonella sp., Thalasiossira mala, Leuvenia sp. Phytoplankton density value of 5.330 ind / I. Phytoplankton diversity index value was 2.6062, included in the medium category. (author)

  4. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  5. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs

  6. Phytoplankton variability and community structure in relation to hydrographic features in the NE Aegean frontal area (NE Mediterranean Sea)

    Science.gov (United States)

    Lagaria, A.; Mandalakis, M.; Mara, P.; Frangoulis, C.; Karatsolis, B.-Th.; Pitta, P.; Triantaphyllou, M.; Tsiola, A.; Psarra, S.

    2017-10-01

    The structure of phytoplankton community in the salinity-stratified Northeastern Aegean frontal area adjacent to the Dardanelles Straits was investigated on a seasonal basis (autumn, spring and summer) and in relation to circulating water masses: the modified Black Sea Water (BSW) and the Levantine Water (LW). By employing High Performance Liquid Chromatography (HPLC) for the analysis of phytoplankton pigments in conjunction with conventional cell counting methodologies (i.e. inverted light microscopy, flow cytometry) and primary production measurements, a comprehensive qualitative and quantitative characterization of phytoplankton community composition and its activity was conducted. Chlorophyll-a normalized production and estimated growth rates presented the highest values within the 'fresh' BSW mass during summer, though generally growth rates were low (production. Large cell organisms, and in particular diatoms, were closely associated with the surface BSW masses outflowing from the Straits. Our results showed that all phytoplankton size components were significant over time and space suggesting a rather multivorous food web functioning of the system.

  7. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...... at each temperature level and still maintained photosynthesis after growing for a longer period at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10...

  8. Spatio-temporal organization of phytoplankton in Peipsi Lake

    Directory of Open Access Journals (Sweden)

    Sharov Andrey

    2016-12-01

    Full Text Available In the article, the results of the study of phytoplankton received at 16 stations of the Lake Peipsi in the spring (May, summer (August and autumn (October within the period of 2012–2015 were analyzed. 186 phytoplankton species were found. The list of mass taxa is given. It was noted that phytoplankton biomass had wide amplitude of annual average values in different lakes: Lake Peipsi/Chudskoe 2.1 ± 0.2 (0.3–23.0 mg / L; Lake Pihkva/Pskovskoe 5.4 ± 1.4 (0.4–34.0 mg / L and Lake Lämmijärv/Teploe 6.1 ± 1.2 (3.4–25.1 mg / l. According to species composition, structure and biomass of phytoplankton the lake belongs to the mesotrophic reservoirs with eutrophic features, as it was in previous years of observation. The water quality in the different parts of Lake Peipsi corresponded to conditionally pure water (1st quality class and slightly polluted one(2nd quality class. Correlation between characteristics of phytoplankton and the environmental factors (temperature, water level, transparency, N and P concentration in water was detected.

  9. A multiomics approach to study the microbiome response to phytoplankton blooms.

    Science.gov (United States)

    Song, Liyan

    2017-06-01

    Phytoplankton blooms are predictable features of marine and freshwater habitats. Despite a good knowledge base of the environmental factors controlling blooms, complex interactions between the bacterial and archaeal communities and phytoplankton bloom taxa are only now emerging. Here, the current research on bacterial community's structural and functional response to phytoplankton blooms is reviewed and discussed and further research is proposed. More attention should be paid on structure and function of autotrophic bacteria and archaea during phytoplankton blooms. A multiomics integration approach is needed to investigate bacterial and archaeal communities' diversity, metabolic diversity, and biogeochemical functions of microbial interactions during phytoplankton blooms.

  10. Variation of particulate organic carbon and its relationship with bio-optical properties during a phytoplankton bloom in the Pearl River estuary

    International Nuclear Information System (INIS)

    Wang Guifen; Zhou Wen; Cao Wenxi; Yin Jianping; Yang Yuezhong; Sun Zhaohua; Zhang Yuanzhi; Zhao Jun

    2011-01-01

    Highlights: → A study about relationship between POC and optical properties during a phytoplankton bloom. → Empirical algorithms for retrieving POC concentration from optical data were developed. → Phytoplankton carbon and it's ratio to Chl-a are estimated and discussed. → Demonstrates that marine optical buoy can be a new platform for monitoring biogeochemical cycle. - Abstract: In this study, variations in the particulate organic carbon (POC) were monitored during a phytoplankton bloom event, and the corresponding changes in bio-optical properties were tracked at one station (114.29 o E, 22.06 o N) located in the Pearl River estuary. A greater than 10-fold increase in POC (112.29-1173.36 mg m -3 ) was observed during the bloom, with the chlorophyll a concentration (Chl-a) varying from 0.984 to 25.941 mg m -3 . A power law function is used to describe the relationship between POC and Chl-a, and the POC:Chl-a ratio tends to change inversely with Chl-a. Phytoplankton carbon concentration is indirectly estimated using the conceptual model proposed by , and this carbon is found to contribute 47.21% (±10.65%) to total POC. The estimated carbon-to-chlorophyll ratio of phytoplankton in diatom-dominated waters is found to be comparable with results reported in the literature. Empirical algorithms for determining the concentrations of Chl-a and POC were developed based on the relationships of these variables with the blue-to-green reflectance ratio. With these bio-optical models, the levels of particulate organic carbon and Chl-a could be predicted from the radiometric data measured by a marine optical buoy, which showed much more detailed information about the variability in biogeochemical parameters during this bloom event.

  11. Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads

    Science.gov (United States)

    Lowry, Kate E.; Pickart, Robert S.; Selz, Virginia; Mills, Matthew M.; Pacini, Astrid; Lewis, Kate M.; Joy-Warren, Hannah L.; Nobre, Carolina; van Dijken, Gert L.; Grondin, Pierre-Luc; Ferland, Joannie; Arrigo, Kevin R.

    2018-01-01

    Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84-95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.

  12. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions

    Science.gov (United States)

    Yin, Xinyou

    2012-01-01

    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  13. Water flux management and phytoplankton communities in a Mediterranean coastal lagoon. Part II: Mixotrophy of dinoflagellates as an adaptive strategy?

    International Nuclear Information System (INIS)

    Cecchi, P.; Garrido, M.; Collos, Y.; Pasqualini, V.

    2016-01-01

    Dinoflagellate proliferation is common in coastal waters, and trophic strategies are often advanced to explain the success of these organisms. The Biguglia lagoon is a Mediterranean brackish ecosystem where eutrophication has long been an issue, and where dominance of dinoflagellates has persisted for several years. Monthly monitoring of fluorescence-based properties of phytoplankton communities carried out in 2010 suggested that photosynthesis alone could not support the observed situation all year round. Contrasting food webs developed depending on the hydrological season, with a gradual shift from autotrophy to heterotrophy. Progressively, microphytoplankton assemblages became unequivocally dominated by a Prorocentrum minimum bloom, which exhibited very weak effective photosynthetic performance, whereas paradoxically its theoretical capacities remained fully operational. Different environmental hypotheses explaining this discrepancy were examined, but rejected. We conclude that P. minimum bloom persistence is sustained by mixotrophic strategies, with complex compromises between phototrophy and phagotrophy, as evidenced by fluorescence-based observations. - Highlights: •Dinoflagellate proliferation is now common in Mediterranean coastal waters. •Trophic strategies are advanced to explain the success of these organisms. •Prorocentrum minimum exhaustively dominated in the Biguglia lagoon (Corsica) in 2010. •Photosynthesis alone did not sustain the observed situation all year round. •Mixotrophy is hypothesized as an alternative driver of the process.

  14. Photosynthesis research in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.O.

    1979-09-27

    Current research programs in photosynthesis in the USSR are described. Some of the programs include: (1) research on hydrogenases; (2) computer facilities (3) photochemical reduction of low potential compounds; (4) hydrogen-producing systems using model pigment systems; (5) stabilization of chloroplast membranes; (6) construction of fuel cells using immobilized enzymes; (7) carbon, hydrogen, and nitrogen metabolism of photosynthetic bacteria; (8) methane producing bacteria; (9) growth of photosynthetic bacteria under dark and light conditions; (10) efficiency of photosynthesis and plant productivity; (11) biomass as a future source of energy; (12) mycology; (13) isolation of photosystems; and (14) factors limiting photosynthesis in the leaf. (DC)

  15. Risk associated with toxic blooms of marine phytoplankton functional groups on Artemia franciscana

    Directory of Open Access Journals (Sweden)

    Ana D’ors

    2014-08-01

    Full Text Available Objective: To study mortality of copepod Artemia franciscana against the occurrence of harmful marine algae and possible toxicological changes exhibited by binary and tertiary combinations of these harmful algae toxins. Methods: Tweenty four hours acute toxicity assays were performed with selected concentrations of Alexandrium minutum, Prorocentrum lima and Nitzschia N1c1 living cells. Additionally, the results were analyzed using the median-effect/combination index (CI-isobologram equation to assess possible changes in the toxic effect induced by phytoplankton functional groups. Results: Biotoxin equivalent values obtained by immunodetection were (2.12±0.10, (8.60±1.30 and (4.32±1.67 pg/cell for saxitoxin, okadaic acid and domoic acid, respectively. The 24-h LC50 values estimated to saxitoxin and okadaic acid equivalents were 4.06 and 6.27 µg/L, significantly below the value obtained for Nitzschia N1c1, which was established at 467.33 µg/L. CI analysis applied on phytoplankton assemblages showed that both ternary mixture as the binary combinations exhibited antagonic action on toxic effects in Artemia nauplii, which were significantly lower than the toxic effect exhibited by each species studied. Conclusions: These results show that, although these harmful algae represent a serious risk to estuarine zooplankton community, the presence of phytoplankton functional groups within the same bloom can reduce the potential risk compared to the expected risk when each of the phytoplankton groups are evaluated individually.

  16. Growth of Phytoplankton in Different Fertilizer Media | KADIRI ...

    African Journals Online (AJOL)

    ... medium and there was no significant difference between Scenedesmus and Oscillatoria sp. whereas in the inorganic fertilizer, there was no significant difference between the growth response from all phytoplankton. All experiments lasted 14 days. Key words: Aquaculture, Phytoplankton Production, Biofertilizer, Inorganic

  17. Physiological and Environmental Aspects of Photosynthesis

    OpenAIRE

    Ricardo Alfredo Kluge; Universidade de São Paulo; Jaqueline V. Tezotto-Uliana; Universidade de São Paulo; Paula P. M. da Silva; Universidade de São Paulo

    2015-01-01

    Undoubtedly, photosynthesis is one of the most important process for the life planet maintenance. The sun releases radiant energy that is able to boost the photosynthetic apparatus of the plants, which produce carbohydrates that will be used in the respiration. Among the most important reactions of photosynthesis is the release of oxygen, essential for respiration, which happens in photosystem II. The products generated in the first phase of photosynthesis or photochemical phase (ATP and NADP...

  18. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2012-10-01

    Full Text Available Parasitism is one of the earlier and common ecological interactions in the nature, occurring in almost all environments. Microbial parasites typically are characterized by their small size, short generation time, and high rates of reproduction, with simple life cycle occurring generally within a single host. They are diverse and ubiquitous in aquatic ecosystems, comprising viruses, prokaryotes and eukaryotes. Recently, environmental 18S-rDNA surveys of microbial eukaryotes have unveiled major infecting agents in pelagic systems, consisting primarily of the fungal order of Chytridiales (chytrids. Chytrids are considered the earlier branch of the Eumycetes and produce motile, flagellated zoospores, characterized by a small size (2-6 µm and a single, posterior flagellum. The existence of these dispersal propagules includes chytrids within the so-called group of zoosporic fungi, which are particularly adapted to the plankton lifestyle where they infect a wide variety of hosts, including fishes, eggs, zooplankton, algae, and other aquatic fungi but primarily freshwater phytoplankton. Related ecological implications are huge because chytrids can killed their hosts, release substrates for microbial processes, and provide nutrient-rich particles as zoospores and short fragments of filamentous inedible hosts for the grazer food chain. Furthermore, based on the observation that phytoplankton chytridiomycosis preferentially impacts the larger size species, blooms of such species (e.g. filamentous cyanobacteria may not totally represent trophic bottlenecks. Besides, chytrid epidemics represent an important driving factor in phytoplankton seasonal successions. In this review, I summarize the knowledge on the diversity, community structure, quantitative importance, and functional roles of fungal chytrids, primarily those who are parasites of phytoplankton, and infer the ecological implications and potentials for the food web dynamics and properties.

  19. Water quality status and phytoplankton composition in Soetendalvlei ...

    African Journals Online (AJOL)

    Three wetlands on the Agulhas Plain, for which no limnological information was available, were investigated in order to provide baseline data on their present water quality and phytoplankton community structure. Physicochemical variables were assessed and phytoplankton biomass and community analyses were ...

  20. Nutrients and toxin producing phytoplankton control algal blooms

    Indian Academy of Sciences (India)

    A phytoplankton-zooplankton prey-predator model has been investigated for temporal, spatial and spatio-temporal dissipative pattern formation in a deterministic and noisy environment, respectively. The overall carrying capacity for the phytoplankton population depends on the nutrient level. The role of nutrient ...

  1. Population dynamics of light-limited phytoplankton : Microcosm experiments

    NARCIS (Netherlands)

    Huisman, Jef

    This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient

  2. Does biodiversity of estuarine phytoplankton depend on hydrology?

    NARCIS (Netherlands)

    Ferreira, JG; Wolff, WJ; Simas, TC; Bricker, SB

    2005-01-01

    Phytoplankton growth in estuaries is controlled by factors such as flushing, salinity tolerance, light, nutrients and grazing. Here, we show that biodiversity of estuarine phytoplankton is related to flushing, and illustrate this for some European estuaries. The implications for the definition of

  3. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  4. Pigment signatures of phytoplankton communities in the Beaufort Sea

    Science.gov (United States)

    Coupel, P.; Matsuoka, A.; Ruiz-Pino, D.; Gosselin, M.; Marie, D.; Tremblay, J.-É.; Babin, M.

    2015-02-01

    Phytoplankton are expected to respond to recent environmental changes of the Arctic Ocean. In terms of bottom-up control, modifying the phytoplankton distribution will ultimately affect the entire food web and carbon export. However, detecting and quantifying changes in phytoplankton communities in the Arctic Ocean remains difficult because of the lack of data and the inconsistent identification methods used. Based on pigment and microscopy data sampled in the Beaufort Sea during summer 2009, we optimized the chemotaxonomic tool CHEMTAX (CHEMical TAXonomy) for the assessment of phytoplankton community composition in an Arctic setting. The geographical distribution of the main phytoplankton groups was determined with clustering methods. Four phytoplankton assemblages were determined and related to bathymetry, nutrients and light availability. Surface waters across the whole survey region were dominated by prasinophytes and chlorophytes, whereas the subsurface chlorophyll maximum was dominated by the centric diatoms Chaetoceros socialis on the shelf and by two populations of nanoflagellates in the deep basin. Microscopic counts showed a high contribution of the heterotrophic dinoflagellates Gymnodinium and Gyrodinium spp. to total carbon biomass, suggesting high grazing activity at this time of the year. However, CHEMTAX was unable to detect these dinoflagellates because they lack peridinin. In heterotrophic dinoflagellates, the inclusion of the pigments of their prey potentially leads to incorrect group assignments and some misinterpretation of CHEMTAX. Thanks to the high reproducibility of pigment analysis, our results can serve as a baseline to assess change and spatial or temporal variability in several phytoplankton populations that are not affected by these misinterpretations.

  5. Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary.

    Science.gov (United States)

    Guenther, Mariana; Araújo, Moacyr; Flores-Montes, Manuel; Gonzalez-Rodriguez, Eliane; Neumann-Leitão, Sigrid

    2015-02-28

    Size-fractioned phytoplankton (pico, nano and microplankton) biomass and production were estimated throughout a year at Recife harbor (NE Brazil), a shallow well mixed tropical hypereutrophic estuary with short residence times but restricted water renewal. Intense loads of P-PO4 (maximum 14 μM) resulted in low N:P ratios (around 2:1), high phytoplankton biomass (B=7.1-72 μg chl-a L(-1)), production (PP=10-2657 μg C L(-1) h(-1)) and photosynthetic efficiency (P(B)=0.5-45 μg C μg chl-a(-1)), but no oxygen depletion (average O2 saturation: 109.6%). Nanoplankton dominated phytoplankton biomass (66%) but micro- and nanoplankton performed equivalent primary production rates (47% each). Production-biomass models indicate an export of the exceeding microplankton biomass during most of the year, possibly through grazing. The intense and constant nutrient and organic matter loading at Recife harbor is thus supporting the high microplankton productivity that is not accumulating on the system nor contributing to oxygen depletion, but supporting the whole system's trophic web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Latitudinal variation of phytoplankton communities in the western Arctic Ocean

    Science.gov (United States)

    Min Joo, Hyoung; Lee, Sang H.; Won Jung, Seung; Dahms, Hans-Uwe; Hwan Lee, Jin

    2012-12-01

    Recent studies have shown that photosynthetic eukaryotes are an active and often dominant component of Arctic phytoplankton assemblages. In order to explore this notion at a large scale, samples were collected to investigate the community structure and biovolume of phytoplankton along a transect in the western Arctic Ocean. The transect included 37 stations at the surface and subsurface chlorophyll a maximum (SCM) depths in the Bering Sea, Chukchi Sea, and Canadian Basin from July 19 to September 5, 2008. Phytoplankton (>2 μm) were identified and counted. A cluster analysis of abundance and biovolume data revealed different assemblages over the shelf, slope, and basin regions. Phytoplankton communities were composed of 71 taxa representing Dinophyceae, Cryptophyceae, Bacillariophyceae, Chrysophyceae, Dictyochophyceae, Prasinophyceae, and Prymnesiophyceae. The most abundant species were of pico- to nano-size at the surface and SCM depths at most stations. Nano- and pico-sized phytoplankton appeared to be dominant in the Bering Sea, whereas diatoms and nano-sized plankton provided the majority of taxon diversity in the Bering Strait and in the Chukchi Sea. From the western Bering Sea to the Bering Strait, the abundance, biovolume, and species diversity of phytoplankton provided a marked latitudinal gradient towards the central Arctic. Although pico- and nano-sized phytoplankton contributed most to cell abundance, their chlorophyll a contents and biovolumes were less than those of the larger micro-sized taxa. Micro-sized phytoplankton contributed most to the biovolume in the largely ice-free waters of the western Arctic Ocean during summer 2008.

  7. [Ecological characteristics of phytoplankton in Suining tributary under bio-remediation].

    Science.gov (United States)

    Liu, Dongyan; Zhao, Jianfu; Zhang, Yalei; Ma, Limin

    2005-04-01

    Based on the analyses of phytoplankton community in the treated and untreated reaches of Suining tributary of Suzhou River, this paper studied the effects of bio-remediation on phytoplankton. As the result of the remediation, the density and Chl-a content of phytoplankton in treated reach were greatly declined, while the species number and Shannon-Wiener diversity index ascended obviously. The percentage of Chlorophyta and Baeillariophyta ascended, and some species indicating medium-and oligo-pollution were found. All of these illustrated that bio-remediation engineering might significantly benefit to the improvement of phytoplankton community structure and water quality.

  8. Seasonal Variability of Phytoplankton Population in the Brahmani ...

    African Journals Online (AJOL)

    Seasonal Variability of Phytoplankton Population in the Brahmani Estuary of Orissa, India. S Palleyi, RN Kar, CR Panda. Abstract. The dynamic relationship of water physico-chemical characteristics with phytoplankton has long been of great interest in both experimental ecology and environmental management. This study ...

  9. Microclimate, canopy structure and photosynthesis in canopies of three contrasting temperate forage grasses. III. Canopy photosynthesis, individual leaf photosynthesis and the distribution of current assimilate

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, J E

    1977-01-01

    The rates of canopy and individual leaf photosynthesis and /sup 14/C distribution for three temperate forage grasses Lolium perenne cv. S24, L. perenne cv. Reveille and Festuca arundinacea cv. S170 were determined in the field during a summer growth period. Canopy photosynthesis declined as the growth period progressed, reflecting a decline in the photosynthetic capacity of successive youngest fully expanded leaves. The decline in the maximum photosynthetic capacity of the canopies was correlated with a decline in their quantum efficiencies at low irradiance. Changes in canopy structure resulted in changes in canopy net photosynthesis and dark respiration. No clear relationships between changes in the environment and changes in canopy net photosynthesis and dark respiration were established. The relative distributions of /sup 14/C in the shoots of the varieties gave a good indication of the amount of dry matter per ground area in the varieties. 21 references, 4 figures, 1 table.

  10. [Phytoplankton community in a recreational fishing lake, Brazil].

    Science.gov (United States)

    Matsuzaki, Mayla; Mucci, José Luiz Negrão; Rocha, Aristides Almeida

    2004-10-01

    The assessment of water quality and phytoplankton community in recreational environments allows to setting management programs aiming at preventing potential harm to human health. The purpose of the present study was to describe phytoplankton seasonal changes in a freshwater system and their relation to water quality. The recreational fishing lake is located in the southern area of the city of São Paulo, Brazil. Water samples were collected in three previously selected sites in the lake throughout a year and analyzed regarding floristic composition and physical and chemical parameters. The phytoplankton qualitative analysis revealed 91 taxa distributed among eight classes: Chlorophyceae, Cyanophyceae, Euglenophyceae, Zygnemaphyceae, Bacillariophyceae, Xantophyceae, Dinophyceae, and Chrysophyceae. Some physical and chemical parameters seemed to influence phytoplankton community behavior. Chlorophyceae development was favored by local conditions. Among the species of cyanobacteria identified, Microcystis paniformis, Cylindrospermopsis raciborskii, and Anabaena species were the most important due to their ability to produce toxins, posing a high risk to public health. Some physical and chemical parameters had an impact on the structure of phytoplankton community. The presence of Microcystis paniformis, Cylindrospermopsis raciborskii and Anabaena species indicates toxic potential and likelihood of public health problems unless there is constant monitoring. Further studies are recommended to prevent hazardous effects to the environment and public health.

  11. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    Directory of Open Access Journals (Sweden)

    S. Kurian

    2012-07-01

    Full Text Available Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC and liquid chromatography-mass spectrometry (LC-MS in two freshwater reservoirs (Tillari Dam and Selaulim Dam, which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the period of anoxia (summer, bacteriochlorophyll (BChl e isomers and isorenieratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll b-containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the anoxic compartment of Tillari Reservoir was estimated to be 2.27 gC m−2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m−2. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photo-autotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl e isomers was detected at 0.2% of the surface incident light. This shows that the vertical distribution of photo-autotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2

  12. Application of a laser fluorometer for discriminating phytoplankton species

    Science.gov (United States)

    Chen, Peng; Pan, Delu; Mao, Zhihua

    2015-04-01

    A portable laser-induced fluorescence system for discriminating phytoplankton species has been developed. It consists of a high pulsed repetition frequency (10-kHz) microchip laser at 405 nm, a reflective fluorescent probe and a broadband micro spectrometer. The measured fluorescent spectra were overlapped by various fluorescent components, and were then decomposed by a bi-Gaussian mixture model. A spectral shape description index was designed to characterize fluorescent spectral shapes for descriminating the phytoplankton species cultured in our laboratory. Using clustering analysis, the samples of eight phytoplankton species belonging to two divisions of Bacillariophyta and Dinophyta were divided into six categories: 1) Chaetoceros debilis, Thalassiosira rotula; 2) Prorocentrum donghaiense, Prorocentrum dentatum; 3) Gymnodinium simplex; 4) Alexandrium tamarense; 5) Karenia mikimotoi; and 6) Akashiwo sanguinea. The phytoplankton species belonging to Bacillariophyta were well separated from those belonging to Dinophyta. In addition, the phytoplankton species belonging to Dinophyta were successfully distinguished from each other at genus level. The portable system is expected to be used both in vivo and in the field.

  13. Connections between the growth of Arctica islandica and phytoplankton dynamics on the Faroe Shelf

    Science.gov (United States)

    Bonitz, Fabian; Andersson, Carin; Trofimova, Tamara

    2017-04-01

    In this study we use molluscan sclerochronological techniques in order to obtain closer insights into environmental and ecological dynamics of Faroe Shelf waters. The Faroe Shelf represents a special ecosystem with rich benthic and neritic communities, which also have great importance for many economically relevant fish stocks. Thus, a better understanding of seasonal and year-to-year phytoplankton and stratification dynamics would be useful because they also have implications for higher trophic levels. The water masses of the Faroe Shelf are fairly homogenous and isolated from off-shelf waters but at a certain depth, which is referred to as transition zone, seasonal stratification and horizontal exchange occur. Systematic observations and phytoplankton dynamic investigations have only been performed during the last 29 years but longer records are missing. Thus, we use the growth increment variability in long-lived Arctica islandica shells from the transition zone of the eastern Faroe Shelf to evaluate its potential to estimate on-shelf phytoplankton and stratification dynamics since previous studies have shown that the growth of A. islandica is highly dependent on food availability. We have built a shell-based master-chronology reaching back to the 17th century. Comparisons between the growth indices of our chronology and fluorescence data reveal significant positive relationships. In combination with an index that accounts for stratification even stronger correlations are obtained. This indicates that the growth of A. islandica is largely influenced by a combination of how much phytoplankton is produced and how much actually reaches the bottom, i.e. how well-mixed the water column is. Further significant positive correlations can also be found between the growth indices and other primary productivity data from the Faroe Shelf. In conclusion, our results suggest that the growth indices can be related to year-to-year changes in phytoplankton production and

  14. Phytoplankton species composition of four ecological provinces in Yellow Sea, China

    Science.gov (United States)

    Li, Xiaoqian; Feng, Yuanyuan; Leng, Xiaoyun; Liu, Haijiao; Sun, Jun

    2017-12-01

    The ecological province based on phytoplankton species composition is important to understanding the interplay between environmental parameters and phytoplankton species composition. The aim of this study was to establish phytoplankton species composition ecological pattern thus elucidate the relationship between environmental factors and the phytoplankton species composition in the ecological provinces. Phytoplankton samples were collected from 31 stations in Yellow Sea (121.00°-125.00°E, 32.00°-39.22°N) in November 2014. The samples were enumerated and identified with the Utermöhl method under an optical inverted microscope-AE2000 with magnifications of 200 × or 400 ×. In the present study, a total of 141 taxa belonging to 60 genera of 4 phyla of phytoplankton were identified, among them 101 species of 45 genera were Bacillariophyta, 36 species of 11 genera were Dinophyta, 3 species of 3 genera were Chrysophyta and 1 species of 1 genera was Chlorophyta. The study area was divided into 4 ecological provinces according to an unsupervised cluster algorithm applied to the phytoplankton biomass. A T-S (Temperature-Salinity) scatter diagram depicted with data of water temperature and salinity defined by environmental provinces matched well with the ecological provinces. The results of Canonical Correspondence Analysis (CCA) indicated that the phytoplankton species composition was mainly correlated with temperature, salinity and silicate concentration in the studied area. A method of establishing ecological provinces is useful to further understanding the environmental effects on the marine phytoplankton species composition and the consequent marine biogeochemistry.

  15. phytoplankton diversity indices of Osse River, Edo State, Nigeria

    African Journals Online (AJOL)

    USER

    The phytoplankton diversity indices of Osse River, Edo State, Nigeria, were investigated monthly from January ... In terms of abundance, Bacillariophyceae had the highest distribution of phytoplankton (79.00%), ...... erosion beach in Lagos.

  16. Spatial and temporal patterns of phytoplankton abundance and ...

    African Journals Online (AJOL)

    Bacillariophyta was the most abundant group (48.17% of total phytoplankton) and was uniformly distributed in all waters, followed by Cyanobacteria (33.33%), which decreased with distance offshore. Chlorophyta, the third highest in abundance (15.5%), increased with distance offshore. A total of 92 phytoplankton species ...

  17. Response of phytoplankton assemblages isolated for short periods ...

    African Journals Online (AJOL)

    The response of phytoplankton assemblages isolated in enclosures for short periods of time was examined in hyper-eutrophic Lake Chivero (Harare, Zimbabwe), to determine the factors that influenced the structure of the phytoplankton community, after noticing a marked decline in the dominance of Microcystis aeruginosa ...

