WorldWideScience

Sample records for estimated effective dose

  1. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  2. Estimation of effective dose during hysterosalpingography procedures

    International Nuclear Information System (INIS)

    Alzimamil, K.; Babikir, E.; Alkhorayef, M.; Sulieman, A.; Alsafi, K.; Omer, H.

    2014-08-01

    Hysterosalpingography (HSG) is the most frequently used diagnostic tool to evaluate the endometrial cavity and fallopian tube by using conventional x-ray or fluoroscopy. Determination of the patient radiation doses values from x-ray examinations provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimize the protection of the patients. The aims of this study were to measure the patients entrance surface air kerma doses (ESA K), effective doses and to compare practices between different hospitals in Sudan. ESA K were measured for patient using calibrated thermo luminance dosimeters (TLDs, Gr-200A). Effective doses were estimated using National Radiological Protection Board (NRPB) software. This study was conducted in five radiological departments: Two Teaching Hospitals (A and D), two private hospitals (B and C) and one University Hospital (E). The mean ESD was 20.1 mGy, 28.9 mGy, 13.6 mGy, 58.65 mGy, 35.7, 22.4 and 19.6 mGy for hospitals A,B,C,D, and E), respectively. The mean effective dose was 2.4 mSv, 3.5 mSv, 1.6 mSv, 7.1 mSv and 4.3 mSv in the same order. The study showed wide variations in the ESDs with three of the hospitals having values above the internationally reported values. Number of x-ray images, fluoroscopy time, operator skills x-ray machine type and clinical complexity of the procedures were shown to be major contributors to the variations reported. Results demonstrated the need for standardization of technique throughout the hospital. The results also suggest that there is a need to optimize the procedures. Local DRLs were proposed for the entire procedures. (author)

  3. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  4. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ

  5. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  6. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  7. Estimation of effective dose equivalente from external irradiations

    International Nuclear Information System (INIS)

    Wakabayashi, T.

    1985-07-01

    A methodology for computing effective dose equivalent, derived from the computer code ALGAM: Monte Carlo Estimation of Internal Dose from Gamma-ray Sources in a Phantom Man, developed at Oak Ridge National Laboratory, is presented. The modified code was run for 12 different photon energy levels, from 0,010 Mev to 4.0 Mev, which provides computing the absorved dose, for these energy levels, in each one of the 97 organs of the original code. The code also was run for the principal energy levels used in the calibration of the dosimetric films. The results of the absorved doses per photon obtained for these levels of energy have been transformed in effective dose equivalents. (M.A.C.) [pt

  8. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  9. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  10. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  11. Collective effective dose equivalent, population doses and risk estimates from occupational exposures in Japan

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Nishizawa, Kanae; Kumamoto, Yoshikazu; Iwai, Kazuo; Mase, Naomichi.

    1993-01-01

    Collective dose equivalent and population dose from occupational exposures in Japan, 1988 were estimated on the basis of a nationwide survey. The survey was conducted on annual collective dose equivalents by sex, age group and type of radiation work for about 0.21 million workers except for the workers in nuclear power stations. The data on the workers in nuclear power stations were obtained from the official report of the Japan Nuclear Safety Commission. The total number of workers including nuclear power stations was estimated to be about 0.26 million. Radiation works were subdivided as follows: medical works including dental; non-atomic energy industry; research and education; atomic energy industry and nuclear power station. For the determination of effective dose equivalent and population dose, organ or tissue doses were measured with a phantom experiment. The resultant doses were compared with the doses previously calculated using a chord length technique and with data from ICRP publications. The annual collective effective dose equivalent were estimated to be about 21.94 person·Sv for medical workers, 7.73 person·Sv for industrial workers, 0.75 person·Sv for research and educational workers, 2.48 person·Sv for atomic energy industry and 84.4 person ·Sv for workers in nuclear power station. The population doses were calculated to be about 1.07 Sv for genetically significant dose, 0.89 Sv for leukemia significant dose and 0.42 Sv for malignant significant dose. The population risks were estimated using these population doses. (author)

  12. Estimation of effective dose for children in interventional cardiology

    Directory of Open Access Journals (Sweden)

    S. S. Sarycheva

    2017-01-01

    Full Text Available This study is devoted to the estimation of effective dose for children undergoing interventional cardiology examinations. The conversion coefficients (CC from directly measured dose area product (DAP value to effective dose (ED were calculated within the approved effective dose assessment methodology (Guidelines 2.6.1. 2944-11. The CC, Ed K , [mSv / (Gy • cm2] for newborn infants and children of 1, 5, 10 and 15 years old (main(range were calculated as 2.5 (1.8-3.2; 1.1 (0.8-1.3; 0.6 (0.4-0.7; 0.4 (0.3-0.5; and 0,22 (0,18-0,30 respectively. A special Finnish computer program PCXMC 2.0 was used for calculating the dose CC. The series of calculations were made for different values of the physical and geometrical parameters based on their real-existing range of values. The value of CC from DAP to ED were calculated for all pediatric age groups. This work included 153 pediatric interventional studies carried out in two hospitals of the city of St. Petersburg for the period of one year from the summer of 2015. The dose CC dependency from the patient’s age and parameters of the examinations were under the study. The dependence from the beam quality (filtration and tube voltage and age of the patient were found. The younger is the patient, stronger is the filtration and higher is the voltage, the higher is the CC value. The CC in the younger (newborn and older (15 years age groups are different by the factor of 10. It was shown that the changes of the geometric parameters (in the scope of their real existing range have small effect on the value of the effective dose, not exceed 30-50% allowable for radiation protection purpose. The real values of effective doses of children undergoing cardiac interventions were estimated. In severe cases, the values of ED can reach several tens of mSv.

  13. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  14. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  15. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    calculated to be 0.124 mSv (ICRP60) [0.134 mSv (ICRP103)]. This is less than 75% of that predicted by scaling of the PA mA s ratio. This lower dose was due to changes in the focal-spot-to-skin distance, effective changes in collimation with projection angle, rounding down of the mA s step, and variations in organ exposure to the primary x-ray beam for each view. Large errors in dose estimation can occur if these factors are not accurately modeled. Conclusions: The effective dose of a chest examination with this chest tomosynthesis system is about twice that of a two-view chest examination and less than 2% of the published average values for thoracic CT. It is shown that complete consideration of the tomosynthesis acquisition technique and geometry is required for accurate determination of the effective dose to the patient. Tomosynthesis provides three-dimensional imaging at a dose level comparable to a two-view chest x-ray examination and may provide a low dose alternative to thoracic CT for obtaining depth information in chest imaging.

  16. A PC program for estimating organ dose and effective dose values in computed tomography

    International Nuclear Information System (INIS)

    Kalender, W.A.; Schmidt, B.; Schmidt, M.; Zankl, M.

    1999-01-01

    Dose values in CT are specified by the manufacturers for all CT systems and operating conditions in phantoms. It is not trivial, however, to derive dose values in patients from this information. Therefore, we have developed a PC-based program which calculates organ dose and effective dose values for arbitrary scan parameters and anatomical ranges. Values for primary radiation are derived from measurements or manufacturer specifications; values for scattered radiation are derived from Monte Carlo calculations tabulated for standard anthropomorphic phantoms. Based on these values, organ doses can be computed by the program for arbitrary scan protocols in conventional and in spiral CT. Effective dose values are also provided, both with ICRP 26 and ICRP 60 tissue-weighting coefficients. Results for several standard CT protocols are presented in tabular form in this paper. In addition, potential for dose reduction is demonstrated, for example, in spiral CT and in quantitative CT. Providing realistic patient dose estimates for arbitrary CT protocols is relevant both for the physician and the patient, and it is particularly useful for educational and training purposes. The program, called WinDose, is now in use at the Erlangen University hospitals (Germany) as an information tool for radiologists and patients. Further extensions are planned. (orig.)

  17. The estimation of occupational effective dose in diagnostic radiology with two dosimeters

    International Nuclear Information System (INIS)

    Niklason, L.T.; Marx, M.V.; Chan, Heang-Ping

    1994-01-01

    Annual effective dose limits have been proposed by national and international radiation protection committees. Radiation protection agencies must decide upon a method of converting the radiation dose measured from dosimeters to an estimate of effective dose. A proposed method for the estimation of effective dose from the radiation dose to two dosimeters is presented. Correction factors are applied to an over-apron collar dose and an under-apron dose to estimate the effective dose. Correction factors are suggested for two cases, both with and without a thyroid shield. Effective dose may be estimated by the under-apron dose plus 6% of the over-collar dose if a thyroid shield is not worn or plus 2% of the over-collar dose if a thyroid shield is worn. This method provides a reasonable estimate of effective dose that is independent of lead apron thickness and accounts for the use of a thyroid shield. 17 refs., 3 tabs

  18. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  19. Estimation of effective dose from radionuclides contained in misch metal

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Aburai, Tamaru; Nisizawa, Kunihide

    2003-01-01

    Radionuclides contained in three kinds of misch metal products and two kinds of ingots were analyzed using a Ge (Li) semiconductor detector. Lanthanum-138 ( 138 La) and several daughter nuclides derived from thorium and uranium series were detected in all samples. All misch metal products and ingots were determined to be radioactive consumer products (RCP), although they have not been regarded as RCP in Japan. 138 La showed the highest nuclide content rate of all the radionuclides, and the lanthanum metal ingots displayed the highest specific activity at 720 mBq·g -1 . The maximum external effective dose was estimated to be at 3.7 mSv when a metal match was carried for 8,760 hours at 1 mm from the skin. The calculated effective dose under some conditions exceeded 10 μSv per year. This value corresponded to the exemption standard proposed by the UK's National Radiological Protection Board. Individuals working with large amounts of RCP should be appropriately protected. (author)

  20. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose- effect curve)

    International Nuclear Information System (INIS)

    Al Achkar, W.

    2002-01-01

    In order to draw a dose-effect curve, blood from eight healthy people were studied. Samples were irradiated in tubes with 0.15-2.5 gray of gamma ray.Irradiated and control samples were incubated for cell cultures. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics+ rings and total numbers of breaks were drawn. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  1. Effective dose estimation to patients and staff during urethrography procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Barakat, H.; Alkhorayef, M.; Babikir, E.; Dalton, A.; Bradley, D.

    2015-10-01

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  2. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  3. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    A method has been devised to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats, and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, some quantitative problems connected with estimating low-dose effects from other disciplines have been reviewed, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to human is discussed

  4. Can results from animal studies be used to estimate dose or low dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1981-01-01

    We have devised a method to extrapolate biological equilibrium levels between animal species and subsequently to humans. Our initial premise was based on the observation that radionuclide retention is normally a function of metabolism so that direct or indirect measures could be described by a power law based on body weights of test animal species. However, we found that such interspecies comparisons ought to be based on the coefficient of the power equation rather than on the exponential parameter. The method is illustrated using retention data obtained from five non-ruminant species (including humans) that were fed radionuclides with different properties. It appears that biological equilibrium level for radionuclides in man can be estimated using data from mice, rats and dogs. The need to extrapolate low-dose effects data obtained from small animals (usually rodents) to humans is not unique to radiation dosimetry or radiation protection problems. Therefore, researchers have reviewed some quantitative problems connected with estimating low-dose effects from other disciplines, both because of the concern about effects induced by the radionuclide moiety of a radiopharmaceutical and those of the nonradioactive component. The possibility of extrapolating low-dose effects calculated from animal studies to humans is discussed

  5. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2009-01-01

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  6. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E. [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia 5000 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Division of Medical Imaging, Women' s and Children' s Hospital, North Adelaide, South Australia 5006 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia)

    2009-09-15

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  7. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  8. The estimation of effective doses using measurement of several relevant physical parameters from radon exposures

    International Nuclear Information System (INIS)

    Ridzikova, A; Fronka, A.; Maly, B.; Moucka, L.

    2003-01-01

    In the present investigation, we will be study the dose relevant factors from continual monitoring in real homes into account getting more accurate estimation of 222 Rn the effective dose. The dose relevant parameters include the radon concentration, the equilibrium factor (f), the fraction (fp) of unattached radon decay products and real time occupancy people in home. The result of the measurement are the time courses of radon concentration that are based on estimation effective doses together with assessment of the real time occupancy people indoor. We found out by analysis that year effective dose is lower than effective dose estimated by ICRP recommendation from the integral measurement that included only average radon concentration. Our analysis of estimation effective doses using measurement of several physical parameters was made only in one case and for the better specification is important to measure in different real occupancy houses. (authors)

  9. Effects of exposure imprecision on estimation of the benchmark dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2004-01-01

    In regression analysis failure to adjust for imprecision in the exposure variable is likely to lead to underestimation of the exposure effect. However, the consequences of exposure error for determination of safe doses of toxic substances have so far not received much attention. The benchmark...... approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored......, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study...

  10. Estimating dose painting effects in radiotherapy: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Juan Carlos López Alfonso

    Full Text Available Tumor heterogeneity is widely considered to be a determinant factor in tumor progression and in particular in its recurrence after therapy. Unfortunately, current medical techniques are unable to deduce clinically relevant information about tumor heterogeneity by means of non-invasive methods. As a consequence, when radiotherapy is used as a treatment of choice, radiation dosimetries are prescribed under the assumption that the malignancy targeted is of a homogeneous nature. In this work we discuss the effects of different radiation dose distributions on heterogeneous tumors by means of an individual cell-based model. To that end, a case is considered where two tumor cell phenotypes are present, which we assume to strongly differ in their respective cell cycle duration and radiosensitivity properties. We show herein that, as a result of such differences, the spatial distribution of the corresponding phenotypes, whence the resulting tumor heterogeneity can be predicted as growth proceeds. In particular, we show that if we start from a situation where a majority of ordinary cancer cells (CCs and a minority of cancer stem cells (CSCs are randomly distributed, and we assume that the length of CSC cycle is significantly longer than that of CCs, then CSCs become concentrated at an inner region as tumor grows. As a consequence we obtain that if CSCs are assumed to be more resistant to radiation than CCs, heterogeneous dosimetries can be selected to enhance tumor control by boosting radiation in the region occupied by the more radioresistant tumor cell phenotype. It is also shown that, when compared with homogeneous dose distributions as those being currently delivered in clinical practice, such heterogeneous radiation dosimetries fare always better than their homogeneous counterparts. Finally, limitations to our assumptions and their resulting clinical implications will be discussed.

  11. The estimation of radiation effective dose from diagnostic medical procedures in general population of northern Iran

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Abdi, R.

    2006-01-01

    The risks of low-dose Ionizing radiation from radiology and nuclear medicine are not clearly determined. Effective dose to population is a very important factor in risk estimation. The study aimed to determine the effective dose from diagnostic radiation medicine in a northern province of Iran. Materials and Methods: Data about various radiologic and nuclear medicine procedures were collected from all radiology and nuclear medicine departments In Mazandaran Province (population = 2,898,031); and using the standard dosimetry tables, the total dose, dose per examination, and annual effective dose per capita as well as the annual gonadal dose per capita were estimated. Results: 655,730 radiologic examinations in a year's period, lead to 1.45 mSv, 0.33 mSv and 0.31 mGy as average effective dose per examination, annual average effective dose to member of the public, and annual average gonadal dose per capita, respectively. The frequency of medical radiologic examinations was 2,262 examinations annually per 10,000 members of population. However, the total number of nuclear medicine examinations in the same period was 7074, with 4.37 mSv, 9.6 μSv and 9.8 μGy, as average effective dose per examination, annual average effective dose to member of the public and annual average gonadal dose per caput, respectively. The frequency of nuclear medicine examination was 24 examinations annually per 10,000 members of population. Conclusion: The average effective dose per examination was nearly similar to other studies. However, the average annual effective dose and annual average gonadal dose per capita were less than the similar values in other reports, which could be due to lesser number of radiation medicine examinations in the present study

  12. ESTIMATION OF THE CONVERSION COEFFICIENTS FROM DOSE-AREA PRODUCT TO EFFECTIVE DOSE FOR BARIUM MEAL EXAMINATIONS FOR ADULT PATIENTS

    Directory of Open Access Journals (Sweden)

    A. V. Vodovatov

    2018-01-01

    Full Text Available Fluoroscopic examinations of the upper gastro-intestinal tract and, especially, barium meal examinations, are commonly performed in a majority of hospitals. These examinations are associated both with substantial individual patient doses and contribution to the collective dose from medical exposure. Effective dose estimation for this type of examinations is complicated due to: 1 the necessity to simulate the moving X-ray irradiation field; 2 differences in study structure for the individual patients; 3 subjectivity of the operators; and 4 differences in the X-ray equipment. The aim of the current study was to estimate conversion coefficients from dose-area product to effective dose for barium meal examinations for the over couch and under couch exposure conditions. The study was based on data collected in the X-ray unit of the surgical department of the St-Petersburg Mariinsky hospital. A model of patient exposure during barium meal examination was developed based on the collected data on fluoroscopy protocols and adult patient irradiation geometry. Conversion coefficients were calculated using PCXMC 2.0 software. Complete examinations were converted into a set of typical fluoroscopy phases and X-ray images, specified by the examined anatomical region and the projection of patient exposure. Conversion coefficients from dose-area product to effective dose were calculated for each phase of the examination and for the complete examination. The resulting values of the conversion coefficients are comparable with published data. Variations in the absolute values of the conversion coefficients can be explained by differences in clinical protocols, models for the estimation of the effective dose and parameters of barium meal examinations. The proposed approach for estimation of effective dose considers such important features of fluoroscopic examinations as: 1 non-uniform structure of examination, 2 significant movement of the X-ray tube within a single

  13. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters.

    Science.gov (United States)

    Miksys, Nelson; Gordon, Christopher L; Thomas, Karen; Connolly, Bairbre L

    2010-05-01

    The purpose of this study was to estimate the effective doses received by pediatric patients during interventional radiology procedures and to present those doses in "look-up tables" standardized according to minute of fluoroscopy and frame of digital subtraction angiography (DSA). Organ doses were measured with metal oxide semiconductor field effect transistor (MOSFET) dosimeters inserted within three anthropomorphic phantoms, representing children at ages 1, 5, and 10 years, at locations corresponding to radiosensitive organs. The phantoms were exposed to mock interventional radiology procedures of the head, chest, and abdomen using posteroanterior and lateral geometries, varying magnification, and fluoroscopy or DSA exposures. Effective doses were calculated from organ doses recorded by the MOSFET dosimeters and are presented in look-up tables according to the different age groups. The largest effective dose burden for fluoroscopy was recorded for posteroanterior and lateral abdominal procedures (0.2-1.1 mSv/min of fluoroscopy), whereas procedures of the head resulted in the lowest effective doses (0.02-0.08 mSv/min of fluoroscopy). DSA exposures of the abdomen imparted higher doses (0.02-0.07 mSv/DSA frame) than did those involving the head and chest. Patient doses during interventional procedures vary significantly depending on the type of procedure. User-friendly look-up tables may provide a helpful tool for health care providers in estimating effective doses for an individual procedure.

  14. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination

    International Nuclear Information System (INIS)

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-01-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms. (authors)

  15. Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia

    International Nuclear Information System (INIS)

    Skrk, Damijan; Zontar, Dejan

    2013-01-01

    A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures

  16. On the uncertainties in effective dose estimates of adult CT head scans

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Estimates of the effective dose to adult patients from computed tomography (CT) head scanning can be calculated using a number of different methods. These estimates can be used for a variety of purposes, such as improving scanning protocols, comparing different CT imaging centers, and weighing the benefits of the scan against the risk of radiation-induced cancer. The question arises: What is the uncertainty in these effective dose estimates? This study calculates the uncertainty of effective dose estimates produced by three computer programs (CT-EXPO, CTDosimetry, and ImpactDose) and one method that makes use of dose-length product (DLP) values. Uncertainties were calculated in accordance with an internationally recognized uncertainty analysis guide. For each of the four methods, the smallest and largest overall uncertainties (stated at the 95% confidence interval) were: 20%-31% (CT-EXPO), 15%-28% (CTDosimetry), 20%-36% (ImpactDose), and 22%-32% (DLP), respectively. The overall uncertainties for each method vary due to differences in the uncertainties of factors used in each method. The smallest uncertainties apply when the CT dose index for the scanner has been measured using a calibrated pencil ionization chamber

  17. Estimates of effective equivalent dose commitments for Slovene population following the Chernobyl accident

    International Nuclear Information System (INIS)

    Kanduc, M.; Jovanowic, O.; Kuhar, B.

    2004-01-01

    This paper shows the estimates of effective equivalent dose commitments for the two groups of Slovene population, 5 years old children and adults. Doses were calculated on the basis of the ICRP 30 methodology, first from the measurements of the concentrations of the radionuclides in air, water and food samples and then compared with the results of the measurements of radionuclides in composite samples of the prepared food, taken in the kindergarten nearby. Results show that there is certain degree of conservatism hidden in the calculation of the doses on the basis of measurements of the activity concentration in the elements of the biosphere and is estimated to be roughly 50%. (author)

  18. Estimation of organ and effective dose due to Compton backscatter security scans

    International Nuclear Information System (INIS)

    Hoppe, Michael E.; Schmidt, Taly Gilat

    2012-01-01

    Purpose: To estimate organ and effective radiation doses due to backscatter security scanners using Monte Carlo simulations and a voxelized phantom set. Methods: Voxelized phantoms of male and female adults and children were used with the GEANT4 toolkit to simulate a backscatter security scan. The backscatter system was modeled based on specifications available in the literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-aluminum-equivalent filtration and a previously measured exposure of approximately 4.6 μR at 30 cm from the source. Photons and secondary interactions were tracked from the source until they reached zero kinetic energy or exited from the simulation’s boundaries. The energy deposited in the phantoms’ respective organs was tallied and used to calculate total organ dose and total effective dose for frontal, rear, and full scans with subjects located 30 and 75 cm from the source. Results: For a full screen, all phantoms’ total effective doses were below the established 0.25 μSv standard, with an estimated maximum total effective dose of 0.07 μSv for full screen of a male child. The estimated maximum organ dose due to a full screen was 1.03 μGy, deposited in the adipose tissue of the male child phantom when located 30 cm from the source. All organ dose estimates had a coefficient of variation of less than 3% for a frontal scan and less than 11% for a rear scan. Conclusions: Backscatter security scanners deposit dose in organs beyond the skin. The effective dose is below recommended standards set by the Health Physics Society (HPS) and the American National Standards Institute (ANSI) assuming the system provides a maximum exposure of approximately 4.6 μR at 30 cm.

  19. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    International Nuclear Information System (INIS)

    Lopez-Rendon, X.; Bosmans, H.; Zanca, F.; Oyen, R.

    2015-01-01

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  20. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Bosmans, H.; Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)

    2015-07-15

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  1. Radiochemical separation and effective dose estimation due to ingestion of 90Sr

    International Nuclear Information System (INIS)

    Ilic, Z.; Vidic, A.; Deljkic, D.; Sirko, D.; Zovko, E.; Samek, D.

    2009-01-01

    Since 2007. Institute for Public Health of Federation of Bosnia and Herzegovina-Radiation Protection Centre, within the framework of monitoring of radioactivity of environment carried out measurement of specific activity of 90 Sr content in selected food and water samples. The paper described the methods of measurement and radiochemical separation. Presented results, as average values of specific activity of 90 Sr, were used for estimation of effective dose due to ingestion of 90 Sr for 2007. and 2008. Estimated effective dose for 2007. due to ingestion of 90 Sr for adults was 1,36 μSv and 2,03 μSv for children (10 year old), and for 2008. 0,67 μSv (adults) and 1,01 μSv (children 10 year old). Estimated effective doses for 2007. and 2008. are varied because of different average specific activity radionuclide 90 Sr in selected samples of food, their number, species and origin. (author) [sr

  2. Internal dose estimates

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1977-01-01

    Internal doses, the procedures for making them and their significance has been reviewed. Effects of uranium, radium, lead-210, polonium-210, thorium in man are analysed based on data from tables and plots. Dosimetry of some ingested nuclides and inhalation dose due to radon-222, radon-220 and their daugther products are discussed [pt

  3. Estimation of effective dose from Rn emanating from 'the minus ion' effect wallpaper

    International Nuclear Information System (INIS)

    Yoshizawa, Y.; Minowa, H.; Morita-Murase, Y.; Furuta, E.

    2006-01-01

    We have examined the wall papers which declared 'the minus ion' effect to estimate external and internal exposure dose from them. Results of gamma-ray spectrometry revealed that they contain 0.03 to 0.35 Bq·g -1 of Th-series nuclides, 208 Tl, 212 Pb, 212 Bi and 228 Ac, and U-series one, 214 Pb. Distributions of radioactive nuclides in the samples were measured using an imaging plate and a FLA-2000 (Fuji Photo Film). The radiation doses from the printed side of the wall papers were 5 to 15 times higher than that of the back side. The 222 Rn concentrations emanating from the wall papers in a sealed container of 50 liter were measured using the PICO-RAD radon detectors. One wall paper showed two to five times higher than the background value. (author)

  4. Estimation of outdoor and indoor effective dose and excess lifetime cancer risk from Gamma dose rates in Gonabad, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jafaria, R.; Zarghania, H.; Mohammadia, A., E-mail: rvzreza@gmail.com [Paramedical faculty, Birjand University of Medical Sciences, Birjand (Iran, Islamic Republic of)

    2017-07-01

    Background gamma irradiation in the indoor and outdoor environments is a major concern in the world. The study area was Gonabad city. Three stations and buildings for background radiation measurement of outdoor and indoor were randomly selected and the Geiger-Muller detector (X5C plus) was used. All dose rates on display of survey meter were recorded and mean of all data in each station and buildings was computed and taken as measured dose rate of that particular station. The average dose rates of background radiation were 84.2 nSv/h for outdoor and 108.6 nSv/h for indoor, maximum and minimum dose rates were 88.9 nSv/h and 77.7 nSv/h for outdoor measurements and 125.4 nSv/h and 94.1 nSv/h for indoor measurements, respectively. Results show that the annual effective dose is 0.64 mSv, which compare to global level of the annual effective dose 0.48 mSv is high. Estimated excess lifetime cancer risk was 2.24×10{sup -3} , indicated that it is large compared to the world average value of 0.25×10{sup -3}. (author)

  5. Estimation of effective doses in pediatric X-ray computed tomography examination.

    Science.gov (United States)

    Obara, Hideki; Takahashi, Midori; Kudou, Kazuya; Mariya, Yasushi; Takai, Yoshihiro; Kashiwakura, Ikuo

    2017-11-01

    X-ray computed tomography (CT) images are used for diagnostic and therapeutic purposes in various medical disciplines. In Japan, the number of facilities that own diagnostic CT equipment, the number of CT examinations and the number of CT scanners increased by ~1.4-fold between 2005 and 2011. CT operators (medical radiological technologists, medical physicists and physicians) must understand the effective doses for examinations at their own institutions and carefully approach each examination. In addition, the patients undergoing the examination (as well as his/her family) must understand the effective dose of each examination in the context of the cumulative dose. In the present study, the numbers of pediatric patients (aged 0-5 years) and total patients who underwent CT at Hirosaki University Hospital (Hirosaki, Japan) between January 2011 and December 2013 were surveyed, and effective doses administered to children aged 0, 1 and 5 years were evaluated. Age- and region-specific conversion factors and dose-length products obtained from the CT scanner were used to estimate the effective doses. The numbers of CT examinations performed in 2011, 2012 and 2013 were 16,662, 17,491 and 17,649, respectively, of which 613 (1.2%) of the overall total involved children aged 0-5 years. The estimated effective doses per examination to children aged 0, 1 and 5 years were 6.3±4.8, 4.9±3.8 and 2.7±3.0 mSv, respectively. This large variation was attributed to several factors associated with scan methods and ranges in actual setting. In conclusion, the requirement for individual patient prospective exposure management systems and estimations of low-dose radiation exposure should be considered in light of the harmful effects of exposure.

