WorldWideScience

Sample records for estimating forest canopy

  1. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  2. ForestCrowns: a transparency estimation tool for digital photographs of forest canopies

    Science.gov (United States)

    Matthew Winn; Jeff Palmer; S.-M. Lee; Philip Araman

    2016-01-01

    ForestCrowns is a Windows®-based computer program that calculates forest canopy transparency (light transmittance) using ground-based digital photographs taken with standard or hemispherical camera lenses. The software can be used by forest managers and researchers to monitor growth/decline of forest canopies; provide input for leaf area index estimation; measure light...

  3. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas

    2008-01-01

    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...

  4. Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations

    Science.gov (United States)

    Gregory P. Asner; Michael Palace; Michael Keller; Rodrigo Pereira Jr.; Jose N. M. Silva; Johan C. Zweede

    2002-01-01

    Canopy structural data can be used for biomass estimation and studies of carbon cycling, disturbance, energy balance, and hydrological processes in tropical forest ecosystems. Scarce information on canopy dimensions reflects the difficulties associated with measuring crown height, width, depth, and area in tall, humid tropical forests. New field and spaceborne...

  5. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    Science.gov (United States)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  6. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    Science.gov (United States)

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  7. Estimating forest canopy bulk density using six indirect methods

    Science.gov (United States)

    Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon

    2005-01-01

    Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...

  8. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    Science.gov (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  9. Mapping Forest Canopy Height Across Large Areas by Upscaling ALS Estimates with Freely Available Satellite Data

    Directory of Open Access Journals (Sweden)

    Phil Wilkes

    2015-09-01

    Full Text Available Operational assessment of forest structure is an on-going challenge for land managers, particularly over large, remote or inaccessible areas. Here, we present an easily adopted method for generating a continuous map of canopy height at a 30 m resolution, demonstrated over 2.9 million hectares of highly heterogeneous forest (canopy height 0–70 m in Victoria, Australia. A two-stage approach was utilized where Airborne Laser Scanning (ALS derived canopy height, captured over ~18% of the study area, was used to train a regression tree ensemble method; random forest. Predictor variables, which have a global coverage and are freely available, included Landsat Thematic Mapper (Tasselled Cap transformed, Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index time series, Shuttle Radar Topography Mission elevation data and other ancillary datasets. Reflectance variables were further processed to extract additional spatial and temporal contextual and textural variables. Modeled canopy height was validated following two approaches; (i random sample cross validation; and (ii with 108 inventory plots from outside the ALS capture extent. Both the cross validation and comparison with inventory data indicate canopy height can be estimated with a Root Mean Square Error (RMSE of ≤ 31% (~5.6 m at the 95th percentile confidence interval. Subtraction of the systematic component of model error, estimated from training data error residuals, rescaled canopy height values to more accurately represent the response variable distribution tails e.g., tall and short forest. Two further experiments were carried out to test the applicability and scalability of the presented method. Results suggest that (a no improvement in canopy height estimation is achieved when models were constructed and validated for smaller geographic areas, suggesting there is no upper limit to model scalability; and (b training data can be captured over a small

  10. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    Science.gov (United States)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  11. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Science.gov (United States)

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  12. Evaluating Uncertainties in Sap Flux Scaled Estimates of Forest Transpiration, Canopy Conductance and Photosynthesis

    Science.gov (United States)

    Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.

    2009-12-01

    Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.

  13. Estimation of Airborne Lidar-Derived Tropical Forest Canopy Height Using Landsat Time Series in Cambodia

    Directory of Open Access Journals (Sweden)

    Tetsuji Ota

    2014-11-01

    Full Text Available In this study, we test and demonstrate the utility of disturbance and recovery information derived from annual Landsat time series to predict current forest vertical structure (as compared to the more common approaches, that consider a sample of airborne Lidar and single-date Landsat derived variables. Mean Canopy Height (MCH was estimated separately using single date, time series, and the combination of single date and time series variables in multiple regression and random forest (RF models. The combination of single date and time series variables, which integrate disturbance history over the entire time series, overall provided better MCH prediction than using either of the two sets of variables separately. In general, the RF models resulted in improved performance in all estimates over those using multiple regression. The lowest validation error was obtained using Landsat time series variables in a RF model (R2 = 0.75 and RMSE = 2.81 m. Combining single date and time series data was more effective when the RF model was used (opposed to multiple regression. The RMSE for RF mean canopy height prediction was reduced by 13.5% when combining the two sets of variables as compared to the 3.6% RMSE decline presented by multiple regression. This study demonstrates the value of airborne Lidar and long term Landsat observations to generate estimates of forest canopy height using the random forest algorithm.

  14. Estimation of canopy water interception of a near-tropical montane cloud forest in Taiwan

    Science.gov (United States)

    Apurva, B.; Huang, C. Y.; Zhang, J.

    2017-12-01

    Tropical and subtropical montane cloud forests are some of the rarest and least studied ecosystems. Due to the frequent immersion of fog water with high humidity, these zones are major water sources for lowland environments and habitats for many fauna and flora. Their dependence on cloud water leaves them highly susceptible to the effects of climate change. Studies have been conducted to quantify the characteristics of the low altitude clouds such as spatial dynamics, cloud top and base heights, occurrence frequency or immersion duration. In this study, we carried out a field measurement to estimate canopy water interception (CWI), which is directly utilized by the ecosystems. The study site was a 61 ha near-tropical hinoki cypress montane cloud forest plantation in northern Taiwan at 1705 m asl. Leaves of CHOB were clipped, air-dried and attached to trees at three different canopy depths from the top to the base of canopies along a high tower. The samples were weighed before and after the occurrence of a fog event. In addition, a cylinder shaped fog gauge was installed at the ground level next to the tower to assess amount of fog water penetrating the canopy layer. After afternoon fog events with the duration of 60 minutes, we found that there was an apparent trend of decline of CWI from top (mean ± standard deviation = 0.023 g ± 0.0015 g), middle (0.021 g ± 0.0015 g) to the bottom (0.013 g ± 0.0015 g) of the canopies. Since the study site is a coniferous evergreen forest plantation with a relatively homogenous surface through seasons, with the background knowledge of the average leaf area index of 4.4, we estimated that this 61 ha site harvested 28.2 Mg of CWI for a daily fog event. We also found that no clear evidence of CWI was observed below the canopies by referring to bi-weekly records from the cylinder shaded fog gauge. Therefore, we can assume that the majority fog water was intercepted by the hinoki cypress canopy layer. This study demonstrates that a

  15. Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR)

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Christiansen, Jesper Riis

    2015-01-01

    Forests contribute to improve water quality, affect drinking water resources, and therefore influence water supply on a regional level. The forest canopy structure affects the retention of precipitation (Pr) in the canopy and hence the amount of water transferred to the forest floor termed canopy...... impacts water resources on a large scale in regions where forests play a major role in water resource management....

  16. Forest Aboveground Biomass Mapping and Canopy Cover Estimation from Simulated ICESat-2 Data

    Science.gov (United States)

    Narine, L.; Popescu, S. C.; Neuenschwander, A. L.

    2017-12-01

    The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. With a planned launch date of July 2018, the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) will provide data which will offer the possibility of mapping AGB at global scales. In this study, we develop approaches for utilizing vegetation data that will be delivered in ICESat-2's land-vegetation along track product (ATL08). The specific objectives are to: (1) simulate ICESat-2 photon-counting lidar (PCL) data using airborne lidar data, (2) utilize simulated PCL data to estimate forest canopy cover and AGB and, (3) upscale AGB predictions to create a wall-to-wall AGB map at 30-m spatial resolution. Using existing airborne lidar data for Sam Houston National Forest (SHNF) located in southeastern Texas and known ICESat-2 beam locations, PCL data are simulated from discrete return lidar points. We use multiple linear regression models to relate simulated PCL metrics for 100 m segments along the ICESat-2 ground tracks to AGB from a biomass map developed using airborne lidar data and canopy cover calculated from the same. Random Forest is then used to create an AGB map from predicted estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land cover data from the National Land Cover Database (NLCD). Findings from this study will demonstrate how data that will be acquired by ICESat-2 can be used to estimate forest structure and characterize the spatial distribution of AGB.

  17. Modelling rainfall interception by forests: a new method for estimating the canopy storage capacity

    Science.gov (United States)

    Pereira, Fernando; Valente, Fernanda; Nóbrega, Cristina

    2015-04-01

    Evaporation of rainfall intercepted by forests is usually an important part of a catchment water balance. Recognizing the importance of interception loss, several models of the process have been developed. A key parameter of these models is the canopy storage capacity (S), commonly estimated by the so-called Leyton method. However, this method is somewhat subjective in the selection of the storms used to derive S, which is particularly critical when throughfall is highly variable in space. To overcome these problems, a new method for estimating S was proposed in 2009 by Pereira et al. (Agricultural and Forest Meteorology, 149: 680-688), which uses information from a larger number of storms, is less sensitive to throughfall spatial variability and is consistent with the formulation of the two most widely used rainfall interception models, Gash analytical model and Rutter model. However, this method has a drawback: it does not account for stemflow (Sf). To allow a wider use of this methodology, we propose now a revised version which makes the estimation of S independent of the importance of stemflow. For the application of this new version we only need to establish a linear regression of throughfall vs. gross rainfall using data from all storms large enough to saturate the canopy. Two of the parameters used by the Gash and the Rutter models, pd (the drainage partitioning coefficient) and S, are then derived from the regression coefficients: pd is firstly estimated allowing then the derivation of S but, if Sf is not considered, S can be estimated making pd= 0. This new method was tested using data from a eucalyptus plantation, a maritime pine forest and a traditional olive grove, all located in Central Portugal. For both the eucalyptus and the pine forests pd and S estimated by this new approach were comparable to the values derived in previous studies using the standard procedures. In the case of the traditional olive grove, the estimates obtained by this methodology

  18. Estimation of In-canopy Flux Distributions of Reactive Nitrogen and Sulfur within a Mixed Hardwood Forest in Southern Appalachia

    Science.gov (United States)

    Wu, Z.; Walker, J. T.; Chen, X.; Oishi, A. C.; Duman, T.

    2017-12-01

    Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of reactive nitrogen and sulfur were examined using multiple inverse modeling methods in a mixed hardwood forest in the southern Appalachian Mountains where the ecosystem is highly sensitive to loads of pollutant from atmospheric depositions. Measurements of the vertical concentration profiles of ammonia (NH3), nitric acid (HNO3), sulfur dioxide (SO2), and ammonium (NH4+), nitrate (NO3-), and sulfate (SO42-) in PM2.5 were measured during five study periods between May 2015 and August 2016. The mean concentration of NH3 decreased with height in the upper canopy and increased below the understory toward the forest floor, indicating that the canopy was a sink for NH3 but the forest floor was a source. All other species exhibited patterns of monotonically decreasing concentration from above the canopy to the forest floor. Using the measured concentration profiles, we simulated the within-canopy flow fields and estimated the vertical source-sink flux profiles using three inverse approaches: a Eulerian high-order closure model (EUL), a Lagrangian localized near-field (LNF) model, and a new full Lagrangian stochastic model (LSM). The models were evaluated using the within- and above-canopy eddy covariance flux measurements of heat, CO2 and H2O. Differences between models were analyzed and the flux profiles were used to investigate the origin and fate of reactive nitrogen and sulfur compounds within the canopy. The knowledge gained in this study will benefit the development of soil-vegetation-atmosphere models capable of partitioning canopy-scale deposition of nitrogen and sulfur to specific ecosystem compartments.

  19. Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots

    Directory of Open Access Journals (Sweden)

    Claudia M.C.S. Listopad

    2011-06-01

    Full Text Available This study used an affordable ground-based portable LiDAR system to provide an understanding of the structural differences between old-growth and secondary-growth Southeastern pine. It provided insight into the strengths and weaknesses in the structural determination of portable systems in contrast to airborne LiDAR systems. Portable LiDAR height profiles and derived metrics and indices (e.g., canopy cover, canopy height were compared among plots with different fire frequency and fire season treatments within secondary forest and old growth plots. The treatments consisted of transitional season fire with four different return intervals: 1-yr, 2-yr, 3-yr fire return intervals, and fire suppressed plots. The remaining secondary plots were treated using a 2-yr late dormant season fire cycle. The old growth plots were treated using a 2-yr growing season fire cycle. Airborne and portable LiDAR derived canopy cover were consistent throughout the plots, with significantly higher canopy cover values found in 3-yr and fire suppressed plots. Portable LiDAR height profile and metrics presented a higher sensitivity in capturing subcanopy elements than the airborne system, particularly in dense canopy plots. The 3-dimensional structures of the secondary plots with varying fire return intervals were dramatically different to old-growth plots, where a symmetrical distribution with clear recruitment was visible. Portable LiDAR, even though limited to finer spatial scales and specific biases, is a low-cost investment with clear value for the management of forest canopy structure.

  20. Gainesville's urban forest canopy cover

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  1. Estimating sources, sinks and fluxes of reactive atmospheric compounds within a forest canopy

    Science.gov (United States)

    While few dispute the significance of within-canopy sources or sinks of reactive gaseous and particulate compounds, their estimation continues to be the subject of active research and debate. Reactive species undergo turbulent dispersion within an inhomogeneous flow field, and ma...

  2. Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Craig Mahoney

    2017-01-01

    Full Text Available Spaceborne laser altimetry waveform estimates of canopy Gap Fraction (GF vary with respect to discrete return airborne equivalents due to their greater sensitivity to reflectance differences between canopy and ground surfaces resulting from differences in footprint size, energy thresholding, noise characteristics and sampling geometry. Applying scaling factors to either the ground or canopy portions of waveforms has successfully circumvented this issue, but not at large scales. This study develops a method to scale spaceborne altimeter waveforms by identifying which remotely-sensed vegetation, terrain and environmental attributes are best suited to predicting scaling factors based on an independent measure of importance. The most important attributes were identified as: soil phosphorus and nitrogen contents, vegetation height, MODIS vegetation continuous fields product and terrain slope. Unscaled and scaled estimates of GF are compared to corresponding ALS data for all available data and an optimized subset, where the latter produced most encouraging results (R2 = 0.89, RMSE = 0.10. This methodology shows potential for successfully refining estimates of GF at large scales and identifies the most suitable attributes for deriving appropriate scaling factors. Large-scale active sensor estimates of GF can establish a baseline from which future monitoring investigations can be initiated via upcoming Earth Observation missions.

  3. Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure

    NARCIS (Netherlands)

    McLean, Kevin A.; Trainor, Anne M.; Asner, Gregory P.; Crofoot, Margaret C.; Hopkins, Mariah E.; Campbell, Christina J.; Martin, Roberta E.; Knapp, David E.; Jansen, Patrick A.

    2016-01-01

    Context: Many arboreal mammals in Neotropical forests are important seed dispersers that influence the spatial patterns of tree regeneration via their movement patterns, which in turn are determined by the canopy structure of the forest itself. However, the relationship between arboreal mammal

  4. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms.

    Science.gov (United States)

    Michael A. Lefskya; Michael Keller; Yong Panga; Plinio B. de Camargod; Maria O. Hunter

    2007-01-01

    The vertical extent of waveforms collected by the Geoscience Laser Altimeter System (onboard ICESat - the Ice, Cloud, and land Elevation Satellite) increases as a function of terrain slope and footprint size (the area on the ground that is illuminated by the laser). Over sloped terrain, returns from both canopy and ground surfaces can occur at the same elevation. As a...

  5. Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance

    Science.gov (United States)

    F. Holwerda; L.A. Bruijnzeel; F.N. Scatena; H.F. Vugts; A.G.C.A. Meesters

    2012-01-01

    Rainfall interception (I) was measured in 20 m tall Puerto Rican tropical forest with complex topography for a 1-year period using totalizing throughfall (TF) and stemflow (SF) gauges that were measured every 2–3 days. Measured values were then compared to evaporation under saturated canopy conditions (E) determined with the Penman–Monteith (P–M) equation, using (i)...

  6. Estimation of miniature forest parameters, species, tree shape, and distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model

    International Nuclear Information System (INIS)

    Ding, Y.; Arai, K.

    2007-01-01

    A method for estimation of forest parameters, species, tree shape, distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model is proposed. The model is verified through experiments with the miniature model of forest, tree array of relatively small size of trees. Two types of miniature trees, ellipse-looking and cone-looking canopy are examined in the experiments. It is found that the proposed model and experimental results show a coincidence so that the proposed method is validated. It is also found that estimation of tree shape, trunk tree distance as well as distinction between deciduous or coniferous trees can be done with the proposed model. Furthermore, influences due to multiple reflections between trees and interaction between trees and under-laying grass are clarified with the proposed method

  7. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  8. Estimation of Aboveground Biomass in Alpine Forests: A Semi-Empirical Approach Considering Canopy Transparency Derived from Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Martin Rutzinger

    2010-12-01

    Full Text Available In this study, a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB estimation of a spruce dominated alpine forest. The reference AGB of the available sample plots is calculated from forest inventory data by means of biomass expansion factors. Furthermore, the semi-empirical model is extended by three different canopy transparency parameters derived from airborne LiDAR data. These parameters have not been considered for stem volume estimation until now and are introduced in order to investigate the behavior of the model concerning AGB estimation. The developed additional input parameters are based on the assumption that transparency of vegetation can be measured by determining the penetration of the laser beams through the canopy. These parameters are calculated for every single point within the 3D point cloud in order to consider the varying properties of the vegetation in an appropriate way. Exploratory Data Analysis (EDA is performed to evaluate the influence of the additional LiDAR derived canopy transparency parameters for AGB estimation. The study is carried out in a 560 km2 alpine area in Austria, where reference forest inventory data and LiDAR data are available. The investigations show that the introduction of the canopy transparency parameters does not change the results significantly according to R2 (R2 = 0.70 to R2 = 0.71 in comparison to the results derived from, the semi-empirical model, which was originally developed for stem volume estimation.

  9. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    Science.gov (United States)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  10. Fluxes of trichloroacetic acid through a conifer forest canopy

    International Nuclear Information System (INIS)

    Stidson, R.T.; Heal, K.V.; Dickey, C.A.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, ∼1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only ∼1-2% of above-canopy deposition. On average, ∼800 μg m -2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of ∼400 and ∼300 μg m -2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (∼±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in

  11. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

    Science.gov (United States)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2018-03-01

    Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the

  12. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Directory of Open Access Journals (Sweden)

    W. J. F. Acton

    2016-06-01

    Full Text Available This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS together with the methods of virtual disjunct eddy covariance (using PTR-MS and eddy covariance (using PTR-ToF-MS. Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m−2 h−1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m−2 h−1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN isoprene emission algorithms (Guenther et al., 2006. A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC–MS to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  13. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Science.gov (United States)

    Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko

    2016-06-01

    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  14. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.

    2010-01-01

    We describe a stereological procedure to estimate the total leaf surface area of a plant canopy in vivo, and address the problem of how to predict the variance of the corresponding estimator. The procedure involves three nested systematic uniform random sampling stages: (i) selection of plants from...... a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and evaluate both...... the time required and the precision of the estimator. Furthermore, we compare the precision of point counting for three different grid intensities with that of several standard leaf area measurement techniques. Results showed that the precision of the plant leaf area estimator based on point counting...

  15. CMS: Mangrove Canopy Height Estimates from Remote Imagery, Zambezi Delta, Mozambique

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides high resolution canopy height estimates for mangrove forests in the Zambezi Delta, Mozambique, Africa. The estimates were derived from three...

  16. Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest

    DEFF Research Database (Denmark)

    Propastin, P.; Ibrom, Andreas; Knohl, A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) product (GPPMOD17A2) was evaluated against GPP from the eddy covariance flux measurements (GPPm) at a CO2 flux tower test site in a tropical rainforest in Sulawesi, Indonesia. The dynamics of 8-day GPPMOD17A2...... conditions. Obviously, these seasonal differences are caused by too large seasonal amplitudes in GPPMOD17A2. The observed inconsistencies of the GPPMOD17A2with GPPm were traced to the inputs of the MODIS GPP algorithm, including fraction of absorbed photosynthetically active radiation (fAPAR) and light use...... efficiency (εg). This showed that underestimation of low values is caused by several uncertainties in the MODIS fAPAR input, whereas overestimation at high irradiance is caused by the MODIS light use efficiency approach which does not account for saturation of canopy photosynthesis under clear sky conditions...

  17. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    Science.gov (United States)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  18. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia.

    Science.gov (United States)

    Singh, Minerva; Evans, Damian; Coomes, David A; Friess, Daniel A; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.

  19. Investigation into the role of canopy structure traits and plant functional types in modulating the correlation between canopy nitrogen and reflectance in a temperate forest in northeast China

    Science.gov (United States)

    Yu, Quanzhou; Wang, Shaoqiang; Zhou, Lei

    2017-10-01

    A precise estimate of canopy leaf nitrogen concentration (CNC, based on dry mass) is important for researching the carbon assimilation capability of forest ecosystems. Hyperspectral remote sensing technology has been applied to estimate regional CNC, which can adjust forest photosynthetic capacity and carbon uptake. However, the relationship between forest CNC and canopy spectral reflectance as well as its mechanism is still poorly understood. Using measured CNC, canopy structure and species composition data, four vegetation indices (VIs), and near-infrared reflectance (NIR) derived from EO-1 Hyperion imagery, we investigated the role of canopy structure traits and plant functional types (PFTs) in modulating the correlation between CNC and canopy reflectance in a temperate forest in northeast China. A plot-scale forest structure indicator, named broad foliar dominance index (BFDI), was introduced to provide forest canopy structure and coniferous and broadleaf species composition. Then, we revealed the response of forest canopy reflectance spectrum to BFDI and CNC. Our results showed that leaf area index had no significant effect on NIR (P>0.05) but indicated that there was a significant correlation (R2=0.76, P0.05). On the contrary, removing the CNC effect, the partial correlation between BFDI and NIR was positively significant (R=0.69, Pforest types. Nevertheless, the relationship cannot be considered as a feasible approach of CNC estimation for a single PFT.

  20. ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies

    Science.gov (United States)

    Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman

    2013-01-01

    Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...

  1. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments

    Science.gov (United States)

    Tracey S. Frescino; Gretchen G. Moisen

    2012-01-01

    A spatially-explicit representation of live tree canopy cover, such as the National Land Cover Dataset (NLCD) percent tree canopy cover layer, is a valuable tool for many applications, such as defining forest land, delineating wildlife habitat, estimating carbon, and modeling fire risk and behavior. These layers are generated by predictive models wherein their accuracy...

  2. Modeling directional thermal radiance from a forest canopy

    International Nuclear Information System (INIS)

    McGuire, M.J.; Balick, L.K.; Smith, J.A.; Hutchison, B.A.

    1989-01-01

    Recent advances in remote sensing technology have increased interest in utilizing the thermal-infared region to gain additional information about surface features such as vegetation canopies. Studies have shown that sensor view angle, canopy structure, and percentage of canopy coverage can affect the response of a thermal sensor. These studies have been primarily of agricultural regions and there have been relatively few examples describing the thermal characteristics of forested regions. This paper describes an extension of an existing thermal vegetation canopy radiance model which has been modified to partially account for the geometrically rough structure of a forest canopy. Fourier series expansion of a canopy height profile is used to calculate improved view factors which partially account for the directional variations in canopy thermal radiance transfers. The original and updated radiance model predictions are compared with experimental data obtained over a deciduous (oak-hickory) forest site. The experimental observations are also used to document azimuthal and nadir directional radiance variations. Maximum angular variations in measured canopy temperatures were 4–6°C (azimuth) and 2.5°C (nadir). Maximum angular variations in simulated temperatures using the modified rough surface model was 4°C. The rough surface model appeared to be sensitive to large gaps in the canopy height profile, which influenced the resultant predicted temperature. (author)

  3. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  4. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Science.gov (United States)

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  5. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  6. Forests and their canopies: Archievements and horizons in canopy science

    Czech Academy of Sciences Publication Activity Database

    Nakamura, A.; Kitching, R. L.; Cao, M.; Creedy, T. J.; Fayle, Tom Maurice; Freiberg, M.; Hewitt, C. N.; Itioka, T.; Koh, L. P.; Ma, K.; Malhi, Y.; Mitchell, A.; Novotný, Vojtěch; Ozanne, C. M. P.; Song, L.; Wang, H.; Ashton, L. A.

    2017-01-01

    Roč. 32, č. 6 (2017), s. 438-451 ISSN 0169-5347 R&D Projects: GA ČR(CZ) GA16-09427S; GA ČR GB14-36098G EU Projects: European Commission(XE) 669609 - Diversity6continents Institutional support: RVO:60077344 Keywords : biodiversity * canopy * cranes Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 15.268, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169534717300599

  7. Soil carbon estimation from eucalyptus grandis using canopy spectra

    African Journals Online (AJOL)

    Mapping soil fertility parameters, such as soil carbon (C), is fundamentally important for forest management and research related to forest growth and climate change. This study seeks to establish the link between Eucalyptus grandis canopy spectra and soil carbon using raw and continuum-removed spectra. Canopy-level ...

  8. Patterns of covariance between forest stand and canopy structure in the Pacific Northwest.

    Science.gov (United States)

    Michael A. Lefsky; Andrew T. Hudak; Warren B. Cohen; S.A. Acker

    2005-01-01

    In the past decade, LIDAR (light detection and ranging) has emerged as a powerful tool for remotely sensing forest canopy and stand structure, including the estimation of aboveground biomass and carbon storage. Numerous papers have documented the use of LIDAR measurements to predict important aspects of forest stand structure, including aboveground biomass. Other...

  9. Radiation and water use efficiencies of two coniferous forest canopies

    Science.gov (United States)

    Lamaud, E.; Brunet, Y.; Berbigier, P.

    1996-12-01

    Two experiments were performed in a confierous forest (maritime pine) in the southwest of France, one in 1994 and the other in 1995. Two sites were chosen, differing by age, height and structure of the trees, as well as the nature of the understorey. In both cases measurements of turbulent fluxes were made at two levels above and within the forest canopy, using sonic anemometers and open-path infrared CO 2-H 2O analysers. The flux differences derived from the two measurement levels allowed the Radiation and Water Use Efficiencies (RUE and WUE, respectively) to be evaluated for both canopy crowns. The results are based on the analysis of about ten days from each experiment. For both campaigns RUE is significantly larger during cloudy conditions when the fraction of diffuse radiation ( {Q id}/{Q i}) increases. An empirical linear relation between RUE and {Q id}/{Q i} is established for each site, with a smaller intercept and a larger slope for the older forest. In clear conditions ( {Q id}/{Q i} < 0.4 ), RUE is about 30 % lower for this forest. Tree photosynthesis, estimated as the net CO 2 flux of the foliated layer F c, appears poorly correlated (r 2 < 0.4) with transpiration (net water vapour flux E). This is shown to result from strong variations in the atmospheric saturation deficit D during both campaigns. At both sites WUE turns out to be a hyperbolic function of D ( {Fc}/{E} = {-k}/{D}). The coefficient k is 50 % larger for the younger forest. This is in agreement with the values obtained for RUE, and indicates that photosynthetic rates decrease with the age of the trees.

  10. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.

    Science.gov (United States)

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-04-23

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  11. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada

    International Nuclear Information System (INIS)

    Marty, C.; Houle, D.; Duchesne, L.; Gagnon, C.

    2012-01-01

    The interaction of atmospheric sulphur (S) was investigated within the canopies of two boreal forests in Québec, Canada. The net canopy exchange approach, i.e. the difference between S–SO 4 in throughfall and precipitation, suggests high proportion of dry deposition in winter (up to 53%) as compared to summer (1–9%). However, a 3.5‰ decrease in δ 18 O–SO 4 throughfall in summer compared to incident precipitation points towards a much larger proportion of dry deposition during the warm season. We suggest that a significant fraction of dry deposition (about 1.2 kg ha −1 yr −1 , representing 30–40% of annual wet S deposition) which contributed to the decreased δ 18 O–SO 4 in throughfall was taken up by the canopy. Overall, these results showed that, contrary to what is commonly considered, S interchanges in the canopy could be important in boreal forests with low absolute atmospheric S depositions. - Highlights: ► We investigated sulphur interactions with the canopy of two boreal forests, Québec. ► Sulphur interchanges within the canopy were large and vary with seasons. ► About 1.2 kg S–SO 4 ha −1 yr −1 was taken up by the canopy during warm seasons. ► This represents 30–40% of annual wet S–SO 4 deposition. ► Canopy uptake must be considered for sulphur budget estimations in boreal forests. - The equivalent of 30–40% of annual wet S–SO 4 deposition was taken up by the canopy of two boreal forests during warm seasons.

  12. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  13. Mapping forest canopy disturbance in the Upper Great Lakes, USA

    Science.gov (United States)

    James D. Garner; Mark D. Nelson; Brian G. Tavernia; Charles H. (Hobie) Perry; Ian W. Housman

    2015-01-01

    A map of forest canopy disturbance was generated for Michigan, Wisconsin, and most of Minnesota using 42 Landsat time series stacks (LTSS) and a vegetation change tracker (VCTw) algorithm. Corresponding winter imagery was used to reduce commission errors of forest disturbance by identifying areas of persistent snow cover. The resulting disturbance age map was classed...

  14. Rapid assessment of forest canopy and light regime using smartphone hemispherical photography.

    Science.gov (United States)

    Bianchi, Simone; Cahalan, Christine; Hale, Sophie; Gibbons, James Michael

    2017-12-01

    Hemispherical photography (HP), implemented with cameras equipped with "fisheye" lenses, is a widely used method for describing forest canopies and light regimes. A promising technological advance is the availability of low-cost fisheye lenses for smartphone cameras. However, smartphone camera sensors cannot record a full hemisphere. We investigate whether smartphone HP is a cheaper and faster but still adequate operational alternative to traditional cameras for describing forest canopies and light regimes. We collected hemispherical pictures with both smartphone and traditional cameras in 223 forest sample points, across different overstory species and canopy densities. The smartphone image acquisition followed a faster and simpler protocol than that for the traditional camera. We automatically thresholded all images. We processed the traditional camera images for Canopy Openness (CO) and Site Factor estimation. For smartphone images, we took two pictures with different orientations per point and used two processing protocols: (i) we estimated and averaged total canopy gap from the two single pictures, and (ii) merging the two pictures together, we formed images closer to full hemispheres and estimated from them CO and Site Factors. We compared the same parameters obtained from different cameras and estimated generalized linear mixed models (GLMMs) between them. Total canopy gap estimated from the first processing protocol for smartphone pictures was on average significantly higher than CO estimated from traditional camera images, although with a consistent bias. Canopy Openness and Site Factors estimated from merged smartphone pictures of the second processing protocol were on average significantly higher than those from traditional cameras images, although with relatively little absolute differences and scatter. Smartphone HP is an acceptable alternative to HP using traditional cameras, providing similar results with a faster and cheaper methodology. Smartphone

  15. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    Science.gov (United States)

    Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith

    2000-01-01

    We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...

  16. Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data

    Science.gov (United States)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2018-03-01

    In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.

  17. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules

  18. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    Directory of Open Access Journals (Sweden)

    Roberta De Bei

    2016-04-01

    Full Text Available Leaf area index (LAI and plant area index (PAI are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI, canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  19. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  20. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    Science.gov (United States)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity

  1. Effects of woody elements on simulated canopy reflectance: implications for forest chlorophyll content retrieval

    NARCIS (Netherlands)

    Verrelst, J.; Schaepman, M.E.; Malenovsky, Z.; Clevers, J.G.P.W.

    2010-01-01

    An important bio-indicator of actual plant health status, the foliar content of chlorophyll a and b (Cab), can be estimated using imaging spectroscopy. For forest canopies, however, the relationship between the spectral response and leaf chemistry is confounded by factors such as background (e.g.

  2. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Science.gov (United States)

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  3. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    Science.gov (United States)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  4. A source-orientated approach for estimating daytime concentrations of biogenic volatile organic compounds in an upper layer of a boreal forest canopy

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, H.K. [Finnish Meteorological Inst., Helsinki (Finland); Sevanto, S.; Dal Maso, M.; Taipale, R.; Kajos, M. [Helsinki Univ. (Finland). Dept. of Physics; Kolari, P.; Back, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology Sciences

    2013-06-01

    Biologically justified statistical models for daytime atmospheric concentrations of methanol, acetaldehyde, acetone, isoprene and monoterpene were tested using measurements at a boreal forest stand in southern Finland in 2006-2007 and in summer 2008. The canopy-scale concentrations of all compounds except monotepene were closely correlated with shoot-scale concentrations indicating a strong link to biological emission source. All the models were based on the exponential relationship between air temperature and atmospheric concentration of biogenic volatile organic compounds (BVOCs). The first model - an exponential function of air temperature (T model) - could explain 27%-64% of the variation in BVOC daytime concentrations in the test data. The second model - a Temperature-State of Development model (T-S model) having two explaining variables (air temperature and seasonal photosynthetic efficiency) - was derived from an empirical adjustment of seasonality. This model slightly increased the fraction of explained variation but it still could not explain the high concentration peaks, which accounted for most of the unexplained variation. To better analyse these peaks we tested the Trigger model including two potential environmental triggers, a PAR index (high photosynthetically active photon flux density (PAR) and high ozone concentration, that could increase the concentrations momentarily. However, the Trigger model described the peak concentrations only somewhat better than the T or T-S model. It seems that it is very difficult to explain more than 32%-67% of variation in BVOC concentrations by a straightforward source-oriented modelling without deep understanding of biological and physical processes. In order to improve the models profound studies on specific stress factors and events inducing BVOC emissions are needed. (orig.)

  5. Testing the Application of Terrestrial Laser Scanning to Measure Forest Canopy Gap Fraction

    Directory of Open Access Journals (Sweden)

    F. Mark Danson

    2013-06-01

    Full Text Available Terrestrial laser scanners (TLS have the potential to revolutionise measurement of the three-dimensional structure of vegetation canopies for applications in ecology, hydrology and climate change. This potential has been the subject of recent research that has attempted to measure forest biophysical variables from TLS data, and make comparisons with two-dimensional data from hemispherical photography. This research presents a systematic comparison between forest canopy gap fraction estimates derived from TLS measurements and hemispherical photography. The TLS datasets used in the research were obtained between April 2008 and March 2009 at Delamere Forest, Cheshire, UK. The analysis of canopy gap fraction estimates derived from TLS data highlighted the repeatability and consistency of the measurements in comparison with those from coincident hemispherical photographs. The comparison also showed that estimates computed considering only the number of hits and misses registered in the TLS datasets were consistently lower than those estimated from hemispherical photographs. To examine this difference, the potential information available in the intensity values recorded by TLS was investigated and a new method developed to estimate canopy gap fraction proposed. The new approach produced gap fractions closer to those estimated from hemispherical photography, but the research also highlighted the limitations of single return TLS data for this application.

  6. ASSESSING THE CANOPY INTEGRITY USING CANOPY DIGITAL IMAGES IN SEMIDECIDUOUS FOREST FRAGMENT IN SÃO CARLOS - SP- BRAZIL1

    Directory of Open Access Journals (Sweden)

    Thiago Yamada

    2017-11-01

    Full Text Available ABSTRACT It is well-known that conducting experimental research aiming the characterization of canopy structure of forests can be a difficult and costly task and, generally, requires an expert to extract, in loco, relevant information. Aiming at easing studies related to canopy structures, several techniques have been proposed in the literature and, among them, various are based on canopy digital image analysis. The research work described in this paper empirically compares two techniques that measure the integrity of the canopy structure of a forest fragment; one of them is based on central parts of canopy cover images and, the other, on canopy closure images. For the experiments, 22 central parts of canopy cover images and 22 canopy closure images were used. The images were captured along two transects: T1 (located in the conserved area and T2 (located in the naturally disturbance area. The canopy digital images were computationally processed and analyzed using the MATLAB platform for the canopy cover images and the Gap Light Analyzer (GLA, for the canopy closure images. The results obtained using these two techniques showed that canopy cover images and, among the employed algorithms, the Jseg, characterize the canopy integrity best. It is worth mentioning that part of the analysis can be automatically conducted, as a quick and precise process, with low material costs involved.

  7. A GIS-based tool for estimating tree canopy cover on fixed-radius plots using high-resolution aerial imagery

    Science.gov (United States)

    Sara A. Goeking; Greg C. Liknes; Erik Lindblom; John Chase; Dennis M. Jacobs; Robert. Benton

    2012-01-01

    Recent changes to the Forest Inventory and Analysis (FIA) Program's definition of forest land precipitated the development of a geographic information system (GIS)-based tool for efficiently estimating tree canopy cover for all FIA plots. The FIA definition of forest land has shifted from a density-related criterion based on stocking to a 10 percent tree canopy...

  8. Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests

    Science.gov (United States)

    Zhirin, V. M.; Knyazeva, S. V.; Eydlina, S. P.

    2017-12-01

    The article deals with the results of a statistical analysis reflecting tendencies (trends) of the relationship between spectral characteristics of taiga forests, indicators of the morphological structure of forest canopy and illumination of the territory. The study was carried out on the example of the model forest territory of the Priangarskiy taiga region of Eastern Siberia (Krasnoyarsk krai) using historical data (forest inventory 1992, Landsat 5 TM 16.06.1989) and the digital elevation model. This article describes a method for determining the quantitative indicator of morphological structure of forest canopy based on taxation data, and the authors propose to subdivide the morphological structure into high complexity, medium complexity, and relatively simple. As a result of the research, dependences of average values of spectral brightness in near and short-wave infrared channels of a Landsat 5 TM image for dark-coniferous, light-coniferous and deciduous forests from the degree of complexity of the forest-canopy structure are received. A high level of variance and maximum brightness average values are marked in green moss (hilocominosa) dark-coniferous and various-grass (larioherbosa) dark-coniferous forests and light-coniferous forests with a complex structure of canopy. The parvifoliate forests are characterized by high values of brightness in stands with a relatively simple structure of the canopy and by a small variance in brightness of any degree of the structure of the canopy complexity. The increase in brightness for the lit slopes in comparison with shaded ones in all stands with a difficult morphological canopy structure is revealed. However, the brightness values of the lit and shaded slopes do not differ for stands with a medium complexity of the structure. It is noted that, in addition to the indicator of the forest-canopy structure, the possible impact on increasing the variance of spectral brightness for the taxation plot has a variability of the

  9. El Niño drought increased canopy turnover in Amazon forests.

    Science.gov (United States)

    Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos

    2018-03-25

    Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1  yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  10. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    Science.gov (United States)

    AbstractLeaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  11. Amblyomma tapirellum (Dunn, 1933) collected from tropical forest canopy

    NARCIS (Netherlands)

    Loaiza, J.R.; Miller, M.J.; Bermingham, E.; Sanjur, O.I.; Jansen, P.A.; Rovira, J.R.; Alvarez, E.; Rodriguez, E.; Davis, P.; Dutari, L.C.; Pecor, J.; Foley, D.; Radtke, M.; Pongsiri, M.J.