  18. A Satellite-Based Lagrangian View on Phytoplankton Dynamics

    Science.gov (United States)

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-01

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter—the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  19. A Satellite-Based Lagrangian View on Phytoplankton Dynamics.

    Science.gov (United States)

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-03

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter-the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  20. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  1. Phytoplankton Assemblage Patterns in the Southern Mid-Atlantic Bight

    Science.gov (United States)

    Makinen, Carla; Moisan, Tiffany A. (Editor)

    2012-01-01

    As part of the Wallops Coastal Oceans Observing Laboratory (Wa-COOL) Project, we sampled a time-series transect in the southern Mid-Atlantic Bight (MAB) biweekly. Our 2-year time-series data included physical parameters, nutrient concentrations, and chlorophyll a concentrations. A detailed phytoplankton assemblage structure was examined in the second year. During the 2-year study, chlorophyll a concentration (and ocean color satellite imagery) indicated that phytoplankton blooms occurred in January/February during mixing conditions and in early autumn under stratified conditions. The chlorophyll a concentrations ranged from 0.25 microgram 1(exp -1) to 15.49 microgram 1(exp -1) during the 2-year period. We were able to discriminate approximately 116 different species under phase contrast microscopy. Dominant phytoplankton included Skeletonema costatum, Rhizosolenia spp., and Pseudo-nitzschia pungens. In an attempt to determine phytoplankton species competition/succession within the assemblage, we calculated a Shannon Weaver diversity index for our diatom microscopy data. Diatom diversity was greatest during the winter and minimal during the spring. Diatom diversity was also greater at nearshore stations than at offshore stations. Individual genera appeared patchy, with surface and subsurface patches appearing abruptly and persisting for only 1-2 months at a time. The distribution of individual species differed significantly from bulk variables of the assemblage (chlorophyll a ) and total phytoplankton assemblage (cells), which indicates that phytoplankton species may be limited in growth in ways that differ from those of the total assemblage. Our study demonstrated a highly diverse phytoplankton assemblage throughout the year, with opportunistic species dominating during spring and fall in response to seasonal changes in temperature and nutrients in the southern MAB.

  2. Phytoplankton of the North Sea and its dynamics: A review

    Science.gov (United States)

    Reid, P. C.; Lancelot, C.; Gieskes, W. W. C.; Hagmeier, E.; Weichart, G.

    microscopic observations has been documented by measurements of taxon-specific pigments such as chlorophyll b (green algae), alloxanthin (Cryptophyceae) and 19' - hexanolyloxyfucoxanthin (Prymnesiophyceae or Haptophyceae). Analysis of time series of satellite images is a promising way to assess in a quantitative and, more important, synoptic way the patchy distribution of phytoplankton over large regions. Growth processes of the phytoplankton respond according to variables amenable to such satellite remote sensing. Empirical and theoretical relationships that can be established between chlorophyll a, 14C uptake, turbidity, stratification, suspended sediment type, irradiance and temperature in some well-investigated areas make remote sensing a potential tool to obtain reliable estimates of primary production in the whole North Sea. The 14C method for estimates of the rate of algal growth processes appears to agree reasonably well with other methods, both involving incubation of samples and in situ measurements of temporal changes of oxygen and pH. The level of net primary production is 250 g C.m -2.a -1 in the central North Sea, 150 to 200 g C.m -2.a -1 in the northern North Sea, and 200 g in the South. The main metabolic processes involved in phytoplankton growth have been modelled mathematically in terms of the most important controlling environmental parameters. Such parameters comprise not only those of a chemical signature (micro- and macronutrients, both inorganic and organic) but also physical effects of vertical mixing and sinking, and biological effects including allelopathic interactions, antibiotic excretions, vertical migration, and mortality due to grazing and parasitism. The balance between primary production and consumption of organic matter appears to vary both geographically and seasonally. The process of regeneration of primary products both in the water column and in and near the bottom seems to be of major importance. Future research should center around a

  3. Dominance patterns in macroalgal and phytoplankton biomass under different nutrient loads in subtropical coastal lagoons of the SE Gulf of California

    International Nuclear Information System (INIS)

    Páez-Osuna, F.; Piñón-Gimate, A.; Ochoa-Izaguirre, M.J.

    2013-01-01

    Highlights: • Nine macroalgal blooms were examined in five lagoons from SE Gulf of California. • Shrimp farms were the main point source of nutrients loads to the lagoons. • Biomass as phytoplankton ranged 40–792 mg m −2 and macroalgal of 1–296 g m −2 . • Biomass (phytoplankton + macroalgae) was the same tendency that nutrient loads. • Phytoplankton and macroalgal biomass were a significant correlation with N:P ratio. -- Abstract: Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m −2 ) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m −2 ). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m −2 and the macroalgal biomass between 1 and 296.0 g m −2 . The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio

  4. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; hide

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  5. Development of a Continuous Phytoplankton Culture System for Ocean Acidification Experiments

    Directory of Open Access Journals (Sweden)

    Cathryn Wynn-Edwards

    2014-06-01

    Full Text Available Around one third of all anthropogenic CO2 emissions have been absorbed by the oceans, causing changes in seawater pH and carbonate chemistry. These changes have the potential to affect phytoplankton, which are critically important for marine food webs and the global carbon cycle. However, our current knowledge of how phytoplankton will respond to these changes is limited to a few laboratory and mesocosm experiments. Long-term experiments are needed to determine the vulnerability of phytoplankton to enhanced pCO2. Maintaining phytoplankton cultures in exponential growth for extended periods of time is logistically difficult and labour intensive. Here we describe a continuous culture system that greatly reduces the time required to maintain phytoplankton cultures, and minimises variation in experimental pCO2 treatments over time. This system is simple, relatively cheap, flexible, and allows long-term experiments to be performed to further our understanding of chronic responses and adaptation by phytoplankton species to future ocean acidification.

  6. Investigation of grapevine photosynthesis using hyperspectral techniques and development of hyperspectral band ratio indices sensitive to photosynthesis.

    Science.gov (United States)

    Ozelkan, Emre; Karaman, Muhittin; Candar, Serkan; Coskun, Zafer; Ormeci, Cankut

    2015-01-01

    The photosynthetic rate of 9 different grapevines were analyzed with simultaneous photosynthesis and spectroradiometric measurements on 08.08.2012 (veraison) and 06.09.2012 (harvest). The wavelengths and spectral regions, which most properly express photosynthetic rate, were determined using correlation and regression analysis. In addition, hyperspectral band ratio (BR) indices sensitive to photosynthesis were developed using optimum band ratio (OBRA) method. The relation of BR results with photosynthesis values are presented with the correlation matrix maps created in this study. The examinations were performed for both specific dates (i.e., veraison and harvest) and also in aggregate (i.e., correlation between total spectra and photosynthesis data). For specific dates wavelength based analysis, the photosynthesis were best determined with -0.929 correlation coefficient (r) 609 nm of yellow region at veraison stage, and -0.870 at 641 nm of red region at harvest stage. For wavelength based aggregate analysis, 640 nm of red region was found to be correlated with 0.921 and -0.867 r values respectively and red edge (RE) (695 nm) was found to be correlated with -0.922 and -0.860 r values, respectively. When BR indices results were analyzed with photosynthetic values for specific dates, -0.987 r with R8../R, at veraison stage and -0.911 r with R696/R944 at harvest stage were found most correlated. For aggregate analysis of BR, common BR presenting great correlation with photosynthesis for both measurements was found to be R632/R971 with -0.974, -0.881 r values, respectively and other R610/R760 with -0.976, -0.879 r values. The final results of this study indicate that the proportion of RE region to a region with direct or indirect correlation with photosynthetic provides information about rate of photosynthesis. With the indices created in this study, the photosynthesis rate of vineyards can be determined using in-situ hyperspectral remote sensing. The findings of this

  7. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  8. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  9. Biomass relations between phytoplankton and zooplankton in Goa waters

    Digital Repository Service at National Institute of Oceanography (India)

    Pant, A.; Matondkar, S.G.P.; Goswami, S.C.

    Biomass of phytoplankton and zooplankton, measured as particulate oxidizable carbon, shows that at shallowest stations (5 m) there is large excess of phytoplankton organic carbon over zooplankton carbon in all the samples There is no significant...

  10. Phytoplankton Monitoring Network (PMN)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Phytoplankton Monitoring Network (PMN) is a part of the National Centers for Coastal Ocean Science (NCCOS). The PMN was created as an outreach program to connect...

  11. Spatial variation of phytoplankton community structure in Daya Bay, China.

    Science.gov (United States)

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  12. Effects of lowered pH on marine phytoplankton growth rates

    DEFF Research Database (Denmark)

    Berge, Terje; Daugbjerg, Niels; Andersen, Betinna Balling

    2010-01-01

    concentration of seawater. Ocean acidification may potentially both stimulate and reduce primary production by marine phytoplankton. Data are scarce on the response of marine phytoplankton growth rates to lowered pH/increased CO2. Using the acid addition method to lower the seawater pH and manipulate...... the carbonate system, we determined in detail the lower pH limit for growth rates of 2 model species of common marine phytoplankton. We also tested whether growth and production rates of 6 other common species of phytoplankton were affected by ocean acidification (lowered to pH 7.0). The lower pH limits...... statistically similar in the pH range of ~7.0 to 8.5. Our results and literature reports on growth at lowered pH indicate that marine phytoplankton in general are resistant to climate change in terms of ocean acidification, and do not increase or decrease their growth rates according to ecological relevant...

  13. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon

    International Nuclear Information System (INIS)

    Furnas, Miles; Mitchell, Alan; Skuza, Michele; Brodie, Jon

    2005-01-01

    Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from ∼1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ( 15 N) and indirect ( 14 C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone

  14. DMSP synthesis and exudation in phytoplankton : a modeling approach

    NARCIS (Netherlands)

    Laroche, D; Vézina, A.F; Levasseur, M; Gosselin, M; Stefels, J.; Keller, M.D; Matrai, P.A; Kwint, R.L J

    1999-01-01

    In the marine environment, phytoplankton are the fundamental producers of dimethylsulfoniopropionate (DMSP), the precursor of the climatically active gas dimethylsulfide (DMS). DMSP is released by exudation, cell autolysis, and zooplankton grazing during phytoplankton blooms. In this study, we

  15. Phytoplankton diversity and abundance in Ndop wetland plain ...

    African Journals Online (AJOL)

    DR FONGE B

    African Journal of Environmental Science and Technology Vol. 6(6), pp. ... In the Philippines, around 67% of the mangrove has been lost over the last 60 years or so, ... Phytoplankton is an important primary producer, since ... area of 1,152 km2 and a population of about 160,000 inhabitants. It ... Phytoplankton assessment.

  16. Winds and the distribution of nearshore phytoplankton in a stratified lake.

    Science.gov (United States)

    Cyr, Hélène

    2017-10-01

    The distribution of phytoplankton in lakes is notoriously patchy and dynamic, but wind-driven currents and algal buoyancy/motility are thought to determine where algae accumulate. In this study, nearshore phytoplankton were sampled from different parts of a lake basin twice a day for 4-5 consecutive days, in the spring and in late summer, to test whether short-term changes in phytoplankton biomass and community composition can be predicted from wind-driven currents. On windy days, phytoplankton biomass was higher at downwind than at upwind nearshore sites, and the magnitude of this difference increased linearly with increasing wind speed. However, contrary to the generally assumed downwind phytoplankton aggregations, these differences were mostly due to upwelling activity and the dilution of phytoplankton at upwind nearshore sites. The distribution of individual taxa was also related to wind speed, but only during late stratification (except for cryptophytes), and these relationships were consistent with the buoyancy and motility of each group. On windy days, large diatoms and cyanobacteria concentrated upwind, neutrally buoyant taxa (green algae, small diatoms) were homogeneously distributed, and motile taxa (cryptophytes, chrysophytes, dinoflagellates) concentrated downwind. Predictable differences in the biomass and composition of phytoplankton communities could affect the efficiency of trophic transfers in nearshore areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Monitoring natural phytoplankton communities

    DEFF Research Database (Denmark)

    Haraguchi, L.; Jakobsen, H. H.; Lundholm, Nina

    2017-01-01

    The phytoplankton community can vary within hours (physiology) to years (climatic and anthropogenic responses), and monitoring at different timescales is relevant for understanding community functioning and assessing changes. However, standard techniques used in monitoring programmes are time...

  18. Phytoplankton production and adaptation in the vicinity of Pemba ...

    African Journals Online (AJOL)

    Phytoplankton production and physiology were investigated at six selected locations during a research cruise in early October 2007 in Tanzanian coastal waters. The dataset included photosynthesis–irradiance and active fluorescence parameters, phytoplankton absorption coefficients, and pigment concentrations. Primary ...

  19. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom.

    Science.gov (United States)

    Needham, David M; Fuhrman, Jed A

    2016-02-29

    Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration(1), and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes(2). Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change(3). In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton(4). Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates.

  20. Awortwi et al.: Mixing and stratification relationship on phytoplankton ...

    African Journals Online (AJOL)

    Awortwi et al.: Mixing and stratification relationship on phytoplankton of Lake Bosomtwe (Ghana) 43 West African Journal of Applied Ecology, vol. 23(2), 2015: 43–62. The Relationship Between Mixing and Stratification Regime on the Phytoplankton of Lake Bo.

  1. The dynamical landscape of marine phytoplankton diversity

    Science.gov (United States)

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J.; d'Ovidio, Francesco

    2015-01-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10–100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  2. Variability in global ocean phytoplankton distribution over 1979-2007

    Science.gov (United States)

    Masotti, I.; Alvain, S.; Moulin, C.; Antoine, D.

    2009-04-01

    Recently, reanalysis of long-term ocean color data (CZCS and SeaWiFS; Antoine et al., 2005) has shown that world ocean average phytoplankton chlorophyll levels show an increase of 20% over the last two decades. It is however unknown whether this increase is associated with a change in the distribution of phytoplankton groups or if it simply corresponds to an increase of the productivity. Within the framework of the GLOBPHY project, the distribution of the phytoplankton groups was monitored by applying the PHYSAT method (Alvain et al., 2005) to the historical ocean color data series from CZCS, OCTS and SeaWiFS sensors. The PHYSAT algorithm allows identification of several phytoplankton, like nanoeucaryotes, prochlorococcus, synechococcus and diatoms. Because both sensors (OCTS-SeaWiFS) are very similar, OCTS data were processed with the standard PHYSAT algorithm to cover the 1996-1997 period during which a large El Niño event occurred, just before the SeaWiFS era. Our analysis of this dataset (1996-2006) evidences a strong variability in the distribution of phytoplankton groups at both regional and global scales. In the equatorial region (0°-5°S), a three-fold increase of nanoeucaryotes frequency was detected in opposition to a two-fold decrease of synechococcus during the early stages of El Niño conditions (May-June 1997, OCTS). The impact of this El Niño is however not confined to the Equatorial Pacific and has affected the global ocean. The processing of CZCS data with PHYSAT has required several adaptations of this algorithm due to the lower performances and the reduced number of spectral bands of the sensor. Despites higher uncertainties, the phytoplankton groups distribution obtained with CZCS is globally consistent with that of SeaWiFS. A comparison of variability in global phytoplankton distribution between 1979-1982 (CZCS) and 1999-2002 (SeaWiFS) suggests an increase in nanoeucaryotes at high latitudes (>40°) and in the equatorial region (10°S-10

  3. Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters.

    Science.gov (United States)

    Ward, Ben A

    2015-01-01

    Globally distributed observations of size-fractionated chlorophyll a and temperature were used to incorporate temperature dependence into an existing semi-empirical model of phytoplankton community size structure. The additional temperature-dependent term significantly increased the model's ability to both reproduce and predict observations of chlorophyll a size-fractionation at temperatures below 2°C. The most notable improvements were in the smallest (picoplankton) size-class, for which overall model fit was more than doubled, and predictive skill was increased by approximately 40%. The model was subsequently applied to generate global maps for three phytoplankton size classes, on the basis of satellite-derived estimates of surface chlorophyll a and sea surface temperature. Polar waters were associated with marked decline in the chlorophyll a biomass of the smallest cells, relative to lower latitude waters of equivalent total chlorophyll a. In the same regions a complementary increase was seen in the chlorophyll a biomass of larger size classes. These findings suggest that a warming and stratifying ocean will see a poleward expansion of the habitat range of the smallest phytoplankton, with the possible displacement of some larger groups that currently dominate. There was no evidence of a strong temperature dependence in tropical or sub-tropical regions, suggesting that future direct temperature effects on community structure at lower latitudes may be small.

  4. Phytoplankton community as bioindicator of fertility in belawan river

    Science.gov (United States)

    Sari Yeanny, Mayang

    2018-03-01

    Belawan River is an important river for the Medan residents and its surroundings. It serves as the main raw material for the local drinking water company, as well as domestic, industrial, hotel and tourism. Many human activities had led to the declining condition of water in the river throughout the year. One way to approach the concept of bioindicator is by knowing Abundance, Relative Abundance, Frequency of Attendance, equitability, dominance, and diversity of the phytoplankton itself. Results indicated that the phytoplankton community was from 3 different classes: Chlorophyceae, Bacillariophyceae, and Cyanophyceae. Phytoplankton individual abundance was around 2612 to 17755 ind / L. The diversity index was around 2.15 to 2.58, which is considered to have low to moderate diversity with high pollution level. Equitability Index was approaching 0, with relatively high domination from Sphaeroplea and Asterionella. The water quality that influences the diversity of phytoplankton as bioindicator was dissolved oxygen.

  5. Changing climate and microbial resources in polar realms

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    the oxidative and nutrient stress. This compoudd is degraddd to OMS by marine bacteria. OMS is either reused by these bacteria or degraded abiogenically to various S-containing molecules. DMS in the atmosphere is rapidly oxidized to S02 which ends up as sulfate... of photosynthetic biomass on the planet, marine phytoplankton carry out almost half of the global net photosynthesis. The relatively high rate of photosynthesis per unit of biomass for marine phytoplankton, compared with terrestrial plants, derives from their rapid...

  6. Spontaneous Assembly of Exopolymers from Phytoplankton

    Directory of Open Access Journals (Sweden)

    Yong-Xue Ding

    2009-01-01

    Full Text Available Phytoplankton exopolymeric substances (EPS contribute significantly to the dissolved organic car bon (DOC pool in the ocean, playing crucial roles in the surface ocean car bon cycle. Recent studies have demonstrated that ~10% of marine DOC can self-assemble as microgels through electro static Ca bonds providing hotspots of enriched microbial substrate. How ever, the question whether EPS can self-assemble and the formation mechanisms for EPS microgels have not been examined. Here were port that EPS from three representative phytoplankton species, Synechococcus, Emiliania huxleyi, and Skeletonema costatum can spontaneously self assemble in artificial sea water (ASW, forming microscopic gels of ~ 3 - 4 __m in diameter. Different from the marine DOC polymers assembly, these EPS samples can self-assemble in Ca2+-free ASW. Further experiments from fluorescence enhancement and chemical composition analysis confirmed the existence of fair amounts of hydrophobic domains in these EPS samples. These results suggest that hydrophobic interactions play a key role in the assembly of EPS from these three species of marine phytoplankton.

  7. Bioaccumulation of technetium by marine phytoplankton

    International Nuclear Information System (INIS)

    Fisher, N.S.

    1982-01-01

    /sup 95m/Tc, in the IV and VII oxidation states, was added in picomolar quantities to monocultures of seven species of marine phytoplankton, including a green algae (Dunaliella tertiolecta), a diatom (Thalassiosira pseudonana), a blue-green alga (Oscillatoria woronichinii), a prasinophyte (Testraselmis chuii), two haptophytes (Emiliania huxleyi and Cricosphaera carterae), and a dinoflagellate (Heterocapsa pygmaea). Cultures were incubated for 4 days, and uptake of Tc was periodically determined by ν spectroscopy of filtered and unfiltered samples. All the Tc remained in the water column in all flasks, but none of the species appreciably concentrated the element in either oxidation state. Mean uptake (measured as the fraction retained on filters) for all species was 0.029% for Tc(IV) and 0.023% for Tc(VII), neither of which was significantly different from the uninoculated control cultures. Wet weight concentration factors never exceeded 20 for any species, 3 orders of magnitude lower than previously reported for phytoplankton and Tc. The results indicate that phytoplankton are likely to have negligble influence on the cycling of Tc in marine systems

  8. Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria.

    Science.gov (United States)

    Thompson, Haydn; Angelova, Angelina; Bowler, Bernard; Jones, Martin; Gutierrez, Tony

    2017-07-01

    Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton-associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill-simulated conditions, and compare it to that of the free-living (non phytoplankton-associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq-derived 16S rRNA data revealed dramatic and differential shifts in the oil-amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7-3 phylum). Notably, the oil biodegradation potential of the phytoplankton-associated community exceeded that of the free-living community, and it showed a preference to degrade substituted and non-substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon-degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free-living bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Use of flow cytometry and stable isotope analysis to determine phytoplankton uptake of wastewater derived ammonium in a nutrient-rich river

    Science.gov (United States)

    Schmidt, Calla M.; Kraus, Tamara; Young, Megan B.; Kendall, Carol

    2018-01-01

    Anthropogenic alteration of the form and concentration of nitrogen (N) in aquatic ecosystems is widespread. Understanding availability and uptake of different N sources at the base of aquatic food webs is critical to establishment of effective nutrient management programs. Stable isotopes of N (14N, 15N) are often used to trace the sources of N fueling aquatic primary production, but effective use of this approach requires obtaining a reliable isotopic ratio for phytoplankton. In this study, we tested the use of flow cytometry to isolate phytoplankton from bulk particulate organic matter (POM) in a portion of the Sacramento River, California, during river-scale nutrient manipulation experiments that involved halting wastewater discharges high in ammonium (NH4+). Field samples were collected using a Lagrangian approach, allowing us to measure changes in phytoplankton N source in the presence and absence of wastewater-derived NH4+. Comparison of δ15N-POM and δ15N-phytoplankton (δ15N-PHY) revealed that their δ15N values followed broadly similar trends. However, after 3 days of downstream travel in the presence of wastewater treatment plant (WWTP) effluent, δ15N-POM and δ15N-PHY in the Sacramento River differed by as much as 7 ‰. Using a stable isotope mixing model approach, we estimated that in the presence of effluent between 40 and 90 % of phytoplankton N was derived from NH4+ after 3 days of downstream transport. An apparent gradual increase over time in the proportion of NH4+ in the phytoplankton N pool suggests that either very low phytoplankton growth rates resulted in an N turnover time that exceeded the travel time sampled during this study, or a portion of the phytoplankton community continued to access nitrate even in the presence of elevated NH4+ concentrations.

  10. Use of flow cytometry and stable isotope analysis to determine phytoplankton uptake of wastewater derived ammonium in a nutrient-rich river

    Directory of Open Access Journals (Sweden)

    C. M. Schmidt

    2018-01-01

    Full Text Available Anthropogenic alteration of the form and concentration of nitrogen (N in aquatic ecosystems is widespread. Understanding availability and uptake of different N sources at the base of aquatic food webs is critical to establishment of effective nutrient management programs. Stable isotopes of N (14N, 15N are often used to trace the sources of N fueling aquatic primary production, but effective use of this approach requires obtaining a reliable isotopic ratio for phytoplankton. In this study, we tested the use of flow cytometry to isolate phytoplankton from bulk particulate organic matter (POM in a portion of the Sacramento River, California, during river-scale nutrient manipulation experiments that involved halting wastewater discharges high in ammonium (NH4+. Field samples were collected using a Lagrangian approach, allowing us to measure changes in phytoplankton N source in the presence and absence of wastewater-derived NH4+. Comparison of δ15N-POM and δ15N-phytoplankton (δ15N-PHY revealed that their δ15N values followed broadly similar trends. However, after 3 days of downstream travel in the presence of wastewater treatment plant (WWTP effluent, δ15N-POM and δ15N-PHY in the Sacramento River differed by as much as 7 ‰. Using a stable isotope mixing model approach, we estimated that in the presence of effluent between 40 and 90 % of phytoplankton N was derived from NH4+ after 3 days of downstream transport. An apparent gradual increase over time in the proportion of NH4+ in the phytoplankton N pool suggests that either very low phytoplankton growth rates resulted in an N turnover time that exceeded the travel time sampled during this study, or a portion of the phytoplankton community continued to access nitrate even in the presence of elevated NH4+ concentrations.

  11. Use of flow cytometry and stable isotope analysis to determine phytoplankton uptake of wastewater derived ammonium in a nutrient-rich river

    Science.gov (United States)

    Schmidt, Calla M.; Kraus, Tamara E. C.; Young, Megan B.; Kendall, Carol

    2018-01-01

    Anthropogenic alteration of the form and concentration of nitrogen (N) in aquatic ecosystems is widespread. Understanding availability and uptake of different N sources at the base of aquatic food webs is critical to establishment of effective nutrient management programs. Stable isotopes of N (14N, 15N) are often used to trace the sources of N fueling aquatic primary production, but effective use of this approach requires obtaining a reliable isotopic ratio for phytoplankton. In this study, we tested the use of flow cytometry to isolate phytoplankton from bulk particulate organic matter (POM) in a portion of the Sacramento River, California, during river-scale nutrient manipulation experiments that involved halting wastewater discharges high in ammonium (NH4+). Field samples were collected using a Lagrangian approach, allowing us to measure changes in phytoplankton N source in the presence and absence of wastewater-derived NH4+. Comparison of δ15N-POM and δ15N-phytoplankton (δ15N-PHY) revealed that their δ15N values followed broadly similar trends. However, after 3 days of downstream travel in the presence of wastewater treatment plant (WWTP) effluent, δ15N-POM and δ15N-PHY in the Sacramento River differed by as much as 7 ‰. Using a stable isotope mixing model approach, we estimated that in the presence of effluent between 40 and 90 % of phytoplankton N was derived from NH4+ after 3 days of downstream transport. An apparent gradual increase over time in the proportion of NH4+ in the phytoplankton N pool suggests that either very low phytoplankton growth rates resulted in an N turnover time that exceeded the travel time sampled during this study, or a portion of the phytoplankton community continued to access nitrate even in the presence of elevated NH4+ concentrations.

  12. Linking FRRF Derived Photophysiology with Carbon-based Primary Productivity: Insights from Concepts of Cellular Energy Allocation

    Science.gov (United States)

    Schuback, N.; Schallenberg, C.; Duckham, C.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in photosystem II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides important physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. We present data from a series of experiments during which we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific. Our results show significant variability of the derived conversion factor (Ve:C/nPSII), with highest values observed under conditions of excess excitation pressure at the level of photosystem II, caused by high light and/or low iron. Our results will be discussed in the context of metabolic plasticity, which evolved in phytoplankton to simultaneously maximize growth and provide photoprotection under fluctuating light and limiting nutrient availabilities. Because the derived conversion factor is associated with conditions of excess light, it correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, also derived from FRRF measurements. Our results demonstrate a significant correlation between NPQ and the conversion factor Ve:C/nPSII, and the potential of this relationship to improve FRRF-based estimates of phytoplankton carbon fixation rates is discussed.

  13. Impacts of aerosol mitigation on Chinese rice photosynthesis: An integrated modeling approach

    Science.gov (United States)

    Zhang, T.; Li, T.; Yue, X.; Yang, X.

    2017-12-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ an integrated process-based modeling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. This response pattern and threshold are similar with observations, even through more data are needed in future investigation. As a net effect, rice yields were estimated to significantly increase by 0.8-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  14. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  15. Studies on Antarctic phytoplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Pant, A.

    Ice-edge data from a single polynya station at 70 degrees S 11 degrees E over a 2-month period is assessed in relation to previously published work in similar environments. The phytoplankton community seems to be composed of 2 quite different...

  16. Phytoplankton/protozoan dynamics in the Nyara Estuary, a small ...

    African Journals Online (AJOL)

    Phytoplankton/protozoan dynamics in the Nyara Estuary, a small temporarily open system in the Eastern Cape (South Africa) ... freshwater inflow, the Nyara is best described as a predominantly low nutrient, low phytoplankton biomass, stratified system, dominated by the microbial food-web and possibly fed by detritus.