  6. Effective dose to staff from interventional procedures: Estimations from single and double dosimetry

    International Nuclear Information System (INIS)

    Kuipers, G.; Velders, X. L.

    2009-01-01

    The exposure of 11 physicians performing interventional procedures was measured by means of two personal dosemeters. One personal dosemeter was worn outside the lead apron and an additional under the lead apron. The study was set up in order to determine the added value of a dosemeter worn under the lead apron. With the doses measured, the effective doses of the physicians were estimated using an algorithm for single dosimetry and two algorithms for double dosimetry. The effective doses calculated with the single dosimetry algorithm ranged from 0.11 to 0.85 mSv in 4 weeks. With the double dosimetry algorithms, the effective doses ranged from 0.02 mSv to 0.47 mSv. The statistical analysis revealed no significant differences in the accuracy of the effective doses calculated with single or double dosimetry algorithms. It was concluded that the effective dose cannot be considered a more accurate estimate when two dosemeters are used instead of one. (authors)

  7. Estimation of committed effective dose due to tritium in ground water in some places of Maharashtra

    International Nuclear Information System (INIS)

    Reddy, P.J.; Bhade, S.P.D.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    In the present study Tritium concentration in well and bore well water samples were analyzed for the samples collected from the villages of Pune, Kolhapur and Ratnagiri. The activity concentration ranged from 0.55 - 3.66 Bq L -1 . The associated age-dependant dose from water ingestion in the study area was estimated. The effective committed dose recorded for different age classes is negligible compared to World Health Organization and U.S. Environmental Protection Agency dose guidelines. The Minimum Detectable Activity achieved was 1.5 Bq L -1 for a total counting time of 500 minutes. (author)

  8. Combined methodology for estimating dose rates and health effects from exposure to radioactive pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.E. Jr.; Leggett, R.W.; Yalcintas, M.G.

    1980-12-01

    The work described in the report is basically a synthesis of two previously existing computer codes: INREM II, developed at the Oak Ridge National Laboratory (ORNL); and CAIRD, developed by the Environmental Protection Agency (EPA). The INREM II code uses contemporary dosimetric methods to estimate doses to specified reference organs due to inhalation or ingestion of a radionuclide. The CAIRD code employs actuarial life tables to account for competing risks in estimating numbers of health effects resulting from exposure of a cohort to some incremental risk. The combined computer code, referred to as RADRISK, estimates numbers of health effects in a hypothetical cohort of 100,000 persons due to continuous lifetime inhalation or ingestion of a radionuclide. Also briefly discussed in this report is a method of estimating numbers of health effects in a hypothetical cohort due to continuous lifetime exposure to external radiation. This method employs the CAIRD methodology together with dose conversion factors generated by the computer code DOSFACTER, developed at ORNL; these dose conversion factors are used to estimate dose rates to persons due to radionuclides in the air or on the ground surface. The combination of the life table and dosimetric guidelines for the release of radioactive pollutants to the atmosphere, as required by the Clean Air Act Amendments of 1977.

  9. Estimated collective effective dose to the population from radiological examinations in Slovenia

    Science.gov (United States)

    Zontar, Dejan; Zdesar, Urban; Kuhelj, Dimitrij; Pekarovic, Dean; Skrk, Damijan

    2015-01-01

    Background The aim of the study was to systematically evaluate population exposure from diagnostic and interventional radiological procedures in Slovenia. Methods The study was conducted in scope of the “Dose Datamed 2” project. A standard methodology based on 20 selected radiological procedures was adopted. Frequencies of the procedures were determined via questionnaires that were sent to all providers of radiological procedures while data about patient exposure per procedure were collected from existing databases. Collective effective dose to the population and effective dose per capita were estimated from the collected data (DLP for CT, MGD for mammography and DAP for other procedures) using dose conversion factors. Results The total collective effective dose to the population from radiological in 2011 was estimated to 1300 manSv and an effective dose per capita to 0.6 mSv of which approximately 2/3 are due to CT procedures. Conclusions The first systematic study of population exposure to ionising radiation from radiological procedures in Slovenia was performed. The results show that the exposure in Slovenia is under the European average. It confirmed large contributions of computed tomography and interventional procedures, identifying them as the areas that deserve special attention when it comes to justification and optimisation. PMID:25810709

  10. Estimation Of Effective Dose In Ingestion Of Food Crops For 137Cs

    International Nuclear Information System (INIS)

    Angeleska, A.; Dimitrieska-Stojkovic, E.; Uzunov, R.; Hajrulai-Musliu, Z.; Stojanovska-Dimzoska, B.; Jankuloski, D.; Crceva-Nikolovska, R.

    2015-01-01

    The interaction of the ionizing radiation with the human body leads to various biological effects which afterwards can be manifested as clinical symptoms. The nature and the seriousness of the symptoms depend on the absorbed dose, as well as the dose rate, and many diseases which were supposed to be effectively managed if information for the radiation level of an environment was available. The knowledge of the concentration of radioactivity of our environment is of essential relevance in the assessment of the dose that is accumulated in the population, as well as for the formation of the basis for estimation of the level of radioactive contamination or contamination in the environment in future. Taking into consideration the relevance of the distribution and the transfer of radionuclides from the soil to the crops, this work was aimed to estimate the effective dose in ingestion of separate crops for 137Cs. The effective dose was determined by means of already known transfer factors from the soil to the plants and measured concentrations of activities of soil from specific locations in the surrounding of the city of Skopje. The agricultural crops used for analysis are the most commonly applied crops (vegetables, legumes, root crops) in Republic of Macedonia. The radiometric analysis of these samples was conducted by applying a spectrometer for gamma-rays with Germanium with high purity (HPGe). The estimated effective dose would apply for adults who ingested the mentioned crops which were produced at the mentioned locations, that is, in the region of Skopje. These data can be the basis for estimation of risk for radioactive contamination of the population, received by ingestion of produced food. (author).

  11. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography.

    Science.gov (United States)

    Trattner, Sigal; Halliburton, Sandra; Thompson, Carla M; Xu, Yanping; Chelliah, Anjali; Jambawalikar, Sachin R; Peng, Boyu; Peters, M Robert; Jacobs, Jill E; Ghesani, Munir; Jang, James J; Al-Khalidi, Hussein; Einstein, Andrew J

    2018-01-01

    This study sought to determine updated conversion factors (k-factors) that would enable accurate estimation of radiation effective dose (ED) for coronary computed tomography angiography (CTA) and calcium scoring performed on 12 contemporary scanner models and current clinical cardiac protocols and to compare these methods to the standard chest k-factor of 0.014 mSv·mGy -1 cm -1 . Accurate estimation of ED from cardiac CT scans is essential to meaningfully compare the benefits and risks of different cardiac imaging strategies and optimize test and protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-reported parameter, the dose-length product, by a k-factor which was determined for noncardiac chest CT, using single-slice scanners and a superseded definition of ED. Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols, 120 clinical protocols in total, on 12 CT scanners representing the spectrum of scanners from 5 manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each protocol, and ED was calculated as defined in International Commission on Radiological Protection Publication 103. Effective doses and scanner-reported dose-length products were used to determine k-factors for each scanner model and protocol. k-Factors averaged 0.026 mSv·mGy -1 cm -1 (95% confidence interval: 0.0258 to 0.0266) and ranged between 0.020 and 0.035 mSv·mGy -1 cm -1 . The standard chest k-factor underestimates ED by an average of 46%, ranging from 30% to 60%, depending on scanner, mode, and tube potential. Factors were higher for prospective axial versus retrospective helical scan modes, calcium scoring versus coronary CTA, and higher (100 to 120 kV) versus lower (80 kV) tube potential and varied among scanner models (range of average k-factors: 0.0229 to 0.0277 mSv·mGy -1 cm -1 ). Cardiac k

  12. Estimating Effective Dose of Radiation From Pediatric Cardiac CT Angiography Using a 64-MDCT Scanner: New Conversion Factors Relating Dose-Length Product to Effective Dose.

    Science.gov (United States)

    Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J

    2017-03-01

    The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.

  13. Software for the estimation of organ equivalent and effective doses from diagnostic radiology procedures

    International Nuclear Information System (INIS)

    Osei, Ernest K; Barnett, Rob

    2009-01-01

    Diagnostic radiological imaging such as conventional radiography, fluoroscopy and computed tomography (CT) examinations will continue to provide tremendous benefits in modern healthcare. The benefit derived by the patient should far outweigh the risk associated with a properly conducted imaging examination. Nonetheless, it is very important to be able to quantify the risk associated with any radiological examination of patients, and effective dose has been considered a useful indicator of patient exposure. Quantification of the risks associated with radiological imaging is very important as such information will be helpful to physicians and their patients for comparing risks from various imaging examinations and for making informed decisions whenever there is a need for any radiological imaging. The determination of equivalent and effective doses in diagnostic radiology is of interest as a basis for estimates of risk from medical exposures. In this paper we describe a simple computer program OrgDose, which calculates the doses to 27 organs in the body and then calculates the organ equivalent and effective doses and the risk from various procedures in the radiology department including conventional radiography, fluoroscopy and computed tomography examinations. The program will be a useful tool for the medical and paramedical personnel who are involved with assessing organ and effective doses and risks from diagnostic radiology procedures.

  14. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    International Nuclear Information System (INIS)

    Powers, W.J.

    1996-01-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1- 11 C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1- 11 C]-glucose is comparable to that reported for 2-deoxy-[2- 18 F]-glucose. 43 refs., 1 fig., 4 tabs

  15. Modeling estimates of the effect of acid rain on background radiation dose.

    Science.gov (United States)

    Sheppard, S C; Sheppard, M I

    1988-06-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially 226Ra and 137Cs, are among these materials. Okamoto is apparently the only researcher to date who has attempted to quantify the effect of acid rain on the "background" radiation dose to man. He estimated an increase in dose by a factor of 1.3 following a decrease in soil pH of 1 unit. We reviewed literature that described the effects of changes in pH on mobility and plant uptake of Ra and Cs. Generally, a decrease in soil pH by 1 unit will increase mobility and plant uptake by factors of 2 to 7. Thus, Okamoto's dose estimate may be too low. We applied several simulation models to confirm Okamoto's ideas, with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modeled a typical, acid-rain sensitive soil using meteorological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed essentially direct proportionality between the mobility of the nuclides and dose. This supports some of the assumptions invoked by Okamoto. We conclude that a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor of 2 or more. Our models predict that this will lead to similar increases in plant uptake and radiological dose to man. Although health effects following such a small increase in dose have not been statistically demonstrated, any increase in dose is probably undesirable.

  16. Modeling estimates of the effect of acid rain on background radiation dose

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Sheppard, M.I.

    1988-01-01

    Acid rain causes accelerated mobilization of many materials in soils. Natural and anthropogenic radionuclides, especially 226Ra and 137Cs, are among these materials. Okamoto is apparently the only researcher to date who has attempted to quantify the effect of acid rain on the background radiation dose to man. He estimated an increase in dose by a factor of 1.3 following a decrease in soil pH of 1 unit. We reviewed literature that described the effects of changes in pH on mobility and plant uptake of Ra and Cs. Generally, a decrease in soil pH by 1 unit will increase mobility and plant uptake by factors of 2 to 7. Thus, Okamoto's dose estimate may be too low. We applied several simulation models to confirm Okamoto's ideas, with most emphasis on an atmospherically driven soil model that predicts water and nuclide flow through a soil profile. We modeled a typical, acid-rain sensitive soil using meteorological data from Geraldton, Ontario. The results, within the range of effects on the soil expected from acidification, showed essentially direct proportionality between the mobility of the nuclides and dose. This supports some of the assumptions invoked by Okamoto. We conclude that a decrease in pH of 1 unit may increase the mobility of Ra and Cs by a factor of 2 or more. Our models predict that this will lead to similar increases in plant uptake and radiological dose to man. Although health effects following such a small increase in dose have not been statistically demonstrated, any increase in dose is probably undesirable

  17. The effect of volume-of-interest misregistration on quantitative planar activity and dose estimation

    International Nuclear Information System (INIS)

    Song, N; Frey, E C; He, B

    2010-01-01

    In targeted radionuclide therapy (TRT), dose estimation is essential for treatment planning and tumor dose response studies. Dose estimates are typically based on a time series of whole-body conjugate view planar or SPECT scans of the patient acquired after administration of a planning dose. Quantifying the activity in the organs from these studies is an essential part of dose estimation. The quantitative planar (QPlanar) processing method involves accurate compensation for image degrading factors and correction for organ and background overlap via the combination of computational models of the image formation process and 3D volumes of interest defining the organs to be quantified. When the organ VOIs are accurately defined, the method intrinsically compensates for attenuation, scatter and partial volume effects, as well as overlap with other organs and the background. However, alignment between the 3D organ volume of interest (VOIs) used in QPlanar processing and the true organ projections in the planar images is required. The aim of this research was to study the effects of VOI misregistration on the accuracy and precision of organ activity estimates obtained using the QPlanar method. In this work, we modeled the degree of residual misregistration that would be expected after an automated registration procedure by randomly misaligning 3D SPECT/CT images, from which the VOI information was derived, and planar images. Mutual information-based image registration was used to align the realistic simulated 3D SPECT images with the 2D planar images. The residual image misregistration was used to simulate realistic levels of misregistration and allow investigation of the effects of misregistration on the accuracy and precision of the QPlanar method. We observed that accurate registration is especially important for small organs or ones with low activity concentrations compared to neighboring organs. In addition, residual misregistration gave rise to a loss of precision

  18. A kinematic model to estimate effective dose of radioactive substances in a human body

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  19. The Effects of Metal on Size Specific Dose Estimation (SSDE) in CT: A Phantom Study

    Science.gov (United States)

    Alsanea, Maram M.

    Over the past number of years there has been a significant increase in the awareness of radiation dose from use of computed tomography (CT). Efforts have been made to reduce radiation dose from CT and to better quantify dose being delivered. However, unfortunately, these dose metrics such as CTDI vol are not a specific patient dose. In 2011, the size-specific dose estimation (SSDE) was introduced by AAPM TG-204 which accounts for the physical size of the patient. However, the approach presented in TG-204 ignores the importance of the attenuation differences in the body. In 2014, a newer methodology that accounted for tissue attenuation was introduced by the AAPM TG-220 based on the concept of water equivalent diameter, Dw. One of the limitation of TG-220 is that there is no estimation of the dose while highly attenuating objects such as metal is present in the body. The purpose of this research is to evaluate the accuracy of size-specific dose estimates in CT in the presence of simulated metal prostheses using a conventional PMMA CTDI phantom at different phantom diameter (body and head) and beam energy. Titanium, Cobalt- chromium and stainless steel alloys rods were used in the study. Two approaches were used as introduced by AAPM TG-204 and 220 utilizing the effective diameter and the Dw calculations. From these calculations, conversion factors have been derived that could be applied to the measured CTDIvol to convert it to specific patient dose, or size specific dose estimate, (SSDE). Radiation dose in tissue (f-factor = 0.94) was measured at various chamber positions with the presence of metal. Following, an average weighted tissue dose (AWTD) was calculated in a manner similar to the weighted CTDI (CTDIw). In general, for the 32 cm body phantom SSDE220 provided more accurate estimates of AWTD than did SSDE204. For smaller patient size, represented by the 16 cm head phantom, the SSDE204 was a more accurate estimate of AWTD that that of SSDE220. However, as the

  20. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N. [National Radiation Protection Dept. Atomic Energy Organization (Iran, Islamic Republic of); Sohrabi, M. [Intenatinal atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 {mu}R/h, and outdoor environments of different cities is 7.9-20.6 {mu}R/h, which their mean value are 14.33 and 12.62 {mu}R/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  1. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    International Nuclear Information System (INIS)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N.; Sohrabi, M.

    2006-01-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 μR/h, and outdoor environments of different cities is 7.9-20.6 μR/h, which their mean value are 14.33 and 12.62 μR/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  2. Radioimmunotherapy for liver micrometastases in mice. Pharmacokinetics, dose estimation, and long-term effect

    International Nuclear Information System (INIS)

    Saga, Tsuneo; Sakahara, Harumi; Nakamoto, Yuji; Sato, Noriko; Zhao, Songji; Iida, Yasuhiko; Konishi, Junji; Kuroki, Masahide; Endo, Keigo

    1999-01-01

    The pharmacokinetics of a therapeutic dose of 131 I-labeled antibody and the absorbed dose in liver micrometastases of human colon cancer LS174T in female BALB/c nu/nu mice were investigated, along with the long-term therapeutic effect. Mice with liver micrometastases were given an intravenous injection of 131 I-labeled anti-carcinoembryonic antigen (CEA) antibody F33-104 (8.88 MBq/40 μg). The biodistribution of the antibody was determined 1, 2, 4, 6, and 10 days later. The absorbed dose was estimated for three hypothetical tumor diameters; 1,000, 500, and 300 μm. Autoradiography showed a homogeneous distribution of radioactivity in the micrometastases, and a high uptake was maintained until day 6 (24.0% injected dose (ID)/g on day 1 to 17.8% ID/g on day 6), but decreased thereafter. The absorbed doses in the 1,000-, 500-, and 300-μm tumors were calculated to be 19.1, 12.0, and 8.2 Gy, respectively. The intravenous injection of the 131 I-labeled antibody also showed a dose-dependent therapeutic effect (all mice of the nontreated group died, with a mean survival period of 4 weeks; 3 of the 8 mice that received 9.25 MBq survived up to 120 days with no sign of liver metastasis). These data give further evidence that micrometastasis is a good target of radioimmunotherapy, and that an absorbed dose of less than 20 Gy can effectively control small metastatic lesions. (author)

  3. Dose-stochastic radiobiological effect relationship in model of two reactions and estimation of radiation risk

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1997-01-01

    The model of dose-stochastic effect relationship for biological systems capable of self-defence under danger factor effect is developed. A defence system is realized in two forms of organism reaction, which determine innate μ n and adaptive μ a radiosensitivities. The significances of μ n are determined by host (inner) factors; and the significances of μ a , by external factors. The possibilities of adaptive reaction are determined by the coefficient of capabilities of the defence system. The formulas of the dose-effect relationship are the solutions of differential equations of assumed process in the defence system of organism. The model and formulas have been checked both at cell and at human levels. Based on the model and personal monitoring data, the estimation of radiation risk at the Joint Institute for Nuclear Research is done

  4. Estimation of Collective Effective Dose Due to Cosmic Ray Exposures to Members of The Public and to Airline Passenger

    International Nuclear Information System (INIS)

    Sayed, N.S.; Salah Eldin, T.; Gomaa, M.A.; El Dosoky, T.M.

    2011-01-01

    Using UNSCEAR 2000 report to United Nation General Assembly and its appendices, Annual collective dose to Egyptian members of the public (75097301). Was estimated to be 252.5 man Sv , hence the average collective effective dose to air line passenger for 10 million is estimated as 25.25 micro Sievert. Furthermore using hypothetical approach for Egyptian passengers who fly locally, regionally and internationally, the collective dose was estimated to be 252.5 man Sv , hence the average average collective effective dose for Egyptian passenger is due to Aviation is 3.36 micro Sievert

  5. The study of influence of relevant physical parameters variations on the estimates of the effective doses of Rn-222

    International Nuclear Information System (INIS)

    Ridzikova, A.; Fronka, A.; Moucka, L.

    2004-01-01

    Based on the analysis of 12 weekly continuous measurements and 4 integral measurements performed in different seasons in actual apartment rooms, bedrooms in particular, we attempted to identify the uncertainties that are involved in the estimation of radiation doses to lung tissues. We found that the parameters of time of residence, concentration, and equilibrium factor can affect substantially the estimate of the overall early effective dose. The weekly averaged concentration measured in one term is not sufficient for a fairly accurate estimate; actually, the equilibrium factor f must also be known and the actual real individual time of residence must be estimated if we want to adopt this approach to the dose estimation

  6. Nationwide survey of dental radiographic examination and estimation of collective effective dose in Japan, 1999

    International Nuclear Information System (INIS)

    Iwai, Kazuo; Satomi, Chieko; Kawashima, Shoji; Hashimoto, Koji; Nishizawa, Kanae; Maruyama, Takashi

    2005-01-01

    A nationwide survey of dental X-ray examination in Japan was performed in 1999, and the effective exposure dose due to the dental X-ray examination was estimated. In Japan, most dental X-ray equipment are used at a tube voltage of 60 kV and a tube current of 10 mA. Dental film in speed group D is most frequently used for dental X ray examination. Fifty percent or more of dental clinics processed the films automatically. Seventy-five percent of dental clinics performed dental X-ray examinations in a separate X-ray room. The number of dental X-ray examinations in 1999 in Japan was estimated to be 82,301,000 for intra-oral radiography and 12,336,000 for panoramic radiography. The collective effective exposure dose in 1999 was estimated at 905.5 man·Sv, for intra-oral radiography and 128.9 man·Sv for panoramic radiography. (author)

  7. Effect of low dose tritium on mouse lymphocyte DNA estimated by comet assay

    International Nuclear Information System (INIS)

    Ichimasa, Yusuke; Otsuka, Kensuke; Maruyama, Satoko; Tauchi, Hiroshi; Ichimasa, Michiko; Uda, Tatsuhiko

    2003-01-01

    This paper deals with low dose effect of HTO on mouse lymphocytes DNA (in vitro irradiation) estimated by the comet assay using ICR male mouse of 20 to 23 weeks old. Lymphocytes were isolated by centrifugation of whole blood sample on Ficoll-Paque solution and embedded in agarose gel just after mixed with HTO. After lymphocytes were exposed to 17-50 mGy of HTO, the agarose gel slides were washed to remove HTO and cell lysis treatment on the slides was conducted before electrophoresis. The individual comets on stained slides after electrophoresis were analyzed using imaging software. No significant DNA damages were observed. (author)

  8. Estimation of absorbed dose and its biological effects in subjects undergoing neuro interventional radiological procedures

    International Nuclear Information System (INIS)

    Basheerudeen, Safa Abdul Syed; Subramanian, Vinodhini; Venkatachalam, Perumal; Joseph, Santosh; Selvam, Paneer; Jose, M.T.; Annalakshmi, O.

    2016-01-01

    Radiological imaging has many applications due to its non-invasiveness, rapid diagnosis of life threatening diseases, and shorter hospital stay which benefit patients of all age groups. However, these procedures are complicated and time consuming, which use repeated imaging views and radiation, thereby increasing patient dose, and collective effective dose to the background at low doses. The effects of high dose radiation are well established. However, the effects of low dose exposure remain to be determined. Therefore, investigating the effect on medically exposed individuals is an alternative source to understand the low dose effects of radiation. The ESD (Entrance Surface Dose) was recorded using Lithium borate based TL dosimeters to measure the doses received by the head, neck and shoulder of the study subjects (n = 70) who underwent procedures like cerebral angiography, coiling, stenting and embolization

  9. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-07-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals are also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the US

  10. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-01-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the U.S

  11. A procedure for estimating the dose modifying effect of chemotherapy on radiation response

    International Nuclear Information System (INIS)

    Hao, Y.; Keane, T.

    1994-01-01

    A procedure based on a logistic regression model was used to estimate the dose-modifying effect of chemotherapy on the response of normal tissues to radiation. The DEF in the proposed procedure is expressed as a function of logistic regression coefficients, response levels and values of covariates in the model. The proposed procedure is advantageous as it allows consideration of both the response levels and the values of covariates in calculating the DEF. A plot of the DEF against the response or a covariate describes how the DEF varies with the response levels or the covariate values. Confidence intervals of the DEF were obtained based on the normal approximation of the distribution of the estimated DEF and on a non-parametric Bootstrap method. An example is given to illustrate the proposed procedure. (Author)

  12. Estimation of effective dose in patients from barite examinations of the digestive system in Malaga (Spain)

    International Nuclear Information System (INIS)

    Ruiz Cruces, R.; Perez Martinez, M.; Martinez Morillo, M.; Diez de los Rios Delgado, A.; Ruiz del Pino, M.F.; Lopez Hidalgo, J.