    2013-01-01

    Free-ranging ticks are widely known to be restricted to the ground level of vegetation. Here, we document the capture of the tick species Amblyomma tapirellum in light traps placed in the forest canopy of Barro Colorado Island, central Panama. A total of forty eight adults and three nymphs were

  12. Effect of forest canopy on GPS-based movement data

    Science.gov (United States)

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe

    2005-01-01

    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (Pof forest canopy. Global Positioning System error added an average of 27.5% additional...

  13. Assessment of Light Environment Variability in Broadleaved Forest Canopies Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Dimitry Van der Zande

    2010-06-01

    Full Text Available Light availability inside a forest canopy is of key importance to many ecosystem processes, such as photosynthesis and transpiration. Assessment of light availability and within-canopy light variability enables a more detailed understanding of these biophysical processes. The changing light-vegetation interaction in a homogeneous oak (Quercus robur L. stand was studied at different moments during the growth season using terrestrial laser scanning datasets and ray tracing technology. Three field campaigns were organized at regular time intervals (24 April 2008; 07 May 2008; 23 May 2008 to monitor the increase of foliage material. The laser scanning data was used to generate 3D representations of the forest stands, enabling structure feature extraction and light interception modeling, using the Voxel-Based Light Interception Model (VLIM. The VLIM is capable of estimating the relative light intensity or Percentage of Above Canopy Light (PACL at any arbitrary point in the modeled crown space. This resulted in a detailed description of the dynamic light environments inside the canopy. Mean vertical light extinction profiles were calculated for the three time frames, showing significant differences in light attenuation by the canopy between April 24 on the one hand, and May 7 and May 23 on the other hand. The proposed methodology created the opportunity to link these within-canopy light distributions to the increasing amount of photosynthetically active leaf material and its distribution in the considered 3D space.

  14. Estimation of Forest Degradation with Remote Sensing and GIS Analysis

    DEFF Research Database (Denmark)

    Dons, Klaus

    +). An indirect remote sensing (RS) approach has been suggested to map the infrastructure used for degradation rather than the actual change in forest canopy cover. This offers a way to delineate intact forest land and to model and estimate emissions from forest degradation in the non‐intact forest land – thereby...

  15. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Science.gov (United States)

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby . Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  16. Estimating wood volume from canopy area in deciduous woodlands ...

    African Journals Online (AJOL)

    In this study we tested the predictive ability of canopy area in estimating wood volume in deciduous woodlands of Zimbabwe. The study was carried out in four sites of different climatic conditions. We used regression analysis to statistically quantify the prediction of wood volume from canopy area at species and stand level ...

  17. Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications?

    Science.gov (United States)

    Herman Sievering; Ivan Fernandez; John Lee; John Hom; Lindsey Rustad

    2000-01-01

    Dry deposition determinations, along with wet deposition and throughfall (TF) measurements, at a spruce fir forest in central Maine were used to estimate the effect of atmospherically deposited nitrogen (N) uptake on forest carbon storage. Using nitric acid and particulate N as well as TF ammonium and nitrate data, the growing season (May-October) net canopy uptake of...

  18. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data

    Science.gov (United States)

    Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin

    2010-01-01

    LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...

  19. Removing forest canopy cover restores a reptile assemblage.

    Science.gov (United States)

    Pike, David A; Webb, Jonathan K; Shine, Richard

    2011-01-01

    Humans are rapidly altering natural systems, leading to changes in the distribution and abundance of species. However, so many changes are occurring simultaneously (e.g., climate change, habitat fragmentation) that it is difficult to determine the cause of population fluctuations from correlational studies. We used a manipulative field experiment to determine whether forest canopy cover directly influences reptile assemblages on rock outcrops in southeastern Australia. Our experimental design consisted of three types of rock outcrops: (1) shady sites in which overgrown vegetation was manually removed (n = 25); (2) overgrown controls (n = 30); and (3) sun-exposed controls (n = 20). Following canopy removal, we monitored reptile responses over 30 months. Canopy removal increased reptile species richness, the proportion of shelter sites used by reptiles, and relative abundances of five species that prefer sun-exposed habitats. Our manipulation also decreased the abundances of two shade-tolerant species. Canopy cover thus directly influences this reptile assemblage, with the effects of canopy removal being dependent on each species' habitat preferences (i.e., selection or avoidance of sun-exposed habitat). Our study suggests that increases in canopy cover can cause declines of open-habitat specialists, as previously suggested by correlative studies from a wide range of taxa. Given that reptile colonization of manipulated outcrops occurred rapidly, artificially opening the canopy in ecologically informed ways could help to conserve imperiled species with patchy distributions and low vagility that are threatened by vegetation overgrowth. One such species is Australia's most endangered snake, the broadheaded snake (Hoplocephalus bungaroides).

  20. Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data

    Science.gov (United States)

    Halligan, Kerry Quinn

    The severity and size of wildland fires in the forested western U.S have increased in recent years despite improvements in fire suppression efficiency. This, along with increased density of homes in the wildland-urban interface, has resulted in high costs for fire management and increased risks to human health, safety and property. Crown fires, in comparison to surface fires, pose an especially high risk due to their intensity and high rate of spread. Crown fire models require a range of quantitative fuel parameters which can be difficult and costly to obtain, but advances in lidar and hyperspectral sensor technologies hold promise for delivering these inputs. Further research is needed, however, to assess the strengths and limitations of these technologies and the most appropriate analysis methodologies for estimating crown fuel parameters from these data. This dissertation focuses on retrieving critical crown fuel parameters, including canopy height, canopy bulk density and proportion of dead canopy fuel, from airborne lidar and hyperspectral data. Remote sensing data were used in conjunction with detailed field data on forest parameters and surface reflectance measurements. A new method was developed for retrieving Digital Surface Model (DSM) and Digital Canopy Models (DCM) from first return lidar data. Validation data on individual tree heights demonstrated the high accuracy (r2 0.95) of the DCMs developed via this new algorithm. Lidar-derived DCMs were used to estimate critical crown fire parameters including available canopy fuel, canopy height and canopy bulk density with linear regression model r2 values ranging from 0.75 to 0.85. Hyperspectral data were used in conjunction with Spectral Mixture Analysis (SMA) to assess fuel quality in the form of live versus dead canopy proportions. Severity and stage of insect-caused forest mortality were estimated using the fractional abundance of green vegetation, non-photosynthetic vegetation and shade obtained from

  1. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  2. Directional Canopy Emissivity Estimation Based on Spectral Invariants

    Science.gov (United States)

    Guo, M.; Cao, B.; Ren, H.; Yongming, D.; Peng, J.; Fan, W.

    2017-12-01

    Land surface emissivity is a crucial parameter for estimating land surface temperature from remote sensing data and also plays an important role in the physical process of surface energy and water balance from local to global scales. To our knowledge, the emissivity varies with surface type and cover. As for the vegetation, its canopy emissivity is dependent on vegetation types, viewing zenith angle and structure that changes in different growing stages. Lots of previous studies have focused on the emissivity model, but few of them are analytic and suited to different canopy structures. In this paper, a new physical analytic model is proposed to estimate the directional emissivity of homogenous vegetation canopy based on spectral invariants. The initial model counts the directional absorption in six parts: the direct absorption of the canopy and the soil, the absorption of the canopy and soil after a single scattering and after multiple scattering within the canopy-soil system. In order to analytically estimate the emissivity, the pathways of photons absorbed in the canopy-soil system are traced using the re-collision probability in Fig.1. After sensitive analysis on the above six absorptions, the initial complicated model was further simplified as a fixed mathematic expression to estimate the directional emissivity for vegetation canopy. The model was compared with the 4SAIL model, FRA97 model, FRA02 model and DART model in Fig.2, and the results showed that the FRA02 model is significantly underestimated while the FRA97 model is a little underestimated, on basis of the new model. On the contrary, the emissivity difference between the new model with the 4SAIL model and DART model was found to be less than 0.002. In general, since the new model has the advantages of mathematic expression with accurate results and clear physical meaning, the model is promising to be extended to simulate the directional emissivity for the discrete canopy in further study.

  3. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    Science.gov (United States)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  4. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu

    2017-07-01

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2  = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P chlorophyll content (R 2  = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2  = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2  = 0.36 for canopy GPP SIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. © 2016 John Wiley & Sons Ltd.

  5. Asynchronous Amazon Forest Canopy Phenology Indicates Adaptation to Both Water and Light Availability

    Science.gov (United States)

    Jones, M. O.; Kimball, J. S.; Nemani, R. R.

    2015-12-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically active radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season length. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought. These insights can also inform land surface models to provide a more accurate representation of seasonal forest carbon allocation strategies responsive to environmental drivers.

  6. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    Science.gov (United States)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  7. Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon

    DEFF Research Database (Denmark)

    Karsten, Rune Juelsborg; Jovanovic, Milos; Meilby, Henrik

    2013-01-01

    the regeneration dynamics of logging gaps with naturally occuring canopy gaps. In the concession of Consorcio Forestal Amazonico in the region of Ucayali in the Peruvian Amazon, a total of 210 circular sample plots were established in 35 gaps in unmanaged natural forest and 35 canopy gaps in forest managed...

  8. Is methane released from the forest canopy?

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    2011-01-01

    Laboratory experiments show that rates of CH4 emission from plant material depend exponentially on temperature and linearly on UV irradiance. The UV irradiance shall be spectrally weighted and shorter wavelengths results in higher CH4 emissions. Global upscaling models for estimating aerobic CH4,...

  9. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  10. Spectroscopic Remote Sensing of Non-Structural Carbohydrates in Forest Canopies

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2015-03-01

    Full Text Available Non-structural carbohydrates (NSC are products of photosynthesis, and leaf NSC concentration may be a prognostic indicator of climate-change tolerance in woody plants. However, measurement of leaf NSC is prohibitively labor intensive, especially in tropical forests, where foliage is difficult to access and where NSC concentrations vary enormously by species and across environments. Imaging spectroscopy may allow quantitative mapping of leaf NSC, but this possibility remains unproven. We tested the accuracy of NSC remote sensing at leaf, canopy and stand levels using visible-to-shortwave infrared (VSWIR spectroscopy with partial least squares regression (PLSR techniques. Leaf-level analyses demonstrated the high precision (R2 = 0.69–0.73 and accuracy (%RMSE = 13%–14% of NSC estimates in 6136 live samples taken from 4222 forest canopy species worldwide. The leaf spectral data were combined with a radiative transfer model to simulate the role of canopy structural variability, which led to a reduction in the precision and accuracy of leaf NSC estimation (R2 = 0.56; %RMSE = 16%. Application of the approach to 79 one-hectare plots in Amazonia using the Carnegie Airborne Observatory VSWIR spectrometer indicated the good precision and accuracy of leaf NSC estimates at the forest stand level (R2 = 0.49; %RMSE = 9.1%. Spectral analyses indicated strong contributions of the shortwave-IR (1300–2500 nm region to leaf NSC determination at all scales. We conclude that leaf NSC can be remotely sensed, opening doors to monitoring forest canopy physiological responses to environmental stress and climate change.

  11. Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

    International Nuclear Information System (INIS)

    Jones, Matthew O; Kimball, John S; Nemani, Ramakrishna R

    2014-01-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO 2 ) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003–2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought. (letter)

  12. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  13. Estimation of Moisture Content of Forest Canopy and Floor from SAR Data Part II: Trunk-Ground Double-Bounce Case

    Science.gov (United States)

    Moghaddam, M.; Saatchi, S.

    1996-01-01

    Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.

  14. Regional mapping of forest canopy water content and biomass using AIRSAR images over BOREAS study area

    Science.gov (United States)

    Saatchi, Sasan; Rignot, Eric; Vanzyl, Jakob

    1995-01-01

    In recent years, monitoring vegetation biomass over various climate zones has become the primary focus of several studies interested in assessing the role of the ecosystem responses to climate change and human activities. Airborne and spaceborne Synthetic Aperture Radar (SAR) systems provide a useful tool to directly estimate biomass due to its sensitivity to structural and moisture characteristics of vegetation canopies. Even though the sensitivity of SAR data to total aboveground biomass has been successfully demonstrated in many controlled experiments over boreal forests and forest plantations, so far, no biomass estimation algorithm has been developed. This is mainly due to the fact that the SAR data, even at lowest frequency (P-band) saturates at biomass levels of about 200 tons/ha, and the structure and moisture information in the SAR signal forces the estimation algorithm to be forest type dependent. In this paper, we discuss the development of a hybrid forest biomass algorithm which uses a SAR derived land cover map in conjunction with a forest backscatter model and an inversion algorithm to estimate forest canopy water content. It is shown that unlike the direct biomass estimation from SAR data, the estimation of water content does not depend on the seasonal and/or environmental conditions. The total aboveground biomass can then be derived from canopy water content for each type of forest by incorporating other ecological information. Preliminary results from this technique over several boreal forest stands indicate that (1) the forest biomass can be estimated with reasonable accuracy, and (2) the saturation level of the SAR signal can be enhanced by separating the crown and trunk biomass in the inversion algorithm. We have used the JPL AIRSAR data over BOREAS southern study area to test the algorithm and to generate regional scale water content and biomass maps. The results are compared with ground data and the sources of errors are discussed. Several SAR

  15. Evaporation and the sub-canopy energy environment in a flooded forest

    Science.gov (United States)

    The combination of canopy cover and a free water surface makes the sub-canopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. The sub-canopy vapor flux and energy budget are not well understood in wetlands, but they importantly control water level and understory...

  16. A comparison of ground-based methods for estimating canopy closure for use in phenology research

    OpenAIRE

    Smith, AM; Ramsay, PM

    2018-01-01

    Abstract Climate change is influencing tree phenology, causing earlier and more prolonged canopy closure in temperate forests. Canopy closure is closely associated with understorey light, so shifts in its timing have wide-reaching consequences for ecological processes in the understorey. Widespread monitoring of forest canopies through time is needed to understand changes in light availability during spring in particular. Canopy openness, derived from hemispherical photography, has frequently...

  17. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    Science.gov (United States)

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  18. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    International Nuclear Information System (INIS)

    Sievering, H.; Tomaszewski, T.; Torizzo, J.

    2007-01-01

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO 3 and NH 3 as well as inferred (NO x and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes ∼1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO 2 uptake) correlated with CNU. Multiple regression indicates ∼20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU

  19. Relative abundance estimations of Chengal trees in a tropical rainforest by using modified canopy fractional cover (mCFC)

    International Nuclear Information System (INIS)

    Hassan, N

    2014-01-01

    Tree species composition estimations are important to sustain forest management. This study estimates relative abundance of useful timber tree species (chengal) using Hyperion EO-1 satellite data. For the estimation, modified Canopy Fractional Cover (mCFC) was developed using Canopy Fractional Cover (CFC). mCFC was more sensitive to estimate relative abundance of chengal trees rather than Mixture Tuned Matched Filtering (MTMF). Meanwhile, MTMF was more sensitive to estimate the relative abundance of undisturbed forest. Accuracy suggests that the mCFC model is better to explain relative abundance of chengal trees than MTMF. Therefore, it can be concluded that relative abundance of tree species extracted from Hyperion EO-1 satellite data using modified Canopy Fractional Cover is an obtrusive approach used for identifying tree species composition

  20. Relative abundance estimations of chengal tree in a tropical rainforest by using modified Canopy Fractional Cover (mCFC)

    International Nuclear Information System (INIS)

    Hassan, N

    2014-01-01

    Tree species composition estimations are important to sustain forest management. This study challenged estimates of relative abundance of useful timber tree species (chengal) using Hyperion EO-1 satellite data. For the estimation, modified Canopy Fractional Cover (mCFC) was developed using Canopy Fractional Cover (CFC). mCFC was more sensitive to estimate relative abundance of chengal trees rather than Mixture Tuned Matched Filtering (MTMF). Meanwhile, MTMF was more sensitive to estimate the relative abundance of undisturbed forest. Accuracy suggests that the mCFC model is better to explain relative abundance of chengal trees than MTMF. Therefore, it can be concluded that relative abundance of trees species extracted from Hyperion EO-1 satellite data using modified Canopy Fractional Cover is an obtrusive approach used for identifying trees species composition

  1. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests

    OpenAIRE

    Barbier, N.; Couteron, Pierre; Proisy, Christophe; Malhi, Y.; Gastellu-Etchegorry, J. P.

    2010-01-01

    Aim The size structure of a forest canopy is an important descriptor of the forest environment that may yield information on forest biomass and ecology. However, its variability at regional scales is poorly described or understood because of the still prohibitive cost of very high-resolution imagery as well as the lack of an appropriate methodology. We here employ a novel approach to describe and map the canopy structure of tropical forests. Location Amazonia. Methods We apply Fourier transfo...

  2. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Science.gov (United States)

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  3. The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies

    Science.gov (United States)

    Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon

    2017-01-01

    Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with

  4. Forest canopy height from Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar

    Science.gov (United States)

    Mark Chopping; Anne Nolin; Gretchen G. Moisen; John V. Martonchik; Michael Bull

    2009-01-01

    In this study retrievals of forest canopy height were obtained through adjustment of a simple geometricoptical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression...

  5. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest

    Science.gov (United States)

    E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman

    2009-01-01

    Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...

  6. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    2015-04-01

    Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

  7. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2013-01-01

    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  8. Interpretation of Upper-Storey Canopy Area in Subtropical Broad-leaved Forests in Okinawa Island Using Laser Scanning Data

    International Nuclear Information System (INIS)

    Noor Janatun Naim Jemali; Shiba, M.; Azita Ahmad Zawawi; Noor Janatun Naim Jemali

    2015-01-01

    Conventional forest inventory practice took huge of effort, and is time- and cost- consuming. With the aid of remote sensing technology by light detection and ranging (LiDAR), those unbearable factors could be minimized. LiDAR is able to capture forest characteristic information and is well known for estimating forest structure accurately in many studies. Forest monitoring related to forest resource inventory (FRI) becomes more effective by utilizing LiDAR data and it is tremendously useful, especially to distinguish information on density, growth and distribution of trees in a selected area. In this study, LiDAR data was utilized aimed to delineate crown cover and estimate upper-storey canopy area in Yambaru Forest using object-based segmentation and classification techniques. Agreement between field survey and LiDAR data analysis showed that only 33.7 % of upper-storey canopy area was successfully delineated. The low accuracy level of canopy detection in Yambaru Forest area was expected mainly due to tree structure, density and topographic condition. (author)

  9. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  10. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    Science.gov (United States)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  11. Large eddy simulation of the atmospheric boundary layer above a forest canopy

    Science.gov (United States)

    Alam, Jahrul

    2017-11-01

    A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.

  12. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  13. Response of Boreal forest tree canopy cover to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1994-01-01

    A section of the Canadian Boreal forest was irradiated chronically by a point source of 137 Cs from 1973 to 1986. Tree canopy cover was measured at permanently marked locations during the pre-irradiation, irradiation and post-irradiation phases, spanning a period of two decades. The tree canopy was severely affected at dose rates greater than 10 mGy/h delivered chronically. The canopy of sensitive coniferous tree species, such as Abies balsamea and Picea Mariana, decreased at dose rates greater than 2 mGy/h, but in some cases the tree canopy was replaced by more resistant species, such as Populus tremuloides and Salix bebbiana. Effects on canopy cover could not be detected at dose rates less than 0.1 mGy/h. Even at dose rates of 5 mGy/h, the forest canopy is recovering six years after irradiation stopped. (author)

  14. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  15. Transfer of 7Be, 210Pb and 210Po in a forest canopy of Japanese cedar

    International Nuclear Information System (INIS)

    Osaki, S.; Tagawa, Y.; Sugihara, S.; Maeda, Y.; Inokura, Y.

    2003-01-01

    The concentrations of 7 Be, 210 Pb and 210 Po of ca. 60 parts of a whole tree of Japanese cedar and of underlying litter and soil samples were determined for studying their transfer in a forest canopy. The results suggest that the mean residence times of 7 Be and 210 Pb in the forest canopy were ca. 20 and 900 days, respectively, and the dry deposition rate of 7 Be on the forest canopy was about a half of the total deposition rate. (author)

  16. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes

    Science.gov (United States)

    Barbara A. Richardson; Michael J. Richardson; Grizelle Gonzalez; Aaron B. Shiels; Diane S. Srivastava

    2010-01-01

    Hurricanes cause canopy removal and deposition of pulses of litter to the forest floor. A Canopy Trimming Experiment (CTE) was designed to decouple these two factors, and to investigate the separate abiotic and biotic consequences of hurricane-type damage and monitor recovery processes. As part of this experiment, effects on forest floor invertebrate communities were...

  17. Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Xiliang Ni

    2015-06-01

    Full Text Available Spatially-detailed forest height data are useful to monitor local, regional and global carbon cycle. LiDAR remote sensing can measure three-dimensional forest features but generating spatially-contiguous forest height maps at a large scale (e.g., continental and global is problematic because existing LiDAR instruments are still data-limited and expensive. This paper proposes a new approach based on an artificial neural network (ANN for modeling of forest canopy heights over the China continent. Our model ingests spaceborne LiDAR metrics and multiple geospatial predictors including climatic variables (temperature and precipitation, forest type, tree cover percent and land surface reflectance. The spaceborne LiDAR instrument used in the study is the Geoscience Laser Altimeter System (GLAS, which can provide within-footprint forest canopy heights. The ANN was trained with pairs between spatially discrete LiDAR metrics and full gridded geo-predictors. This generates valid conjugations to predict heights over the China continent. The ANN modeled heights were evaluated with three different reference data. First, field measured tree heights from three experiment sites were used to validate the ANN model predictions. The observed tree heights at the site-scale agreed well with the modeled forest heights (R = 0.827, and RMSE = 4.15 m. Second, spatially discrete GLAS observations and a continuous map from the interpolation of GLAS-derived tree heights were separately used to evaluate the ANN model. We obtained R of 0.725 and RMSE of 7.86 m and R of 0.759 and RMSE of 8.85 m, respectively. Further, inter-comparisons were also performed with two existing forest height maps. Our model granted a moderate agreement with the existing satellite-based forest height maps (R = 0.738, and RMSE = 7.65 m (R2 = 0.52, and RMSE = 8.99 m. Our results showed that the ANN model developed in this paper is capable of estimating forest heights over the China continent with a

  18. The transient behavior of whole-canopy fluxes during dynamic light conditions for midlatitude and tropical forests

    Science.gov (United States)

    Fitzjarrald, D. R.; Kivalov, S. N.

    2017-12-01

    Cloud shadows lead to alternating light and dark periods at the surface. Understanding how clouds affect whole-canopy fluxes suffer from two knowledge gaps that limit scaling from leaf to canopy scales, an effort currently done by assertion alone. First, there is a lack a clear quantitative definition of the incident light time series that occur on specific types of cloudy days. Second, the characteristic time scales for leaves to respond to for stomatal opening and closing is 1-10 minutes, a period too short to allow accurate eddy fluxes. We help to close the first gap by linking the durations of alternating light and dark periods statistically to conventional meteorological sky types at a midlatitude mixed deciduous forest (Harvard Forest, MA, USA: 42.53N, 72.17W) and in a tropical rain forest (Tapajós National Forest, Brazil; 2.86S, 54.96W). The second gap is narrowed by measuring the dynamic response whole canopy exchanges in the flux footprint at intervals of only a few seconds using the classical ensemble average method, keying on step changes in light intensity. Combining light and shadow periods of different lengths we estimate ensemble fluxes sensible heat (H), net ecosystem exchange (NEE), and latent heat (LE) fluxes initiated by abrupt radiation changes at intervals of 30 s over 20 minutes. We present composite results of the transient behavior of whole-canopy fluxes at each forest, showing distinct features of each forest type. Observed time constants and transient flux parameterizations are then used to force a simple model to yield NEE, LE, WUE, and Bowen ratio extrema under periodic shadow-light conditions and given cloud amount. We offer the hypothesis that, at least on certain types of cloudy days, the well-known correlation between diffuse light and WUE does not represent a causal connection at the canopy scale.

  19. Missing Peroxy Radical Sources Within a Rural Forest Canopy

    Science.gov (United States)

    Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.; hide

    2013-01-01

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.

  20. Canopy gap replacement failure in a Pennsylvania forest preserve subject to extreme deer herbivory

    Science.gov (United States)

    Brian S. Pedersen; Angela M. Wallis

    2003-01-01

    While research has demonstrated the adverse effects of deer herbivory on forest regeneration in forests managed for timber production, less study has been devoted to the long term effects of deer on the dynamics of forests set aside as natural areas. At sufficiently high population densities, deer could interrupt the typical cycle of canopy gap formation and...

  1. ECHIDNA LIDAR Campaigns: Forest Canopy Imagery and Field Data, U.S.A., 2007-2009

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains forest canopy scan data from the Echidna Validation Instrument (EVI) and field measurements data from three campaigns conducted in...

  2. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    Science.gov (United States)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  3. Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China

    Science.gov (United States)

    Yu, Qian; Luo, Yao; Wang, Shuxiao; Wang, Zhiqi; Hao, Jiming; Duan, Lei

    2018-01-01

    Mercury (Hg) exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM) was used to continuously observe gaseous elemental mercury (GEM) fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ) and a moderately polluted site (Huitong, HT, near a large Hg mine) in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT) when compared with that in the mildly polluted site (QYZ) may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration in polluted areas because of Hg

  4. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  5. Measurements of canopy chemistry with 1992 AVIRIS data at Blackhawk Island and Harvard Forest

    Science.gov (United States)

    Martin, Mary E.; Aber, John D.

    1993-01-01

    The research described in this paper was designed to determine if high spectral resolution imaging spectrometer data can be used to measure the chemical composition of forest foliage, specifically nitrogen and lignin concentration. Information about the chemical composition of forest canopies can be used to determine nutrient cycling rates and carbon balances in forest ecosystems. This paper will describe the results relating data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to field measured canopy chemistry at Blackhawk Island, WI and Harvard Forest, MA.

  6. Plant science in forest canopies--the first 30 years of advances and challenges (1980-2010).

    Science.gov (United States)

    Lowman, Margaret D; Schowalter, Timothy D

    2012-04-01

    As an emerging subdiscipline of forest biology, canopy science has undergone a transition from observational, 'oh-wow' exploration to a more hypothesis-driven, experimental arena for rigorous field biology. Although efforts to explore forest canopies have occurred for a century, the new tools to access the treetops during the past 30 yr facilitated not only widespread exploration but also new discoveries about the complexity and global effects of this so-called 'eighth continent of the planet'. The forest canopy is the engine that fixes solar energy in carbohydrates to power interactions among forest components that, in turn, affect regional and global climate, biogeochemical cycling and ecosystem services. Climate change, biodiversity conservation, fresh water conservation, ecosystem productivity, and carbon sequestration represent important components of forest research that benefit from access to the canopy for rigorous study. Although some canopy variables can be observed or measured from the ground, vertical and horizontal variation in environmental conditions and processes within the canopy that determine canopy-atmosphere and canopy-forest floor interactions are best measured within the canopy. Canopy science has matured into a cutting-edge subset of forest research, and the treetops also serve as social and economic drivers for sustainable communities, fostering science education and ecotourism. This interdisciplinary context of forest canopy science has inspired innovative new approaches to environmental stewardship, involving diverse stakeholders. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. [Estimation of vegetation canopy water content using Hyperion hyperspectral data].

    Science.gov (United States)

    Song, Xiao-Ning; Ma, Jian-Wei; Li, Xiao-Tao; Leng, Pei; Zhou, Fang-Cheng; Li, Shuang

    2013-10-01

    Vegetation canopy water content (VCWC) has widespread utility in agriculture, ecology and hydrology. Based on the PROSAIL model, a novel model for quantitative inversion of vegetation canopy water content using Hyperion hyperspectral data was explored. Firstly, characteristics of vegetation canopy reflection were investigated with the PROSAIL radiative transfer model, and it was showed that the first derivative at the right slope (980 - 1 070 nm) of the 970 nm water absorption feature (D98-1 070) was closely related to VCWC, and determination coefficient reached to 0.96. Then, bands 983, 993, 1 003, 1 013, 1 023, 1 033, 1 043, 1 053 and 1 063 nm of Hyperion data were selected to calculate D980-1 070, and VCWC was estimated using the proposed method. Finally, the retrieval result was verified using field measured data in Yingke oasis of the Heihe basin. It indicated that the mean relative error was 12.5%, RMSE was within 0.1 kg x m(-2) and the proposed model was practical and reliable. This study provides a more efficient way for obtaining VCWC of large area.

  8. Spatial Upscaling of Soil Respiration under a Complex Canopy Structure in an Old‐Growth Deciduous Forest, Central Japan

    Directory of Open Access Journals (Sweden)

    Vilanee Suchewaboripont

    2017-01-01

    Full Text Available The structural complexity, especially canopy and gap structure, of old‐growth forests affects the spatial variation of soil respiration (Rs. Without considering this variation, the upscaling of Rs from field measurements to the forest site will be biased. The present study examined responses of Rs to soil temperature (Ts and water content (W in canopy and gap areas, developed the best fit modelof Rs and used the unique spatial patterns of Rs and crown closure to upscale chamber measurements to the site scale in an old‐growth beech‐oak forest. Rs increased with an increase in Ts in both gap and canopy areas, but the effect of W on Rs was different between the two areas. The generalized linear model (GLM analysis identified that an empirical model of Rs with thecoupling of Ts and W was better than an exponential model of Rs with only Ts. Moreover, because of different responses of Rs to W between canopy and gap areas, it was necessary to estimate Rs in these areas separately. Consequently, combining the spatial patterns of Rs and the crown closure could allow upscaling of Rs from chamber‐based measurements to the whole site in the present study.

  9. Upper canopy pollinators of Eucryphia cordifolia Cav., a tree of South American temperate rain forest

    Directory of Open Access Journals (Sweden)

    Cecilia Smith-Ramírez

    2016-05-01

    Full Text Available Ecological processes in the upper canopy of temperate forests have been seldom studied because of the limited accessibility. Here, we present the results of the first survey of the pollinator assemblage and the frequency of insect visits to flowers in the upper branches of ulmo, Eucryphia cordifolia Cav., an emergent 30-40 m-tall tree in rainforests of Chiloé Island, Chile. We compared these findings with a survey of flower visitors restricted to lower branches of E. cordifolia 1- in the forest understory, 2- in lower branches in an agroforestry area. We found 10 species of pollinators in canopy, and eight, 12 and 15 species in understory, depending of tree locations. The main pollinators of E. cordifolia in the upper canopy differed significantly from the pollinator assemblage recorded in lower tree branches. We conclude that the pollinator assemblages of the temperate forest canopy and interior are still unknown.

  10. Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Loffredo, Nicolas; Onda, Yuichi; Kawamori, Ayumi; Kato, Hiroaki

    2014-01-01

    The Fukushima accident dispersed significant amounts of radioactive cesium (Cs) in the landscape. Our research investigated, from June 2011 to November 2013, the mobility of leachable Cs in forests canopies. In particular, 137 Cs and 134 Cs activity concentrations were measured in rainfall, throughfall, and stemflow in broad-leaf and cedar forests in an area located 40 km from the power plant. Leachable 137 Cs loss was modeled by a double exponential (DE) model. This model could not reproduce the variation in activity concentration observed. In order to refine the DE model, the main physical measurable parameters (rainfall intensity, wind velocity, and snowfall occurrence) were assessed, and rainfall was identified as the dominant factor controlling observed variation. A corrective factor was then developed to incorporate rainfall intensity in an improved DE model. With the original DE model, we estimated total 137 Cs loss by leaching from canopies to be 72 ± 4%, 67 ± 4%, and 48 ± 2% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. In contrast, with the improved DE model, the total 137 Cs loss by leaching was estimated to be 34 ± 2%, 34 ± 2%, and 16 ± 1% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. The improved DE model corresponds better to observed data in literature. Understanding 137 Cs and 134 Cs forest dynamics is important for forecasting future contamination of forest soils around the FDNPP. It also provides a basis for understanding forest transfers in future potential nuclear disasters. - Highlights: • A double exponential model was used to model leachable cesium loss from canopies. • The model could not reproduce variation observed. • Rainfall was identified as the dominant factor controlling the variation. • A rainfall parameter was used to develop an improved double exponential model. • The improved model gives a better estimation

  11. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests.

    Directory of Open Access Journals (Sweden)

    Ondřej Košulič

    Full Text Available Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40% and red-listed threatened species (26%. The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small

  12. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    Science.gov (United States)

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface

  13. Does the precipitation redistribution of the canopy sense in the moisture pattern of the forest litter?

    Science.gov (United States)

    Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán

    2013-04-01

    Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this

  14. Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest

    Science.gov (United States)

    Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina

    2015-01-01

    Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...

  15. Cascading Effects of Canopy Opening and Debris Deposition from a Large-Scale Hurricane Experiment in a Tropical Rain Forest

    Science.gov (United States)

    Aaron B. Shiels; Grizelle Gonzalez; D. Jean Lodge; Michael R Willig; Jess K. Zimmerman

    2015-01-01

    Intense hurricanes disturb many tropical forests, but the key mechanisms driving post-hurricane forest changes are not fully understood. In Puerto Rico, we used a replicated factorial experiment to determine the mechanisms of forest change associated with canopy openness and organic matter (debris) addition. Cascading effects from canopy openness accounted for...

  16. Waveform- and Terrestrial Lidar Assessment of the Usual (Structural) Suspects in a Forest Canopy

    Science.gov (United States)

    van Aardt, J. A.; Romanczyk, P.; Kelbe, D.; van Leeuwen, M.; Cawse-Nicholson, K.; Gough, C. M.; Kampe, T. U.

    2015-12-01

    Forest inventory has evolved from standard stem diameter-height relationships, to coarse canopy metrics, to more involved ecologically-meaningful variables, such as leaf area index (LAI) and even canopy radiative transfer as a function of canopy gaps, leaf clumping, and leaf angle distributions. Accurate and precise measurement of the latter set of variables presents a challenge to the ecological and modeling communities; however, relatively novel remote sensing modalities, e.g., waveform lidar (wlidar) and terrestrial lidar systems (TLS), have the potential to adress this challenge. Research teams at Rochester Institute of Technology (RIT) and the Virginia Commonwealth University (VCU) have been collaborating with the National Ecological Observation Network (NEON) to assess vegetation canopy structure and variation at the University of Michigan Biological Research Station and the NEON Northeast domain (Harvard Forest, MA). Airborne small-footprint wlidar data, in-situ TLS data, and first-principles, physics-based simulation tools are being used to study (i) the impact of vegetation canopy geometric elements on wlidar signals (twigs and petioles have been deemed negligible), (ii) the analysis of airborne wlidar data for top-down assessment of canopy metrics such as LAI, and (iii) our ability to extract "bottom-up" canopy structure from TLS using scans registered to each other using a novel marker-free registration approach (e.g., basal area: R2=0.82, RMSE=7.43 m2/ha). Such studies indicate that we can potentially assess radiative transfer through vegetation canopies remotely using a vertically-stratified approach with wlidar, and augment such an approach via rapid-scan TLS technology to gain a better understanding of fine-scale variation in canopy structure. This in turn is key to quantifying and modeling radiative transfer based on understanding of forest canopy structural change as a function of ecosystem development, climate, and anthropogenic drivers.

  17. Tree Death Not Resulting in Gap Creation: An Investigation of Canopy Dynamics of Northern Temperate Deciduous Forests

    Directory of Open Access Journals (Sweden)

    Jean-Francois Senécal

    2018-01-01

    Full Text Available Several decades of research have shown that canopy gaps drive tree renewal processes in the temperate deciduous forest biome. In the literature, canopy gaps are usually defined as canopy openings that are created by partial or total tree death of one or more canopy trees. In this study, we investigate linkages between tree damage mechanisms and the formation or not of new canopy gaps in northern temperate deciduous forests. We studied height loss processes in unmanaged and managed forests recovering from partial cutting with multi-temporal airborne Lidar data. The Lidar dataset was used to detect areas where canopy height reduction occurred, which were then field-studied to identify the tree damage mechanisms implicated. We also sampled the density of leaf material along transects to characterize canopy structure. We used the dataset of the canopy height reduction areas in a multi-model inference analysis to determine whether canopy structures or tree damage mechanisms most influenced the creation of new canopy gaps within canopy height reduction areas. According to our model, new canopy gaps are created mainly when canopy damage enlarges existing gaps or when height is reduced over areas without an already established dense sub-canopy tree layer.

  18. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marc Souris

    2012-06-01

    Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS(750/700 and Ratio Spectral Index (RVI based on FDS(724/700 are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior

  19. Diurnal Patterns of Direct Light Extinction in Two Tropical Forest Canopies

    Science.gov (United States)

    Cushman, K.; Silva, C. E.; Kellner, J. R.

    2016-12-01

    The extent to which net ecosystem production is light-limited in Neotropical forests is poorly understood. This is due in part to our limited knowledge of how light moves through complex canopies to different layers of leaves, and the extent to which structural changes in canopies modify the amount of light absorbed by the landscape to drive photosynthesis. Systematic diurnal changes in solar angle, leaf angle, and wind speed suggest that patterns of light attenuation change over the course of the day in tropical forests. In this study, we characterize the extinction of direct light through the canopies of two forests in Panama using high-resolution, three-dimensional measurements from a small footprint, discrete return airborne laser scanner mounted on the gondola of a canopy crane. We hypothesized that light penetrates deeper into canopies during the middle of the day because changes in leaf angle by light-saturated leaves temporarily reduce effective canopy leaf area, and because greater wind speeds increase sunflecks. Also, we hypothesized that rates of light extinction are greater in the wetter forest that receives less direct sunlight because light saturation in upper leaves is less prevalent. We collected laser measurements with resolution of approximately 5,000 points per square meter of ground every 90 minutes over the course of one day each at Parque Natural Metropolitano (1740 mm annual rainfall) and Parque Nacional San Lorenzo (3300 mm annual rainfall) during the dry season in April, 2016. Using a voxel-based approach, we compared the actual versus potential distance traveled by laser beams through each volume of the canopy. We fit an exponential model to quantify the rate of light extinction. We found that rates of light extinction vary spatially, temporally, and by site. These results indicate that variation in forest structure changes patterns of light attenuation through the canopy over multiple scales.

  20. Regeneration in bottomland forest canopy gaps 6 years after variable retention harvests to enhance wildlife habitat

    Science.gov (United States)

    Daniel J. Twedt; Scott G. Somershoe

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after...