  17. Successional pattern of phytoplankton (>55μm in Lekki lagoon, Nigeria

    Directory of Open Access Journals (Sweden)

    Taofikat Abosede Adesalu

    2012-03-01

    Full Text Available Lagoons are dominant features along large stretches of the West Africa coast. These freshwater environments are very valuable areas where phytoplankton constitute the basis of aquatic food webs. In order to know the effects of environmental variables on phytoplankton, a study of the successional pattern of phytoplankton in Lekki lagoon was carried out monthly for two years (June 2003-May 2005. Phytoplankton samples were collected from 12 stations using a plankton net of 55μm mesh, and samples preserved in 4% unbuffered formalin. Besides, surface water samples were taken for physico-chemical analysis. For each year, the seasonal distribution and succession of dominant phytoplankton followed different patterns. Phytoplankton abundance was higher during the dry season (November-April for the two annual cycles. The diatoms (Aulacoseira granulate and A. granulata var angustissima and blue green algaes, Microcystis aeruginosa, Merismopedia tennuissima and Trichodesmium lacustre showed this trend by being the abundant species in some of these months. For the rainy season, the green alga Mougeotia sp. dominated. The replacement of one form by another throughout seasonal cycles was probably controlled by the changes in environmental variables such as rainfall, nitratenitrogen and phosphate-phosphorus.

  18. PRIMARILY RESULTS OF PHYTOPLANKTON DNA AND VARIATION TO ENVIRONMENTAL FACTORS IN DURRES`S BAY COASTAL WATERS (ALBANIA

    Directory of Open Access Journals (Sweden)

    Laura Gjyli

    2013-10-01

    Full Text Available After isolation of phytoplankton DNA in coastal waters of Durres Bay, Albania, quantification and analysis of quality were investigated with spectrophotometric analysis. Analysis of UV absorption by the nucleotides provides a simple and accurate estimation of the concentration of nucleic acids in a sample. This method is however limited by the quantity of DNA and the purity of the preparation. Also biotic environment factors as Chlorophyll a and abiotic environment factors as temperature, salinity, pH, dissolved oxygen, turbidity, nitrate, phosphate were investigated to assess DNA quantities in different environment conditions. The Chlorophyll a was studied also to access the level of trophy. The sample stations were: Golem Beach (GB, Channel of Plepa (ChP, Hekurudha Beach (HB, Ex-Fuel Quay in Marine Durres Harbour (EFQ, Water Channel of Durres City (WChDC and Currila Beach (CB. Samples are taken in one meter depth from the water surface. Water samples were collected monthly from April to October 2011. The most abundant stations with phytoplankton DNA are Channel of Plepa and Water Channel of Durres City. This confirms that there are spills of fresh waters, sewage or agricultural water spills, often discharge in coastal waters. Referring Mutliple Regression Analysis and single regression analysis, the association between phytoplankton DNA and environment factors was strong (R2 = 0.75. Basing in single correlation and statistically significance (p-value ≤ 0.05, the enviroment factors that correlated to phytoplankton DNA were pH, salinity and phosphate; explaining thus the variation of total phytoplankton in Durres Bay coastal waters.

  19. Sedimentation of phytoplankton during a diatom bloom : Rates and mechanisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hansen, J.L.S.; Alldredge, A.L.

    1996-01-01

    Phytoplankton blooms are uncoupled from grazing and are normally terminated by sedimentation. There are several potential mechanisms by which phytoplankton cells may settle out of the photic zone: sinking of individual cells or chains, coagulation of cells into aggregates with high settling...... velocities, settling of cells attached to marine snow aggregates formed from discarded larvacean houses or pteropod feeding webs, and packaging of cells into rapidly falling zooplankton fecal pellets. We quantified the relative significance of these different mechanisms during a diatom bloom in a temperate...... to marine snow aggregates formed from discarded larvacean houses, whereas settling of unaggregated cells was insignificant. Formation rates of phytoplankton aggregates by physical coagulation was very low, and losses by this mechanism were much less than 0.07 d(-1); phytoplankton aggregates were neither...

  20. Modelling C₃ photosynthesis from the chloroplast to the ecosystem.

    Science.gov (United States)

    Bernacchi, Carl J; Bagley, Justin E; Serbin, Shawn P; Ruiz-Vera, Ursula M; Rosenthal, David M; Vanloocke, Andy

    2013-09-01

    Globally, photosynthesis accounts for the largest flux of CO₂ from the atmosphere into ecosystems and is the driving process for terrestrial ecosystem function. The importance of accurate predictions of photosynthesis over a range of plant growth conditions led to the development of a C₃ photosynthesis model by Farquhar, von Caemmerer & Berry that has become increasingly important as society places greater pressures on vegetation. The photosynthesis model has played a major role in defining the path towards scientific understanding of photosynthetic carbon uptake and the role of photosynthesis on regulating the earth's climate and biogeochemical systems. In this review, we summarize the photosynthesis model, including its continued development and applications. We also review the implications these developments have on quantifying photosynthesis at a wide range of spatial and temporal scales, and discuss the model's role in determining photosynthetic responses to changes in environmental conditions. Finally, the review includes a discussion of the larger-scale modelling and remote-sensing applications that rely on the leaf photosynthesis model and are likely to open new scientific avenues to address the increasing challenges to plant productivity over the next century. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities

    Directory of Open Access Journals (Sweden)

    E. Litchman

    2006-01-01

    Full Text Available Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes, nutrients (nitrate, ammonium, phosphate, silicate and iron, light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE and subarctic North Pacific (ocean station Papa, OSP. The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the

  2. Observations and Models of Highly Intermittent Phytoplankton Distributions

    Science.gov (United States)

    Mandal, Sandip; Locke, Christopher; Tanaka, Mamoru; Yamazaki, Hidekatsu

    2014-01-01

    The measurement of phytoplankton distributions in ocean ecosystems provides the basis for elucidating the influences of physical processes on plankton dynamics. Technological advances allow for measurement of phytoplankton data to greater resolution, displaying high spatial variability. In conventional mathematical models, the mean value of the measured variable is approximated to compare with the model output, which may misinterpret the reality of planktonic ecosystems, especially at the microscale level. To consider intermittency of variables, in this work, a new modelling approach to the planktonic ecosystem is applied, called the closure approach. Using this approach for a simple nutrient-phytoplankton model, we have shown how consideration of the fluctuating parts of model variables can affect system dynamics. Also, we have found a critical value of variance of overall fluctuating terms below which the conventional non-closure model and the mean value from the closure model exhibit the same result. This analysis gives an idea about the importance of the fluctuating parts of model variables and about when to use the closure approach. Comparisons of plot of mean versus standard deviation of phytoplankton at different depths, obtained using this new approach with real observations, give this approach good conformity. PMID:24787740

  3. Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat and maize to heat and water deficit: implications for modeling photosynthesis

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Perdomo

    2016-11-01

    Full Text Available The impact of the combined effects of heat stress, increased vapor pressure deficit (VPD and water deficit on the physiology of major crops needs to be better understood to help identifying the expected negative consequences of climate change and heat waves on global agricultural productivity. To address this issue, rice, wheat and maize plants were grown under control temperature (CT, 25°C, VPD 1.8 kPa, and a high temperature (HT, 38°C, VPD 3.5 kPa, both under well-watered (WW and water deficit (WD conditions. Gas-exchange measurements showed that, in general, WD conditions affected the leaf conductance to CO2, while growth at HT had a more marked effect on the biochemistry of photosynthesis. When combined, HT and WD had an additive effect in limiting photosynthesis. The negative impacts of the imposed treatments on the processes governing leaf gas-exchange were species-dependent. Wheat presented a higher sensitivity while rice and maize showed a higher acclimation potential to increased temperature. Rubisco and PEPC kinetic constants determined in vitro at 25°C and 38°C were used to estimate Vcmax, Jmax and Vpmax in the modeling of C3 and C4 photosynthesis. The results here obtained reiterate the need to use species-specific and temperature-specific values for Rubisco and PEPC kinetic constants for a precise parameterization of the photosynthetic response to changing environmental conditions in different crop species.

  4. Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation

    International Nuclear Information System (INIS)

    Johnson, G.A.; Day, T.A.

    2002-01-01

    We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO 2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV-induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut-offs from 280 to 382 nm, against a background of non-saturating visible light. When the abaxial surface was irradiated, P n averaged 4.6% higher with the UV supplement that cut-off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV-induced blue fluorescence, we measured the UV-induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut-off filter, thereby estimating the potential contribution of UV-induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non

  5. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    Science.gov (United States)

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  6. An Experimental Comparison of Two Methods on Photosynthesis Driving Soil Respiration: Girdling and Defoliation.

    Science.gov (United States)

    Jing, Yanli; Guan, Dexin; Wu, Jiabing; Wang, Anzhi; Jin, Changjie; Yuan, Fenghui

    2015-01-01

    Previous studies with different experimental methods have demonstrated that photosynthesis significantly influences soil respiration (RS). To compare the experimental results of different methods, RS after girdling and defoliation was measured in five-year-old seedlings of Fraxinus mandshurica from June to September. Girdling and defoliation significantly reduced RS by 33% and 25% within 4 days, and 40% and 32% within the entire treatment period, respectively. The differential response of RS to girdling and defoliation was a result of the over-compensation for RS after girdling and redistribution of stored carbon after defoliation. No significant effect on RS was observed between girdling and defoliation treatment, while the soluble sugar content in fine roots was higher in defoliation than in girdling treatment, indicating that defoliation had less compensation effect for RS after interrupting photosynthates supply. We confirm the close coupling of RS with photosynthesis and recommend defoliation for further studies to estimate the effect of photosynthesis on RS.

  7. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    Directory of Open Access Journals (Sweden)

    Dana L. Wright

    2013-06-01

    Full Text Available Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger.

  8. Cadmium toxicity to two marine phytoplankton under different nutrient conditions

    International Nuclear Information System (INIS)

    Miao, A.-J.; Wang, W.-X.

    2006-01-01

    Cd accumulation and toxicity in two marine phytoplankton (diatom Thalassiosira weissflogii and dinoflagellate Prorocentrum minimum) under different nutrient conditions (nutrient-enriched, N- and P-starved conditions) were examined in this study. Strong interactions between the nutrients and Cd uptake by the two algal species were found. Cd accumulation as well as N and P starvation themselves inhibited the assimilation of N, P, and Si by the phytoplankton. Conversely, N starvation strongly inhibited Cd accumulation but no influence was observed under P starvation. However, the Cd accumulation difference between nutrient-enriched and N-starved cells was smaller when [Cd 2+ ] was increased in the medium, indicating that net Cd accumulation was less dependent on the N-containing ligands at high-Cd levels. As for the subcellular distribution of the accumulated Cd, most was distributed in the insoluble fraction of T. weissflogii while it was evenly distributed in the soluble and insoluble fractions of P. minimum at low-Cd levels. A small percentage of cellular Cd ( 2+ ], which increased when the [Cd 2+ ] increased. Cd toxicity in phytoplankton was quantified as depression of growth and maximal photosynthetic system II quantum yield, and was correlated with the [Cd 2+ ], intracellular Cd concentration, and Cd concentrations in the cell-surface-adsorbed, soluble, and insoluble fractions. According to the estimated median inhibition concentration (IC50) based on the different types of Cd concentration, the toxicity difference among the different nutrient-conditioned cells was the smallest when the Cd concentration in the soluble fraction was used, suggesting that it may be the best predictor of Cd toxicity under different nutrient conditions

  9. Remote sensing observations of phytoplankton increases triggered by successive typhoons

    Science.gov (United States)

    Huang, Lei; Zhao, Hui; Pan, Jiayi; Devlin, Adam

    2017-12-01

    Phytoplankton blooms in the Western North Pacific, triggered by two successive typhoons with different intensities and translation speeds under different pre-existing oceanic conditions, were observed and analyzed using remotely sensed chlorophyll-a (Chl-a), sea surface temperature (SST), and sea surface height anomaly (SSHA) data, as well as typhoon parameters and CTD (conductivity, temperature, and depth) profiles. Typhoon Sinlaku, with relatively weaker intensity and slower translation speed, induced a stronger phytoplankton bloom than Jangmi with stronger intensity and faster translation speed (Chl-a>0.18 mg·m‒3 versus Chl-aTaiwan Island. Translation speed may be one of the important mechanisms that affect phytoplankton blooms in the study area. Pre-existing cyclonic circulations provided a relatively unstable thermodynamic structure for Sinlaku, and therefore cold water with rich nutrients could be brought up easily. The mixed-layer deepening caused by Typhoon Sinlaku, which occurred first, could have triggered an unfavorable condition for the phytoplankton bloom induced by Typhoon Jangmi which followed afterwards. The sea surface temperature cooling by Jangmi was suppressed due to the presence of the thick upper-ocean mixed-layer, which prevented the deeper cold water from being entrained into the upper-ocean mixed layer, leading to a weaker phytoplankton augment. The present study suggests that both wind (including typhoon translation speed and intensity) and pre-existing conditions (e.g., mixed-layer depths, eddies, and nutrients) play important roles in the strong phytoplankton bloom, and are responsible for the stronger phytoplankton bloom after Sinlaku's passage than that after Jangmi's passage. A new typhoon-influencing parameter is introduced that combines the effects of the typhoon forcing (including the typhoon intensity and translation speed) and the oceanic pre-condition. This parameter shows that the forcing effect of Sinlaku was stronger than

  10. Coagulation efficiency and aggregate formation in marine phytoplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Andersen, K.P.; Dam, H.G.

    1990-01-01

    , and even nutrient replete cells are significantly sticky. Stickiness is highest (> 10-1) for S. costatum cells in the transition between the exponential and the stationary growth phase. The implications for phytoplankton aggregate formation and subsequent sedimentation in the sea of these two different......Flocculation of phytoplankters into large, rapidly sinking aggregates has been implicated as a mechanism of vertical transport of phytoplankton to the sea floor which could have global significance. The formation rate of phytoplankton aggregates depends on the rate at which single cells collide...... and demonstrate that three species of diatoms grown in the laboratory (Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema costatum) are indeed significantly sticky and form aggregates upon collison. The dependency of stickiness on nutrient limitation and growth was studied in the two latter species...

  11. The Effect of ENSO on Phytoplankton Composition in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p less than 0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Ni a events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  12. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  13. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  14. Effect of intensive epilimnetic withdrawal on phytoplankton community in a (subtropical deep reservoir

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2013-10-01

    Full Text Available Withdrawal is an important process in reservoir hydrodynamics, removing phytoplankton with flushed water. Zooplankton,the grazers of phytoplankton, having longer generation times, are even more susceptible than phytoplankton to flushing loss. Therefore phytoplankton are affected not only by abiotic conditions linked to hydrodynamics but also by zooplankton due to weakened grazing pressure. During the Asian Games (November 12-27, 2010 in Guangzhou, China, two intensive epilimnetic withdrawals were conducted in Liuxihe, a deep canyon-shaped reservoir. To examine the influence of the intensive epilimnetic withdrawals on the phytoplankton community, a seven-week field observation and a hydrodynamic simulation were carried out. The observation was divided in two stages: stage 1 represented partial surface vertical mixing period, and stage 2 represented intensive epilimnetic withdrawal period. It was found that phytoplankton abundance and biomass declined with water temperature and partial surface vertical mixing in stage 1. However, the intensive epilimnetic withdrawal reversed this decreasing trend and increased phytoplankton biomass and abundance in stage 2. Phytoplankton showed a higher rate of composition change in stage 2. A numerical model (DYRESM-CAEDYM simulated scenarios with and without epilimnetic withdrawal to test their effects on abiotic factors (water temperature, suspended sediment and soluble reactive phosphorus for phytoplankton. The results showed no obvious difference in the abiotic factors between the two scenarios during stage 2. We therefore suggested that the abiotic factors in the water column were probably driven by a seasonal pattern, not by epilimnetic withdrawal. It is likely that the intensive epilimnetic withdrawal could remove large crustaceans. The reduced grazing pressure probably explained the increase of phytoplankton biomass and abundance after the withdrawal. Thus, we suggest that reservoir operation should pay

  15. Phytoplankton and nutrients studies in Magu bay, Speke gulf, Lake ...

    African Journals Online (AJOL)

    Phytoplankton were generally dominated by the cyanobacteria Microcystis and Anabaena species though the diatoms Nitzschia and Melosira species were more abundant in some sampling ... Phytoplankton production was possibly light limited in areas with simultaneously high nutrient concentrations and high turbidity.

  16. Distribution of phytoplankton and chlorophyll a around little Andaman Island

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P; Bhattathiri, P

    0.014 to 0.064(av.0.029). Depthwise distribution of phytoplankton chl a and phaeo-pigments showed an increasing trend up to 1% light in the 2 coral banks. Phytoplankton population ranged from 1400 to 4900 cells/litre. Dinoflagellates formed...

  17. Initial growth of phytoplankton in turbid estuaries: a simple model

    NARCIS (Netherlands)

    de Swart, H.E.; Schuttelaars, H.; Talke, S.A.

    2009-01-01

    An idealised model is presented and analysed to gain more fundamental understanding about the dynamics of phytoplankton blooms in well-mixed, suspended sediment dominated estuaries. The model describes the behaviour of subtidal currents, suspended sediments, nutrients and phytoplankton in a channel

  18. A seasonal diary of phytoplankton in the North Atlantic

    DEFF Research Database (Denmark)

    Lindemann, Christian; St. John, Michael

    2014-01-01

    In recent years new biological and physical controls have been suggested to drive phytoplankton bloom dynamics in the North Atlantic. A better understanding of the mechanisms driving primary production has potentially important implications for the understanding of the biological carbon pump...... are not mutually exclusive, but rather complementary. Thus, moving beyond the “single mechanism” point of view, here we present an integrated conceptual model of the physical and biological controls on phytoplankton dynamics in the North Atlantic. Further we believe that the acclimation of physiological rates can...... play an important role in mediating phytoplankton dynamics. Thus, this view emphasizes the occurrence of multiple controls and relates their variations in impact to climate change...

  19. Reintroducing Photosynthesis

    Science.gov (United States)

    Vila, F.; Sanz, A.

    2012-01-01

    This article reports on conceptual difficulties related to photosynthesis and respiratory metabolism of a Plant Physiology course for undergraduate students that could hinder their better learning of metabolic processes. A survey of results obtained in this area during the last 10 academic years was performed, as well as a specific test, aimed to…

  20. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  1. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Bach, Lennart T; Mackinder, Luke C M; Schulz, Kai G; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf

    2013-07-01

    Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    Science.gov (United States)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  3. Large centric diatoms allocate more cellular nitrogen to photosynthesis to counter slower RUBISCO turnover rates

    Directory of Open Access Journals (Sweden)

    Yaping eWu

    2014-12-01

    Full Text Available Diatoms contribute ~40% of primary production in the modern ocean and encompass the largest cell size range of any phytoplankton group. Diatom cell size influences their nutrient uptake, photosynthetic light capture, carbon export efficiency, and growth responses to increasing pCO2. We therefore examined nitrogen resource allocations to the key protein complexes mediating photosynthesis across six marine centric diatoms, spanning 5 orders of magnitude in cell volume, under past, current and predicted future pCO2 levels, in balanced growth under nitrogen repletion. Membrane bound photosynthetic protein concentrations declined with cell volume in parallel with cellular concentrations of total protein, total nitrogen and chlorophyll. Larger diatom species, however, allocated a greater fraction (by 3.5 fold of their total cellular nitrogen to the soluble RUBISCO carbon fixation complex than did smaller species. Carbon assimilation per unit of RUBISCO large subunit (C RbcL-1 s-1 decreased with cell volume, from ~8 to ~2 C RbcL-1 s-1 from the smallest to the largest cells. Whilst a higher allocation of cellular nitrogen to RUBISCO in larger cells increases the burden upon their nitrogen metabolism, the higher RUBISCO allocation buffers their lower achieved RUBISCO turnover rate to enable larger diatoms to maintain carbon assimilation rates per total protein comparable to small diatoms. Individual species responded to increased pCO2, but cell size effects outweigh pCO2 responses across the diatom species size range examined. In large diatoms a higher nitrogen cost for RUBISCO exacerbates the higher nitrogen requirements associated with light absorption, so the metabolic cost to maintain photosynthesis is a cell size-dependent trait.

  4. Impact of wastewater on phytoplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswar, M.J.R.

    A number of studies on phytoplankton were conducted by National Institute of Oceanography, Goa, India at Thane Creek, Maharashtra, India, Ulhas River estuary, Versova Creek and Mahim Creek under Coastal Ocean Monitoring and Prediction System (COMAPS...

  5. Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea.

    Science.gov (United States)

    Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C; Daniels, Chris J; Inall, Mark; Davidson, Keith

    2016-01-01

    The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to

  6. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  7. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    Science.gov (United States)

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on

  8. Monitoring and prediction of phytoplankton dynamics in the North Sea

    NARCIS (Netherlands)

    Blauw, A.N.

    2015-01-01

    Phytoplankton forms the base of the marine food web, but when concentrations get too high, algal blooms can have adverse effects on ecosystems and aquaculture. Phytoplankton concentrations vary strongly in space and time. However, the nature and drivers of this variability are not yet well

  9. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    Science.gov (United States)

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  10. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    Science.gov (United States)

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  11. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    Directory of Open Access Journals (Sweden)

    Tracy J Mincer

    Full Text Available Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus, and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  12. Diversity of Phytoplankton of a sub-tropical reservoir of Mizoram, northeast India

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar Sharma

    2016-12-01

    Full Text Available Phytoplankton of Khawiva reservoir of Mizoram, northeast India (NEI revealed a total of 55 species; nearly concurrent mean monthly richness and high community similarities (vide Sørensen index during two years affirmed homogeneity in its species composition. Phytoplankton comprised dominant component (61.1±14.3% of net plankton and recorded wider density variations. Chlorophyta influenced phytoplankton abundance with quantitative importance of Staurastrum spp. >Xanthidium spp. >Cosmarium spp. in particular. Bacillariophyta formed subdominant group; Cryptophyta and Cyanophyta showed limited importance; and Euglenophyta and Dinophyta recorded poor densities. Phytoplankton is characterized by moderate species diversity, high evenness and low dominance but with wide variations. Richness, abundance and species diversity followed no definite patterns of monthly variations during two years. Insignificant influence of individual abiotic factors on phytoplankton assemblages coupled with low cumulative influence of fifteen abiotic parameters (vide CCA yielded little insight on overall role of abiotic parameters.

  13. Phytoplankton variability in Lake Fraijanes, Costa Rica, in response to local weather variation

    Directory of Open Access Journals (Sweden)

    Gerardo Umaña-Villalobos

    2014-08-01

    Full Text Available Phytoplankton species show a variety in morphology which is the result of adaptations to pelagic life including responses to fluctuations in water column dynamics driven by weather conditions. This has been reported in the oceans and in Northern temperate lakes. In order to observe whether tropical freshwater phytoplankton responds to seasonal variation in weather, the weekly variation in temperature of the water column and phytoplankton composition was studied in Lake Fraijanes, Costa Rica, a shallow (6.2m lake at 1 640m above sea level. A chain of data loggers for temperature was placed in the deepest point in the lake to register temperature every hour at four different depths, and phytoplankton samples were retrieved every week for a year. Additional monthly samples for nutrients were taken at two depths. Notwithstanding its shallowness, the lake developed a thermal gradient which kept the water column stratified for several months during dry season. Whole lake overturns occurred during cold spells with intense precipitation. Phytoplankton changed throughout the year mainly through a shift in dominant taxa. From September to February the lake was frequently mixed by rain storms and windy weather. At this time, phytoplankton was dominated by Chlorococcal green algae. From March to June, the lake was stratified and warmer. Phytoplankton became dominated by Cyanobateria, mainly colonial Chroococcales. The rainy season started again in May 2009. During June and July the lake started to mix intermittently during rain events and phytoplankton showed a brief increase in the contribution of Chlorococcales. These changes fitted well to a general model of phytoplankton succession based on functional groups identified according to their morphology and adaptations.

  14. Distributions of phytoplankton in a coastal lagoon of Mahin, Ondo ...

    African Journals Online (AJOL)

    Distributions of phytoplankton were investigated in Mahin Lagoon within Transgressive mud coast of Ondo, Western Nigeria. Collections and analyses of samples of phytoplankton and surface waters (for some physico-chemical parameters) were done at fifteen stations along the stretch of the lagoon in October 2013 and ...

  15. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu

    2017-07-01

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2  = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P chlorophyll content (R 2  = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2  = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2  = 0.36 for canopy GPP SIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. © 2016 John Wiley & Sons Ltd.

  16. Community photosynthesis of aquatic macrophytes

    DEFF Research Database (Denmark)

    Binzer, T.; Sand-Jensen, K.; Middelboe, A. L.

    2006-01-01

    We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition of photosynt......We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition...

  17. Phytoplankton distribution in three thermally distinct reactor cooling reservoirs

    International Nuclear Information System (INIS)

    Wilde, E.W.

    1983-01-01

    Phytoplankton community structure was studied in relation to physicochemical characteristics of three South Carolina reservoirs in close proximity and of similar age and bottom type. Thermal alteration, resulting from the input of cooling water from a nuclear reactor, was substantially different in each reservoir. This provided an opportunity to compare water temperature effects separated from season. Water temperature (when examined independently in statistical models) appeared to be less important than other environmental variables in determining phytoplankton community structure. Pond C, a reservoir receiving intensely heated effluent (> 20 0 C ΔT), displayed low species diversity (Shannon-Weaver H 0 C in summer. Par Pond, having a maximum ΔT of 5 0 C, displayed no temperature-induced alteration of phytoplankton community structure

  18. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.

    Science.gov (United States)

    Mahadevan, Amala; D'Asaro, Eric; Lee, Craig; Perry, Mary Jane

    2012-07-06

    Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.

  19. Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth

    Science.gov (United States)

    Marañón, Emilio; Cermeño, Pedro; Huete-Ortega, María; López-Sandoval, Daffne C.; Mouriño-Carballido, Beatriz; Rodríguez-Ramos, Tamara

    2014-01-01

    The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. PMID:24921945

  20. Variation of phytoplankton community structure from the Pearl River estuary to South China Sea.

    Science.gov (United States)

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.

  1. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer

    International Nuclear Information System (INIS)

    Copping, A.E.; Lorenzen, C.J.

    1980-01-01

    Adult female and stage V Calanus pacificus were fed 14 C-labeled phytoplankton in the laboratory in the form of monospecific cultures and natural populations. A carbon budget was constructed by following the 14 C activity and the specific activity, over 48 h, in the phytoplankton, copepod, dissolved organic, dissolved inorganic, and fecal carbon compartments. The average incorporation of carbon into the copepod's body was 45% of the phytoplankton carbon available. Of the phytoplankton carbon, 27% appeared as dissolved organic carbon, 24% as dissolved inorganic carbon, and 3 to 4% in the form of fecal pellets. All of the tracer was recovered at the end of the experiments. The specific activity of the phytoplankton compartment was constant throughout each experiment. The other compartments had initial specific activities of zero, or close to zero, and increased throughout the experiment. In most experiments, the copepod specific activity equalled that of the phytoplankton at the end of 48 h, while the dissolved organic carbon, dissolved inorganic carbon, and fecal specific activities remained well below that of the phytoplankton

  2. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  3. Global patterns of phytoplankton dynamics in coastal ecosystems

    Science.gov (United States)

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  4. Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Yangdong Pan

    2018-03-01

    Full Text Available Excessive water level fluctuation may affect physico-chemical characteristics, and consequently ecosystem function, in lakes and reservoirs. In this study, we assessed the changes of phytoplankton assemblages in response to water level increase in Danjiangkou Reservoir, one of the largest drinking water reservoirs in Asia. The water level increased from a low of 137 m to 161 m in 2014 as a part of the South–North Water Diversion Project. Phytoplankton assemblages were sampled four times per year before, during and after the water level increase, at 10 sites. Environmental variables such as total nitrogen as well as phytoplankton biomass decreased after the water level increase. Non-metric multi-dimensional scaling analysis indicated that before the water level increase, phytoplankton assemblages showed distinct seasonal variation with diatom dominance in both early and late seasons while such seasonal variation was much less evident after the water level increase. Month and year (before and after explained 13% and 6% of variance in phytoplankton assemblages (PERMANOVA, p < 0.001 respectively, and phytoplankton assemblages were significantly different before and after the water level increase. Both chlorophytes and cyanobacteria became more abundant in 2015. Phytoplankton compositional change may largely reflect the environmental changes, such as hydrodynamics mediated by the water level increase.