    1997-01-01

    The purpose of this research is to present dose reference values of patients in complex explorations. A plane ionization camera was used to obtain the values of the dose-area product (Gy/Square cm). By means of the method described in the NRPB R-262 report, the effective dose values have been determined for each projection used (mSV). The product values of the dose-area and effective dose have been obtained for oesophagogrammes; for oesophago-gastro-duodenal studies; for intestinal transitions; for enteroclisis and for opaque enemas

  13. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  14. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  15. Estimation of effective dose from limited cone beam X-ray CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazuo; Arai, Yoshinori; Hashimoto, Koji [Nihon Univ., Tokyo (Japan). School of Dentistry; Nishizawa, Kanae

    2000-12-01

    The limited cone beam X-ray CT (Ortho-CT) was developed on the basis of multi-functional panoramic apparatus, SCANORA (Soredex Co. Helsinki Finland). The imaging intensifier (I.I.) was built in this apparatus as a X-ray detection device instead of X-ray film. The signal provided from I.I. was converted from analog into digital by an analog-digital converter and image reconstitution was done as a three-directional image of the dimensions 3.8 cm of width, 3.0 cm height and 3.8 cm depth with the personal computer. The 3DX Multi image micro CT'' (3DX) was developed along similar lines by MORITA Co., Ltd. (Kyoto, JAPAN). In this study, the stochastic effect on organ and tissue caused by examinations using Ortho-CT and 3DX was measured. The effective dose was estimated according to the recommendation of ICRP60 and was compared with those of panoramic radiography and computed tomography. The irradiation conditions were as follows: 85 kV, 10 mA with the filtration of 3 mmAl and added 1 mmCu for Ortho-CT, and 80 kV, 2 mA and the filtration of 3.1 mmAL for 3DX. The measurement of organ and tissue dose was performed using an anthropomorphic Rando woman phantom (Alderson Research Laboratories Co., Stanfora, CN), as well as by using two different type of thermoluminescent dosimeter (TLD); Panasonic UD-170A (BeO) and UD-110S (CaSO{sub 4}: Tm). The UD-170A was for dose measurement of the inner useful X-ray beams, while the UD-110S was for outer beams. The measured organ and tissue were those recommended with ICRP60 (gonad, breast, bone marrow, lung, thyroid gland, esophagus, stomach, colon, liver, bladder, skin, brain, thymus, adrenal, kidney, spleen, pancrease, upper large intestine, uterus, eyes and major salivary gland). The imaging by Orhto-CT was made in the left maxillary 1st molar, left mandibular 1st molar and temporomandibular joint. 3DX measurement was made in the maxillary incisor region and middle ear regions other than the regions mentioned above. The skin

  16. Application of estimating effective dose from external radiation using two dosimeters during maintenance periods at KNPPS

    International Nuclear Information System (INIS)

    Kim, Hee Geun; Kong, Tae Young

    2008-01-01

    The application of a two-dosimeter and its algorithm and a test of its use in an inhomogeneous high radiation field are described. The goal was to develop an improved method for estimating the effective dose during maintenance periods at Korean nuclear power plants (NPPs). The use of the method in domestic and international NPPs including USA, Canada and Japan was also investigated. The algorithms used by the Canadian Ontario Power Generation (OPG) and American ANSI HPS N13.41, Lakshmanan, NCRP, EPRI and Texas A and M University were extensively analyzed as two-dosimeter algorithms. The possibility of their application to NPPs was evaluated using data for each algorithm from two-dosimeter results for an inhomogeneous high radiation field during maintenance periods at Korean NPPs. (author)

  17. Effective dose estimation in whole-body multislice CT in paediatric trauma patients

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Robin D.; Saueressig, Ulrich; Kotter, Elmar; Langer, Mathias; Bley, Thorsten A. [University Hospital, Department of Radiology, Freiburg im Breisgau (Germany); Strohm, Peter C.; Zwingmann, Joern; Suedkamp, Norbert P. [University Hospital, Department of Orthopaedic and Trauma Surgery, Freiburg im Breisgau (Germany); Uhl, Markus [University Hospital, Department of Radiology, Section of Paediatric Radiology, Freiburg im Breisgau (Germany)

    2009-03-15

    The number of multislice CT (MSCT) scans performed in polytraumatized children has increased rapidly. There is growing concern regarding the radiation dose in MSCT and its long-term consequences, especially in children. To determine the effective dose to polytraumatized children who undergo whole-body MSCT. A total of 51 traumatized children aged 0-16 years underwent a polytrauma protocol CT scan between November 2004 and August 2006 at our institution. The effective dose was calculated retrospectively by a computer program (CT-Expo 1.5, Hannover, Germany). The mean effective dose was 20.8 mSv (range 8.6-48.9 mSv, SD{+-}7.9 mSv). There was no statistically significant difference in the effective dose between male and female patients. Whole-body MSCT is a superior diagnostic tool in polytraumatized children with 20.8 mSv per patient being a justified mean effective dose. In a potentially life-threatening situation whole-body MSCT provides the clinicians with relevant information to initiate life-saving therapy. Radiologists should use special paediatric protocols that include dose-saving mechanisms to keep the effective dose as low as possible. Further studies are needed to examine and advance dose-saving strategies in MSCT, especially in children. (orig.)

  18. Estimation of effective dose to public from external exposure to natural background radiation in saudi arabia

    International Nuclear Information System (INIS)

    Khalid, A. A.

    2003-01-01

    The effective dose values in sixteen cities in Saudi Arabia due to external exposure to natural radiation were evaluated. These doses are based on natural background components including external exposure to terrestrial radiation and cosmic rays. The importance of evaluating the effective dose to the public due to external exposure to natural background radiation lies in its epidemiological and dosimetric importance and in forming a basis for the assessment of the level of radioactive contamination or pollution in the environment in the future. The exposure to terrestrial radiation was measured using thermoluminescent dosimeters (TLD). The exposure from cosmic radiation was determined using empirical correlation. The values evaluated for the total annual effective dose in all cities were within the world average values. The highest total annual effective dose measured in Al-Khamis city was 802 μSv/y, as compared to 305 μSv/y in Dammam city, which was considered the lowest value

  19. Estimation of kidney depth effective renal plasmatic flux and absorbed dose, from a radio isotopic renogram

    International Nuclear Information System (INIS)

    Carvalho Pinto Ribela, M.T. de.

    1979-01-01

    A technique for the estimation of kidney depth is described. It is based on a comparison between the measurements obtained in a radioisotopic renogram carried out for two specific energies and the same measurements made with a phanto-kidney at different depths. Experiments performed with kidney and abdomen phantoms provide calibration curves which are obtained by plotting the photopeak to scatter ratio for 131 I pulse height spectrum against depth. Through this technique it is possible to obtain the Hippuran- 131 I kidney uptake with external measurements only. In fact it introduces a correction in the measurements for the depth itself and for the attenuation and scattering effects due to the tissues interposed between the kidney and the detector. When the two kidneys are not equidistant from the detector, their respective renograms are different and it is therefore very important to introduce a correction to the measurements according to the organ depth in order to obtain the exact information on Hippuran partition between the kidneys. The significative influence of the extrarenal activity is analyzed in the renogram by monitoring the praecordial region after 131 I-human serum albumin injection and establishing a calibration factor relating the radioactivity level of this area to that present in each kidney area. It is shown that it is possible to obtain the values for the clearance of each kidney from the renogram once the alteration in efficiency due to the organ depth and to non-renal tissue interference in the renal area is considered. This way, values for the effective renal plasma flow were obtained, which are comparable to those obtained with other techniques, estimating the total flow of the kidneys. Finally the mean absorbed dose of the kidneys in a renography is also estimated. (Author) [pt

  20. Estimation of effective dose and lifetime attributable risk from multiple head CT scans in ventriculoperitoneal shunted children

    International Nuclear Information System (INIS)

    Aw-Zoretic, J.; Seth, D.; Katzman, G.; Sammet, S.

    2014-01-01

    Purpose: The purpose of this review is to determine the averaged effective dose and lifetime attributable risk factor from multiple head computed tomography (CT) dose data on children with ventriculoperitoneal shunts (VPS). Method and materials: A total of 422 paediatric head CT exams were found between October 2008 and January 2011 and retrospectively reviewed. The CT dose data was weighted with the latest IRCP 103 conversion factor to obtain the effective dose per study and the averaged effective dose was calculated. Estimates of the lifetime attributable risk were also calculated from the averaged effective dose using a conversion factor from the latest BEIR VII report. Results: Our study found the highest effective doses in neonates and the lowest effective doses were observed in the 10–18 years age group. We estimated a 0.007% potential increase risk in neonates and 0.001% potential increased risk in teenagers over the base risk. Conclusion: Multiple head CTs in children equates to a slight potential increase risk in lifetime attributable risk over the baseline risk for cancer, slightly higher in neonates relative to teenagers. The potential risks versus clinical benefit must be assessed

  1. Dose estimation and prediction of radiation effects on aquatic biota resulting from radioactive releases from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Witherspoon, J.P.

    1975-01-01

    Aquatic organisms are exposed to radionuclides released to the environment during various steps of the nuclear fuel cycle. Routine releases from these processes are limited in compliance with technical specifications and requirements of federal regulations. These regulations reflect I.C.R.P. recommendations which are designed to provide an environment considered safe for man. It is generally accepted that aquatic organisms will not receive damaging external radiation doses in such environments; however, because of possible bioaccumulation of radionuclides there is concern that aquatic organisms might be adversely affected by internal doses. The objectives of this paper are: to estimate the radiation dose received by aquatic biota from the different processes and determine the major dose-contributing radionuclides, and to assess the impact of estimated doses on aquatic biota. Dose estimates are made by using radionuclide concentration measured in the liquid effluents of representative facilities. This evaluation indicates the potential for the greatest radiation dose to aquatic biota from the nuclear fuel supply facilities (i.e., uranium mining and milling). The effects of chronic low-level radiation on aquatic organisms are discussed from somatic and genetic viewpoints. Based on the body of radiobiological evidence accumulated up to the present time, no significant deleterious effects are predicted for populations of aquatic organisms exposed to the estimated dose rates resulting from routine releases from conversion, enrichment, fabrication, reactors and reprocessing facilities. At the doses estimated for milling and mining operations it would be difficult to detect radiation effects on aquatic populations; however, the significance of such radiation exposures to aquatic populations cannot be fully evaluated without further research on effects of chronic low-level radiation. (U.S.)

  2. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  3. Evaluation of the effect of change in the radiosensitive tissue weights listed in the ICRP in estimate of effective dose

    International Nuclear Information System (INIS)

    Vieira, Jose W.; Leal Neto, Viriato; Lopes Filho, Ferdinand J.; Lima Filho, Jose M.; Santana, Ivan E.; Andrade, Pedro H.A.; Cabral, Manuela O.M.

    2015-01-01

    For photons and electrons, the effective dose by gender is a weighted sum of the absorbed doses in radiosensitive organs and tissue of the human body. Effective dose is estimated using Exposure Computational Models (ECM) of both genders for the same age group. The FSTA and MSTA ECMs were developed by researchers from DEN/UFPE and consist of voxel phantoms representing adults coupled to EGSnrc Monte Carlo Code, which, in the folder designed for users of EGS, codes were added to simulate some radioactive sources. The reports 60 and 103 of the ICRP provide the factors that weigh the radiosensitivity of organs and tissues (W T ) required to estimate the effective dose. The two lists were placed in the FSTA and MSTA to simulate radiodiagnostic examination in different regions of the body (cranium, abdomen and thorax). The dosimetric data produced allowed an analysis of the effect of the change in the w T from the report 60 to the 103. The highest mean percent relative error, 64.3%, occurred in the results for the cranium due to the increase of the w T for most of the organs and tissues in the head and trunk in the updated list. In this case, it can be concluded that the values of the effective dose with the wT of the ICRP 60 were underestimated. Other types of simulators of radioactive sources can be used in investigating this problem and other variables related to the phantom can be considered for that proposes a W T 's list specific for the Brazilian population or recommend unrestricted use the ICRP data. (author)

  4. Evaluation of the effect of change in the radiosensitive tissue weights listed in the ICRP in estimate of effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jose W.; Leal Neto, Viriato; Lopes Filho, Ferdinand J.; Lima Filho, Jose M.; Santana, Ivan E., E-mail: jose.wilson@recife.ifpe.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, (IFPE), Recife, PE (Brazil); Andrade, Pedro H.A.; Cabral, Manuela O.M. [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lima, Vanildo J.M. [Universidade Federal de Pernambuco (DA/UFPE), Recife, PE (Brazil). Departamento de Anatomia; Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN/CNEN-NE), Recife, PE (Brazil)

    2015-07-01

    For photons and electrons, the effective dose by gender is a weighted sum of the absorbed doses in radiosensitive organs and tissue of the human body. Effective dose is estimated using Exposure Computational Models (ECM) of both genders for the same age group. The FSTA and MSTA ECMs were developed by researchers from DEN/UFPE and consist of voxel phantoms representing adults coupled to EGSnrc Monte Carlo Code, which, in the folder designed for users of EGS, codes were added to simulate some radioactive sources. The reports 60 and 103 of the ICRP provide the factors that weigh the radiosensitivity of organs and tissues (W{sub T}) required to estimate the effective dose. The two lists were placed in the FSTA and MSTA to simulate radiodiagnostic examination in different regions of the body (cranium, abdomen and thorax). The dosimetric data produced allowed an analysis of the effect of the change in the w{sub T} from the report 60 to the 103. The highest mean percent relative error, 64.3%, occurred in the results for the cranium due to the increase of the w{sub T} for most of the organs and tissues in the head and trunk in the updated list. In this case, it can be concluded that the values of the effective dose with the wT of the ICRP 60 were underestimated. Other types of simulators of radioactive sources can be used in investigating this problem and other variables related to the phantom can be considered for that proposes a W{sub T}'s list specific for the Brazilian population or recommend unrestricted use the ICRP data. (author)

  5. Weldon Spring historical dose estimate

    International Nuclear Information System (INIS)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr

  6. Weldon Spring historical dose estimate

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  7. Effects of the loss of correlation structure on Phase 1 dose estimates

    International Nuclear Information System (INIS)

    Simpson, J.C.

    1991-11-01

    In Phase I of the Hanford Environmental Dose Reconstruction Project, a step-by-step (modular) calculational structure was used. This structure was intended (1) to simplify the computational process, (2) to allow storage of intermediate calculations for later analyses, and (3) to guide the collection of data by presenting understandable structures for its use. The implementation of this modular structure resulted in the loss of correlation among inputs and outputs of the code, resulting in less accurate dose estimates than anticipated. The study documented in this report investigated two types of correlations in the Phase I model: temporal and pathway. Temporal correlations occur in the simulation when, in the calculation, data estimated for a previous time are used in a subsequent calculation. If the various portions of the calculation do not use the same realization of the earlier estimate, they are no longer correlated with respect to time. Similarly, spatial correlations occur in a simulation when, in the calculation, data estimated for a particular location are used in estimates for other locations. If the various calculations do not use the same value for the original location, they are no longer correlated with respect to location. The loss of the correlation structure in the Phase I code resulted in dose estimates that are biased. It is recommended that the air pathway dose model be restructured and the intermediate histograms eliminated. While the restructured code may still contain distinct modules, all input parameters to each module and all out put from each module should be retained in a database such that subsequent modules can access all the information necessary to retain the correlation structure

  8. Fetal dose from radiotherapy photon beams: Physical basis, techniques to estimate radiation dose outside of the treatment field, biological effects and professional considerations

    International Nuclear Information System (INIS)

    Stovell, Marilyn; Blackwell, C. Robert

    1997-01-01

    Purpose/Objective: The presentation will review: 1. The physical basis of radiation dose outside of the treatment field. 2. Techniques to estimate and reduce fetal dose. 3. Clinical examples of fetal dose estimation and reduction. 4. Biological effects of fetal irradiation. 5. Professional considerations. Approximately 4000 women per year in the United States require radiotherapy during pregnancy. This report presents data and techniques that allow the medical physicist to estimate the radiation dose the fetus will receive and to reduce this dose with appropriate shielding. Out-of-beam data are presented for a variety of photon beams, including cobalt-60 gamma rays and x rays from 4 to 18 MV. Designs for simple and inexpensive to more complex and expensive types of shielding equipment are described. Clinical examples show that proper shielding can reduce the radiation dose to the fetus by 50%. In addition, a review of the biological aspects of irradiation enables estimates of the risks of lethality, growth retardation, mental retardation, malformation, sterility, cancer induction, and genetic defects to the fetus. A summary of professional considerations/recommendations is also provided as a guide for the radiation oncologist and medical physicist

  9. MLSOIL and DFSOIL - computer codes to estimate effective ground surface concentrations for dose computations

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Kocher, D.C.; Killough, G.G.; Miller, C.W.

    1984-11-01

    This report is a user's manual for MLSOIL (Multiple Layer SOIL model) and DFSOIL (Dose Factors for MLSOIL) and a documentation of the computational methods used in those two computer codes. MLSOIL calculates an effective ground surface concentration to be used in computations of external doses. This effective ground surface concentration is equal to (the computed dose in air from the concentration in the soil layers)/(the dose factor for computing dose in air from a plane). MLSOIL implements a five compartment linear-transfer model to calculate the concentrations of radionuclides in the soil following deposition on the ground surface from the atmosphere. The model considers leaching through the soil as well as radioactive decay and buildup. The element-specific transfer coefficients used in this model are a function of the k/sub d/ and environmental parameters. DFSOIL calculates the dose in air per unit concentration at 1 m above the ground from each of the five soil layers used in MLSOIL and the dose per unit concentration from an infinite plane source. MLSOIL and DFSOIL have been written to be part of the Computerized Radiological Risk Investigation System (CRRIS) which is designed for assessments of the health effects of airborne releases of radionuclides. 31 references, 3 figures, 4 tables

  10. Automated estimation of abdominal effective diameter for body size normalization of CT dose.

    Science.gov (United States)

    Cheng, Phillip M

    2013-06-01

    Most CT dose data aggregation methods do not currently adjust dose values for patient size. This work proposes a simple heuristic for reliably computing an effective diameter of a patient from an abdominal CT image. Evaluation of this method on 106 patients scanned on Philips Brilliance 64 and Brilliance Big Bore scanners demonstrates close correspondence between computed and manually measured patient effective diameters, with a mean absolute error of 1.0 cm (error range +2.2 to -0.4 cm). This level of correspondence was also demonstrated for 60 patients on Siemens, General Electric, and Toshiba scanners. A calculated effective diameter in the middle slice of an abdominal CT study was found to be a close approximation of the mean calculated effective diameter for the study, with a mean absolute error of approximately 1.0 cm (error range +3.5 to -2.2 cm). Furthermore, the mean absolute error for an adjusted mean volume computed tomography dose index (CTDIvol) using a mid-study calculated effective diameter, versus a mean per-slice adjusted CTDIvol based on the calculated effective diameter of each slice, was 0.59 mGy (error range 1.64 to -3.12 mGy). These results are used to calculate approximate normalized dose length product values in an abdominal CT dose database of 12,506 studies.

  11. Can results from animal studies be used to estimate dose or low-dose effects in humans

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1980-09-01

    A method has been developed based on animal data which appears useful in predicting biological equilibrium level for radionuclides in humans. It is shown that measures of whole-body retention, plasma concentration, short-term toxicity and cancer incidence can be projected, at least in limited circumstances, for some elements and organic compounds. Some of the procedures used for extrapolation in other fields as well as those from radiobiology are reviewed, the similarity procedure developed discussed, and a review provided of some of the issues in low-dose-effect modelling and the extrapolation of those data to humans

  12. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael [Los Alamos National Laboratory

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  13. Estimation of the collective effective dose to the population from medical X-ray examinations in Finland

    International Nuclear Information System (INIS)

    Tenkanen-Rautakoskia, Petra; Jaervinen, Hannu; Bly, Ritva

    2008-01-01

    The collective effective dose to the population from all X-ray examinations in Finland in 2005 was estimated. The numbers of X-ray examinations were collected by a questionnaire to the health care units (response rate 100 %). The effective doses in plain radiography were calculated using a Monte Carlo based program (PCXMC), as average values for selected health care units. For computed tomography (CT), weighted dose length product (DLP w ) in a standard phantom was measured for routine CT protocols of four body regions, for 80 % of CT scanners including all types. The effective doses were calculated from DPL w values using published conversion factors. For contrast-enhanced radiology and interventional radiology, the effective dose was estimated mainly by using published DAP values and conversion factors for given body regions. About 733 examinations per 1000 inhabitants (excluding dental) were made in 2005, slightly less than in 2000. The proportions of plain radiography, computed tomography, contrast-enhanced radiography and interventional procedures were about 92, 7, 1 and 1 %, respectively. From 2000, the frequencies (number of examinations per 1000 inhabitants) of plain radiography and contrast-enhanced radiography have decreased about 8 and 33 %, respectively, while the frequencies of CT and interventional radiology have increased about 28 and 38 %, respectively. The population dose from all X-ray examinations is about 0.43 mSv per person (in 1997 0.5 mSv). About half of this is caused by CT (in 1997 only 20 %) although the relative number of CT examinations is only 7 %. The contribution by plain radiography is 19 %, interventional radiology 17 %, and contrast-enhanced radiology 14 %. It is concluded that CT examinations are the major source of the population dose, while interventional radiology gives about the same population dose as plain radiography. For plain radiography, body examinations cause the highest effective dose. (author)

  14. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    Science.gov (United States)

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases

  15. Estimation of the effects of a lead vest on dose reduction for radiation workers using Monte Carlo calculations

    International Nuclear Information System (INIS)

    Young-khi, Lim; Byoung-il, Lee; Jeong-in, Kim

    2008-01-01

    Full text: In the field of medical diagnosis or treatments using radiations, lead vests or aprons are widely used to protect the patients or workers from unwanted irradiation. Also, in nuclear power plants, it is recommended that the workers should wear a lead vest to reduce the dose for working in high radiation area. Generally, personal dosimeters were used to estimate the doses of workers but these cannot give the absolute values. So, measured values should be modified by comparing the reference conditions with conversion factors. Many trials to estimate the doses of workers with lead shield using two or more dosimeters at different locations were done but these had limitations. Through this study the personal dose with/without a lead vest and the effectiveness were evaluated by Monte Carlo methods. A lead vest which had been used at several nuclear sites was modelled with MIRD-V and typical Korean voxel phantom using MCNP-5 transport code. Organ doses were calculated in AP, PA, RLAT, LLAT irradiation geometry for several parallel photon beams. Also irradiation experiments were carried out using real typical Korean phantom with the lead vest and the results were compared with those calculated by simulations. In most cases, the lead vest decreases the organ doses about 30%. For low energy, the lead vest is very effective to reduce the dose but it is not so good for high energy photon shielding. For thyroids, the doses to high energy photons increased by 5% on the contrary. This study may be applied to the better design of personal shielding and dose estimation procedures for practical use. (author)

  16. Estimate of the Effective Dose Equivalent to the Cypriot Population due to Diagnostic Nuclear Medicine Procedures in the Public Sector

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, S [Medical Physics Department, Nicosia General Hospital (Cyprus)

    1994-12-31

    The Effective Dose Equivalent (EDE) to the Cypriot population due to Diagnostic Nuclear Medicine procedures has been estimated from data published by the Government of Cyprus, in its Health and Hospital Statistics Series for the years 1990, 1991, and 1992. The average EDE per patient was estimated to be 3,09, 3,75 and 4,01 microSievert for 1990, 1991 and 1992 respectively, while the per caput EDE was estimated to be 11,75, 15,16 and 17,09 microSieverts for 1990, 1991 and 1992 respectively, from the procedures in the public sector. (author). 11 refs, 4 tabs.

  17. Estimate of the Effective Dose Equivalent to the Cypriot Population due to Diagnostic Nuclear Medicine Procedures in the Public Sector

    International Nuclear Information System (INIS)

    Christofides, S.

    1994-01-01

    The Effective Dose Equivalent (EDE) to the Cypriot population due to Diagnostic Nuclear Medicine procedures has been estimated from data published by the Government of Cyprus, in its Health and Hospital Statistics Series for the years 1990, 1991, and 1992. The average EDE per patient was estimated to be 3,09, 3,75 and 4,01 microSievert for 1990, 1991 and 1992 respectively, while the per caput EDE was estimated to be 11,75, 15,16 and 17,09 microSieverts for 1990, 1991 and 1992 respectively, from the procedures in the public sector. (author)

  18. Estimation of skin, organ and effective doses of patients who undertake head CT scan in 4 medical radiography

    International Nuclear Information System (INIS)

    Bahreyni Toosi, M.T.; Khalilpour, M.

    2007-01-01

    Complete test of publication follows. CT was first introduced into clinical practice in 1972, and has since grown into one of the predominant diagnostic procedures. In this work we have estimated patient dose arising from CT examination of brain in four hospitals in Mashhad. Organ and effective doses were estimated for 123 patients who underwent CT examination of brain. 'ImPACT' version 0.99w was used to estimate organ and effective dose. ESD of same patients were measured by TLD-100. Brain examinations were performed with fixed kV, mA and T (slice thickness) for each scanner. The CT Scanners investigated in this study were GE HiLight, Siemens Somatom AR-T, Somatom Balance and Shimadzu SCT. Summary of our findings are as follows: Application of 'ImPACT' software enabled us to compute Bone marrow (red), Brain, Thyroid and effective doses of all patients. Table 1 shows the average organ dose (Brain, Bone marrow (red), Thyroid), mean effective dose and mean ESD were measured by TLD for each patients. Patients, who were scanned by Siemens Somatom AR-T, received maximum organ dose (brain) equal to 25.64 mGy and minimum organ dose equal to 0.21 mGy was delivered to thyroid of patients who were scanned by GE HiLight Scanner. Our average effective dose (0.54 ± 0.02 mSv) is smaller than the corresponding value (0.75 ± 0.03 mSv) obtained by Peter F. Caracappa (M.Sc dissertation submitted to the Faculty of Rensselaer Polytechnic Institute, Troy, New York April 2004). Scanning by Siemens Somatom AR-T, gave rise to maximum ESD (equal to 16.22 mGy). On the other hand minimum ESD (5.51 mGy) was achieved when patients were scanned by GE HiLight machine. ESD values and organ doses acquired in this work by two different methods, TLD measurement and computing by 'ImPACT' software; are in good agreement and this is an indication of the accuracy and validity of both sets of results.

  19. Survey of CT practice in Japan and collective effective dose estimation

    International Nuclear Information System (INIS)

    Nishizawa, Kanae; Maruyama, Takashi; Matsumoto, Masaki; Iwai, Kazuo

    2004-01-01

    Computed tomography (CT) has been established as an important diagnostic tool in clinical medicine and has become a major source of medical exposure. A nationwide survey regarding CT examinations was carried out in Japan in 2000. CT units per million people in Japan numbered 87.8. The annual number of examinations was 0.1 million in those 0-14 years old, 3.54 million for those 15 years old and above, and 3.65 million in total. Eighty percent of examinations for those 0-14 years old were examinations of the head, as were 40% for those 15 years old and above. The number of examinations per 1000 population was 290. The collective effective dose was 295 x 10 3 person·Sv, and the effective dose per caput was evaluated as 2.3 mSv. (author)

  20. Estimation of effective dose from the atmospheric nuclear tests due to the intake of marine products

    International Nuclear Information System (INIS)

    Nakano, Masanao

    2008-01-01

    The worldwide environmental protection is required by the public. A long-term environmental assessment from nuclear fuel cycle facilities to the aquatic environment also becomes more important to understand long-term risk of nuclear energy. Evaluation of long-term risk including not only in Japan but also in neighboring countries is considered to be necessary in order to develop sustainable nuclear power industry. The author successfully simulated the distribution of radionuclides in seawater and seabed sediment produced by atmospheric nuclear tests using LAMER (Long-term Assessment ModEl of Radionuclides in the oceans). A part of the LAMER calculated the advection-diffusion-scavenging processes for radionuclides in the oceans and the Japan Sea in cooperate with Oceanic General Circulation Model (OGCM) and was validated. The author is challenging to calculate probabilistic effective dose suggested by ICRP from intake of marine products due to atmospheric nuclear tests using the Monte Carlo method in the other part of LAMER. Depending on the deviation of each parameter, the 95th percentile of the probabilistic effective dose was from one third to two thirds of the 95th percentile of the deterministic effective dose in proforma calculation. It means that probabilistic assessment can contribute to the design and optimisation of a nuclear fuel cycle facility. (author)

  1. Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology.

    Science.gov (United States)

    Emigh, Brent; Gordon, Christopher L; Connolly, Bairbre L; Falkiner, Michelle; Thomas, Karen E

    2013-09-01

    There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences  0.18). DAP-to-effective dose conversion factors ranged from 6.5 ×10(-4) mSv per Gy-cm(2) to 4.3 × 10(-3) mSv per Gy-cm(2) for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is MOSFETs, which were shown to agree with Monte Carlo simulated doses.