  1. Bayesian analysis for uncertainty estimation of a canopy transpiration model

    Science.gov (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.

    2007-04-01

    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  2. Model for absorption and release of gaseous materials by forest canopies

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1976-01-01

    A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere

  3. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.; Kilgo, John, C.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  4. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.

    Science.gov (United States)

    Nizzetto, Luca; Perlinger, Judith A

    2012-03-06

    An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds.

  5. Variations in canopy and litter interception across a forest chronosequence in the southern Appalachian Mountains

    Science.gov (United States)

    Steven T. Brantley; Paul V. Bolstad; Stephanie H. Laseter; A. Christopher Oishi; Kimberly A. Novick; Chelcy F. Miniat

    2016-01-01

    Variations in evapotranspiration (ET) have been well documented across a variety of forest types and climates in recent decades; however, most of these data have focused on mature, secondgrowth stands. Here we present data on two important fluxes of water, canopy interception (Ic) and forest floor litter interception (Iff), across a chronosequence of forest age in the...

  6. High Upward Fluxes of Formic Acid from a Boreal Forest Canopy

    Science.gov (United States)

    Schobesberger, Siegfried; Lopez-Hilifiker, Felipe D.; Taipale, Ditte; Millet, Dylan B.; D'Ambro, Emma L.; Rantala, Pekka; Mammarella, Ivan; Zhou, Putian; Wolfe, Glenn M.; Lee, Ben H.; hide

    2016-01-01

    Eddy covariance fluxes of formic acid, HCOOH, were measured over a boreal forest canopy in spring/summer 2014. The HCOOH fluxes were bidirectional but mostly upward during daytime, in contrast to studies elsewhere that reported mostly downward fluxes. Downward flux episodes were explained well by modeled dry deposition rates. The sum of net observed flux and modeled dry deposition yields an upward gross flux of HCOOH, which could not be quantitatively explained by literature estimates of direct vegetative soil emissions nor by efficient chemical production from other volatile organic compounds, suggesting missing or greatly underestimated HCOOH sources in the boreal ecosystem. We implemented a vegetative HCOOH source into the GEOS-Chem chemical transport model to match our derived gross flux and evaluated the updated model against airborne and spaceborne observations. Model biases in the boundary layer were substantially reduced based on this revised treatment, but biases in the free troposphere remain unexplained.

  7. Soil types and forest canopy structures in southern Missouri: A first look with AIS data

    Science.gov (United States)

    Green, G. M.; Arvidson, R. E.

    1986-01-01

    Spectral reflectance properties of deciduous oak-hickory forests covering the eastern half of the Rolla Quadrangle were examined using Thematic Mapper (TM) data acquired in August and December, 1982 and Airborne Imaging Spectrometer (AIS) data acquired in August, 1985. For the TM data distinctly high relative reflectance values (greater than 0.3) in the near infrared (Band 4, 0.73 to 0.94 micrometers) correspond to regions characterized by xeric (dry) forests that overlie soils with low water retention capacities. These soils are derived primarily from rhyolites. More mesic forests characterized by lower TM band 4 relative reflectances are associated with soils of higher retention capacities derived predominately from non-cherty carbonates. The major factors affecting canopy reflectance appear to be the leaf area index (LAI) and leaf optical properties. The Suits canopy reflectance model predicts the relative reflectance values for the xeric canopies. The mesic canopy reflectance is less well matched and incorporation of canopy shadowing caused by the irregular nature of the mesic canopy may be necessary. Preliminary examination of high spectral resolution AIS data acquired in August of 1985 reveals no more information than found in the broad band TM data.

  8. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  9. Spatial distribution and size of small canopy gaps created by Japanese black bears: estimating gap size using dropped branch measurements.

    Science.gov (United States)

    Takahashi, Kazuaki; Takahashi, Kaori

    2013-06-10

    Japanese black bears, a large-bodied omnivore, frequently create small gaps in the tree crown during fruit foraging. However, there are no previous reports of black bear-created canopy gaps. To characterize physical canopy disturbance by black bears, we examined a number of parameters, including the species of trees in which canopy gaps were created, gap size, the horizontal and vertical distribution of gaps, and the size of branches broken to create gaps. The size of black bear-created canopy gaps was estimated using data from branches that had been broken and dropped on the ground. The disturbance regime was characterized by a highly biased distribution of small canopy gaps on ridges, a large total overall gap area, a wide range in gap height relative to canopy height, and diversity in gap size. Surprisingly, the annual rate of bear-created canopy gap formation reached 141.3 m2 ha-1 yr-1 on ridges, which were hot spots in terms of black bear activity. This rate was approximately 6.6 times that of tree-fall gap formation on ridges at this study site. Furthermore, this rate was approximately two to three times that of common tree-fall gap formation in Japanese forests, as reported in other studies. Our findings suggest that the ecological interaction between black bears and fruit-bearing trees may create a unique light regime, distinct from that created by tree falls, which increases the availability of light resources to plants below the canopy.

  10. LINKING IN SITU TIME SERIES FOREST CANOPY LAI AND PHENOLOGY METRICS WITH MODIS AND LANDSAT NDVI AND LAI PRODUCTS

    Science.gov (United States)

    The subject of this presentation is forest vegetation dynamics as observed by the TERRA spacecraft's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper, and complimentary in situ time series measurements of forest canopy metrics related to Leaf Area...

  11. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  12. Canopy structural alterations to nitrogen functions of the soil microbial community in a Quercus virginiana forest

    Science.gov (United States)

    Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.

    2014-12-01

    Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.

  13. Investigation of radioactive cesium transportation from forest canopy to floor by litterfall, stemflow and throughfall in northern Fukushima

    Science.gov (United States)

    Endo, I.; Ohte, N.; Iseda, K.; Tanoi, K.; Hirose, A.; Kobayashi, N. I.; Murakami, M.; Tokuchi, N.; Ohashi, M.

    2015-12-01

    After the Fukushima Daiichi nuclear power plant accident due to Great East Japan Earthquake in March 11th 2011, large areas of forest have been highly contaminated by the radioactive nuclides. Most of the deposited radioactive material to the canopy is then washed out with rainfall or leaf fall due to the tree phenology. There have been studies showing that the amount of 137Cs transportation differs among litter components and water pathways, and was affected by seasonal variations. Thus, to evaluate the amount of 137Cs flux from canopy to forest floor, continuous monitoring of each component (litterfall, throughfall and stemflow) is required. We investigated the annual transfer of 137Cs from the forest canopy to the floor by litterfall, throughfall and stemflow at two different forest types in northern Fukushima after two years from the accident. Seasonal variations in 137Cs transportation and differences between forests types were also determined. Forest sites were set in the upstream part of Kami-Oguni River catchment at Date city, which locates approximately 50km northwest from the Fukushima Dai-ichi Nuclear Power Plant. The study sites consisted of two deciduous (Mixed deciduous-1, Mixed deciduous-2) and one cedar (Cedar plantation) stands. The cumulative 137Cs transportation from the forest canopy to the floor was 6.6 kBq m-2 year-1 for the Mixed deciduous-1, 3.9 kBq m-2 year-1 for the Mixed deciduous-2 and 11.0 kBq m-2 year-1 for the Cedar plantation. 137Cs transportation with litterfall increased in the defoliation period which correlated with the increased amount of litterfall. 137Cs transportation with throughfall and stemflow increased in the rainy season. 137Cs flux by litterfall was higher in Cedar plantation compared with that of mixed deciduous forests, while the opposite result was obtained for stemflow. The ratio of annual 137Cs flux and the estimated 137Cs amount deposited in the forests will be discussed.

  14. Using the Rapid-Scanning, Ultra-Portable, Canopy Biomass Lidar (CBL) Alone and In Tandem with the Full-Waveform Dual-Wavelength Echidna® Lidar (DWEL) to Establish Forest Structure and Biomass Estimates in a Variety of Ecosystems

    Science.gov (United States)

    Schaaf, C.; Paynter, I.; Saenz, E. J.; Li, Z.; Strahler, A. H.; Peri, F.; Erb, A.; Raumonen, P.; Muir, J.; Howe, G.; Hewawasam, K.; Martel, J.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Schaefer, M.; Newnham, G.; Jupp, D. L. B.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Faulring, J.

    2014-12-01

    Terrestrial lidars are increasingly being deployed in a variety of ecosystems to calibrate and validate large scale airborne and spaceborne estimates of forest structure and biomass. While these lidars provide a wealth of high resolution information on canopy structure and understory vegetation, they tend to be expensive, slow scanning and somewhat ponderous to deploy. Therefore, frequent deployments and characterization of larger areas of a hectare or more can still be challenging. This suggests a role for low cost, ultra-portable, rapid scanning (but lower resolution) instruments -- particularly in scanning extreme environments and as a way to augment and extend strategically placed scans from the more highly capable lidars. The Canopy Biomass Lidar (CBL) is an inexpensive, highly portable, fast-scanning (33 seconds), time-of-flight, terrestrial laser scanning (TLS) instrument, built in collaboration with RIT, by U Mass Boston. The instrument uses a 905nm SICK time of flight laser with a 0.25o resolution and 30m range. The higher resolution, full-waveform Dual Wavelength Echidna® Lidar (DWEL), developed by Boston University, U Mass Lowell and U Mass Boston, builds on the Australian CSIRO single wavelength, full-waveform Echidna® Validation Instrument (EVI), but utilizes two simultaneous laser pulses at 1064 and 1548 nm to separate woody returns from those of foliage at a range of up to 100m range. The UMass Boston CBL has been deployed in rangelands (San Joaquin Experimental Range, CA), high altitude conifers (Sierra National Forest, CA), mixed forests (Harvard Forest LTER MA), tropical forests (La Selva and Sirena Biological Stations, Costa Rica), eucalypts (Karawatha, Brisbane TERN, Australia), and woodlands (Alice Holt Forest, UK), frequently along-side the DWEL, as well as in more challenging environments such as mangrove forests (Corcovado National Park, Costa Rica) and Massachusetts salt marshes and eroding bluffs (Plum Island LTER, and UMass Boston

  15. Responses of Two Litter-Based Invertebrate Communities to Changes in Canopy Cover in a Forest Subject to Hurricanes

    Science.gov (United States)

    Barbara Richardson; Michael Richardson; Grizelle González

    2018-01-01

    Tropical forests are subject to seasonal hurricanes resulting in cycles of canopy opening and deposition of litter, followed by periods of recovery and canopy closure. Herein, we review two studies of litter-based communities in Puerto Rico; (i) a survey of bromeliad invertebrates in three montane forest types along an elevational gradient in 1993–1997, during a period...

  16. Architecture of the Black Moshannon forest canopy measured by hemispherical photographs and a LI-COR LAI-2000 sensor

    Science.gov (United States)

    Y. S. Wang; J. Welles; D. R. Miller; D. E. Anderson; G. Heisler; M. McManus

    1991-01-01

    Non-destructive measurements of light penetration were made at 10 heights in the canopy on twelve different sites in the PA oak forest where the Blackmo 88 spray-micrometeorological experiment was conducted. Vertical profiles of Leaf Area Index, LAI, were calculated from these measurements, and the data were used to define the spatial variability of the forest canopy...

  17. Gaseous elemental mercury (GEM fluxes over canopy of two typical subtropical forests in south China

    Directory of Open Access Journals (Sweden)

    Q. Yu

    2018-01-01

    Full Text Available Mercury (Hg exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM was used to continuously observe gaseous elemental mercury (GEM fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ and a moderately polluted site (Huitong, HT, near a large Hg mine in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m−2 h−1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT when compared with that in the mildly polluted site (QYZ may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration

  18. Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest

    Science.gov (United States)

    Song, Qing-Hai; Deng, Yun; Zhang, Yi-Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo

    2017-10-01

    Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.

  19. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies.

    Science.gov (United States)

    Färber, Leonie; Sølhaug, Knut Asbjorn; Esseen, Per-Anders; Bilger, Wolfgang; Gauslaa, Yngvar

    2014-06-01

    Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.

  20. Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests

    Science.gov (United States)

    Tang, H.; Dubayah, R.

    2017-12-01

    Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  1. Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests

    Science.gov (United States)

    Guerrieri, Rossella; Lepine, Lucie; Asbjornsen, Heidi; Xiao, Jingfeng; Ollinger, Scott V.

    2016-10-01

    Understanding relations among forest carbon (C) uptake and water use is critical for predicting forest-climate interactions. Although the basic properties of tree-water relations have long been known, our understanding of broader-scale patterns is limited by several factors including (1) incomplete understanding of drivers of change in coupled C and water fluxes and water use efficiency (WUE), (2) difficulty in reconciling WUE estimates obtained at different scales, and (3) uncertainty in how evapotranspiration (ET) and WUE vary with other important resources such as nitrogen (N). To address these issues, we examined ET, gross primary production (GPP), and WUE at 11 AmeriFlux sites across North America. Our analysis spanned leaf and ecosystem scales and included foliar δ13C, δ18O, and %N measurements; eddy covariance estimates of GPP and ET; and remotely sensed estimates of canopy %N. We used flux data to derive ecosystem WUE (WUEe) and foliar δ13C to infer intrinsic WUE. We found that GPP, ET, and WUEe scaled with canopy %N, even when environmental variables were considered, and discuss the implications of these relationships for forest-atmosphere-climate interactions. We observed opposing patterns of WUE at leaf and ecosystem scales and examined uncertainties to help explain these opposing patterns. Nevertheless, significant relationship between C isotope-derived ci/ca and GPP indicates that δ13C can be an effective predictor of forest GPP. Finally, we show that incorporating species functional traits—wood anatomy, hydraulic strategy, and foliar %N—into a conceptual model improved the interpretation of Δ13C and δ18O vis-à-vis leaf to canopy water-carbon fluxes.

  2. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals.

    Science.gov (United States)

    Gregory, Tremaine; Carrasco-Rueda, Farah; Alonso, Alfonso; Kolowski, Joseph; Deichmann, Jessica L

    2017-06-20

    Linear infrastructure development and resulting habitat fragmentation are expanding in Neotropical forests, and arboreal mammals may be disproportionately impacted by these linear habitat clearings. Maintaining canopy connectivity through preservation of connecting branches (i.e. natural canopy bridges) may help mitigate that impact. Using camera traps, we evaluated crossing rates of a pipeline right-of-way in a control area with no bridges and in a test area where 13 bridges were left by the pipeline construction company. Monitoring all canopy crossing points for a year (7,102 canopy camera nights), we confirmed bridge use by 25 mammal species from 12 families. With bridge use beginning immediately after exposure and increasing over time, use rates were over two orders of magnitude higher than on the ground. We also found a positive relationship between a bridge's use rate and the number of species that used it, suggesting well-used bridges benefit multiple species. Data suggest bridge use may be related to a combination of bridge branch connectivity, multiple connections, connectivity to adjacent forest, and foliage cover. Given the high use rate and minimal cost, we recommend all linear infrastructure projects in forests with arboreal mammal populations include canopy bridges.

  3. Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyzer

    International Nuclear Information System (INIS)

    Hicks, S.K.; Lascano, R.J.

    1995-01-01

    Measurement of leaf area index (LAI) is useful for understanding cotton (Gossypium hirsutum L.) growth, water use, and canopy light interception. Destructive measurement is time consuming and labor intensive. Our objective was to evaluate sampling procedures using the Li-Cor (Lincoln, NE) LAI 2000 plant canopy analyzer (PCA) for nondestructive estimation of cotton LAI on the southern High Plains of Texas. We evaluated shading as a way to allow PCA measurements in direct sunlight and the influence of solar direction when using this procedure. We also evaluated a test of canopy homogeneity (information required for setting PCA field of view), determined the number of below-canopy measurements required, examined the influence of leaf wilting on PCA LAI determinations, and tested an alternative method (masking the sensor's two outer rings) for calculating LAI from PCA measurements. The best agreement between PCA and destructively measured LAI values was obtained when PCA observations were made either during uniformly overcast conditions or around solar noon using the shading method. Heterogeneous canopies with large gaps between rows required both a restricted (45 degrees) azimuthal field of view and averaging the LAI values for two transects, made with the field of view parallel and then perpendicular to the row direction. This method agreed well (r2 = 0.84) with destructively measured LAI in the range of 0.5 to 3.5 and did not deviate from a 1:1 relationship. The PCA underestimated LAI by greater than or equal 20% when measurements were made on canopies wilted due to water stress. Masking the PCA sensor's outer rings did not improve the relationship between estimated and measured LAI in the range of LAI sampled

  4. Assessing alternative measures of tree canopy cover: Photo-interpreted NAIP and ground-based estimates

    Science.gov (United States)

    Chris Toney; Greg Liknes; Andy Lister; Dacia Meneguzzo

    2012-01-01

    In preparation for the development of the National Land Cover Database (NLCD) 2011 tree canopy cover layer, a pilot project for research and method development was completed in 2010 by the USDA Forest Service Forest Inventory and Analysis (FIA) program and Remote Sensing Applications Center (RSAC).This paper explores one of several topics investigated during the NLCD...

  5. Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan

    Science.gov (United States)

    Nagai, Shin; Nakai, Taro; Saitoh, Taku M.; Busey, Robert C.; Kobayashi, Hideki; Suzuki, Rikie; Muraoka, Hiroyuki; Kim, Yongwon

    2013-06-01

    Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.

  6. Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon.

    Science.gov (United States)

    GREGORY P. ASNER; MICHAEL KELLER; JOSEN M. SILVA

    2004-01-01

    Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large-area (14–158 ha) selective logging sites spanning a 3.5-year period of forest regeneration and two distinct...

  7. Relationship between LiDAR-derived forest canopy height and Landsat images

    Science.gov (United States)

    Cristina Pascual; Antonio Garcia-Abril; Warren B. Cohen; Susana. Martin-Fernandez

    2010-01-01

    The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral...

  8. Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark

    DEFF Research Database (Denmark)

    Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard; Hovmand, M.F.

    1998-01-01

    In this study CO(2) and H(2)O flux measurements made above a spruce forest was compared with the ozone flux to the canopy during growing season 1995. The fluxes were determined by micro meteorological gradient methods using a 36-m tall meteorological mast. The trees were about 12 m high and air s...

  9. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Science.gov (United States)

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula. Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  10. Exploring canopy structure and function as a potential mechanism of sustain carbon sequestration in aging forests

    Science.gov (United States)

    Fotis, A. T.; Curtis, P.; Ricart, R.

    2013-12-01

    The notion that old-growth forests reach carbon neutrality has recently been challenged, but the mechanisms responsible for continued productivity have remained elusive. Increases in canopy structural complexity, defined by high horizontal and vertical variability in leaf distribution (rugosity), has been proposed as a mechanism for sustained high rates of above ground net primary production (ANPPw) in forests up to ~170 years by enhancing light use efficiency (LUE) and nitrogen use efficiency (NUE). However, a detailed understanding of how rugosity affects resource distribution within and among trees leading to greater LUE and NUE is not known. We propose that leaves in high rugosity plots receive greater photosynthetic photon flux density (PPFD) than leaves in low rugosity plots, causing shifts from shade- to sun- adapted leaves into deeper portions of the canopy, which is thought to increase the photosynthetic capacity of individuals and lead to higher carbon assimilation in forests. The goal of this research was to: 1) quantify different canopy structural characteristics using a portable canopy LiDAR (PCL) and; 2) assess how these structural characteristics affect resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits in three broadleaf species (e.g., Acer rubrum, Quercus rubra and Fagus grandifolia) and one conifer species (e.g., Pinus strobus) at different levels in the canopy in plots with similar leaf are index (LAI) but highly contrasting rugosity levels. We found that gap fraction had a strong positive correlation with rugosity. High rugosity plots had a bimodal distribution of LAI that was concentrated at the top and bottom of the canopy with an open midstory (between 10-50% of total canopy height) whereas low rugosity plots had a more even distribution of leaves. Leaf mass per area (LMA) of all broadleaved species had a strong positive correlation with cumulative gap fraction (P. strobus had a relatively

  11. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Science.gov (United States)

    Veronika Leitold; Michael Keller; Douglas C Morton; Bruce D Cook; Yosio E Shimabukuro

    2015-01-01

    Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas...

  12. Estimating cotton canopy ground cover from remotely sensed scene reflectance

    International Nuclear Information System (INIS)

    Maas, S.J.

    1998-01-01

    Many agricultural applications require spatially distributed information on growth-related crop characteristics that could be supplied through aircraft or satellite remote sensing. A study was conducted to develop and test a methodology for estimating plant canopy ground cover for cotton (Gossypium hirsutum L.) from scene reflectance. Previous studies indicated that a relatively simple relationship between ground cover and scene reflectance could be developed based on linear mixture modeling. Theoretical analysis indicated that the effects of shadows in the scene could be compensated for by averaging the results obtained using scene reflectance in the red and near-infrared wavelengths. The methodology was tested using field data collected over several years from cotton test plots in Texas and California. Results of the study appear to verify the utility of this approach. Since the methodology relies on information that can be obtained solely through remote sensing, it would be particularly useful in applications where other field information, such as plant size, row spacing, and row orientation, is unavailable

  13. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach.

    Science.gov (United States)

    Bastin, Jean-François; Barbier, Nicolas; Couteron, Pierre; Adams, Benoît; Shapiro, Aurélie; Bogaert, Jan; De Cannière, Charles

    In the context of the reduction of greenhouse gas emissions caused by deforestation and forest degradation (the REDD+ program), optical very high resolution (VHR) satellite images provide an opportunity to characterize forest canopy structure and to quantify aboveground biomass (AGB) at less expense than methods based on airborne remote sensing data. Among the methods for processing these VHR images, Fourier textural ordination (FOTO) presents a good method to detect forest canopy structural heterogeneity and therefore to predict AGB variations. Notably, the method does not saturate at intermediate AGB values as do pixelwise processing of available space borne optical and radar signals. However, a regional-scale application requires overcoming two difficulties: (1) instrumental effects due to variations in sun–scene–sensor geometry or sensor-specific responses that preclude the use of wide arrays of images acquired under heterogeneous conditions and (2) forest structural diversity including monodominant or open canopy forests, which are of particular importance in Central Africa. In this study, we demonstrate the feasibility of a rigorous regional study of canopy texture by harmonizing FOTO indices of images acquired from two different sensors (Geoeye-1 and QuickBird-2) and different sun–scene–sensor geometries and by calibrating a piecewise biomass inversion model using 26 inventory plots (1 ha) sampled across very heterogeneous forest types. A good agreement was found between observed and predicted AGB (residual standard error [RSE] = 15%; R2 = 0.85; P biomass map (100-m pixels) was produced for a 400-km2 area, and predictions obtained from both imagery sources were consistent with each other (r = 0.86; slope = 1.03; intercept = 12.01 Mg/ha). These results highlight the horizontal structure of forest canopy as a powerful descriptor of the entire forest stand structure and heterogeneity. In particular, we show that quantitative metrics resulting from such

  14. Forest Canopy Cover and Height from MISR in Topographically Complex Southwestern US Landscape Assessed with High Quality Reference Data

    Science.gov (United States)

    Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.

    2012-01-01

    This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.

  15. Canopy assemblages of ants in a New Guinea rain forest

    Czech Academy of Sciences Publication Activity Database

    Janda, Milan; Konečná, M.

    2011-01-01

    Roč. 27, č. 1 (2011), s. 83-91 ISSN 0266-4674 R&D Projects: GA AV ČR KJB612230701; GA MŠk LC06073; GA MŠk ME09082; GA ČR GD206/08/H044; GA ČR GA206/09/0115; GA ČR GAP505/10/0673 Institutional research plan: CEZ:AV0Z50070508 Keywords : bait traps * canopy * dominance Subject RIV: EH - Ecology, Behaviour Impact factor: 1.401, year: 2011

  16. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery

    Science.gov (United States)

    García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko

    2018-04-01

    Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important

  17. Estimating the relative water content of leaves in a cotton canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Kupinski, Meredith; Bradley, Christine; French, Andrew; Bronson, Kevin; Chipman, Russell; Dahlgren, Robert

    2017-08-01

    Remotely sensing plant canopy water status remains a long term goal of remote sensing research. Established approaches to estimating canopy water status — the Crop Water Stress Index, the Water Deficit Index and the Equivalent Water Thickness — involve measurements in the thermal or reflective infrared. Here we report plant water status estimates based upon analysis of polarized visible imagery of a cotton canopy measured by ground Multi-Spectral Polarization Imager (MSPI). Such estimators potentially provide access to the plant hydrological photochemistry that manifests scattering and absorption effects in the visible spectral region.

  18. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    Science.gov (United States)

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  19. UPSCALING OF SOLAR INDUCED CHLOROPHYLL FLUORESCENCE FROM LEAF TO CANOPY USING THE DART MODEL AND A REALISTIC 3D FOREST SCENE

    Directory of Open Access Journals (Sweden)

    W. Liu

    2017-10-01

    Full Text Available Solar induced chlorophyll a fluorescence (SIF has been shown to be an excellent proxy of photosynthesis at multiple scales. However, the mechanical linkages between fluorescence and photosynthesis at the leaf level cannot be directly applied at canopy or field scales, as the larger scale SIF emission depends on canopy structure. This is especially true for the forest canopies characterized by high horizontal and vertical heterogeneity. While most of the current studies on SIF radiative transfer in plant canopies are based on the assumption of a homogeneous canopy, recently codes have been developed capable of simulation of fluorescence signal in explicit 3-D forest canopies. Here we present a canopy SIF upscaling method consisting of the integration of the 3-D radiative transfer model DART and a 3-D object model BLENDER. Our aim was to better understand the effect of boreal forest canopy structure on SIF for a spatially explicit forest canopy.

  20. Estimating forest conversion rates with annual forest inventory data

    Science.gov (United States)

    Paul C. Van Deusen; Francis A. Roesch

    2009-01-01

    The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...

  1. TREE STEM AND CANOPY BIOMASS ESTIMATES FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    K. Olofsson

    2017-10-01

    Full Text Available In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10–15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  2. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    Science.gov (United States)

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic

  3. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  4. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  5. Improving snow cover mapping in forests through the use of a canopy reflectance model

    International Nuclear Information System (INIS)

    Klein, A.G.; Hall, D.K.; Riggs, G.A.

    1998-01-01

    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  6. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  7. Regional and historical factors supplement current climate in shaping global forest canopy height

    DEFF Research Database (Denmark)

    Zhang, Jian; Nielsen, Scott; Mao, Lingfeng

    2016-01-01

    on Light Detection and Ranging-derived maximum forest canopy height (Hmax) to test hypotheses relating Hmax to current climate (water availability, ambient energy and water–energy dynamics), regional evolutionary and biogeographic history, historical climate change, and human disturbance. We derived Hmax...... biogeographic regions, supporting the role of regional evolutionary and biogeographic history in structuring broad-scale patterns in canopy height. Furthermore, there were divergent relationships between climate and Hmax between the Southern and Northern Hemispheres, consistent with historical evolutionary...... contingencies modulating these relationships. Historical climate change was also related to Hmax, albeit not as strongly, with shorter canopy heights where late-Quaternary climate has been less stable. In contrast, human disturbance was only weakly related to Hmax at the scale (55 km) examined here. Synthesis...

  8. Canopy structure and tree condition of young, mature, and old-growth Douglas-fir/hardwood forests

    Science.gov (United States)

    B.B. Bingham; J.O. Sawyer

    1992-01-01

    Sixty-two Douglas-fir/hardwood stands ranging from 40 to 560 years old were used to characterize the density; diameter, and height class distributions of canopy hardwoods and conifers in young (40 -100 yr), mature (101 - 200 yr) and old-growth (>200 yr) forests. The crown, bole, disease, disturbance, and cavity conditions of canopy conifers and hardwoods were...

  9. Large lianas as hyperdynamic elements of the tropical forest canopy

    OpenAIRE

    Phillips, O.L.; Vásquez Martínez, R.; Monteagudo Mendoza, A.; Baker, T.R.; Núñez Vargas, P.

    2005-01-01

    Lianas (woody vines) are an important component of lowland tropical forests.\\ud We report large liana and tree inventory and dynamics data from Amazonia over periods\\ud of up to 24 years, making this the longest geographically extensive study of liana ecology\\ud to date. We use these results to address basic questions about the ecology of large lianas\\ud in mature forests and their interactions with trees. In one intensively studied site we find\\ud that large lianas (≥10 cm diameter) represen...

  10. Spatial Structure of Soil Macrofauna Diversity and Tree Canopy in Riparian Forest of Maroon River

    Directory of Open Access Journals (Sweden)

    Ehsan Sayad

    2017-02-01

    Full Text Available Introduction: Sustainability and maintenance of riparian vegetation or restoring of degraded sites is critical to sustain inherent ecosystem function and values. Description of patterns in species assemblages and diversity is an essential step before generating hypotheses in functional ecology. If we want to have information about ecosystem function, soil biodiversity is best considered by focusing on the groups of soil organisms that play major roles in ecosystem functioning when exploring links with provision of ecosystem services. Information about the spatial pattern of soil biodiversity at the regional scale is limited though required, e.g. for understanding regional scale effects of biodiversity on ecosystem processes. The practical consequences of these findings are useful for sustainable management of soils and in monitoring soil quality. Soil macrofauna play significant, but largely ignored roles in the delivery of ecosystem services by soils at plot and landscape scales. One main reason responsible for the absence of information about biodiversity at regional scale is the lack of adequate methods for sampling and analyzing data at this dimension. An adequate approach for the analysis of spatial patterns is a transect study in which samples are taken in a certain order and with a certain distance between samples. Geostatistics provide descriptive tools such as variogram to characterize the spatial pattern of continuous and categorical soil attributes. This method allows assessment of consistency of spatial patterns as well as the scale at which they are expressed. This study was conducted to analyze spatial patterns of soil macrofauna in relation to tree canopy in the riparian forest landscape of Maroon. Materilas and Methods: The study was carried out in the Maroon riparian forest of the southeasternIran (30o 38/- 30 o 39/ N and 50 o 9/- 50 o 10/ E. The climate of the study area is semi-arid. Average yearly rainfall is about 350.04 mm

  11. Reducing uncertainty for estimating forest carbon stocks and dynamics using integrated remote sensing, forest inventory and process-based modeling

    Science.gov (United States)

    Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.

    2015-12-01

    Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.

  12. Regeneration in bottomland forest canopy gaps six years after variable retention harvests to enhance wildlife habitat

    Science.gov (United States)

    Twedt, Daniel J.; Somershoe, Scott G.; Guldin, James M.

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after prescribed harvests, we assessed regeneration in 41 canopy gaps and 4 large (>0.5-ha) patch cut openings that resulted from treatments and in 21 natural canopy gaps on 2 unharvested control stands. Mean gap area of anthropogenic gaps (582 m²) was greater than that of natural gaps (262 m²). Sweetgum (Liquidambar styraciflua) and red oaks (Quercus nigra, Q. nuttallii, and Q. phellos) were common in anthropogenic gaps, whereas elms (Ulmus spp.) and sugarberry (Celtis laevigata) were numerous in natural gaps. We recommend harvest prescriptions include gaps with diameter >25 m, because the proportion of shade-intolerant regeneration increased with gap area up to 500 m². The proportion of shade-intolerant definitive gap fillers (individuals likely to occupy the canopy) increased with gap area: 35 percent in natural gaps, 54 percent in anthropogenic gaps, and 84 percent in patch cuts. Sweetgum, green ash (Fraxinus pennsylvanica), and red oaks were common definitive gap fillers.

  13. Modifying Geometric-Optical Bidirectional Reflectance Model for Direct Inversion of Forest Canopy Leaf Area Index

    Directory of Open Access Journals (Sweden)

    Congrong Li

    2015-08-01

    Full Text Available Forest canopy leaf area index (LAI inversion based on remote sensing data is an important method to obtain LAI. Currently, the most widely-used model to achieve forest canopy structure parameters is the Li-Strahler geometric-optical bidirectional reflectance model, by considering the effect of crown shape and mutual shadowing, which is referred to as the GOMS model. However, it is difficult to retrieve LAI through the GOMS model directly because LAI is not a fundamental parameter of the model. In this study, a gap probability model was used to obtain the relationship between the canopy structure parameter nR2 and LAI. Thus, LAI was introduced into the GOMS model as an independent variable by replacing nR2 The modified GOMS (MGOMS model was validated by application to Dayekou in the Heihe River Basin of China. The LAI retrieved using the MGOMS model with optical multi-angle remote sensing data, high spatial resolution images and field-measured data was in good agreement with the field-measured LAI, with an R-square (R2 of 0.64, and an RMSE of 0.67. The results demonstrate that the MGOMS model obtained by replacing the canopy structure parameter nR2 of the GOMS model with LAI can be used to invert LAI directly and precisely.

  14. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    Science.gov (United States)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale

  15. Estimating forest biomass and volume using airborne laser data

    Science.gov (United States)

    Nelson, Ross; Krabill, William; Tonelli, John

    1988-01-01

    An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.

  16. Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index

    Science.gov (United States)

    Loozen, Yasmina; Rebel, Karin T.; Karssenberg, Derek; Wassen, Martin J.; Sardans, Jordi; Peñuelas, Josep; De Jong, Steven M.

    2018-05-01

    Canopy nitrogen (N) concentration and content are linked to several vegetation processes. Therefore, canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While there are ample C data available to constrain the models, widespread N data are lacking. Remotely sensed vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and forests. Vegetation indices could be a valuable tool to detect canopy N concentration and canopy N content at larger scale. In this paper, we conducted a regional case-study analysis to investigate the relationship between the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from European Space Agency (ESA) Envisat satellite at 1 km spatial resolution and both canopy N concentration (%N) and canopy N content (N g m-2, of ground area) from a Mediterranean forest inventory in the region of Catalonia, in the northeast of Spain. The relationships between the datasets were studied after resampling both datasets to lower spatial resolutions (20, 15, 10 and 5 km) and at the original spatial resolution of 1 km. The results at higher spatial resolution (1 km) yielded significant log-linear relationships between MTCI and both canopy N concentration and content: r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots (r2 = 0.24 and r2 = 0.44, respectively), the relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees (r2 = 0.19). At the species level, canopy N concentration was strongly related to MTCI for European beech plots (r2 = 0.69). These results present a new perspective on the application of MTCI time series for canopy N detection.

  17. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    Science.gov (United States)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  18. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy

    Science.gov (United States)

    Kukko, Antero; Kaijaluoto, Risto; Kaartinen, Harri; Lehtola, Ville V.; Jaakkola, Anttoni; Hyyppä, Juha

    2017-10-01

    -processed GNSS-IMU trajectory for positional drift under mature boreal forest canopy conditions. The result shows that we can improve the internal conformity of the data significantly from 0.7 m to 1 cm based on tree stem feature location data. When the optimization result is compared to reference at plot level we reach down to 6 cm mean error in absolute tree stem locations. The approach can be generalized to any MLS point cloud data, and provides as such a remarkable contribution to harness MLS for practical forestry and high precision terrain and structural modeling in GNSS obstructed environments.

  19. MVP: A Simple and Effective Model to Simulate the Mean and Variation of Photosynthetically Active Radiation Under Discrete Forest Canopies

    Science.gov (United States)

    Song, C.; Band, L. E.

    2003-12-01

    The spatial patterns of Photosynthetically Active Radiation (PAR) under forest canopies, including both its mean and spatial variation, are critical factors that determine numerous ecophysiological processes in plant ecosystems. Though numerous models have been developed that can accurately simulate PAR transmission through plant canopies, Beer's law remains the primary model used in ecological models to describe PAR transmission through plant canopies due to the fact that the more accurate models are too complicated to be used operationally. This study developed a simple and computationally efficient model to simulate both the Mean and Variation of PAR (MVP) under the forest canopy. The model provides a careful description of the effects of gaps on the variable light environment under forest canopy, while it simplifies the simulation of multiple scattering of photons. The model assumes that a forest canopy is composed of individual crowns distributed within upper and lower boundaries with two types of gaps: the between- and within-crown gaps. The inputs to the model are canopy structural parameters, including canopy depth, tree count density, tree crown shape, and foliage area volume density (m2/m3, leaf areas per unit crown volume). The between-crown gaps are simulated with geometric optics, and the within-crown gaps are described by Beer's law. The model accounts for the covariance of PAR in space through time, making it possible to simulate both instantaneous variation of PAR and variation of daily accumulated PAR. Validation with observed PAR using ten quantum sensors under the Old Black Spruce stand at the Southern Study Area of the BOREAS project indicates the model captures the mean and variation of PAR under forest canopy reasonably well. The model is simple enough that it can be used by other ecological models, such as ecosystem dynamics and carbon budget models. Further validation and testing of the model with other types forest are needed in the future.

  20. Algorithm for Extracting Digital Terrain Models under Forest Canopy from Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Almasi S. Maguya

    2014-07-01

    Full Text Available Extracting digital elevationmodels (DTMs from LiDAR data under forest canopy is a challenging task. This is because the forest canopy tends to block a portion of the LiDAR pulses from reaching the ground, hence introducing gaps in the data. This paper presents an algorithm for DTM extraction from LiDAR data under forest canopy. The algorithm copes with the challenge of low data density by generating a series of coarse DTMs by using the few ground points available and using trend surfaces to interpolate missing elevation values in the vicinity of the available points. This process generates a cloud of ground points from which the final DTM is generated. The algorithm has been compared to two other algorithms proposed in the literature in three different test sites with varying degrees of difficulty. Results show that the algorithm presented in this paper is more tolerant to low data density compared to the other two algorithms. The results further show that with decreasing point density, the differences between the three algorithms dramatically increased from about 0.5m to over 10m.

  1. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery

    Directory of Open Access Journals (Sweden)

    Philippe Lejeune

    2013-11-01

    Full Text Available The recent development of operational small unmanned aerial systems (UASs opens the door for their extensive use in forest mapping, as both the spatial and temporal resolution of UAS imagery better suit local-scale investigation than traditional remote sensing tools. This article focuses on the use of combined photogrammetry and “Structure from Motion” approaches in order to model the forest canopy surface from low-altitude aerial images. An original workflow, using the open source and free photogrammetric toolbox, MICMAC (acronym for Multi Image Matches for Auto Correlation Methods, was set up to create a digital canopy surface model of deciduous stands. In combination with a co-registered light detection and ranging (LiDAR digital terrain model, the elevation of vegetation was determined, and the resulting hybrid photo/LiDAR canopy height model was compared to data from a LiDAR canopy height model and from forest inventory data. Linear regressions predicting dominant height and individual height from plot metrics and crown metrics showed that the photogrammetric canopy height model was of good quality for deciduous stands. Although photogrammetric reconstruction significantly smooths the canopy surface, the use of this workflow has the potential to take full advantage of the flexible revisit period of drones in order to refresh the LiDAR canopy height model and to collect dense multitemporal canopy height series.