  5. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    Science.gov (United States)

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  6. Sensitivity of Ocean Reflectance Inversion Models for Identifying and Discriminating Between Phytoplankton Functional Groups

    Science.gov (United States)

    Werdell, P. Jeremy; Ooesler, Collin S.

    2012-01-01

    The daily, synoptic images provided by satellite ocean color instruments provide viable data streams for observing changes in the biogeochemistrY of marine ecosystems. Ocean reflectance inversion models (ORMs) provide a common mechanism for inverting the "color" of the water observed a satellite into marine inherent optical properties (lOPs) through a combination of empiricism and radiative transfer theory. lOPs, namely the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents, describe the contents of the upper ocean, information critical for furthering scientific understanding of biogeochemical oceanic processes. Many recent studies inferred marine particle sizes and discriminated between phytoplankton functional groups using remotely-sensed lOPs. While all demonstrated the viability of their approaches, few described the vertical distributions of the water column constituents under consideration and, thus, failed to report the biophysical conditions under which their model performed (e.g., the depth and thickness of the phytoplankton bloom(s)). We developed an ORM to remotely identifY Noctiluca miliaris and other phytoplankton functional types using satellite ocean color data records collected in the northern Arabian Sea. Here, we present results from analyses designed to evaluate the applicability and sensitivity of the ORM to varied biophysical conditions. Specifically, we: (1) synthesized a series of vertical profiles of spectral inherent optical properties that represent a wide variety of bio-optical conditions for the northern Arabian Sea under aN Miliaris bloom; (2) generated spectral remote-sensing reflectances from these profiles using Hydrolight; and, (3) applied the ORM to the synthesized reflectances to estimate the relative concentrations of diatoms and N Miliaris for each example. By comparing the estimates from the inversion model to those from synthesized vertical profiles, we were able to

  7. Measured and numerically partitioned phytoplankton spectral absorption coefficients in inland waters

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Van Dijk, M.A.; Zhu, G.; Gong, Z.; Li, Y.M.; Qin, B.

    2009-01-01

    Total particulate, tripton and phytoplankton absorption coefficients were measured for eutrophic (Lake Taihu), meso-eutrophic (Lake Tianmuhu) and mesotrophic waters (the Three Gorges Reservoir) in China using the quantitative filter technique. Meanwhile, tripton and phytoplankton absorption

  8. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  9. A turbulence-induced switch in phytoplankton swimming behavior

    Science.gov (United States)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  10. Vertical distribution of pelagic photosynthesis

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke

    chlorophyll maxima (DCM) to be a general feature in the ocean. Today, it is generally accepted that DCMs occur in most of our oceans still, despite this empirical knowledge, subsurface primary production is still largely ignored in marine science. The work included in this PhD examines the vertical...... each of the three regions combined with 15 years of survey data for the Baltic Sea transition zone. Overall, the results of this PhD work show that the vertical distribution of phytoplankton and their activity is important for the understanding, dynamics and functioning of pelagic ecosystems. It, thus......, emphasizes that future research and modelling exercises aimed at improving understanding of pelagic ecosystems and their role in the global ocean should include a consideration of the vertical heterogeneity in phytoplankton distributions and activity....

  11. Steady state of phytoplankton assemblage in tropical Lake Catemaco (Mexico)

    Czech Academy of Sciences Publication Activity Database

    Komárková, Jaroslava; Tavera, R.

    2003-01-01

    Roč. 502, - (2003), s. 187-196 ISSN 0018-8158. [Workshop of the International Association of Phytoplankton Taxonomy and Acology /13./. Castelbuono, 00.09.2002] R&D Projects: GA AV ČR KSK6005114 Keywords : lake Catemaco * phytoplankton * food web Subject RIV: EF - Botanics Impact factor: 0.720, year: 2003

  12. Suitability of phytosterols alongside fatty acids as chemotaxonomic biomarkers for phytoplankton

    Directory of Open Access Journals (Sweden)

    Sami Johan Taipale

    2016-03-01

    Full Text Available e composition and abundance of phytoplankton is important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids are needed for monitoring changes in phytoplankton community and to know nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers by analyzing sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes and by using multivariate statistics. We were able to detect totally 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among cyanobacteria, taxonomical differentiation increased, when cyanobacteria were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside with fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high 16 ω-3 PUFAs (polyunsaturated fatty acid indicates the presence of Chlorophyceae, simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae. Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genus, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

  13. Suitability of Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for Phytoplankton.

    Science.gov (United States)

    Taipale, Sami J; Hiltunen, Minna; Vuorio, Kristiina; Peltomaa, Elina

    2016-01-01

    The composition and abundance of phytoplankton is an important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids) are needed for monitoring changes in a phytoplankton community and to know the nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers using multivariate statistics, by analyzing the sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes. We were able to detect a total of 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among Cyanophyceae, taxonomical differentiation increased when Cyanophyceae were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high C16 ω-3 PUFA (polyunsaturated fatty acid) indicates the presence of Chlorophyceae, a simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae). Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genera, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

  14. Phytoplankton abundance and productivity in the vicinity of an operating power plant

    International Nuclear Information System (INIS)

    Poornima, E.H.; Rajadurai, M.; Venugopalan, V.P.; Narasimhan, S.V.; Rao, V.N.R.

    2007-01-01

    The impact of power plant operation on the abundance and productivity of phytoplankton was monitored over a period of fifteen months. Field studies showed that in spite of the consistent reduction in phytoplankton biomass and productivity at the Outfall where the heated effluent is discharged, stations close to the mixing point did not show any significant change in phytoplankton biomass or productivity. This suggested that at the Mixing point, mixing of the heated effluents with the ambient seawater was rapid and very extensive, ensuring recovery of phytoplankton biomass and their productivity potential. Field studies during low-dose, shock-dose and no-chlorination suggested that chlorination caused greater damage to phytoplankton chlorophyll than temperature. Laboratory experiments revealed that diatom growth was not much influenced by passage through the condenser cooling system and they were able to grow between 28 deg C and 40 deg C. Short term experiments indicated that chemical stress due to chlorination might be more important than temperature in reducing phytoplankton biomass and productivity. Combined treatment of temperature and chlorine showed little synergistic effect. The data suggest that formulation of condenser discharge criteria of power plants must consider the relative effects of both the stress factors viz., temperature and chlorine. (author)

  15. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean

    International Nuclear Information System (INIS)

    Mitchell, B.G.; Brody, E.A.; Holm-Hansen, O.; McClain, C.; Bishop, J.

    1991-01-01

    The Antarctic Circumpolar Current (ACC) is unique in that it has continually high concentrations of major plant nutrients but low phytoplankton biomass. This enigmatic phenomenon is the focus of significant speculation that trace nutrients, including Fe, may limit phytoplankton crop size. Global climatologies indicate that the ACC is a region with low surface temperatures, weak density stratification, little summertime surface solar irradiance, and strong wind stress. These physical phenomena act to limit growth rates of the phytoplankton community. Using a photo-physiological description of phytoplankton growth in a simple one-dimensional ecosystem model forced by observations or climatologies of mixing depth and surface irradiance, the authors make an evaluation of the potential for massive, nutrient-exhausting, phytoplankton blooms forming in the ACC. The ACC has persistent mixed layers in excess of 50 m. Literature values and model optimization indicate that the minimal aggregate specific loss rate and typical physical conditions of stratification and surface irradiance, the model predicts that phytoplankton in the ACC would not utilize >10% of the available macronutrients. Without a mechanism for increasing the strength of stratification, the authors predict that massive Fe additions to the Southern Ocean would fail to significantly mitigate the atmospheric CO 2 derived from fossil fuel

  16. Phytoplankton response to winter warming modified by large-bodied zooplankton: an experimental microcosm study

    Directory of Open Access Journals (Sweden)

    Hu He

    2015-03-01

    Full Text Available While several field investigations have demonstrated significant effects of cool season (winter or spring warming on phytoplankton development, the role played by large-bodied zooplankton grazers for the responses of phytoplankton to winter warming is ambiguous. We conducted an outdoor experiment to compare the effect of winter warming (heating by 3°C in combination with presence and absence of Daphnia grazing (D. similis on phytoplankton standing crops and community structure under eutrophic conditions. When Daphnia were absent, warming was associated with significant increases in phytoplankton biomass and cyanobacterial dominance. In contrast, when Daphnia were present, warming effects on phytoplankton dynamics were offset by warming-enhanced grazing, resulting in no significant change in biomass or taxonomic dominance. These results emphasize that large-bodied zooplankton like Daphnia spp. may play an important role in modulating the interactions between climate warming and phytoplankton dynamics in nutrient rich lake ecosystems.

  17. The plankton community on Sukkertop and Fylla Banks off West Greenland during a spring bloom and post-bloom period: Hydrography, phytoplankton and protozooplankton

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Reuss, N.

    2002-01-01

    The plankton community structure was investigated on Sukkertop and Fylla Banks off West Greenland during the spring bloom in May 2000 and the post-bloom period in June 1999. In May a small change in density, clearly illustrated by the profile of potential energy, was sufficient to support a spring...... the phytoplankton community. Heterotrophic biomass was low (5 +/- 1 mg C m(-3)) and an important part was comprised by heterotrophic nanoflagellates (24 +/- 1%). Protozooplankters (heterotrophic dinoflagellates and ciliates) were important grazers of the phytoplankton community in the post-bloom period (estimated...

  18. Phytoplankton diversity of the Gharni Reservoir in Latur district, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Vishwas Balasaheb Sakhare

    2015-08-01

    Full Text Available The phytoplanktonic samples were collected from the Gharni Reservoir of Latur district of Maharashtra for a period of one year, from June 2013 to May 2014. Totally 18 species of phytoplankton belonging to different taxonomic groups were identified. Among these 7 species belong to Chlorophyceae, 5 species to Cyanophyceae, 3 species to Bacillariophyceae and 3 species to Euglenophyceae. The phytoplankton productivity fluctuated seasonally and the maximum number of 560 units/liter was recorded during month of February and March and minimum number of 95 units/liter during the month of September.

  19. Impact of the antifouling agent Irgarol 1051 on marine phytoplankton species

    NARCIS (Netherlands)

    Buma, Anita G. J.; Sjollema, Sascha B.; van de Poll, Willem H.; Klamer, Hans J. C.; Bakker, Joop F.

    In the present study we tested the hypothesis that environmental concentrations of the antifouling agent Irgarol 1051, as measured in coastal Western European waters, affect marine phytoplankton performance. The impact of Irgarol was investigated in the phytoplankton species Thalassiosira

  20. UV absorption reveals mycosporine-like amino acids (MAAs in Tatra mountain lake phytoplankton

    Directory of Open Access Journals (Sweden)

    Jerzy Dera

    2013-08-01

    Full Text Available Enhanced absorption of UV radiation, an effect characteristic of mycosporine-like amino acids (MAAs, is reported in samples of phytoplankton from six lakes in the Tatra Mountains National Park (Poland. It was demonstrated that the mass-specific UV absorption coefficients for the phytoplankton in these lakes increased with altitude above sea level. Based on a comparison with the phytoplankton of Alpine lakes, investigated earlier by other authors (cited in this paper, it may be inferred that the phytoplankton of Tatra mountain lakes produce MAAs, which protect plant cells from UV light, the intensity of which increases with altitude.

  1. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    Science.gov (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  2. Development of phytoplankton communities: Implications of nutrient injections on phytoplankton composition, pH and ecosystem production

    DEFF Research Database (Denmark)

    Jakobsen, Hans; Blanda, Elisa; Stæhr, Peter Anton

    2015-01-01

    The development of a marine phytoplankton community was studied in a series of mesocosm tanks exposed to different levels of nutrient inputs. Key ecosystem variables such as phytoplankton species development, ecosystem net production (NEP), pH and bacteria production were measured. The overall aim...... was to mimic the consequences of extreme weather events by applying nutrients in either repeated (pulse treatment) versus a single inputs (full treatment). Regardless of treatment type, pH increased steadily, until nutrients became exhausted. During the experiment, potentially nuisance dinoflagellates...... developed and became dominant whereas diatoms became rare as compared to the parallel controls. At pH > 9, a shift from the presence of the potential nuisance Alexandrium pseudogonyaulax towards high pH tolerant Prorocentrum species was observed. Diatoms disappeared when A. pseudogonyaulax became dominant...

  3. Phytoplankton Monitoring Network (PMN) - Sampling Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A qualitative collection of data that includes salinity, temperature, phytoplankton counts and abundance ratios obtained from surface tows in the estuarine and...

  4. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  5. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities.

    Science.gov (United States)

    Filstrup, Christopher T; Hillebrand, Helmut; Heathcote, Adam J; Harpole, W Stanley; Downing, John A

    2014-04-01

    Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient-enriched lakes. © 2014 John Wiley & Sons Ltd/CNRS.

  6. PHYTOPLANKTON COMPOSITION IN FISH FARMS ALONG THE EASTERN ADRIATIC COAST

    Directory of Open Access Journals (Sweden)

    Marija Tomec

    2006-10-01

    Full Text Available Investigations of net phytoplankton composition were performed at three fish farms situated at the northern, middle and southern part of the eastern Adriatic Sea coast, respectively. In the northern part investigations were conducted in the Limski kanal, in the middle part at the Ugljan island and in the southern part in the place Drače on the Pelješac peninsula (Figure 1. At all three localities fish culture included mostly two species: gilthead sea bream (Sparus aurata and sea bass (Dicentrarchus labrax. Beside some physico–chemical parameters (sea water temperature, salinity special attention was placed on the examination of qualitative net phytoplankton composition, which was conducted in the period of May and November 2004 and May and October 2005. Samples were collected at the depths of 0. 5 and 4 meters. According to the physico–chemical parameters, sea water temperature was influenced by the temperature of the environment. Qualitative net phytoplankton composition consisted of 153 microphytic species belonging to the systematic compartments of Cyanobacteria, Chrysophyta and Dinophyta (Table 1. The most numerous algal group were diatoms or Bacillarophyceae (84 species or 55% with relative frequencies of species from 1 to 7. Taxonomic composition of diatoms showed the community Chaetoceros–Rhizosolenia (Proboscia as the dominant one. The second numerically most dominant compartment were Dinophyta (62 species or 401% with dominant the species of the genera Ceratium and Protoperidinium. Relative frequencies of species was ranging from 1 to 7 (mass presence of specimens in the water column. From Cyanobacteria (4 species or 3%, only filamentous algae were determined, with individual presence in net phytoplankton composition. Qualitative net phytoplankton composition suggests the similarity of species composition in the water column at all investigated fish farms. From the obtained characteristics of net phytoplankton composition

  7. Phytoplankton absorption and pigment adaptation of a red tide in the ...

    African Journals Online (AJOL)

    Phytoplankton absorption and pigment characteristics of a red tide were investigated in coastal waters of the southern Benguela. Diagnostic indices indicated that dinoflagellates were the dominant phytoplankton group, with diatoms and small flagellates being of secondary importance. Very high biomass was observed ...

  8. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait

    Science.gov (United States)

    Wang, Yu; Kang, Jian-hua; Ye, You-yin; Lin, Geng-ming; Yang, Qing-liang; Lin, Mao

    2016-02-01

    Upwelling system in western Taiwan Strait is important for facilitating the fishery production. This study investigated hydro-chemical properties, phytoplankton biomass, phytoplankton species composition, three-dimensional (horizontal, vertical and transect) distribution of phytoplankton abundance, as well as phytoplankton annual variation and the correlation of phytoplankton community with the upwelling of underlying current and nutrients according to samples of Fujian-Guangdong coastal upwelling zone in western Taiwan Strait from August 27 to September 8, 2009. The results manifest that the nutrient-rich cold and high salinity current on the continental shelf of South China Sea upwells to the Fujian-Guangdong coastal waters through Taiwan Bank and the surging strength to surface is weak while strong at 30-m layer. The thermohaline center of coastal upwelling shifts to the east of Dongshan Island and expanded to offshore waters in comparison with previous records. A total of 137 phytoplankton species belonging to 59 genera in 4 phyla are identified excluding the unidentified species. Diatom is the first major group and followed by dinoflagellate. Cyanobacteria mainly composed by three Trichodesmium species account for a certain proportions, while Chrysophyta are only found in offshore waters. The dominant species include Thalassionema nitzschioides, Pseudo-nitzschia pungens, Thalassionema frauenfeldii, Pseudo-nitzschia delicatissima, Rhizosolenia styliformis, Chaetoceros curvisetus, Diplopsalis lenticula and Trichodesmium thiebautii. Phytoplankton community mainly consists of eurythermal and eurytopic species, followed by warm-water species, tropic high-salinity species and oceanic eurythermic species in order. Phytoplankton abundance ranges from 1.00 × 102 ind./L ~ 437.22 × 102 ind./L with an average of 47.36 × 102 ind./L. For vertical distribution, maximum abundance is found at 30 m-depth and the surface comes second. Besides, the abundance below 30 m

  9. Chlorophyll specific absorption coefficient and phytoplankton biomass in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2015-01-01

    The role of total particulate matter, the sum of phytoplankton and nonalgal particles, is essential to understanding the distribution and pathways of particulate carbon in the ocean. Their relative contributions to light absorption and scattering are fundamental to understanding remotely sensed ocean color. Until recently, data regarding the contribution of phytoplankton and algal particles to the inherent optical properties of the Red Sea was nonexistent. Some of the first measurements of these inherent optical properties in the Red Sea including phytoplankton specific absorption coefficients (aph*(λ)) were obtained by the TARA Oceans expedition in January 2010. From these observations, chlorophyll a was calculated using the Line Height Method (LHM) that minimizes the contribution to total and particulate absorption by non-algal particles (NAP) and CDOM. Bricaud and Stramski’s (1990) a method was then used to decompose hyperspectral total particulate absorption into the contributions by phytoplankton and nonalgal particles.

  10. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  11. Effect of ocean acidification on the nutritional quality of phytoplankton for copepod reproduction

    Science.gov (United States)

    Meyers, M.; Cochlan, W. P.; Kimmerer, W.; Carpenter, E. J.

    2016-02-01

    Phytoplankton are the oceans' primary producers of essential polyunsaturated fatty acids (PUFA), which provide marine organisms with nutrients needed for health and reproduction. It is hypothesized that future ocean acidification (OA) conditions could change the availability of phytoplankton PUFAs for ecologically significant predators such as copepods, affecting their reproductive success. Three species of phytoplankton (Rhodomonas salina, Skeletonema marinoi, Prorocentrum micans) were cultured under present-day (400ppm CO2, pH 8.1) and predicted future (1000ppm CO2, pH 7.8) oceanic conditions. For four days, female Acartia tonsa copepods were fed a phytoplankton mixture from either the present-day or predicted-future treatment. To assess changes in phytoplankton PUFA content, fatty acid profiles were analyzed via capillary gas chromatography. Copepod egg production (EP), hatching success (HS), and egg viability (EV) were determined to assess copepod reproductive success. Fatty acid analysis shows essential PUFAs comprise a smaller percentage of total fatty acids in phytoplankton cultured under high pCO2 (Rho 21.5%; Ske 14.1%; Pro 14.4%) compared to those cultured under present-day pCO2 (Rho 28.8%, Ske 32.7%, Pro 39.3%). Copepod reproduction data demonstrate that females fed phytoplankton cultured under high pCO2 have significantly lower EP (μ=14.3 eggs female-1), HS (μ=35.8%), and EV (μ=12.5%) compared to reproductive success of females fed phytoplankton cultured under present-day CO2 (EP μ=27.0 eggs female-1; HS μ=91.5%; EV μ=96.6%). This study demonstrates that OA can change the nutritional quality of primary producers, which can affect the reproductive success of fundamental secondary consumers.

  12. Phytoplankton Identification Manual

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Desai, S.R.

    . Bacillariophyceae (Diatoms) 6.1 Structure of the diatom cell 6.2 Gross vegetative structure 6.3 Cell division 6.4 Classification of Diatoms 7. Phyrrophyceae (Dinoflagellates) 8. Micrometry 9. Measurement of Biomass 9.1 Chlorophyll measurements 9.2 Cell... counts 9.3 Cell count by drop count method 10. Measurement of productivity 11. Bibliography 1 1. Introduction Phytoplankton (?phyto? = plant; ?planktos? = made to wander) are single celled marine algae, some of which are capable of movement through...

  13. The Relationship between Phytoplankton Evenness and Copepod Abundance in Lake Nansihu, China

    Directory of Open Access Journals (Sweden)

    Wang Tian

    2016-08-01

    Full Text Available The relationship between biodiversity and ecosystem functioning is a central issue in ecology. Previous studies have shown that producer diversity can impact the consumer community via predator-prey interactions. However, direct observations of this relationship remain rare, in particular for aquatic ecosystems. In this research, the relationship between phytoplankton diversity (species richness and evenness and the abundance of copepods was analyzed in Lake Nansihu, a meso-eutrophic lake in China. The results showed that copepods abundance was significantly decreased with increasing phytoplankton evenness throughout the year. However, both species richness and phytoplankton biomass showed no significant relationship with the abundance of copepods. Canonical correspondence analysis revealed that phytoplankton evenness was negatively correlated with Thermocyclops kawamurai, Cyclops vicinus, Eucyclops serrulatus, Mesocyclops leuckarti, Sinocalanus tenellus, Sinocalanus dorrii, Copepods nauplius, but positively correlated with many Cyanophyta species (Chroococcus minutus, Dactylococcopsis acicularis, Microcystis incerta, Merismopedia tenuissima, Merismopedia sinica and Lyngbya limnetica. Based on our results, phytoplankton evenness was a better predictor of copepods abundance in meso-eutrophic lakes. These results provide new insights into the relationship between diversity and ecosystem functioning in aquatic ecosystems.

  14. New Concept of Photosynthesis

    Directory of Open Access Journals (Sweden)

    Komissarov Gennadiy Germanovich

    2014-12-01

    Full Text Available The history of the formation of a new concept of photosynthesis proposed by the author is considered for the period since 1966 to 2013. Its essence consists in the following facts: the photosynthetic oxygen (hydrogen source is not water, but exo- and endogenous hydrogen peroxide; thermal energy is a necessary part of the photosynthetic process; along with the carbon dioxide the air (oxygen, inert gases is included in the photosynthetic equation. The mechanism of the photovoltaic (Becquerel effect in films of chlorophyll and its synthetic analogue - phthalocyanine are briefly touched upon in the article. The article presents the works on artificial photosynthesis performed in the laboratory of Photobionics of N.N. Semenov Institute of Chemical Physics, RAS.

  15. Dynamics of motile phytoplankton in turbulence: Laboratory investigation of microscale patchiness

    Science.gov (United States)

    Crimaldi, J. P.; True, A.; Stocker, R.

    2016-02-01

    Phytoplankton represent the basis of oceanic life and play a critical role in biogeochemical cycles. While phytoplankton are traditionally studied in bulk, their collective impact stems from cell-level processes and interactions at the microscale. A fundamental element that determines these interactions is the small-scale spatial distribution of individual cells: this directly determines the local cell concentration and the probability that two cells contact or interact with each other. The traditional, bulk perspective on phytoplankton distributions is that turbulence acts to smear out patchiness and locally homogenizes the distributions. However, recent numerical simulations suggest that the action of turbulence on motile phytoplankton may be precisely the opposite: by biasing the swimming direction of cells through the action of viscous torques, turbulence is predicted to generate strong patchiness at small scales. Flow-mediated patch formation has been demonstrated experimentally in simple laminar flows, but has never been tested experimentally in turbulence. In this talk we report on preliminary laboratory experiments performed in a purpose-built flow facility that uses a pair of computer-controlled oscillating grids to generate approximately homogenous isotropic 3D turbulence. Turbulent flow characteristics and dissipation rates are first quantified using particle image velocimetry (PIV). Then, 2D distributions of the motile dinoflagellate Heterosigma akashiwo are imaged using planar laser-induced fluorescence (PLIF). Analysis of imaged phytoplankton distributions for patchiness is performed using a Voronoi tessellation approach. Results suggest that motile phytoplankton distributions differ from those of passive particles. Furthermore, computed values for the patch enhancement factor are shown to be roughly consistent with those of previous DNS predictions.

  16. Phytoplankton Regulation in a Eutrophic Tidal River (San Joaquin River, California

    Directory of Open Access Journals (Sweden)

    Alan D. Jassby

    2005-03-01

    Full Text Available As in many U.S. estuaries, the tidal San Joaquin River exhibits elevated organic matter production that interferes with beneficial uses of the river, including fish spawning and migration. High phytoplankton biomass in the tidal river is consequently a focus of management strategies. An unusually long and comprehensive monitoring dataset enabled identification of the determinants of phytoplankton biomass. Phytoplankton carrying capacity may be set by nitrogen or phosphorus during extreme drought years but, in most years, growth rate is light-limited. The size of the annual phytoplankton bloom depends primarily on river discharge during late spring and early summer, which determines the cumulative light exposure in transit downstream. The biomass-discharge relationship has shifted over the years, for reasons as yet unknown. Water diversions from the tidal San Joaquin River also affect residence time during passage downstream and may have resulted in more than a doubling of peak concentration in some years. Dam construction and accompanying changes in storage-and-release patterns from upstream reservoirs have caused a long-term decrease in the frequency of large blooms since the early 1980s, but projected climate change favors a future increase. Only large decreases in nonpoint nutrient sources will limit phytoplankton biomass reliably. Growth rate and concentration could increase if nonpoint source management decreases mineral suspensoid load but does not decrease nutrient load sufficiently. Small changes in water storage and release patterns due to dam operation have a major influence on peak phytoplankton biomass, and offer a near-term approach for management of nuisance algal blooms.

  17. Water Quality Conditions Monitored at the Corps’ Gavins Point Project in Nebraska/South Dakota during the 3-Year Period 2008 through 2010

    Science.gov (United States)

    2011-11-01

    increases when aquatic plants (phytoplankton or macrophytes) remove CO2 from the water to form organic matter through photosynthesis during the day...facilitates the use of bacterial food sources. Microorganisms, bacteria in particular, are responsible for mobilization of contaminants from sediments...2.2.3.2 Photosynthesis Oxygen is a by-product of aquatic plant photosynthesis , which represents a major source of oxygen for reservoirs during

  18. Negative effects of UVB-irradiated phytoplankton on life history traits and fitness of Daphnia magna

    NARCIS (Netherlands)

    Lange, de H.J.; Reeuwijk, van P.L.

    2003-01-01

    1. We tested the effect of ultraviolet-B (UVB)-irradiated phytoplankton on life history characteristics of Daphnia magna . Two phytoplankton species were used, Chlamydomonas reinhardtii and Cryptomonas pyrenoidifera . The phytoplankton species were cultured under photosynthetically active radiation

  19. Techniques in studies of photosynthesis

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.

    1990-01-01

    The use of both stable and radioactive isotopes has led to major advances in the understanding of the basic mechanisms of photosynthesis. An early use of isotopic material in photosynthetic investigations was the demonstration using 18 O, that O 2 evolved in photosynthesis was derived from water rather than from CO 2 . When the long-lived isotope of carbon, 14 C, became available in 1945, its use, coupled with two-dimensional chromatography developed a few years earlier, enabled Calvin and Benson (1948) to devise experiments to elucidate the pathway of photosynthetic 14 CO 2 fixation, 12 refs, 6 figs, 10 tabs

  20. The paleobiological record of photosynthesis.

    Science.gov (United States)

    William Schopf, J

    2011-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth's ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established.