  2. Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Jones, Bleddyn; Cominos, Matilda; Dale, Roger G.

    2003-01-01

    Purpose: To investigate the potential for mathematic modeling in the assessment of symptom relief in palliative radiotherapy and cytotoxic chemotherapy. Methods: The linear quadratic model of radiation effect with the overall treatment time and the daily dose equivalent of repopulation is modified to include the regrowth time after completion of therapy. Results: The predicted times to restore the original tumor volumes after treatment are dependent on the biological effective dose (BED) delivered and the repopulation parameter (K); it is also possible to estimate K values from analysis of palliative treatment response durations. Hypofractionated radiotherapy given at a low total dose may produce long symptom relief in slow-growing tumors because of their low α/β ratios (which confer high fraction sensitivity) and their slow regrowth rates. Cancers that have high α/β ratios (which confer low fraction sensitivity), and that are expected to repopulate rapidly during therapy, are predicted to have short durations of symptom control. The BED concept can be used to estimate the equivalent dose of radiotherapy that will achieve the same duration of symptom relief as palliative chemotherapy. Conclusion: Relatively simple radiobiologic modeling can be used to guide decision-making regarding the choice of the most appropriate palliative schedules and has important implications in the design of radiotherapy or chemotherapy clinical trials. The methods described provide a rationalization for treatment selection in a wide variety of tumors

  3. Estimation of the effectivity of gamma teletherapy with fractionated daily doses in inoperable malignant tumors

    International Nuclear Information System (INIS)

    Mardynskij, Yu.S.; Leskov, V.P.

    1982-01-01

    131 patients with lung, esophagus, rectum and mandibulofacial tumors, most of them being inoperable, were treated with fractionated gamma teletherapy. The daily focus dose of 2-2.2 Gy was applied in 2 fractions with an interval of 4-6 h. The total focus dose of one course of treatment was 40-70 Gy. In 56 patients (42.7%) a complete regression of the tumors and of the increased regional lymph nodes was obtained. The irradiation by the mentioned technique showed the highest effectivity for tumors of the lung and the esophagus. The diminished frequency and an easier progress of the radiation reactions are important because they often prevent to carry out a radical therapy. (author)

  4. The significance of neuroendocrine system state in estimation of nonstochastic effects of small doses of internal irradiation. (An experimental study)

    International Nuclear Information System (INIS)

    Dedov, V.I.; Norets, T.A.; Stepanenko, V.F.; Dedenkov, A.N.

    1987-01-01

    Data on long-term complex investigations of nonstochastic effects of low doses of internal irradiation on the level of a whole organism are presented. Experiments have been carried out with mongrel rats of both sexes and different ages up to the moment of introduction of radioactive compounds. Action of relatively and uniformly distributing in the organism radiactive compounds of selenium - 75 and sulfur - 35, which were introduced once intravenously in quantities forming absorbed doses in average on the whole body and ovaries (0.5 Gy), on endocrine glands and critical organs (up to 1.0 Gy) has been used as models of internal radiation. Data, testifying to the fact that the neuroendocrinal system, despite the existing opinion, is sensitive to action of low doses of internal irradiation compared with the recommended one as an ultimate permissible one for nonstochastic effects ( 0.5 Sv), that permits to suggest for using factors of the functional state of the neuroendocrine system as an informative and sensitive criterium of estimation of biological action of low doses of internal radiation, have been obtained. These factors along with doses on critical organs permit to estimate the degree of dangerous action of different radionuclides on the organism level. Dynamic studying of activity factors of the neuroendocrine system with simultaneous analysis of the state of harmonically dependent processes permits to estimate functional possibilities of irradiated organism, its viability, especially under conditions requiring increased stress, as well as to take into account such factors modifying a biological effect as age, animal sex, the character of absorbed dose distribution

  5. The effect of angular and longitudinal tube current modulations on the estimation of organ and effective doses in x-ray computed tomography

    International Nuclear Information System (INIS)

    Straten, Marcel van; Deak, Paul; Shrimpton, Paul C.; Kalender, Willi A.

    2009-01-01

    Purpose: Tube current modulation (TCM) is one of the recent developments in multislice CT that has proven to reduce the patient radiation dose without affecting the image quality. Presently established methods and published coefficients for estimating organ doses from the dose measured free in air on the axis of rotation or in the CT dose index (CTDI) dosimetry phantoms do not take into account this relatively new development in CT scanner design and technology. Based on these organ dose coefficients effective dose estimates can be made. The estimates are not strictly valid for CT scanning protocols utilizing TCM. In this study, the authors investigated the need to take TCM into account when estimating organ and effective dose values. Methods: A whole-body adult anthropomorphic phantom (Alderson Rando) was scanned with a multislice CT scanner (Somatom Definition, Siemens, Forchheim, Germany) utilizing TCM (CareDose4D). Tube voltage was 120 kV, beam collimation 19.2 mm, and pitch 1. A voxelized patient model was used to define the tissues and organs in the phantom. Tube current values as a function of tube angle were obtained from the raw data for each individual tube rotation of the scan. These values were used together with the Monte Carlo dosimetry tool IMPACTMC (VAMP GmbH, Erlangen, Germany) to calculate organ dose values both with and without account of TCM. Angular and longitudinal modulations were investigated separately. Finally, corresponding effective dose conversion coefficients were determined for both cases according to the updated 2007 recommendations of the ICRP. Results: TCM amplitude was greatest in the shoulder and pelvic regions. Consequently, dose distributions and organ dose values for particular cross sections changed considerably when taking angular modulation into account. The effective dose conversion coefficients were up to 11% lower for a single rotation in the shoulder region and 17% lower in the pelvis when taking angular TCM into

  6. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  7. Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology

    International Nuclear Information System (INIS)

    Emigh, Brent; Gordon, Christopher L.; Falkiner, Michelle; Thomas, Karen E.; Connolly, Bairbre L.

    2013-01-01

    There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences 0.18). DAP-to-effective dose conversion factors ranged from 6.5 x 10 -4 mSv per Gy-cm 2 to 4.3 x 10 -3 mSv per Gy-cm 2 for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is < 1 mSv. Estimations of effective dose associated with pediatric UGI examinations can be made for children up to the age of 10 using the DAP-normalized conversion factors provided in this study. These estimates can be further refined to reflect individual hospital examination protocols through the use of direct organ

  8. Dose estimation by biological methods

    International Nuclear Information System (INIS)

    Guerrero C, C.; David C, L.; Serment G, J.; Brena V, M.

    1997-01-01

    The human being is exposed to strong artificial radiation sources, mainly of two forms: the first is referred to the occupationally exposed personnel (POE) and the second, to the persons that require radiological treatment. A third form less common is by accidents. In all these conditions it is very important to estimate the absorbed dose. The classical biological dosimetry is based in the dicentric analysis. The present work is part of researches to the process to validate the In situ Fluorescent hybridation (FISH) technique which allows to analyse the aberrations on the chromosomes. (Author)

  9. Fetus dose estimate of a pregnant worker

    International Nuclear Information System (INIS)

    Castro, P.; Espana, M.L.; Sevillano, D.; Minguez, C.; Ferrer, C.; Lopez Franco, P.

    2006-01-01

    A female employee working in diagnostic radiology should take additional controls to protect the unborn child from ionizing radiations. The fetus is particularly sensitive to the effects of x-rays and, so, the determination of the equivalent dose to the unborn child is of interest for risk estimates from occupational exposures of the pregnant workers. The ian of this study is to develop a method for fetus dose estimate of a pregnant worker who participates in interventional radiology procedures. Factors for converting dosemeter readings to equivalent dose to the fetus have been measured using thermoluminescence dosimetry. Equivalent dose to the uterus is used to simulate the equivalent dose to the fetus during the first two months of pregnancy. Measurements at different depths are made to consider the variations in the position of the uterus between pregnant women. The normalized doses obtained are dependent on the beam quality. Accurate estimation of fetus doses due to occupational exposures can be made using the data provided in the current study. (Author)

  10. Age-specific effective doses for pediatric MSCT examinations at a large children's hospital using DLP conversion coefficients: a simple estimation method

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Wang, Bo

    2008-01-01

    There is a need for an easily accessible method for effective dose estimation in pediatric CT. To estimate effective doses for a variety of pediatric neurological and body CT examinations in five age groups using recently published age- and region-specific dose length product (DLP) to effective dose conversion coefficients. A retrospective review was performed of 1,431 consecutive CT scans over a 12-week period using age- and weight-adjusted CT protocols. Age- and region-specific DLP to effective dose conversion coefficients were applied to console-displayed DLP data. Effective dose estimates for single-phase head CT scans in neonatal, and 1-, 5-, 10- and 15-year-old age groups were 4.2, 3.6, 2.4, 2.0 and 1.4 mSv, respectively. For abdomen/pelvis CT scans the corresponding effective doses were 13.1, 11.1, 8.4, 8.9 and 5.9 mSv. The range of pediatric CT effective doses is wide, from ultralow dose protocols (<1 mSv) to extended-coverage body examinations (10-15 mSv). Age- and region-specific pediatric DLP to effective dose conversion coefficients provide an accessible and user-friendly method for estimating pediatric CT effective doses that is available to radiologists working without medical physics support. (orig.)

  11. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    Science.gov (United States)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  12. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  13. Estimation of effective dose during hysterosalpingography procedures; Estimación de dosis efectiva durante los procedimientos hysterosalpingography

    Energy Technology Data Exchange (ETDEWEB)

    Alzimamil, K.; Babikir, E.; Alkhorayef, M. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433, (Saudi Arabia); Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O. Box 422, Alkharj (Saudi Arabia); Alsafi, K. [King Abdulaziz University, Faculty of Medicine, Radiology Department, Jeddah 22254 (Saudi Arabia); Omer, H., E-mail: kalzimami@ksu.edu.sa [Dammam University, Faculty of Medicine, Dammam Khobar Coastal Rd, Khobar 31982 (Saudi Arabia)

    2014-08-15

    Hysterosalpingography (HSG) is the most frequently used diagnostic tool to evaluate the endometrial cavity and fallopian tube by using conventional x-ray or fluoroscopy. Determination of the patient radiation doses values from x-ray examinations provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimize the protection of the patients. The aims of this study were to measure the patients entrance surface air kerma doses (ESA K), effective doses and to compare practices between different hospitals in Sudan. ESA K were measured for patient using calibrated thermo luminance dosimeters (TLDs, Gr-200A). Effective doses were estimated using National Radiological Protection Board (NRPB) software. This study was conducted in five radiological departments: Two Teaching Hospitals (A and D), two private hospitals (B and C) and one University Hospital (E). The mean ESD was 20.1 mGy, 28.9 mGy, 13.6 mGy, 58.65 mGy, 35.7, 22.4 and 19.6 mGy for hospitals A,B,C,D, and E), respectively. The mean effective dose was 2.4 mSv, 3.5 mSv, 1.6 mSv, 7.1 mSv and 4.3 mSv in the same order. The study showed wide variations in the ESDs with three of the hospitals having values above the internationally reported values. Number of x-ray images, fluoroscopy time, operator skills x-ray machine type and clinical complexity of the procedures were shown to be major contributors to the variations reported. Results demonstrated the need for standardization of technique throughout the hospital. The results also suggest that there is a need to optimize the procedures. Local DRLs were proposed for the entire procedures. (author)

  14. Estimation of exposed dose, 1

    International Nuclear Information System (INIS)

    Okajima, Shunzo

    1976-01-01

    Radioactive atomic fallouts in Nishiyama district of Nagasaki Prefecture are reported on the basis of the survey since 1969. In 1969, the amount of 137 Cs in the body of 50 inhabitants in Nishiyama district was measured using human counter, and was compared with that of non-exposured group. The average value of 137 Cs (pCi/kg) was higher in inhabitants in Nishiyama district (38.5 in men and 24.9 in females) than in the controls (25.5 in men and 14.9 in females). The resurvey in 1971 showed that the amount of 137 Cs was decreased to 76% in men and 60% in females. When the amount of 137 Cs in the body was calculated from the chemical analysis of urine, it was 29.0 +- 8.2 in men and 29.4 +- 26.2 in females in Nishiyama district, and 29.9 +- 8.2 in men and 29.4 +- 11.7 in females in the controls. The content of 137 Cs in soils and crops (potato etc.) was higher in Nishiyama district than in the controls. When the internal exposure dose per year was calculated from the amount of 137 Cs in the body in 1969, it was 0.29 mrad/year in men and 0.19 mrad/year in females. Finally, the internal exposure dose immediately after the explosion was estimated. (Serizawa, K.)

  15. Monte Carlo based estimation of organ and effective doses to patients undergoing hysterosalpingography and retrograde urethrography fluoroscopy procedures

    Science.gov (United States)

    Ngaile, J. E.; Msaki, P. K.; Kazema, R. R.

    2018-04-01

    Contrast investigations of hysterosalpingography (HSG) and retrograde urethrography (RUG) fluoroscopy procedures remain the dominant diagnostic tools for the investigation of infertility in females and urethral strictures in males, respectively, owing to the scarcity and high cost of services of alternative diagnostic technologies. In light of the radiological risks associated with contrast based investigations of the genitourinary tract systems, there is a need to assess the magnitude of radiation burden imparted to patients undergoing HSG and RUG fluoroscopy procedures in Tanzania. The air kerma area product (KAP), fluoroscopy time, number of images, organ dose and effective dose to patients undergoing HSG and RUG procedures were obtained from four hospitals. The KAP was measured using a flat transmission ionization chamber, while the organ and effective doses were estimated using the knowledge of the patient characteristics, patient related exposure parameters, geometry of examination, KAP and Monte Carlo calculations (PCXMC). The median values of KAP for the HSG and RUG were 2.2 Gy cm2 and 3.3 Gy cm2, respectively. The median organ doses in the present study for the ovaries, urinary bladder and uterus for the HSG procedures, were 1.0 mGy, 4.0 mGy and 1.6 mGy, respectively, while for urinary bladder and testes of the RUG were 3.4 mGy and 5.9 mGy, respectively. The median values of effective doses for the HSG and RUG procedures were 0.65 mSv and 0.59 mSv, respectively. The median values of effective dose per hospital for the HSG and RUG procedures had a range of 1.6-2.8 mSv and 1.9-5.6 mSv, respectively, while the overall differences between individual effective doses across the four hospitals varied by factors of up to 22.0 and 46.7, respectively for the HSG and RUG procedures. The proposed diagnostic reference levels (DRLs) for the HSG and RUG were for KAP 2.8 Gy cm2 and 3.9 Gy cm2, for fluoroscopy time 0.8 min and 0.9 min, and for number of images 5 and 4

  16. SU-G-IeP3-05: Effects of Image Receptor Technology and Dose Reduction Software On Radiation Dose Estimates for Fluoroscopically-Guided Interventional (FGI) Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Z; Dave, J; Eschelman, D; Gonsalves, C [Thomas Jefferson University, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To investigate the effects of image receptor technology and dose reduction software on radiation dose estimates for most frequently performed fluoroscopically-guided interventional (FGI) procedures at a tertiary health care center. Methods: IRB approval was obtained for retrospective analysis of FGI procedures performed in the interventional radiology suites between January-2011 and December-2015. This included procedures performed using image-intensifier (II) based systems which were subsequently replaced, flat-panel-detector (FPD) based systems which were later upgraded with ClarityIQ dose reduction software (Philips Healthcare) and relatively new FPD system already equipped with ClarityIQ. Post procedure, technologists entered system-reported cumulative air kerma (CAK) and kerma-area product (KAP; only KAP for II based systems) in RIS; these values were analyzed. Data pre-processing included correcting typographical errors and cross-verifying CAK and KAP. The most frequent high and low dose FGI procedures were identified and corresponding CAK and KAP values were compared. Results: Out of 27,251 procedures within this time period, most frequent high and low dose procedures were chemo/immuno-embolization (n=1967) and abscess drainage (n=1821). Mean KAP for embolization and abscess drainage procedures were 260,657, 310,304 and 94,908 mGycm{sup 2}, and 14,497, 15,040 and 6307 mGycm{sup 2} using II-, FPD- and FPD with ClarityIQ- based systems, respectively. Statistically significant differences were observed in KAP values for embolization procedures with respect to different systems but for abscess drainage procedures significant differences were only noted between systems with FPD and FPD with ClarityIQ (p<0.05). Mean CAK reduced significantly from 823 to 308 mGy and from 43 to 21 mGy for embolization and abscess drainage procedures, respectively, in transitioning to FPD systems with ClarityIQ (p<0.05). Conclusion: While transitioning from II- to FPD- based

  17. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  18. Effect of changes of personal interview data on estimation of individual thyroid dose

    International Nuclear Information System (INIS)

    Tret'yakevich, S.S.

    2008-01-01

    Results of initial and second personal interviews are analyzed for more than one thousand men. Change of individual thyroid dose is considered as consequence of changes of personal interview data. (authors)

  19. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  20. Radiation quality and effective dose equivalent of alpha particles from radon decay products indoors: uncertainties in risk estimation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Affan, I.A. (Velindre Hospital, Whitchurch, Cardiff (United Kingdom))

    1994-01-01

    In order to make a better estimate of cancer risk due to radon the radiation quality of alpha particles emitted from the element and its daughters has been re-assessed. In particular, uncertainties in all components involved in the calculations of the effective dose E, have been investigated. This has been done in the light of the recent draft report of the ICRU on quantities and units for use in radiation protection (Allisy et al (1991) ICRU NEWS 2). On the assumption of an indoor radon concentration of 30 Bq.m[sup -3], microdose spectra have been calculated for alpha particles hitting lung cells at different depths. Then the mean quality factor Q-bar in the lung, dose equivalent H[sub T] to the lung and the effective dose have been calculated. A comparison between lung cancer risk from radon and that arising from diagnostic X rays to the chest is made. A suggestion to make the lung weighting factor w[sub T] a function of the fraction of lung cells hit is discussed. (Author).

  1. Study on the estimation of probabilistic effective dose. Committed effective dose from intake of marine products using Oceanic General Circulation Model

    International Nuclear Information System (INIS)

    Nakano, Masanao

    2007-01-01

    The worldwide environmental protection is required by the public. A long-term environmental assessment from nuclear fuel cycle facilities to the aquatic environment also becomes more important to utilize nuclear energy more efficiently. Evaluation of long-term risk including not only in Japan but also in neighboring countries is considered to be necessary in order to develop nuclear power industry. The author successfully simulated the distribution of radionuclides in seawater and seabed sediment produced by atmospheric nuclear tests using LAMER (Long-term Assessment ModEl for Radioactivity in the oceans). A part of the LAMER calculated the advection- diffusion-scavenging processes for radionuclides in the oceans and the Japan Sea in cooperate with Oceanic General Circulation Model (OGCM) and was validated. The author is challenging to calculate probabilistic effective dose suggested by ICRP from intake of marine products due to atmospheric nuclear tests using the Monte Carlo method in the other part of LAMER. Depending on the deviation of each parameter, the 95th percentile of the probabilistic effective dose was calculated about half of the 95th percentile of the deterministic effective dose in proforma calculation. The probabilistic assessment gives realistic value for the dose assessment of a nuclear fuel cycle facility. (author)

  2. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  3. Estimation of effective dose for the diagnosis and follow-up of multiple myeloma using conventional radiology

    International Nuclear Information System (INIS)

    Tsalafoutas, I.; Kostopoulou, H.; Steinhauer, G.; Koukourakis, G.; Yakoumakis, E.

    2012-01-01

    Background and objective: Multiple myeloma (MM) is a haemolytic neoplasm which produces osteolytic lesions and necessitates the periodical radiological examination of the skeleton for monitoring the disease progression. This involves the acquisition of multiple radiographs every 3 to 6 months, depending on the extent and the stage of the disease. Our objective was to estimate the cumulative patient dose during the radiographic investigation of MM. Materials and methods: Sixty eight MM radiographic examinations performed with a digital X-ray unit were recorded on a CD-rom in DICOM format. The DICOM data were extracted using appropriate software (DICOM Info Extractor) and were input into a Microsoft Excel based spreadsheet, containing embedded algorithms for the identification of the radiological examination type and the estimation of entrance surface air kerma (ESAK), dose area product (DAP) and effective dose (E) in each radiograph. The DAP to E conversion coefficients for each examination type were derived using the PCXMC 2.0 Monte Carlo simulation software for the case of a standard adult patient utilizing the irradiation geometry as this was perceived from the images and the DICOM data. Results: The mean values [and ranges] were: for number of radiographs= 14 [7-23], for cumulative ESAK 13 [2-44] mGy, for cumulative DAP= 6 [1.35-16.5] Gycm 2 and for E= 0. [0.14-2.4] mSv. Conclusion: The average E value calculated is smaller than the values of 1.7 and 2.4 mSv reported in the literature and even smaller than the values of 4.8 and 4.1 mSv reported for MM diagnosis using whole-body CT. (authors)

  4. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT

    International Nuclear Information System (INIS)

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J.; Maentele, Werner; Bauer, Ralf W.

    2012-01-01

    Highlights: ► The dual-energy protocol delivers the lowest effective dose of the investigated protocols for standard chest CT examinations, thus enabling functional imaging (like dual-energy perfusion) and can produce weighted images without dose penalty. ► The high-pitch protocol goes along with a 16% increase in dose compared to the standard 120 kV protocol and thus should preferably be used in pediatric, acute care settings (e.g. pulmonary embolism, aortic dissection and the like) or restless patients. ► The difference in effective dose estimates between ICRP 60 and 103 is minimal. ► Tube potential definitely has an effect on estimates of effective dose. - Abstract: Purpose: To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Materials and methods: Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014 mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120 kV, (2) single-source 100 kV, (3) high-pitch 120 kV, and (4) dual-energy with 100/Sn140 kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. Results: DLP-based estimates differed by 4.5–16.56% and 5.2–15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04 m

  5. Dose estimation of heavy ion beam by microdosimetry. Examination of the method to estimate biological effect from physical measurement of radiation quality

    International Nuclear Information System (INIS)

    Kase, Yuki; Sakama, Makoto; Tsuzuki, Daigo; Abe, Kyoko; Saotome, Naoya; Matsufuji, Naruhiro; Kanai, Tatsuaki; Matsumoto, Kouki; Furusawa, Yoshiya

    2007-01-01

    The absorbed dose (AD) of heavy ion (HI) beam (here, carbon beam) in HI therapy (unit, EGy) (D st ) to exert the actual clinical effect is for the irradiation of tumors deep in the body and is thus estimated by AD corrected with the relative biological effectiveness (RBE) of clinical endpoint: i.e., the relation is expressed by the equation RBE=D st /D rad | same-effect (D rad is AD of the reference X-ray to yield the same effect as the HI used for the intended clinical endpoint). This paper describes the process of the estimation in the title with consideration of depth dependences of AD of HI in accordance to Bragg curve, and of biological AD as determined by colony assay of human salivary gland tumor cells: in NIRS, the desired AD in HI therapy is calculated by multiplying 1.5 to physically measured AD of HI at RBE 10% (10% survival of the cells). This factor has been obtained by microdosimetry of Heavy Ion Medical Accelerator in Chiba (HIMAC) ions in NIRS with a small spherical proportional counter (LET-1/2, Far West Technology) of the diameter 1.27 cm having the tissue equivalent plastic wall and chamber filled with 4.4 kPa of propane-based gas to make the tissue-equivalence size 1.0 μm diameter. The measuring principle is based on the microdosimetric kinetic model reported previously. The calculated dose is found to agree with AD in HI therapeutic planning within 10% fluctuation. (R.T.)

  6. Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico)

    International Nuclear Information System (INIS)

    Villalba, L.; Montero-Cabrera, M. E.; Manjon-Collado, G.; Colmenero-Sujo, L.; Renteria-Villalobos, M.; Cano-Jimenez, A.; Rodriguez-Pineda, A.; Davila-Rangel, I.; Quirino-Torres, L.; Herrera-Peraza, E. F.

    2006-01-01

    The activity concentration of 222 Rn, 226 Ra and total uranium in groundwater samples collected from wells distributed throughout the state of Chihuahua has been measured. The values obtained of total uranium activity concentration in groundwater throughout the state run from -1 . Generally, radium activity concentration was -1 , with some exceptions; in spring water of San Diego de Alcala, in contrast, the value reached ∼5.3 Bq l -1 . Radon activity concentration obtained throughout the state was from 1.0 to 39.8 Bq l -1 . A linear correlation between uranium and radon dissolved in groundwater of individual wells was observed near Chihuahua City. Committed effective dose estimates for reference individuals were performed, with results as high as 134 μSv for infants in Aldama city. In Aldama and Chihuahua cities the average and many individual wells showed activity concentration values of uranium exceeding the Mexican norm of drinking water quality. (authors)

  7. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men: (specific-locus mutations/dose-rate effect/doubling dose/risk estimation)

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Estimation of the genetic hazards of ionizing radiation in men is based largely on the frequency of transmitted specific-locus mutations induced in mouse spermatogonial stem cells at low radiation dose rates. The publication of new data on this subject has permitted a fresh review of all the information available. The data continue to show no discrepancy from the interpretation that, although mutation frequency decreases markedly as dose rate is decreased from 90 to 0.8 R/min (1 R = 2.6 X 10 -4 coulombs/kg) there seems to be no further change below 0.8 R/min over the range from that dose rate to 0.0007 R/min. Simple mathematical models are used to compute: (a) a maximum likelihood estimate of the induced mutation frequency at the low dose rates, and (b) a maximum likelihood estimate of the ratio of this to the mutation frequency at high dose rates in the range of 72 to 90 R/min. In the application of these results to the estimation of genetic hazards of radiation in man, the former value can be used to calculate a doubling dose - i.e., the dose of radiation that induces a mutation frequency equal to the spontaneous frequency. The doubling dose based on the low-dose-rate data compiled here is 110 R. The ratio of the mutation frequency at low dose rate to that at high dose rate is useful when it becomes necessary to extrapolate from experimental determinations, or from human data, at high dose rates to the expected risk at low dose rates. The ratio derived from the present analysis is 0.33

  8. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    Science.gov (United States)

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    Science.gov (United States)

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  10. Estimation of effective collective doses to population of Balti city with health risk assessment by means of medical radiodiagnostic irradiation

    International Nuclear Information System (INIS)

    Chislari, V.

    2009-01-01

    In this work the equivalent of effective collective dose, average annual of radio diagnostic researches in medicine for one habitant Belti city during 2006-2008 and a tendency was exposed to multiplying a dose due to multiplying the number of radiological researches was calculated. As compared to indexes for Republic of Moldova annual equivalent of effective dose is increased in 3 times. A potential risk of a medical radiation makes in 2006 - 7 cases of cancer, in 2007 - 8 cases and in 2009 - 9 cases. (author)

  11. Software Development for Estimating the Conversion Factor (K-Factor) at Suitable Scan Areas, Relating the Dose Length Product to the Effective Dose.