  2. Global estimate of lichen and bryophyte contributions to forest precipitation interception

    Science.gov (United States)

    Van Stan, John; Porada, Philipp; Kleidon, Axel

    2017-04-01

    Interception of precipitation by forest canopies plays an important role in its partitioning to evaporation, transpiration and runoff. Field observations show arboreal lichens and bryophytes can substantially enhance forests' precipitation storage and evaporation. However, representations of canopy interception in global land surface models currently ignore arboreal lichen and bryophyte contributions. This study uses the lichen and bryophyte model (LiBry) to provide the first process-based modelling approach estimating these organisms' contributions to canopy water storage and evaporation. The global mean value of forest water storage capacity increased significantly from 0.87 mm to 1.33 mm by the inclusion of arboreal poikilohydric organisms. Global forest canopy evaporation of intercepted precipitation was also greatly enhanced by 44%. Ratio of total versus bare canopy global evaporation exceeded 2 in many forested regions. This altered global patterns in canopy water storage, evaporation, and ultimately the proportion of rainfall evaporated. A sensitivity analysis was also performed. Results indicate rainfall interception is of larger magnitude than previously reported by global land surface modelling work because of the important role of lichen and bryophytes in rainfall interception.

  3. Canopy transpiration for two Japanese cypress forests with contrasting structures

    Science.gov (United States)

    Tsuruta, K.; Komatsu, H.; Kume, T.; Shinohara, Y.; Otsuki, K.

    2012-12-01

    Canopy transpiration (EC) could have large variations among stands with different structures. To evaluate a difference in EC between stands with different structures for Japanese cypress, we observed EC using the sap flow technique in two stands with contrasting structures (age was 19 year and 99 year, mean diameter at breast height was 13.5 cm and 44.6 cm, stem density was 2100 trees ha-1 and 350 trees ha-1, respectively) for 5 months under the same meteorological condition. The mean stand sap flux density (JS) for measurement period and stand sapwood area (AS_stand) for the old stand (0.43 m3 m-2 day-1 and 15.2 m2 ha-1) were lower than those for the young stand (0.62 m3 m-2 day-1 and 20.4 m2 ha-1) by 31.1 % and 25.4 %, respectively. EC is calculated as a product of JS and AS_stand. Therefore the EC in the old stand was lower than that in the young stand by 50 %. We calculated the contribution of the reference JS for a given meteorological conditions (JSref) and the response of JS to the meteorological conditions (JSresp) in the two stands, and examined which is a primary factor for the difference of EC between the two studied stands. The JSresp for the young stand were not considerably different from that for the old stand, whereas JSref for the young stand was greater than that for the old stand. This indicates that JSref (not JSresp) was the primary cause for the difference of EC between the two stands. Further studies observing EC from stands with various structures are needed to generalize our conclusions.

  4. Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon

    Science.gov (United States)

    Thiel, A.L.; Perakis, S.S.

    2009-01-01

    Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0-10 cm) across 6-8-year-old silvicultural canopy gaps in three 50-70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3-) pools, net N mineralization and nitrification rates, and NH4+ and NO3- ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3- pools, net N mineralization and nitrification rates, and NH4+ and NO3- IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of

  5. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    Science.gov (United States)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  6. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems

    Science.gov (United States)

    Saatchi, Sassan; Moghaddam, Mahta

    1995-01-01

    In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.

  7. Assessing the Impact of Canopy Structure Simplification in Common Multilayer Models on Irradiance Absorption Estimates of Measured and Virtually Created Fagus sylvatica (L. Stands

    Directory of Open Access Journals (Sweden)

    Pol Coppin

    2009-11-01

    Full Text Available Multilayer canopy representations are the most common structural stand representations due to their simplicity. Implementation of recent advances in technology has allowed scientists to simulate geometrically explicit forest canopies. The effect of simplified representations of tree architecture (i.e., multilayer representations of four Fagus sylvatica (L. stands, each with different LAI, on the light absorption estimates was assessed in comparison with explicit 3D geometrical stands. The absorbed photosynthetic radiation at stand level was calculated. Subsequently, each geometrically explicit 3D stand was compared with three multilayer models representing horizontal, uniform, and planophile leaf angle distributions. The 3D stands were created either by in situ measured trees or by modelled trees generated with the AMAP plant growth software. The Physically Based Ray Tracer (PBRT algorithm was used to simulate the irradiance absorbance of the detailed 3D architecture stands, while for the three multilayer representations, the probability of light interception was simulated by applying the Beer-Lambert’s law. The irradiance inside the canopies was characterized as direct, diffuse and scattered irradiance. The irradiance absorbance of the stands was computed during eight angular sun configurations ranging from 10° (near nadir up to 80° sun zenith angles. Furthermore, a leaf stratification (the number and angular distribution of leaves per LAI layer inside a canopy analysis between the 3D stands and the multilayer representations was performed, indicating the amount of irradiance each leaf is absorbing along with the percentage of sunny and shadow leaves inside the canopy. The results reveal that a multilayer representation of a stand, using a multilayer modelling approach, greatly overestimated the absorbed irradiance in an open canopy, while it provided a better approximation in the case of a closed canopy. Moreover, the actual stratification

  8. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  9. Modeling of leachable {sup 137}Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Loffredo, Nicolas, E-mail: wataiso@free.fr [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Onda, Yuichi [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Kawamori, Ayumi [Graduate School of Life and Environmental Sciences, University of Tsukuba (Japan); Kato, Hiroaki [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan)

    2014-09-15

    The Fukushima accident dispersed significant amounts of radioactive cesium (Cs) in the landscape. Our research investigated, from June 2011 to November 2013, the mobility of leachable Cs in forests canopies. In particular, {sup 137}Cs and {sup 134}Cs activity concentrations were measured in rainfall, throughfall, and stemflow in broad-leaf and cedar forests in an area located 40 km from the power plant. Leachable {sup 137}Cs loss was modeled by a double exponential (DE) model. This model could not reproduce the variation in activity concentration observed. In order to refine the DE model, the main physical measurable parameters (rainfall intensity, wind velocity, and snowfall occurrence) were assessed, and rainfall was identified as the dominant factor controlling observed variation. A corrective factor was then developed to incorporate rainfall intensity in an improved DE model. With the original DE model, we estimated total {sup 137}Cs loss by leaching from canopies to be 72 ± 4%, 67 ± 4%, and 48 ± 2% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. In contrast, with the improved DE model, the total {sup 137}Cs loss by leaching was estimated to be 34 ± 2%, 34 ± 2%, and 16 ± 1% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. The improved DE model corresponds better to observed data in literature. Understanding {sup 137}Cs and {sup 134}Cs forest dynamics is important for forecasting future contamination of forest soils around the FDNPP. It also provides a basis for understanding forest transfers in future potential nuclear disasters. - Highlights: • A double exponential model was used to model leachable cesium loss from canopies. • The model could not reproduce variation observed. • Rainfall was identified as the dominant factor controlling the variation. • A rainfall parameter was used to develop an improved double exponential model. • The

  10. Model for estimating air pollutant uptake by forests: calculation of forest absorption of sulfur dioxide from dispersed sources

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sinclair, T.R.; Knoerr, K.R.

    1975-01-01

    The computer model presented in this paper is designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used with only minor changes for any gaseous pollutant. To illustrate the utility of the model, estimates are made of the sink strength of forests for sulfur dioxide. The results agree with experimentally derived estimates of sulfur dioxide uptake in crops and forest trees. (auth)

  11. Surface and canopy fuels vary widely in 24-yr old postfire lodgepole pine forests

    Science.gov (United States)

    Nelson, K. N.; Turner, M.; Romme, W. H.; Tinker, D. B.

    2013-12-01

    Extreme fire seasons have become common in western North America, and the extent of young postfire forests has grown as fire frequency and annual area burned have increased. These young forests will set the stage for future fires, but an assessment of fuel loads in young forests is lacking. The rate of fuel re-accumulation and fuels variability in postfire forest landscapes is needed to anticipate future fire occurrence and behavior in the American West. We studied fuel characteristics in young lodgepole pine forests that regenerated after the 1988 fires in Yellowstone National Park to address two questions: (1) How do surface fuel characteristics change with time-since-fire? (2) How do canopy and surface fuels vary across the Yellowstone landscape 24 years postfire? During summer 2012, we re-measured surface fuels in 11 plots that were established in 1996 (8 yrs post fire), and we measured surface and canopy fuels in 82 stands (each 0.25 ha) distributed across the Yellowstone post-1988 fire landscape. In the remeasured plots, surface fuel loads generally increased over the last 16 years. One-hr fuels did not change between sample dates, but all other fuel classes (i.e., 10-hr, 100-hr, and 1000-hr) increased by a factor of two or three. Within the sample timeframe, variability of fuel loads within stands decreased significantly. The coefficients of variation decreased for all fuel classes by 23% to 67%. Data from the 82 plots revealed that canopy and surface fuels in 24-year-old stands varied tremendously across the Yellowstone landscape. Live tree densities spanned 0 to 344,067 trees ha-1, producing a mean available canopy fuel load of 7.7 Mg ha-1 and a wide range from 0 to 47 Mg ha-1. Total surface fuel loads averaged 130 Mg ha-1 and ranged from 49 to 229 Mg ha-1, of which 90% was in the 1000-hr fuel class. The mass of fine surface fuels (i.e., litter/duff, 1-hr, 10-hr, and herbaceous fuels) and canopy fuels (i.e., foliage and 1-hr branches) were strongly and

  12. A comparison of two sampling approaches for assessing the urban forest canopy cover from aerial photography.

    Science.gov (United States)

    Ucar Zennure; Pete Bettinger; Krista Merry; Jacek Siry; J.M. Bowker

    2016-01-01

    Two different sampling approaches for estimating urban tree canopy cover were applied to two medium-sized cities in the United States, in conjunction with two freely available remotely sensed imagery products. A random point-based sampling approach, which involved 1000 sample points, was compared against a plot/grid sampling (cluster sampling) approach that involved a...

  13. A note on estimating urban roof runoff with a forest evaporation model

    NARCIS (Netherlands)

    Gash, J.H.C.; Rosier, P.T.W.; Ragab, R.

    2008-01-01

    A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean

  14. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography.

    Science.gov (United States)

    Roman, Lara A; Fristensky, Jason P; Eisenman, Theodore S; Greenfield, Eric J; Lundgren, Robert E; Cerwinka, Chloe E; Hewitt, David A; Welsh, Caitlin C

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  15. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography

    Science.gov (United States)

    Roman, Lara A.; Fristensky, Jason P.; Eisenman, Theodore S.; Greenfield, Eric J.; Lundgren, Robert E.; Cerwinka, Chloe E.; Hewitt, David A.; Welsh, Caitlin C.

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  16. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    Science.gov (United States)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  17. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    Science.gov (United States)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative

  18. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  19. Effects of bark beetle attack on canopy fuel flammability and crown fire potential in lodgepole pine and Engelmann spruce forests

    Science.gov (United States)

    Wesley G. Page; Martin E. Alexander; Michael J. Jenkins

    2015-01-01

    Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...

  20. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].

    Science.gov (United States)

    Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao

    2016-03-01

    Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.

  1. Modeling of the radiative energy balance within a crop canopy for estimating evapotranspiration: Studies on a row planted soybean canopy

    International Nuclear Information System (INIS)

    Nakano, Y.; Hirota, O.

    1990-01-01

    The spatial distribution and density of the leaf area within a crop canopy were used to estimate the radiational environment and evapotranspiration. Morphological measurements were pursued on the soybean stands in the early stage of growth when the two-dimensional foliage distribution pattern existed. The rectangular tube model was used to calculate the light absorption by parallel row of crops both short-wave radiation (direct and diffuse solar radiation, and scattered radiation by plant elements) and long-wave radiation (emanated radiation from the sky, ground and leaves). The simulated profiles are in close agreement with the experimentally measured short-wave and net radiation data. The evapotranspiration of a row was calcuated using a simulated net radiation. The model calculation also agreed well with the evapotranspiration estimated by the Bowen ratio method

  2. Do soil fertilization and forest canopy foliage affect the growth and photosynthesis of Amazonian saplings?

    Directory of Open Access Journals (Sweden)

    Nilvanda dos Santos Magalhães

    2014-02-01

    Full Text Available Most Amazonian soils are highly weathered and poor in nutrients. Therefore, photosynthesis and plant growth should positively respond to the addition of mineral nutrients. Surprisingly, no study has been carried out in situ in the central Amazon to address this issue for juvenile trees. The objective of this study was to determine how photosynthetic rates and growth of tree saplings respond to the addition of mineral nutrients, to the variation in leaf area index of the forest canopy, and to changes in soil water content associated with rainfall seasonality. We assessed the effect of adding a slow-release fertilizer. We determined plant growth from 2010 to 2012 and gas exchange in the wet and dry season of 2012. Rainfall seasonality led to variations in soil water content, but it did not affect sapling growth or leaf gas exchange parameters. Although soil amendment increased phosphorus content by 60 %, neither plant growth nor the photosynthetic parameters were influenced by the addition of mineral nutrients. However, photosynthetic rates and growth of saplings decreased as the forest canopy became denser. Even when Amazonian soils are poor in nutrients, photosynthesis and sapling growth are more responsive to slight variations in light availability in the forest understory than to the availability of nutrients. Therefore, the response of saplings to future increases in atmospheric [CO2] will not be limited by the availability of mineral nutrients in the soil.

  3. Night-time airflow in a forest canopy near a mountain crest

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Pavel; Aubinet, M.; Heinesch, B.; Janouš, Dalibor; Pavelka, Marian; Potužníková, Kateřina; Yernaux, M.

    2010-01-01

    Roč. 150, č. 5 (2010), s. 736-744 ISSN 0168-1923 R&D Projects: GA AV ČR IAA300420803; GA AV ČR KJB3087301 Grant - others:CarboEurope Integrated Project(XE) GOCE-CT-2003-505572 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z60870520 Keywords : Spruce forest * Canopy layer * Slope * Drainage flow * Wind profile Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.228, year: 2010

  4. ESTIMATION OF STAND HEIGHT AND FOREST VOLUME USING HIGH RESOLUTION STEREO PHOTOGRAPHY AND FOREST TYPE MAP

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2016-06-01

    Full Text Available Traditional field methods for measuring tree heights are often too costly and time consuming. An alternative remote sensing approach is to measure tree heights from digital stereo photographs which is more practical for forest managers and less expensive than LiDAR or synthetic aperture radar. This work proposes an estimation of stand height and forest volume(m3/ha using normalized digital surface model (nDSM from high resolution stereo photography (25cm resolution and forest type map. The study area was located in Mt. Maehwa model forest in Hong Chun-Gun, South Korea. The forest type map has four attributes such as major species, age class, DBH class and crown density class by stand. Overlapping aerial photos were taken in September 2013 and digital surface model (DSM was created by photogrammetric methods(aerial triangulation, digital image matching. Then, digital terrain model (DTM was created by filtering DSM and subtracted DTM from DSM pixel by pixel, resulting in nDSM which represents object heights (buildings, trees, etc.. Two independent variables from nDSM were used to estimate forest stand volume: crown density (% and stand height (m. First, crown density was calculated using canopy segmentation method considering live crown ratio. Next, stand height was produced by averaging individual tree heights in a stand using Esri’s ArcGIS and the USDA Forest Service’s FUSION software. Finally, stand volume was estimated and mapped using aerial photo stand volume equations by species which have two independent variables, crown density and stand height. South Korea has a historical imagery archive which can show forest change in 40 years of successful forest rehabilitation. For a future study, forest volume change map (1970s–present will be produced using this stand volume estimation method and a historical imagery archive.

  5. EVALUATION OF AIRBORNE L- BAND MULTI-BASELINE POL-INSAR FOR DEM EXTRACTION BENEATH FOREST CANOPY

    Directory of Open Access Journals (Sweden)

    W. M. Li

    2018-04-01

    Full Text Available DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  6. Evaluation of Airborne l- Band Multi-Baseline Pol-Insar for dem Extraction Beneath Forest Canopy

    Science.gov (United States)

    Li, W. M.; Chen, E. X.; Li, Z. Y.; Jiang, C.; Jia, Y.

    2018-04-01

    DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR) based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  7. Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Liu, Jiangui; Chen, Pengfei; Qin, Qiming; Ye, Huichun; Peng, Dailiang; Dong, Yingying; Mortimer, A. Hugh

    2017-11-01

    Precise estimation of carotenoid (Car) content in crops, using remote sensing data, could be helpful for agricultural resources management. Conventional methods for Car content estimation were mostly based on reflectance data acquired from nadir direction. However, reflectance acquired at this direction is highly influenced by canopy structure and soil background reflectance. Off-nadir observation is less impacted, and multi-angle viewing data are proven to contain additional information rarely exploited for crop Car content estimation. The objective of this study was to explore the potential of multi-angle observation data for winter wheat canopy Car content estimation. Canopy spectral reflectance was measured from nadir as well as from a series of off-nadir directions during different growing stages of winter wheat, with concurrent canopy Car content measurements. Correlation analyses were performed between Car content and the original and continuum removed spectral reflectance. Spectral features and previously published indices were derived from data obtained at different viewing angles and were tested for Car content estimation. Results showed that spectral features and indices obtained from backscattering directions between 20° and 40° view zenith angle had a stronger correlation with Car content than that from the nadir direction, and the strongest correlation was observed from about 30° backscattering direction. Spectral absorption depth at 500 nm derived from spectral data obtained from 30° backscattering direction was found to reduce the difference induced by plant cultivars greatly. It was the most suitable for winter wheat canopy Car estimation, with a coefficient of determination 0.79 and a root mean square error of 19.03 mg/m2. This work indicates the importance of taking viewing geometry effect into account when using spectral features/indices and provides new insight in the application of multi-angle remote sensing for the estimation of crop

  8. Seed regeneration potential of canopy gaps at early formation stage in temperate secondary forests, Northeast China.

    Directory of Open Access Journals (Sweden)

    Qiao-Ling Yan

    Full Text Available Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01, especially in medium and small gaps (<500 m(2. Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01. Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono, but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation.

  9. Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    Science.gov (United States)

    Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong

    2012-01-01

    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771

  10. Recovery of Forest Canopy Parameters by Inversion of Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    Andrew Wallace

    2012-02-01

    Full Text Available We describe the use of Bayesian inference techniques, notably Markov chain Monte Carlo (MCMC and reversible jump MCMC (RJMCMC methods, to recover forest structural and biochemical parameters from multispectral LiDAR (Light Detection and Ranging data. We use a variable dimension, multi-layered model to represent a forest canopy or tree, and discuss the recovery of structure and depth profiles that relate to photochemical properties. We first demonstrate how simple vegetation indices such as the Normalized Differential Vegetation Index (NDVI, which relates to canopy biomass and light absorption, and Photochemical Reflectance Index (PRI which is a measure of vegetation light use efficiency, can be measured from multispectral data. We further describe and demonstrate our layered approach on single wavelength real data, and on simulated multispectral data derived from real, rather than simulated, data sets. This evaluation shows successful recovery of a subset of parameters, as the complete recovery problem is ill-posed with the available data. We conclude that the approach has promise, and suggest future developments to address the current difficulties in parameter inversion.

  11. Canopy transpiration of pure and mixed forest stands with variable abundance of European beech

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2012-06-01

    SummaryThe importance of tree species identity and diversity for biogeochemical cycles in forests is not well understood. In the past, forestry has widely converted mixed forests to pure stands while contemporary forest policy often prefers mixed stands again. However, the hydrological consequences of these changes remain unclear. We tested the hypotheses (i) that significant differences in water use per ground area exist among the tree species of temperate mixed forests and that these differences are more relevant for the amount of stand-level canopy transpiration (Ec) than putative complementarity effects of tree water use, and (ii) that the seasonal patterns of Ec in mixed stands are significantly influenced by the identity of the present tree species. We measured xylem sap flux during 2005 (average precipitation) and 2006 (relatively dry) synchronously in three nearby old-growth forest stands on similar soil differing in the abundance of European beech (pure beech stand, 3-species stand with 70% beech, 5-species stand with sapwood area basis, reflecting a considerable variation in hydraulic architecture and leaf conductance regulation among the co-existing species. Moreover, transpiration per crown projection area (ECA) also differed up to 5-fold among the different species in the mixed stands, probably reflecting contrasting sapwood/crown area ratios. We conclude that Ec is not principally higher in mixed forests than in pure beech stands. However, tree species-specific traits have an important influence on the height of Ec and affect its seasonal variation. Species with a relatively high ECA (notably Tilia) may exhaust soil water reserves early in summer, thereby increasing drought stress in dry years and possibly reducing ecosystem stability in mixed forests.

  12. UU* filtering of nighttime net ecosystem CO2 exchange flux over forest canopy under strong wind in wintertime

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Junhui

    2005-01-01

    effects and density fluxes, Boundary-Layer Meteorology, 2000, 97:487-511.[12]Massman, W. J., Sommerfeld, R. A., Mosier, A. R. et al., A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O and CH4 through Layered snowpacks, Journal of Geophysical Research (D), 1997, 102:18851-18863.[13]Bink, N. J., The structure of the atmospheric surface layer subject to local advection, Ph. D. Thesis, Agricultural University, Wageningen, The Netherlands, 1996.[14]Raupach, M. R., Weng, W. S., Carruthers, D. J. et al., Temperature and humidity fields and fluxes over hills, Quart. J. Roy Meteoroi. Soc., 1992, 118: 191-225.[15]Aubinet, M., Heinesch, B., Yernaux, M., Horizontal and vertical CO2 advection in a sloping forest, Boundary-Layer Meteorology,2003, 108: 397-417.[16]Raupach, M. R., Finnigan, J. J., Brunet, Y., Coherent eddies and turbulence in vegetation canopies: the mixing-Layer analogy,Boundary-Layer Meteorology, 1996, 78:351-382.[17]Zhuang, Y., Amiro, B. D., Pressure fluctuations during coherent motions and their effects on the budgets of turbulent kinetic energy and momentum flux within a forest canopy, Journal Of Applied Meteorology, 1994, 33: 704-711.[18]Shaw, R. H., Zhang, X. J., Evidence of pressure-forced turbulent flow in a forest, Boundary-Layer Meteorology, 1992, 58: 273-288.[19]Maitani, T., Seo, T., Estimates of Velocity-pressure and velocity-pressure gradient interactions in the surface layer over plant canopies, Boundary-Layer Meteorology, 1985, 33: 51-60.[20]Schols, J. L. J., Wartena, L., A dynamical description of turbulent structures in the near neutral atmospheric surface layer: the Role of static pressure fluctuations, Boundary-Layer Meteorology,1986, 34: 1-15.[21]McBean, G. A., Elliott, J. A., The vertical transports of kinetic energy by turbulence and pressure in Boundary Layer, Journal of the Atmospheric Sciences, 1975, 32: 753-765.[22]Wilczak, J. M., Edson, J. B

  13. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    Directory of Open Access Journals (Sweden)

    Deo D Shirima

    Full Text Available We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI and above ground herbaceous biomass (AGBH along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m, stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps, soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand

  14. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    Science.gov (United States)

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental

  15. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  16. Modelling canopy fuel and forest stand variables and characterizing the influence of thinning in the stand structure using airborne LiDAR

    Directory of Open Access Journals (Sweden)

    A. Hevia

    2016-02-01

    Full Text Available Forest fires are a major threat in NW Spain. The importance and frequency of these events in the area suggests the need for fuel management programs to reduce the spread and severity of forest fires. Thinning treatments can contribute for fire risk reduction, because they cut off the horizontal continuity of forest fuels. Besides, it is necessary to conduct a fire risk management based on the knowledge of fuel allocation, since fire behaviour and fire spread study is dependent on the spatial factor. Therefore, mapping fuel for different silvicultural scenarios is essential. Modelling forest variables and forest structure parameters from LiDAR technology is the starting point for developing spatially explicit maps. This is essential in the generation of fuel maps since field measurements of canopy fuel variables is not feasible. In the present study, we evaluated the potential of LiDAR technology to estimate canopy fuel variables and other stand variables, as well as to identify structural differences between silvicultural managed and unmanaged P. pinaster Ait. stands. Independent variables (LiDAR metrics of greater explanatory significance were identified and regression analyses indicated strong relationships between those and field-derived variables (R2 varied between 0.86 and 0.97. Significant differences were found in some LiDAR metrics when compared thinned and unthinned stands. Results showed that LiDAR technology allows to model canopy fuel and stand variables with high precision in this species, and provides useful information for identifying areas with and without silvicultural management.

  17. Long-term Responses of Canopy-understorey Interactions to Disturbance Severity in Primary Picea abies Forests

    Czech Academy of Sciences Publication Activity Database

    Bače, R.; Schurman, J.S.; Brabec, Marek; Čada, V.; Deprés, T.; Janda, P.; Lábusová, J.; Mikoláš, M.; Morrissey, R. C.; Mrhalová, H.; Nagel, T.A.; Nováková, M. H.; Seedre, M.; Synek, M.; Trotsiuk, V.; Svoboda, M.

    2017-01-01

    Roč. 28, č. 6 (2017), s. 1128-1139 ISSN 1100-9233 Grant - others:GA ČR(CZ) GA15-14840S Institutional support: RVO:67985807 Keywords : Disturbance regime * Natural regeneration * Primary forest * Picea abies (L.) Karst * Windstorms * Bark beetle * Understory light availability * Saplings and poles * Canopy openness * Mountain forest Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 2.924, year: 2016

  18. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    DEFF Research Database (Denmark)

    Wang, L.; Ibrom, Andreas; Korhonen, J. F. J.

    2013-01-01

    and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally...

  19. Forest canopy damage and recovery in reduced-impact and conventional selective logging in eastern Para, Brazil.

    Science.gov (United States)

    Rodrigo Pereira Jr.; Johan Zweedea; Gregory P. Asnerb; Keller; Michael

    2002-01-01

    We investigated ground and canopy damage and recovery following conventional logging and reduced-impact logging (RIL) of moist tropical forest in the eastern Amazon of Brazil. Paired conventional and RIL blocks were selectively logged with a harvest intensity of approximately 23 m3 ha

  20. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  1. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests.

    Science.gov (United States)

    Wurzburger, Nina; Hedin, Lars O

    2016-01-01

    Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome. © 2015 John Wiley & Sons Ltd/CNRS.

  2. Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests

    Directory of Open Access Journals (Sweden)

    K. Dana Chadwick

    2016-01-01

    Full Text Available Airborne high fidelity imaging spectroscopy (HiFIS holds great promise for bridging the gap between field studies of functional diversity, which are spatially limited, and satellite detection of ecosystem properties, which lacks resolution to understand within landscape dynamics. We use Carnegie Airborne Observatory HiFIS data combined with field collected foliar trait data to develop quantitative prediction models of foliar traits at the tree-crown level across over 1000 ha of humid tropical forest. We predicted foliar leaf mass per area (LMA as well as foliar concentrations of nitrogen, phosphorus, calcium, magnesium and potassium for canopy emergent trees (R2: 0.45–0.67, relative RMSE: 11%–14%. Correlations between remotely sensed model coefficients for these foliar traits are similar to those found in laboratory studies, suggesting that the detection of these mineral nutrients is possible through their biochemical stoichiometry. Maps derived from HiFIS provide quantitative foliar trait information across a tropical forest landscape at fine spatial resolution, and along environmental gradients. Multi-nutrient maps implemented at the fine organismic scale will subsequently provide new insight to the functional biogeography and biological diversity of tropical forest ecosystems.

  3. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy

  4. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Directory of Open Access Journals (Sweden)

    Michael Palace

    Full Text Available Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar. This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs and calculated a series of parameters including entropy, Fast Fourier Transform (FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m. Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1. We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1. Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included

  5. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    Science.gov (United States)

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient

  6. Electromagnetic wave scattering from a forest or vegetation canopy - Ongoing research at the University of Texas at Arlington

    Science.gov (United States)

    Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.

    1993-01-01

    The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.

  7. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    Science.gov (United States)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  8. Can we use photography to estimate radiation interception by a crop canopy?

    Science.gov (United States)

    Chakwizira, E; Meenken, E D; George, M J; Fletcher, A L

    2015-03-01

    Accuracy of determining radiation interception, and hence radiation use efficiency, depends on the method of measuring photosynthetically active radiation intercepted. Methods vary, from expensive instruments such as Sunfleck ceptometers to simple methods such as digital photography. However, before universal use of digital photography there is need to determine its reliability and compare it with conventional, but expensive, methods. In a series of experiments at Lincoln, New Zealand, canopy development for barley, wheat, white clover and four forage brassica species was determined using both digital photographs and Sunfleck ceptometer. Values obtained were used to calculate conversion coefficient (Kf/Ki) ratios between the two methods. Digital photographs were taken at 45° and 90° for barley, wheat and white clover and at only 90° for brassicas. There was an interaction of effects of crop and cultivar for the cereal crops. Barley closed canopies earlier than wheat, and 'Emir' barley and 'Stettler' wheat had consistently higher canopy cover than 'Golden Promise' and 'HY459', respectively. Canopy cover was consistently larger at 45° than 90° for cereals. However, for white clover, the angle of digital photography was not important. There was also an interaction between effects of species and method of determining canopy cover for brassicas. Photographs gave higher cover values than ceptometer for forage rape and turnip, but the relationship was variable for forage kale and swede. Kf/Ki ratios of 1.0-1.10 for cereals, white clover and forage rape and turnip show that digital photographs can be used to estimated radiation interception, in place of Sunfleck ceptometer, for these crops. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Application of the Forhyd model to simulate net precipitation and intercepted water evaporation in forest canopies in Colombian amazonia

    International Nuclear Information System (INIS)

    Tellez Guio, Patricia; Boschell Villamarin, Francisco; Tobon Marin, Conrado

    2005-01-01

    Hydrologic simulation is a technique, which allows us to understand the relationships among hydrological, biological and ecological variables in an ecosystem. In this research, the FORHYD model is used to simulate the net precipitation and the water intercepted by the canopies of a mature forest, a 30-year old secondary forest, an 18-year old secondary forest, a 5-year old secondary forest, and a shifting cultivation plot, all located in Colombia's amazonia. The model calculates the water budget of the canopy by using the precipitation rates, canopy drainage and evaporation of the water intercepted by the canopy. This paper is the second one in a series of papers reporting the results of the research on the simulation of the hydrological fluxes in three different land use types of Colombian amazonia. The research was carried out in middle Caqueta of Colombian amazonia (northwest amazon basin). The FORHYD model was calibrated and validated by using field observations of the climate, net precipitation (PT), thoughtful (TH) and stem flow (ST), which were monitored during a period of 15 months from March 2001 to June 2002. These observations were used as both input variables and diagnostic variables to probe the model's precision to simulate field observations. Results showed that FORHYD simulates with a good precision the net precipitation and the evaporation of the water intercepted by the canopy. However, the model's precision depends on a good parameterization, which in turn depends on a good database of field observations. The model is a good tool for simulating the hydrological cycle and can be used to simulate critical scenarios of climate variability

  10. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  11. Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches

    Directory of Open Access Journals (Sweden)

    Nikolai Knapp

    2018-05-01

    Full Text Available Monitoring of changes in forest biomass requires accurate transfer functions between remote sensing-derived changes in canopy height (ΔH and the actual changes in aboveground biomass (ΔAGB. Different approaches can be used to accomplish this task: direct approaches link ΔH directly to ΔAGB, while indirect approaches are based on deriving AGB stock estimates for two points in time and calculating the difference. In some studies, direct approaches led to more accurate estimations, while, in others, indirect approaches led to more accurate estimations. It is unknown how each approach performs under different conditions and over the full range of possible changes. Here, we used a forest model (FORMIND to generate a large dataset (>28,000 ha of natural and disturbed forest stands over time. Remote sensing of forest height was simulated on these stands to derive canopy height models for each time step. Three approaches for estimating ΔAGB were compared: (i the direct approach; (ii the indirect approach and (iii an enhanced direct approach (dir+tex, using ΔH in combination with canopy texture. Total prediction accuracies of the three approaches measured as root mean squared errors (RMSE were RMSEdirect = 18.7 t ha−1, RMSEindirect = 12.6 t ha−1 and RMSEdir+tex = 12.4 t ha−1. Further analyses revealed height-dependent biases in the ΔAGB estimates of the direct approach, which did not occur with the other approaches. Finally, the three approaches were applied on radar-derived (TanDEM-X canopy height changes on Barro Colorado Island (Panama. The study demonstrates the potential of forest modeling for improving the interpretation of changes observed in remote sensing data and for comparing different methodologies.

  12. Tracking the Creation of Tropical Forest Canopy Gaps with UAV Computer Vision Remote Sensing

    Science.gov (United States)

    Dandois, J. P.

    2015-12-01

    The formation of canopy gaps is fundamental for shaping forest structure and is an important component of ecosystem function. Recent time-series of airborne LIDAR have shown great promise for improving understanding of the spatial distribution and size of forest gaps. However, such work typically looks at gap formation across multiple years and important intra-annual variation in gap dynamics remains unknown. Here we present findings on the intra-annual dynamics of canopy gap formation within the 50 ha forest dynamics plot of Barro Colorado Island (BCI), Panama based on unmanned aerial vehicle (UAV) remote sensing. High-resolution imagery (7 cm GSD) over the 50 ha plot was obtained regularly (≈ every 10 days) beginning October 2014 using a UAV equipped with a point and shoot camera. Imagery was processed into three-dimensional (3D) digital surface models (DSMs) using automated computer vision structure from motion / photogrammetric methods. New gaps that formed between each UAV flight were identified by subtracting DSMs between each interval and identifying areas of large deviation. A total of 48 new gaps were detected from 2014-10-02 to 2015-07-23, with sizes ranging from less than 20 m2 to greater than 350 m2. The creation of new gaps was also evaluated across wet and dry seasons with 4.5 new gaps detected per month in the dry season (Jan. - May) and 5.2 per month outside the dry season (Oct. - Jan. & May - July). The incidence of gap formation was positively correlated with ground-surveyed liana stem density (R2 = 0.77, p < 0.001) at the 1 hectare scale. Further research will consider the role of climate in predicting gap formation frequency as well as site history and other edaphic factors. Future satellite missions capable of observing vegetation structure at greater extents and frequencies than airborne observations will be greatly enhanced by the high spatial and temporal resolution bridging scale made possible by UAV remote sensing.

  13. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    Science.gov (United States)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  14. Estimating Forest fAPAR from Multispectral Landsat-8 Data Using the Invertible Forest Reflectance Model INFORM

    Directory of Open Access Journals (Sweden)

    Huili Yuan

    2015-06-01

    Full Text Available The estimation of the Fraction of Absorbed Photosynthetically Active Radiation in forests (forest fAPAR from multi-spectral Landsat-8 data is investigated in this paper using a physically based radiative transfer model (Invertible Forest Reflectance Model, INFORM combined with an inversion strategy based on artificial neural nets (ANN. To derive the forest fAPAR for the Dabie mountain test site in China in 30 m spatial resolution (size approximately 3000 km2, a database of forest canopy spectral reflectances was simulated with INFORM taking into account structural variables such as leaf area index (LAI, crown coverage and stem density as well as leaf composition. To establish the relationship between forest fAPAR and the reflectance modeled by INFORM, a logarithmic relationship between LAI and fAPAR was used previously established using on-site field measurements. On this basis, predictive models between Landsat-8 reflectance and fAPAR were established using an artificial neural network. After calibrating INFORM for the test site, forty-two forest stands were used to validate the performance of the method. The results show that spectral signatures modeled by INFORM correspond reasonably well with the forest canopy reflectance spectra derived from Landsat data. Deviations increase with increasing angle between surface normal of the hilly terrain and sun incidence. The comparison of estimated and measured fAPAR (R2 = 0.47, RMSE = 0.11 demonstrates that INFORM can be inverted using neural nets to provide acceptable estimates of forest fAPAR. The accuracy of the predictions increased significantly when excluding pixels located in very steep terrain. This demonstrates that the applied topographic correction was not sufficiently accurate and should be improved for making optimum use of radiative transfer models such as INFORM.

  15. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels

    Science.gov (United States)

    Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D.

    2013-12-01

    Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780-800 nm) and either green (540-560 nm) or red-edge (730-750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.

  16. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...

  17. Avian response to microclimate in canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Champlin, Tracey B.; Kilgo, John C.; Gumpertz, Marcia L.; Moorman, Christopher E.

    2009-04-01

    Abstract - Microclimate may infl uence use of early successional habitat by birds. We assessed the relationships between avian habitat use and microclimate (temperature, light intensity, and relative humidity) in experimentally created canopy gaps in a bottomland hardwood forest on the Savannah River Site, SC. Gaps were 2- to 3-year-old group-selection timber harvest openings of three sizes (0.13, 0.26, 0.50 ha). Our study was conducted from spring through fall, encompassing four bird-use periods (spring migration, breeding, post-breeding, and fall migration), in 2002 and 2003. We used mist netting and simultaneously recorded microclimate variables to determine the influence of microclimate on bird habitat use. Microclimate was strongly affected by net location within canopy gaps in both years. Temperature generally was higher on the west side of gaps, light intensity was greater in gap centers, and relative humidity was higher on the east side of gaps. However, we found few relationships between bird captures and the microclimate variables. Bird captures were inversely correlated with temperature during the breeding and postbreeding periods in 2002 and positively correlated with temperature during spring 2003. Captures were high where humidity was high during post-breeding 2002, and captures were low where humidity was high during spring 2003. We conclude that variations in the local microclimate had minor infl uence on avian habitat use within gaps. Instead, habitat selection in relatively mild regions like the southeastern US is based primarily on vegetation structure, while other factors, including microclimate, are less important.

  18. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, R. [Water Research Institute, Brugherio (Italy); Tagliaferri, A. [Regional Forestry Board (Italy)

    2001-07-01

    Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg{sup 2+}, while the throughfall concentrations differed in the measured values of H{sup +}, N-NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO{sub 3}{sup -}, N-NH{sub 4}{sup +} and H{sup +} at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca{sup 2+}, K{sup +} and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO{sub 4}{sup 2-} deposition fluxes (21.3kg ha{sup -1}yr{sup -1} at Val Masino and 23.6kgha{sup -1}yr{sup -1} at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1kgha{sup -1}yr{sup -1} in the bulk input, and 15.0 and 18.0kgha{sup -1}yr{sup -1} in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kgNha{sup -1} at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values. (author)

  19. Identifying the environmental factors that effect within canopy BVOC loss using a multilevel canopy model

    Science.gov (United States)

    Chan, W. S.; Fuentes, J. D.; Lerdau, M.