  1. Studies on marine ecosystem in particular emphasis on phytoplankton (lecture by the member awarded the oceanographic society of Japan prize for 1992). Shokubutsu plankton wo chushintoshita kaiyo seitaikei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M. (The University of Tokyo, Tokyo (Japan). Faculty of Science)

    1993-06-25

    This paper, while introducing major study results of the author, summarizes his studies on ecosystems in lakes and oceans with respect mainly to phytoplanktons. The studies include the following subjects: A proposal on mathematical model equations to estimate growth of photosynthetic bacterial populations in deep lake beds; evaluation of stimulative effects for photosynthetic production provided by fertilizer application in lakes, and influences of phytoplanktons on population structures; evaluation on effects imposed on ecosystems from dumping chemical substances, as observed in experimental ecosystems that incorporate part of marine ecosystems; correlation between red-tide life absorbing proliferation stimulating substances and red tide generation; growth of high-concentration phytoplankton populations containing algae as a dominant species in local upwelling environments in oceans; and verification on establishment of specific phytoplankton populations containing pico-phytoplankton as a dominant species in oligotrophic environments in open seas. The paper mentions influences of the author's book, Biological Oceanographic Processes under joint authorship with Parsons on marine ecosystem researchers. 66 refs., 8 figs.

  2. Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton

    NARCIS (Netherlands)

    Mulderij, G.; Mau, B.; Smolders, A.J.P.; Van Donk, E.

    2006-01-01

    A survey of different Dutch Stratiotes stands showed that the density of phytoplankton (except cyanobacteria) was always higher outside S. aloides than between the rosettes of S. aloides. Analyses of water samples revealed that nutrient limitation was unlikely to have caused the lower phytoplankton

  3. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Wang Tian

    2017-01-01

    Full Text Available The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index, varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity, i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.

  4. Seasonal development of phytoplankton populations in offshore Lake Michigan in 1975

    International Nuclear Information System (INIS)

    Parker, J.I.; Conway, H.L.; Yaguchi, E.M.

    1975-01-01

    Relationships between phytoplankton bloom sequences and environmental factors that may account for seasonal variations have not been thoroughly evaluated in Lake Michigan. We investigated the seasonal periodicity of phytoplankton in the offshore water from April to December, 1975. The seasonal distributions of phytoplankton biomass, chlorophyll a, and primary productivity per unit of lake surface area were measured at station 5. These measurements demonstrated a bimodal seasonal distribution, with maxima occurring in June and October. Previous investigators have shown that the seasonal periodicity was unimodal, with a summer maximum. Our observations demonstrated year to year variations in this abundance pattern

  5. Phytoplankton species diversity indices in Anjanapura reservoir, Western Ghat region, India.

    Science.gov (United States)

    Basavaraja, D; Narayana, J; Puttaiah, E T; Prakash, K

    2013-07-01

    A qualitative study on species composition and diversity of phytoplankton flora was carried out in the Anjanapura reservoir. Water samples were collected monthly at four sites from November 2005 to October 2007 for plankton analysis. A total of 152 phytoplankton species belonging to 59 genera were recorded. The species belonging to genera Crucigenia, Pediastrum, Scenedesmus, Tetraedron, Cyclotella, Gyrosigma, Melosira, Navicula, Fragillaria, pinnularia, Synedra, Closterium, Cosmarium, Euastrum, Staurastrum, Gleocapsa, Merismopedia, Microcystis, Oscillatoria, Euglena and Phacus were found dominant. Phytoplankton density was recorded in the range of 222-1467 Org l(-1) for chlorococcales, 267-1467 Org I (-1) for diatoms, 44-889 Org l(-1) for desmids, 44-889 Org l(-1) for blue-greens and 22-1667 Org l(-1) for euglenoids. Seasonal density Shannon-Weiner diversity index (1.60-1.88) indicate that reservoir exhibited rich phytoplankton and Nygaard tropic status indices for myxophycean (1.0-1.50), chlorophycean (1.62-2.16), diatoms (0.10-0.14), euglenophycean (0.18-0.19) and compound quotient(3.25-4.66) showed that reservoir was moderately polluted. From the observed data, it could be concluded that the presence of more diverse group of phytoplankton indicate the productivity of the reservoir.

  6. Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing

    KAUST Repository

    Gittings, John

    2016-11-25

    The Gulf of Aden, situated in the northwest Arabian Sea and linked to the Red Sea, is a relatively unexplored ecosystem. Understanding of large-scale biological dynamics is limited by the lack of adequate datasets. In this study, we analyse 15 years of remotely-sensed chlorophyll-a data (Chl-a, an index of phytoplankton biomass) acquired from the Ocean Colour Climate Change Initiative (OC-CCI) of the European Space Agency (ESA). The improved spatial coverage of OC-CCI data in the Gulf of Aden allows, for the first time, an investigation into the full seasonal succession of phytoplankton biomass. Analysis of indices of phytoplankton phenology (bloom timing) reveals distinct phytoplankton growth periods in different parts of the gulf: a large peak during August (mid-summer) in the western part of the gulf, and a smaller peak during November (mid-autumn) in the lower central gulf and along the southern coastline. The summer bloom develops rapidly at the beginning of July, and its peak is approximately three times higher than that of the autumnal bloom. Remotely-sensed sea-surface temperature (SST), wind-stress curl, vertical nutrient profiles and geostrophic currents inferred from the sea-level anomaly, were analysed to examine the underlying physical mechanisms that control phytoplankton growth. During summer, the prevailing southwesterlies cause upwelling along the northern coastline of the gulf (Yemen), leading to an increase in nutrient availability and enhancing phytoplankton growth along the coastline and in the western part of the gulf. In contrast, in the central region of the gulf, lowest concentrations of Chl-a are observed during summer, due to strong downwelling caused by a mesoscale anticyclonic eddy. During autumn, the prevailing northeasterlies enable upwelling along the southern coastline (Somalia) causing local nutrient enrichment in the euphotic zone, leading to higher levels of phytoplankton biomass along the coastline and in the lower central gulf

  7. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    Science.gov (United States)

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  8. Small phytoplankton contribution to the standing stocks and the total primary production in the Amundsen Sea

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    2017-08-01

    Full Text Available Small phytoplankton are anticipated to be more important in a recently warming and freshening ocean condition. However, little information on the contribution of small phytoplankton to overall phytoplankton production is currently available in the Amundsen Sea. To determine the contributions of small phytoplankton to total biomass and primary production, carbon and nitrogen uptake rates of total and small phytoplankton were obtained from 12 productivity stations in the Amundsen Sea. The daily carbon uptake rates of total phytoplankton averaged in this study were 0.42 g C m−2 d−1 (SD  =  ± 0.30 g C m−2 d−1 and 0.84 g C m−2 d−1 (SD  =  ± 0.18 g C m−2 d−1 for non-polynya and polynya regions, respectively, whereas the daily total nitrogen (nitrate and ammonium uptake rates were 0.12 g N m−2 d−1 (SD  =  ± 0.09 g N m−2 d−1 and 0.21 g N m−2 d−1 (SD  =  ± 0.11 g N m−2 d−1, respectively, for non-polynya and polynya regions, all of which were within the ranges reported previously. Small phytoplankton contributed 26.9 and 27.7 % to the total carbon and nitrogen uptake rates of phytoplankton in this study, respectively, which were relatively higher than the chlorophyll a contribution (19.4 % of small phytoplankton. For a comparison of different regions, the contributions for chlorophyll a concentration and primary production of small phytoplankton averaged from all the non-polynya stations were 42.4 and 50.8 %, which were significantly higher than those (7.9 and 14.9 %, respectively in the polynya region. A strong negative correlation (r2 = 0. 790, p<0. 05 was found between the contributions of small phytoplankton and the total daily primary production of phytoplankton in this study. This finding implies that daily primary production decreases as small phytoplankton contribution increases, which is

  9. Can Asian Dust Trigger Phytoplankton Blooms in the Oligotrophic Northern South China Sea?

    Science.gov (United States)

    Wang, Sheng Hsiang; Hsu, Nai-Yung Christina; Tsay, Si-Chee; Lin, Neng-Huei; Sayer, Andrew M.; Huang, Shih-Jen; Lau, William K. M.

    2012-01-01

    Satellite data estimate a high dust deposition flux (approximately 18 g m(exp-2 a(exp-1) into the northern South China Sea (SCS). However, observational evidence concerning any biological response to dust fertilization is sparse. In this study, we combined long-term aerosol and chlorophyll-a (Chl-a) measurements from satellite sensors (MODIS and SeaWiFS) with a 16-year record of dust events from surface PM10 observations to investigate dust transport, flux, and the changes in Chl-a concentration over the northern SCS. Our result revealed that readily identifiable strong dust events over this region, although relatively rare (6 cases since 1994) and accounting for only a small proportion of the total dust deposition (approximately 0.28 g m(exp-2 a(exp-1), do occur and could significantly enhance phytoplankton blooms. Following such events, the Chl-a concentration increased up to 4-fold, and generally doubled the springtime background value (0.15 mg m(exp-3). We suggest these heavy dust events contain readily bioavailable iron and enhance the phytoplankton growth in the oligotrophic northern SCS.

  10. Dynamical Analysis of a Nitrogen-Phosphorus-Phytoplankton Model

    Directory of Open Access Journals (Sweden)

    Yunli Deng

    2015-01-01

    Full Text Available This paper presents a nitrogen-phosphorus-phytoplankton model in a water ecosystem. The main aim of this research is to analyze the global system dynamics and to study the existence and stability of equilibria. It is shown that the phytoplankton-eradication equilibrium is globally asymptotically stable if the input nitrogen concentration is less than a certain threshold. However, the coexistence equilibrium is globally asymptotically stable as long as it exists. The system is uniformly persistent within threshold values of certain key parameters. Finally, to verify the results, numerical simulations are provided.

  11. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John; Raitsos, Dionysios E.; Krokos, George; Hoteit, Ibrahim

    2018-01-01

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  12. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John

    2018-01-29

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  13. Modeling the influence from ocean transport, mixing and grazing on phytoplankton diversity

    DEFF Research Database (Denmark)

    Adjou, Mohamed; Bendtsen, Jørgen; Richardson, Katherine

    2012-01-01

    Phytoplankton diversity, whether defined on the basis of functional groups or on the basis of numbers of individual species, is known to be heterogeneous throughout the global ocean. The factors regulating this diversity are generally poorly understood, although access to limiting nutrients...... in generating and maintaining diversity, we apply the model to quantify the potential role of zooplankton grazing and ocean transport for the coexistence of competing species and phytoplankton diversity. We analyze the sensitivity of phytoplankton biomass distributions to different types of grazing functional...... responses and show that preferential grazing on abundant species, for example as formulated by the Holling type III grazing function, is a key factor for maintaining species’ coexistence. Mixing and large-scale advection are shown to potentially have a significant impact on the distribution of phytoplankton...

  14. The long-term persistence of phytoplankton resting stages in aquatic "seed banks"

    DEFF Research Database (Denmark)

    Ellegaard, Marianne; Ribeiro, Sofia

    2018-01-01

    to terrestrial seed beds of vascular plants, but are much less studied. It is therefore timely to review the phenomenon of long-term persistence of aquatic resting stages in sediment seed banks. Herein we compare function, morphology and physiology of phytoplankton resting stages to factors central...... for persistence of terrestrial seeds. We review the types of resting stages found in different groups of phytoplankton and focus on the groups for which long-term (multi-decadal) persistence has been shown: dinoflagellates, diatoms, green algae and cyanobacteria. We discuss the metabolism of long-term dormancy......In the past decade, research on long-term persistence of phytoplankton resting stages has intensified. Simultaneously, insight into life-cycle variability in the diverse groups of phytoplankton has also increased. Aquatic 'seed banks' have tremendous significance and show many interesting parallels...

  15. Small scale temporal variability in the phytoplankton of Independencia Bay, Pisco, Perú

    Directory of Open Access Journals (Sweden)

    Noemí Ochoa

    2013-06-01

    Full Text Available Temporal variations at small scale of the coastal marine phytoplankton assemblages were studied. Water samples were collected at a fixed station in Bahia Independencia (Pisco-Peru. The sampling took place in the morning (08:00 h. and afternoon (15:00 h over a period of 29 days (March 28 to April 25, 1988. Surface temperatures also were taken, fluctuating from 15,4 °C to 17,2 °C. Diatoms were the principal component of the phytoplankton community and were more related with the total of phytoplankton. Other groups as Dinoflagellates, Coccolitophorids, Silicoflagellates and small flagellates were present but were less important. Skeletonema costatum was the dominant specie during the first nine days of sampling, after that it was substituted by Thalassionema nitzschioides, which remained as dominant until the end of the study. Small variation in species composition but large fluctuations in density of phytoplankton were recorded over a period of few hours. Small increments in temperature influenced in the phytoplankton assemblages.

  16. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom

    Directory of Open Access Journals (Sweden)

    Carina eBunse

    2016-04-01

    Full Text Available In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland. To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio and colored dissolved organic matter (cDOM. Many bacterial operational taxonomic units (OTUs showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial

  17. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    Science.gov (United States)

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  18. [Experimental study on crop photosynthesis, transpiration and high efficient water use].

    Science.gov (United States)

    Wang, Huixiao; Liu, Changming

    2003-10-01

    It is well known that the development of water-saving agriculture is a strategic choice for getting rid of the crisis of water shortage. In this paper, the crop photosynthesis, transpiration, stomatic behavior, and their affecting factors were studied in view of increasing the crop water use efficiency. The experimental results showed that there was a parabola relationship between photosynthesis and transpiration. The transpiration at the maximum photosynthesis was a critical value, above which, transpiration was the luxurious part. The luxurious transpiration could be controlled without affecting photosynthetic production. It is possible that the measures for increasing stomatic resistance and preventing transpiration could save water, and improve photosynthesis and yield as well. The photosynthesis rate increased with photosynthetic active radiation, and the light saturation point for photosynthesis existed. The light saturation point of dry treatment was much lower than that of wet treatment, and the relationship between transpiration and radiation was linear. When the photosynthetic active radiation was bigger than 1,000 mumol.m-2.s-1, some treatments could be carried out for decreasing transpiration and improving photosynthesis.

  19. Decadal phytoplankton dynamics in response to episodic climatic disturbances in a subtropical deep freshwater ecosystem.

    Science.gov (United States)

    Ko, Chia-Ying; Lai, Chao-Chen; Hsu, Huang-Hsiung; Shiah, Fuh-Kwo

    2017-02-01

    Information of the decadal timescale effects of episodic climatic disturbances (i.e., typhoons) on phytoplankton in freshwater ecosystems have received less attention and fewer seasonal evaluations partly due to the lack of long-term time-series monitoring data in typhoon prevailing areas. Through field observations of a total 36 typhoon cases in a subtropical deep freshwater ecosystem in the period of 2005-2014, we quantified phytoplankton biomass, production and growth rate in response to meteorological and hydrological changes in the weeks before, during and after typhoons between summer and autumn, and also investigated the effects of typhoon characteristics on the aforementioned phytoplankton responses. The results showed that phytoplankton exposed to typhoon disturbances generally exhibited an increasing trend over the weeks before, during and after typhoons in summer but varied in autumn. The correlations and multivariate regressions showed different contributions of meteorological and hydrological variables to individual phytoplankton responses before, during and after typhoons between seasons. The post-typhoon weeks (i.e., within two weeks after a typhoon had passed) were especially important for the timeline of phytoplankton increases and with a detectable seasonal variation that the chlorophyll a concentration significantly increased in autumn whereas both primary production and growth rate were associated with significant changes in summer. Additionally, phytoplankton responses during the post-typhoon weeks were significantly different between discrete or continuous types of typhoon events. Our work illustrated the fact that typhoons did influence phytoplankton responses in the subtropical deep freshwater ecosystem and typhoon passages in summer and autumn affected the phytoplankton dynamics differently. Nevertheless, sustained and systematic monitoring in order to advance our understanding of the role of typhoons between seasons in the modulation of

  20. A comparison of ship and Coastal Zone Color Scanner mapped distribution of phytoplankton in the southeastern Bering Sea

    Science.gov (United States)

    Mcclain, C. R.; Sambrotto, R. N.; Ray, G. C.; Muller-Karger, F. E.

    1990-01-01

    Twenty-one Coastal Zone Color Scanner (CZCS) images of the southeastern Bering Sea are examined in order to map the near-surface distribution of phytoplankton during 1979 and 1980. The information is compared with the mesoscale (100-1000 km) distribution of phytoplankton inferred from pooled ship sampling obtained during the Processes and Resources of the Bering Shelf (PROBES) intensive field study during the late 1970s and early 1980s. The imagery indicates that open-water phytoplankton blooms occur first in late April in coastal waters, peak in early May over the middle shelf, and decay rapidly afterwards, reaching concentration minima in June in both regions. These patterns show that the earlier ship observations are valid for most of the eastern Bering shelf. A very tight correlation is found between the PROBES surface chlorophyll a concentrations and mean mixed-layer chlorophyll concentrations. The significant discrepancies between CZCS and ship-based chlorophyll estimates may be due to aliasing in time by the CZCS. It is concluded that neither satellite nor ship alone can do an adequate job of characterizing the physics or biological dynamics of the ocean.

  1. Environmental biogeography of near-surface phytoplankton in the southeast Pacific Ocean

    Science.gov (United States)

    Hardy, John; Hanneman, Andrew; Behrenfeldt, Michael; Horner, Rita

    1996-10-01

    Biogeographic interpretation of large-scale phytoplankton distribution patterns in relation to surface hydrography is essential to understanding pelagic food web dynamics and biogeochemical processes influencing global climate. We examined the abundance and biomass of phytoplankton in relation to physical and chemical parameters in the southeast Pacific Ocean. Samples were collected along longitude 110°W, between 10°N and 60°S during late austral summer. Patterns of taxa abundance and hydrographic variables were interpreted by principal components analysis. Five distinct phytohydrographic regions were identified: (i) a north equatorial region of moderate productivity dominated by small flagellates, low nitrate and low-to-moderate pCO 2; (ii) a south equatorial region characterized by high primary productivity dominated by diatoms, high nutrient levels, and relatively high pCO 2; (iii) a central gyre region characterized by low productivity dominated by small flagellates, low nitrate, and high pCO 2; (iv) a sub-Antarctic region with moderate productivity dominated by coccolithophores, moderate nitrate concentrations, and low pCO 2; and (v) an Antarctic region with high productivity dominated by diatoms, very high nitrate, and low pCO 2. Productivity and average phytoplankton cell size were positively correlated with nitrate concentration. Total phytoplankton abundance was negatively correlated with pCO 2, photosynthetically active radiation, and ultraviolet-B radiation. The interaction between phytoplankton carbon assimilation, atmospheric CO2, and the inhibitory effect of ultraviolet radiation could have implications for the global climate. These data suggest that the effects would be greatest at southern mid-latitudes (40-50°S) where present phytoplankton production and predicted future increases in UV-B are both relatively high.

  2. Phytoplankton dynamic responses to oil spill in Mumbai Harbour

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.J.; Ram, A.; Rokade, M.A.; Karangutkar, S.H.; Yengal, B.; Dalvi, S.; Acharya, D.; Sharma, S.; Gajbhiye, S.N.

    have shown that the high concen- tration of oil reduces the phytoplankton growth but when oil becomes in low concentration it, stimulates the growth of microalgae [29-31]. Aksmann and Tukaj [32], believed that the reac- tive oxygen free radicals... in phytoplankton cells increased under the stress of oil pollution and such increment of reactive oxygen free radicals promoted the content of superoxide dismutase in cells at low concentrations of oil, which enhanced the defensive reaction of algae cells...

  3. Rivers affect the biovolume and functional traits of phytoplankton in floodplain lakes

    Directory of Open Access Journals (Sweden)

    Alfonso Pineda

    2017-12-01

    Full Text Available Abstract Aim: We analyzed the temporal distribution (dry and rainy periods of phytoplankton functional groups (biovolume from lakes connected to dammed (S1 - Paraná River and non-dammed rivers (S2 - Baia River and S3 - Ivinhema River in the upper Paraná River floodplain, Brazil. We also determined the drivers of the phytoplankton community assemblage. Methods Phytoplankton and environmental variables samplings were performed quarterly in dry (2000 and 2001 and rainy (2010 and 2011 periods. We classified the phytoplankton species into seven morphological based functional groups (MBFG. We used analysis of variance to test differences in total phytoplankton biovolume and MBFGs biovolume between lakes and climatic periods. We also used redundancy analysis to determine the MBFGs-environment relation. Results The lake related to the dammed river (S1 presented the lowest species richness. The total phytoplankton biovolume presented differences among the lakes, but we did not register temporal differences associated with water level variation. The lake related to the non-dammed and semi-lentic river (S2 presented the highest biovolume, while S1 (related to the dammed river and S3 (related to the non-dammed river exhibited the lowest ones. Filamentous organisms (MBFG III were associated with poor nutrient conditions and diatoms (MBFG VI were favored in high water mixing sites. The flagellate groups MBFG II and MBFG V were related to deeper water and lower column mixing conditions, respectively. Conclusions Our results suggest that phytoplankton species with different functional traits drive the primary productivity in the dry and rainy periods. Hence, we highlight the importance of maintaining high functional diversity in lakes to ensure primary productivity. Therefore, we stress the importance of protecting the natural environment such as floodplain lakes because of its contribution to the regional biodiversity and the flow of energy.

  4. Phytoplankton can actively diversify their migration strategy in response to turbulent cues.

    Science.gov (United States)

    Sengupta, Anupam; Carrara, Francesco; Stocker, Roman

    2017-03-23

    Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour

  5. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  6. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  7. Modelling the production of dimethylsulfide during a phytoplankton bloom

    Science.gov (United States)

    Gabric, Albert; Murray, Nicholas; Stone, Lewi; Kohl, Manfred

    1993-12-01

    Dimethylsulfide (DMS) is an important sulfur-containing atmospheric trace gas of marine biogenic origin. DMS emitted from the oceans may be a precursor of tropospheric aerosols and cloud condensation nuclei (CCN), thereby affecting the Earth's radiative balance and possibly constituting a negative feedback to global warming, although this hypothesis is still somewhat controversial. The revised conceptual model of the marine pelagic food web gives a central role to planktonic bacteria. Recent experiments have shown that consumption of dissolved DMS by microbial metabolism may be more important than atmospheric exchange in controlling its concentration in surface waters and hence its ventilation to the atmosphere. In this paper we investigate the effect of the marine food web on cycling of dissolved DMS in surface waters during a phytoplankton bloom episode. A nitrogen-based flow network simulation model has been used to analyze the relative importance of the various biological and chemical processes involved. The model predictions suggest that the concentration of DMS in marine surface waters is indeed governed by bacterial metabolism. Environmental factors that affect the bacterial compartment are thus likely to have a relatively large influence on dissolved DMS concentrations. The ecological succession is particularly sensitive to the ratio of phytoplankton to bacterial nutrient uptake rates as well the interaction between herbivore food chain and the microbial loop. Importantly for the design of field studies, the model predicts that peak DMS concentrations are achieved during the decline of the phytoplankton bloom with a typical time lag between peak DMS and peak phytoplankton biomass of 1 to 2 days. Significantly, the model predicts a relatively high DMS concentration persisting after the phytoplankton bloom due to excretion from large protozoa and zooplankton, which may be an additional explanation for the lack of correlation between DMS and chlorophyll a

  8. Environmental flow assessments in estuaries related to preference of phytoplankton

    Science.gov (United States)

    Yang, Z. F.; Sun, T.; Zhao, R.

    2014-01-01

    We developed an approach to assess environmental flows in estuaries related to preference of phytoplankton considering the complex relationship between hydrological modification and biomass in ecosystems. As a first step, a relationship was established between biomass requirements for organisms of primary and higher nutritional levels based on the principle of nutritional energy flow of ecosystem. Then, diagnostic pigments were employed to represent phytoplankton community biomass, which indicated competition between two groups of phytoplankton in the biochemistry process. Considering empirical relationships between diagnostic pigments and critical environmental factors, responses of biomass to river discharges were established based on a convection-diffusion model by simulating distributions of critical environmental factors under action of river discharges and tide currents. Consequently, environmental flows could be recommended for different requirements of fish biomass. In the case study in the Yellow River estuary, May and October were identified as critical months for fish reproduction and growth during dry years. Artificial hydrological regulation strategies should carefully consider the temporal variations of natural flow regime, especially for a high-amplitude flood pulse, which may cause negative effects on phytoplankton groups and higher organism biomass.

  9. Physicochemical conditions in affecting the distribution of spring phytoplankton community

    Science.gov (United States)

    Wei, Yuqiu; Liu, Haijiao; Zhang, Xiaodong; Xue, Bing; Munir, Sonia; Sun, Jun

    2017-11-01

    To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.

  10. Shotgun proteomic analysis of Emiliania huxleyi, a marine phytoplankton species of major biogeochemical importance.

    Science.gov (United States)

    Jones, Bethan M; Edwards, Richard J; Skipp, Paul J; O'Connor, C David; Iglesias-Rodriguez, M Debora

    2011-06-01

    Emiliania huxleyi is a unicellular marine phytoplankton species known to play a significant role in global biogeochemistry. Through the dual roles of photosynthesis and production of calcium carbonate (calcification), carbon is transferred from the atmosphere to ocean sediments. Almost nothing is known about the molecular mechanisms that control calcification, a process that is tightly regulated within the cell. To initiate proteomic studies on this important and phylogenetically remote organism, we have devised efficient protein extraction protocols and developed a bioinformatics pipeline that allows the statistically robust assignment of proteins from MS/MS data using preexisting EST sequences. The bioinformatics tool, termed BUDAPEST (Bioinformatics Utility for Data Analysis of Proteomics using ESTs), is fully automated and was used to search against data generated from three strains. BUDAPEST increased the number of identifications over standard protein database searches from 37 to 99 proteins when data were amalgamated. Proteins involved in diverse cellular processes were uncovered. For example, experimental evidence was obtained for a novel type I polyketide synthase and for various photosystem components. The proteomic and bioinformatic approaches developed in this study are of wider applicability, particularly to the oceanographic community where genomic sequence data for species of interest are currently scarce.

  11. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    Science.gov (United States)

    Yue, Xu; Keenan, Trevor F; Munger, William; Unger, Nadine

    2016-11-01

    Ozone (O 3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O 3 concentrations ([O 3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O 3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O 3 ] as a predictor was slight, and independent of O 3 concentrations, which suggests limited high-frequency O 3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O 3 inhibition of 10.4% for 1992-2011. A decline of [O 3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 μmol C m -2  s -1  yr -1 , which is negligible relative to the total observed GPP trend of 0.41 μmol C m -2  s -1  yr -1 . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O 3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O 3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O 3 ], thus helping to buffer the changes of total photosynthesis due to varied [O 3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems. © 2016 John Wiley & Sons Ltd.

  12. Secondary Students' Interpretations of Photosynthesis and Plant Nutrition.

    Science.gov (United States)

    Ozay, Esra; Oztas, Haydar

    2003-01-01

    Studies misconceptions held by grade 9 students (14-15-years old) in Turkey about photosynthesis and plant nutrition. Uses a questionnaire to test students' conceptions and reports conflicting and often incorrect ideas about photosynthesis, respiration, and energy flow in plants. Suggests that there are difficulties in changing students' prior…

  13. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  14. Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state

    NARCIS (Netherlands)

    Kaiser, Elias; Zhou, Dianfan; Heuvelink, Ep; Harbinson, Jeremy; Morales Sierra, A.; Marcelis, Leo F.M.

    2017-01-01

    Leaves are often exposed to fluctuating irradiance, which limits assimilation. Elevated CO2 enhances dynamic photosynthesis (i.e. photosynthesis in fluctuating irradiance) beyond its effects on steady-state photosynthesis rates. Studying the role of CO2 in dynamic photosynthesis is important for

  15. Phytoplankton distribution and their relationship to environmental variables in Sanya Bay, South China Sea

    Directory of Open Access Journals (Sweden)

    Yanying Zhang

    2010-11-01

    Full Text Available Phytoplankton quantification was conducted in Sanya Bay from January 2005 to February 2006. A submersible in situ spectrofluorometer, which permits the differentiation of four algal groups (green algae, diatoms and dinoflagellates, cryptophytes and cyanobacteria was used. Seasonal variation of total chlorophyll a concentration showed that high value appeared in summer and low concentration occurred in spring. Diatoms and dinoflagellates group was the predominant phytoplankton all year in the Bay. The stable stratification of phytoplankton vertical distribution came into being in July. During the stratification event, the total chlorophyll a concentration of deep layer was much higher than the surface; cyanobacteria and cryptophyta groups decreased and almost disappeared, however, the concentration of green algae and diatoms and dinoflagellates groups increased. In deep layer, the concentration of diatoms and dinoflagellates group increased sharply, which was about eight times more than that in the surface layer. The vertical profiles character of phytoplankton showed that from inshore stations to outer bay the stratification of phytoplankton vertical distribution gradually strengthened. Dissolved inorganic nutrient especially phosphate and inorganic nitrogen and cold-water upwelling were the main regulating factor for phytoplankton distribution.