    Science.gov (United States)

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Syouichi; Koshida, Kichiro; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Toyama, Hiroshi; Kato, Ryouichi

    2017-05-01

    We developed a k-factor-creator software (kFC) that provides the k-factor for CT examination in an arbitrary scan area. It provides the k-factor from the effective dose and dose-length product by Imaging Performance Assessment of CT scanners and CT-EXPO. To assess the reliability, we compared the kFC-evaluated k-factors with those of the International Commission on Radiological Protection (ICRP) publication 102. To confirm the utility, the effective dose determined by coronary computed tomographic angiography (CCTA) was evaluated by a phantom study and k-factor studies. In the CCTA, the effective doses were 5.28 mSv in the phantom study, 2.57 mSv (51%) in the k-factor of ICRP, and 5.26 mSv (1%) in the k-factor of the kFC. Effective doses can be determined from the kFC-evaluated k-factors in suitable scan areas. Therefore, we speculate that the flexible k-factor is useful in clinical practice, because CT examinations are performed in various scan regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Software development for estimating the conversion factor (k-factor) at suitable scan areas, relating the dose length product to the effective dose

    International Nuclear Information System (INIS)

    Kobayashi, Masanao; Asada, Yasuki; Suzuki, Syouichi; Kato, Ryouichi; Matsubara, Kosuke; Koshida, Kichiro; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Toyama, Hiroshi

    2017-01-01

    We developed a k-factor-creator software (kFC) that provides the k-factor for CT examination in an arbitrary scan area. It provides the k-factor from the effective dose and dose-length product by Imaging Performance Assessment of CT scanners and CT-EXPO. To assess the reliability, we compared the kFC-evaluated k-factors with those of the International Commission on Radiological Protection (ICRP) publication 102. To confirm the utility, the effective dose determined by coronary computed tomographic angiography (CCTA) was evaluated by a phantom study and k-factor studies. In the CCTA, the effective doses were 5.28 mSv in the phantom study, 2.57 mSv (51%) in the k-factor of ICRP, and 5.26 mSv (1%) in the k-factor of the kFC. Effective doses can be determined from the kFC-evaluated k-factors in suitable scan areas. Therefore, we speculate that the flexible k-factor is useful in clinical practice, because CT examinations are performed in various scan regions. (authors)

  13. Natural radioactivity in groundwater system and estimates of committed effective dose due to water ingestion in Ilorin, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Nwankwo, Levi I. [Department of Physics, University of Ilorin, Ilorin 240003 (Nigeria)

    2014-07-01

    Natural radioactivity measurements in drinking water have been performed in many parts of the world, mostly for assessment of the doses and risk resulting from consuming water. A study of the radionuclide concentrations in groundwater samples collected from wells distributed within Ilorin, west of central Nigeria has been carried out. Twenty Eight (28) water samples were analyzed by gamma ray spectroscopy to determine the {sup 226}Ra, {sup 228}Ra, and {sup 40}K concentrations. The specific activity values ranged from 0.02 to 7.4 Bq/l for {sup 226}Ra, 0.009 to 5.6 Bq/l for {sup 228}Ra, and 0.45 to 30.14 Bq/l for {sup 40}K. The annual ingestions of these radionuclides, using local consumption rates (average over the whole population) of 1 liter per day, were subsequently estimated to range from 0 to 0.8 mSv/y with an average of 0.36 mSv/y, 0 to 1.42 mSv/y with an average of 0.50 mSv/y, and 0 to 0.01 mSv/y with an average of 0.01 mSv/y for {sup 226}Ra, {sup 228}Ra, and {sup 40}K respectively. The results show that the mean annual effective dose values received as a result of the combined ingestion of the radionuclides from many individual wells in the study area exceed the norm of drinking water quality established by UNSCEAR/WHO. Efforts should therefore be made by policy makers to protect the populace from long-term health consequences. (authors)

  14. Estimated radiation dose from timepieces containing tritium

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 μSv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed

  15. Determination of organ doses and effective doses in radiooncology

    International Nuclear Information System (INIS)

    Roth, J.; Martinez, A.E.

    2007-01-01

    Background and Purpose: With an increasing chance of success in radiooncology, it is necessary to estimate the risk from radiation scatter to areas outside the target volume. The cancer risk from a radiation treatment can be estimated from the organ doses, allowing a somewhat limited effective dose to be estimated and compared. Material and Methods: The doses of the radiation-sensitive organs outside the target volume can be estimated with the aid of the PC program PERIDOSE developed by van der Giessen. The effective doses are determined according to the concept of ICRP, whereby the target volume and the associated organs related to it are not taken into consideration. Results: Organ doses outside the target volume are generally < 1% of the dose in the target volume. In some cases, however, they can be as high as 3%. The effective doses during radiotherapy are between 60 and 900 mSv, depending upon the specific target volume, the applied treatment technique, and the given dose in the ICRU point. Conclusion: For the estimation of the radiation risk, organ doses in radiooncology can be calculated with the aid of the PC program PERIDOSE. While evaluating the radiation risk after ICRP, for the calculation of the effective dose, the advanced age of many patients has to be considered to prevent that, e.g., the high gonad doses do not overestimate the effective dose. (orig.)

  16. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    International Nuclear Information System (INIS)

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-01-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. 131 I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided

  17. Estimation of collective effective dose equivalent from environmental radiation and radioactive materials in Japan. A preliminary study

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Noda, Yutaka; Takeshita, Mitsue; Iwai, Kazuo.

    1994-01-01

    The peaceful uses of nuclear power and radiations have been developed into a stage of practical applications for human life. Radiation causes harmful effects to human beings, although human beings receives a number of invaluable benefits from the nuclear energy and the uses of radiation. In order to examine the optimization of radiation protection in these practices, collective effective dose equivalent from environmental exposures due to natural and artificial radiations have been preliminarily evaluated using most recent data. The resultant collective doses were compared with those from medical and occupational exposures. It is noted that, in Japan, the collective effective dose from environmental radiation sources can be approximately same to that from medical exposure. (author)

  18. Occupational dose estimates for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Harty, R.; Stoetzel, G.A.

    1986-06-01

    Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding

  19. Dose estimation in embryo or fetus in external fields

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.

    2001-01-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation

  20. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  1. Dose estimates in Japan following the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Togawa, Orihiko; Homma, Toshimitsu; Iijima, Toshinori; Midorikawa, Yuji.

    1988-02-01

    Estimates have been made of the maximum individual doses and the collective doses in Japan following the Chernobyl reactor accident. Based on the measured data of ground deposition and radionuclide concentrations in air, raw milk, milk on sale and leafy vegetables, the doses from some significant radionuclides were calculated for 5 typical exposure pathways; cloudshine, groundshine, inhalation, ingestion of milk and leafy vegetables. The maximum effective dose equivalents for hypothetical individuals were calculated to be 1.8 mrem for adults, 3.7 mrem for children and 6.0 mrem for infants. The collective effective dose equivalent in Japan was estimated to be 5.8 x 10 4 man · rem; 0.50 mrem of the average dose per capita. (author)

  2. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  3. Assessment of radioactivity and estimation of effective dose received by villagers residing at natural high background areas of coastal regions of Tamil Nadu

    International Nuclear Information System (INIS)

    Esaiselvan, K.; Rajagopal, R.; Sreekumar, K.; Harikumar, M.; AllenGnanaraj, G.

    2010-01-01

    Radiation exposure and effective dose received by villagers residing at seven villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Tamil Nadu were studied; five houses in each village were selected. The NHBRA villages were Chinnavilai, Periavilai, Kottilpadu, Puthoor Colachel, Kodimunai and Midalam. The houses were of similar construction pattern (brick wall-tiled roof, cement flooring). Measurements of radon ( 222 Rn), thoron ( 220 Rn) and their progeny, produced by the decay of naturally occurring radioisotopes uranium and thorium in dwellings are the largest contributor to the average internal effective dose received by human beings. Internal doses due to radon/thoron and their progeny were estimated using, Solid State Nuclear Track Detectors (SSNTD), LR-115, as the detector. External doses were estimated by gamma measurement using scintillometer and Thermo Luminescent Dosimeter (TLD). TLDs were exposed for one year, on a quarterly basis, inside the house at a height of 3 meters and about 1 meter away from the walls. The SSNTD cups were exposed adjacent to the TLDS, and the exposure was for a period of three months each. The SSNTDs were developed by standard procedures (10% NaOH, etching for 90 min at 60 deg C) and counted in a spark counter. Earlier the SSNTDs were calibrated using U and Th sources and calibration factors were obtained. Inhalation dose due to 232 Th and Th (B) in mWL were estimated by collecting air samples from each house, for one hour each, during the replacement time of TLD and SSNTD Cups. For inhalation dose estimation the occupancy factor was assumed to be 0.8. The soil samples were also collected from each sampling point. (author)

  4. Criteria and methods for estimating external effective dose equivalent from personnel monitoring results: EDE implementation guide. Final report

    International Nuclear Information System (INIS)

    Owen, D.

    1998-09-01

    Title 10 Part 20 of the Code of Federal regulations requires that nuclear power plant licensees evaluate worker radiation exposure using a risk-based methodology termed the effective dose equivalent (EDE). EDE is a measure of radiation exposure that represents an individual's risk of stochastic injury from their exposure. EPRI has conducted research into how photons interact with the body. These results have been coupled with information on how the body's organs differ in their susceptibility to radiation injury, to produce a methodology for assessing the effective dose equivalent. The research and the resultant methodology have been described in numerous technical reports, scientific journal articles, and technical meetings. EPRI is working with the Nuclear Energy Institute to have the EPRI effective dose equivalent methodology accepted by the Nuclear Regulatory Commission for use at US nuclear power plants. In order to further familiarize power plant personnel with the methodology, this report summarizes the EDE research and presents some simple guidelines for its implementing the methodology

  5. Estimation of the effect of increased doses of UV-radiation on functional state and productivity of sheep

    International Nuclear Information System (INIS)

    Ivanov, V.L.; Ipatova, A.G.; Zejnalov, A.A.; Kozlov, V.A.; Sarukhanov, V. Ya.

    2000-01-01

    The results of evaluation of sensitivity and adaptive possibilities of the sheep organism by long impact of increased doses of electromagnetic radiation (EMR) of the UV-range in the experiment by clinical-physiological indices modeling the 25 and 50 % depletion of the Earth ozone layer are presented. It is established that the character of changes in the animals organism depends on the irradiation dose sensitivity of the individual living system organism to the EMR and physiological peculiarities of its protection. However, the functional changes in the cardiovascular, immune and reproduction systems, homeostasis system and substance exchange in the period of chronic irradiation do not effect the development of irreversible pathological changes [ru

  6. Effective dose equivalent

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Passchier, W.F.

    1988-01-01

    The effective dose equivalent is a quantity which is used in the daily practice of radiation protection as well as in the radiation hygienic rules as measure for the health risks. In this contribution it is worked out upon which assumptions this quantity is based and in which cases the effective dose equivalent can be used more or less well. (H.W.)

  7. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  8. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    International Nuclear Information System (INIS)

    Chen, Y.; Yan, X.K.; Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K.

    2011-01-01

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of 60 Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of 60 Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0 -3 D 2 . Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy γ-irradiation from a supra-high dose 60 Co gamma-ray accident.

  9. Notes on the effect of dose uncertainty

    International Nuclear Information System (INIS)

    Morris, M.D.

    1987-01-01

    The apparent dose-response relationship between amount of exposure to acute radiation and level of mortality in humans is affected by uncertainties in the dose values. It is apparent that one of the greatest concerns regarding the human data from Hiroshima and Nagasaki is the unexpectedly shallow slope of the dose response curve. This may be partially explained by uncertainty in the dose estimates. Some potential effects of dose uncertainty on the apparent dose-response relationship are demonstrated

  10. beta- and gamma-Comparative dose estimates on Eniwetok Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L.

    1982-05-01

    Eniwetok Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Eniwetok Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  11. Estimation of 18FDG doses's cost

    International Nuclear Information System (INIS)

    Hamza, Fatma; Amouri, W.; Jardak, I.; Kallel, F.; Charfeddine, S.; Guermazi, F.

    2013-01-01

    The cyclotron facility, essentially for medical use, is far from being a simple establishment of a dedicated device to accelerate particles producing a beta plus emitter radioelement. The cyclotron site encompasses more over all necessary equipments for the production and the quality control of considered radiotracer that 18 FDG is just one example. This facility is subject to strict standards in terms of radiopharmaceutical production, radiation level, pressure level and airflow resulting in the production of a drug submitted to the MA (Marketing Authorization). These multiple factors directly influence the final cost of the dose that remains to be reachable by the patient. The aim of this work is to estimate the cost of a dose of 18 FDG to ensure financial viability of the project while accessible to the patient. The cost of the facility will entail the following: buildings and utilities, equipment and operational cost. This calculation is possible only if we define in advance the type of cyclotron, which is bound to the market needs in particular the number of PET facilities, the number of scans per day and the radioactive decay of radioelement. Our study represents a simulation that considers some hypothesis. We assumed that the cyclotron is installed in Sousse and that the PET facilities number (positon emission tomography) is 6 in which 4 are located 2 hours away. For a PET scan, the average dose per patient is about 350 MBq (5 MBq/kg) and the exam duration is about 45 minutes. Each center performs 10 tests per day. In terms of fees, we considered device and building's cost, facility amortization, consumables (target, marking accessories), maintenance, remuneration expense and the annual electricity consumption. All our calculations have been reported to the number of working days per year. The estimates were made outside the customs duties and technical assistance that may last up to 2 years. Requirements and needs were estimated at 5.4 curies per day. For

  12. New risk estimates at low doses

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1992-01-01

    The age of molecular radiation epidemiology may be at hand. The techniques are available to establish with the degree of precision required to determine whether agent-specific mutations can be identified consistently. A concerted effort to examine radiation-induced changes in as many relevant genes as possible appears to be justified. Cancers in those exposed to low doses of ionizing radiation should be chosen for the investigation. Parallel studies of radiation-induced cancers in experimental animals would not only complement the human studies, but perhaps reveal approaches to extrapolation of risk estimates across species. A caveat should be added to this optimistic view of what molecular studies might contribute to the knotty problem of risk estimates at low doses. The suggestions are made by one with no expertise in the field of molecular biology

  13. Estimation of radiation dose in Sakkara area

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Hussein, M.I.; Abd El-Hady, M.L.

    1998-01-01

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.)

  14. Estimation of radiation dose in Sakkara area

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, A Z; Hussein, M I [National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt); Abd El-Hady, M L [Physics Department, Faculty of Science, El Minia University, El-Minia (Egypt)

    1999-12-31

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.) 1 tab., 6 refs.

  15. Estimation of annual effective dose from 226Ra and 228Ra due to consumption of foodstuffs by inhabitants of Ramsar city, Iran

    International Nuclear Information System (INIS)

    Asefi, M.; Fathivand, A. A.; Amidi, J.

    2005-01-01

    226 Ra and 228 Ra contents in foodstuffs of Ramsar which is a coastal city in the northern part of lran were determined by gamma spectrometry. Measurement results together with food consumption rates were used to estimate annual effective dose from 226 Ra and 228 Ra, due to consumption of food stuffs by inhabitants of Ramsar city. Materials and methods: a total of 33 samples from 11 different foodstuffs including root vegetables (beetroot), leafy vegetables (lettuce, parsley and spinach) and tea, meat, chicken, pea, broad bean, rice, and cheese were purchased from markets of Ramsar city and were analyzed for their 226 Ra and 228 Ra concentration. 1-8 kg of fresh weight sample was placed in Marinnelli beaker and sealed. The measurement of natural radioactivity levels as performed by gamma-spectrometry system, using a high purity germanium detector with 40% relative efficiency. Results: The highest concentrations of 226 Ra and 228 Ra were determined in tea samples with 1570 and 1140 mBq/kg, respectively, and the lowest concentration of 226 Ra was in pea, cheese, chicken, broad bean, and beetroot. Conclusion:The maximum estimated annual effective dose from 226 Ra and 228 Ra due to consumption, foodstuffs were determined to be 19.22 and 0.71 mSv from rice and meat samples respectively, where as, minimum estimated annual effective dose for 226 Ra was 0.017, 0.018 and 0.019 mSv from beetroot, cheese and pea samples respectively

  16. Low doses effects

    International Nuclear Information System (INIS)

    Tubiana, M.

    1997-01-01

    In this article is asked the question about a possible carcinogens effect of low dose irradiation. With epidemiological data, knowledge about the carcinogenesis, the professor Tubiana explains that in spite of experiments made on thousand or hundred of thousands animals it has not been possible to bring to the fore a carcinogens effect for low doses and then it is not reasonable to believe and let the population believe that low dose irradiation could lead to an increase of neoplasms and from this point of view any hardening of radiation protection standards could in fact, increase anguish about ionizing radiations. (N.C.)

  17. Effective dose and dose to crystalline lens during angiographic procedures

    International Nuclear Information System (INIS)

    Pages, J.

    1998-01-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  18. Effective doses in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, Olga; Diaconescu, Cornelia; Roca, Antoaneta

    2001-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study is to assess in terms of effective doses the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses to the patient. Effective doses have been derived from measurements of dose-area product (DAP) carried out on over 900 patients undergoing X-ray examinations, in five paediatric units. The conversion coefficients for estimating effective doses are those calculated by the NRPB using Monte-Carlo technique on a series of 5 mathematical phantoms representing 0, 1, 5, 10 and 15 year old children. The annual frequency of X-ray examinations necessary for collective dose calculation are those reported in our last national study on medical exposure, conducted in 1995. The annual effective doses from all medical examinations for the average paediatric patient are as follows: 1.05 mSv for 0 year old, 0.98 mSv for 1 year old, 0.53 mSv for 5 year old, 0.65 mSv for 10 year old and 0.70 mSv for 15 year old. The resulting annual collective effective dose was evaluated at 625 man Sv with the largest contribution of pelvis and hip examinations (34%). The annual collective effective associated with paediatric radiology in Romania represent 5% of the annual value resulting from all diagnostic radiology. Examination of the chest is by far the most frequent procedure for children, accounting for about 60 per cent of all annually performed X-ray conventional examinations. Knowledge of real level of patient dose is an essential component of quality assurance programs in paediatric radiology. (authors)

  19. Energy imparted-based estimates of the effect of z overscanning on adult and pediatric patient effective doses from multi-slice computed tomography

    International Nuclear Information System (INIS)

    Theocharopoulos, Nicholas; Damilakis, John; Perisinakis, Kostas; Gourtsoyiannis, Nicholas

    2007-01-01

    In the present study effective dose values normalized to computed tomography dose index measured free in air were calculated for adult, newborn, 1, 5, 10 and 15 year old patients regarding scans of the head, chest, abdomen, pelvis, abdomen and pelvis, and trunk, using the energy imparted method. The effect of z overscanning on patient doses was accounted for, and normalized doses are provided for varying beam collimation, pitch and reconstruction slice width values. The contribution of overscanning depends on patient age, anatomic region imaged, acquisition and reconstruction settings. For a head scan it constitutes 15% of the adult effective dose and 24% of the effective dose to a newborn but for an abdomen scan it may be as high as 58% for a newborn and 31% for an adult. The ratios of normalized pediatric doses relative to that for adults for helical scans depend not only on age but also on acquisition and reconstruction parameters, because of variations in the relative distance between the primary beam and the radiosensitive tissues/organs of the body. Regarding scans of the trunk, pediatric doses are up to a factor of 2.5 times higher compared to adult doses (abdominal scans), whereas for scans of the head up to a factor of 1.5. Increasing the pitch value of helical scans while maintaining the same effective mAs setting, and hence noise levels, leads to an increase in patient doses which depends on age, body region, scan and reconstruction parameters. The % difference between doses at pitch 1.5 and pitch 1 is more pronounced in the abdominal region (14% increase for adults) and in young patients (31% in a newborn and 18% in a 10 year old patient) and it is minimal in head scans (4% increase in newborns and 1% in adults). If multiple body regions are to be imaged, doses to adults can be reduced by up to 15% and 36% to children by performing single long-range scans. Scanning adult patients at 100 kVp instead of 120 kVp, results in a 32% reduction in effective

  20. Natural radiation dose estimates from soils

    International Nuclear Information System (INIS)

    Silveira, M.A.G.R.; Moreira, H.; Medina, N.H.

    2009-01-01

    In this work the natural radiation from soils of southeastern Brazil has been studied. Soil samples from Interlagos, Sao Paulo; parks and Billings dam, in Sao Bernardo do Campo city; Santos, Sao Vicente and Sao Sebastiao beaches, Sao Paulo and sands from Ilha Grande beaches, Rio de Janeiro, were analyzed. The results show that the main contribution to the effective dose is due to elements of the 232 Th decay chain, with a smaller contribution from the radionuclide 40 K and the elements of the series of 238 U. The obtained values found in the studied regions, are around the average international dose due to external exposure to gamma rays (0.48 mSv/yr), except in Praia Preta, Ilha Grande, where the effective dose exceeds the average value. (author)

  1. Organ dose estimates for the Japanese atomic-bomb survivors

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1978-10-01

    Recent studies concerning radiation risks to man by the Committee on Biological Effects of Ionizing Radiation of the National Academy of Sciences-National Research Council and the United Nations Scientific Committee on the Effects of Atomic Radiation have emphasized the need for estimates of dose to organs of the Japanese atomic-bomb survivors. Shielding of internal organs by the body has been investigated for fission-weapon gamma rays and neutrons, and ratios of mean absorbed dose in a number of organs to survivors' T65D assignments of tissue kerma in air are provided for adults. Ratios of mean absorbed dose to tissue kerma in air are provided also for the thyroid and active bone marrow of juveniles. These organ dose estimates for juveniles are of interest in studies of radiation risks due to an elevated incidence of leukemia and thyroid cancer in survivors exposed as children compared to survivors exposed as adults

  2. Improved dose estimates for nuclear criticality accidents

    International Nuclear Information System (INIS)

    Wilkinson, A.D.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.; Plaster, M.J.; Dodds, H.L.; Yamamoto, T.

    1995-01-01

    Slide rules are improved for estimating doses and dose rates resulting from nuclear criticality accidents. The original slide rules were created for highly enriched uranium solutions and metals using hand calculations along with the decades old Way-Wigner radioactive decay relationship and the inverse square law. This work uses state-of-the-art methods and better data to improve the original slide rules and also to extend the slide rule concept to three additional systems; i.e., highly enriched (93.2 wt%) uranium damp (H/ 235 U = 10) powder (U 3 O 8 ) and low-enriched (5 wt%) uranium mixtures (UO 2 F 2 ) with a H/ 235 U ratio of 200 and 500. Although the improved slide rules differ only slightly from the original slide rules, the improved slide rules and also the new slide rules can be used with greater confidence since they are based on more rigorous methods and better nuclear data

  3. Dose uniformity estimations in the blood irradiator

    International Nuclear Information System (INIS)

    George, J.R.

    2002-01-01

    Use of irradiated blood in transfusions is recognized as the most effective way of preventing Graft Versus Host Disease (GVHD). This paper shows the study carried out in the dose rate variation for various source arrangements for optimising the source-sample chamber geometry, during the development of the Blood Irradiator, Bl-2000

  4. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  5. Global transport of Fukushima-derived radionuclides from Japan to Asia, North America and Europe. Estimated doses and expected health effects

    Science.gov (United States)

    Evangeliou, Nikolaos; Stohl, Andreas; Balkanski, Yves

    2017-04-01

    The earthquake and the subsequent tsunami that occurred offshore of Japan resulted in a serious accident at the nuclear facility of Fukushima. A large number of fission products were released and transported worldwide. We estimate that around 23% of the released 137Cs remained into Japan, while 76% deposited in the oceans. Around 163 TBq deposited over North America, among which 95 TBq over USA, 40 TBq over Canada and 5 TBq over Greenland). About 14 TBq deposited over Europe (mostly in the European part of Russia, Sweden and Norway) and 47 TBq over Asia (mostly in the Asian part of Russia, Philippines and South Korea), while traces were observed over Africa, Oceania and Antarctica. Since the radioactive plume followed a northward direction before its arrival to USA and then to Europe, a significant amount of about 69 TBq deposited in the Arctic, as well. An attempt to assess exposure of the population and the environment showed that the effective dose from gamma irradiation during the first 3 months was estimated between 1-5 mSv in Fukushima and the neighbouring prefectures. In the rest of Japan, the respective doses were found to be less than 0.5 mSv, whereas in the rest of the world it was less than 0.1 mSv. Such doses are equivalent with the obtained dose from a simple X-ray; for the highly contaminated regions, they are close to the dose limit for exposure due to radon inhalation (10 mSv). The calculated dose rates from radiocesium exposure on reference organisms ranged from 0.03 to 0.18 μGy h-1, which are 2 orders of magnitude below the screening dose limit (10 μGy h-1) that could result in obvious effects on the population. However, monitoring data have shown that much higher dose rates were committed to organisms raising ecological risk for small mammals and reptiles in terms of cytogenetic damage and reproduction.

  6. The impact of involved node, involved field and mantle field radiotherapy on estimated radiation doses and risk of late effects for pediatric patients with Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M V; Jørgensen, M; Brodin, N P

    2014-01-01

    BACKGROUND: The use of radiotherapy (RT) is debated for pediatric patients with Hodgkin lymphoma (HL) due to the late effects of treatment. Radiation doses to the thyroid, heart, lungs, and breasts are compared with the extensive mantle field (MF), Involved Field RT(IFRT), Modified IFRT (m......IFRT), and Involved Node RT (INRT) and the risk of radiation-induced cardiovascular disease, secondary cancers, and the corresponding Life Years Lost (LYL) is estimated with each technique. PROCEDURE: INRT, mIFRT, IFRT, and MF plans (20 and 30 Gy) were simulated for 10 supradiaphragmatic, clinical stage I......–II classical HL patients lung, breast, and thyroid cancer with each technique were estimated. The estimated excess risks attributable to RT were based on HL series with long-term follow...

  7. Hygienic estimation of population doses due to stratospheric fallout

    International Nuclear Information System (INIS)

    Marej, A.N.; Knizhnikov, V.A.