    2010-12-01

    This presentation will provide research findings to evaluate the hypothesis that the loss of biogenic volatile organic compound (BVOC) within plant canopies is dynamic and depends on factors such as plant canopy architecture (height and leaf area distribution), atmospheric turbulence, concentration of oxidants (OH, O3, NO3), and the reactivity of BVOC species. Results will be presented from a new one dimensional, multilevel canopy model that couples algorithms for canopy microclimate, leaf physiology, BVOC emission, turbulent transport, and atmospheric chemistry to investigate the relative importance of factors that impact BVOC loss within a forest canopy. Model sensitivity tests will be presented and discussed to identify factors driving canopy loss. Results show isoprene and monoterpene canopy losses as high as 9 and 18%, respectively, for tall canopies during the daytime. We hypothesize that canopy height and wind speed (i.e. canopy residence time) may be the most important in dictating within-canopy loss. This work will reduce the error in bottom-up flux estimates of BVOCs and ultimately improve parameterizations of BVOC sources in air quality models by accounting for within canopy processes.

  20. Variability in estimated runoff in a forested area based on different cartographic data sources

    Energy Technology Data Exchange (ETDEWEB)

    Fragoso, L.; Quirós, E.; Durán-Barroso, P.

    2017-11-01

    Aim of study: The goal of this study is to analyse variations in curve number (CN) values produced by different cartographic data sources in a forested watershed, and determine which of them best fit with measured runoff volumes. Area of study: A forested watershed located in western Spain. Material and methods: Four digital cartographic data sources were used to determine the runoff CN in the watershed. Main results: None of the cartographic sources provided all the information necessary to determine properly the CN values. Our proposed methodology, focused on the tree canopy cover, improves the achieved results. Research highlights: The estimation of the CN value in forested areas should be attained as a function of tree canopy cover and new calibrated tables should be implemented in a local scale.

  1. Resource communication: Variability in estimated runoff in a forested area based on different cartographic data sources

    Directory of Open Access Journals (Sweden)

    Laura Fragoso

    2017-10-01

    Full Text Available Aim of study: The goal of this study is to analyse variations in curve number (CN values produced by different cartographic data sources in a forested watershed, and determine which of them best fit with measured runoff volumes. Area of study: A forested watershed located in western Spain. Material and methods: Four digital cartographic data sources were used to determine the runoff CN in the watershed. Main results: None of the cartographic sources provided all the information necessary to determine properly the CN values. Our proposed methodology, focused on the tree canopy cover, improves the achieved results. Research highlights: The estimation of the CN value in forested areas should be attained as a function of tree canopy cover and new calibrated tables should be implemented in a local scale.

  2. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    Science.gov (United States)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  3. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    International Nuclear Information System (INIS)

    Van Stan, John T.; Pypker, Thomas G.

    2015-01-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  4. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Van Stan, John T., E-mail: jvanstan@georgiasouthern.edu [Dept. of Geology and Geography, Georgia Southern University, Statesboro, GA 30460 (United States); Pypker, Thomas G. [Dept. of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC (Canada)

    2015-12-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  5. The Bonobo Pan paniscus (Mammalia: Primates: Hominidae nesting patterns and forest canopy layers in the Lake Tumba forests and Salonga National Park, Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Bila-Isia Inogwabini

    2015-10-01

    Full Text Available The description and differentiation of habitat types is a major concern in ecology.  This study examined relationships between Bonobo Pan paniscus nesting patterns and forest structure in the Lake Tumba Swampy Forests. Data on presence of fresh Bonobo nests, canopy cover, canopy structure, tree densities and tree basal areas were collected systematically along 134 transects at 400m and 800m intervals, and the leaf-covered area (LCA was calculated for each of seven forest types. I observed a significant correlation between bonobo nests and mixed mature forest/closed understory forest type (r=-0.730, df = 21, p <0.05, but not mixed mature forest/open understory, old secondary forest and young secondary forest.  Basal areas of non-nesting trees along transects did not differ significantly from those in sites where bonobos nested.  Higher LCA (55% and 55% occurred in nesting sites when compared with non-nesting sites (39% and 42% at elevations 4–8 m and 8–16 m above the soil.  There was greater leaf cover in the understorey at sites where bonobos did not nest, while there was greater leaf cover in the mid-storey at sites where bonobos did nest.  

  6. [Estimation of Shenyang urban forest green biomass].

    Science.gov (United States)

    Liu, Chang-fu; He, Xing-yuan; Chen, Wei; Zhao, Gui-ling; Xu, Wen-duo

    2007-06-01

    Based on ARC/GIS and by using the method of "planar biomass estimation", the green biomass (GB) of Shenyang urban forests was measured. The results demonstrated that the GB per unit area was the highest (3.86 m2.m(-2)) in landscape and relaxation forest, and the lowest (2.27 m2.m(-2)) in ecological and public welfare forest. The GB per unit area in urban forest distribution area was 2.99 m2.m(-2), and that of the whole Shenyang urban area was 0.25 m2.m(-2). The total GB of Shenyang urban forests was about 1.13 x 10(8) m2, among which, subordinated forest, ecological and public welfare forest, landscape and relaxation forest, road forest, and production and management forest accounted for 36.64% , 23.99% , 19.38% , 16.20% and 3.79%, with their GB being 4. 15 x 10(7), 2.72 x 10(7), 2.20 x 10(7), 1.84 x 10(7) and 0.43 x 10(7) m2, respectively. The precision of the method "planar biomass estimation" was 91.81% (alpha = 0.05) by credit test.

  7. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    Science.gov (United States)

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  8. Ant mosaics in Bornean primary rain forest high canopy depend on spatial scale, time of day, and sampling method

    Directory of Open Access Journals (Sweden)

    Kalsum M. Yusah

    2018-01-01

    Full Text Available Background Competitive interactions in biological communities can be thought of as giving rise to “assembly rules” that dictate the species that are able to co-exist. Ant communities in tropical canopies often display a particular pattern, an “ant mosaic”, in which competition between dominant ant species results in a patchwork of mutually exclusive territories. Although ant mosaics have been well-documented in plantation landscapes, their presence in pristine tropical forests remained contentious until recently. Here we assess presence of ant mosaics in a hitherto under-investigated forest stratum, the emergent trees of the high canopy in primary tropical rain forest, and explore how the strength of any ant mosaics is affected by spatial scale, time of day, and sampling method. Methods To test whether these factors might impact the detection of ant mosaics in pristine habitats, we sampled ant communities from emergent trees, which rise above the highest canopy layers in lowland dipterocarp rain forests in North Borneo (38.8–60.2 m, using both baiting and insecticide fogging. Critically, we restricted sampling to only the canopy of each focal tree. For baiting, we carried out sampling during both the day and the night. We used null models of species co-occurrence to assess patterns of segregation at within-tree and between-tree scales. Results The numerically dominant ant species on the emergent trees sampled formed a diverse community, with differences in the identity of dominant species between times of day and sampling methods. Between trees, we found patterns of ant species segregation consistent with the existence of ant mosaics using both methods. Within trees, fogged ants were segregated, while baited ants were segregated only at night. Discussion We conclude that ant mosaics are present within the emergent trees of the high canopy of tropical rain forest in Malaysian Borneo, and that sampling technique, spatial scale, and time

  9. Yield Estimation of Sugar Beet Based on Plant Canopy Using Machine Vision Methods

    Directory of Open Access Journals (Sweden)

    S Latifaltojar

    2014-09-01

    Full Text Available Crop yield estimation is one of the most important parameters for information and resources management in precision agriculture. This information is employed for optimizing the field inputs for successive cultivations. In the present study, the feasibility of sugar beet yield estimation by means of machine vision was studied. For the field experiments stripped images were taken during the growth season with one month intervals. The image of horizontal view of plants canopy was prepared at the end of each month. At the end of growth season, beet roots were harvested and the correlation between the sugar beet canopy in each month of growth period and corresponding weight of the roots were investigated. Results showed that there was a strong correlation between the beet yield and green surface area of autumn cultivated sugar beets. The highest coefficient of determination was 0.85 at three months before harvest. In order to assess the accuracy of the final model, the second year of study was performed with the same methodology. The results depicted a strong relationship between the actual and estimated beet weights with R2=0.94. The model estimated beet yield with about 9 percent relative error. It is concluded that this method has appropriate potential for estimation of sugar beet yield based on band imaging prior to harvest

  10. A tool to determine crown and plot canopy transparency for forest inventory and analysis phase 3 plots using digital photographs

    Science.gov (United States)

    Matthew F. Winn; Philip A. Araman

    2012-01-01

    The USDA Forest Service Forest Inventory and Analysis (FIA) program collects crown foliage transparency estimates for individual trees on Phase 3 (P3) inventory plots. The FIA crown foliage estimate is obtained from a pair of perpendicular side views of the tree. Researchers with the USDA Forest Service Southern Research Station have developed a computer program that...

  11. Evaluation of hydrologic equilibrium in a mountainous watershed: incorporating forest canopy spatial adjustment to soil biogeochemical processes

    Science.gov (United States)

    Mackay, D. Scott

    Hydrologic equilibrium theory has been used to describe both short-term regulation of gas exchange and long-term adjustment of forest canopy density. However, by focusing on water and atmospheric conditions alone a hydrologic equilibrium may impose an oversimplification of the growth of forests adjusted to hydrology. In this study nitrogen is incorporated as a third regulation of catchment level forest dynamics and gas exchange. This was examined with an integrated distributed hydrology and forest growth model in a central Sierra Nevada watershed covered primarily by old-growth coniferous forest. Water and atmospheric conditions reasonably reproduced daily latent heat flux, and predicted the expected catenary trend of leaf area index (LAI). However, it was not until the model was provided a spatially detailed description of initial soil carbon and nitrogen pools that spatial patterns of LAI were generated. This latter problem was attributed to a lack of soil history or memory in the initialization of the simulations. Finally, by reducing stomatal sensitivity to vapor pressure deficit (VPD) the canopy density increased when water and nitrogen limitations were not present. The results support a three-control hydrologic equilibrium in the Sierra Nevada watershed. This has implications for modeling catchment level soil-vegetation-atmospheric interactions over interannual, decade, and century time-scales.

  12. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    Science.gov (United States)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    along the canopy to trunk continuum. We further hypothesize that pronounced depletion along the basipetal transport pathway in A. longifolia (more than 6 per mil from leaf water soluble organic matter to trunk phloem sap) may be due to high stem photosynthesis rates in this green-barked legume. Regardless of these fractionation effects, phloem sap d13C correlated well with environmental parameters driving photosynthesis (photosynthetic photon flux density, soil moisture, vapor pressure deficit) for both species indicating that phloem sap d13C is a good integrative tracer of changes in canopy-level carbon discrimination once species-specific differences in post-photosynthetic fractionation are accounted for. Furthermore, we illustrate that combining sap flow estimated canopy stomatal conductance (gs) with measurements of phloem sap d13C (adjusted for post-photosynthetic fractionation) has significant potential as a relatively non-intensive method for estimating canopy-level carbon assimilation rates in field studies.

  13. Canada's forest biomass resources: deriving estimates from Canada's forest inventory

    International Nuclear Information System (INIS)

    Penner, M.; Power, K.; Muhairwe, C.; Tellier, R.; Wang, Y.

    1997-01-01

    A biomass inventory for Canada was undertaken to address the data needs of carbon budget modelers, specifically to provide estimates of above-ground tree components and of non-merchantable trees in Canadian forests. The objective was to produce a national method for converting volume estimates to biomass that was standardized, repeatable across the country, efficient and well documented. Different conversion methods were used for low productivity forests (productivity class 1) and higher productivity forests (productivity class 2). The conversion factors were computed by constructing hypothetical stands for each site, age, species and province combination, and estimating the merchantable volume and all the above-ground biomass components from suitable published equations. This report documents the procedures for deriving the national biomass inventory, and provides illustrative examples of the results. 46 refs., 9 tabs., 5 figs

  14. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data.

    Science.gov (United States)

    Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S

    2015-07-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling

  15. Low-cost Assessment for Early Vigor and Canopy Cover Estimation in Durum Wheat Using RGB Images.

    Science.gov (United States)

    Fernandez-Gallego, J. A.; Kefauver, S. C.; Aparicio Gutiérrez, N.; Nieto-Taladriz, M. T.; Araus, J. L.

    2017-12-01

    Early vigor and canopy cover is an important agronomical component for determining grain yield in wheat. Estimates of the canopy cover area at early stages of the crop cycle may contribute to efficiency of crop management practices and breeding programs. Canopy-image segmentation is complicated in field conditions by numerous factors, including soil, shadows and unexpected objects, such as rocks, weeds, plant remains, or even part of the photographer's boots (many times it appears in the scene); and the algorithms must be robust to accommodate these conditions. Field trials were carried out in two sites (Aranjuez and Valladolid, Spain) during the 2016/2017 crop season. A set of 24 varieties of durum wheat in two growing conditions (rainfed and support irrigation) per site were used to create the image database. This work uses zenithal RGB images taken from above the crop in natural light conditions. The images were taken with Canon IXUS 320HS camera in Aranjuez, holding the camera by hand, and with a Nikon D300 camera in Valladolid, using a monopod. The algorithm for early vigor and canopy cover area estimation uses three main steps: (i) Image decorrelation (ii) Colour space transformation and (iii) Canopy cover segmentation using an automatic threshold based on the image histogram. The first step was chosen to enhance the visual interpretation and separate the pixel colors into the scene; the colour space transformation contributes to further separate the colours. Finally an automatic threshold using a minimum method allows for correct segmentation and quantification of the canopy pixels. The percent of area covered by the canopy was calculated using a simple algorithm for counting pixels in the final binary segmented image. The comparative results demonstrate the algorithm's effectiveness through significant correlations between early vigor and canopy cover estimation compared to NDVI (Normalized difference vegetation index) and grain yield.

  16. Accuracy Assessment of Lidar-Derived Digital Terrain Model (dtm) with Different Slope and Canopy Cover in Tropical Forest Region

    Science.gov (United States)

    Salleh, M. R. M.; Ismail, Z.; Rahman, M. Z. A.

    2015-10-01

    Airborne Light Detection and Ranging (LiDAR) technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM). High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover) and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN) algorithm technique in producing ground points. Next, the ground control points (GCPs) used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870) with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924) obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.

  17. ACCURACY ASSESSMENT OF LIDAR-DERIVED DIGITAL TERRAIN MODEL (DTM WITH DIFFERENT SLOPE AND CANOPY COVER IN TROPICAL FOREST REGION

    Directory of Open Access Journals (Sweden)

    M. R. M. Salleh

    2015-10-01

    Full Text Available Airborne Light Detection and Ranging (LiDAR technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM. High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN algorithm technique in producing ground points. Next, the ground control points (GCPs used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870 with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924 obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.

  18. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    Directory of Open Access Journals (Sweden)

    L. Wang

    2013-02-01

    Full Text Available Seasonal and spatial variations in foliar nitrogen (N parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L., Douglas fir (Pseudotsuga menziesii (Mirb. Franco and Scots pine (Pinus sylvestris L. growing in Denmark, the Netherlands and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally showed much higher seasonal and vertical variability in beech than in the coniferous canopies. However, also the two coniferous tree species behaved very differently with respect to peak summer canopy N content and N re-translocation efficiency, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf duration alone. During phases of intensive N turnover in spring and autumn, the NH4+ concentration in beech leaves rose considerably, while fully developed green beech leaves had relatively low tissue NH4+, similar to the steadily low levels in Douglas fir and, particularly, in Scots pine. The ratio between bulk foliar concentrations of NH4+ and H+, which is an indicator of the NH3 emission potential, reflected differences in foliage N concentration, with beech having the highest values followed by Douglas fir and Scots pine. Irrespectively of the leaf habit, i.e. deciduous versus evergreen, the majority of the canopy foliage N was retained within the trees. This was accomplished through an effective N re-translocation (beech, higher foliage longevity (fir or both (boreal pine forest. In combination with data from a literature review, a general relationship of decreasing N re

  19. Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR

    Directory of Open Access Journals (Sweden)

    Christopher S. R. Neigh

    2014-02-01

    Full Text Available Few studies have evaluated the precision of IKONOS stereo data for measuring forest canopy height. The high cost of airborne light detection and ranging (LiDAR data collection for large area studies and the present lack of a spaceborne instrument lead to the need to explore other low cost options. The US Government currently has access to a large archive of commercial high-resolution imagery, which could be quite valuable to forest structure studies. At 1 m resolution, we here compared canopy height models (CHMs and height data derived from Goddard’s airborne LiDAR Hyper-spectral and Thermal Imager (G-LiHT with three types of IKONOS stereo derived digital surface models (DSMs that estimate CHMs by subtracting National Elevation Data (NED digital terrain models (DTMs. We found the following in three different forested regions of the US after excluding heterogeneous and disturbed forest samples: (1 G-LiHT DTMs were highly correlated with NED DTMs with R2 > 0.98 and root mean square errors (RMSEs < 2.96 m; (2 when using one visually identifiable ground control point (GCP from NED, G-LiHT DSMs and IKONOS DSMs had R2 > 0.84 and RMSEs of 2.7 to 4.1 m; and (3 one GCP CHMs for two study sites had R2 > 0.7 and RMSEs of 2.6 to 3 m where data were collected less than four years apart. Our results suggest that IKONOS stereo data are a useful LiDAR alternative where high-quality DTMs are available.

  20. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; McNeil, David D.

    2008-01-01

    and the different aerodynamic properties of the canopy. Together with the lower average rainfall rate this counterbalanced the reduced storage capacity of the leafless canopy and maintained a relatively high interception loss throughout the year being 29% of the gross rainfall in the leafed period and 20...

  1. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  2. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    Science.gov (United States)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack

  3. The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates

    Science.gov (United States)

    Houghton, R. A.; Lawrence, J. L.; Hackler, J. L.; Brown, S.

    2001-01-01

    The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.

  4. Performance Considerations for the SIMPL Single Photon, Polarimetric, Two-Color Laser Altimeter as Applied to Measurements of Forest Canopy Structure and Composition

    Science.gov (United States)

    Dabney, Philip W.; Harding, David J.; Valett, Susan R.; Vasilyev, Aleksey A.; Yu, Anthony W.

    2012-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over

  5. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  6. Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest

    International Nuclear Information System (INIS)

    Sase, Hiroyuki; Takahashi, Akiomi; Sato, Masahiko; Kobayashi, Hiroyasu; Nakata, Makoto; Totsuka, Tsumugu

    2008-01-01

    The seasonal changes in throughfall (TF) and stemflow (SF) chemistry and the canopy interactions of K + and N compounds were studied in a Japanese cedar forest near the Sea of Japan. The fluxes of most ions, including non-sea-salt SO 4 2- , from TF, SF, and rainfall showed distinct seasonal trends, increasing from autumn to winter, owing to the seasonal west wind, while the fluxes of NH 4 + and K + ions from TF + SF might have a large effect of canopy interactions. The contact angle (CA) of water droplets on leaves decreased with leaf aging, suggesting that surface wettability increases with leaf age. The K + concentration in TF was negatively correlated with the CA of 1-year-old leaves, while the NH 4 + concentration was positively correlated with the CA. The net fluxes of NH 4 + and NO 3 - from TF were positively correlated with the CA. The increase in wettability may accelerate leaching of K + or uptake of NH 4 + . - Leaf surface properties may contribute to the ion transport process of the forest canopy

  7. Cosmic-ray neutron transport at a forest field site: the sensitivity to various environmental conditions with focus on biomass and canopy interception

    Science.gov (United States)

    Andreasen, Mie; Jensen, Karsten H.; Desilets, Darin; Zreda, Marek; Bogena, Heye R.; Looms, Majken C.

    2017-04-01

    Cosmic-ray neutron intensity is inversely correlated to all hydrogen present in the upper decimeters of the subsurface and the first few hectometers of the atmosphere above the ground surface. This correlation forms the base of the cosmic-ray neutron soil moisture estimation method. The method is, however, complicated by the fact that several hydrogen pools other than soil moisture affect the neutron intensity. In order to improve the cosmic-ray neutron soil moisture estimation method and explore the potential for additional applications, knowledge about the environmental effect on cosmic-ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different parameters describing the subsurface to match measured height profiles and time series of thermal and epithermal neutron intensities at a field site in Denmark. Overall, modeled thermal and epithermal neutron intensities are in satisfactory agreement with measurements; however, the choice of forest canopy conceptualization is found to be significant. Modeling results show that the effect of canopy interception, soil chemistry and dry bulk density of litter and mineral soil on neutron intensity is small. On the other hand, the neutron intensity decreases significantly with added litter-layer thickness, especially for epithermal neutron energies. Forest biomass also has a significant influence on the neutron intensity height profiles at the examined field site, altering both the shape of the profiles and the ground-level thermal-to-epithermal neutron ratio. This ratio increases with increasing amounts of biomass, and was confirmed by measurements from three sites representing agricultural, heathland and forest land cover. A much smaller effect of canopy interception on the ground

  8. Simulating Canopy-Level Solar Induced Fluorescence with CLM-SIF 4.5 at a Sub-Alpine Conifer Forest in the Colorado Rockies

    Science.gov (United States)

    Raczka, B. M.; Bowling, D. R.; Lin, J. C.; Lee, J. E.; Yang, X.; Duarte, H.; Zuromski, L.

    2017-12-01

    Forests of the Western United States are prone to drought, temperature extremes, forest fires and insect infestation. These disturbance render carbon stocks and land-atmosphere carbon exchanges highly variable and vulnerable to change. Regional estimates of carbon exchange from terrestrial ecosystem models are challenged, in part, by a lack of net ecosystem exchange observations (e.g. flux towers) due to the complex mountainous terrain. Alternatively, carbon estimates based on light use efficiency models that depend upon remotely-sensed greenness indices are challenged due to a weak relationship with GPP during the winter season. Recent advances in the retrieval of remotely sensed solar induced fluorescence (SIF) have demonstrated a strong seasonal relationship between GPP and SIF for deciduous, grass and, to a lesser extent, conifer species. This provides an important opportunity to use remotely-sensed SIF to calibrate terrestrial ecosystem models providing a more accurate regional representation of biomass and carbon exchange across mountainous terrain. Here we incorporate both leaf-level fluorescence and leaf-to-canopy radiative transfer represented by the SCOPE model into CLM 4.5 (CLM-SIF). We simulate canopy level fluorescence at a sub-alpine forest site (Niwot Ridge, Colorado) and test whether these simulations reproduce remotely-sensed SIF from a satellite (GOME2). We found that the average peak SIF during the growing season (yrs 2007-2013) was similar between the model and satellite observations (within 15%); however, simulated SIF during the winter season was significantly greater than the satellite observations (5x higher). This implies that the fluorescence yield is overestimated by the model during the winter season. It is important that the modeled representation of seasonal fluorescence yield is improved to provide an accurate seasonal representation of SIF across the Western United States.

  9. Modelling basin-wide variations in Amazon forest productivity – Part 1: Model calibration, evaluation and upscaling functions for canopy photosynthesis

    Directory of Open Access Journals (Sweden)

    L. M. Mercado

    2009-07-01

    Full Text Available Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to parameterize and validate ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. In this study, a sun and shade canopy gas exchange model is calibrated and evaluated at five rainforest sites using eddy correlation measurements of carbon and energy fluxes.

    Results from the model-data evaluation suggest that with adequate parameterisation, photosynthesis models taking into account the separation of diffuse and direct irradiance and the dynamics of sunlit and shaded leaves can accurately represent photosynthesis in these forests. Also, stomatal conductance formulations that only take into account atmospheric demand fail to correctly simulate moisture and CO2 fluxes in forests with a pronounced dry season, particularly during afternoon conditions. Nevertheless, it is also the case that large uncertainties are associated not only with the eddy correlation data, but also with the estimates of ecosystem respiration required for model validation. To accurately simulate Gross Primary Productivity (GPP and energy partitioning the most critical parameters and model processes are the quantum yield of photosynthetic uptake, the maximum carboxylation capacity of Rubisco, and simulation of stomatal conductance.

    Using this model-data synergy, we developed scaling functions to provide estimates of canopy photosynthetic parameters for a range of diverse forests across the Amazon region, utilising the best fitted parameter for maximum carboxylation capacity of Rubisco, and foliar nutrients (N and P for all sites.

  10. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    Science.gov (United States)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future

  11. Effect of subalpine canopy removal on snowpack, soil solution, and nutrient export, Fraser Experimental Forest, CO

    Science.gov (United States)

    Stottlemyer, R.; Troendle, C.A.

    1999-01-01

    Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca2+ flux at shallow depths increased from 5 to 12%, SO42- 5.4 to 12%, HCO3- from 5.6 to 8.7%, K+ from 6 to 35%, and NO3- from 2.7 to 17%. The increases in Ca2+ and SO42- flux were proportional to the increase in water flux, the flux of HCO3- increased proportionally less than water flux, and NO3- and K+ were

  12. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field

    Science.gov (United States)

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  13. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven

    2018-04-01

    Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion

  14. Effect of the silvicultural treatment on canopy properties, litter and seed production in beech coppices under conversion to high forest.

    Directory of Open Access Journals (Sweden)

    Andrea Cutini

    2010-12-01

    Full Text Available European beech (Fagus sylvatica L. is widely distributed in Italy where it covers 1035103 ha, mainly concentrated in the mountainous areas at altitudes above 900 m. The major part is represented by high forest often issued from the conversion of coppice woods, which in the past was the silvicultural system most widely applied mainly to provide fire wood. The social changes occurred in the second half of the last century –fire wood market crisis and the increasing importance of environmental issues- enhanced the conversion into high forest of large areas previously managed as coppice by means of different silvicultural treatments and practices. Nevertheless, the environmental benefits of this choice were not adequately investigated. Results of annual measurements (1992-2009 made in a beech coppice stand aged 65 are here reported. The study area is located on the Alpe di Catenaia, a pre-Apennine outcrop close to Arezzo (Central Italy. Variables strictly related to stand productivity and dynamics such as annual litter and seed production, leaf area index (LAI and transmittance (PAR were measured in the research area of Buca Zamponi to estimate the effects of two theses, natural evolution (TEST and conversion into high forest (DIR. Three thinnings were undertaken in the latter thesis in 1972, 1987 and 2002. Additional theses of natural evolution (CONTR and advance seed cutting (TS were added in 2002 in a nearby study area (Eremo della Casella. Results showed the high productivity of coppice stands, under conversion to high forest, with mean values of annual total litter, leaf litter and leaf area index of 5 Mg ha-1, 3 Mg ha-1 and 6 m2m-2, respectively. These findings confirm both the prompt response of beech to intensive thinning cycles and the reliability of undertaking coppice conversion into high forest. Furthermore, the positive trend observed in the ecological parameters and the high consistency of leaf fraction, highlight the still juvenile

  15. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest.

    Science.gov (United States)

    Winkler, Manuela; Hülber, Karl; Hietz, Peter

    2005-05-01

    Seeds of epiphytes must land on branches with suitable substrates and microclimates to germinate and for the resulting seedlings to survive. It is important to understand the fate of seeds and seedlings in order to model populations, but this is often neglected when only established plants are included in analyses. The seeds of five bromeliad species were exposed to different canopy positions in a Mexican montane forest, and germination and early seedling survival were recorded. Additionally, the survival of naturally dispersed seedlings was monitored in a census over 2.5 years. Survival analysis, a procedure rarely used in plant ecology, was used to study the influence of branch characteristics and light on germination and seedling survival in natural and experimental populations. Experimental germination percentages ranged from 7.2 % in Tillandsia deppeana to 33.7 % in T. juncea, but the seeds of T. multicaulis largely failed to germinate. Twenty months after exposure between 3.5 and 9.4 % of the seedlings were still alive. There was no evidence that canopy position affected the probability of germination, but time to germination was shorter in less exposed canopy positions indicating that higher humidity accelerates germination. More experimental seedlings survived when canopy openness was high, whereas survival in census-seedlings was influenced by moss cover. While mortality decreased steadily with age in juveniles of the atmospheric Tillandsia, in the more mesomorphic Catopsis sessiliflora mortality increased dramatically in the dry season. Seedling mortality, rather than the failure to germinate, accounts for the differential distribution of epiphytes within the canopy studied. With few safe sites to germinate and high seedling mortality, changes of local climate may affect epiphyte populations primarily through their seedling stage.

  16. Deciduous birch canopy as unexpected contributor to stand level atmospheric reactivity in boreal forests

    Science.gov (United States)

    Bäck, Jaana; Taipale, Ditte; Aalto, Juho

    2017-04-01

    In boreal forests, deciduous trees such as birches may in future climate become more abundant due to their large biomass production capacity, relatively good resource use ability and large acclimation potential to elevated CO2 levels and warmer climate. Increase in birch abundance may lead to unpredicted consequences in atmospheric composition. Currently it is acknowledged that conifers such as Scots pine and Norway spruce are important sources for volatile organic compounds (VOCs), especially monoterpenes, throughout the year, although the strong temperature relationships implies that emissions are highest in summertime. However, the dynamics of the deciduous birch foliage VOC emissions and their relationship with environmental drivers during the development, maturation and senescence of foliage has not been well analyzed. Long-term measurements of birch, which are unfortunately very sparse, can provide very useful information for the development of biosphere-atmosphere models that simulate boreal and subarctic forested areas where birch is often a sub-canopy species, occurs as a mixture among conifers or forms even pure stands in the higher latitudes. We measured the branch level VOC emissions from a mature Silver birch with proton transfer reaction mass spectrometer during 2014 and 2015 at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations), southern Finland. Our results showed that the Silver birch foliage is a huge source for both short-chained volatiles such as methanol, acetaldehyde and acetone, as well as for monoterpenes. The mean emission rates from birch leaves were 5 to 10 times higher than the corresponding emissions from Scots pine shoots. We compared several semi-empirical model approaches for determining the birch foliage monoterpene standardized emission potentials, and utilized the continuous emission measurements from the two growing seasons for development of a novel algorithm which accounts for the leaf development and

  17. Response of leaf and whole-tree canopy conductance to wet conditions within a mature premontane tropical forest in Costa Rica

    Science.gov (United States)

    Aparecido, L. M. T.; Miller, G. R.; Cahill, A. T.; Andrews, R.; Moore, G. W.

    2017-12-01

    Tropical water recycling and carbon storage are dependent on canopy-atmosphere dynamics, which are substantially altered when rainfall occurs. However, models only indirectly consider leaf wetness as a driving factor for carbon and water fluxes. To better understand how leaf wetness condition affects stomatal and canopy conductance to water vapor, we tested a set of widely used models for a mature tropical forest of Costa Rica with prolonged periods of wet leaves. We relied on a year of sap flux measurements from 26 trees to estimate transpiration (Ec) and multiple micrometeorological profile measurements from a 40-m tower to be used in the models. Stomatal conductance (gs) models included those proposed by Jones (1992) (gs-J), using shaded and sunlit leaf temperatures, and Monteith and Unsworth (1990) (gs-MU), using air temperature. Canopy conductance (gc) models included those proposed by McNaughton and Jarvis (1983) (gc-MJ) and Penman-Monteith (gc-PM). Between gs and gc, gc had the largest differences within models during dry periods; while estimates were most similar during wet periods. Yet, all gc and gs estimates on wet days were at least as high as on dry days, indicative of their insensitivity to leaf wetness. Shaded leaf gs averaged 26% higher than in sunlit leaves. Additionally, the highly decoupled interface (Ω>0.90) reflected multiple environmental drivers that may influence conductance (e.g. vapor pressure deficit and leaf temperature). This was also seen through large shifts of diurnal peaks of gs and gc (up to 2 hours earlier than Ec) associated with the daily variation of air temperature and net radiation. Overall, this study led to three major insights: 1) gc and gs cannot accurately be predicted under wet conditions without accounting for leaf wetness, 2) even during dry days, low vapor pressure deficits interfere with model accuracy, and 3) intermittent rain during semi-dry and wet days cause large fluctuations in gc and gs estimates. Thus, it

  18. Forest Canopy LAI and Vertical FAVD Profile Inversion from Airborne Full-Waveform LiDAR Data Based on a Radiative Transfer Model

    Directory of Open Access Journals (Sweden)

    Han Ma

    2015-02-01

    Full Text Available Forest canopy leaf area index (LAI is a critical variable for the modeling of climates and ecosystems over both regional and global scales. This paper proposes a physically based method to retrieve LAI and foliage area volume density (FAVD profile directly from full-waveform Light Detection And Ranging (LiDAR data using a radiative transfer (RT model. First, a physical interaction model between LiDAR and a forest scene was built on the basis of radiative transfer theories. Next, FAVD profile of each laser shot of full-waveform LiDAR was inverted using the physical model. In addition, the missing LiDAR data, caused by high-density forest and LiDAR system limitations, were filled in based on the inverted FAVD and the ancillary CHM data. Finally, LAI of the study area was retrieved from the inverted FAVD at a 10-m resolution. CHM derived LAI based on the Beer-Lambert law was compared with the LAI derived from full-waveform data. Also, we compared the results with the field measured LAI. The values of correlation coefficient r and RMSE of the estimated LAI were 0.73 and 0.67, respectively. The results indicate that full-waveform LiDAR data is a reliable data source and represent a useful tool for retrieving forest LAI.

  19. A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data

    Science.gov (United States)

    Bai, L.; Hong, W.; Cao, F.; Zhou, Y.

    2009-04-01

    In POL-InSAR applications using ESPRIT technique, it is assumed that there exist stable scattering centres in the forest. However, the observations in forest severely suffer from volume and temporal decorrelation. The forest scatters are not stable as assumed. The obtained interferometric information is not accurate as expected. Besides, ESPRIT techniques could not identify the interferometric phases corresponding to the ground and the canopy. It provides multiple estimations for the height between two scattering centers due to phase unwrapping. Therefore, estimation errors are introduced to the forest height results. To suppress the two types of errors, we use the dual-baseline POL-InSAR data to estimate forest height. Dual-baseline coherence optimization is applied to obtain interferometric information of stable scattering centers in the forest. From the interferometric phases for different baselines, estimation errors caused by phase unwrapping is solved. Other estimation errors can be suppressed, too. Experiments are done to the ESAR L band POL-InSAR data. Experimental results show the proposed methods provide more accurate forest height than ESPRIT technique.

  20. Vertical fogwater flux measurements above an elevated forest canopy at the Lägeren research site, Switzerland

    Science.gov (United States)

    Burkard, Reto; Bützberger, Patrick; Eugster, Werner

    During the winter of 2001/2002 wet and occult deposition measurements were performed at the Lägeren research site ( 690 m a.s.l.) in Switzerland. Two types of fog were observed: radiation fog (RF) and fog associated with atmospheric instabilities (FAI). The deposition measurements were performed above the forest canopy on a 45 m high tower. Occult deposition was measured by means of the eddy covariance method. Due to the large differences of microphysical properties of the two fog types, the liquid water fluxes were much higher (6.9 mg m -2 s-1) during RF than during FAI (0.57 mg m -2 s-1) . Fogwater concentrations were considerably enhanced during RF compared with FAI. The comparison of fog and rain revealed that fogwater nutrient concentrations were 3-66 times larger than concentrations in precipitation. The considerably larger water fluxes and nutrient concentrations of RF resulted in much higher nutrient deposition compared with FAI. In winter when RF was quite frequent, occult deposition was the dominant pathway for nitrate and ammonium deposition. Daily fluxes of total inorganic nitrogen were 1.89 mg m -2 d-1 by occult and 1.01 mg m -2 d-1 by wet deposition. The estimated contribution of occult deposition to total annual nitrogen input was 16.4% or 4.3 kg N ha -1 yr-1, and wet deposition contributed 26.5% ( 6.9 kg N ha -1 yr-1) . As a consequence, critical loads of annual N-input were exceeded, resulting in a significant over-fertilization at the Lägeren site.

  1. Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima

    International Nuclear Information System (INIS)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I.; Murakami, Masashi; Tokuchi, Naoko; Ohashi, Mizue

    2015-01-01

    Since the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, large areas of the forests around Fukushima have become highly contaminated by radioactive nuclides. To predict the future dynamics of radioactive cesium ( 137 Cs) in the forest catchment, it is important to measure each component of its movement within the forest. Two years after the accident, we estimated the annual transportation of 137 Cs from the forest canopy to the floor by litterfall, throughfall and stemflow. Seasonal variations in 137 Cs transportation and differences between forests types were also determined. The total amount of 137 Cs transported from the canopy to the floor in two deciduous and cedar plantation forests ranged between 3.9 and 11.0 kBq m −2  year −1 . We also observed that 137 Cs transportation with litterfall increased in the defoliation period, simply because of the increased amount of litterfall. 137 Cs transportation with throughfall and stemflow increased in the rainy season, and 137 Cs flux by litterfall was higher in cedar plantation compared with that of mixed deciduous forest, while the opposite result was obtained for stemflow. - Highlights: • Annual flux of 137 Cs by litterfall, throughfall and stemflow was estimated in two types of forest in Fukushima, Japan. • Annual amount of 137 Cs transportation was 3.9–11.0 kBq m −2 year −1 in two years after the accident. • 137 Cs flux by litterfall was higher in cedar plantation than that of mixed deciduous forest. • 137 Cs transportation with throughfall and stemflow increased in rainy season.

  2. Relative lack of regeneration of shade-intolerant canopy species in some South African forests

    CSIR Research Space (South Africa)

    Midgley, JJ

    1995-01-01

    Full Text Available Some species such as Celtis Africana, are experiencing relative recruitment bottlenecks, because there are usually fewer recruits [i.e. individuals <20 cm diameter at breast height, (dbh)] than canopy individuals. The species with low recruitment...

  3. Influence of thinning intensity and canopy type on Scots pine stand and growth dynamics in a mixed managed forest

    Energy Technology Data Exchange (ETDEWEB)

    Primicia, I.; Artázcoz, R.; Imbert, J.B.; Puertas, F.; Traver, M.C.; Castillo, F.J.