  16. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    Science.gov (United States)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  17. Phytoplankton dynamics in the Gulf of Aqaba (Eilat, Red Sea): A simulation study of mariculture effects

    International Nuclear Information System (INIS)

    Laiolo, Leonardo; Barausse, Alberto; Dubinsky, Zvy; Palmeri, Luca; Goffredo, Stefano; Kamenir, Yury; Al-Najjar, Tariq; Iluz, David

    2014-01-01

    Highlights: • Fish farms in the Gulf of Aqaba strongly affect phytoplankton levels. • Integrating statistics and ecological models help understand phytoplankton dynamics. • Phytoplankton dynamics are driven by mariculture activity and natural forces. • Mariculture can alter typical phytoplankton dynamics and seasonal succession. - Abstract: The northern Gulf of Aqaba is an oligotrophic water body hosting valuable coral reefs. In the Gulf, phytoplankton dynamics are driven by an annual cycle of stratification and mixing. Superimposed on that fairly regular pattern was the establishment of a shallow-water fish-farm initiative that increased gradually until its activity was terminated in June 2008. Nutrient, water temperature, irradiation, phytoplankton data gathered in the area during the years 2007–2009, covering the peak of the fish-farm activity and its cessation, were analyzed by means of statistical analyses and ecological models of phytoplankton dynamics. Two datasets, one from an open water station and one next to the fish farms, were used. Results show that nutrient concentrations and, consequently, phytoplankton abundance and seasonal succession were radically altered by the pollution originating from the fish-farm in the sampling station closer to it, and also that the fish-farm might even have influenced the open water station

  18. The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean

    Science.gov (United States)

    Kwiatkowski, Lester; Aumont, Olivier; Bopp, Laurent; Ciais, Philippe

    2018-04-01

    Ocean biogeochemical models are integral components of Earth system models used to project the evolution of the ocean carbon sink, as well as potential changes in the physical and chemical environment of marine ecosystems. In such models the stoichiometry of phytoplankton C:N:P is typically fixed at the Redfield ratio. The observed stoichiometry of phytoplankton, however, has been shown to considerably vary from Redfield values due to plasticity in the expression of phytoplankton cell structures with different elemental compositions. The intrinsic structure of fixed C:N:P models therefore has the potential to bias projections of the marine response to climate change. We assess the importance of variable stoichiometry on 21st century projections of net primary production, food quality, and ocean carbon uptake using the recently developed Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean biogeochemistry model. The model simulates variable phytoplankton C:N:P stoichiometry and was run under historical and business-as-usual scenario forcing from 1850 to 2100. PISCES-QUOTA projects similar 21st century global net primary production decline (7.7%) to current generation fixed stoichiometry models. Global phytoplankton N and P content or food quality is projected to decline by 1.2% and 6.4% over the 21st century, respectively. The largest reductions in food quality are in the oligotrophic subtropical gyres and Arctic Ocean where declines by the end of the century can exceed 20%. Using the change in the carbon export efficiency in PISCES-QUOTA, we estimate that fixed stoichiometry models may be underestimating 21st century cumulative ocean carbon uptake by 0.5-3.5% (2.0-15.1 PgC).

  19. Influence of Vitamin B Auxotrophy on Nitrogen Metabolism in Eukaryotic Phytoplankton

    Directory of Open Access Journals (Sweden)

    Erin M Bertrand

    2012-10-01

    Full Text Available While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12 and thiamine (B1 auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review evaluates the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1 B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2 B12 and B1 starvation impacts on polyamine biosynthesis, and (3 influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.

  20. Brazilian scientific production on phytoplankton studies: national determinants and international comparisons.

    Science.gov (United States)

    Nabout, J C; Carneiro, F M; Borges, P P; Machado, K B; Huszar, V L M

    2015-01-01

    In this study, we determined the temporal trends of publications by Brazilian authors on phytoplankton and compared these trends to those of other Latin American countries as well as to the 14 countries ranking ahead of Brazil in terms of scientific publication. To do this, we investigated phytoplankton studies published in an international database (Thomson-ISI). The data showed that Brazil plays an important role among other Latin American countries in the publication of these studies. Moreover, the trend of studies published on phytoplankton in Brazil was similar to trends recorded in the developed countries of the world. We conclude that studies can be more deliberately targeted to reduce national and international asymmetries by focusing on projects with large spatial scales and projects that concentrate on less-studied geographic regions, thus encouraging increased productivity in remote areas of the country. Associated with this is a necessary increase in high-impact journal publications, increasing the quantity and quality of Brazilian scientific studies on phytoplankton and, consequently, their global visibility.

  1. Role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh.

    Science.gov (United States)

    Islam, M Sirajul; Islam, M Shafiqul; Mahmud, Zahid H; Cairncross, Sandy; Clemens, John D; Collins, Andrew E

    2015-09-01

    In Bangladesh, cholera is endemic and maintains a regular seasonal pattern. The role of phytoplankton in maintaining endemicity and seasonality of cholera was monitored in Matlab, Bangladesh. Phytoplankton and water samples were collected from two ponds bi-weekly for 1 year. The association of Vibrio cholerae O1 with phytoplankton was studied by culture and direct fluorescent antibody techniques. The bio-physicochemical parameters of water were measured and data for cases of cholera were collected from the records of Matlab hospital. The correlation of cholera cases with levels of phytoplankton, V. cholerae and bio-physicochemical parameters of water was carried out using Pearson's correlation coefficients. V. cholerae O1 survived for 48 days in association with Anabaena variabilis in a culturable state, but survived for a year in a viable but non-culturable (VBNC) state. V. cholerae survived for 12 and 32 days in a culturable state in control water (without algae) and water with algae, respectively. There was a significant correlation between changing levels of cholera cases in the community and the blue green algae and total phytoplankton in the aquatic environment. A significant correlation was also found between the cholera cases and chlorophyll-a and VBNC V. cholerae O1 in the aquatic environment. This study demonstrated the role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Photosynthesis and the world food problem

    Directory of Open Access Journals (Sweden)

    Jerzy Poskuta

    2014-01-01

    Full Text Available Studies in the field of photosynthesis are particularly predisposed to play an important role in the solving of the main problem of today food for the world's growing population. The article presents data on the rate of population increase, the size of food production and yields of the most important crop plants. The relationship between the photosynthetic productivity of C3 and C4 plants and their yields is discussed. The problem of the rising atmospheric CO2 concentration and its influence on photosynthesis, photorespiration and accumulation of plant biomass is presented.

  3. Phytoplankton community and limnochemistry of Piburger See (Tyrol, Austria 28 years after lake restoration

    Directory of Open Access Journals (Sweden)

    Hansjörg THIES

    2002-02-01

    Full Text Available Phytoplankton community and limnochemistry of Piburger See, a small soft-water, meromictic lake situated at 913 m a.s.l. in a crystalline area of the Central Eastern Alps of Tyrol (Austria, were investigated 28 years after the beginning of lake restoration. Although long-term data of the lake show a declining trend in total phosphorus concentrations and phytoplankton biovolume, the response of Piburger See to the restoration measures carried out in 1970 was delayed by about 20 years. At present the lake is approaching its former oligotrophic level. The most evident difference between the past and present phytoplankton species composition of Piburger See is the actual absence of the Cyanophycean Oscillatoria limosa C. A. Agardh, which markedly increased during the first two decades after the lake restoration (1970-1987. The phytoplankton biovolume recorded in 1998 was lower than in the 1970s and 1980s, while seasonal patterns were similar to those recorded before and later on in the lake restoration. The lowest annual phytoplankton biovolume in 1998 occurred in early winter, while the absolute maximum was observed in metalimnetic water layers in late spring. In 1998 the intra-annual patterns of phytoplankton biovolume and chlorophyll-a compare well. Phytoplankton succession started in early 1998 under ice with coccal green algae followed by flagellated Chrysophyceae during spring. The mid-summer phytoplankton community was dominated by centric Bacillariophyceae, which were later replaced by coccal Cyanophyceae. During autumn, Dinophyceae and Chrysophyceae prevailed. Epilimnetic dominance of centric diatoms during mid summer appears to be a new feature, which in 1998 was related to a strong depletion of dissolved silica and nitrate. Long-term water chemistry and phytoplankton data were checked against local weather data in order to explain the delay in the re-oligotrophication process of Piburger See. However, no clear relationship could be

  4. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.

    Science.gov (United States)

    Lu, Xiaotian; Song, Shuai; Lu, Yonglong; Wang, Tieyu; Liu, Zhaoyang; Li, Qifeng; Zhang, Meng; Suriyanarayanan, Sarvajayakesavalu; Jenkins, Alan

    2017-10-18

    Eutrophication has become one of the most serious threats to aquatic ecosystems in the world. With the combined drivers of climate change and human activities, eutrophication has expanded from warm shallow lakes to cold-water lakes in relatively high latitude regions and has raised greater concerns over lake aquatic ecosystem health. A two-year field study was carried out to investigate water quality, phytoplankton characteristics and eutrophication status in a typical alpine glacial lake of Tianchi, a scenic area and an important drinking water source in the Xinjiang Autonomous Region of China, in 2014 and 2015. Clear seasonal and annual variations of nutrients and organic pollutants were found especially during rainy seasons. For the phytoplankton community, Bacillariophyta held the dominant position in terms of both species and biomass throughout the year, suggesting the dominant characteristics of diatoms in the phytoplankton structure in such a high-altitude cold-water lake. This was quite different from plain and warm lakes troubled with cyanobacterial blooming. Moreover, the dominant abundance of Cyclotella sp. in Tianchi might suggest regional warming caused by climate change, which might have profound effects on the local ecosystems and hydrological cycle. Based on water quality parameters, a comprehensive trophic level index TLI (Σ) was calculated to estimate the current status of eutrophication, and the results inferred emerging eutrophication in Tianchi. Results from Canonical Correspondence Analysis (CCA) and correlation analysis of phytoplankton genera and physico-chemical variables of water indicated that abiotic factors significantly influenced the phytoplankton community and its succession in Tianchi Lake. These abiotic factors could explain 77.82% of the total variance, and ammonium was identified as the most discriminant variable, which could explain 41% of the total variance followed by TP (29%). An estimation of annual nutrient loadings to

  5. Using photopigment biomarkers to quantify sub-lethal effects of petroleum pollution on natural phytoplankton assemblages

    International Nuclear Information System (INIS)

    Swistak, J.; Pinckney, J.; Piehler, M.; Paerl, H.

    1995-01-01

    Although much work has been undertaken to determine the toxicity of petroleum pollutants to phytoplankton, most studies have used pure cultures to monitor growth of selected phytoplankton species. Fewer have considered the net effect on entire microalgal communities. Using high performance liquid chromatography (HPLC) to characterize diagnostic microalgal pigments, the authors were able to simultaneously assess sub-lethal pollutant effects on entire communities as well as on individual phytoplankton functional groups. Incubations of natural water samples with diesel fuel, an important contributor to coastal petroleum pollution, revealed significant changes in photopigments and relative abundance of taxonomic groups at sub-lethal concentrations. Differential rates of change of indicator pigment concentrations suggest a range of sensitivity among phytoplankton groups. In preliminary experiments, cyanobacteria exhibited the greatest overall tolerance to the diesel fuel concentrations tested, while cryptomonads displayed the most sensitivity. The authors are currently evaluating the responses of seasonal phytoplankton populations from 3 sites exposed to varied levels of petroleum pollution. HPLC will be used to characterize phytoplankton populations and to determine if the most abundant groups are also the most tolerant of diesel fuel. Preliminary experiments indicate that diesel fuel pollution may modify the structure and function of phytoplankton communities and subsequently alter the trophodynamics of impacted systems

  6. A photosynthesis-based two-leaf canopy stomatal ...

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH

  7. Photosynthesis 2008 Gordon Research Conferences - June 22-27, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Willem Vermaas

    2009-08-28

    Photosynthesis is the most prevalent, natural way to convert solar energy to chemical energy in living systems, and is a major mechanism to ameliorate rising CO2 levels in the atmosphere and to contribute to sustainable biofuels production. Photosynthesis is a particularly interdisciplinary field of research, with contributions from plant and microbial physiology, biochemistry, spectroscopy, etc. The Photosynthesis GRC is a venue by which scientists with expertise in complementary approaches such as solar energy conversion, molecular mechanisms of electron transfer, and 'systems biology' (molecular physiology) of photosynthetic organisms come together to exchange data and ideas and to forge new collaborations. The 2008 Photosynthesis GRC will focus on important new findings related to, for example: (1) function, structure, assembly, degradation, motility and regulation of photosynthetic complexes; (2) energy and electron transfer in photosynthetic systems; regulation and rate limitations; (3) synthesis, degradation and regulation of cofactors (pigments, etc.); (4) functional, structural and regulatory interactions between photosynthesis and the physiology of the organism; (5) organisms with unusual photosynthetic properties, and insights from metagenomics and evolution; and (6) bioenergy strategies involving solar energy conversion, and practical applications for photosynthetic organisms.

  8. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes.

    Directory of Open Access Journals (Sweden)

    Jolanda M H Verspagen

    Full Text Available Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC, pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1 dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2 rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3 above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked

  9. Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes

    Science.gov (United States)

    Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef

    2014-01-01

    Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of

  10. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes.

    Science.gov (United States)

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita

    2016-01-01

    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  11. Studies on variations in phytoplankton community structure at three locations near MAPS

    International Nuclear Information System (INIS)

    Sahu, Gouri; Satpathy, K.K.; Patnaik, Shilpa; Selvanaygam, M.

    2008-01-01

    Studies on the spatial and seasonal variation in phytoplankton community structure was carried out in the coastal waters of Kalpakkam in the vicinity of Madras Atomic Power Station (MAPS). Seawater samples were collected from intake, forebay and outfall of MAPS cooling water system for phytoplankton enumeration. A decrease in population density was noticed from coastal water to outfall water (coastal water, 1.5 x 10 6 cells l -1 ; forebay, 9.5 x 10 5 cells l -1 and outfall, 8.6 x 10 5 cells l -1 ). A total of 235 phytoplankton species were recorded during the study period. Asterionellopsis glacialis emerged as the most dominant species throughout the study period contributing 2.9 - 49.3 %, 1.6 - 44% and 2.7 - 46 % of the total cell counts of coastal water, forebay and outfall respectively. A visible dominance of pennate diatoms over the centric population was observed. The increase in pennate to centric ratio in the order of coastal water < forebay < outfall with respect to species composition indicated an increase in the benthic forms of phytoplankton from intake to outfall. Furthermore, as compared to the earlier findings, the present results showed a distinct reduction in numerical abundance of phytoplankton with an elevation of species composition. (author)

  12. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter?

    International Nuclear Information System (INIS)

    Othman, Hiba Ben; Leboulanger, Christophe; Le Floc’h, Emilie; Hadj Mabrouk, Hassine; Sakka Hlaili, Asma

    2012-01-01

    Highlights: ► Polycyclic aromatic hydrocarbons (PAHs) in the marine environment are a hazardous chemical legacy. ► Benz(a)anthracene and fluoranthene are toxic to phytoplankton photosynthesis and growth in culture. ► Acute (photosynthesis) and chronic (population growth) effects have different thresholds. ► Toxicity depends on both the species selected as a model and the compound considered. ► Further study of the size/sensitivity relationship is required to draw more general conclusions. - Abstract: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L −1 . The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 μg L −1 , respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 μg L −1 for the picophytoplankton Picochlorum sp. to 418 μg L −1 for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when there is a lack of ecotoxicological data on hazardous chemicals, especially in marine microorganisms.

  13. Temporal Variations in the Photosynthetic Biosphere

    Science.gov (United States)

    Behrenfeld, Michael; Randerson, James; McClain, Charles; Feldman, Gene; Los, Sietse; Tucker, Compton; Falkowski, Paul; Field, Christopher; Frouin, Robert; Esaias, Wayne; hide

    2000-01-01

    In this report, we describe results from the first three years of global Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) ocean chlorophyll and land plant measurements. This time period covered the end of one of the largest El Nino events in the past century and a strong La Nina. During this transition, terrestrial plant photosynthesis exhibited only a small change, whereas a significant increase in oceanic photosynthesis was observed. Latitudinal distributions of ocean production indicated that this increase in photosynthesis during the La Nina was distributed in the equatorial belt as well as in high production areas. The analysis also illustrated the large 'missing bloom' in ocean phytoplankton in the southern ocean. While land photosynthesis remained fairly steady during the third year of SeaWiFS measurements, ocean phytoplankton production continued to increase, albeit at a lower rate than from 1997 to 1999. Our results represent the first quantification of interannual variability in global scale ocean productivity. Significant Findings: An increase in ocean production during the first three years of the SeaWiFS mission; a strong hemispheric difference in the latitudinal distribution of ocean photosynthesis.

  14. Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China

    Science.gov (United States)

    Zhao, Changsen; Liu, Changming; Xia, Jun; Zhang, Yongyong; Yu, Qiang; Eamus, Derek

    2012-02-01

    SummaryHealthy phytoplankton communities are the basis of healthy water ecosystems, and form the foundation of many freshwater food webs. Globally many freshwater ecosystems are degraded because of intensive human activities, so water ecosystem restoration is a burning issue worldwide. Selection of key regions for phytoplankton-related restoration is crucial for an effective aquatic eco-restoration. This paper presents a practical method for identification of key regions for phytoplankton-related restoration, using random forests (RFs) method to cluster sites based on dominance, biodiversity, water chemistry and ecological niche. We sampled phytoplankton for species richness and relative abundance and water quality in the Huai River basin (HRB), China to determine the phytoplankton communities' composition and structure and characterize of their ecological niches. A wider mean niche breadth of a species usually leads to a greater overlap with the niche of other species. Using these data and water quality indices, we identified the key regions for phytoplankton-related river restoration activities. Results indicate that our method for recognition of key regions is effective and practical and its application to the HRB identified the Northern Plain area as the key region for restoration. This area is severely polluted and contributes significantly to the HRB phytoplankton communities. Phytoplankton in this region is highly adaptable to environmental change and therefore will be relatively unharmed by environmental instability induced by restoration measures. During restoration, indices of water temperature, total phosphorus and chemical oxygen demand can be altered with little negative influence on phytoplankton communities, but measures that increase ammonia-nitrogen concentration would be highly detrimental. These results will provide valuable information for policy makers and stakeholders in water ecosystem restoration and sustainable basin management in the HRB.

  15. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Directory of Open Access Journals (Sweden)

    Darja Skribe Dimec

    2017-03-01

    Full Text Available Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about photosynthesis by rote. Consequently, they have difficulties understanding this vital process. Research also shows many misconceptions in relation to photosynthesis among students of different ages. Based on these, the main aim of our study was to explore the scientific conceptions about photosynthesis held by primary school pupils and student teachers of biology. Data were collected using a questionnaire containing seven biology content questions. The sample consisted of 634 participants, 427 primary school pupils (aged 11–14, and 207 student teachers of biology (aged 20–23. We found that the populations of primary school pupils and student teachers of biology differ greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex understanding of photosynthesis, while pupils showed some misconceptions (location of chlorophyll and photosynthesis in a plant, transformation of energy in photosynthesis. Analysis of the development of scientific conceptions about photosynthesis with age showed that there is very little progress among primary school pupils and none among biology student teachers. More involvement of student teachers of biology in practical work at primary schools during their study was suggested to make student teachers aware of, and better understand pupils’ misconceptions.

  16. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    Full Text Available The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA. OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3 for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm in five of them while the other five served as controls (380 μatm. We found: (1 Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2 Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms while others (e.g. Synechococcus were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3 Picoeukaryotic phytoplankton (0.2-2 μm showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  17. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Science.gov (United States)

    Bach, Lennart T; Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  18. Simulated ocean acidification reveals winners and losers in coastal phytoplankton

    Science.gov (United States)

    Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean. PMID:29190760

  19. General lighting requirements for photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, D.R. [Univ. of Dayton, OH (United States)

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the light harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.

  20. Subsurface phytoplankton blooms fuel pelagic production in the North Sea

    DEFF Research Database (Denmark)

    Richardson, Kathrine; Visser, Andre; Pedersen, Flemming

    2000-01-01

    The seasonal phytoplankton biomass distribution pattern in stratified temperate marine waters is traditionally depicted as consisting of spring and autumn blooms. The energy source supporting pelagic summer production is believed to be the spring bloom. However, the spring bloom disappears...... relatively quickly from the water column and a large proportion of the material sedimenting to the bottom following the spring bloom is often comprised of intact phytoplankton cells. Thus, it is easy to argue that the spring bloom is fueling the energy demands of the benthos, but more difficult to argue...... convincingly that energy fixed during the spring bloom is fueling the pelagic production occurring during summer months. We argue here that periodic phytoplankton blooms are occurring during the summer in the North Sea at depths of >25 m and that the accumulated new production [sensu (Dugdale and Goering...

  1. Exploring the link between micro-nutrients and phytoplankton in the Southern Ocean during the 2007 austral summer

    Directory of Open Access Journals (Sweden)

    Christel eHassler

    2012-07-01

    Full Text Available Bottle assays and large-scale fertilisation experiments have demonstrated that, in the Southern Ocean, iron often controls the biomass and the biodiversity of primary producers. To grow, phytoplankton need numerous other trace metals (micronutrients required for the activity of key enzymes and other intracellular functions. However, little is known of the potential these other trace elements have to limit the growth of phytoplankton in the Southern Ocean. This study investigates the link between the distribution of several micronutrients (Zn, Co, Cu, Cd, Ni and phytoplankton from samples collected during the SAZ-Sense oceanographic expedition (RV Aurora Australis, Jan.–Feb. 2007. Larger phytoplankton are usually associated with lower diffusive supply and higher micronutrient requirement; for this reason, the delineation between phytoplankton larger than 10 µm and those with a size ranging from 0.8–10 µm was made. In addition, different species of phytoplankton may have different requirements to sustain their growth; the phytoplankton biodiversity here was inferred using biomarker pigments. This study, therefore, attempts to elucidate whether micronutrients other than iron need to be considered as parameters for controlling the phytoplankton growth in the Australian sector of the Southern Ocean. Understanding of the parameters controlling phytoplankton is paramount, as it affects the functioning of the Southern Ocean, its marine resources and ultimately the global carbon cycle.

  2. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    Science.gov (United States)

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Production of Biodiesel from Lipid of Phytoplankton Chaetoceros calcitrans through Ultrasonic Method

    Science.gov (United States)

    Kwangdinata, Raymond; Raya, Indah; Zakir, Muhammad

    2014-01-01

    A research on production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method has been done. In this research, we carried out a series of phytoplankton cultures to determine the optimum time of growth and biodiesel synthesis process from phytoplankton lipids. Process of biodiesel synthesis consists of two steps, that is, isolation of phytoplankton lipids and biodiesel synthesis from those lipids. Oil isolation process was carried out by ultrasonic extraction method using ethanol 96%, while biodiesel synthesis was carried out by transesterification reaction using methanol and KOH catalyst under sonication. Weight of biodiesel yield per biomass Chaetoceros calcitrans is 35.35%. Characterization of biodiesel was well carried out in terms of physical properties which are density and viscosity and chemical properties which are FFA content, saponification value, and iodine value. These values meet the American Society for Testing and Materials (ASTM D6751) standard levels, except for the viscosity value which was 1.14 g·cm−3. PMID:24688372

  4. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    Directory of Open Access Journals (Sweden)

    Leonilde Roselli

    Full Text Available Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape. We tested the hypothesis focusing on resource availability (nutrients and light and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities.

  5. Why large cells dominate estuarine phytoplankton

    Science.gov (United States)

    Cloern, James E.

    2018-01-01

    Surveys across the world oceans have shown that phytoplankton biomass and production are dominated by small cells (picoplankton) where nutrient concentrations are low, but large cells (microplankton) dominate when nutrient-rich deep water is mixed to the surface. I analyzed phytoplankton size structure in samples collected over 25 yr in San Francisco Bay, a nutrient-rich estuary. Biomass was dominated by large cells because their biomass selectively grew during blooms. Large-cell dominance appears to be a characteristic of ecosystems at the land–sea interface, and these places may therefore function as analogs to oceanic upwelling systems. Simulations with a size-structured NPZ model showed that runs of positive net growth rate persisted long enough for biomass of large, but not small, cells to accumulate. Model experiments showed that small cells would dominate in the absence of grazing, at lower nutrient concentrations, and at elevated (+5°C) temperatures. Underlying these results are two fundamental scaling laws: (1) large cells are grazed more slowly than small cells, and (2) grazing rate increases with temperature faster than growth rate. The model experiments suggest testable hypotheses about phytoplankton size structure at the land–sea interface: (1) anthropogenic nutrient enrichment increases cell size; (2) this response varies with temperature and only occurs at mid-high latitudes; (3) large-cell blooms can only develop when temperature is below a critical value, around 15°C; (4) cell size diminishes along temperature gradients from high to low latitudes; and (5) large-cell blooms will diminish or disappear where planetary warming increases temperature beyond their critical threshold.

  6. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    Science.gov (United States)

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  7. Phytoplankton on the western coasts of Baja California in two different seasons in 1998

    Directory of Open Access Journals (Sweden)

    David U. Hernández-Becerril

    2007-12-01

    Full Text Available Phytoplankton was studied in two different seasons of 1998 (March-April and December, during two cruises along the western coasts of Baja California, in three zones. Two different protocols for obtaining and studying phytoplankton were followed. In the March-April season, phytoplankton had relatively low species richness and was dominated in cell density (up to 93% by coccolithophorids (mainly Emiliania huxleyi, together with nanoplanktonic centric and pennate diatoms, with abundances ranging from 5.4 103 to 1.2 105 cells L-1. In December, phytoplankton had higher species richness and was represented by larger, chain-forming diatom species, such as Pseudonitzschia delicatissima and P. pungens, which were widespread and numerically significant. There was a relative scarcity of coccolithophorids and thecate dinoflagellates, and densities were between 7 102 and 1.4 106 cells L-1. Hydrographic and oceanographic conditions in March-April were influenced by the occurrence of El Niño and the phytoplankton structure was found to be modified accordingly, with nanoplanktonic coccolithophorids and diatoms being significant contributors to the total abundance. In contrast, post-upwelling conditions might have favoured relatively high densities of Pseudonitzschia and other diatoms in December, 1998. Coccolithophorids have not been previously regarded as important contributors to the phytoplankton abundances in Baja California.

  8. Quantifying interspecific coagulation efficiency of phytoplankton

    DEFF Research Database (Denmark)

    Hansen, J.L.S.; Kiørboe, Thomas

    1997-01-01

    . nordenskjoeldii. Mutual coagulation between Skeletonema costatum and the non-sticky cel:ls of Ditylum brightwellii also proceeded with hall the efficiency of S. costatum alone. The latex beads were suitable to be used as 'standard particles' to quantify the ability of phytoplankton to prime aggregation...