    1980-01-01

    The hygienic estimation of external and internal irradiation of the USSR population due to stratospheric global fallouts of fission products after nuclear explosions and weapon tests, is carried out. Numerical values which characterize the dose-effect dependence in the case of radiation of marrow, bone tissue and whole body are presented. Values of mean individual and population doses of irradiation due to global fallouts within 1963-1975, types of injury and the number of mortal cases due to malignant neoplasms are presented. A conclusion is made that the contribution of radiation due to stratospheric fallouts in the mortality due to malignant neoplasms is insignificant. Annual radiation doses, conditioned by global fallouts within the period of 1963-1975 constitute but several percent from the dose of radiation of the natural radiation background. Results of estimation of genetic consequences of irradiation due to atmospheric fallouts are presented

  8. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  9. Dose estimation for paediatric cranial computed tomography

    International Nuclear Information System (INIS)

    Curci Daros, K.A.; Bitelli Medeiros, R.; Curci Daros, K.A.; Oliveira Echeimberg, J. de

    2006-01-01

    6.0 -1 +47(10)x10 -3 p cm -1 and ρ((p) 0,87(7)-0,007(7)p cm -1 respectively. As the exam protocol used 120 kV, 300 mAs, and slice thickness/spacing of 3/5 mm and 5/7 mm for the posterior fossa and supratentorial regions respectively, total calculated dose was 11.3(3.3) mGy. Eye region calculated dose was 0.4(0.1) mGy. Conclusion: Thermoluminescent dosimetry can be used in determining integral patient absorbed dose distribution in the three cranial regions under different X-ray exposure conditions. The proposed function permitted dose estimation in cranial paediatric exams independent of mAs because maximum T.L readings were determined in the supratentorial region, maintaining the above-mentioned operational and geometrical conditions. (authors)

  10. Dose estimation for paediatric cranial computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Curci Daros, K.A.; Bitelli Medeiros, R. [Sao Paulo Univ. Federal (Brazil); Curci Daros, K.A.; Oliveira Echeimberg, J. de [Centro Univ. Sao Camilo, Sao Paulo (Brazil)

    2006-07-01

    region defined by position 6.0dose was 11.3(3.3) mGy. Eye region calculated dose was 0.4(0.1) mGy. Conclusion: Thermoluminescent dosimetry can be used in determining integral patient absorbed dose distribution in the three cranial regions under different X-ray exposure conditions. The proposed function permitted dose estimation in cranial paediatric exams independent of mAs because maximum T.L readings were determined in the supratentorial region, maintaining the above-mentioned operational and geometrical conditions. (authors)

  11. [Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations].

    Science.gov (United States)

    Walczak, Katarzyna; Zmyślony, Marek

    2013-01-01

    Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers), Iran (5), China (4) and India (5). Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings). In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program.

  12. Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations

    Directory of Open Access Journals (Sweden)

    Katarzyna Walczak

    2013-04-01

    Full Text Available Background: Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Material and Methods: Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers, Iran (5, China (4 and India (5. Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. Results: We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings. In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. Conclusions: The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program. Med Pr 2013;64(2:193–198

  13. Estimation of population doses from stomach mass screening, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Kato, Y; Maruyama, T [National Inst. of Radiological Sciences, Chiba (Japan); Kamata, R; Urahashi, S

    1977-06-01

    The population dose from mass photofluorography of stomach have been estimated on the basis of nation wide radiological survey. The number of photofluorographic examinations was 2.38 million for male and 1.74 million for female, with a total of 4.12 million. The gonad doses were determined with an ionization chamber, using a tissue equivalent phantom. The gonad dose for male was 10.4 mrad per examination and for female was 150 mrad per examination. The active bone marrow doses at 32 points of bone marrow in the whole body were measured with thermoluminescent dosimeter. The mean marrow dose per photofluorographic examination was 450 mrad for male and 390 mrad for female. The child expectancy factor and the leukemia significant factor were calculated based on the Vital Statistics 1975. The genetically significant dose (GSD) and per caput mean marrow dose (CMD) were calculated by the formulae presented from the United Nations Scientific Comittee of Effects of Atomic Radiation (UNSCEAR). The resultant GSD was 0.15 mrad per person per year. The CMD was 16.5 mrad per person per year. The leukemia significant dose (LSD) was determined by adopting a weight factor, that is leukemia significant factor. The resultant LSD was 14.5 mrad per person per year. These population doses were compared with those from diagnostic medical x-ray examinations in 1974.

  14. Estimate of the annual effective dose for natural radionuclides of anthropogenic origin in the Bay of Cadiz

    International Nuclear Information System (INIS)

    Rodrigo, J. F.; Martinez-Ramos, C.; Barbero, L.; Casas-Ruiz, M.

    2011-01-01

    Knowledge of radioactivity levels in soils has a double interest: on the one hand, allows you to set the reference values ??(base Linne) from a region or geographic area, and secondly, to evaluate the external radiation dose received by the population and biota, through appropriate dosimetric model. The natural radioactivity, especially the radionuclides in the natural series. The aim of this study is to determine the levels of gamma emitting radionuclides in marine sediments of the Bay of Cadiz, and dose rates from external radiation received in the areas studied. (Author)

  15. Updated estimates of survival and cost effectiveness for imatinib versus interferon-alpha plus low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukaemia.

    Science.gov (United States)

    Reed, Shelby D; Anstrom, Kevin J; Li, Yanhong; Schulman, Kevin A

    2008-01-01

    For trials in which participants are followed beyond the main study period to assess long-term outcomes, economic evaluations conducted using short-term data should be systematically updated to reflect new information. We used 60-month survival data from the IRIS (International Randomized study of Interferon vs STI571) trial to update previously published cost-effectiveness estimates, based on 19 months of follow-up, of imatinib versus interferon (IFN)-alpha plus low-dose cytarabine in patients with chronic-phase chronic myeloid leukaemia. For patients treated with imatinib, we used the 60-month data to calibrate the survival curves generated from the original cost-effectiveness model. We used historical data to model survival for patients randomized to IFNalpha. We updated costs for medical resources using 2006 Medicare reimbursement rates and applied average wholesale prices (AWPs) and wholesale acquisition costs (WACs) to study medications. Five-year survival for patients randomized to imatinib was better than predicted in the original model (89.4% vs 83.2%). We estimated remaining life expectancy with first-line imatinib to be 19.1 life-years (3.8 life-years over the original model) and 15.2 QALYs (3.1 QALYs over the original estimate). Estimates for IFNalpha remained at 9.1 life-years and 6.3 QALYs. When we applied AWPs to study medications, incremental cost-effectiveness ratios (ICERs) were $US 51,800-57,500 per QALY. When we applied WACs, ICERs were $US 42,000-46,200 per QALY. Although the analysis revealed that the original survival estimates were conservative, the updated cost-effectiveness ratios were consistent with, or slightly higher than, the original estimates, depending on the method for assigning costs to study medications.

  16. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Aart, Jasper van der; Hallett, William A.; Rabiner, Eugenii A.; Passchier, Jan; Comley, Robert A.

    2012-01-01

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  17. Estimation of effective doses to cavers based on radon measurements carried out in seven caves of the Bakony Mountains in Hungary

    International Nuclear Information System (INIS)

    Kavasi, Norbert; Somlai, Janos; Szeiler, Gabor; Szabo, Balazs; Schafer, Istvan; Kovacs, Tibor

    2010-01-01

    Nowadays, as the practice of extreme sports is spreading, potholing is becoming more and more popular. As a result, both the number of cavers and the time spent in the caves have been on the rise. There are some cavers known to have spent some 5000 h in caves over a span of 10 years. In poorly ventilated caves, radon exhalated from cave rocks and deposits may accumulate and cause significant doses to cavers. In this study, the radon concentration in seven caves in the Bakony Mountains, Hungary, was measured by continuous and integrated measurement devices. Measured values for the different caves were rather different, and varied between 50 and 24,000 Bq m -3 . The average radon concentration over the measurement period was approximately 10,000 Bq m -3 in five of the seven caves inspected. By assuming an average of 470 h year -1 spent in caves, effective doses to cavers were estimated. The expected annual effective dose, in case of an equilibrium factor of 0.6, was 19.7 mSv.

  18. Method for retrospective estimation of absorbed dose in subsurface tissues when conducting works connected with the Chernobyl' NPP accident effect elimination (using experimental and calculated data)

    International Nuclear Information System (INIS)

    Panova, V.I.; Shaks, A.I.

    1992-01-01

    The method for retrospective estimation of doses in subsurface tissues at early time periods from the accident begin in the case, when gamma radiation dose rate values (radiation field cartogram) and a person irradiation conditions on contaminated territory (professional route) are known, is discussed

  19. GARDEC, Estimation of dose-rates reduction by garden decontamination

    International Nuclear Information System (INIS)

    Togawa, Orihiko

    2006-01-01

    1 - Description of program or function: GARDEC estimates the reduction of dose rates by garden decontamination. It provides the effect of different decontamination Methods, the depth of soil to be considered, dose-rate before and after decontamination and the reduction factor. 2 - Methods: This code takes into account three Methods of decontamination : (i)digging a garden in a special way, (ii) a removal of the upper layer of soil, and (iii) covering with a shielding layer of soil. The dose-rate conversion factor is defined as the external dose-rate, in the air, at a given height above the ground from a unit concentration of a specific radionuclide in each soil layer

  20. Estimation of dose in dental radiology exams in critical regions

    International Nuclear Information System (INIS)

    Bonzoumet, S.P.J.; Braz, D.; Padilha, Lucas

    2005-01-01

    The objective of this paper is to estimate the values of doses, which are absorbed dose to the lens and thyroid in a dental X-ray. Thermoluminescence dosimeters were used, once they provide a reading of quality and effectiveness. This study was based on dental exams conducted in patients in order to estimate the dose that disperses to the lens of the eye and for the thyroid during an intraoral exam. Data collection took place in two institutions, one governmental, which had the device SELETRONIC 70X and other particular. This study showed that there is a considerable variation between the appliances. Using the appliance DABI 1070, there was a greater absorption of radiation in the right eye (values greater than 5 mGy) and a lower dose in the thyroid, and the Seletronic 70X presented an incidence of higher dose deposited in the skin and in other points there was a balance in the values. In the appliance SELETRONIC 70X, there was again a greater absorption of radiation in the right eye and a lower setting in the thyroid. The excessive dose, besides does not favor at all for the quality of radiograph, represents a risk for the patient who absorbs unnecessary and harmful radiation to the body

  1. Estimation of morbidity effects

    International Nuclear Information System (INIS)

    Ostro, B.

    1994-01-01

    Many researchers have related exposure to ambient air pollution to respiratory morbidity. To be included in this review and analysis, however, several criteria had to be met. First, a careful study design and a methodology that generated quantitative dose-response estimates were required. Therefore, there was a focus on time-series regression analyses relating daily incidence of morbidity to air pollution in a single city or metropolitan area. Studies that used weekly or monthly average concentrations or that involved particulate measurements in poorly characterized metropolitan areas (e.g., one monitor representing a large region) were not included in this review. Second, studies that minimized confounding ad omitted variables were included. For example, research that compared two cities or regions and characterized them as 'high' and 'low' pollution area were not included because of potential confounding by other factors in the respective areas. Third, concern for the effects of seasonality and weather had to be demonstrated. This could be accomplished by either stratifying and analyzing the data by season, by examining the independent effects of temperature and humidity, and/or by correcting the model for possible autocorrelation. A fourth criterion for study inclusion was that the study had to include a reasonably complete analysis of the data. Such analysis would include an careful exploration of the primary hypothesis as well as possible examination of te robustness and sensitivity of the results to alternative functional forms, specifications, and influential data points. When studies reported the results of these alternative analyses, the quantitative estimates that were judged as most representative of the overall findings were those that were summarized in this paper. Finally, for inclusion in the review of particulate matter, the study had to provide a measure of particle concentration that could be converted into PM10, particulate matter below 10

  2. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    Science.gov (United States)

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites.

  3. Effect of LET on the efficiency of dose re-estimation in LiF using uv photo-transfer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, J A; Baker, D M; Marshall, M; Budd, T [UKAEA Atomic Energy Research Establishment, Harwell. Environmental and Medical Sciences Div.

    1980-09-01

    Glow curves from TLD600 and TLD700 extruded rods exposed to ..gamma..-, X- and neutron radiations have been compared before and after uv photo-transfer. Re-estimation efficiency increases with LET by an amount which varies from batch to batch.

  4. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  5. Estimation of population dose from all sources in Japan

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Nakagawa, Takeo; Kai, Michiaki; Yoshizawa, Yasuo

    1988-01-01

    The purposes of estimation of population doses are to understand the per-caput doses of the public member from each artificial radiation source and to determine the proportion contributed of the doses from each individual source to the total irradiated population. We divided the population doses into two categories: individual-related and source-related population doses. The individual-related population dose is estimated based on the maximum assumption for use in allocation of the dose limits for members of the public. The source-related population dose is estimated both to justify the sources and practices and to optimize radiation protection. The source-related population dose, therefore, should be estimated as realistically as possible. We investigated all sources that caused exposure to the population in Japan from the above points of view

  6. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  7. I-125 seed dose estimates in heterogeneous phantom

    International Nuclear Information System (INIS)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio

    2015-01-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  8. I-125 seed dose estimates in heterogeneous phantom

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio, E-mail: isabela.slbranco@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  9. Estimation of committed effective dose from radioactive caesium contained in kindergarten supply of food during one year after Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Midorikawa, Miho; Hayashi, Toru

    2013-01-01

    For the purpose of contributing to an understanding about the situation of radioactive contamination of kindergarten lunch, contents of radioactive caesium and 40 K in lunch supplied by the attached kindergarten of Seitoku University was calculated by using the data on radioactive contamination of foodstuffs published by the Japanese Government. The average value of daily intake of radioactive caesium was estimated at lower than 1Bq and that of 40 K was 8.6Bq. Total amount of radioactive caesium in the lunch for one year was about 100Bq and that of 40 K was 1100Bq, resulting in a committed effective dose from radioactive caesium at about 1μSv. (author)

  10. Natural 3H radioactivity analysis in groundwater and estimation of committed effective dose due to groundwater ingestion in Varahi and Markandeya river basins, Karnataka State, India

    International Nuclear Information System (INIS)

    Ravikumar, P.; Somashekar, R.K.

    2011-01-01

    The present study aimed at the assessment of natural tritium radioactivity in groundwater, being used for domestic and irrigation purposes in Varahi and Markandeya river basins. The study also intended to assess human health risk by estimating committed effective dose due to groundwater ingestion in the study area, taking into consideration the obtained tritium activity concentrations and annual water consumption. Tritium concentration of groundwater samples from the Varahi and Markandeya river basins were determined by liquid scintillation counting and the results laid in the range of 1.95 ± 0.25 to 11.35 ± 0.44 TU and 1.49 ± 0.75 to 9.17 ± 1.13 TU in Varahi and Markandeya river basins, respectively. Majority of the samples from Varahi (46.67%) and Markandeya (62.5%) river basins belong to modern water category aged between 5 and 10 years, while the remaining 53.33% and 37.5% of the samples from Varahi and Markandeya river basins respectively belong to sub-modern water with modern recharge, significantly influenced by precipitation and river in flowing/sea water intrusion. The effective committed dose for general public consumption considering the highest concentration value of 0.02 μSv year -1 , which is very negligible compared to EPA (0.04 mSv year -1 ), WHO (0.1 mSv year -1 ), ICRP (1.0 mSv year -1 ) and UNSCEAR (2.4 mSv year -1 ) recommended dose limits, should not mean any additional health risk for the population living nearby. (author)

  11. Estimation of annual effective dose from 226Ra 228Ra due to consumption of foodstuffs by inhabitants of high level natural radiation of Ramsar, Iran

    International Nuclear Information System (INIS)

    Fathivand, A.A.; Asefi, M.; Amidi, A.

    2005-01-01

    Full text: A knowledge of natural radioactivity in man and his environment is important since naturally occurring radionuclides are the major source of radiation exposure to man. Radioactive nuclides present in the natural environment enter the human body mainly through food and water.Besides, measurement of naturally occurring radionuclides in the environment can be used not only as a reference when routine releases from nuclear installation or accidental radiation exposures are assessed, but also as a baseline to evaluate the impact caused by non-nuclear activities. In Iran, measurement of natural and artificial radionuclides in environmental samples in normal and high-background radiation areas have been performed by some investigators but no information has been available on 226 Ra and 228 Ra in foodstuffs. Therefore we have started measurements of 226 Ra and 228 Ra in foodstuffs of Ramsar which is a coastal city in the north part of Iran and has been known as one of the world's high level natural radiation areas, using low level gamma spectrometry measurement system .The results from our measurements and food consumption rates for inhabitants of Ramsar city have been used for the estimation of annual effective dose due to consumption of foodstuffs by inhabitants of Ramsar city. A total of 33 samples from 11 different foodstuffs including root vegetables (beetroot), leafy vegetables (lettuce, parsley and spinach) and tea, meat,chicken, pea,broad bean, rice, and cheese were purchased from markets and were analyzed for their 226 Ra and 228 Ra concentrations. The highest concentrations of 226 Ra and 228 Ra were determined in tea samples with 1570 and 1140 mBq kg -1 respectively and the maximum estimated annual effective dose from 226 Ra and Ra due to consumption foodstuffs were determined to be 19.22 and 0.71 μSv from rice and meat samples respectively

  12. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    Energy Technology Data Exchange (ETDEWEB)

    Moirano, J [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference point air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.

  13. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  14. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    Science.gov (United States)

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  15. Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam.

    Science.gov (United States)

    Van, Tran Thi; Bat, Luu Tam; Nhan, Dang Duc; Quang, Nguyen Hao; Cam, Bui Duy; Hung, Luu Viet

    2018-02-16

    Radioactivity concentrations of nuclides of the 232 Th and 238 U radioactive chains and 40 K, 90 Sr, 137 Cs, and 239+240 Pu were surveyed for raw and cooked food of the population in the Red River delta region, Vietnam, using α-, γ-spectrometry, and liquid scintillation counting techniques. The concentration of 40 K in the cooked food was the highest compared to those of other radionuclides ranging from (23 ± 5) (rice) to (347 ± 50) Bq kg -1 dw (tofu). The 210 Po concentration in the cooked food ranged from its limit of detection (LOD) of 5 mBq kg -1  dw (rice) to (4.0 ± 1.6) Bq kg -1  dw (marine bivalves). The concentrations of other nuclides of the 232 Th and 238 U chains in the food were low, ranging from LOD of 0.02 Bq kg -1  dw to (1.1 ± 0.3) Bq kg -1  dw. The activity concentrations of 90 Sr, 137 Cs, and 239+240 Pu in the food were minor compared to that of the natural radionuclides. The average annual committed effective dose to adults in the study region was estimated and it ranged from 0.24 to 0.42 mSv a -1 with an average of 0.32 mSv a -1 , out of which rice, leafy vegetable, and tofu contributed up to 16.2%, 24.4%, and 21.3%, respectively. The committed effective doses to adults due to ingestion of regular diet in the Red River delta region, Vietnam are within the range determined in other countries worldwide. This finding suggests that Vietnamese food is safe for human consumption with respect to radiation exposure.

  16. Estimation of doses to patients from ''complex'' conventional X-ray examinations

    International Nuclear Information System (INIS)

    Calzado, A.; Vano, E.; Moran, P.; Ruiz, S.; Gonzalez, L.; Castellote, C.

    1991-01-01

    A numerical method has been developed to estimate organ doses and effective dose-equivalent for patients undergoing three 'complex' examinations (barium meal, barium enema and intravenous urography). The separation of radiological procedures into a set of standard numerical views is based on the use of Monte Carlo conversion factors and measurements within a Remab phantom. Radiation doses measured in a phantom for such examinations were compared with predictions of the ''numerical'' method. Dosimetric measurements with thermoluminescent dosemeters attached to the patient's skin along with measurements of the dose-area product during the examination have enabled the derivation of organ doses and to estimate effective dose-equivalent. Mean frequency weighted values of dose-area product, energy imparted to the patient, doses to a set of organs and effective dose-equivalent in the area of Madrid are reported. Comparisons of results with those from similar surveys in other countries were made. (author)

  17. Analytical results and effective dose estimation of the operational Environmental Monitoring Program for the radioactive waste repository in Abadia de Goias from 1998 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Edison, E-mail: edison@cnen.gov.b [Centro Regional de Ciencias Nucleares do Centro-Oeste, Comissao Nacional de Energia Nuclear- Br 060 km 174, 5-Abadia de Goias- Goias, CEP 75345-000 (Brazil); Tauhata, Luiz, E-mail: tauhata@ird.gov.b [Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Eugenia dos Santos, Eliane, E-mail: esantos@cnen.gov.b [Centro Regional de Ciencias Nucleares do Centro-Oeste, Comissao Nacional de Energia Nuclear- Br 060 km 174, 5-Abadia de Goias- Goias, CEP 75345-000 (Brazil); Silveira Correa, Rosangela da, E-mail: rcorrea@cnen.gov.b [Centro Regional de Ciencias Nucleares do Centro-Oeste, Comissao Nacional de Energia Nuclear- Br 060 km 174, 5-Abadia de Goias- Goias, CEP 75345-000 (Brazil)

    2011-02-15

    This paper presents the results of the Environmental Monitoring Program for the Radioactive waste repository of Abadia de Goias, which was originated from the accident of Goiania, conducted by the Regional Center of Nuclear Sciences (CRCN-CO) of the National Commission on Nuclear Energy (CNEN), from 1998 to 2008. The results are related to the determination of {sup 137}Cs activity per unit of mass or volume of samples from surface water, ground water, depth sediments of the river, soil and vegetation, and also the air-kerma rate estimation for gamma exposure in the monitored site. In the phase of operational Environmental Monitoring Program, the values of the geometric mean and standard deviation obtained for {sup 137}Cs activity per unit of mass or volume in the analyzed samples were (0.08 {+-} 1.16) Bq.L{sup -1} for surface and underground water, (0.22 {+-} 2.79) Bq.kg{sup -1} for soil, and (0.19 {+-} 2.72) Bq.kg{sup -1} for sediment, and (0.19 {+-} 2.30) Bq.kg{sup -1} for vegetation. These results were similar to the values of the pre-operational Environmental Monitoring Program. With these data, estimations for effective dose were evaluated for public individuals in the neighborhood of the waste repository, considering the main possible way of exposure of this population group. The annual effective dose obtained from the analysis of these results were lower than 0.3 mSv.y{sup -1}, which is the limit established by CNEN for environmental impact in the public individuals indicating that the facility is operating safely, without any radiological impact to the surrounding environment. - Research highlights: {yields} A stolen capsule of Cesium 137 was opened in the city of Goiania, generating some 6000 tons of debris which were stored in the Repository area built for this purpose. {yields} The activity of cesium 137 of the surface water, underground water, depth sediments of river, soil, vegetation, and air, inside and surround the Repository area. {yields

  18. Dose estimate for effective internal contamination in the occupationally exposed workers(OEW) that handling open sources for thyroid therapy using 131 I (3779)

    International Nuclear Information System (INIS)

    Lecuna, J.A.; Carrizales, L.I.; Dantas, B.M.

    2013-01-01

    Handling of a variety of unsealed sources in Nuclear Medicine has led a significant risk of internal exposure of workers. 131 I stands out among the radionuclides of frequent use due its wide application in diagnosis and treatment of thyroid diseases. The increasing radionuclide use for medical purposes and treatment of diseases creates a need for capable methodologies of controlling the internal contamination of work. Currently, in Venezuela, there are about 17 Nuclear Medicine Services between public and private, of which 5 are operating; however, individual monitoring is still limited in the control of internal exposure. This work presents the development of bioassay techniques 'in vivo', in order to quantify the incorporation of 131 I used in Nuclear Medicine. It also presents the research results of internal exposure of a group of workers involved in handling of therapeutic dose of 131 I . The 'in vivo' detection system was calibrated with the thyroid simulator developed at the Institute of Radiologic Protection and Dosimetry (IRD, Rio de Janeiro - Brazil) and which also has the UTN-IVIC (Caracas - Venezuela). The results showed that the bioassay method developed in this work has sufficient sensitivity for its use in routine intake survey of workers in Nuclear Medicine. Between the two workers controlled in this study, both had measurable results in terms of incorporation. Therefore, it is important to keep control of it and also gives us the possibility to evaluate the incorporations in suspected accident. The highest estimate of the effective dose was 1,28x10 -5 Sv by inhalation and 1,27x10 -5 Sv by ingestion

  19. Estimation of internal dose from radiocesium and phantom

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji

    1994-01-01

    A complicated model describing the movement of a radionuclide in both the natural environment and socioeconomical systems is usually used to estimate the internal dose to the public in terms of collective dose, taking demographic data into account. The result can be certified for reliability in some compartments of the model. One of the compartments is the body content. In the case of radiocesium, the individual body burden can be measured using a whole-body counter. The measurement must be calibrated with a phantom. The public is composed of individuals of various ages. Accordingly, the whole-body counter should be calibrated with a set of phantoms approximating individuals of different body sizes. Relationships between counting efficiency and body size were analyzed on 137 Cs 134 Cs or 40 K incorporated into the whole-body using a set of phantoms. Four sizes covering average Japanese physiques from infant to adult male, were chosen to prepare an anthropomorphic phantom system. The distribution of 137 Cs in aquatic solution was homogeneous through the phantom. A whole-body counter at the National Institute of Radiological Sciences, was used at a rate of 5 cm per minute in a scanning mode. The measurements were carried out in an iron room. Relations were analyzed between counting efficiency and some anthropometric parameters. The best fit was given by a linear equation of both reciprocals of height in cm and weight in kg, with a correlation coefficient of 1.00 for 137 Cs. The result indicates that radioactivity of 137 Cs can be determined for individuals with different anthropometric parameters using the whole-body counter system. This means that effective equivalent doses for individuals can be computed accurately from the measurements. Further, an estimate on the body content from an dose estimation model using measurements of radioactivity in environmental substances can be evaluated by comparing the body burden measured. (J.P.N.)

  20. Cellular vs. organ approaches to dose estimates

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.; Sastry, K.S.R.

    1986-01-01

    The cellular distribution of tissue-incorporated radionuclides has generally been neglected in the dosimetry of internal emitters. Traditional dosimetry assumes homogeneous distribution of radionuclides in organs of interest, while presuming that the ranges of particulate radiations are large relative to typical cell diameters. The macroscopic distribution of dose thus calculated has generally served as a sufficient approximation for the energy deposited within radiosensitive sites. However, with the increasing utilization of intracellular agents, such as thallium-201, it has become necessary to examine the microscopic distribution of energy at the cellular level. This is particularly important in the instance of radionuclides that decay by electron capture or by internal conversion with the release of Auger and Coster-Kronig electrons. In many instances, these electrons are released as a dense shower of low-energy particles with ranges of subcellular dimensions. The high electron density in the immediate vicinity of the decaying atom produces a focal deposition of energy that far exceeds the average dose taken over several cell diameters. These studies point out the increasing need to take into account the microscopic distribution of dose on the cellular level as radionuclides distributed in cells become more commonplace, especially if the decay involves electron capture or internal conversion. As radiotracers are developed for the measurement of intracellular functions these factors should be given greater consideration. 16 references, 5 figures, 5 tables

  1. Nonparametric estimation of benchmark doses in environmental risk assessment

    Science.gov (United States)

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  2. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  3. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-04-15

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 {mu}Gy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry.

  4. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    International Nuclear Information System (INIS)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H.

    2008-01-01

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 μGy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry

  5. Dose estimative in operators during petroleum wells logging with nuclear wireless probes through computer modelling

    International Nuclear Information System (INIS)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo T.; Correa, Samanda Cristine Arruda; Rocha, Paula L.F.