    2016-07-01

    Aim of the study: We analysed the effects of thinning intensity and canopy type on Scots pine growth and stand dynamics in a mixed Scots pine-beech forest. Area of the study: Western Pyrenees. Material and methods: Three thinning intensities were applied in 1999 (0, 20 and 30% basal area removed) and 2009 (0, 20 and 40%) on 9 plots. Within each plot, pure pine and mixed pine-beech patches are distinguished. All pine trees were inventoried in 1999, 2009 and 2014. The effects of treatments on the tree and stand structure variables (density, basal area, stand and tree volume), on the periodic annual increment in basal area and stand and tree volume, and on mortality rates, were analysed using linear mixed effects models. Main Results: The enhancement of tree growth was mainly noticeable after the second thinning. Growth rates following thinning were similar or higher in the moderate than in the severe thinning. Periodic stand volume annual increments were higher in the thinned than in the unthinned plots, but no differences were observed between the thinned treatments. We observed an increase in the differences of the Tree volume annual increment between canopy types (mixed < pure) over time in the unthinned plots, as beech crowns developed. Research highlights: Moderate thinning is suggested as an appropriate forest practice at early pine age in these mixed forests, since it produced higher tree growth rates than the severe thinning and it counteracted the negative effect of beech on pine growth observed in the unthinned plots. (Author)

  4. Application of free-air CO2 enrichment (FACE) technology to a forest canopy: A simulation study

    International Nuclear Information System (INIS)

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.L.; Alexander, Y.

    1992-03-01

    Forest ecosystems constitute an important part of the planet's land cover. Understanding their exchanges of carbon with the atmosphere is crucial in projecting future net atmospheric CO 2 increases. It is also important that experimental studies of these processes be performed under conditions which are as realistic as possible, particularly with respect to photosynthesis and evapotranspiration. New technology and experimental protocols now exist which can facilitate studying an undisturbed forest canopy under long-term enriched CO 2 conditions. The International Geosphere Biosphere Program of the International Council of Scientific Unions has established a subprogram on Global Change and Terrestrial Ecosystems (GCTE). This program is driven by two major concerns: to be able to predict the effects of global change on the structure and function of ecosystems, and to predict how these changes will control both atmospheric CO 2 and climate, through various feedback pathways. Brookhaven National Laboratory (BNL) has developed a system for exposing field-grown plants to controlled elevated concentrations of atmospheric gases, without use of confining chambers that alter important atmospheric exchange processes. This system, called FACE for Free Air CO 2 Enrichment. This paper focuses on the fluid mechanics of free-air fumigation and uses a numerical simulation model based on superposed gaussian plumes to project how the present ground-based system could be used to fumigate an elevated forest canopy

  5. Estimating carbon stock in secondary forests

    DEFF Research Database (Denmark)

    Breugel, Michiel van; Ransijn, Johannes; Craven, Dylan

    2011-01-01

    of trees and species for destructive biomass measurements. We assess uncertainties associated with these decisions using data from 94 secondary forest plots in central Panama and 244 harvested trees belonging to 26 locally abundant species. AGB estimates from species-specific models were used to assess...... is the use of allometric regression models to convert forest inventory data to estimates of aboveground biomass (AGB). The use of allometric models implies decisions on the selection of extant models or the development of a local model, the predictor variables included in the selected model, and the number...... relative errors of estimates from multispecies models. To reduce uncertainty in the estimation of plot AGB, including wood specific gravity (WSG) in the model was more important than the number of trees used for model fitting. However, decreasing the number of trees increased uncertainty of landscape...

  6. Methods in Forest Canopy Research, Edited by Margaret D. Lowman, Timothy D. Schowalter, Jerry F. Franklin, University of California Press, 2012; 221 Pages. Price: £41.95, ISBN 978-0520-27371-9

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2013-01-01

    Full Text Available Poised between soil and sky, forest canopies represent a critical point of exchange between the atmosphere and the earth, yet until recently, they remained a largely unexplored frontier. For a long time, problems with access and the lack of tools and methods suitable for monitoring these complex bioscopes made canopy analysis extremely difficult. Fortunately, canopy research has advanced dramatically in recent decades. Methods in Forest Canopy Research is a comprehensive overview of these developments for explorers of this astonishing environment. The authors describe methods for reaching the canopy and the best ways to measure how the canopy, atmosphere, and forest floor interact. They address how to replicate experiments in challenging environments and lay the groundwork for creating standardized measurements in the canopy — essential tools for understanding our changing world.

  7. How to estimate carbon sequestration on small forest tracts estimate carbon sequestration on small forest tracts

    Science.gov (United States)

    Coeli M. Hoover; Richard A. Birdsey; Linda S. Heath; Susan L. Stout

    2000-01-01

    International climate change agreements may allow carbon stored as a result of afforestation and reforestation to be used to offset CO2 emissions. Monitoring the carbon sequestered or released through forest management activities thus becomes important. Estimating forest carbon storage is feasible even for nonindustrial private forestland (NIPF)...

  8. Sapling growth and crown expansion in canopy gaps of Nothofagus pumilio (lenga) forests in Chubut, Patagonia, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Bernal, P. M.; Defosse, G. E.; Quinteros, C. P.; Bava, J. O.

    2012-07-01

    In the province of Chubut in Patagonia, Argentina, Nothofagus pumilio forests (locally known as lenga), are managed through selective cuts, which imply the opening of canopy gaps. This management scheme is carried out without taking into consideration the changes of sapling requirements through either a cutting cycle or the precipitation gradient in which these forests thrive. To analyze these changes, we inferred the facilitation-competition balance between the canopy and regeneration, studying the effects of precipitation levels, gap size and gap age on saplings growth in height on 45 canopy gaps artificially created between 1960 and 1993. Results showed that during the first 20 years since gap opening, growth of regeneration is determined by light availability in mesic sites and by water availability in xeric sites. However, differences due to precipitation levels gradually decrease over time. Moreover, in the period between 20 and 35 years after gap opening, in both mesic and xeric sites, growth is limited by light availability. This indicates that in xeric sites, sapling growth requirements shift from a water-dependent situation to a light-dependent situation. The average closing rate of gaps due to lateral growth of bordering trees is high enough so that within the proposed gap size range, gap healing can occur before regeneration reaches the upper stratum. Consequently, in mesic sites gap opening can be done by a single operation that generates gaps with diameters of approximately twice the average height of the canopy (D/H). While in xeric environments, lenga seedling establishment and initial growth require the cover of small gaps, but advanced regeneration requires bigger gaps to reach the canopy. For this reason, gaps should be opened in two stages: the first gaps should be opened with a D/H between 0.8 and 1, and after a cutting cycle of 35 years, these openings should be enlarged to a D/H between 1.5 and 2. The close relationship maintained between the

  9. Amblyomma tapirellum  (Acari: Ixodidae collected from tropical forest canopy [v2; ref status: indexed, http://f1000r.es/2uy

    Directory of Open Access Journals (Sweden)

    Jose R Loaiza

    2014-01-01

    Full Text Available Free-ranging ticks are widely known to be restricted to the ground level of vegetation. Here, we document the capture of the tick species Amblyomma tapirellum in light traps placed in the forest canopy of Barro Colorado Island, central Panama. A total of forty eight adults and three nymphs were removed from carbon dioxide–octenol baited CDC light traps suspended 20 meters above the ground during surveys for forest canopy mosquitoes. To our knowledge, this represents the first report of questing ticks from the canopy of tropical forests. Our finding suggests a novel ecological relationship between A. tapirellum and arboreal mammals, perhaps monkeys that come to the ground to drink or to feed on fallen fruits.

  10. RECONSTRUCTION, QUANTIFICATION, AND VISUALIZATION OF FOREST CANOPY BASED ON 3D TRIANGULATIONS OF AIRBORNE LASER SCANNING POINT DATA

    Directory of Open Access Journals (Sweden)

    J. Vauhkonen

    2015-03-01

    Full Text Available Reconstruction of three-dimensional (3D forest canopy is described and quantified using airborne laser scanning (ALS data with densities of 0.6–0.8 points m-2 and field measurements aggregated at resolutions of 400–900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i to optimize the degree of filtration with respect to the field measurements, and (ii to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2 with the stem volume considered, both alone (R2=0.65 and together with other predictors (R2=0.78. When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.

  11. Influence of parameters and light e vironment under the canopy on the fuel moisture estimation model

    International Nuclear Information System (INIS)

    Tamai, K.; Goto, Y.

    2006-01-01

    Model parameterization was performed for estimation of the fuel moisture in adjacent plots with different tree species aiming at the mapping of forest fire hazard. One plot was covered with only deciduous species and the other with deciduous and evergreen trees. This model has our constant parameters. Three of them are for the relationship between evaporation and solar radiation. Another parameter is the maximum water content ratio of the litter. All of these parameters depend on the intrinsic drying properties of the litter. The water content ratio of the litter and solar radiation on the forest floor were measured in ach plot for one year. Parameters were fixed with the measured data. Though the parameter values were very different between the two plots, estimated moisture ratios were not so different. It was concluded that litter moisture depends on the microclimate, such as solar radiation, rather than on the intrinsic drying properties of the litter and litter layer

  12. Estimation of Spruce Needle-Leaf Chlorophyll Content Based on DART and PARAS Canopy Reflectance Models

    Czech Academy of Sciences Publication Activity Database

    Yáñez-Rausell, L.; Malenovský, Z.; Rautiainen, M.; Clevers, J G P W.; Lukeš, Petr; Hanuš, Jan; Schaepman, M. E.

    2015-01-01

    Roč. 8, č. 4 (2015), s. 1534-1544 ISSN 1939-1404 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Chlorophyll a plus b estimation * CHRIS-PROBA * coniferous forest * continuum removal * discrete anisotropic radiative transfer model (DART) * needle-leaf * Norway spruce * optical indices * PARAS * PROSPECT * radiative transfer * recollision probability Subject RIV: EH - Ecology, Behaviour Impact factor: 2.145, year: 2015

  13. Persistence of long-distance, insect-mediated pollen movement for a tropical canopy tree species in remnant forest patches in an urban landscape.

    Science.gov (United States)

    Noreen, A M E; Niissalo, M A; Lum, S K Y; Webb, E L

    2016-12-01

    As deforestation and urbanization continue at rapid rates in tropical regions, urban forest patches are essential repositories of biodiversity. However, almost nothing is known about gene flow of forest-dependent tree species in urban landscapes. In this study, we investigated gene flow in the insect-pollinated, wind-dispersed tropical tree Koompassia malaccensis in and among three remnant forest patches in the urbanized landscape of Singapore. We genotyped the vast majority of adults (N=179) and a large number of recruits (N=2103) with 8 highly polymorphic microsatellite markers. Spatial genetic structure of the recruit and adult cohorts was significant, showing routine gene dispersal distances of ~100-400 m. Parentage analysis showed that 97% of recruits were within 100 m of their mother tree, and a high frequency of relatively short-distance pollen dispersal (median ~143-187 m). Despite routine seed and pollen dispersal distances of within a few hundred meters, interpatch gene flow occurred between all patches and was dominated by pollen movement: parentage analysis showed 76 pollen versus 2 seed interpatch dispersal events, and the seedling neighborhood model estimated ~1-6% seed immigration and ~21-46% pollen immigration rates, depending on patch. In addition, the smallest patch (containing five adult K. malaccensis trees) was entirely surrounded by >2.5 km of 'impervious' substrate, yet had the highest proportional pollen and seed immigration estimates of any patch. Hence, contrary to our hypothesis, insect-mediated gene flow persisted across an urban landscape, and several of our results also parallel key findings from insect-pollinated canopy trees sampled in mixed agricultural-forest landscapes.

  14. Landscape-scale tropical forest dynamics: Relating canopy traits and topographically derived hydrologic indices in a floodplain system using CAO-AToMS

    Science.gov (United States)

    Chadwick, K.; Asner, G. P.

    2012-12-01

    The geomorphology of floodplains in the humid tropics has been used to infer basic classifications of forest types. However, analysis of the landscape-scale topographic and hydrologic patterns underpinning spatial variation in forest composition and function remain elusive due to the sparse coverage of forest plots, coarse resolution remotely sensed data, and the challenges of collecting first order hydrologic data. Airborne remote measurements provide an opportunity to consider the relationship between high-resolution topographic and derived hydrologic environmental gradients, and forest canopy characteristics with important cascading effects on ecosystem function and biosphere-atmosphere interactions. In 2011, the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) was used to map a large section of the Los Amigos Conservation Concession harboring largely intact lowland humid tropical forest in the southwestern Peruvian Amazon. The CAO Visible-Shortwave Imaging Spectrometer (VSWIR) collected 480-band high-fidelity imaging spectroscopy data of the forest canopy, while its high-resolution dual waveform LiDAR captured information on canopy structure and the underlying terrain. The data were used to quantify relationships between topographic and hydrologic gradients and forest functional traits. Results suggest strong local hydrogeomorphic control over vegetation spectral properties with known relationships to canopy functional traits, including pigment and nutrient concentrations and light capture, as well as canopy structural characteristics, including vegetation height, understory plant cover, and aboveground biomass. Data from CAO-AToMS reveals local-scale patterns in environmental conditions and ecological variation that meets or exceeds the variation previously reported across ecosystems of the Western Amazon Basin.

  15. Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy

    NARCIS (Netherlands)

    Homolova, L.; Malenovsky, Z.; Hanus, J.; Tomaskova, I.; Dvoráková, M.; Pokorny, R.

    2007-01-01

    The leaf area index (LAI) of three monocultures of Norway spruce (Picea abies (L.) Karst), different in age and structure, was measured by means of two indirect optical techniques of LAI field mapping: 1/ plant canopy analyser LAI-2000, and 2/ digital hemispherical photographs (DHP). The supportive

  16. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    Science.gov (United States)

    Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.

    2012-07-01

    Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii, Mirb., Franco) and Scots pine (Pinus sylvestris L.) in Denmark, The Netherlands and Finland, respectively. This was done in order to obtain information about functional acclimation, tree internal N conservation and its relevance for both ecosystem internal N cycling and foliar N exchange with the atmosphere. Leaf N pools generally showed much higher seasonal variability in beech trees than in the coniferous canopies. The concentrations of N and chlorophyll in the beech leaves were synchronized with the seasonal course of solar radiation implying close physiological acclimation, which was not observed in the coniferous needles. During phases of intensive N metabolism in the beech leaves, the NH4+ concentration rose considerably. This was compensated for by a strong pH decrease resulting in relatively low Γ values (ratio between tissue NH4+ and H+). The Γ values in the coniferous were even smaller than in beech, indicating low probability of NH3 emissions from the foliage to the atmosphere as an N conserving mechanism. The reduction in foliage N content during senescence was interpreted as N re-translocation from the senescing leaves into the rest of the trees. The N re-translocation efficiency (ηr) ranged from 37 to 70% and decreased with the time necessary for full renewal of the canopy foliage. Comparison with literature data from in total 23 tree species showed a general tendency for ηr to on average be reduced by 8% per year the canopy stays longer, i.e. with each additional year it takes for canopy renewal. The boreal pine site returned the lowest amount of N via foliage litter to the soil, while the temperate Douglas fir stand which had the largest peak canopy N content and the lowestηr returned the highest amount of N to the soil. These results

  17. Canopy position affects photosynthetic adjustments to long-term elevated CO{sub 2} concentration (FACE) in aging needles in a mature Pinus taeda forest

    Energy Technology Data Exchange (ETDEWEB)

    Crous, K. Y.; Ellsworth, D. S. [University of Michigan, School of Natural Resources and Environment, Ann Arbor, MI (United States)

    2004-09-01

    Results of an assessment of the long-term effects of exposure to elevated carbon dioxide in free-air enrichment (FACE) on two age classes of pine needles in the upper and lower canopy of a pine forest in North Carolina are discussed. The observations were made during the second through sixth year of exposure. A significant response was observed in 60 per cent of all age classes and canopy locations. Evidence of concurrent down-regulation of Rubisco and electron transport capacity in upper canopy sunlit leaves was noted beyond the sixth year. No such effect was seen in the lower canopy. Carboxylation capacity and electron transport capacity in the upper canopy was down-regulated by 17-20 per cent in one year-old needles, but this was significant across sampling years only for electron transport capacity. It is suggested that a reduction in photosynthetic capacity in aging conifer needles at the canopy top may have significant consequences for canopy carbon balance and global carbon sinks because a major proportion of the annual carbon balance of these conifers is contributed by one-year old sunlit needles. 45 refs., 3 tabs., 4 figs.

  18. Estimating the risk of Amazonian forest dieback.

    Science.gov (United States)

    Rammig, Anja; Jupp, Tim; Thonicke, Kirsten; Tietjen, Britta; Heinke, Jens; Ostberg, Sebastian; Lucht, Wolfgang; Cramer, Wolfgang; Cox, Peter

    2010-08-01

    *Climate change will very likely affect most forests in Amazonia during the course of the 21st century, but the direction and intensity of the change are uncertain, in part because of differences in rainfall projections. In order to constrain this uncertainty, we estimate the probability for biomass change in Amazonia on the basis of rainfall projections that are weighted by climate model performance for current conditions. *We estimate the risk of forest dieback by using weighted rainfall projections from 24 general circulation models (GCMs) to create probability density functions (PDFs) for future forest biomass changes simulated by a dynamic vegetation model (LPJmL). *Our probabilistic assessment of biomass change suggests a likely shift towards increasing biomass compared with nonweighted results. Biomass estimates range between a gain of 6.2 and a loss of 2.7 kg carbon m(-2) for the Amazon region, depending on the strength of CO(2) fertilization. *The uncertainty associated with the long-term effect of CO(2) is much larger than that associated with precipitation change. This underlines the importance of reducing uncertainties in the direct effects of CO(2) on tropical ecosystems.

  19. Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy

    Directory of Open Access Journals (Sweden)

    D. K. Farmer

    2008-07-01

    Full Text Available Measurements of exchange of reactive nitrogen oxides between the atmosphere and a ponderosa pine forest in the Sierra Nevada Mountains are reported. During winter, we observe upward fluxes of NO2, and downward fluxes of total peroxy and peroxy acyl nitrates (ΣPNs, total gas and particle phase alkyl and multifunctional alkyl nitrates (ΣANs(g+p, and the sum of gaseous HNO3 and semi-volatile NO3− particles (HNO3(g+p. We use calculations of the vertical profile and flux of NO, partially constrained by observations, to show that net midday ΣNOyi fluxes in winter are –4.9 ppt m s−1. The signs and magnitudes of these wintertime individual and ΣNOyi fluxes are in the range of prior measurements. In contrast, during summer, we observe downward fluxes only of ΣANs(g+p, and upward fluxes of HNO3(g+p, ΣPNs and NO2 with signs and magnitudes that are unlike most, if not all, previous observations and analyses of fluxes of individual nitrogen oxides. The results imply that the mechanisms contributing to NOy fluxes, at least at this site, are much more complex than previously recognized. We show that the observations of upward fluxes of HNO3(g+p and σPNs during summer are consistent with oxidation of NO2 and acetaldehyde by an OH x residence time of 1.1×1010 molec OH cm−3 s, corresponding to 3 to 16×107 molecules cm−3 OH within the forest canopy for a 420 to 70 s canopy residence time. We show that ΣAN(g+p fluxes are consistent with this range in OH if the reaction of OH with ΣANs produces either HNO3 or NO2 with a 6–30% yield. Calculations of NO fluxes constrained by the NO2 observations and the inferred OH indicate that NOx fluxes are downward into the canopy because of the substantial conversion of NOx to HNO3 and σPNs in the canopy. Even so, we derive that NOx emission fluxes of ~15 ng(N m−2 s−1 at midday during summer are required to balance the NOx and NOy flux budgets. These fluxes are partly explained by estimates of soil

  20. Influence of Spatial and Temporal Factors in Determining Rainfall Interception at Dipterocarp Forest Canopy, Lake Chini, Pahang

    International Nuclear Information System (INIS)

    Nur Munirah Abdullah; Mohd Ekhwan Toriman; Haslinur Mohd Din

    2013-01-01

    The reduction of rainfall by interception process is influenced by two mechanisms namely climate and plant physiographic features. Climate features that affecting the interception loss including total rainfall (mm), wind speed (m/s) and temperature (degree Celsius). Meanwhile plant physiographic features that affect interception loss consists of trees height, skin, diameter, canopy, twigs and branches. Looking the role of climate and plant physiographic features in the interception process, this study was conducted in order to measure the throughfall, stem flow and interception loss and the factors that influence it. The assessment of throughfall and interception loss were carried out on study plot sized 100 x 100 meter in Dipterocarp Forest of Tasik Chini, Pahang. The study was conducted from October 2009 until January of 2010. Thirty tree samples are used and each tree is well-identified based on their species, family, diameter breast height (DBH), canopy size and its density. Four sets of throughfall were used to do throughfall measurements. Results of this study found that the value of throughfall and stem flow collected based on four rainfall events namely in October 2009 where 0.66 % (TF) and 99.34 % (SF), November 2009-0.54 % (TF) and 99.46 % (SF), December 2009-0.72 % (TF) and 99.28 % (SF) and January of 2010-0.49 % (TF) and 99.51 % (SF). Statistical analysis also indicates the existence of the relationship between total rainfall and interception loss with significant levels in 0.571 (r 2 ) in December of 2009. This study provides important information that related to the hydrological cycle and how plants canopy can be acted as a medium of water balance in the environment. (author)

  1. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray; Thomas A. Spies; Robert J. Pabst

    2012-01-01

    Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Species’ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...

  2. Regeneration after 8 years in artificial canopy gaps in mountain ash (Eucalyptus regnans F. Muell.) forest in south-eastern Australia

    NARCIS (Netherlands)

    Meer, van der P.J.; Dignan, P.

    2007-01-01

    We report on a study of regeneration of Mountain Ash (Eucalyptus regnans) forest in S.E. Australia in artificially created canopy gaps (0.01¿2 ha) and clearfelled coupes (4¿27 ha) with different seedbed treatments. Treatments were applied in 1988, 1989, and 1990. Our results are based on

  3. Canopy arthropod responses to thinning and burning treatments in old-growth mixed-conifer forest in the Sierra Nevada, California

    Science.gov (United States)

    Thomas Rambo; Timothy Schowalter; Malcolm North

    2014-01-01

    We compared canopy arthropod responses to common fuels reduction treatments at Teakettle Experimental Forest in the south-central Sierra Nevada of California. We sampled arthropod communities among four dominant overstory conifer species and three dominant understory angiosperm species before and after overstory or understory thinning or no thinning treatments followed...

  4. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Science.gov (United States)

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  5. SEASONAL VARIATION IN LIGHT TRANSMISSION AND CANOPY GAPS OF DECIDUOUS ROADSIDE VEGETATION: ASSESSMENT WITHIN FOREST LANDSCAPE

    OpenAIRE

    Öztürk, Melih; Gökyer, Ercan

    2015-01-01

    Deciduous roadside vegetation exhibits seasonal patterns of foliage with varying colors and numbers. Hence the alternating percentage of the gaps within the roadside canopy allows changing percentages of light transmission throughout the year. The leafless roadside vegetation in winter is sequentially subject to budburst, flushing, and development stages until the summer, when the leaves are fully developed both in size and number. Then, defoliation follows senescence, and fading and fall sta...

  6. Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy

    OpenAIRE

    Homolova, L.; Malenovsky, Z.; Hanus, J.; Tomaskova, I.; Dvoráková, M.; Pokorny, R.

    2007-01-01

    The leaf area index (LAI) of three monocultures of Norway spruce (Picea abies (L.) Karst), different in age and structure, was measured by means of two indirect optical techniques of LAI field mapping: 1/ plant canopy analyser LAI-2000, and 2/ digital hemispherical photographs (DHP). The supportive measurements with the TRAC instrument were conducted to produce mainly the element clumping index. The aim of the study was to compare the performances of LAI-2000 and DHP and to evaluate effect of...

  7. CMS: Mangrove Canopy Height from High-resolution Stereo Image Pairs, Mozambique, 2012

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides canopy height estimates for mangrove forests at 0.6 x 0.6 m resolution in three study sites located in southeastern Mozambique, Africa: two...

  8. Estimating tropical forest structure using LIDAR AND X-BAND INSAR

    Science.gov (United States)

    Palace, M. W.; Treuhaft, R. N.; Keller, M. M.; Sullivan, F.; Roberto dos Santos, J.; Goncalves, F. G.; Shimbo, J.; Neumann, M.; Madsen, S. N.; Hensley, S.

    2013-12-01

    biomass estimation over large spatial scales not attainable with airborne lidar. In this study, we employed a set of less commonly used lidar metrics that we consider analogous to field-based measurements, such as the number of canopy maxima, measures of canopy vegetation distribution diversity and evenness (entropy), and estimates of gap fraction. We incorporated these metrics, as well as lidar coherence metrics pulled from discrete Fourier transforms of pseudowaveforms, and hypothetical stand characteristics of best-fit synthetic vegetation profiles into multiple regression analysis of forest biometric properties. Among simple and complex measures of forest structure, ranging from tree density, diameter at breast height, and various canopy geometry parameters, we found strong relationships with lidar canopy vegetation profile parameters. We suggest that the sole use of lidar height is limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties.

  9. Annual variation in canopy openness, air temperature and humidity inthe understory of three forested sites in southern Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    Marayana Prado Pinheiro

    2013-01-01

    Full Text Available Aiming at contributing to the knowledge of physical factors affecting community structure in Atlantic Forest remnants of southern Bahia state, Brazil, we analyzed the annual variation in the understory microclimate of a hillside forest fragment in the ‘Reserva Particular do Patrimônio Natural Serra do Teimoso’ (RST and a rustic cacao agroforestry system (Cabruca, located nearby the RST. Canopy openness (CO, air temperature (Ta, air relative humidity (RH and vapor pressure deficit (VPD data were collected between April, 2005 and April, 2006 at the base (RSTB, 340 m and the top (RSTT, 640 m of the RST and at the Cabruca (CB, 250 m. Data of rainfall, Ta, RH and VPD were also collected in an open area (OA, 270 m. The highest rainfalls (> 100 mm occurred in November, 2005 and April, 2006, whereas October, 2005 was the driest month (< 20 mm. CO ranged between 2.5 % in the CB (April, 2006 and 7.7 % in the RST (October, 2005. Low rainfall in October, 2005 affected VPDmax in all sites. Those effects were more pronounced in OA, followed by CB, RSTB and RSTT. During the period of measurements, the values of Ta, RH and VPD in CB were closer to the values measured in OA than to the values measured inside the forest.

  10. Soil Moisture Estimate under Forest using a Semi-empirical Model at P-Band

    Science.gov (United States)

    Truong-Loi, M.; Saatchi, S.; Jaruwatanadilok, S.

    2013-12-01

    In this paper we show the potential of a semi-empirical algorithm to retrieve soil moisture under forests using P-band polarimetric SAR data. In past decades, several remote sensing techniques have been developed to estimate the surface soil moisture. In most studies associated with radar sensing of soil moisture, the proposed algorithms are focused on bare or sparsely vegetated surfaces where the effect of vegetation can be ignored. At long wavelengths such as L-band, empirical or physical models such as the Small Perturbation Model (SPM) provide reasonable estimates of surface soil moisture at depths of 0-5cm. However for densely covered vegetated surfaces such as forests, the problem becomes more challenging because the vegetation canopy is a complex scattering environment. For this reason there have been only few studies focusing on retrieving soil moisture under vegetation canopy in the literature. Moghaddam et al. developed an algorithm to estimate soil moisture under a boreal forest using L- and P-band SAR data. For their studied area, double-bounce between trunks and ground appear to be the most important scattering mechanism. Thereby, they implemented parametric models of radar backscatter for double-bounce using simulations of a numerical forest scattering model. Hajnsek et al. showed the potential of estimating the soil moisture under agricultural vegetation using L-band polarimetric SAR data and using polarimetric-decomposition techniques to remove the vegetation layer. Here we use an approach based on physical formulation of dominant scattering mechanisms and three parameters that integrates the vegetation and soil effects at long wavelengths. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the Distorted Born Approximation (DBA). The simplified model has three equations and three unknowns, preserving the three dominant scattering mechanisms of volume, double-bounce and surface for three polarized backscattering

  11. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps

    International Nuclear Information System (INIS)

    Ewald, Joerg

    2000-01-01

    Compositional and edaphic gradients were studied in montane forests of the Bavarian Alps (Germany), in which natural mixed deciduous-coniferous tree layers have been altered by past management in favour of Picea abies. Data on species composition and ecological factors were collected in a stratified random sample of 84 quadrats comprising a gradient from pure Picea to pure Fagus sylvatica stands. Data about the understorey composition were subjected to indirect (DCA) and direct gradient analysis (RDA) with the proportion of Picea in the canopy as a constraining variable. Three principal components of a matrix containing seven descriptors of mineral soil, relief and tree layer cover were included as covariables describing the variability of primary ecological factors. Gradients of organic topsoil morphology and chemistry were extracted correspondingly. Responses of individual species, species group and topsoil attributes were studied by simple and partial correlation analysis. Mosses were significantly more abundant and diverse under Picea stands. Few graminoid and herb species were partially associated with Picea, and total understorey richness and cover did not differ systematically by stand type. No relationship between tree layer and understorey diversity was detected at the studied scale. Juvenile Fagus sylvatica was the only woody species significantly less abundant under Picea. In the topsoil lower base saturation, lower pH and larger C/N ratios in the litter layer were partially attributable to the proportion of Picea, only for base saturation a relationship was detected in greater soil depth also. The frequency of broad humus form types did not differ by tree species, nor was overall depth of organic forest floor attributable to canopy composition

  12. Distribution of detritivores in tropical forest streams of peninsular Malaysia: role of temperature, canopy cover and altitude variability

    Science.gov (United States)

    Che Salmah, Md Rawi; Al-Shami, Salman Abdo; Abu Hassan, Ahmad; Madrus, Madziatul Rosemahanie; Nurul Huda, Abdul

    2014-07-01

    The diversity and abundance of macroinvertebrate shredders were investigated in 52 forested streams (local scale) from nine catchments (regional scale) covering a large area of peninsular Malaysia. A total of 10,642 individuals of aquatic macroinvertebrates were collected, of which 18.22 % were shredders. Biodiversity of shredders was described by alpha (αaverage ), beta (β) and gamma diversity (γ) measures. We found high diversity and abundance of shredders in all catchments, represented by 1,939 individuals (range 6-115 and average per site of 37.29 ± 3.48 SE) from 31 taxa with 2-13 taxa per site (αaverage = 6.98 ± 0.33 SE) and 10-15 taxa per catchment (γ = 13.33 ± 0.55 SE). At the local scale, water temperature, stream width, depth and altitude were correlated significantly with diversity (Adj- R 2 = 0.205). Meanwhile, dissolved oxygen, stream velocity, water temperature, stream width and altitude were correlated to shredder abundance (Adj- R 2 = 0.242). At regional scale, however, water temperature was correlated negatively with β and γ diversity ( r 2 = 0.161 and 0.237, respectively) as well as abundance of shredders ( r 2 = 0.235). Canopy cover was correlated positively with β diversity ( r 2 = 0.378) and abundance ( r 2 = 0.266), meanwhile altitude was correlated positively with β (quadratic: r 2 = 0.175), γ diversity (quadratic: r 2 = 0.848) as well as abundance (quadratic: r 2 = 0.299). The present study is considered as the first report describing the biodiversity and abundance of shredders in forested headwater streams across a large spatial scale in peninsular Malaysia. We concluded that water temperature has a negative effect while altitude showed a positive relationship with diversity and abundance of shredders. However, it was difficult to detect an influence of canopy cover on shredder diversity.

  13. Forest canopy effects on snow accumulation and ablation: an integrative review of empirical results

    Science.gov (United States)

    Andres Varhola; Nicholas C. Coops; Markus Weiler; R. Dan Moore

    2010-01-01

    The past century has seen significant research comparing snow accumulation and ablation in forested and open sites. In this review we compile and standardize the results of previous empirical studies to generate statistical relations between changes in forest cover and the associated changes in snow accumulation and ablation rate. The analysis drew upon 33 articles...

  14. Lidar-derived canopy architecture predicts Brown Creeper occupancy of two western coniferous forests

    Science.gov (United States)

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Kerri T. Vierling

    2013-01-01

    In western conifer-dominated forests where the abundance of old-growth stands is decreasing, species such as the Brown Creeper (Certhia americana) may be useful as indicator species for monitoring the health of old-growth systems because they are strongly associated with habitat characteristics associated with old growth and are especially sensitive to forest...

  15. Demographic disequilibrium caused by canopy gap expansion and recruitment failure triggers forest cover loss

    Science.gov (United States)

    Martin Barrette; Louis Bélanger; Louis De Grandpré; Alejandro A. Royo

    2017-01-01

    In the absence of large-scale stand replacing disturbances, boreal forests can remain in the old-growth stage over time because of a dynamic equilibrium between small-scale mortality and regeneration processes. Although this gap paradigm has been a cornerstone of forest dynamics theory and practice for decades, evidence suggests that it could be disrupted, threatening...

  16. Towards Estimating Water Stress through Leaf and Canopy Water Content Derived from Optical and Thermal Hyperspectral Data

    Science.gov (United States)

    Corbin, Amie; Timmermans, Joris; van der Tol, Christiaan; Verhoef, Wout

    2015-04-01

    A competition for available (drinkable) water has arisen. This competition originated due to increasing global population and the respective needs of this population. The water demand for human consumption and irrigation of food producing crops and biofuel related vegetation, has led to early indication of drought as a key issue in many studies. However, while drought monitoring systems might provide some reasonable predictions, at the time of visible symptoms of plant stress, a plant may already be critically affected. Consequently, pre-symptomatic non-destructive monitoring of plants is needed. In many studies of plant stress, this is performed by examining internal plant physiology through existing remote sensing techniques, with varying applications. However, a uniform remote sensing method for identifying early plant stress under drought conditions is still developing. In some instances, observations of vegetation water content are used to assess the impact of soil water deficit on the health of a plant or canopy. When considering water content as an indicator of water stress in a plant, this comments not only on the condition of the plant itself, but also provides indicators of photosynthetic activity and the susceptibility to drought. Several indices of canopy health currently exists (NDVI, DVI, SAVI, etc.) using optical and near infrared reflectance bands. However, these are considered inadequate for vegetation health investigations because such semi-empirical models result in less accuracy for canopy measurements. In response, a large amount of research has been conducted to estimate canopy health directly from considering the full spectral behaviour. In these studies , the canopy reflectance has been coupled to leaf parameters, by using coupling leaf radiative transfer models (RTM), such as PROSPECT, to a canopy RTM such as SAIL. The major shortcomings of these researches is that they have been conducted primarily for optical remote sensing. Recently

  17. Understanding the radar backscattering from flooded and nonflooded Amazonian forests: results from canopy backscatter modeling

    International Nuclear Information System (INIS)

    Wang, Y.; Hess, L.L.; Filoso, S.; Melack, J.M.

    1995-01-01

    To understand the potential of using multiwavelength imaging radars to detect flooding in Amazonian floodplain forests, we simulated the radar backscatter from a floodplain forest with a flooded or nonflooded ground condition at C-, L-, and P-bands. Field measurements of forest structure in the Anavilhanas archipelago of the Negro River, Brazil, were used as inputs to the model. Given the same wavelength or incidence angle, the ratio of backscatter from the flooded forest to that from the nonflooded forest was higher at HH polarization than at VV polarization. Given the same wavelength or polarization, the ratio was larger at small incidence angles than at large incidence angles. Given the same polarization or incidence angle, the ratio was larger at a long wavelength than at a short wavelength. As the surface soil moisture underneath the nonflooded forest increased from 10% to 50% of volumetric moisture, the flooded/nonflooded backscatter ratio decreased; the decreases were small at C- and L-band but large at P-band. When the leaf size was comparable to or larger than the wavelength of C-band, the leaf area index (LAI) had a large effect on the simulated C-band (not L-band or P-band) backscatter from the flooded and nonflooded forests. (author)

  18. Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.

    Science.gov (United States)

    Stark, Alyssa Y; Adams, Benjamin J; Fredley, Jennifer L; Yanoviak, Stephen P

    2017-10-01

    Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00-16:00) were hottest (often > 50°C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2ms -1 ) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6°C warmer on white vs. black substrates, and 6°C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    Science.gov (United States)

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain

  20. Leaf water 18 O and 2 H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    Science.gov (United States)

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-07-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.

  1. Estimating biophysical properties of coffee (Coffea canephora) plants with above-canopy field measurements, using CropSpec®

    Science.gov (United States)

    Putra, Bayu T. Widjaja; Soni, Peeyush; Morimoto, Eiji; Pujiyanto, Pujiyanto

    2018-04-01

    Remote sensing technologies have been applied to many crops, but tree crops like Robusta coffee (Coffea canephora) under shade conditions require additional attention while making above-canopy measurements. The objective of this study was to determine how well chlorophyll and nitrogen status of Robusta coffee plants can be estimated with the laser-based (CropSpec®) active sensor. This study also identified appropriate vegetation indices for estimating Nitrogen content by above-canopy measurement, using near-infra red and red-edge bands. Varying light intensity and different background of the plants were considered in developing the indices. Field experiments were conducted involving different non-destructive tools (CropSpec® and SPAD-502 chlorophyll meter). Subsequently, Kjeldahl laboratory analyses were performed to determine the actual Nitrogen content of the plants with different ages and field conditions used in the non-destructive previous stage. Measurements were undertaken for assessing the biophysical properties of tree plant. The usefulness of near-infrared and red-edge bands from these sensors in measuring critical nitrogen levels of coffee plants by above-canopy measurement are investigated in this study.

  2. Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest

    Science.gov (United States)

    Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.

    2003-12-01

    Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.

  3. Conservation thinning in secondary forest: negative but mild effect on land molluscs in closed-canopy mixed oak forest in Sweden.

    Directory of Open Access Journals (Sweden)

    Birte Rancka

    Full Text Available Secondary succession is changing the character of many temperate forests and often leads to closed-canopy stands. In such forests set aside for conservation, habitat management alternatives need to be tested experimentally, but this is rarely done. The Swedish Oak Project compares two often debated alternatives: minimal intervention and non-traditional active management (conservation thinning on plots of each type replicated at 25 sites. We study responses of several taxa, and here report results for land molluscs. They are considered to be sensitive to more open, drier forest and we predicted a negative effect of the thinning (26% reduction of the basal area; mean value for 25 experimental forests. We sampled molluscs in the litter in ten 20 x 25 cm subplots, and by standardised visual search, in each plot. In total, we recorded 53 species of snails and slugs (24 369 individuals and the mean species richness in plots was 17. Two seasons after thinning, mean (± SE species richness had decreased by 1.4 (± 0.9 species in thinning plots, but increased by 0.7 (± 1.0 species in minimal intervention plots, a significant but small change with considerable variation among sites. In matched comparisons with minimal intervention, thinning reduced the overall abundance of molluscs. Most species responded negatively to thinning - but only five of the 53 species were significantly affected, and reproduction seemed to be negatively affected in only one species. An ordination analysis did not reveal any particular change in the species community due to thinning. Thus, the negative effect of conservation thinning on land molluscs was apparently mild - one reason was that many trees, shrubs and other forest structures remained after the treatment. Conservation thinning may be recommended, since other taxa are favoured, but minimal intervention is also a useful form of management for molluscs and saproxylic taxa.