  9. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  10. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  11. Effects of nutrients and zooplankton on the phytoplankton community structure in Marudu Bay

    Science.gov (United States)

    Tan, Kar Soon; Ransangan, Julian

    2017-07-01

    Current study was carried out to provide a better understanding on spatial and temporal variations in the phytoplankton community structure in Marudu Bay, an important nursery ground for fishery resources within the Tun Mustapha Marine Park and Coral Triangle Initiative, and their relationship with environmental variables. Samplings were conducted monthly from April 2014 to April 2015 in Marudu Bay, Malaysia. Water samples were collected for nutrients analysis, zooplankton and phytoplankton counting. Moreover, the in situ environmental parameters were also examined. The field study showed a total of forty seven phytoplankton genera, representative of 33 families were identified. The nutrient concentrations in Marudu Bay was low (mesotrophic) throughout the year, where the phytoplankton community was often dominated by Chaetoceros spp. and Bacteriastrum spp. In general, increase in nitrate concentration triggered the bloom of centric diatom, Chaetoceros spp. and Bacteriastrum spp. in Marudu Bay. However, the bloom of these phytoplankton taxa did not occur in the presence of high ammonia concentration. In addition, high abundance of zooplankton also a limiting factor of the phytoplankton blooms particularly at end of southwest monsoon. High silica concentration promoted the growth of pennate diatoms, Proboscia spp. and Thallassionema spp., but the depletion of silica quickly terminated the bloom. Interestingly, our study showed that Chaetoceros spp., tolerated silica depletion condition, but the average cell size of this taxon reduced significantly. In summary, the phytoplankton community structure in mesotrophic environment is more sensitive to the changes in zooplankton abundance, nutrient concentration and its ratio than that in nutrient rich environments. This study also recommends that bivalve farming at industrial scale is not recommended in Marudu Bay because it potentially depletes the primary productivity hence jeopardizing the availability of live food for

  12. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China.

    Science.gov (United States)

    Tian, Chang; Pei, Haiyan; Hu, Wenrong; Hao, Daping; Doblin, Martina A; Ren, Ying; Wei, Jielin; Feng, Yawei

    2015-11-01

    Hongze Lake is a large, shallow, polymictic, eutrophic lake in the eastern China. Phytoplankton functional groups in this lake were investigated from March 2011 to February 2013, and a comparison was made between the eastern, western, and northern regions. The lake shows strong fluctuations in water level caused by monsoon rains and regular hydraulic controls. By application of the phytoplankton functional group approach, this study aims to investigate the spatial and temporal dynamics and analyze their influencing factors. Altogether, 18 functional groups of phytoplankton were identified, encompassing 187 species. In order to seek the best variable describing the phytoplankton functional group distribution, 14 of the groups were analyzed in detail using redundancy analysis. Due to the turbid condition of the lake, the dominant functional groups were those tolerant of low light. The predominant functional groups in the annual succession were D (Cyclotella spp. and Synedra acus), T (Planctonema lauterbornii), P (Fragilaria crotonensis), X1 (Chlorella vulgaris and Chlorella pyrenoidosa), C (Cyclotella meneghiniana and Cyclotella ocellata), and Y (Cryptomonas erosa). An opposite relationship between water level and the biomass of predominant groups was observed in the present study. Water level fluctuations, caused by monsoonal climate and artificial drawdown, were significant factors influencing phytoplankton succession in Hongze Lake, since they alter the hydrological conditions and influence light and nutrient availability. The clearly demonstrated factors, which significantly influence phytoplankton dynamics in Hongze Lake, will help government manage the large shallow lakes with frequent water level fluctuations.

  13. Climate warming and interannual variability of phytoplankton phenology in the Northern Red Sea

    KAUST Repository

    Gittings, John

    2016-01-01

    of phytoplankton biomass), we investigate the potential impacts of climate warming on phytoplankton abundance and phenology in the Northern Red Sea by exploring the mechanistic links with the regional physical environment. The results of the analysis reveal that

  14. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    Science.gov (United States)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  15. Photosynthesis: The Path of Carbon in Photosynthesis and the Primary Quantum Conversion Act of Photosynthesis

    Science.gov (United States)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and its variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll is a physical sensitizer handing its excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, is given.

  16. Studies on phytoplankton with reference to dinoflagellates

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, R.K.

    Bibliography Publications Appendices Statement As required under the University ordinance 0.19.8 (vi), I state that the present thesis titled ³Studies on phytoplankton with reference to dinoflagellates´ is my original contribution...

  17. Efficiency for solar energy conversion in rice population estimated from crop photosynthesis and respiration under field conditions (Part 1). Ratio of respiration to photosynthesis during the ripening stage. [Effect of planting data, heading time, variety, etc

    Energy Technology Data Exchange (ETDEWEB)

    Imaki, Tadashi; Ishizuka, Hitoshi; Hayakawa, Junji

    1987-12-21

    According to the results of measuring crop photosynthesis and respiration of rice population, a comparative experiment on the variations of the ratio of respiration to photosynthesis (R/P ratio) due to the difference of the rice planting time or the heading time was carried out using extremely early-maturing and early or medium-maturing varieties. On the measured data of photosynthesis and respiration which were observed with change of the growth, the R/P ratio were obtained twenty days before to thirty days after the heading time. As the results, it was found that the R/P ratio of the group with the heading time at the end of July was about 10 to 20 % higher than that of another group with the heading time after middle of August. This means that the apparent energy conversion efficiency may be affected by the differences of the planting time, the heading time and the temperature condition. Hitherto, in determination of the rice-planting time, quantity of solar radiation in the growth and ripening stages was apt to be regarded as important. However, in consideration of true suitable planting time, the study from the aspect of the energy conversion efficiency is also required. (7 figs, 9 tabs, 8 refs)

  18. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  19. The influence of plant-associated filter feeders on phytoplankton biomass: a mesocosm study

    NARCIS (Netherlands)

    Vanderstukken, M.; Declerck, S.A.J.; Pals, A.; De Meester, L.; Muylaert, K.

    2010-01-01

    Low phytoplankton biomass usually occurs in the presence of submerged macrophytes, possibly because submerged macrophytes enhance top-down control of phytoplankton by offering a refuge for efficient grazers like Daphnia against fish predation. However, other field studies also suggest that submerged

  20. Seasonal Variations in the Structure of Phytoplankton Communities near Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.-K.; Choi, H.-C.; Moon, H.-T.

    2015-01-01

    To investigate effects of thermal discharge effluent from nuclear power plants on the surrounding marine environment, especially on the phytoplankton community, environmental data gained by seasonal survey around Hanbit and Hanul nuclear power plants during the periods of 11 years from 1999 to 2009 were analysed. The data used were from environmental survey and assessment around Hanbit and Hanul nuclear power plants of Korea during the period of 11 years from 1999 to 2009. The purposes of this study are (1) to evaluate the effect of operation of nuclear power plants on phytoplankton community, (2) to find out whether the thermal discharge affected negatively phytoplankton community, and (3) to evaluate the difference of thermal discharge influence on phytoplankton community between West and East coastal area, Korea. Through this study, (1) quantitative evaluation of the effect of thermal discharge effluent on marine ecology, especially on abundance and biomass of phytoplankton were performed, (2) found that depending on the season, the effect of thermal discharge effluent from nuclear power plant on the marine environment is not always negative (i.e. warm water may increase or prevent decline of abundance in seasons with low temperature such as winter in Hanbit area), and (3) found that same thermal discharge effluent rate to different marine environments, such as west and east coast of Korea, does not result in same effect on the marine ecosystem. (author)

  1. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  2. Localization and Tracking of Submerged Phytoplankton Bloom Patches by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.

    2012-12-01

    Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in

  3. Bacterial and protist community changes during a phytoplankton bloom

    KAUST Repository

    Pearman, John K.

    2015-10-01

    The present study aims to characterize the change in the composition and structure of the bacterial and microzooplankton planktonic communities in relation to the phytoplankton community composition during a bloom. High-throughput amplicon sequencing of regions of the 16S and 18S rRNA gene was undertaken on samples collected during a 20 day (d) mesocosm experiment incorporating two different nutrient addition treatments [Nitrate and Phosphate (NPc) and Nitrate, Phosphate and Silicate (NPSc)] as well as a control. This approach allowed us to discriminate the changes in species composition across a broad range of phylogenetic groups using a common taxonomic level. Diatoms dominated the bloom in the NPSc treatment while dinoflagellates were the dominant phytoplankton in the control and NPc treatment. Network correlations highlighted significant interactions between OTUs within each treatment including changes in the composition of Paraphysomonas OTUs when the dominant Chaetoceros OTU switched. The microzooplankton community composition responded to changes in the phytoplankton composition while the prokaryotic community responded more to changes in ammonia concentration.

  4. QUALITATIVE COMPOSITION OF PHYTOPLANKTONS IN DIFFERENTLY MANURED CARP PONDS

    Directory of Open Access Journals (Sweden)

    Ljubica Debeljak

    1997-04-01

    Full Text Available Researches on qualitative composition of phytoplanktons in differently manured fish-ponds "Jelas" were carried out in 1996. The carp fingerling from larve to its second month was nurtured in three fish-ponds (A,B,C with the plantation of larves of 1,000,000 ind.ha-1. Larves and carp fry were nurtured by trouvit and wheat flour. The fish-pond A was controlled but not manured; the fish-pond B was fertilized by the total of 200 kg.ha-1 NPK (15:15:15 and the fish-pond C was fertilized by the total of 75 l.ha-1 of UAN and 75 kg.l-1 of NP (12:52. All fish-ponds had similar water chemism. In the qualitative composition of phytoplanktons there were stated 93 kinds, members of systematic groups Cyanophyta (10%, Euglenophyta (16.2%, Pyrrophyta (2%, Chrysophyta (39.4% and Chlorophyta (32%. All fish-ponds had similar qualitative composition of phytoplanktons with the flora similarity quotient from 65.5% to 72%.

  5. Net phytoplankton of the Admiralty Bay (King George Island, South Shetland Islands) in 1983

    OpenAIRE

    Ligowski, Ryszard

    1986-01-01

    Paper received 13 July 1985. Phytoplankton sampling from 13 stations situated in Admiralty Bay was carried out in March. April, May, October and November 1983. Wet settling volume of seston, its dry weight, number of cells under 1 m², and qualitative composition of phytoplankton were determined. It was found that amount of phytoplankton was decreasing in April and increasing again in November after the winter season. The share of benthic and periphyton species in the qualita...

  6. The light absorption by suspended particles, phytoplankton and dissolved organic matter in deep-and coastal waiters of the Black Sea impact on algorithms for remote sensing of chlorophyll -a-.

    Science.gov (United States)

    Churilova, T.; Suslin, V.; Berseneva, G.; Georgieva, L.

    At present time for the analysis and prediction of marine ecosystem state Chlorophyll and Primary production models based on optical satellite data are widely used. However, the SeaWiFS algorithms providing the transformation of color images to chlorophyll maps give inaccurate estimation of chlorophyll "a" (Chl "a") concentration in the Black Sea - an overestimation approximately two times in summer and an underestimation - ~1,5 times during the large diatom bloom in winter-spring. A development of the regional Chl "a" algorithm requires an estimation of spectral characteristics of all light absorbing components and their relationships with Chl "a" concentration. With this aim bio-optical monitoring was organized in two fixed stations in deep-water central western part of the Black Sea and in shelf waters near the Crimea. The weekly monitoring in deep-waters region allowed to determine phytoplankton community succession: seasonal dynamics of size and taxonomic structure, development of large diatoms blooming in March and coccolithophores - in June. The significant variability in pigment concentration and species content of phytoplankton is accompanied by high variability in shape of the phytoplankton absorption spectra and in values of chl a-specific absorption coefficients. This variability had seasonal character depending mostly on the optical status of phytoplankton cells and partly on taxonomic structure of phytoplankton. The pigment packaging parameter fluctuated from 0.64-0.68 (October-December) to 0.95-0.97 (April-May). The package effect depended on intracellular pigment concentration and the size and geometry of cells, which change significantly over the year, because of extremely different environmental conditions. The relationships between phytoplankton specific absorption coefficients (at 412, 443, 490, 510, 555, 678 nm) and Chl "a" concentration have been described by power functions. The contribution of detritus to total particulate absorption

  7. Phytoplanktons and zooplanktons diversity in karachi coastal seawater under high and low tide during winter monsoon

    International Nuclear Information System (INIS)

    Yaqoob, N.; Mashiatullah, A.; Sher, N.; Javed, T.; Ghaffar, A.

    2013-01-01

    This paper represents the population density of phytoplanktons and zooplanktons recorded during the marine environmental studies at Karachi coast in the month of February 2011. Samples were collected by towing net, preserved and quantification and identification was carried out under light microscope. Twenty-three phytoplanktons species and nine zooplankton groups were recorded in the seawater from the sampling area of 10 square kilometers. Coscinodiscus and Copepods were dominant in the population of phytoplankton and zooplankton, respectively. Phytoplankton population density increased while zooplankton abundance decreased offshore from the coastline in the open sea. (author)

  8. Microbial photosynthesis in the harnessing of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Pirt, S J

    1982-01-01

    The shortage of fossil fuels restricts the world supply of reduced carbon compounds and energy sources. Biotechnology offers the most feasible route to renewing the supplies of reduced carbon compounds. This involves recycling of CO/sub 2/ through photosynthesis. Conventional agriculture has little or no potential for supplying biomass and its derivatives on sufficient scale to offer an alternative to the fossil fuels. The agricultural wastes, on the whole, are intractable to conversion into useful carbon and energy sources and in any case are not available in amounts to provide a significant alternative to the fossil fuels. In contrast, microbial photosynthesis, optimised in photobioreactors, has vast potential to provide organic matter on a scale to match the consumption of fossil fuels. The quantative study of microbial photosynthesis as a biotechnological route to biomass has been neglected. As a result there is a chaos of conflicting data on fundamental parameters, for example, the photosynthetic efficiency of biomass production. New photosynthetic biotechnology with fully controlled continuous-culture systems is providing unequivocal values for the parameters. For the scale-up of microbial photosynthesis a tubular-loop reactor is proposed. (Refs. 14).

  9. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China.

    Directory of Open Access Journals (Sweden)

    Jianming Deng

    Full Text Available We examined the potential effects of environmental variables, and their interaction, on phytoplankton community succession in spring using long-term data from 1992 to 2012 in Lake Taihu, China. Laboratory experiments were additionally performed to test the sensitivity of the phytoplankton community to nutrient concentrations and temperature. A phytoplankton community structure analysis from 1992 to 2012 showed that Cryptomonas (Cryptophyta was the dominant genus in spring during the early 1990s. Dominance then shifted to Ulothrix (Chlorophyta in 1996 and 1997. However, Cryptomonas again dominated in 1999, 2000, and 2002, with Ulothrix regaining dominance from 2003 to 2006. The bloom-forming cyanobacterial genus Microcystis dominated in 1995, 2001 and 2007-2012. The results of ordinations indicated that the nutrient concentration (as indicated by the trophic state index was the most important factor affecting phytoplankton community succession during the past two decades. In the laboratory experiments, shifts in dominance among phytoplankton taxa occurred in all nutrient addition treatments. Results of both long term monitoring and experiment indicated that nutrients exert a stronger control than water temperature on phytoplankton communities during spring. Interactive effect of nutrients and water temperature was the next principal factor. Overall, phytoplankton community composition was mediated by nutrients concentrations, but this effect was strongly enhanced by elevated water temperatures.

  10. A glimpse into the future composition of marine phytoplankton communities

    Directory of Open Access Journals (Sweden)

    Esteban eAcevedo-Trejos

    2014-07-01

    Full Text Available It is expected that climate change will have significant impacts on ecosystems. Most model projections agree that the ocean will experience stronger stratification and less nutrient supply from deep waters. These changes will likely affect marine phytoplankton communities and will thus impact on the higher trophic levels of the oceanic food web. The potential consequences of future climate change on marine microbial communities can be investigated and predicted only with the help of mathematical models. Here we present the application of a model that describes aggregate properties of marine phytoplankton communities and captures the effects of a changing environment on their composition and adaptive capacity. Specifically, the model describes the phytoplankton community in terms of total biomass, mean cell size, and functional diversity. The model is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate and is tested under two emission scenarios: SRES A2 or ``business as usual'' and SRES B1 or ``local utopia''. We find that all three macroecological properties will decline during the next century in both regions, although this effect will be more pronounced in the temperate region. Being consistent with previous model predictions, our results show that a simple trait-based modelling framework represents a valuable tool for investigating how phytoplankton communities may reorganize under a changing climate.

  11. Auxin transport in leafy pea stem cuttings is partially driven by photosynthesis

    International Nuclear Information System (INIS)

    Kumpula, C.L.; Potter, J.R.

    1987-01-01

    When 14 C-IAA was applied to the apex of disbudded leafy pea stem cuttings (15 cm long), the movement of 14 C-IAA to the base of the cuttings after 24 h was influenced by the photosynthetic rate. In the absence of photosynthesis, light did not influence 14 C-IAA movement. Photosynthesis was altered by varying light, CO 2 concentration, or stomatal aperature (blocked with an antitranspirant). Radioactivity (identified by co-chromatography) was 25, 60, and 5% IAA, IAA-aspartate, and indolealdehyde respectively regardless of treatment. Adventitious root formation was reduced 50 to 95% and movement of IAA was inhibited 50 to 70% by decreasing gross photosynthesis 90 to 100%. Apparently, photosynthesis partially drives the movement of IAA from the apex to the base where roots arise. This gives a probably role of photosynthesis in rooting, because in this system virtually no rooting will take place without exogenous auxin and at least a low level of gross photosynthesis

  12. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity

    NARCIS (Netherlands)

    Alderkamp, A.C.; Mills, M.M.; van Dijken, G.L.; Laan, P.; Thuróczy, C.-E.; Gerringa, L.J.A.; de Baar, H.J.W.; Payne, C.D.; Visser, R.J.W.; Buma, A.G.J.; Arrigo, K.R.

    2012-01-01

    The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted

  13. Photosynthesis efficiency for different wavelengths; Fotosynthese-efficiency bij verschillende golflengten

    Energy Technology Data Exchange (ETDEWEB)

    Snel, J.F.H.; Meinen, E.; Bruins, M.A.; Van Ieperen, W.; Hogewoning, S.W.; Marcelis, L.F.M. [Wageningen UR Glastuinbouw, Wageningen (Netherlands)

    2012-04-15

    LED lighting has recently been introduced into Dutch horticulture. LED development so far indicates that in the near future LED's will be more energy efficient than high pressure sodium lamps. Crop light interception and photosynthesis efficiency are wavelength dependent. Therefore, LED colours for maximum crop photosynthesis, growth and development should be identified. Wageningen UR has investigated light interception and photosynthesis at different wavelengths for tomato, cucumber and rose. Measuring protocols and equipment were developed for leaf photosynthesis measurements in the laboratory and in greenhouses. A crop simulation model was used for up-scaling the leaf level results to crop level photosynthesis. For the vegetable crops the photosynthesis spectra are very similar to the generalised photosynthesis spectrum. Red light is most efficient for leaf photosynthesis. Light from red (ca. 645nm) LED's was maximally 13% more efficient than High Pressure Sodium light. For reddish leaves of the rose cultivar Prestige, red LED light was up to 35% more efficient. These figures apply to the momentary efficiency of leaf photosynthesis at 100 {mu}mol.m{sup -2}.s{sup -1} (PAR) and suggest that use of red light can lead to higher photosynthesis, especially for certain rose cultivars [Dutch] LED verlichting heeft zijn intrede gedaan in de Nederlandse glastuinbouw. De LED ontwikkeling laat zien dat in de nabije toekomst LED's efficiënter zijn dan SON-T verlichting. Lichtonderschepping en fotosynthese efficiëntie zijn afhankelijk van de kleur van het licht. Voor optimale fotosynthese, groei en ontwikkeling zouden de beste LED kleuren uitgezocht moeten worden. Wageningen UR heeft lichtonderschepping en fotosynthese bij verschillende lichtkleuren onderzocht bij tomaat, komkommer en roos. Protocollen en apparatuur werden ontwikkeld voor meting van bladfotosynthese en lichtonderschepping in het laboratorium en in de kas. Met een gewassimulatiemodel werd de

  14. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  15. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    Science.gov (United States)

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific…

  16. Elemental analysis of single phytoplankton cells using the Lund nuclear microprobe

    International Nuclear Information System (INIS)

    Pallon, Jan; Elfman, Mikael; Kristiansson, Per; Malmqvist, Klas; Graneli, Edna; Sellborn, Anders; Karlsson, Chatarina

    1999-01-01

    The occurrence of annual marine phytoplankton blooms is becoming a global problem. In Europe, the NUTOX project supported by the EC investigates if unbalanced nutrient compositions in the water promote the dominance of harmful phytoplankton species. One of the tasks is the determination of the elemental composition of single phytoplankton cells. This is carried out using the Lund Nuclear Microprobe with a special focus on C, N, P and K. The overall aim is to understand the mechanism leading to toxin production, model it and eventually propose a counteracting method. The preparative method, used to isolate single living cells while reducing their salt environment, is an important part of the analytical procedure. A comparison of light element detection using backscattering from protons and nuclear reaction analysis using deuterons is made

  17. Response of phytoplankton to an experimental fish culture in net cages in a subtropical reservoir.

    Science.gov (United States)

    Bartozek, E C R; Bueno, N C; Feiden, A; Rodrigues, L C

    2016-01-01

    This study aimed to evaluate nutrients concentration and spatial-temporal changes in phytoplankton biovolume during an experimental fish culture in net cages in a lateral arm of Salto Caxias reservoir, Brazil. Two sampling stations were placed in the affected lateral arm and other two in a cageless lateral arm. Neither abiotic variables nor phytoplankton biovolume presented significant differences between the treatments. Only temporal changes were confirmed by the analysis performed. Both lateral arms were classified as oligotrophic, reflecting low influence of the net cages. Phytoplankton growth seems to be limited by nitrogen. Biovolume values were, in general, low and five major functional groups were recognized (E, F, G, K and P). In summer higher biovolume values were observed and representatives of Chlorophyceae and Cyanobacteria belonging to the functional groups F and K, respectively, were the most important. In winter phytoplankton was mainly composed by Bacillariophyceae taxa from P group. G group was also restricted to winter and E group occurred in winter and summer. The variations recorded in phytoplankton structure appear to have been mainly influenced by seasonal changes in temperature, precipitation and nutrients availability. The effects of net cages on the abiotic variables and phytoplankton biovolume appear to have been small, probably due to the small number of net cages employed and the system dilution capacity. However, a permanent monitoring of phytoplankton is recommended, since this environment has a carrying capacity, from which the trophic state may increase.

  18. Phytoplankton response to a plume front in the northern South China Sea

    Science.gov (United States)

    Li, Qian P.; Zhou, Weiwen; Chen, Yinchao; Wu, Zhengchao

    2018-04-01

    Due to a strong river discharge during April-June 2016, a persistent salinity front, with freshwater flushing seaward on the surface but seawater moving landward at the bottom, was formed in the coastal waters west of the Pearl River estuary (PRE) over the northern South China Sea (NSCS) shelf. Hydrographic measurements revealed that the salinity front was influenced by both the river plume and coastal upwelling. On shipboard nutrient-enrichment experiments with size-fractionation chlorophyll a measurements were taken on both sides of the front as well as in the frontal zone to diagnose the spatial variations of phytoplankton physiology across the frontal system. We also assessed the size-fractionated responses of phytoplankton to the treatment of plume water at the frontal zone and the sea side of the front. The biological impact of vertical mixing or upwelling was further examined by the response of surface phytoplankton to the addition of local bottom water. Our results suggested that there was a large variation in phytoplankton physiology on the sea side of the front, driven by dynamic nutrient fluxes, although P limitation was prevailing on the shore side of the front and at the frontal zone. The spreading of plume water at the frontal zone would directly improve the growth of microphytoplankton, while nano- and picophytoplankton growths could have become saturated at high percentages of plume water. Also, the mixing of bottom water would stimulate the growth of surface phytoplankton on both sides of the front by altering the surface N/P ratio to make it closer to the Redfield stoichiometry. In summary, phytoplankton growth and physiology could be profoundly influenced by the physical dynamics in the frontal system during the spring-summer of 2016.

  19. Spatial and temporal patterns of phytoplankton composition in Burullus Lagoon, Southern Mediterranean Coast, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Zein Alabedin Nassar

    2014-01-01

    Full Text Available Burullus Lagoon is a shallow, turbid, and nutrient replete system, suffering from high level of aquatic plants, expansion in fish farming and agricultural drainage discharges. Phytoplankton was evaluated based on four years monitoring seasonally from summer 2009 to spring 2013 at 12 stations representing the eastern, central and western basins of the lagoon. Over the 4-year study period, a total of 283 taxa from 96 genera and eight classes were recorded. The lagoon showed a pronounced algal periodicity. Phytoplankton community was generally dominated by Chlorophyceae, Bacillariophyceae and Cyanobacteria. The western basin had the lowest mean salinity values and highest phytoplankton abundance, in which, blooms of Chlorophyceae, Bacillariophyceae and Cyanobacteria were common. The eastern basin had lowest phytoplankton density and chlorophytes were dominant followed by Bacillariophyceae and/or Cyanobacteria. Euglenophyceae strongly appeared in the eastern basin especially at the second station, which is located in front of El Burullus Drain. The central basin is subjecting to high loading of phosphorus and nitrogen from agricultural drains and had a prevalence of chlorophyte blooms which constituted more than 50% of the total abundance. This study has provided substantial evidence that the phytoplankton abundance and community are governed by the environmental conditions which vary each year, so does the phytoplankton seasonal succession. Generally, about 25-50% reduction was recorded in the phytoplankton densities between 2009 and 2013 and a dramatic decrease in the abundance of many nuisance and eutrophic species was evident. No sign of eutrophication was observed, and recession of Cyanobacteria blooming suggests a major improvement in the water quality of Burullus Lagoon.

  20. Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge.

    Science.gov (United States)

    Bertrand, Erin M; McCrow, John P; Moustafa, Ahmed; Zheng, Hong; McQuaid, Jeffrey B; Delmont, Tom O; Post, Anton F; Sipler, Rachel E; Spackeen, Jenna L; Xu, Kai; Bronk, Deborah A; Hutchins, David A; Allen, Andrew E

    2015-08-11

    Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.

  1. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    Science.gov (United States)

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  2. PHYTOPLANKTON ASSEMBLAGES AT FISH FARM IN MASLINOVA BAY (THE ISLAND OF BRAČ

    Directory of Open Access Journals (Sweden)

    Sanda Skejić

    2012-07-01

    Full Text Available The aim of this study was to establish phytoplankton composition at the sea bream (Sparus aurata and sea bass (Dicentrarchus labrax fish farm in the middle Adriatic Sea. The investigation was performed from September 2005 to September 2006 at a station located in Maslinova Bay at the island of Brač. Considering the whole research period, diatoms generally prevailed in terms of abundance while dinoflagellates were particularly abundant in June. Number of species of diatoms in comparison to dinoflagellates through the investigated period was similar. From 111 species of phytoplankton found, there were 55 species of Bacillariophyceae (diatoms, 47 species of Dinophyta (dinoflagellates, 5 species of Prymnesiophyceae, 3 Chrysophyceae and 1 Euglenophyta. Among the diatoms, the majority of species belonged to genus Chaetoceros. The most represented dinoflagellate genera were Oxytoxum and Gymnodinium. There were no considerable differences in phytoplankton composition with respect to different depths, but seasonal influence was significant. Biodiversity and abundance ranges of phytoplankton species indicated good water conditions and there were no evident alterations induced by the increased release of nutrients.

  3. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea

    Science.gov (United States)

    Lee, Sang H.; Kim, Hak-Jun; Whitledge, Terry E.

    2009-07-01

    High incorporation of carbon into proteins and low incorporation into lipids were a characteristic pattern of the photosynthetic allocations of phytoplankton throughout the euphotic zone in the Bering Strait and Chukchi Sea in 2004. According to earlier studies, this indicates that phytoplankton had no nitrogen limitation and a physiologically healthy condition, at least during the cruise period from mid-August to early September in 2004. This is an interesting result, especially for the phytoplankton in the Alaskan coastal water mass-dominated region in the Chukchi Sea which has been thought to be potentially nitrogen limited. The relatively high ammonium concentration is believed to have supported the nitrogen demand of the phytoplankton in the region where small cells (stress than large phytoplankton. If the high carbon incorporation into proteins by the phytoplankton in 2004 is a general pattern of the photosynthetic allocations in the Chukchi Sea, they could provide nitrogen-sufficient food for the highest benthic faunal biomass in the Arctic Ocean, sustaining large populations of benthic-feeding marine mammals and seabirds.