    2011-01-01

    This paper evaluates the absorbed dose and the effective dose on operators during the petroleum well logging with nuclear wireless that uses gamma radiation sources. To obtain the data, a typical scenery of a logging procedure will be simulated with MCNPX Monte Carlo code. The simulated logging probe was the Density Gamma Probe - TRISOND produced by Robertson Geolloging. The absorbed dose values were estimated through the anthropomorphic simulator in male voxel MAX. The effective dose values were obtained using the ICRP 103

  6. The D1 method: career dose estimation from a combination of historical monitoring data and a single year's dose data

    International Nuclear Information System (INIS)

    Sont, W.N.

    1995-01-01

    A method is introduced to estimate career doses from a combination of historical monitoring data and a single year's dose data. This method, called D1 eliminates the bias arising from incorporating historical dose data from times when occupational doses were generally much higher than they are today. Doses calculated by this method are still conditional on the preservation of the status quo in the effectiveness of radiation protection. The method takes into account the variation of the annual dose, and of the probability of being monitored, with the time elapsed since the start of a career. It also allows for the calculation of a standard error of the projected career dose. Results from recent Canadian dose data are presented. (author)

  7. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    Science.gov (United States)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  8. A study on the application of two-dosimeter algorithm to estimate the effective dose in an inhomogeneous radiation field at Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Hee Geun; Kong, Tae Young

    2008-01-01

    In Korean Nuclear Power Plants (NPPs), two ThermoLuminescent Dosimeters (TLD) were provided to workers who work in an inhomogeneous radiation field; one on the chest and the other on the head. In this way, the effective dose for radiation workers at NPPs was determined by the high deep dose between two radiation dose from these TLDs. This represented a conservative method of evaluating the degree of exposure to radiation. In this study, to prevent the overestimation of the effective dose, field application experiments were implemented using two-dosimeter algorithms developed by several international institutes for the selection of an optimal algorithm. The algorithms used by the Canadian Ontario Power Generation (OPG) and American ANSI HPS N13.41, NCRP (55/50), NCRP (70/30), EPRI (NRC), Lakshmanan, and Kim (Texas A and M University) were extensively analyzed as two-dosimeter algorithms. In particular, three additional TLDs were provided to radiation workers who wore them on the head, chest, and back during maintenance periods, and the measured value were analyzed. The results found no significant differences among the calculated effective doses, apart from Lakshmanan's algorithm. Thus, this paper recommends the NCRP(55/50) algorithm as an optimal two-dosimeter algorithm in consideration of the solid technical background of NCRP and the convenience of radiation works. In addition, it was determined that a two-dosimeter is provided to a single task which is expected to produce a dose rate of more than 1 mSv/hr, a difference of dose rates depending on specific parts of the body of more than 30%, and an exposure dose of more than 2 mSv

  9. Estimation of doses to patients with chronic radiation sickness from external occupational exposure

    International Nuclear Information System (INIS)

    Jia Delin; Dai Guangfu

    1991-01-01

    The doses to patients with chronic radiation sickness who had engaged in diagnostic radiology have been estimated according to the radiation work load, type and capacity of X-ray equipment, protection conditions, data of nationwide survey on doses to X-ray workers in China, or the data of dose monitoring in working places. Based on the activities of radium sources, time taken up in performing radium therapy, distance to radium sources and radiation work load, the doses to patients who had engaged in radium therapy have been estimated. The results of estimated average doses for 29 cases of chronic radiation sickness are given. Their average red marrow dose, trunk dose and effective dose equivalent are 1.3 Gy, 1.2 Gy and 1.6 Sv, respectively

  10. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  11. Development of internal dose calculation model and the data base updated IDES (Internal Dose Estimation System)

    International Nuclear Information System (INIS)

    Hongo, Shozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi; Iwai, Satoshi.

    1994-01-01

    A computer program named IDES is developed by BASIC language for a personal computer and translated to C language of engineering work station. The IDES carries out internal dose calculations described in ICRP Publication 30 and it installs the program of transformation method which is an empirical method to estimate absorbed fractions of different physiques from ICRP Referenceman. The program consists of three tasks: productions of SAF for Japanese including children, productions of SEE, Specific Effective Energy, and calculation of effective dose equivalents. Each task and corresponding data file appear as a module so as to meet future requirement for revisions of the related data. Usefulness of IDES is discussed by exemplifying the case that 5 age groups of Japanese intake orally Co-60 or Mn-54. (author)

  12. Dose estimation from residual and fallout radioactivity, 1

    International Nuclear Information System (INIS)

    Takeshita, Kenji

    1975-01-01

    External dose rates and cumulative doses for early entrants from areal surveys and simulated experiments are reviewed. The average cumulative doses to infinity at the hypocenters were 101 rad in Hiroshima and 32 rad in Nagasaki, with a variation of about 60 percent. Radioactive fallout areas nearly matched the ''black rain'' areas in Nagasaki and in Hiroshima. Radioactivity in the fallout areas was affected by radioactive decay and by the leaching and dissipation by rains. Considering these factors, the cumulative dose to infinity in the fallout area of Hiroshima was estimated to be 13 rad, excluding internal radiation doses from inhaled and ingested radionuclides. Attempts to estimate radiation dose from internally deposited radionuclides are also described. (auth.)

  13. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  14. Cytogenetic biological dosimetry. Dose estimative in accidental exposure

    International Nuclear Information System (INIS)

    Santos, O.R. dos; Campos, I.M.A. de.

    1988-01-01

    The methodology of cytogenetic biological dosimetry is studied. The application in estimation of dose in five cases of accidental exposure is reported. An hematological study and culture of lymphocytes is presented. (M.A.C.) [pt

  15. Sample Based Unit Liter Dose Estimates

    International Nuclear Information System (INIS)

    JENSEN, L.

    2000-01-01

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new data to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting μCi/g or μCi/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000)

  16. beta. and. gamma. -comparative dose estimates on Enewetak Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L. (California Univ., Livermore (USA). Lawrence Livermore National Lab.)

    1982-05-01

    Enewetak Atoll in the Pacific is used for atmospheric testing of U.S. nuclear weapons. Beta dose and ..gamma..-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the ..beta.. and low energy ..gamma..-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a ..beta..-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to ..beta..- or low energy ..gamma..-contribution. The contribution at any particular site, however, is reduced by vegetation. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey. Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the ..beta..'s or low energy ..gamma..'s, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  17. The points for attention in retrospective personal dose estimate

    International Nuclear Information System (INIS)

    Wang Wuan

    1994-01-01

    The points which the attention should be paid to in the retrospective personal dose estimate are discussed. They are representative of the dose data, truthfulness of the operation history, accuracy of the man-hour statistics, and rationality of the parameters selection

  18. Effects of MRI Protocol Parameters, Preload Injection Dose, Fractionation Strategies, and Leakage Correction Algorithms on the Fidelity of Dynamic-Susceptibility Contrast MRI Estimates of Relative Cerebral Blood Volume in Gliomas.

    Science.gov (United States)

    Leu, K; Boxerman, J L; Ellingson, B M

    2017-03-01

    DSC perfusion MR imaging assumes that the contrast agent remains intravascular; thus, disruptions in the blood-brain barrier common in brain tumors can lead to errors in the estimation of relative CBV. Acquisition strategies, including the choice of flip angle, TE, TR, and preload dose and incubation time, along with post hoc leakage-correction algorithms, have been proposed as means for combating these leakage effects. In the current study, we used DSC-MR imaging simulations to examine the influence of these various acquisition parameters and leakage-correction strategies on the faithful estimation of CBV. DSC-MR imaging simulations were performed in 250 tumors with perfusion characteristics randomly generated from the distributions of real tumor population data, and comparison of leakage-corrected CBV was performed with a theoretic curve with no permeability. Optimal strategies were determined by protocol with the lowest mean error. The following acquisition strategies (flip angle/TE/TR and contrast dose allocation for preload and bolus) produced high CBV fidelity, as measured by the percentage difference from a hypothetic tumor with no leakage: 1) 35°/35 ms/1.5 seconds with no preload and full dose for DSC-MR imaging, 2) 35°/25 ms/1.5 seconds with ¼ dose preload and ¾ dose bolus, 3) 60°/35 ms/2.0 seconds with ½ dose preload and ½ dose bolus, and 4) 60°/35 ms/1.0 second with 1 dose preload and 1 dose bolus. Results suggest that a variety of strategies can yield similarly high fidelity in CBV estimation, namely those that balance T1- and T2*-relaxation effects due to contrast agent extravasation. © 2017 by American Journal of Neuroradiology.

  19. Estimation of inhalation doses from airborne releases using gross monitors

    International Nuclear Information System (INIS)

    Goldstein, N.P.

    1978-01-01

    Monitoring programs at most nuclear facilities involve continuous gross measurements supplemented by periodic isotopic analyses of release samples. The isotopic measurements are required to accurately assess the potential dose from the various effluent streams, but in between these measurements, one depends on the gross monitors to provide approximate indications of the dose. The effluent streams release a variety of nuclides, each with its own dose factor. This means that the relationship between the counting rate in a gross monitor and the potential dose of the effluent being monitored will depend on the isotopic composition of this release. If this composition changes, then the dose indicated by the gross monitor (calibrated for the original group of isotopes) may be significantly in error. The problem of indicating inhalation doses from gross monitoring of airborne releases is considered. In order for this type of monitor to accurately indicate dose, regardless of the isotopic makeup of a release, the analysis shows that its response to each isotope should be proportional to the dose factor of that isotope. These ideas are applied to the monitoring of air particulates using gross beta and gross gamma monitors. The study shows that the former more closely satisfies this condition and as a result, satisfactorily indicates the actual dose from reactor effluents, as determined from detailed isotopic data published in the literature. On the other hand, the gross gamma monitor, with its poorer fit to the condition, provided less than satisfactory accuracy in its dose estimates. In addition, a variety of other mathematical response functions were considered but their dose estimation capabilities were not much better than the straight beta response. The study shows that reasonably accurate dose estimates can be made using properly selected gross monitors, but that significant errors can result with improper ones. (author)

  20. Simplification of an MCNP model designed for dose rate estimation

    Science.gov (United States)

    Laptev, Alexander; Perry, Robert

    2017-09-01

    A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  1. Simplification of an MCNP model designed for dose rate estimation

    Directory of Open Access Journals (Sweden)

    Laptev Alexander

    2017-01-01

    Full Text Available A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  2. Transmission dose estimation algorithm for in vivo dosimetry

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ±0.5%. For elongated radiation field, the errors were limited to ±1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings

  3. Transmission dose estimation algorithm for in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geun; Shin, Kyo Chul [Dankook Univ., Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., Seoul (Korea, Republic of); Lee, Hyoung Koo [Catholic Univ., Seoul (Korea, Republic of)

    2002-07-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within {+-}0.5%. For elongated radiation field, the errors were limited to {+-}1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

  4. Considerations on absorbed dose estimates based on different β-dose point kernels in internal dosimetry

    International Nuclear Information System (INIS)

    Uchida, Isao; Yamada, Yasuhiko; Yamashita, Takashi; Okigaki, Shigeyasu; Oyamada, Hiyoshimaru; Ito, Akira.

    1995-01-01

    In radiotherapy with radiopharmaceuticals, more accurate estimates of the three-dimensional (3-D) distribution of absorbed dose is important in specifying the activity to be administered to patients to deliver a prescribed absorbed dose to target volumes without exceeding the toxicity limit of normal tissues in the body. A calculation algorithm for the purpose has already been developed by the authors. An accurate 3-D distribution of absorbed dose based on the algorithm is given by convolution of the 3-D dose matrix for a unit cubic voxel containing unit cumulated activity, which is obtained by transforming a dose point kernel into a 3-D cubic dose matrix, with the 3-D cumulated activity distribution given by the same voxel size. However, beta-dose point kernels affecting accurate estimates of the 3-D absorbed dose distribution have been different among the investigators. The purpose of this study is to elucidate how different beta-dose point kernels in water influence on the estimates of the absorbed dose distribution due to the dose point kernel convolution method by the authors. Computer simulations were performed using the MIRD thyroid and lung phantoms under assumption of uniform activity distribution of 32 P. Using beta-dose point kernels derived from Monte Carlo simulations (EGS-4 or ACCEPT computer code), the differences among their point kernels gave little differences for the mean and maximum absorbed dose estimates for the MIRD phantoms used. In the estimates of mean and maximum absorbed doses calculated using different cubic voxel sizes (4x4x4 mm and 8x8x8 mm) for the MIRD thyroid phantom, the maximum absorbed doses for the 4x4x4 mm-voxel were estimated approximately 7% greater than the cases of the 8x8x8 mm-voxel. They were found in every beta-dose point kernel used in this study. On the other hand, the percentage difference of the mean absorbed doses in the both voxel sizes for each beta-dose point kernel was less than approximately 0.6%. (author)

  5. System for estimation of mean active bone marrow dose

    International Nuclear Information System (INIS)

    Ellis, R.E.; Healy, M.J.R.; Shleien, B.; Tucker, T.

    1975-09-01

    The exposure measurements, model and computer program for estimation of mean active bone marrow doses formerly employed in the 1962 British Survey of x-ray doses and proposed for application to x-ray exposure information obtained in the U.S. Public Health Service's X-Ray Exposure Studies (1966 and 1973) are described and evaluated. The method described is feasible for use to determine the mean active bone marrow doses to adults for examinations having a skin to source distance of 80 cm or less. For a greater SSD, as for example in chest x rays, a small correction in the calculation dose can be made

  6. Estimation of dose and exposure at sentinel node study

    International Nuclear Information System (INIS)

    Skopljak, A.; Kucukalic-Selimovic, E.; Beslic, N.; Begic, A.; Begovic-Hadzimuratovic, S.; Drazeta, Z.; Beganovic, A.

    2005-01-01

    The purpose of this study was to estimate the dose end exposure in staff involved in sentinel node procedure for breast cancer patients. The Institute of Nuclear Medicine in Sarajevo uses a protocol for lymphoscintigraphy of the sentinel node whereby 13 MBq of 9 9mT c nanocoll are used. In this study, we measured radiation doses and exposure of a nuclear medicine physician and a technologist, as well as a surgeon performing sentinel node lymphoscintigraphy and biopsy. Dose and exposure were calculated using the equation in which we have gamma constant for 9 9mT c. Calculations were made for different times of exposure and distance. In Table 1. we estimated the dose and exposure during sentinel node study. Radiation levels were very low and the most exposed hospital staff performing sentinel node study were nuclear medicine physicians. The doses on the hands of surgeons were negligible 8 hours after exposure.(author)

  7. A Web-Based System for Bayesian Benchmark Dose Estimation.

    Science.gov (United States)

    Shao, Kan; Shapiro, Andrew J

    2018-01-11

    Benchmark dose (BMD) modeling is an important step in human health risk assessment and is used as the default approach to identify the point of departure for risk assessment. A probabilistic framework for dose-response assessment has been proposed and advocated by various institutions and organizations; therefore, a reliable tool is needed to provide distributional estimates for BMD and other important quantities in dose-response assessment. We developed an online system for Bayesian BMD (BBMD) estimation and compared results from this software with U.S. Environmental Protection Agency's (EPA's) Benchmark Dose Software (BMDS). The system is built on a Bayesian framework featuring the application of Markov chain Monte Carlo (MCMC) sampling for model parameter estimation and BMD calculation, which makes the BBMD system fundamentally different from the currently prevailing BMD software packages. In addition to estimating the traditional BMDs for dichotomous and continuous data, the developed system is also capable of computing model-averaged BMD estimates. A total of 518 dichotomous and 108 continuous data sets extracted from the U.S. EPA's Integrated Risk Information System (IRIS) database (and similar databases) were used as testing data to compare the estimates from the BBMD and BMDS programs. The results suggest that the BBMD system may outperform the BMDS program in a number of aspects, including fewer failed BMD and BMDL calculations and estimates. The BBMD system is a useful alternative tool for estimating BMD with additional functionalities for BMD analysis based on most recent research. Most importantly, the BBMD has the potential to incorporate prior information to make dose-response modeling more reliable and can provide distributional estimates for important quantities in dose-response assessment, which greatly facilitates the current trend for probabilistic risk assessment. https://doi.org/10.1289/EHP1289.

  8. Fast skin dose estimation system for interventional radiology.

    Science.gov (United States)

    Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-03-01

    To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.

  9. Convolution-based estimation of organ dose in tube current modulated CT

    Science.gov (United States)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  10. Estimates of bias and uncertainty in recorded external dose

    International Nuclear Information System (INIS)

    Fix, J.J.; Gilbert, E.S.; Baumgartner, W.V.

    1994-10-01

    A study is underway to develop an approach to quantify bias and uncertainty in recorded dose estimates for workers at the Hanford Site based on personnel dosimeter results. This paper focuses on selected experimental studies conducted to better define response characteristics of Hanford dosimeters. The study is more extensive than the experimental studies presented in this paper and includes detailed consideration and evaluation of other sources of bias and uncertainty. Hanford worker dose estimates are used in epidemiologic studies of nuclear workers. A major objective of these studies is to provide a direct assessment of the carcinogenic risk of exposure to ionizing radiation at low doses and dose rates. Considerations of bias and uncertainty in the recorded dose estimates are important in the conduct of this work. The method developed for use with Hanford workers can be considered an elaboration of the approach used to quantify bias and uncertainty in estimated doses for personnel exposed to radiation as a result of atmospheric testing of nuclear weapons between 1945 and 1962. This approach was first developed by a National Research Council (NRC) committee examining uncertainty in recorded film badge doses during atmospheric tests (NRC 1989). It involved quantifying both bias and uncertainty from three sources (i.e., laboratory, radiological, and environmental) and then combining them to obtain an overall assessment. Sources of uncertainty have been evaluated for each of three specific Hanford dosimetry systems (i.e., the Hanford two-element film dosimeter, 1944-1956; the Hanford multi-element film dosimeter, 1957-1971; and the Hanford multi-element TLD, 1972-1993) used to estimate personnel dose throughout the history of Hanford operations. Laboratory, radiological, and environmental sources of bias and uncertainty have been estimated based on historical documentation and, for angular response, on selected laboratory measurements

  11. Effective dose estimation from the Hp(10) value measured by film OR TL dosemeter located above the lead apron in medical diagnostic and intervention radiology

    International Nuclear Information System (INIS)

    Trousil, J.; Plichta, J.; Petrova, K.

    2001-01-01

    In medical institutions where the diagnostic and intervention radiology is examined the staff personnel doses reach for a long time the annual limit. State Office for Radiation Safety ordered the research task with a view to: (a) the influence of the dosemeter location on different parts of the body on the reliability of E value estimation by means of the value which is measured on the standard body location - left part of the chest above the lead apron. (b) the influence of the protective lead apron (neck, spectacles) with known lead equivalent on the E and H T value determination. In this contribution we present the results of this experimental study including the recommendation for the number and location on the body of dosemeters which are needed for the reliable estimation of E value. (authors)

  12. Plutonium dose-effect relationship

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1976-01-01

    Dose in internal exposure to Pu was investigated, and dose-effect relationship was discussed. Dose-effect relationship in internal exposure was investigated by means of two methods, which were relationship between dose and its effect (relationship between μ Ci/Kg and its effect), and exposure dose and its effects (rad-effect), and merits and demerits of two methods were mentioned. Problems in a indication method such as mean dose were discussed with respect to the dose in skeleton, the liver and the lung. Pu-induced osteosarcoma in mice rats, and beagles was described, and differences in its induction between animals were discussed. Pulmonary neoplasma induced by 239 PuO 2 inhalation in beagles was reported, and description was made as to differences in induction of lung cancer between animals when Pu was inhaled and was taken into the lung. A theoretical and experimental study of a extrapolation of the results of the animal experiment using Pu to human cases is necessary. (Serizawa, K.)

  13. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    CERN Document Server

    Simpkins, A A

    2002-01-01

    At the Savannah River Site (SRS), emergency response models estimate dose for inhalation and ground shine pathways. A methodology has been developed to incorporate ingestion doses into the emergency response models. The methodology follows a two-phase approach. The first phase estimates site-specific derived response levels (DRLs) which can be compared with predicted ground-level concentrations to determine if intervention is needed to protect the public. This phase uses accepted methods with little deviation from recommended guidance. The second phase uses site-specific data to estimate a 'best estimate' dose to offsite individuals from ingestion of foodstuffs. While this method deviates from recommended guidance, it is technically defensibly and more realistic. As guidance is updated, these methods also will need to be updated.

  14. Dose-response curve estimation: a semiparametric mixture approach.

    Science.gov (United States)

    Yuan, Ying; Yin, Guosheng

    2011-12-01

    In the estimation of a dose-response curve, parametric models are straightforward and efficient but subject to model misspecifications; nonparametric methods are robust but less efficient. As a compromise, we propose a semiparametric approach that combines the advantages of parametric and nonparametric curve estimates. In a mixture form, our estimator takes a weighted average of the parametric and nonparametric curve estimates, in which a higher weight is assigned to the estimate with a better model fit. When the parametric model assumption holds, the semiparametric curve estimate converges to the parametric estimate and thus achieves high efficiency; when the parametric model is misspecified, the semiparametric estimate converges to the nonparametric estimate and remains consistent. We also consider an adaptive weighting scheme to allow the weight to vary according to the local fit of the models. We conduct extensive simulation studies to investigate the performance of the proposed methods and illustrate them with two real examples. © 2011, The International Biometric Society.

  15. Estimation of absorbed and effective dose in {sup 18}F-FDG em PET- CT exams for diagnosis of lung cancer; Estimativa de dose absorvida e efetiva em exames de {sup 18}F-FDG em PET- CT para diagnostico de cancer de pulmao

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Guilherme Neto de Pinho; Santana, Priscila do Carmo, E-mail: guinpc1@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Oliveira, Paulo Marcio Campos de; Reis, Lucas Paixao dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-04-15

    This paper presents an evaluation of tissues and organs absorbed doses as well as the effective dose resulting from PET-CT scans performed with {sup 18}F-FDG radiopharmaceutical for lung cancer diagnosis in whole body scans. The ICRP-106 biokinetic model was used to estimate the absorbed and effective doses from the radiopharmaceutical for both male and female patient according to the characteristics of anthropomorphic Alderson Rando® simulators. Computer Tomography doses were evaluated using thermoluminescent detectors inserted in the same anthropomorphic simulators. Optimization protocols for image acquisition and the use of automatic exposure control were used in order to reduce patient doses, taking into account the equipment model and its system. The effective dose in female patients was 5.8 mSv. The effective dose in male patients was 8.4 mSv. The dose values estimated for the {sup 18}F-FDG PET-CT scan are below the values described in the literature. This is because the CT was not used for diagnostic but for morphological mapping. (author)

  16. Proof of concept and dose estimation with binary responses under model uncertainty.

    Science.gov (United States)

    Klingenberg, B

    2009-01-30

    This article suggests a unified framework for testing Proof of Concept (PoC) and estimating a target dose for the benefit of a more comprehensive, robust and powerful analysis in phase II or similar clinical trials. From a pre-specified set of candidate models, we choose the ones that best describe the observed dose-response. To decide which models, if any, significantly pick up a dose effect, we construct the permutation distribution of the minimum P-value over the candidate set. This allows us to find critical values and multiplicity adjusted P-values that control the familywise error rate of declaring any spurious effect in the candidate set as significant. Model averaging is then used to estimate a target dose. Popular single or multiple contrast tests for PoC, such as the Cochran-Armitage, Dunnett or Williams tests, are only optimal for specific dose-response shapes and do not provide target dose estimates with confidence limits. A thorough evaluation and comparison of our approach to these tests reveal that its power is as good or better in detecting a dose-response under various shapes with many more additional benefits: It incorporates model uncertainty in PoC decisions and target dose estimation, yields confidence intervals for target dose estimates and extends to more complicated data structures. We illustrate our method with the analysis of a Phase II clinical trial. Copyright (c) 2008 John Wiley & Sons, Ltd.

  17. Dose Estimation from Daily and Weekly Dosimetry Data

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, G.

    2001-11-16

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the

  18. Dose Estimation from Daily and Weekly Dosimetry Data

    International Nuclear Information System (INIS)

    Ostrouchov, G.

    2001-01-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the amount of bias also varies

  19. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  20. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  1. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1986-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  2. Rapid analysis of key radionuclides in urine and estimation of internal dose for nuclear accident emergency

    International Nuclear Information System (INIS)

    Zhao Shuquan; Hu Heping; Wu Mingyu; Zhu Guoying; Huang Shibin; Liu Shiming

    2005-01-01

    Objective: To estimate the internal doses of a Chinese visiting scholar in the Chernobyl accident. Methods: The contents of 134 Cs and 137 Cs in urine were measured using a Ge(Li) γ-spectrometer. Their internal doses were estimated according to ICRP reports. Dose review of 131I was performed referring to UNSCEAR 2000 report. Results: The effective dose equivalent from 134 Cs, 137 Cs and 131 I were 66 μSv, 88 μSv and 1728 μSv respectively. Their summation was 1.9 mSv. Conclusion: The internal dose from 131 I was 10 times higher than that from 134 Cs and 137 Cs. So, the earlier estimation of internal doses for 131 I is significant in evaluation on radiation injuries of a nuclear reactor accident. (authors)

  3. Dose estimation in embryo or fetus in external fields; Estimacion de dosis en embrion o feto

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, Beatriz N [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation.

  4. Single point estimation of phenytoin dosing: a reappraisal.

    Science.gov (United States)

    Koup, J R; Gibaldi, M; Godolphin, W

    1981-11-01

    A previously proposed method for estimation of phenytoin dosing requirement using a single serum sample obtained 24 hours after intravenous loading dose (18 mg/Kg) has been re-evaluated. Using more realistic values for the volume of distribution of phenytoin (0.4 to 1.2 L/Kg), simulations indicate that the proposed method will fail to consistently predict dosage requirements. Additional simulations indicate that two samples obtained during the 24 hour interval following the iv loading dose could be used to more reliably predict phenytoin dose requirement. Because of the nonlinear relationship which exists between phenytoin dose administration rate (RO) and the mean steady state serum concentration (CSS), small errors in prediction of the required RO result in much larger errors in CSS.

  5. Maximum likelihood estimation for cytogenetic dose-response curves

    International Nuclear Information System (INIS)

    Frome, E.L.; DuFrain, R.J.

    1986-01-01

    In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure

  6. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  7. Automated dose estimation for lost or damaged dosimeters

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deininger, R.J.