  4. Estimating Tree Height and Diameter at Breast Height (DBH from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for a Japanese Cypress (Chamaecyparis obtusa Forest

    Directory of Open Access Journals (Sweden)

    Kotaro Iizuka

    2017-12-01

    Full Text Available Methods for accurately measuring biophysical parameters are a key component for quantitative evaluation regarding to various forest applications. Conventional in situ measurements of these parameters take time and expense, encountering difficultness at locations with heterogeneous microtopography. To obtain precise biophysical data in such situations, we deployed an unmanned aerial system (UAS multirotor drone in a cypress forest in a mountainous area of Japan. The structure from motion (SfM method was used to construct a three-dimensional (3D model of the forest (tree structures from aerial photos. Tree height was estimated from the 3D model and compared to in situ ground data. We also analyzed the relationships between a biophysical parameter, diameter at breast height (DBH, of individual trees with canopy width and area measured from orthorectified images. Despite the constraints of ground exposure in a highly dense forest area, tree height was estimated at an accuracy of root mean square error = 1.712 m for observed tree heights ranging from 16 to 24 m. DBH was highly correlated with canopy width (R2 = 0.7786 and canopy area (R2 = 0.7923, where DBH ranged from 11 to 58 cm. The results of estimating forest parameters indicate that drone-based remote-sensing methods can be utilized to accurately analyze the spatial extent of forest structures.

  5. Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis

    CSIR Research Space (South Africa)

    Van Aardt, JAN

    2006-05-01

    Full Text Available . The color:shape ratio was set at 0.8:0.2, based on the recommendation of the devel- opers (Baatz and Scha¨pe 2000, eCognition 2003) and eval- uation of alternative parameter inputs. Object smoothness was considered more important than shape in a forestry... are not only of importance to general forest inventory and canopy structure modeling (Lefsky et al. 2002a, b, Næsset 2002, Popescu et al. 2004), but also to estimation of forest fuel loads (Rian˜o et al. 2003, Seielstad and Queen 2003) and derivation...

  6. Forest inventory-based estimation of carbon stocks and flux in California forests in 1990.

    Science.gov (United States)

    Jeremy S. Fried; Xiaoping. Zhou

    2008-01-01

    Estimates of forest carbon stores and flux for California circa 1990 were modeled from forest inventory data in support of California’s legislatively mandated greenhouse gas inventory. Reliable estimates of live-tree carbon stores and flux on timberlands outside of national forest could be calculated from periodic inventory data collected in the 1980s and 1990s;...

  7. Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery

    Science.gov (United States)

    Bonnie Ruefenacht; Mark D. Nelson; Mark Finco

    2009-01-01

    Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...

  8. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Science.gov (United States)

    Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E

    2015-12-01

    Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  9. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Science.gov (United States)

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  10. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery

    Science.gov (United States)

    A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...

  11. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico

    NARCIS (Netherlands)

    Toledo-Aceves, T.; Wolf, J.H.D.

    2008-01-01

    We assessed the effectiveness of repopulating the inner canopy and middle canopy of oak trees with seeds and seedlings of the epiphytic bromeliad Tillandsia eizii. Canopy germination was 4.7 percent, considerably lower than in vitro (92%). Of the tree-germinated seedlings, only 1.5 percent survived

  12. Spatial Patterns and Interspecific Associations of Three Canopy Species at Different Life Stages in a Subtropical Forest,China

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Shi-Guang Wei; Zhong-Liang Huang; Wan-Hui Ye; Hong-Lin Cao

    2008-01-01

    Spatial patterns of species at different life stages are an important aspect for understanding causal mechanisms that facilitate species co-existence.Using Ripley's univariate L(t) and bivariate L12(t) functions,we analyzed the spatial patterns and interspecific associations of three canopy species at different life history stages in a 20-ha subtropical forest plot in Dinghushan Nature Reserve.Based on diameter at breast height (DBH),four life stages were distinguished.Castanopsis chinensis and Schima superba showed a unimodal DBH distribution.Engelhardtia roxburghiana showed a bimodal curve.L(t) function analysis showed significantly aggregated distributions of all three species at later life stages and random distribution at early life stages at some scales.From the analysis of L12(t) function,the results showed the positive association was a dominant pattern for most species pairs at most scales but the intensity of association decreases with the increase of life stages.Juveniles of the three species had no negative intra- and interspecific associations with the older life stages.Only premature trees were suppressed by overmature trees at some scales.Considering these results,we found three canopy-dominant species that lacked regeneration.There was no direct competition occurring between understorey individuals.Young trees can grow well under conspecific species with two other species.Longevity and lack of regeneration led to a large number of trees stored in mature and overmature stages,therefore,intra-and inter-competition can be strong at later life stages.

  13. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  14. Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station

    Science.gov (United States)

    Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders

    2018-07-01

    A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.

  15. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; pMODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  16. Accuracy Assessment of Timber Volume Maps Using Forest Inventory Data and LiDAR Canopy Height Models

    Directory of Open Access Journals (Sweden)

    Andreas Hill

    2014-09-01

    Full Text Available Maps of standing timber volume provide valuable decision support for forest managers and have therefore been the subject of recent studies. For map production, field observations are commonly combined with area-wide remote sensing data in order to formulate prediction models, which are then applied over the entire inventory area. The accuracy of such maps has frequently been described by parameters such as the root mean square error of the prediction model. The aim of this study was to additionally address the accuracy of timber volume classes, which are used to better represent the map predictions. However, the use of constant class intervals neglects the possibility that the precision of the underlying prediction model may not be constant across the entire volume range, resulting in pronounced gradients between class accuracies. This study proposes an optimization technique that automatically identifies a classification scheme which accounts for the properties of the underlying model and the implied properties of the remote sensing support information. We demonstrate the approach in a mountainous study site in Eastern Switzerland covering a forest area of 2000 hectares using a multiple linear regression model approach. A LiDAR-based canopy height model (CHM provided the auxiliary information; timber volume observations from the latest forest inventory were used for model calibration and map validation. The coefficient of determination (R2 = 0.64 and the cross-validated root mean square error (RMSECV = 123.79 m3 ha−1 were only slightly smaller than those of studies in less steep and heterogeneous landscapes. For a large set of pre-defined number of classes, the optimization model successfully identified those classification schemes that achieved the highest possible accuracies for each class.

  17. MODIS Based Estimation of Forest Aboveground Biomass in China

    Science.gov (United States)

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  18. Biomass estimation in forest ecosystems - a review | Wakawa ...

    African Journals Online (AJOL)

    Forest ecosystems plays an important role in global warming serving as both sink and source of one of the prominent green house gases, carbon dioxide (CO2). Biomass estimation in forest ecosystems is an important aspect of forest management processes aimed at ensuring sustainability. The choice of appropriate ...

  19. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  20. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  1. High NDVI and Potential Canopy Photosynthesis of South American Subtropical Forests despite Seasonal Changes in Leaf Area Index and Air Temperature

    Directory of Open Access Journals (Sweden)

    Piedad M. Cristiano

    2014-02-01

    Full Text Available The canopy photosynthesis and carbon balance of the subtropical forests are not well studied compared to temperate and tropical forest ecosystems. The main objective of this study was to assess the seasonal dynamics of Normalized Difference Vegetation Index (NDVI and potential canopy photosynthesis in relation to seasonal changes in leaf area index (LAI, chlorophyll concentration, and air temperatures of NE Argentina subtropical forests throughout the year. We included in the analysis several tree plantations (Pinus, Eucalyptus and Araucaria species that are known to have high productivity. Field studies in native forests and tree plantations were conducted; stem growth rates, LAI and leaf chlorophyll concentration were measured. MODIS satellite-derived LAI (1 km SIN Grid and NDVI (250m SIN Grid from February 2000 to 2012 were used as a proxy of seasonal dynamics of potential photosynthetic activity at the stand level. The remote sensing LAI of the subtropical forests decreased every year from 6 to 5 during the cold season, similar to field LAI measurements, when temperatures were 10 °C lower than during the summer. The yearly maximum NDVI values were observed during a few months in autumn and spring (March through May and November, respectively because high and low air temperatures may have a small detrimental effect on photosynthetic activity during both the warm and the cold seasons. Leaf chlorophyll concentration was higher during the cold season than the warm season which may have a compensatory effect on the seasonal variation of the NDVI values. The NDVI of the subtropical forest stands remained high and fairly constant throughout the year (the intra-annual coefficient of variation was 1.9%, and were comparable to the values of high-yield tree plantations. These results suggest that the humid subtropical forests in NE Argentina potentially could maintain high canopy photosynthetic activity throughout the year and thus this ecosystem may

  2. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a tropographical gradient

    NARCIS (Netherlands)

    Araújo, de A.C.; Kruijt, B.; Nobre, A.D.; Dolman, A.J.; Waterloo, M.J.; Moors, E.J.; Souza, de J.

    2008-01-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy

  3. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile

    NARCIS (Netherlands)

    Fajardo, Alex; Graaf, de N.R.

    2004-01-01

    The gap dynamics of two Nothofagus pumilio (lenga) stands have been investigated. We evaluated and compared tree diameter distributions, spatial patterns, tree fall and gap characteristics and regeneration responses in gaps in two old-growth forests of Nothofagus pumilio in Southern Chile

  4. Quantitative remote sensing for monitoring forest canopy structural variables in the Three Gorges region of China

    NARCIS (Netherlands)

    Zeng, Y.

    2008-01-01

    Bridging various scales ranging from local to regional and global, remote sensing has facilitated extraordinary advances in modeling and mapping ecosystems and their functioning. Since forests are one of the most important natural resources on the terrestrial Earth surface, accurate and up-to-date

  5. Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment

    Science.gov (United States)

    Mark B. Green; Bethany K. Laursen; John L. Campbell; Kevin J. McGuire; Eric P. Kelsey

    2015-01-01

    Stable water isotopes provide a means of tracing many hydrologic processes, including poorly understood dynamics like soil water interactions with the atmosphere. We present a four-year dataset of biweekly water isotope samples from eight fluxes and stores in a headwater catchment at the Hubbard Brook Experimental Forest, New Hampshire, USA. We use Dansgaard's...

  6. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest

    Science.gov (United States)

    Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen

    2008-01-01

    Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...

  7. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    Science.gov (United States)

    L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones

    2004-01-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...

  8. Small-area estimation of forest attributes within fire boundaries

    Science.gov (United States)

    T. Frescino; G. Moisen; K. Adachi; J. Breidt

    2014-01-01

    Wildfires are gaining more attention every year as they burn more frequently, more intensely, and across larger landscapes. Generating timely estimates of forest resources within fire perimeters is important for land managers to quickly determine the impact of fi res on U.S. forests. The U.S. Forest Service’s Forest Inventory and Analysis (FIA) program needs tools to...

  9. Loss of urban forest canopy and the related effects on soundscape and human directed attention

    Science.gov (United States)

    Laverne, Robert James Paul

    The specific questions addressed in this research are: Will the loss of trees in residential neighborhoods result in a change to the local soundscape? The investigation of this question leads to a related inquiry: Do the sounds of the environment in which a person is present affect their directed attention?. An invasive insect pest, the Emerald Ash Borer (Agrilus planipennis ), is killing millions of ash trees (genus Fraxinus) throughout North America. As the loss of tree canopy occurs, urban ecosystems change (including higher summer temperatures, more stormwater runoff, and poorer air quality) causing associated changes to human physical and mental health. Previous studies suggest that conditions in urban environments can result in chronic stress in humans and fatigue to directed attention, which is the ability to focus on tasks and to pay attention. Access to nature in cities can help refresh directed attention. The sights and sounds associated with parks, open spaces, and trees can serve as beneficial counterbalances to the irritating conditions associated with cities. This research examines changes to the quantity and quality of sounds in Arlington Heights, Illinois. A series of before-and-after sound recordings were gathered as trees died and were removed between 2013 and 2015. Comparison of recordings using the Raven sound analysis program revealed significant differences in some, but not all measures of sound attributes as tree canopy decreased. In general, more human-produced mechanical sounds (anthrophony) and fewer sounds associated with weather (geophony) were detected. Changes in sounds associated with animals (biophony) varied seasonally. Monitoring changes in the proportions of anthrophony, biophony and geophony can provide insight into changes in biodiversity, environmental health, and quality of life for humans. Before-tree-removal and after-tree-removal sound recordings served as the independent variable for randomly-assigned human volunteers as

  10. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  11. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  12. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    Science.gov (United States)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution ( 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar amounts of aboveground carbon

  13. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    Science.gov (United States)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a

  14. The Roll of Canopy on Interception and Redistribution of Anthropogenic Radionuclides Derived from Fukushima Daiichi Nuclear Power Plant Accident in Coniferous Forest Plantations

    Science.gov (United States)

    Kato, H.; Onda, Y.; Kawaguchi, S.; Gomi, T.

    2011-12-01

    Soil, vegetation and other ecological compartments are expected to be highly contaminated by the deposited radionuclides after the Fukushima Daiichi nuclear power plant (NPP) accident triggered by a magnitude 9.1 earthquake and the resulting tsunami on Marchi 11, 2011. A large proportion of radionuclides which deposited on forest area are trapped by canopies, throughfall and stemflow are the most important pathways for the input of radionuclides into the soil of forest floor. In this study, to investigate the roll of forest canopy on interception and redistribution of the deposited radionuclides, a series of field monitoring experiment of throughfall and stemflow were conducted in coniferous forest plantations in Tochigi prefecture, 170 km southwest from the NPP. A set of 20 throughfall collectors with latticelike distribution and 5 stemflow collectors were located in the 10m × 10m interception plot, and the activities of caesium (137Cs, 134Cs) and radioiodine (131I) in throughfall and stemflow were quantified by using a high purity n-type germanium coaxial gamma ray detectors. Rainfall, throughfall, and stemflow samples were collected from 10 rainfall events, which includes first rainfall event after the NPP accident. The cumulative fallout of radionuclides in the study site was 3400 Bq m-2 for 137Cs, 3300 Bq m-2 for 134Cs, and 26000 Bq m-2 for 131I, respectively. The 137Cs in rainfall decreased exponentially with time since the NPP accident. For the rainfall event of 28 March, which is first rainfall event after the NPP accident, both the amount and concentration of caesium clearly increased with throughfall, whereas the concentration of radioiodine decreased with throughfall. For the subsequent rainfall events, the concentration of caesium decreased with throughfall, whereas radioiodine was not detected as a result of decay due to short half-life. At the end of May, approximately 30% and 60% of total caesium deposited after the NPP accident remained on the

  15. Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model

    International Nuclear Information System (INIS)

    Wang, Y.; Dong, D.

    1997-01-01

    It was possible to retrieve the stand mean dbh (tree trunk diameter at breast height) and stand density from the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) backscatter data by using threelayered perceptron neural networks (NNs). Two sets of NNs were trained by the Santa Barbara microwave canopy backscatter model. One set of the trained NNs was used to retrieve the stand mean dbh, and the other to retrieve the stand density. Each set of the NNs consisted of seven individual NNs for all possible combinations of one, two, and three radar wavelengths. Ground and multiple wavelength AIRSAR backscatter data from two ponderosa pine forest stands near Mt. Shasta, California (U.S.A.) were used to evaluate the accuracy of the retrievals. The r.m.s. and relative errors of the retrieval for stand mean dbh were 6.1 cm and 15.6 per cent for one stand (St2), and 3.1 cm and 6.7 per cent for the other stand (St11). The r.m.s. and relative errors of the retrieval for stand density were 71.2 treesha-1 and 23.0 per cent for St2, and 49.7 treesha-1 and 21.3 per cent for St11. (author)

  16. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    Science.gov (United States)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests

  17. Deriving a light use efficiency estimation algorithm using in situ hyperspectral and eddy covariance measurements for a maize canopy in Northeast China.

    Science.gov (United States)

    Zhang, Feng; Zhou, Guangsheng

    2017-07-01

    We estimated the light use efficiency ( LUE ) via vegetation canopy chlorophyll content ( CCC canopy ) based on in situ measurements of spectral reflectance, biophysical characteristics, ecosystem CO 2 fluxes and micrometeorological factors over a maize canopy in Northeast China. The results showed that among the common chlorophyll-related vegetation indices (VIs), CCC canopy had the most obviously exponential relationships with the red edge position (REP) ( R 2  = .97, p  <   .001) and normalized difference vegetation index (NDVI) ( R 2  = .91, p  <   .001). In a comparison of the indicating performances of NDVI, ratio vegetation index (RVI), wide dynamic range vegetation index (WDRVI), and 2-band enhanced vegetation index (EVI2) when estimating CCC canopy using all of the possible combinations of two separate wavelengths in the range 400-1300 nm, EVI2 [1214, 1259] and EVI2 [726, 1248] were better indicators, with R 2 values of .92 and .90 ( p  <   .001). Remotely monitoring LUE through estimating CCC canopy derived from field spectrometry data provided accurate prediction of midday gross primary productivity ( GPP ) in a rainfed maize agro-ecosystem ( R 2  = .95, p  <   .001). This study provides a new paradigm for monitoring vegetation GPP based on the combination of LUE models with plant physiological properties.

  18. Application of LiDAR to hydrologic flux estimation in Australian eucalypt forests (Invited)

    Science.gov (United States)

    Lane, P. N.; Mitchell, P. J.; Jaskierniak, D.; Hawthorne, S. N.; Griebel, A.

    2013-12-01

    The potential of LiDAR in ecohydrology is significant as characterising catchment vegetation is crucial to accurate estimation of evapotranspiration (ET). While this may be done at large scales for model parameterisation, stand-scale applications are equally appropriate where traditional methods of measurement of LAI or sapwood areas are time consuming and reliant on assumptions of representative sampling. This is particularly challenging in mountain forests where aspect, soil properties and energy budgets can vary significantly, reflected in the vegetation or where there are changes in the spatial distribution of structural attributes following disturbance. Recent research has investigated the spatial distribution of ET in a eucalypt forest in SE Australia using plot-scale sapflow, interception and forest floor ET measurements. LiDAR was used scale up these measurements. LiDAR (0.16 m scanner footprint) canopy indices were correlated via stepwise regression with 4 water use scalars: basal area (BA), sapwood area (SA), leaf area index (LAI) and canopy coverage (C), with Hmed, Hmean, H80, H95 the best predictors. Combining these indices with empirical relationships between SA and BA, and SA and transpiration (T), and inventory plot 'ground truthing' transpiration was estimated across the 1.3 km2 catchment. Interception was scaled via the Gash model with LiDAR derived inputs. The up-scaling showed a significant variability in the spatial distribution of ET, related to the distribution of SA. The use of LiDAR meant scaling could be achieved at an appropriate spatial scale (20 x 20 m) to the measurements. The second example is the use of airborne LiDAR in developing growth forest models for hydrologic modeling. LiDAR indices were used to stratify multilayered forests using mixed-effect models with a wide range of theoretical distribution functions. When combined with historical plot-scale inventory data we show demonstrated improved growth modeling over traditional

  19. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers

  20. Estimation of winter wheat canopy nitrogen density at different growth stages based on Multi-LUT approach

    Science.gov (United States)

    Li, Zhenhai; Li, Na; Li, Zhenhong; Wang, Jianwen; Liu, Chang

    2017-10-01

    Rapid real-time monitoring of wheat nitrogen (N) status is crucial for precision N management during wheat growth. In this study, Multi Lookup Table (Multi-LUT) approach based on the N-PROSAIL model parameters setting at different growth stages was constructed to estimating canopy N density (CND) in winter wheat. The results showed that the estimated CND was in line with with measured CND, with the determination coefficient (R2) and the corresponding root mean square error (RMSE) values of 0.80 and 1.16 g m-2, respectively. Time-consuming of one sample estimation was only 6 ms under the test machine with CPU configuration of Intel(R) Core(TM) i5-2430 @2.40GHz quad-core. These results confirmed the potential of using Multi-LUT approach for CND retrieval in winter wheat at different growth stages and under variables climatic conditions.

  1. Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology

    Science.gov (United States)

    Tyler J. Tran; Katherine J. Elliott

    2012-01-01

    In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...

  2. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient.

    Science.gov (United States)

    de Araújo, Alessandro C; Kruijt, Bart; Nobre, Antonio D; Dolman, Albertus J; Waterloo, Maarten J; Moors, Eddy J; de Souza, Juliana S

    2008-09-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy covariance systems. This study describes such variability using measurements of CO2 along vertical profiles and along a toposequence in a tropical rain forest near Manaus, Brazil. Seasonal and diurnal variation was recorded, with atmospheric CO2 concentration maxima around dawn, generally higher CO2 build-up in the dry season and stronger daytime CO2 drawdown in the wet season. This variation was reflected all along the toposequence, but the slope and valley bottom accumulated clearly more CO2 than the plateaus, depending on atmospheric stability. Particularly during stable nights, accumulation was along lines of equal altitude, suggesting that large amounts of CO2 are stored in the valleys of the landscape. Flushing of this store only occurs during mid-morning, when stored CO2 may well be partly transported back to the plateaus. It is clear that, for proper interpretation of tower fluxes in such complex and actively respiring terrain, the horizontal variability of storage needs to be taken into account not only during the night but also during the mornings.

  3. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  4. Effects of Different LiDAR Intensity Normalization Methods on Scotch Pine Forest Leaf Area Index Estimation

    Directory of Open Access Journals (Sweden)

    YOU Haotian

    2018-02-01

    Full Text Available The intensity data of airborne light detection and ranging (LiDAR are affected by many factors during the acquisition process. It is of great significance for the normalization and application of LiDAR intensity data to study the effective quantification and normalization of the effect from each factor. In this paper, the LiDAR data were normalized with range, angel of incidence, range and angle of incidence based on radar equation, respectively. Then two metrics, including canopy intensity sum and ratio of intensity, were extracted and used to estimate forest LAI, which was aimed at quantifying the effects of intensity normalization on forest LAI estimation. It was found that the range intensity normalization could improve the accuracy of forest LAI estimation. While the angle of incidence intensity normalization did not improve the accuracy and made the results worse. Although the range and incidence angle normalized intensity data could improve the accuracy, the improvement was less than the result of range intensity normalization. Meanwhile, the differences between the results of forest LAI estimation from raw intensity data and normalized intensity data were relatively big for canopy intensity sum metrics. However, the differences were relatively small for the ratio of intensity metrics. The results demonstrated that the effects of intensity normalization on forest LAI estimation were depended on the choice of affecting factor, and the influential level is closely related to the characteristics of metrics used. Therefore, the appropriate method of intensity normalization should be chosen according to the characteristics of metrics used in the future research, which could avoid the waste of cost and the reduction of estimation accuracy caused by the introduction of inappropriate affecting factors into intensity normalization.

  5. Remote estimation of a managed pine forest evapotranspiration with geospatial technology

    Science.gov (United States)

    S. Panda; D.M. Amatya; G Sun; A. Bowman

    2016-01-01

    Remote sensing has increasingly been used to estimate evapotranspiration (ET) and its supporting parameters in a rapid, accurate, and cost-effective manner. The goal of this study was to develop remote sensing-based models for estimating ET and the biophysical parameters canopy conductance (gc), upper-canopy temperature, and soil moisture for a mature loblolly pine...

  6. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and yield

    Science.gov (United States)

    Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...

  7. BOREAS TE-9 NSA Canopy Biochemistry

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Canopy BRF simulation of forest with different crown shape and height in larger scale based on Radiosity method

    Science.gov (United States)

    Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing

    2007-06-01

    Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.

  9. Water use in forest canopy black cherry trees and its relationship to leaf gas exchange and environment

    Science.gov (United States)

    B. J. Joyce; K. C. Steiner; J. M. Skelly

    1996-01-01

    Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.

  10. Growth and mortality patterns in a thinning canopy of post-hurricane regenerating rain forest in eastern Nicaragua (1990-2005

    Directory of Open Access Journals (Sweden)

    Javier Ruiz

    2010-12-01

    Full Text Available One of the strongest hypothesis about the maintenance of tree species diversity in tropical areas is disturbance. In order to assess this, the effect of intensive natural disturbances on forest growth and mortality in a thinning canopy was studied after the landfall of hurricane Joan in 1988. We evaluated the growth and mortality rates of the 26 most common tree species of that forest in eastern Nicaragua. Permanent plots were established at two study sites within the damaged area. Growth and mortality rates of all individual trees ≥3.18cm diameter at breast height were assessed annually from 1990 to 2005. During this period the forest underwent two phases: the building phase (marked by increased number of individuals of tree species present after the hurricane and the canopy thinning phase (marked by increased competition and mortality. Our results from the thinning phase show that tree survival was independent of species identity and was positively related to the increase in growth rates. The analysis of mortality presented here aims to test the null hypothesis that individual trees die independently of their species identity. These findings were influenced by the mortality observed during the late thinning phase (2003-2005 and provide evidence in favor of a non-niche hypothesis at the thinning phase of forest regeneration. Rev. Biol. Trop. 58 (4: 1283-1297. Epub 2010 December 01.

  11. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    Directory of Open Access Journals (Sweden)

    C. Cammalleri

    2010-12-01

    Full Text Available For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%, typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977, Massman (1987 and Lalic et al. (2003. The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB model developed by Norman et al. (1995 and modified by Kustas and Norman (1999. High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15–50%. The TSEB model heat flux estimates are compared with micro

  12. A model-based approach to estimating forest area

    Science.gov (United States)

    Ronald E. McRoberts

    2006-01-01

    A logistic regression model based on forest inventory plot data and transformations of Landsat Thematic Mapper satellite imagery was used to predict the probability of forest for 15 study areas in Indiana, USA, and 15 in Minnesota, USA. Within each study area, model-based estimates of forest area were obtained for circular areas with radii of 5 km, 10 km, and 15 km and...

  13. A comparative analysis of simulated and observed photosynthetic CO2 uptake in two coniferous forest canopies

    DEFF Research Database (Denmark)

    Ibrom, A.; Jarvis, P.G.; Clement, R.

    2006-01-01

    -photosynthetically-active-radiation-induced biophysical variability in the simulated Pg. Analysis of residuals identified only small systematic differences between the modeled flux estimates and turbulent flux measurements at high vapor pressure saturation deficits. The merits and limitations of comparative analysis for quality evaluation of both...

  14. Estimating forest characteristics using NAIP imagery and ArcObjects

    Science.gov (United States)

    John S Hogland; Nathaniel M. Anderson; Woodam Chung; Lucas Wells

    2014-01-01

    Detailed, accurate, efficient, and inexpensive methods of estimating basal area, trees, and aboveground biomass per acre across broad extents are needed to effectively manage forests. In this study we present such a methodology using readily available National Agriculture Imagery Program imagery, Forest Inventory Analysis samples, a two stage classification and...

  15. Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage

    Science.gov (United States)

    Hegedüs, Ramón; Barta, András; Bernáth, Balázs; Benno Meyer-Rochow, Victor; Horváth, Gábor

    2007-08-01

    Radiance, color, and polarization of the light in forests combine to create complex optical patterns. Earlier sporadic polarimetric studies in forests were limited by the narrow fields of view of the polarimeters used in such studies. Since polarization patterns in the entire upper hemisphere of the visual environment of forests could be important for forest-inhabiting animals that make use of linearly polarized light for orientation, we measured 180° field-of-view polarization distributions in Finnish forests. From a hot air balloon we also measured the polarization patterns of Hungarian grasslands lit by the rising sun. We found that the pattern of the angle of polarization α of sunlit grasslands and sunlit tree canopies was qualitatively the same as that of the sky. We show here that contrary to an earlier assumption, the α-pattern characteristic of the sky always remains visible underneath overhead vegetation, independently of the solar elevation and the sky conditions (clear or partly cloudy with visible sun's disc), provided the foliage is sunlit and not only when large patches of the clear sky are visible through the vegetation. Since the mirror symmetry axis of the α-pattern of the sunlit foliage is the solar-antisolar meridian, the azimuth direction of the sun, occluded by vegetation, can be assessed in forests from this polarization pattern. Possible consequences of this robust polarization feature of the optical environment in forests are briefly discussed with regard to polarization-based animal navigation.

  16. Bowen ratio/energy balance technique for estimating crop net CO2 assimilation, and comparison with a canopy chamber

    Science.gov (United States)

    Held, A. A.; Steduto, P.; Orgaz, F.; Matista, A.; Hsiao, T. C.

    1990-12-01

    This paper describes a Bowen ratio/energy balance (BREB) system which, in conjunction with an infra-red gas analyzer (IRGA), is referred to as BREB+ and is used to estimate evapotranspiration ( ET) and net CO2 flux ( NCF) over crop canopies. The system is composed of a net radiometer, soil heat flux plates, two psychrometers based on platinum resistance thermometers (PRT), bridge circuits to measure resistances, an IRGA, air pumps and switching valves, and a data logger. The psychrometers are triple shielded and aspirated, and with aspiration also between the two inner shields. High resistance (1 000 ohm) PRT's are used for dry and wet bulbs to minimize errors due to wiring and connector resistances. A high (55 K ohm) fixed resistance serves as one arm of the resistance bridge to ensure linearity in output signals. To minimize gaps in data, to allow measurements at short (e.g., 5 min) intervals, and to simplify operation, the psychrometers were fixed at their upper and lower position over the crop and not alternated. Instead, the PRT's, connected to the bridge circuit and the data logger, were carefully calibrated together. Field tests using a common air source showed appartent effects of the local environment around each psychrometer on the temperatures measured. ET rates estimated with the BREB system were compared to those measured with large lysimeters. Daily totals agreed within 5%. There was a tendency, however, for the lysimeter measurements to lag behind the BREB measurements. Daily patterns of NCF estimated with the BREB+ system are consistent with expectations from theories and data in the literature. Side-by-side comparisons with a stirred Mylar canopy chamber showed similar NCF patterns. On the other hand, discrepancies between the results of the two methods were quite marked in the morning or afternoon on certain dates. Part of the discrepancies may be attributed to inaccuracies in the psychrometric temperature measurements. Other possible causes

  17. Tropical forest biomass estimation from truncated stand tables.

    Science.gov (United States)

    A. J. R. Gillespie; S. Brown; A. E. Lugo

    1992-01-01

    Total aboveground forest biomass may be estimated through a variety of techniques based on commercial inventory stand and stock tables. Stand and stock tables from tropical countries commonly omit trees bellow a certain commercial limit.

  18. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors

    Directory of Open Access Journals (Sweden)

    Jeremy Joshua Pittman

    2015-01-01

    Full Text Available Non-destructive biomass estimation of vegetation has been performed via remote sensing as well as physical measurements. An effective method for estimating biomass must have accuracy comparable to the accepted standard of destructive removal. Estimation or measurement of height is commonly employed to create a relationship between height and mass. This study examined several types of ground-based mobile sensing strategies for forage biomass estimation. Forage production experiments consisting of alfalfa (Medicago sativa L., bermudagrass [Cynodon dactylon (L. Pers.], and wheat (Triticum aestivum L. were employed to examine sensor biomass estimation (laser, ultrasonic, and spectral as compared to physical measurements (plate meter and meter stick and the traditional harvest method (clipping. Predictive models were constructed via partial least squares regression and modeled estimates were compared to the physically measured biomass. Least significant difference separated mean estimates were examined to evaluate differences in the physical measurements and sensor estimates for canopy height and biomass. Differences between methods were minimal (average percent error of 11.2% for difference between predicted values versus machine and quadrat harvested biomass values (1.64 and 4.91 t·ha−1, respectively, except at the lowest measured biomass (average percent error of 89% for harvester and quad harvested biomass < 0.79 t·ha−1 and greatest measured biomass (average percent error of 18% for harvester and quad harvested biomass >6.4 t·ha−1. These data suggest that using mobile sensor-based biomass estimation models could be an effective alternative to the traditional clipping method for rapid, accurate in-field biomass estimation.

  19. Tree height integrated into pantropical forest biomass estimates

    NARCIS (Netherlands)

    Feldpausch, T.R.; Lloyd, J.; Lewis, S.L.; Brienen, R.J.W.; Gloor, M.; Montegudo Mendoza, A.; Arets, E.J.M.M.

    2012-01-01

    Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer

  20. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    Science.gov (United States)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere

  1. Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis

    Science.gov (United States)

    Dupuy, Stéphane; Lainé, Gérard; Tassin, Jacques; Sarrailh, Jean-Michel

    2013-12-01

    This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the "Litto3D" coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.

  2. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling

    Directory of Open Access Journals (Sweden)

    S. Sabate

    2009-08-01

    Full Text Available Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE", and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+", was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

  3. Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Azita Ahmad Zawawi

    2015-04-01

    Full Text Available Aim of study: To present an approach for estimating tree heights, stand density and crown patches using LiDAR data in a subtropical broad-leaved forest. Area of study: The study was conducted within the Yambaru subtropical evergreen broad-leaved forest, Okinawa main island, Japan. Materials and methods: A digital canopy height model (CHM was extracted from the LiDAR data for tree height estimation and a watershed segmentation method was applied for the individual crown delineation. Dominant tree canopy layers were estimated using multi-scale filtering and local maxima detection. The LiDAR estimation results were then compared to the ground inventory data and a high resolution orthophoto image for accuracy assessment. Main results: A Wilcoxon matched pair test suggests that LiDAR data is highly capable of estimating tree height in a subtropical forest (z = 4.0, p = 0.345, but has limitation to detect small understory trees and a single tree delineation. The results show that there is a statistically significant different type of crown detection from LiDAR data over forest inventory (z = 0, p = 0.043. We also found that LiDAR computation results underestimated the stand density and overestimated the crown size. Research highlights: Most studies involving crown detection and tree height estimation have focused on the analysis of plantations, boreal forests and temperate forests, and less was conducted on tropical and/or subtropical forests. Our study tested the capability of LiDAR as an effective application for analyzing a highly dense forest

  4. Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability

    Directory of Open Access Journals (Sweden)

    B. Langford

    2017-12-01

    Full Text Available Biogenic emission algorithms predict that oak forests account for ∼ 70 % of the total European isoprene budget. Yet the isoprene emission potentials (IEPs that underpin these model estimates are calculated from a very limited number of leaf-level observations and hence are highly uncertain. Increasingly, micrometeorological techniques such as eddy covariance are used to measure whole-canopy fluxes directly, from which isoprene emission potentials can be calculated. Here, we review five observational datasets of isoprene fluxes from a range of oak forests in the UK, Italy and France. We outline procedures to correct the measured net fluxes for losses from deposition and chemical flux divergence, which were found to be on the order of 5–8 and 4–5 %, respectively. The corrected observational data were used to derive isoprene emission potentials at each site in a two-step process. Firstly, six commonly used emission algorithms were inverted to back out time series of isoprene emission potential, and then an average isoprene emission potential was calculated for each site with an associated uncertainty. We used these data to assess how the derived emission potentials change depending upon the specific emission algorithm used and, importantly, on the particular approach adopted to derive an average site-specific emission potential. Our results show that isoprene emission potentials can vary by up to a factor of 4 depending on the specific algorithm used and whether or not it is used in a big-leaf or canopy environment (CE model format. When using the same algorithm, the calculated average isoprene emission potential was found to vary by as much as 34 % depending on how the average was derived. Using a consistent approach with version 2.1 of the Model for Emissions of Gases and Aerosols from Nature (MEGAN, we derive new ecosystem-scale isoprene emission potentials for the five measurement sites: Alice Holt, UK (10 500 ± 2500

  5. Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability

    Science.gov (United States)

    Langford, Ben; Cash, James; Acton, W. Joe F.; Valach, Amy C.; Hewitt, C. Nicholas; Fares, Silvano; Goded, Ignacio; Gruening, Carsten; House, Emily; Kalogridis, Athina-Cerise; Gros, Valérie; Schafers, Richard; Thomas, Rick; Broadmeadow, Mark; Nemitz, Eiko

    2017-12-01

    Biogenic emission algorithms predict that oak forests account for ˜ 70 % of the total European isoprene budget. Yet the isoprene emission potentials (IEPs) that underpin these model estimates are calculated from a very limited number of leaf-level observations and hence are highly uncertain. Increasingly, micrometeorological techniques such as eddy covariance are used to measure whole-canopy fluxes directly, from which isoprene emission potentials can be calculated. Here, we review five observational datasets of isoprene fluxes from a range of oak forests in the UK, Italy and France. We outline procedures to correct the measured net fluxes for losses from deposition and chemical flux divergence, which were found to be on the order of 5-8 and 4-5 %, respectively. The corrected observational data were used to derive isoprene emission potentials at each site in a two-step process. Firstly, six commonly used emission algorithms were inverted to back out time series of isoprene emission potential, and then an average isoprene emission potential was calculated for each site with an associated uncertainty. We used these data to assess how the derived emission potentials change depending upon the specific emission algorithm used and, importantly, on the particular approach adopted to derive an average site-specific emission potential. Our results show that isoprene emission potentials can vary by up to a factor of 4 depending on the specific algorithm used and whether or not it is used in a big-leaf or canopy environment (CE) model format. When using the same algorithm, the calculated average isoprene emission potential was found to vary by as much as 34 % depending on how the average was derived. Using a consistent approach with version 2.1 of the Model for Emissions of Gases and Aerosols from Nature (MEGAN), we derive new ecosystem-scale isoprene emission potentials for the five measurement sites: Alice Holt, UK (10 500 ± 2500 µg m-2 h-1); Bosco Fontana, Italy (1610

  6. The effect of canopy closure on chimpanzee nest abundance in Lagoas de Cufada National Park, Guinea-Bissau.

    Science.gov (United States)

    Sousa, Joana; Casanova, Catarina; Barata, André V; Sousa, Cláudia

    2014-04-01

    The present study aimed to gather baseline information about chimpanzee nesting and density in Lagoas de Cufada Natural Park (LCNP), in Guinea-Bissau. Old and narrow trails were followed to estimate chimpanzee density through marked-nest counts and to test the effect of canopy closure (woodland savannah, forest with a sparse canopy, and forest with a dense canopy) on nest distribution. Chimpanzee abundance was estimated at 0.79 nest builders/km(2), the lowest among the areas of Guinea-Bissau with currently studied chimpanzee populations. Our data suggest that sub-humid forest with a dense canopy accounts for significantly higher chimpanzee nest abundance (1.50 nests/km of trail) than sub-humid forest with a sparse canopy (0.49 nests/km of trail) or woodland savannah (0.30 nests/km of trail). Dense-canopy forests play an important role in chimpanzee nesting in the patchy and highly humanized landscape of LCNP. The tree species most frequently used for nesting are Dialium guineense (46%) and Elaeis guineensis (28%). E. guineensis contain nests built higher in the canopy, while D. guineense contain nests built at lower heights. Nests observed during baseline sampling and replications suggest seasonal variations in the tree species used for nest building.