  4. Comparison of biochemical compositions of phytoplankton during spring and fall seasons in the northern East/Japan Sea

    Science.gov (United States)

    Kang, Jae Joong; Joo, HuiTae; Lee, Jae Hyung; Lee, Jang Han; Lee, Ho Won; Lee, Dabin; Kang, Chang Keun; Yun, Mi Sun; Lee, Sang Heon

    2017-09-01

    The East/Japan Sea (EJS) where is surrounded by the Korean peninsula, the Japanese islands, and the Russian coast has been experiencing a large change in physicochemical properties. Based on biochemical composition analysis (carbohydrates, proteins, and lipids), the current qualitative status of phytoplankton was identified in the northern EJS from two different sampling seasons (fall and spring in 2012 and 2015, respectively). The average chlorophyll-a (chl-a) concentration integrated from the euphotic depths was significantly higher in 2015 (99.3 ± 69.2 mg m-2) than 2012 (21.5 ± 6.7 mg m-2). Large phytoplankton (> 2 μm) were predominant in 2015 accounting for 64.5 ± 19.7% whereas small-size phytoplankton (0.7-2 μm) were dominant (49.1 ± 17.5%) in 2012. The biochemical compositions of phytoplankton were predominated by lipids (42.6 ± 7.8%) in 2012 whereas carbohydrate composition largely contributed (53.2 ± 11.7%) to the total biochemical composition in 2015, which is mainly due to different nutrient availabilities and growth stages. Interestingly, the averaged FM concentrations and calorific values for phytoplankton based on the biochemical compositions had similar values between the two years, although the integrated chl-a concentrations were substantially different between 2012 and 2015. In terms of different cell sizes of phytoplankton, we found that small phytoplankton assimilate more FM and calorific energy per unit of chl-a concentration than total phytoplankton. Our results are meaningful for the understanding of future marine ecosystems where small phytoplankton will become dominant at a scenario of ongoing warmer oceans.

  5. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    Science.gov (United States)

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-08-11

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton.

  6. Response of phytoplankton to nutrient enrichment with high growth rates in a tropical monsoonal estuary - Zuari estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Mochemadkar, S.; Gauns, M.; Pratihary, A.K.; Thorat, B.R.; Roy, R.; Pai, I.K.; Naqvi, S.W.A.

    nitzschioides exhibited the ability to withstand hypoxic condition. [Keywords: Zuari estuary, Premonsoon, Nutrient uptake, Phytoplankton, Hypoxic] Introduction Phytoplanktons are responsible for nearly half of global primary production1. Diatoms... and fresh water inputs. Light and nutrients are the primary factors regulating phytoplankton growth4,5 followed by temperature and salinity6 . Major (macro) nutrients essential for plant growth are nitrogen, phosphorous and silicon7. Phytoplankton...

  7. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  8. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor; Weber, Peter K; Alonso-Sá ez, Laura; Moran, Xose Anxelu G.; Mayali, Xavier

    2016-01-01

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  9. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  10. Photochemical Production and Behavior of Hydroperoxyacids in Heterotrophic Bacteria Attached to Senescent Phytoplanktonic Cells

    Directory of Open Access Journals (Sweden)

    Frédéric Vaultier

    2013-06-01

    Full Text Available The photooxidation of cellular monounsaturated fatty acids was investigated in senescent phytoplanktonic cells (Emiliania huxleyi and in their attached bacteria under laboratory controlled conditions. Our results indicated that UV-visible irradiation of phytodetritus induced the photooxidation of oleic (produced by phytoplankton and bacteria and cis-vaccenic (specifically produced by bacteria acids. These experiments confirmed the involvement of a substantial singlet oxygen transfer from senescent phytoplanktonic cells to attached bacteria, and revealed a significant correlation between the concentration of chlorophyll, a photosensitizer, in the phytodetritus and the photodegradation state of bacteria. Hydroperoxyacids (fatty acid photoproducts appeared to be quickly degraded to ketoacids and hydroxyacids in bacteria and in phytoplanktonic cells. This degradation involves homolytic cleavage (most likely induced by UV and/or transition metal ions and peroxygenase activity (yielding epoxy acids.

  11. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    Science.gov (United States)

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  12. Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea.

    Directory of Open Access Journals (Sweden)

    Derek B Donald

    Full Text Available Supply of anthropogenic nitrogen (N to the biosphere has tripled since 1960; however, little is known of how in situ response to N fertilisation differs among phytoplankton, whether species response varies with the chemical form of N, or how interpretation of N effects is influenced by the method of analysis (microscopy, pigment biomarkers. To address these issues, we conducted two 21-day in situ mesocosm (3140 L experiments to quantify the species- and genus-specific responses of phytoplankton to fertilisation of P-rich lake waters with ammonium (NH(4(+, nitrate (NO(3(-, and urea ([NH(2](2CO. Phytoplankton abundance was estimated using both microscopic enumeration of cell densities and high performance liquid chromatographic (HPLC analysis of algal pigments. We found that total algal biomass increased 200% and 350% following fertilisation with NO(3(- and chemically-reduced N (NH(4(+, urea, respectively, although 144 individual taxa exhibited distinctive responses to N, including compound-specific stimulation (Planktothrix agardhii and NH(4(+, increased biomass with chemically-reduced N alone (Scenedesmus spp., Coelastrum astroideum and no response (Aphanizomenon flos-aquae, Ceratium hirundinella. Principle components analyses (PCA captured 53.2-69.9% of variation in experimental assemblages irrespective of the degree of taxonomic resolution of analysis. PCA of species-level data revealed that congeneric taxa exhibited common responses to fertilisation regimes (e.g., Microcystis aeruginosa, M. flos-aquae, M. botrys, whereas genera within the same division had widely divergent responses to added N (e.g., Anabaena, Planktothrix, Microcystis. Least-squares regression analysis demonstrated that changes in phytoplankton biomass determined by microscopy were correlated significantly (p<0.005 with variations in HPLC-derived concentrations of biomarker pigments (r(2 = 0.13-0.64 from all major algal groups, although HPLC tended to underestimate the

  13. Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea.

    Science.gov (United States)

    Donald, Derek B; Bogard, Matthew J; Finlay, Kerri; Bunting, Lynda; Leavitt, Peter R

    2013-01-01

    Supply of anthropogenic nitrogen (N) to the biosphere has tripled since 1960; however, little is known of how in situ response to N fertilisation differs among phytoplankton, whether species response varies with the chemical form of N, or how interpretation of N effects is influenced by the method of analysis (microscopy, pigment biomarkers). To address these issues, we conducted two 21-day in situ mesocosm (3140 L) experiments to quantify the species- and genus-specific responses of phytoplankton to fertilisation of P-rich lake waters with ammonium (NH(4)(+)), nitrate (NO(3)(-)), and urea ([NH(2)](2)CO). Phytoplankton abundance was estimated using both microscopic enumeration of cell densities and high performance liquid chromatographic (HPLC) analysis of algal pigments. We found that total algal biomass increased 200% and 350% following fertilisation with NO(3)(-) and chemically-reduced N (NH(4)(+), urea), respectively, although 144 individual taxa exhibited distinctive responses to N, including compound-specific stimulation (Planktothrix agardhii and NH(4)(+)), increased biomass with chemically-reduced N alone (Scenedesmus spp., Coelastrum astroideum) and no response (Aphanizomenon flos-aquae, Ceratium hirundinella). Principle components analyses (PCA) captured 53.2-69.9% of variation in experimental assemblages irrespective of the degree of taxonomic resolution of analysis. PCA of species-level data revealed that congeneric taxa exhibited common responses to fertilisation regimes (e.g., Microcystis aeruginosa, M. flos-aquae, M. botrys), whereas genera within the same division had widely divergent responses to added N (e.g., Anabaena, Planktothrix, Microcystis). Least-squares regression analysis demonstrated that changes in phytoplankton biomass determined by microscopy were correlated significantly (p<0.005) with variations in HPLC-derived concentrations of biomarker pigments (r(2) = 0.13-0.64) from all major algal groups, although HPLC tended to

  14. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  15. Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation.

    Science.gov (United States)

    Kengwoung-Keumo, Jean-Jacques

    2016-08-01

    We propose a model of two-species competition in the chemostat for a single growth-limiting, nonreproducing resource that extends that of Roy [38]. The response functions are specified to be Michaelis-Menten, and there is no predation in Roy's work. Our model generalizes Roy's model to general uptake functions. The competition is exploitative so that species compete by decreasing the common pool of resources. The model also allows allelopathic effects of one toxin-producing species, both on itself (autotoxicity) and on its nontoxic competitor (phytotoxicity). We show that a stable coexistence equilibrium exists as long as (a) there are allelopathic effects and (b) the input nutrient concentration is above a critical value. The model is reconsidered under instantaneous nutrient recycling. We further extend this work to include a zooplankton species as a fourth interacting component to study the impact of predation on the ecosystem. The zooplankton species is allowed to feed only on the two phytoplankton species which are its perfectly substitutable resources. Each of the models is analyzed for boundedness, equilibria, stability, and uniform persistence (or permanence). Each model structure fits very well with some harmful algal bloom observations where the phytoplankton assemblage can be envisioned in two compartments, toxin producing and non-toxic. The Prymnesium parvum literature, where the suppressing effects of allelochemicals are quite pronounced, is a classic example. This work advances knowledge in an area of research becoming ever more important, which is understanding the functioning of allelopathy in food webs.

  16. Phytoplankton Group Identification Using Simulated and In situ Hyperspectral Remote Sensing Reflectance

    Directory of Open Access Journals (Sweden)

    Hongyan Xi

    2017-08-01

    Full Text Available In the present study we investigate the bio-geo-optical boundaries for the possibility to identify dominant phytoplankton groups from hyperspectral ocean color data. A large dataset of simulated remote sensing reflectance spectra, Rrs(λ, was used. The simulation was based on measured inherent optical properties of natural water and measurements of five phytoplankton light absorption spectra representing five major phytoplankton spectral groups. These simulated data, named as C2X data, contain more than 105 different water cases, including cases typical for clearest natural waters as well as for extreme absorbing and extreme scattering waters. For the simulation the used concentrations of chlorophyll a (representing phytoplankton abundance, Chl, are ranging from 0 to 200 mg m−3, concentrations of non-algal particles, NAP, from 0 to 1,500 g m−3, and absorption coefficients of chromophoric dissolved organic matter (CDOM at 440 nm from 0 to 20 m−1. A second, independent, smaller dataset of simulated Rrs(λ used light absorption spectra of 128 cultures from six phytoplankton taxonomic groups to represent natural variability. Spectra of this test dataset are compared with spectra from the C2X data in order to evaluate to which extent the five spectral groups can be correctly identified as dominant under different optical conditions. The results showed that the identification accuracy is highly subject to the water optical conditions, i.e., contribution of and covariance in Chl, NAP, and CDOM. The identification in the simulated data is generally effective, except for waters with very low contribution by phytoplankton and for waters dominated by NAP, whereas contribution by CDOM plays only a minor role. To verify the applicability of the presented approach for natural waters, a test using in situ Rrs(λ dataset collected during a cyanobacterial bloom in Lake Taihu (China is carried out and the approach predicts blue cyanobacteria to be dominant

  17. Winter season corticular photosynthesis in Cornus florida, Acer rubrum, Quercus alba, and Liriodendron tulipifera

    International Nuclear Information System (INIS)

    Coe, J.M.; McLaughlin, S.B.

    1980-01-01

    Winter season corticular photosynthesis was studied in four species of deciduous trees: dogwood (Cornus florida), red maple (Acer rubrum), white oak (Quercus alba), and yellow-poplar (Liriodendron tulipifera). Techniques included measuring CO 2 uptake at varying light intensities, relating the apparent photosynthetic capacities to seasonal changes in chlorophyll content of twigs and determining the fate of assimilated carbon over time. Dogwood was the most photosynthetically active of the four species studied; however, gross photosynthesis did not exceed respiration in any of the four species. Photosynthetic activity of dogwood twigs was estimated at 10% of that of dogwood leaves on a weight basis and 85% on a surface area basis. Photosynthetic activity was generally related to shade tolerance ranking and was on the order of dogwood much greater than red maple much greater than white oak approx. = yellow-poplar. Little change in chlorophyll content occurred over the January-April 1979 study interval

  18. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution.

    Science.gov (United States)

    Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. The Path of Carbon in Photosynthesis VIII. The Role of Malic Acid

    Science.gov (United States)

    Bassham, James A.; Benson, Andrew A.; Calvin, Melvin

    1950-01-25

    Malonate has been found to inhibit the formation of malic acid during short periods of photosynthesis with radioactive carbon dioxide. This result, together with studies which show the photosynthetic cycle to be operating normally at the same time, indicates that malic acid is not an intermediate in photosynthesis but is probably closely related to some intermediate of the cycle. Absence of labeled succinic and fumaric acids in these experiments, in addition to the failure of malonate to inhibit photosynthesis, precludes the participation of these acids as intermediates in photosynthesis.

  20. The community composition and production of phytoplankton in fish pens of Cape Bolinao, Pangasinan: a field study

    International Nuclear Information System (INIS)

    Yap, Leni G.; Azanza, Rhodora V.; Talaue-McManus, Liana

    2004-01-01

    From 1995 up to the present, fish pens proliferated in the municipal waters of Bolinao, northern Philippines. Since then, fish kills and phytoplankton blooms have been recurrent. Have fishpens altered the phytoplankton community composition and production of these waters? The phytoplankton community in Cape Bolinao, Lingayen Gulf is typical of a tropical coastal area where diatoms alternate with dinoflagellates during the dry and wet seasons. In the nutrient-rich fish pens, phytoplankton in this study showed a lower diatom/dinoflagellate ratio and unusually high phytoplankton counts of 10 4 cells/l and even as high as 10 5 cells/l. Correlations between physico-chemical parameters, phytoplankton production and community composition were made in 2001. This paper tried to explain the occurrence of a Cylindrotheca closterium bloom (10 5 cells/l), during the dry season of the same year and a Prorocentrum minimum bloom (4.7 x 10 5 cells/l), which accompanied a massive fish kill during January 2002

  1. Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers

    Science.gov (United States)

    Cessna, Stephen; Demmig-Adams, Barbara; Adams, William W., III

    2010-01-01

    Mastering the concept of photosynthesis is of critical importance to learning plant physiology and its applications, but seems to be one of the more challenging concepts in biology. This teaching challenge is no doubt compounded by the complexity by which plants alter photosynthesis in different environments. Here we suggest the use of chlorophyll…

  2. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Directory of Open Access Journals (Sweden)

    Junfei Gu

    2017-06-01

    Full Text Available Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS. Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl and a normally pigmented control (Z802 were subjected to high (HL and low light (LL. Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC binding proteins, electron transport rates (ETR, photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.

  3. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Science.gov (United States)

    Gu, Junfei; Zhou, Zhenxiang; Li, Zhikang; Chen, Ying; Wang, Zhiqin; Zhang, Hao; Yang, Jianchang

    2017-01-01

    Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size. PMID:28676818

  4. Temperature affects the size-structure of phytoplankton communities in the ocean

    KAUST Repository

    López-Urrutia, Ángel

    2015-03-05

    The strong inverse correlation between resource availability and temperature in the ocean poses a challenge to determine the relative effect of these two variables on the size-structure of natural phytoplankton communities. Maranon et al (2012) compiled a dataset of concurrent temperature and resource level proxies that they claim disentangled the effect of temperature from that of resource supply. They concluded that the hypothesis that temperature per se plays a direct role in controlling phytoplankton size structure should be rejected. But our reanalysis of their data reaches a very different conclusion and suggests that they failed to separate the effects of temperature from the effects of resources. Although we obviously concur with Maranon et al (2012) in the long-known predominance of small phytoplankton cells under oligotrophic conditions, from our point of view this should not deter us from considering temperature as an important explanatory variable at a global scale since we show that, for the vast oligotrophic areas of the world\\'s oceans where chlorophyll concentrations are below <1 g L-1 temperature explains a high proportion of the variability in the size distribution of phytoplankton communities, a variability that can not be explained on the basis of the resource level proxies advocated by Maranon et al. (2012).

  5. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels

    Directory of Open Access Journals (Sweden)

    Y. Carotenuto

    2008-08-01

    Full Text Available Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3–9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a, showed the highest instantaneous grow rates (k=0.37–0.99 d−1 and increased from ca. 2–3 to 6–12 μg l−1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l−1 (corresponding to 1.9 and 10.8 μmol C l−1, peaking on day 13–15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12–43% of the standing stock d−1 only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20–65% of the standing stock per day.

  6. Immuno flow cytometry in marine phytoplankton research

    NARCIS (Netherlands)

    Peperzak, L; Vrieling, EG; Sandee, B; Rutten, T

    The developments in the combination of flow cytometry and immunology as a tool to identify, count and examine marine phytoplankton cells are reviewed. The concepts of immunology and now cytometry are described. A distinction is made between quantitative and qualitative immunofluorescence.

  7. Do microzooplankton grazers control biomass of large-phytoplankton in the northern Bering and Chukchi Seas?

    Science.gov (United States)

    Krause, J. W.; Lomas, M. W.

    2017-12-01

    In high-latitude environments like the northern Bering and Chukchi Seas, microzooplankton and phytoplankton biomass can be tightly coupled. Microzooplankton consumption of primary production decreases the efficiency of transfer to higher trophic levels by increasing the number of food web steps and compounding losses from respiration. Thus, the balance of phytoplankton growth and microzooplankton grazing directly affects the availability of primary production to support higher-trophic processes (e.g. fisheries productivity). Despite compelling qualitative observations, there are no quantitative data demonstrating that larger phytoplankton (e.g. diatoms) growth is balanced by microzooplankton grazing in the northern Bering and Chukchi Seas. We report the first size-fractionated data for phytoplankton growth and grazing loss rates from microzooplankton in these regions during late spring 2017. Within the small size fraction (5 µm), which was presumably dominated by diatoms, less than 33% of experiments showed a potential control of growth by grazing and among these even fewer showed grazing rates statistically different from zero. In the few cases where there was a significant grazing rate, a negative correlation was observed between the microzooplankton grazing rate on large phytoplankton and chlorophyll in that size fraction; a similar negative trend was observed for these same grazing rates on large cells versus biogenic silica concentration (an independent metric of diatom biomass). These data show that the growth of large phytoplankton (e.g. diatoms) was typically decoupled from microzooplankton grazing losses, suggesting that at most stations a high proportion of this phytoplankton productivity escapes microzooplankton grazing and is available for consumption by higher trophic organisms.

  8. Seasonal Variability of Mesozooplankton Feeding Rates on Phytoplankton in Subtropical Coastal and Estuarine Waters

    Directory of Open Access Journals (Sweden)

    Mianrun Chen

    2017-06-01

    Full Text Available In order to understand how mesozooplankton assemblages influenced phytoplankton in coastal and estuarine waters, we carried out a monthly investigation on mesozooplankton composition at two contrasting stations of Hong Kong coastal and estuarine waters and simultaneously conducted bottle incubation feeding experiments. The assemblage of mesozooplankton was omnivorous at both stations with varying carnivory degree (the degree of feeding preference of protozoa and animal food to phytoplankton and the variations of carnivory degree were significantly associated with microzooplankton biomass (ciliates for the coastal station, both ciliates and dinoflagellates for the estuarine stations and physical environmental parameters (primarily salinity. High carnivory was primarily due to high composition of noctilucales, Corycaeus spp., Oithona spp. and Acartia spp. Results of feeding experiments showed that grazing impacts on phytoplankton ranged from −5.9 to 17.7%, while the mean impacts were just <4% at both stations. The impacts were size-dependent, by which mesozooplankton consumed around 9% of large-sized phytoplankton while indirectly caused an increase of 4% of small-sized phytoplankton. Mesozooplankton clearance rate on phytoplankton, calculated from the log response of chlorophyll a concentrations by the introduction of bulk grazers after 1-day incubation, was significantly reduced by increasing carnivory degree of the mesozooplankton assemblage. The mechanism for the reduction of mesozooplankton clearance rate with increasing carnivory degree was primarily due to less efficient of filtering feeding and stronger trophic cascades due to suppression of microzooplankton. The feeding rates of mesozooplankton on microzooplankton were not obtained in this study, but the trophic cascades indirectly induced by mesozooplankton carnivorous feeding can be observed by the negative clearance rate on small-sized phytoplankton. Overall, the main significance of

  9. Phytoplankton as Particles - A New Approach to Modeling Algal Blooms

    Science.gov (United States)

    2013-07-01

    16  Water Quality Database ......................................................................................................... 20...processes: photosynthesis , respiration, and grazing. These processes were expressed as functions of fundamental variables, including: irradiance, light...net growth rate is derived from photosynthesis minus respiratory losses: ERDC/EL TR-13-13 13 ( ) BPG PRSP BM CChl = - -1 (6) in which: PB

  10. On the relation between phototaxis and photosynthesis in Rhodospirillum Rubrum

    NARCIS (Netherlands)

    Thomas, J.B.; Nijenhuis, L.E.

    1950-01-01

    The relation between phototaxis and photosynthesis in Rhodospirillum rubrum has been studied. The light intensity at which saturation is reached in photosynthesis proved to coincide with that at which the contrast sensitivity starts to decrease. Potassium cyanide, which preferably inhibits the

  11. The primary steps of photosynthesis

    International Nuclear Information System (INIS)

    Fleming, G.R.; Van Grondelle, R.

    1996-01-01

    The two important initial steps of photosynthesis-electron transfer and energy transfer occur with great speed and efficiency. New techniques in laser optics and genetic engineering age helping us to understand why. (author). 24 refs. 8 figs

  12. Phytoplankton diversity in the Upper Paraná River floodplain during two years of drought (2000 and 2001

    Directory of Open Access Journals (Sweden)

    PAF. Borges

    Full Text Available Floodplain lakes and lotic environments of the High Paraná River floodplain present notable biodiversity, especially in relation to phytoplanktonic community. The goal of this work was to evaluate phytoplankton diversity (alpha, beta and gamma in three subsystems during two years of drought (2000 and 2001. We sampled 33 habitats at the pelagic zone subsurface during February and August. Due to low hydrometric levels of the Paraná and Ivinhema Rivers, there was no clear distinction between the potamophase and limnophase periods for the two hydrosedimentological cycles analysed. We recorded 366 taxa. The values obtained for gamma diversity estimators ranged from 55.5-87.8%. DCA and variance analyses revealed only spatial differences in the phytoplankton composition. The mean values of species richness, evenness and Shannon diversity were low, especially when compared to those obtained in previous periods for Baía subsystem. The highest mean values of species richness were verified in the connected floodplain lakes. The highest beta diversity was obtained from the Paraná subsystem and lotic environments in 2001. In general, we observed that the Upper Paraná River floodplain has the highest values of species richness, evenness and H' during the potamophase period, when the flood facilitates dispersion. However, this pattern was not observed in 2000 and 2001, years influenced by La Niña. Besides the low precipitation observed during that period, we must consider the influence of the Porto Primavera impoundment, which also altered the discharge regime of the Paraná River by decreasing the degree of connectivity between fluvial channels and the lentic environments of the floodplain. Thus, the prevalence of conditions characterising the limnophase during 2000 and 2001 explains the lack of significant variability registered for most components of phytoplankton diversity over the study period. We conclude that variations in phytoplankton diversity

  13. PHYTOPLANKTON AND BIOMASS DISTRIBUTION AT POTENTIAL OTEC SITES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.W.; Horne, A.J.

    1979-06-01

    Net or large phytoplankton species composition and most phytoplankton abundance was measured at three OTEC sites. In the Gulf of Mexico and Hawaii, diatoms dominated while the blue-green algae Trichodesmium was most common at Puerto Rico. The species ratio of diatoms to dinoflagellates was approximately 1:1. The species diversity varied from site to site, Hawaii > Puerto Rico > Gulf of Mexico. Chlorophyll a, which is a measure of the pigment of all algae size ranges, showed a subsurface peak of 0.14-0.4 g per liter at 75 to 125 m. Occasional surface peaks up to 0.4 pg per liter occurred. Further refinement of collection techniques is needed to delineate the subtle environmental effects expected by OTEC plant discharges.

  14. Phytoplankton and biomass distribution at potential OTEC sites

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.W.; Horne, A.J.

    1979-06-01

    Net or large phytoplankton species composition and most phytoplankton abundance was measured at three OTEC sites. In the Gulf of Mexico and'Hawaii, diatoms dominated while the blue-green algae Trichodesmium was most common at Puerto Rico. The species ratio of diatoms to dinoflagellates was approximately 1:1. The species diversity varied from site to site, Hawaii > Puerto Rico > Gulf of Mexico. Chlorophyll a, which is a measure of the pigment of all algae size ranges, showed a subsurface peak of 0.14 to 0.4 g per liter at 75 to 125 m. Occasional surface peaks upto 0.4 ..mu..g per liter occurred. Further refinement of collection techniques is needed to delineate the subtle environmental effects expected by OTEC plant discharges.

  15. Manganese-based Materials Inspired by Photosynthesis for Water-Splitting

    Directory of Open Access Journals (Sweden)

    Harvey J.M. Hou

    2011-09-01

    Full Text Available In nature, the water-splitting reaction via photosynthesis driven by sunlight in plants, algae, and cyanobacteria stores the vast solar energy and provides vital oxygen to life on earth. The recent advances in elucidating the structures and functions of natural photosynthesis has provided firm framework and solid foundation in applying the knowledge to transform the carbon-based energy to renewable solar energy into our energy systems. In this review, inspired by photosynthesis robust photo water-splitting systems using manganese-containing materials including Mn-terpy dimer/titanium oxide, Mn-oxo tetramer/Nafion, and Mn-terpy oligomer/tungsten oxide, in solar fuel production are summarized and evaluated. Potential problems and future endeavors are also discussed.

  16. Phytoplankton distribution in three thermally different but edaphically similar reactor cooling reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E W

    1982-01-01

    Phytoplankton community structure and the physicochemical characteristics of three reactor cooling reservoirs in close proximity and of similar age and bottom type were studied during 1978. The three reservoirs differed in thermal alteration resulting from reactor cooling water as follows: (1) considerable heating with lake-wide temperatures >30/sup 0/C, even in winter; (2) a maximal 5/sup 0/C increase occurring in only one of three major arms of the reservoir; and (3) no thermal effluent received during the study period. Considerable spatial and temporal differences in water quality and phytoplankton community structure were observed; however, water temperature independent of other environmental factors (e.g., light and nutrients) was found to be a relatively unimportant variable for explaining phytoplankton periodicity.

  17. Phytoplankton distribution in three thermally different but edaphically similar reactor cooling reservoirs

    International Nuclear Information System (INIS)

    Wilde, E.W.

    1982-01-01

    Phytoplankton community structure and the physicochemical characteristics of three reactor cooling reservoirs in close proximity and of similar age and bottom type were studied during 1978. The three reservoirs differed in thermal alteration resulting from reactor cooling water as follows: (1) considerable heating with lake-wide temperatures >30 0 C, even in winter; (2) a maximal 5 0 C increase occurring in only one of three major arms of the reservoir; and (3) no thermal effluent received during the study period. Considerable spatial and temporal differences in water quality and phytoplankton community structure were observed; however, water temperature independent of other environmental factors (e.g., light and nutrients) was found to be a relatively unimportant variable for explaining phytoplankton periodicity

  18. Nutrient regimes and their effect on distribution of phytoplankton in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Paul, J.T.; Ramaiah, N.; Sardessai, S.

    of Plankton Research 27, 545– 556. Smayda, T.J., 1980. Phytoplankton species succession. In: Morris, I. (Ed.), The Physiological Ecology of Phytoplankton. University of California Press, Berkeley, pp. 493–570. Sournia, A., 1970. Les cyanophycees dans le...

  19. Quantum design of photosynthesis for bio-inspired solar-energy conversion

    NARCIS (Netherlands)

    Romero, Elisabet; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-01-01

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is

  20. Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system

    DEFF Research Database (Denmark)

    Wang, Chao; Li, Xinhui; Wang, Xiangxiu

    2016-01-01

    Spatial and seasonal sampling within a subtropical river delta system, the Pearl River Delta (China), provided data to determine seasonal phytoplankton patterns and develop prediction models. The high nutrient levels and frequent water exchanges resulted in a phytoplankton community with greatest...