  7. The Forest Canopy as a Temporally and Spatially Dynamic Ecosystem: Preliminary Results of Biomass Scaling and Habitat Use from a Case Study in Large Eastern White Pines (Pinus Strobus)

    Science.gov (United States)

    Martin, J.; Laughlin, M. M.; Olson, E.

    2017-12-01

    Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.

  8. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  9. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation.

    Science.gov (United States)

    Wardhaugh, Carl W

    2014-11-01

    Arguably the majority of species on Earth utilise tropical rainforest canopies, and much progress has been made in describing arboreal assemblages, especially for arthropods. The most commonly described patterns for tropical rainforest insect communities are host specificity, spatial specialisation (predominantly vertical stratification), and temporal changes in abundance (seasonality and circadian rhythms). Here I review the recurrent results with respect to each of these patterns and discuss the evolutionary selective forces that have generated them in an attempt to unite these patterns in a holistic evolutionary framework. I propose that species can be quantified along a generalist-specialist scale not only with respect to host specificity, but also other spatial and temporal distribution patterns, where specialisation is a function of the extent of activity across space and time for particular species. When all of these distribution patterns are viewed through the paradigm of specialisation, hypotheses that have been proposed to explain the evolution of host specificity can also be applied to explain the generation and maintenance of other spatial and temporal distribution patterns. The main driver for most spatial and temporal distribution patterns is resource availability. Generally, the distribution of insects follows that of the resources they exploit, which are spatially stratified and vary temporally in availability. Physiological adaptations are primarily important for host specificity, where nutritional and chemical variation among host plants in particular, but also certain prey species and fungi, influence host range. Physiological tolerances of abiotic conditions are also important for explaining the spatial and temporal distributions of some insect species, especially in drier forest environments where desiccation is an ever-present threat. However, it is likely that for most species in moist tropical rainforests, abiotic conditions are valuable

  10. Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis program, Landsat, and LANDFIRE

    Science.gov (United States)

    Chen, Xuexia; Liu, Shuguang; Zhu, Zhiliang; Vogelmann, James E.; Li, Zhengpeng; Ohlen, Donald O.

    2011-01-01

    The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High

  11. Environmental controls of daytime leaf carbon exchange: Implications for estimates of ecosystem fluxes in a deciduous forest

    Science.gov (United States)

    Heskel, M.; Tang, J.

    2017-12-01

    Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.

  12. Estimating the solar radiation environment on the soil surface between rows using crop canopy architectural models

    International Nuclear Information System (INIS)

    Yuge, K.; Haraguchi, T.; Nakano, Y.; Kuroda, M.; Funakoshi, T.

    2002-01-01

    The objective of this study is quantification of the solar radiation in the farmland located in the hilly and mountainous areas, considering the effect of the shelter adjacent to the field, such as the forest (This effect is called as the edge-effect in this study.). To evaluate the edge-effect on the solar radiation environment in the farmland, solar radiations are measured at the center and edge of the study site adjacent to the forest. The simulation model is composed, coupling with the fish-eye projection method and procedure for the separating direct and diffuse solar radiations. Using this model, the diurnal solar radiations are simulated at the center and edge of the study site. The simulation result showed good agreement with the observation. The spatial distribution of the solar radiation in an observational field is quantified by this method, considering the edge-effect. The simulation result indicated that the solar radiation environment on the field surface is affected by the shelter adjacent to the field and the field direction. (author)

  13. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  14. Soil phosphorus fractionation as a tool for monitoring dust phosphorus signature underneath a Blue Pine (Pinus wallichiana canopy in a Temperate Forest

    Directory of Open Access Journals (Sweden)

    Mustafa-Nawaz Shafqat

    2016-12-01

    Full Text Available Aims of the study: This study aims (i to monitor the amount of dust deposition during dry season in the moist temperate forest; (ii to study nature of P fractions in the dust samples falling on the trees in the region; (iii to study soil P fractions as influenced by the processes of throughfall and stemflow of a Blue Pine (Pinus wallichiana canopy and to finger print the contribution of dust towards P input in the temperate forest ecosystem. Area of study: The site used for the collection of soil samples was situated at an elevation of 6900 feet above sea levels (temperate forest in Himalaya region in the Thandani area national forest located in the north west of Pakistan. Material and methods:  For soil sampling and processing, three forest sites with three old tree plants per site were selected at approximately leveled plain for surface soil sampling. Two dust samples were collected and analyzed for different physicochemical properties along with different P fractions. First dust sample was collected from a site situated at an elevation of 4000 feet and second one was collected from an elevation of 6500 feet above sea levels. Modified Hedley procedure for the fractionation of P in the dust and soil samples were used. Main results: The input of dust was 43 and 20 kg ha-1 during drier months of the year (September-June at lower and higher elevation sites respectively, and the dust from lower elevation site had relative more all P fractions than the other dust sample. However, HCl-Pi fraction was dominant in both samples. Both labile (water plus NaHCO3 and non-labile (NaOH plus HCl inorganic P (Pi fractions were significantly increased in the surface soil by both stemflow and throughfall compared to the open field soil. The buildup of NaOH and HCl-Pi pools in soils underneath the canopy might prove useful in fingerprinting the contribution of atmospheric dust towards P cycling in this temperate forest. Research highlights: The role of dust in

  15. Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Zhou, Xianfeng; Song, Xiaoyu; Casa, Raffaele

    2016-04-01

    Precise estimation of carotenoids (Car) content in plants, from remotely sensed data, is challenging due to their small proportion in the overall total pigment content and to the overlapping of spectral absorption features with chlorophyll (Chl) in the blue region of the spectrum. The use of narrow band vegetation indices (VIs) obtained from hyperspectral data has been considered an effective way to estimate Car content. However, VIs have proved to lack sensitivity to low or high Car content in a number of studies. In this study, the carotenoid triangle ratio index (CTRI), derived from the existing modified triangular vegetation index and a single band reflectance at 531 nm, was proposed and employed to estimate Car canopy content. We tested the potential of three categories of hyperspectral indices earlier proposed for Car, Chl, Car/Chl ratio estimation, and the new CTRI index, for Car canopy content assessment in winter wheat and corn. Spectral reflectance representing plant canopies were simulated using the PROSPECT and SAIL radiative transfer model, with the aim of analyzing saturation effects of these indices, as well as Chl effects on the relationship between spectral indices and Car content. The result showed that the majority of the spectral indices tested, saturated with the increase of Car canopy content above 28 to 64 μg/cm2. Conversely, the CTRI index was more robust and was linearly and highly sensitive to Car content in winter wheat and corn datasets, with coefficients of determination of 0.92 and 0.75, respectively. The corresponding root mean square error of prediction were 6.01 and 9.70 μg/cm2, respectively. Furthermore, the CTRI index did not show a saturation effect and was not greatly influenced by changes of Chl values, outperforming all the other indices tested. Estimation of Car canopy content using the CTRI index provides an insight into diagnosing plant physiological status and environmental stress.

  16. Uncertainty in Forest Net Present Value Estimations

    Directory of Open Access Journals (Sweden)

    Ilona Pietilä

    2010-09-01

    Full Text Available Uncertainty related to inventory data, growth models and timber price fluctuation was investigated in the assessment of forest property net present value (NPV. The degree of uncertainty associated with inventory data was obtained from previous area-based airborne laser scanning (ALS inventory studies. The study was performed, applying the Monte Carlo simulation, using stand-level growth and yield projection models and three alternative rates of interest (3, 4 and 5%. Timber price fluctuation was portrayed with geometric mean-reverting (GMR price models. The analysis was conducted for four alternative forest properties having varying compartment structures: (A a property having an even development class distribution, (B sapling stands, (C young thinning stands, and (D mature stands. Simulations resulted in predicted yield value (predicted NPV distributions at both stand and property levels. Our results showed that ALS inventory errors were the most prominent source of uncertainty, leading to a 5.1–7.5% relative deviation of property-level NPV when an interest rate of 3% was applied. Interestingly, ALS inventory led to significant biases at the property level, ranging from 8.9% to 14.1% (3% interest rate. ALS inventory-based bias was the most significant in mature stand properties. Errors related to the growth predictions led to a relative standard deviation in NPV, varying from 1.5% to 4.1%. Growth model-related uncertainty was most significant in sapling stand properties. Timber price fluctuation caused the relative standard deviations ranged from 3.4% to 6.4% (3% interest rate. The combined relative variation caused by inventory errors, growth model errors and timber price fluctuation varied, depending on the property type and applied rates of interest, from 6.4% to 12.6%. By applying the methodology described here, one may take into account the effects of various uncertainty factors in the prediction of forest yield value and to supply the

  17. Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867...

  18. Kalman filter to update forest cover estimates

    Science.gov (United States)

    Raymond L. Czaplewski

    1990-01-01

    The Kalman filter is a statistical estimator that combines a time-series of independent estimates, using a prediction model that describes expected changes in the state of a system over time. An expensive inventory can be updated using model predictions that are adjusted with more recent, but less expensive and precise, monitoring data. The concepts of the Kalman...

  19. Biomass estimation as a function of vertical forest structure and forest height: potential and limitations for radar remote sensing

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Biber, Peter; Pretzsch, Hans

    2010-01-01

    One common method to estimate biomass is measuring forest height and applying allometric equations to get forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this purpose vertical biomass profiles were calculated usi...

  20. Soil phosphorus fractionation as a tool for monitoring dust phosphorus signature underneath a Blue Pine (Pinus wallichiana) canopy in a Temperate Forest

    Energy Technology Data Exchange (ETDEWEB)

    Shafqat, M.N.; Shahid, S.; Eqani, S.A.M.A.S.; Shah, S.H.; Waseem, A.

    2016-07-01

    Aim of the study: This study aims (i) to monitor the amount of dust deposition during dry season in the moist temperate forest; (ii) to study nature of P fractions in the dust samples falling on the trees in the region; (iii) to study soil P fractions as influenced by the processes of throughfall and stemflow of a Blue Pine (Pinus wallichiana) canopy and to finger print the contribution of dust towards P input in the temperate forest ecosystem. Area of study: The site used for the collection of soil samples was situated at an elevation of 6900 feet above sea levels (temperate forest in Himalaya region) in the Thandani area national forest located in the north west of Pakistan. Material and methods: For soil sampling and processing, three forest sites with three old tree plants per site were selected at approximately leveled plain for surface soil sampling. Two dust samples were collected and analyzed for different physicochemical properties along with different P fractions. First dust sample was collected from a site situated at an elevation of 4000 feet and second one was collected from an elevation of 6500 feet above sea levels. Modified Hedley procedure for the fractionation of P in the dust and soil samples were used. Main results: The input of dust was 43 and 20 kg ha-1 during drier months of the year (September-June) at lower and higher elevation sites respectively, and the dust from lower elevation site had relative more all P fractions than the other dust sample. However, HCl-Pi fraction was dominant in both samples. Both labile (water plus NaHCO3) and non-labile (NaOH plus HCl) inorganic P (Pi) fractions were significantly increased in the surface soil by both stemflow and throughfall compared to the open field soil. The buildup of NaOH and HCl-Pi pools in soils underneath the canopy might prove useful in fingerprinting the contribution of atmospheric dust towards P cycling in this temperate forest. Research highlights: The role of dust in the cycling of P

  1. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    Science.gov (United States)

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  2. Fire spread estimation on forest wildfire using ensemble kalman filter

    Science.gov (United States)

    Syarifah, Wardatus; Apriliani, Erna

    2018-04-01

    Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.

  3. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    Science.gov (United States)

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf

  4. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data

    Directory of Open Access Journals (Sweden)

    Ramakrishna R. Nemani

    2012-01-01

    Full Text Available Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP, a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of different vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS in capturing the seasonal and the annual variability of GPP estimates from an optimal network of 21 FLUXNET forest towers sites. The tested indices include the Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, Leaf Area Index (LAI, and Fraction of Photosynthetically Active Radiation absorbed by plant canopies (FPAR. Our results indicated that single vegetation indices captured 50–80% of the variability of tower-estimated GPP, but no one index performed universally well in all situations. In particular, EVI outperformed the other MODIS products in tracking seasonal variations in tower-estimated GPP, but annual mean MODIS LAI was the best estimator of the spatial distribution of annual flux-tower GPP (GPP = 615 × LAI − 376, where GPP is in g C/m2/year. This simple algorithm rehabilitated earlier approaches linking ground measurements of LAI to flux-tower estimates of GPP and produced annual GPP estimates comparable to the MODIS 17 GPP product. As such, remote sensing-based estimates of GPP continue to offer a useful alternative to estimates from biophysical models, and the choice of the most appropriate approach depends on whether the estimates are required at annual or sub-annual temporal resolution.

  5. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data

    Science.gov (United States)

    Scott V. Ollinger; Marie-Louise Smith

    2005-01-01

    Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...

  6. Climate, canopy disturbance, and radial growth averaging in a second-growth mixed-oak forest in West Virginia, USA

    Science.gov (United States)

    James S. Rentch; B. Desta Fekedulegn; Gary W. Miller

    2002-01-01

    This study evaluated the use of radial growth averaging as a technique of identifying canopy disturbances in a thinned 55-year-old mixed-oak stand in West Virginia. We used analysis of variance to determine the time interval (averaging period) and lag period (time between thinning and growth increase) that best captured the growth increase associated with different...

  7. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  8. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    Science.gov (United States)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used

  9. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Zhang, J.W.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.; Davis, D.D.; Steiner, K.C.

    2005-01-01

    The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (ψ L ) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g wv ) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P n ), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P wv and P n demonstrate the strong influence of heterogeneous environmental conditions within forest canopies. - Within the heterogeneous environment of a mature forest, many factors in addition to soil moisture play a significant role in determining exposure/response relationships to ozone

  10. Considerations in Forest Growth Estimation Between Two Measurements of Mapped Forest Inventory Plots

    Science.gov (United States)

    Michael T. Thompson

    2006-01-01

    Several aspects of the enhanced Forest Inventory and Analysis (FIA) program?s national plot design complicate change estimation. The design incorporates up to three separate plot sizes (microplot, subplot, and macroplot) to sample trees of different sizes. Because multiple plot sizes are involved, change estimators designed for polyareal plot sampling, such as those...

  11. Within-canopy sesquiterpene ozonolysis in Amazonia

    Science.gov (United States)

    Jardine, K.; YañEz Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; van Haren, J.; Artaxo, P.; Rizzo, L. V.; Ishida, F. Y.; Karl, T.; Kesselmeier, J.; Saleska, S.; Huxman, T.

    2011-10-01

    Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m-2 s-1 due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.

  12. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    Science.gov (United States)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  13. Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure

    Science.gov (United States)

    Carlos A. Gonzalez-Benecke; Eric J. Jokela; Wendell P. Cropper; Rosvel Bracho; Daniel J. Leduc

    2014-01-01

    The forest simulation model, 3-PG, has been widely applied as a useful tool for predicting growth of forest species in many countries. The model has the capability to estimate the effects of management, climate and site characteristics on many stand attributes using easily available data. Currently, there is an increasing interest in estimating biomass and assessing...

  14. Turbulent mixing and removal of ozone within an Amazon rainforest canopy

    Science.gov (United States)

    Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.

    2017-03-01

    Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.

  15. REGIONAL ESTIMATION OF CURRENT AND FUTURE FOREST BIOMASS. (R828785)

    Science.gov (United States)

    The 90,674 wildland fires that burned 2.9 million ha at an estimated suppression cost of $1.6 billion in the United States during the 2000 fire season demonstrated that forest fuel loading has become a hazard to life, property, and ecosystem health as a result of past fire exc...

  16. Estimating tree species richness from forest inventory plot data

    Science.gov (United States)

    Ronald E. McRoberts; Dacia M. Meneguzzo

    2007-01-01

    Montreal Process Criterion 1, Conservation of Biological Diversity, expresses species diversity in terms of number of forest dependent species. Species richness, defined as the total number of species present, is a common metric for analyzing species diversity. A crucial difficulty in estimating species richness from sample data obtained from sources such as inventory...

  17. Effects of model choice and forest structure on inventory-based estimations of Puerto Rican forest biomass

    Science.gov (United States)

    Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo

    2005-01-01

    Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...

  18. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    Science.gov (United States)

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved

  19. Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm

    Science.gov (United States)

    Zhang, Yuan; Yang, Bin; Liu, Xiaohui; Wang, Cuizhen

    2017-05-01

    Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations. Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA's parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.

  20. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen

    Science.gov (United States)

    Marie-Louise Smith; Scott V. Ollinger; Mary E. Martin; John D. Aber; Richard A. Hallett; Christine L. Goodale

    2002-01-01

    The concentration of nitrogen in foliage has been related to rates of net photosynthesis across a wide range of plant species and functional groups and thus represents a simple and biologically meaningful link between terrestrial cycles of carbon and nitrogen. Although foliar N is used by ecosystem models to predict rates of leaf-level photosynthesis, it has rarely...

  1. Uncertainty of Forest Biomass Estimates in North Temperate Forests Due to Allometry: Implications for Remote Sensing

    Directory of Open Access Journals (Sweden)

    Razi Ahmed

    2013-06-01

    Full Text Available Estimates of above ground biomass density in forests are crucial for refining global climate models and understanding climate change. Although data from field studies can be aggregated to estimate carbon stocks on global scales, the sparsity of such field data, temporal heterogeneity and methodological variations introduce large errors. Remote sensing measurements from spaceborne sensors are a realistic alternative for global carbon accounting; however, the uncertainty of such measurements is not well known and remains an active area of research. This article describes an effort to collect field data at the Harvard and Howland Forest sites, set in the temperate forests of the Northeastern United States in an attempt to establish ground truth forest biomass for calibration of remote sensing measurements. We present an assessment of the quality of ground truth biomass estimates derived from three different sets of diameter-based allometric equations over the Harvard and Howland Forests to establish the contribution of errors in ground truth data to the error in biomass estimates from remote sensing measurements.

  2. Mapping Tropical Rainforest Canopy Disturbances in 3D by COSMO-SkyMed Spotlight InSAR-Stereo Data to Detect Areas of Forest Degradation

    Directory of Open Access Journals (Sweden)

    Manuela Hirschmugl

    2013-02-01

    Full Text Available Assessment of forest degradation has been emphasized as an important issue for emission calculations, but remote sensing based detecting of forest degradation is still in an early phase of development. The use of optical imagery for degradation assessment in the tropics is limited due to frequent cloud cover. Recent studies based on radar data often focus on classification approaches of 2D backscatter. In this study, we describe a method to detect areas affected by forest degradation from digital surface models derived from COSMO-SkyMed X-band Spotlight InSAR-Stereo Data. Two test sites with recent logging activities were chosen in Cameroon and in the Republic of Congo. Using the full resolution COSMO-SkyMed digital surface model and a 90-m resolution Shuttle Radar Topography Mission model or a mean filtered digital surface model we calculate difference models to detect canopy disturbances. The extracted disturbance gaps are aggregated to potential degradation areas and then evaluated with respect to reference areas extracted from RapidEye and Quickbird optical imagery. Results show overall accuracies above 75% for assessing degradation areas with the presented methods.

  3. Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; James E. Smith; James A. Westfall; Ronald E. McRoberts

    2012-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth and their management has been recognized as a relatively cost-effective strategy for offsetting greenhouse gas emissions. Forest carbon stocks in the U.S. are estimated using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program. In an attempt to balance accuracy with...

  4. The dynamics of aerosol behaviour and fate within spruce canopies

    International Nuclear Information System (INIS)

    Ould-Dada, Zitouni

    1996-01-01

    the top and at the base of the canopy, respectively. Fluxes were significantly higher to stems (70.74% of total flux) than to needles (29.26%) reflecting the importance of such elements within the tree canopy. Dry deposition of submicron particles is likely to be an important contributor to the total deposition of airborne pollutants to forests. Various studies have been carried out in the wind tunnel as well as in the field over tree canopies using both radioactive and non radioactive aerosols. The results reported exhibited, however, a discrepancy between the small wind tunnel V g s and the larger field values. The results collected in the present work support the larger field values. In the real environment, forests are rarely horizontally homogeneous over a large distance and forest edges are common features of the rural landscape. Forest edges and other inhomogeneities of forests may significantly enhance dry deposition to a landscape and hence giving rise to considerable uncertainty when assessing the spatial variation of deposited activities. In the present work, the possible enhancement of aerosol deposition at the edge of a stand of trees was examined in the wind tunnel using 0.82 μm VMAD uranium particles and a composite canopy of rye grass and spruce saplings. Deposition flux was about three times higher at the edge of the 'forest' than inside the canopy. Resuspension rate estimates of submicron aerosol particles from forest canopies have not previously been reported in the literature. It was thus intended to redress this deficiency using wind tunnel derived measurements of particle fluxes from five horizontal layers within identical spruce canopies used for the deposition experiment. This provided quantitative estimates of the potential for a tree canopy to provide i) an airborne inhalation hazard within the forest environment and ii) a secondary source of airborne contamination after an initial deposition event. A mean resuspension rate (Λ) of 2.57 x 10

  5. Indirect approach for estimation of forest degradation in non-intact dry forest

    DEFF Research Database (Denmark)

    Dons, Klaus; Bhattarai, Sushma; Meilby, Henrik

    2016-01-01

    Background Implementation of REDD+ requires measurement and monitoring of carbon emissions from forest degradation in developing countries. Dry forests cover about 40 % of the total tropical forest area, are home to large populations, and hence often display high disturbance levels....... They are susceptible to gradual but persistent degradation and monitoring needs to be low cost due to the low potential benefit from carbon accumulation per unit area. Indirect remote sensing approaches may provide estimates of subsistence wood extraction, but sampling of biomass loss produces zero-inflated continuous...... data that challenges conventional statistical approaches. We introduce the use of Tweedie Compound Poisson distributions from the exponential dispersion family with Generalized Linear Models (CPGLM) to predict biomass loss as a function of distance to nearest settlement in two forest areas in Tanzania...

  6. Effects of satellite image spatial aggregation and resolution on estimates of forest land area

    Science.gov (United States)

    M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer

    2009-01-01

    Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...

  7. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].

    Science.gov (United States)

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang

    2014-08-01

    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  8. Do canopy disturbances drive forest plantations into more natural conditions? — A case study from Can Gio Biosphere Reserve, Viet Nam

    Science.gov (United States)

    Vogt, Juliane; Kautz, Markus; Fontalvo Herazo, Martha Liliana; Triet, Tran; Walther, Denny; Saint-Paul, Ulrich; Diele, Karen; Berger, Uta

    2013-11-01

    Large areas of mangrove forests were devastated in South Viet Nam during the second Indochina war. After its end in 1975, extensive reforestation with monocultures took place. Can Gio, one of the biggest replanted sites with about 20,000 ha of mangroves mainly Rhizophora apiculata, was declared a biosphere reserve by the UNESCO in 2000. Although this status now enables progressive forest dynamics, there are still drawbacks resulting from the unnatural character of the plantations. For example, the homogeneous size and age structure as well as the regular arrangement of the planted trees make larger forest stands more vulnerable to synchronized collapsing which can be triggered by stronger winds and storms. A transformation into a more natural forest characterized by a heterogeneous age and size structure and a mixed species composition is of urgent need to avoid a synchronized dieback. In this study we test the capability of natural canopy disturbances (e.g. lightning strikes) to facilitate this transformation.Canopy gaps created by lightning strikes were detected and quantified by remote sensing techniques. SPOT satellite images from the years 2003, 2005 and 2007 provided information about the spatial distribution, size, shape, and formation frequency of the gaps. Lightning strike gaps were identified based on their shape and size. They form small openings (mean: 0.025 ha) and their yearly probability of occurrence was determined to be approximately 0.012 per hectare. Selected gaps were surveyed in the field in 2008 to complement the remote sensing data and to provide information upon forest structure and regeneration.Simulation experiments were carried out with the individual-based KiWi mangrove model for quantifying the influence of different lightning regimes on the vertical and horizontal structure of the R. apiculata plantation. In addition, we conducted simulations with a natural and thus randomly generated forest to compare the structure of the two

  9. Contribution and loading estimation of organochlorine pesticides from rain and canopy throughfall to runoff in an urban environment.

    Science.gov (United States)

    Zhang, Wei; Ye, Youbin; Tong, Yindong; Ou, Langbo; Hu, Dan; Wang, Xuejun

    2011-01-30

    Concentrations of OCPs in rain, canopy throughfall, and runoff water were measured in the Beijing metropolitan area during the rainy seasons from 2006 to 2007. This study was conducted to calculate the fluxes of OCPs in rain and canopy throughfall, as well as their contributions to runoff. At urban sites, the contribution of HCB and ΣHCHs from rainfall accounted for approximately 50% of the mass in runoff. At the site with significant coverage of landscaping trees, the HCB, ΣHCHs, and ΣDDTs from the net canopy throughfall accounted for approximately 10% of the mass in the runoff. Based on the data obtained in this study, loadings of OCPs (in μg) in rain, net canopy throughfall, and runoff water were calculated. The input of OCPs from rain and canopy throughfall water accounted for a significant portion of urban runoff. In cities undergoing rapid urban sprawl, monitoring and control of the transport of OCPs in urban runoff are essential for effective control of environmental hazards in surface water bodies. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    Science.gov (United States)

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  11. Estimating Catchment-Scale Snowpack Variability in Complex Forested Terrain, Valles Caldera National Preserve, NM

    Science.gov (United States)

    Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.

    2011-12-01

    Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of

  12. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  13. Use of GIS for estimating potential and actual forest biomass for continental South and Southeast Asia.

    Science.gov (United States)

    L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo

    1994-01-01

    A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.

  14. Species Turnover across Different Life Stages from Seedlings to Canopy Trees in Swamp Forests of Central Brazil

    Directory of Open Access Journals (Sweden)

    Clarissa G. Fontes

    2015-01-01

    Full Text Available Processes driving the assembly of swamp forest communities have been poorly explored. We analyzed natural regeneration and adult tree communities data of a swamp gallery forest in Central Brazil to discuss the role of ecological filters in shaping plant species turnover in a successional gradient. Species data of 120 plots were used to assess species turnover between natural regeneration and adult tree communities. Our analyses were based on 4995 individuals belonging to 72 species. Community patterns were discerned using ordination analyses. A clear floristic turnover among plant life stages was distinguished. Regeneration community of swamp forests was richer in species composition than the adult community. Tree species commonly found in nonflooded gallery forests were present in the regeneration plots but not in the adult community. Differences in the floristic composition of these two strata suggest that not all species in the seedling stage can stand permanent flooding conditions and only a few tolerant species survive to become adult trees. We propose that natural disturbances play an important role by altering limiting resources, allowing seeds of nonflooded forest species to germinate. This paper elucidates the turnover between plant life stages in swamp forests and suggests mechanisms that may shape these communities.

  15. Assessment of Different Remote Sensing Data for Forest Structural Attributes Estimation in the Hyrcanian forests

    Energy Technology Data Exchange (ETDEWEB)

    Nourian, N.; Shataee-Joibary, S.; Mohammadi, J.

    2016-07-01

    Aim of the study: The objective of the study was the comparative assessment of various spatial resolutions of optical satellite imagery including Landsat-TM, ASTER, and Quickbird data to estimate the forest structure attributes of Hyrcanian forests, Golestan province, northernIran. Material and methods: The 112 square plots with area of0.09 ha were measured using a random cluster sampling method and then stand volume, basal area, and tree stem density were computed using measured data. After geometric and atmospheric corrections of images, the spectral attributes from original and different synthetic bands were extracted for modelling. The statistical modelling was performed using CART algorithm. Performance assessment of models was examined using the unused validation plots by RMSE and bias measures. Main Results: The results showed that model of Quickbird data for stand volume, basal area, and tree stem density had a better performance compared to ASTER and TM data. However, estimations by ASTER and TM imagery had slightly similar results for all three parameters. Research highlights: This study exposed that the high-resolution satellite data are more useful for forest structure attributes estimation in the Hyrcanian broadleaves forests compared with medium resolution images without consideration of images costs. However, regarding to be free of the most medium resolution data such as ASTER and TM,ETM+ or OLI images, these data can be used with slightly similar results. (Author)

  16. Scaling gross ecosystem production at Harvard Forest with remote sensing: a comparison of estimates from a constrained quantum-use efficiency model and eddy correlation

    International Nuclear Information System (INIS)

    Waring, R.H.; Law, B.E.; Goulden, M.L.; Bassow, S.L.; McCreight, R.W.; Wofsy, S.C.; Bazzaz, F.A.

    1995-01-01

    Two independent methods of estimating gross ecosystem production (GEP) were compared over a period of 2 years at monthly integrals for a mixed forest of conifers and deciduous hardwoods at Harvard Forest in central Massachusetts. Continuous eddy flux measurements of net ecosystem exchange (NEE) provided one estimate of GEP by taking day to night temperature differences into account to estimate autotrophic and heterotrophic respiration. GEP was also estimated with a quantum efficiency model based on measurements of maximum quantum efficiency (Qmax), seasonal variation in canopy phenology and chlorophyll content, incident PAR, and the constraints of freezing temperatures and vapour pressure deficits on stomatal conductance. Quantum efficiency model estimates of GEP and those derived from eddy flux measurements compared well at monthly integrals over two consecutive years (R 2 = 0–98). Remotely sensed data were acquired seasonally with an ultralight aircraft to provide a means of scaling the leaf area and leaf pigmentation changes that affected the light absorption of photosynthetically active radiation to larger areas. A linear correlation between chlorophyll concentrations in the upper canopy leaves of four hardwood species and their quantum efficiencies (R 2 = 0–99) suggested that seasonal changes in quantum efficiency for the entire canopy can be quantified with remotely sensed indices of chlorophyll. Analysis of video data collected from the ultralight aircraft indicated that the fraction of conifer cover varied from < 7% near the instrument tower to about 25% for a larger sized area. At 25% conifer cover, the quantum efficiency model predicted an increase in the estimate of annual GEP of < 5% because unfavourable environmental conditions limited conifer photosynthesis in much of the non-growing season when hardwoods lacked leaves

  17. Estimating Carbon Dynamics in an Intact Lowland Mixed Dipterocarp Forest Using a Forest Carbon Model

    Directory of Open Access Journals (Sweden)

    Jongyeol Lee

    2017-04-01

    Full Text Available Intact dipterocarp forests in Asia act as crucial carbon (C reservoirs, and it is therefore important to investigate the C dynamics in these forests. We estimated C dynamics, together with net ecosystem production (NEP, in an intact tropical dipterocarp forest of Brunei Darussalam. Fifty-four simulation units (plots; 20 m × 20 m were established and initial C stocks were determined via direct field measurement. The C dynamics were annually simulated with a regression model and the Forest Biomass and Dead organic matter Carbon (FBDC model. The initial C stock (Mg C·ha−1 of biomass, litter, dead wood and mineral soil were 213.1 ± 104.8, 2.0 ± 0.8, 31.3 ± 38.8, and 80.7 ± 15.5, respectively. Their annual changes (Mg C·ha−1·year−1 were 3.2 ± 1.1, 0.2 ± 0.2, −3.7 ± 6.1, and −0.3 ± 1.1, respectively. NEP was −0.6 ± 6.1 Mg C·ha−1·year−1, showing large heterogeneity among the plots. The initial C stocks of biomass and dead wood, biomass turnover rates and dead wood decay rates were elucidated as dominant factors determining NEP in a sensitivity analysis. Accordingly, investigation on those input data can constrain an uncertainty in determining NEP in the intact tropical forests.

  18. Estimating diesel fuel consumption and carbon dioxide emissions from forest road construction

    Science.gov (United States)

    Dan Loeffler; Greg Jones; Nikolaus Vonessen; Sean Healey; Woodam Chung

    2009-01-01

    Forest access road construction is a necessary component of many on-the-ground forest vegetation treatment projects. However, the fuel energy requirements and associated carbon dioxide emissions from forest road construction are unknown. We present a method for estimating diesel fuel consumed and related carbon dioxide emissions from constructing forest roads using...

  19. Estimating down dead wood from FIA forest inventory variables in Maine

    Science.gov (United States)

    David C. Chojnacky; Linda S. Heath

    2002-01-01

    Down deadwood (DDW) is a carbon component important in the function and structure of forest ecosystems, but estimating DDW is problematic because these data are not widely available in forest inventory databases. However, DDW data were collected on USDA Forest Service Forest Inventory and Analysis (FIA) plots during Maine's 1995 inventory. This study examines ways...

  20. From forest floor to the canopy: life history of secondary hemiepiphytes (Heteropsis species) in the Colombian Amazon

    NARCIS (Netherlands)

    Balcazar Vargas, M.P.

    2013-01-01

    The ecology of hemiepiphytes is very poorly understood. More appalling is the lack of information on hemiepiphyte vital rates and demography. Such information is essential to understand the ecology, management and conservation of this group that is an important component of tropical forest. In this

  1. Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingchang; Wang, Chuankuan; Bond-Lamberty, Benjamin

    2017-12-15

    Carbon dioxide (CO2) fluxes between terrestrial ecosystems and the atmosphere are primarily measured with eddy covariance (EC), biometric, and chamber methods. However, it is unclear why the estimates of CO2-fluxes, when measured using these different methods, converge at some sites but diverge at others. We synthesized a novel global dataset of forest CO2-fluxes to evaluate the consistency between EC and biometric or chamber methods for quantifying CO2 budget in forests. The EC approach, comparing with the other two methods, tended to produce 25% higher estimate of net ecosystem production (NEP, 0.52Mg C ha-1 yr-1), mainly resulting from lower EC-estimated Re; 10% lower ecosystem respiration (Re, 1.39Mg C ha-1 yr-1); and 3% lower gross primary production (0.48 Mg C ha-1 yr-1) The discrepancies between EC and the other methods were higher at sites with complex topography and dense canopies versus those with flat topography and open canopies. Forest age also influenced the discrepancy through the change of leaf area index. The open-path EC system induced >50% of the discrepancy in NEP, presumably due to its surface heating effect. These results provided strong evidence that EC produces biased estimates of NEP and Re in forest ecosystems. A global extrapolation suggested that the discrepancies in CO2 fluxes between methods were consistent with a global underestimation of Re, and overestimation of NEP, by the EC method. Accounting for these discrepancies would substantially improve the our estimates of the terrestrial carbon budget .

  2. Assessing Error Correlations in Remote Sensing-Based Estimates of Forest Attributes for Improved Composite Estimation

    Directory of Open Access Journals (Sweden)

    Sarah Ehlers

    2018-04-01

    Full Text Available Today, non-expensive remote sensing (RS data from different sensors and platforms can be obtained at short intervals and be used for assessing several kinds of forest characteristics at the level of plots, stands and landscapes. Methods such as composite estimation and data assimilation can be used for combining the different sources of information to obtain up-to-date and precise estimates of the characteristics of interest. In composite estimation a standard procedure is to assign weights to the different individual estimates inversely proportional to their variance. However, in case the estimates are correlated, the correlations must be considered in assigning weights or otherwise a composite estimator may be inefficient and its variance be underestimated. In this study we assessed the correlation of plot level estimates of forest characteristics from different RS datasets, between assessments using the same type of sensor as well as across different sensors. The RS data evaluated were SPOT-5 multispectral data, 3D airborne laser scanning data, and TanDEM-X interferometric radar data. Studies were made for plot level mean diameter, mean height, and growing stock volume. All data were acquired from a test site dominated by coniferous forest in southern Sweden. We found that the correlation between plot level estimates based on the same type of RS data were positive and strong, whereas the correlations between estimates using different sources of RS data were not as strong, and weaker for mean height than for mean diameter and volume. The implications of such correlations in composite estimation are demonstrated and it is discussed how correlations may affect results from data assimilation procedures.

  3. Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest.

    Science.gov (United States)

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-03-01

    Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s(-1), respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s(-1) in August and the lowest of 0.09 cm s(-1) in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s(-1) (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. High resolution modelling of atmosphere-canopy exchange of acidifying and eutrophying components and carbon dioxide for European forests

    International Nuclear Information System (INIS)

    Pieterse, G.; Bleeker, A.; Vermeulen, A.T.; Erisman, J.W.; Wu, Y.

    2007-01-01

    The Integrated Deposition Model (IDEM) was improved by incorporating a novel multilayer biochemical dry deposition module for gases. The aerosol and base cation deposition module was adopted from IDEM. For evaluation of primary and ecosystem productivity, carbon respiration schemes were included. The resulting Framework for Atmosphere-Canopy Exchange Modelling (FACEM) was then evaluated by the case studies presented here. First, results for deposition of SO x , NO y and NH x were compared with site observations, showing correlations of up to R2 = 0.60. Applicability for grid deposition calculations for these compounds was then evaluated for Europe. The model was clearly able to reproduce the elevated deposition near the important emission areas in Europe. Next, we compared the modelled CO 2 fluxes with measurements from 26 European sites. Correlations of up to R2 = 0.81 indicate good performance. To evaluate grid performance, the 2003 European heat wave was studied in a final case study, resulting in convincing correspondence with the observed productivity anomalies

  5. [Distribution patterns of canopy and understory tree species at local scale in a Tierra Firme forest, the Colombian Amazonia].

    Science.gov (United States)

    Barreto-Silva, Juan Sebastian; López, Dairon Cárdenas; Montoya, Alvaro Javier Duque

    2014-03-01

    The effect of environmental variation on the structure of tree communities in tropical forests is still under debate. There is evidence that in landscapes like Tierra Firme forest, where the environmental gradient decreases at a local level, the effect of soil on the distribution patterns of plant species is minimal, happens to be random or is due to biological processes. In contrast, in studies with different kinds of plants from tropical forests, a greater effect on floristic composition of varying soil and topography has been reported. To assess this, the current study was carried out in a permanent plot of ten hectares in the Amacayacu National Park, Colombian Amazonia. To run the analysis, floristic and environmental variations were obtained according to tree species abundance categories and growth forms. In order to quantify the role played by both environmental filtering and dispersal limitation, the variation of the spatial configuration was included. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the species distribution patterns. The spatial template was evaluated using the Principal Coordinates of Neighbor Matrix method. We recorded 14 074 individuals from 1 053 species and 80 families. The most abundant families were Myristicaceae, Moraceae, Meliaceae, Arecaceae and Lecythidaceae, coinciding with other studies from Northwest Amazonia. Beta diversity was relatively low within the plot. Soils were very poor, had high aluminum concentration and were predominantly clayey. The floristic differences explained along the ten hectares plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on Tierra Firme

  6. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    Science.gov (United States)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the f