    1988-01-01

    This paper reports that some dosimetry vendors will compute doses for their customers' lost/damaged dosimeters based upon an average of recent dosimeter readings. However, the vendors usually require authorization from the customer for each such occurrence. Therefore, the tedious task of keeping track of the overdue status of each missing dosimeter and constantly notifying the vendor is still present. Also, depending on the monthly variability of a given person's doses, it may be more valid to use the employee's average dose, his/her highest dose over a recent period, an average dose of other employees with similar job duties for that period, or the maximum permissible dose. Thus, the task of estimating doses for lost/damaged dosimeters cannot be delegated to dosimetry vendor. Instead, the radiation safety department must sue the data supplied by the vendor as input for performing estimates. The process is performed automatically at the Medical Center Hospital of Vermont using a personal computer and a relational database

  8. Dose estimation of the THOR BNCT treatment room

    International Nuclear Information System (INIS)

    Hsu, F.Y.; Liu, H.M.; Yu, C.C.; Huang, Y.H.; Tsai, H.N.

    2006-01-01

    BNCT beam of Tsing Hua Open-pool Reactor (THOR) was designed and constructed since 1998. A treatment room for the newly modified THOR BNCT beam was constructed for the next clinical-stage trials in 2004. Dose distribution in a patient (or a phantom) is important as irradiated with the BNCT beam. The dose distributions for different type of radiations such as neutron and photons in the treatment room are strongly becoming the index or reference of success for a BNCT facility. An ART head phantom was placed in front of the THOR BNCT beam port and was irradiated. In each section of the head phantom, numbers of small holes are inside and separated uniformly. Dual detector: TLD-600 and TLD-700 chips were placed inside these holes within the phantom to distinct doses of neutron and photon. Besides, Dual-TLD chips were latticed placed in the horizontal plane of beam central axis, in the treatment room to estimate the spatial dose distribution of neutron and photon. Gold foils were assisted in TLD dose calibrations. Neutron and photon dose distributions in phantom and spatial dose distributions in the THOR BNCT treatment room were both estimated in this work. Testing and improvement in THOR BNCT beam were continuative during these years. Results of this work could be the reference and be helpful for the further clinical trials in nearly future. (author)

  9. Dose estimates in a loss of lead shielding truck accident.

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John (Alion Science & Technology Albuquerque, NM)

    2009-08-01

    The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

  10. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  11. Current estimates of radiation risks and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    The publication of the 1988 report of UNSCEAR represents a major step forward in that there is an international consensus on the estimation of risk from exposure to ionising radiation. The estimates of fatal cancers in the UNSCEAR report are up to 4 times the values in the 1977 review. This paper will describe the reasons for the increase, the remaining uncertainties and the implications for dose limits in occupational and public exposure. (author)

  12. Estimation of dose in irradiated chicken bone by ESR method

    International Nuclear Information System (INIS)

    Tanabe, Hiroko; Hougetu, Daisuke

    1998-01-01

    The author studied the conditions needed to routinely estimate the radiation dose in chicken bone by repeated re-irradiation and measuring ESR signals. Chicken meat containing bone was γ-irradiated at doses of up to 3kGy, accepted as the commercially used dose. The results show that points in sample preparation and ESR measurement are as follows: Both ends of bone are cut off and central part of compact bone is used for experiment. To obtain accurate ESR spectrum, marrow should be scraped out completely. Sample bone fragments of 1-2mm particle size and ca.100mg are recommended to obtain stable and maximum signal. In practice, by re-irradiating up to 5kGy and extrapolating data of the signal intensity to zero using linear regression analysis, radiation dose is estimated. For example, in one experiment, estimated doses of chicken bones initially irradiated at 3.0kGy, 1.0kGy, 0.50kGy and 0.25kGy were 3.4kGy, 1.3kGy, 0.81kGy and 0.57kGy. (author)

  13. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M [National Inst. of Radiological Sciences, Chiba (Japan); Lagarde, F [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine; Falk, R; Swedjemark, G A [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m{sup 3}, an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs.

  14. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    International Nuclear Information System (INIS)

    Doi, M.; Lagarde, F.

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m 3 , an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs

  15. Maximum likelihood estimation for cytogenetic dose-response curves

    International Nuclear Information System (INIS)

    Frome, E.L; DuFrain, R.J.

    1983-10-01

    In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa[γd + g(t, tau)d 2 ], where t is the time and d is dose. The coefficient of the d 2 term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure

  16. Maximum likelihood estimation for cytogenetic dose-response curves

    Energy Technology Data Exchange (ETDEWEB)

    Frome, E.L; DuFrain, R.J.

    1983-10-01

    In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  17. Estimation of the collective dose in the Portuguese population due to medical procedures in 2010

    International Nuclear Information System (INIS)

    Teles, Pedro; Vaz, Pedro; Sousa, M. Carmen de; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Cardoso, Gabriela; Santos, Ana Isabel; Lanca, Isabel; Matela, Nuno; Janeiro, Luis; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Simaozinho, Paula

    2013-01-01

    In a wide range of medical fields, technological advancements have led to an increase in the average collective dose in national populations worldwide. Periodic estimations of the average collective population dose due to medical exposure is, therefore of utmost importance, and is now mandatory in countries within the European Union (article 12 of EURATOM directive 97/ 43). Presented in this work is a report on the estimation of the collective dose in the Portuguese population due to nuclear medicine diagnostic procedures and the Top 20 diagnostic radiology examinations, which represent the 20 exams that contribute the most to the total collective dose in diagnostic radiology and interventional procedures in Europe. This work involved the collaboration of a multidisciplinary taskforce comprising representatives of all major Portuguese stakeholders (universities, research institutions, public and private health care providers, administrative services of the National Healthcare System, scientific and professional associations and private service providers). This allowed us to gather a comprehensive amount of data necessary for a robust estimation of the collective effective dose to the Portuguese population. The methodology used for data collection and dose estimation was based on European Commission recommendations, as this work was performed in the framework of the European wide Dose Datamed II project. This is the first study estimating the collective dose for the population in Portugal, considering such a wide national coverage and range of procedures and consisting of important baseline reference data. The taskforce intends to continue developing periodic collective dose estimations in the future. The estimated annual average effective dose for the Portuguese population was of 0.080±0.017 mSv caput -1 for nuclear medicine exams and of 0.96±0.68 mSv caput -1 for the Top 20 diagnostic radiology exams. (authors)

  18. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Mirro, Amy E. [Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130 (United States)

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  19. Dose estimation from food intake due to the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Yamaguchi, Ichiro; Terada, Hiroshi; Kunugita, Naoki; Takahashi, Kunihiko

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident, concerns have arisen about the radiation safety of food raised at home and abroad. Therefore, many measures have been taken to address this. To evaluate the effectiveness of these measures, dose estimation due to food consumption has been attempted by various methods. In this paper, we show the results of dose estimation based on the monitoring data of radioactive materials in food published by the Ministry of Health, Labour and Welfare. The Radioactive Material Response Working Group in the Food Sanitation Subcommittee of the Pharmaceutical Affairs and Food Sanitation Council reported such dose estimation results on October 31, 2011 using monitoring data from immediately after the accident through September, 2011. Our results presented in this paper were the effective dose and thyroid equivalent dose integrated up to December 2012 from immediately after the accident. The estimated results of committed effective dose by age group derived from the radioiodine and radiocesium in food after the Fukushima Daiichi nuclear power plant accident showed the highest median value (0.19 mSv) in children 13-18 years of age. The highest 95% tile value, 0.33 mSv, was shown in the 1-6 years age range. These dose estimations from food can be useful for evaluation of radiation risk for individuals or populations and for radiation protection measures. It would also be helpful for the study of risk management of food in the future. (author)

  20. Developing milk industry estimates for dose reconstruction projects

    International Nuclear Information System (INIS)

    Beck, D.M.; Darwin, R.F.

    1991-01-01

    One of the most important contributors to radiation doses from hanford during the 1944-1947 period was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to reconstruct the amount of milk consumed by people living near Hanford, the source of the milk, and the type of feed that the milk cows ate. This task is challenging because the dairy industry has undergone radical changes since the end of World War 2, and records that document the impact of these changes on the study area are scarce. Similar problems are faced by researchers on most dose reconstruction efforts. The purpose of this work is to document and evaluate the methods used on the Hanford Environmental Dose Reconstruction (HEDR) Project to reconstruct the milk industry and to present preliminary results

  1. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  2. Estimation of background radiation doses for the Peninsular Malaysia's population by ESR dosimetry of tooth enamel.

    Science.gov (United States)

    Rodzi, Mohd; Zhumadilov, Kassym; Ohtaki, Megu; Ivannikov, Alexander; Bhattacharjee, Deborshi; Fukumura, Akifumi; Hoshi, Masaharu

    2011-08-01

    Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6-8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y(-1). This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.

  3. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico); Reynoso-Mejía, Alberto [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F., Mexico and Departamento de Neuroimagen, Instituto Nacional de (Mexico); Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús [Departamento de Neuroimagen, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico)

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  4. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    International Nuclear Information System (INIS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-01-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens

  5. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Science.gov (United States)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  6. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    Shimo, M.; Seki, K.; Kikuchi, I.

    1992-01-01

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  7. Radiation dose estimation from foods due to the accident of TEPCO Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Yamaguchi, Ichiro

    2012-01-01

    Explained are the purpose of dose assessment, its methods, actual radionuclide levels in food, amounts of food intake, dose estimated hitherto, dose in the future, dose estimated by total food studies, and problems of assessing the dose from food, all of which Tokyo Electric Power Company (TEPCO) Power Station Accident has raised. Dose derived from food can be estimated by the radioactivity measured in each food material and in its combined amounts or in actually cooked food. Amounts of radioactive materials ingested in the body can be measured externally or by bioassay. Japan MHLW published levels of radioactivity in vegetables', fruits, marine products and meats from Mar. 2011, of which time course pattern has been found different each other within and between month(s). Dose due to early exposure in the Accident can be estimated by the radioactivity levels above and data concerning the amounts of food intake summarized by National Institute of Health and Nutrition in 2010 and other institutions. For instance, the thyroid tissue equivalent dose by I-131 in a 1 year old child is estimated to be 1.1-5 mSv depending on the assumed data for calculation, in the first month after the Accident when ICRP tissue equivalent dose coefficient 3.7 x 10-6 Sv/Bq is used. In the future (later than Apr. 2012), new standard limits of radiocesium levels in milk/its products and foods for infant and in other general foods are to be defined 50 and 100 Bq/kg, respectively. The distribution of committed effective doses by radiocesium (mSv/y food intake) are presented as an instance, where it is estimated by 1 million stochastic simulations using 2 covariates of Cs-134, -137 levels (as representative nuclides under regulation) in food and of daily food intake. In dose prediction, conjecturing the behavior of environmental radionuclides and the time of resume of primary industries would be necessary. (T.T.)

  8. Estimating average glandular dose by measuring glandular rate in mammograms

    International Nuclear Information System (INIS)

    Goto, Sachiko; Azuma, Yoshiharu; Sumimoto, Tetsuhiro; Eiho, Shigeru

    2003-01-01

    The glandular rate of the breast was objectively measured in order to calculate individual patient exposure dose (average glandular dose) in mammography. By employing image processing techniques and breast-equivalent phantoms with various glandular rate values, a conversion curve for pixel value to glandular rate can be determined by a neural network. Accordingly, the pixel values in clinical mammograms can be converted to the glandular rate value for each pixel. The individual average glandular dose can therefore be calculated using the individual glandular rates on the basis of the dosimetry method employed for quality control in mammography. In the present study, a data set of 100 craniocaudal mammograms from 50 patients was used to evaluate our method. The average glandular rate and average glandular dose of the data set were 41.2% and 1.79 mGy, respectively. The error in calculating the individual glandular rate can be estimated to be less than ±3%. When the calculation error of the glandular rate is taken into consideration, the error in the individual average glandular dose can be estimated to be 13% or less. We feel that our method for determining the glandular rate from mammograms is useful for minimizing subjectivity in the evaluation of patient breast composition. (author)

  9. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  10. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    International Nuclear Information System (INIS)

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas; Papadakis, Antonios E.

    2010-01-01

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulating women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made

  11. Skin dose estimation due to a contamination by a radionuclide β emitter: are doses equivalent good estimator of protection quantities?

    International Nuclear Information System (INIS)

    Bourgois, L.

    2011-01-01

    When handling radioactive β emitters, measurements in terms of personal dose equivalents H p (0.07) are used to estimate the equivalent dose limit to skin or extremities given by regulations. First of all, analytical expressions for individual dose equivalents H p (0.07) and equivalent doses to the extremities H skin are given for a point source and for contamination with a radionuclide β emitter. Second of all, operational quantities and protection quantities are compared. It is shown that in this case the operational quantities significantly overstate the protection quantities. For a skin contamination the ratio between operational quantities and protection quantities is 2 for a maximum β energy of 3 MeV and 90 for a maximum β energy of 150 keV. (author)

  12. Radioactivity levels of basic foodstuffs and dose estimates in Sudan

    International Nuclear Information System (INIS)

    Hemada, H. E. F.

    2009-03-01

    In this work a comprehensive study was carried out for the determination of different radionuclides activities in foodstuff consumed and evaluation of dose levels in different food stuffs were collected from eight States in Sudan (cereals, vegetables, meat, fruits, milk, and fermented milk, baby milk, cans, spices, additives, others). The concentrations of different radionuclides in the food samples were determined by gamma spectrometry using an HPGe detector. Radionuclides observed include: Bi-212, Bi-214, Cs-134, Cs-137, K-40, Pb-212, Pb-214, Ra-224, Ra-226, Th-228, Ac-228, TI-208, Th-232, and U-238. The activity concentration of these radionuclides were found in the following ranges: 0.51 - 19.42 Bq/Kg, 0.47 - 12.13 Bq/kg, 0.5 - 1.29 Bq/kg, 0.001 - 3.41 Bq/kg, 19.25 -2521.82 Bq/kg, 0.08 - 6.84 Bq/kg, 0.02 - 6.87 Bq/kg, 6.08 - 32.02 Bq/kg, 0.03 - 21. 53 Bq/kg, 0.92 - 26.77 Bq/kg, 0.91 - 1200 Bq/kg, 0.14 - 2.58 Bq/Kg, 0.03 - 9.65 Bq/kg, 0.03 - 9.65 Bq/kg and 0.82 - 5.27 Bq/kg respectively. High concentrations were typically found in portulaca, the lowest concentrations were found in barley and bread additives. The annual effective dose due to the different foodstuff estimated was found to be 2.78±0.44 mSv/y and 1.18±mSv/y for age categories 7-12 y and> 17y respectively. (Author)

  13. Estimate of dose in interventional radiology: a study of cases

    International Nuclear Information System (INIS)

    Pinto, N.; Braz, D.; Lopes, R.; Vallim, M.; Padilha, L.; Azevedo, F.; Barroso, R.

    2006-01-01

    Values of absorbed dose taken by patients and professionals involved in interventional radiology can be significant mainly for the reason of these proceedings taking long time of fluoroscopy There are many methods to estimate and reduce doses of radiation in the interventional radiology, particularly because the fluoroscopy is responsible for the high dose contribution in the patient and in the professional. The aim of this work is the thermoluminescent dosimetry to estimate the dose values of the extremities of the professionals involved in the interventional radiology and the product dose-area was investigated using a Diamentor. This evaluation is particularly useful for proceedings that interest multiple parts of the organism. In this study were used thermoluminescent dosimeters (LiF:Mg, Ti - Harshaw) to estimate the dose values of the extremities of the professionals and to calibrate them. They were irradiated with X rays at 50 mGy, in Kerma in air and read in the reader Harshaw-5500. The product dose-area (D.A.P.) were obtained through the Diamentor (M2-P.T.W.) calibrated in Cgy.cm 2 fixed in the exit of the X-rays tube. The patients of these study were divided in three groups: individuals submitted to proceedings of embolization, individuals submitted to cerebral and renal arteriography and individuals submitted to proceedings of Transjungular Inthahepatic Porta Systemic Stent Shunt (TIPS). The texts were always carried out by the same group: radiologist doctor), an auxiliary doctor and a nursing auxiliary. The section of interventional radiology has an Angiostar Plus Siemens equipment type arc C, in which there is trifocal Megalix X-ray tube and a intensifier of image from Sirecon 40-4 HDR/33 HDR. In this work the dose estimated values were 137.25 mSv/year for the doctors, 40.27 mSv/year for the nursing and 51.95 mSv/year for the auxiliary doctor and they are below the rule, but in this study it was not taken in consideration the emergency texts as they were

  14. Estimation of eye lens doses received by pediatric interventional cardiologists.

    Science.gov (United States)

    Alejo, L; Koren, C; Ferrer, C; Corredoira, E; Serrada, A

    2015-09-01

    Maximum Hp(0.07) dose to the eye lens received in a year by the pediatric interventional cardiologists has been estimated. Optically stimulated luminescence dosimeters were placed on the eyes of an anthropomorphic phantom, whose position in the room simulates the most common irradiation conditions. Maximum workload was considered with data collected from procedures performed in the Hospital. None of the maximum values obtained exceed the dose limit of 20 mSv recommended by ICRP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Personal dose estimations for Olympic Dam's first year of production

    International Nuclear Information System (INIS)

    Sonter, M.; Hondros, J.

    1989-01-01

    Underground development activities have been underway at Olympic Dam since 1983; commercial ore extraction commenced in early 1988; and the metallurgical treatment plant commenced operation in mid 1988. Detailed and extensive radiation monitoring programs have been in place since commencement of activities and have enabled detailed individual assessment of personal doses. Results are shown, in histogram form, of doses to full and part-time underground mine workers pre-1988 and for calendar 1988; and projected annual doses to treatment plant workers for the period July 1988 to July 1989. Comments are included on the dose calculation assumptions applying in mine and mill and on the degree of conservatism of these assumptions. The doses presented show compliance with the limits quoted in the Australian code of practice; they compare well with other underground uranium mines, and they indicate effective pursuit of the 'alara' principle. 7 figs., 1 tab

  16. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  17. Cardiac dose estimates from Danish and Swedish breast cancer radiotherapy during 1977-2001

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Bronnum, Dorthe; Darby, Sarah C.; Gagliardi, Giovanna; Hall, Per; Jensen, Maj-Britt; McGale, Paul; Nisbet, Andrew; Ewertz, Marianne

    2011-01-01

    Background and purpose: To estimate target and cardiac doses from breast cancer radiotherapy in Denmark and in the Stockholm and Umea areas of Sweden during 1977-2001. Methods: Representative samples of irradiated women were identified from the databases of the Danish Breast Cancer Cooperative Group and the Swedish Nationwide Cancer Registry. Virtual simulation, computed tomography planning and manual planning were used to reconstruct radiotherapy regimens on a typical woman. Estimates of target dose and various measures of cardiac dose were derived from individual radiotherapy charts. Results: Doses were estimated in 681 Danish and 130 Swedish women. Mean heart dose for individual women varied from 1.6 to 14.9 Gray in Denmark and from 1.2 to 22.1 Gray in Sweden. In Denmark, mean target doses averaged across women increased from 40.6 to 53.8 Gray during 1977-2001 but, despite this, mean heart dose averaged across women remained around 6 Gy for left-sided and 2-3 Gray for right-sided radiotherapy. In Sweden mean target dose averaged across women increased from 38.7 to 46.6 Gray during 1977-2001, while mean heart dose averaged across women decreased from 12.0 to 7.3 Gray for left-sided and from 3.6 to 3.2 Gray for right-sided radiotherapy. Temporal trends for mean biologically effective dose [BED] to the heart, mean dose to the left anterior descending coronary artery, the right coronary artery and the circumflex coronary artery were broadly similar. Conclusions: Cardiac doses in Denmark were low relative to those in Sweden. In both countries, target dose increased during 1977-2001. Despite this, cardiac doses remained constant in Denmark and decreased in Sweden.

  18. Natural radioactivity and estimated dose in Brazilian tobacco products

    International Nuclear Information System (INIS)

    Oliveira, Aline S.G.R. de; Damatto, Sandra R.

    2017-01-01

    Tobacco products contain significant concentrations of natural radionuclides from 238 U and 232 Th series. The consumption of these products increases the internal dose of radiation due to the inhalation of the natural radionuclides. Studies from literature emphasize that tobacco products have measurable concentrations of 210 Po and 210 Pb, and may contribute significantly to the increase of internal radiation dose and a large number of lung cancer in smokers. The objectives of this work were to determine the concentrations (Bq/kg) of the radionuclides 226 Ra, 228 Ra, 210 Pb and 210 Po and calculate the internal doses of radiation due to the consumption of these products. In the present work 71 samples were analyzed, consisting of cigars, unflavored and flavored cigarettes, straw cigarettes, cigars and roll smoke. The samples were purchased in Brazilian popular commercial establishments. The analytical techniques employed were the gross alpha and beta measurement after radiochemical separation for the radionuclides 226 Ra, 228 Ra, 210 Pb and alpha spectrometry for 210 Po. The internal radiation doses were calculated with the activity concentrations determined and using the ICRP Publication 119 dose coefficients. An annual consumption of 3,650 kg of tobacco products was considered. The inhalation rates of each radionuclide followed the rates of the current literature. The estimated mean annual dose varied from 76 to 263μSv/y for the tobacco product studied in this work. (author)

  19. Natural radioactivity and estimated dose in Brazilian tobacco products

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aline S.G.R. de; Damatto, Sandra R., E-mail: aline.oliveira@ipen.br, E-mail: damatto@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Tobacco products contain significant concentrations of natural radionuclides from {sup 238}U and {sup 232}Th series. The consumption of these products increases the internal dose of radiation due to the inhalation of the natural radionuclides. Studies from literature emphasize that tobacco products have measurable concentrations of {sup 210}Po and {sup 210}Pb, and may contribute significantly to the increase of internal radiation dose and a large number of lung cancer in smokers. The objectives of this work were to determine the concentrations (Bq/kg) of the radionuclides {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 210}Po and calculate the internal doses of radiation due to the consumption of these products. In the present work 71 samples were analyzed, consisting of cigars, unflavored and flavored cigarettes, straw cigarettes, cigars and roll smoke. The samples were purchased in Brazilian popular commercial establishments. The analytical techniques employed were the gross alpha and beta measurement after radiochemical separation for the radionuclides {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and alpha spectrometry for {sup 210}Po. The internal radiation doses were calculated with the activity concentrations determined and using the ICRP Publication 119 dose coefficients. An annual consumption of 3,650 kg of tobacco products was considered. The inhalation rates of each radionuclide followed the rates of the current literature. The estimated mean annual dose varied from 76 to 263μSv/y for the tobacco product studied in this work. (author)

  20. Estimation of staff doses in complex radiological examinations using a Monte Carlo computer code

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2007-01-01

    The protection of medical personnel in interventional radiology is an important issue of radiological protection. The irradiation of the worker is largely non-uniform, and a large part of his body is shielded by a lead apron. The estimation of effective dose (E) under these conditions is difficult and several approaches are used to estimate effective dose involving such a protective apron. This study presents a summary from an extensive series of simulations to determine scatter-dose distribution around the patient and staff effective dose from personal dosimeter readings. The influence of different parameters (like beam energy and size, patient size, irradiated region, worker position and orientation) on the staff doses has been determined. Published algorithms that combine readings of an unshielded and a shielded dosimeter to estimate effective dose have been applied and a new algorithm, that gives more accurate dose estimates for a wide range of situations was proposed. A computational approach was used to determine the dose distribution in the worker's body. The radiation transport and energy deposition was simulated using the MCNP4B code. The human bodies of the patient and radiologist were generated with the Body Builder anthropomorphic model-generating tool. The radiologist is protected with a lead apron (0.5 mm lead equivalent in the front and 0.25 mm lead equivalent in the back and sides) and a thyroid collar (0.35 mm lead equivalent). The lower-arms of the worker were folded to simulate the arms position during clinical examinations. This realistic situation of the folded arms affects the effective dose to the worker. Depending on the worker position and orientation (and of course the beam energy), the difference can go up to 25 percent. A total of 12 Hp(10) dosimeters were positioned above and under the lead apron at the neck, chest and waist levels. Extra dosimeters for the skin dose were positioned at the forehead, the forearms and the front surface of

  1. Comparing different methods for estimating radiation dose to the conceptus

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X.; Dedulle, A. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Walgraeve, M.S.; Woussen, S.; Zhang, G. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Bosmans, H. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); GE Healthcare, Buc (France)

    2017-02-15

    To compare different methods available in the literature for estimating radiation dose to the conceptus (D{sub conceptus}) against a patient-specific Monte Carlo (MC) simulation and a commercial software package (CSP). Eight voxel models from abdominopelvic CT exams of pregnant patients were generated. D{sub conceptus} was calculated with an MC framework including patient-specific longitudinal tube current modulation (TCM). For the same patients, dose to the uterus, D{sub uterus}, was calculated as an alternative for D{sub conceptus}, with a CSP that uses a standard-size, non-pregnant phantom and a generic TCM curve. The percentage error between D{sub uterus} and D{sub conceptus} was studied. Dose to the conceptus and percent error with respect to D{sub conceptus} was also estimated for three methods in the literature. The percentage error ranged from -15.9% to 40.0% when comparing MC to CSP. When comparing the TCM profiles with the generic TCM profile from the CSP, differences were observed due to patient habitus and conceptus position. For the other methods, the percentage error ranged from -30.1% to 13.5% but applicability was limited. Estimating an accurate D{sub conceptus} requires a patient-specific approach that the CSP investigated cannot provide. Available methods in the literature can provide a better estimation if applicable to patient-specific cases. (orig.)

  2. Consideration of the usefulness of a size-specific dose estimate in pediatric CT examination.

    Science.gov (United States)

    Tsujiguchi, Takakiyo; Obara, Hideki; Ono, Shuichi; Saito, Yoko; Kashiwakura, Ikuo

    2018-04-05

    Computed tomography (CT) has recently been utilized in various medical settings, and technological advances have resulted in its widespread use. However, medical radiation exposure associated with CT scans accounts for the largest share of examinations using radiation; thus, it is important to understand the organ dose and effective dose in detail. The CT dose index and dose-length product are used to evaluate the organ dose. However, evaluations using these indicators fail to consider the age and body type of patients. In this study, we evaluated the effective dose based on the CT examination data of 753 patients examined at our hospital using the size-specific dose estimate (SSDE) method, which can calculate the exposure dose with consideration of the physique of a patient. The results showed a large correlation between the SSDE conversion factor and physique, with a larger exposure dose in patients with a small physique when a single scan is considered. Especially for children, the SSDE conversion factor was found to be 2 or more. In addition, the patient exposed to the largest dose in this study was a 10-year-old, who received 40.4 mSv (five series/examination). In the future, for estimating exposure using the SSDE method and in cohort studies, the diagnostic reference level of SSDE should be determined and a low-exposure imaging protocol should be developed to predict the risk of CT exposure and to maintain the quality of diagnosis with better radiation protection of patients.

  3. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, A; Bostani, M [University of California, Los Angeles, Los Angeles, CA (United States); McMillan, K [Mayo Clinic, Rochester, MN (United States); Zankl, M [Helmholtz Zentrum Munchen, Neuherberg (Germany); Cagnon, C [UCLA Medical Center, Los Angeles, CA (United States); McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  4. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    International Nuclear Information System (INIS)

    Hardy, A; Bostani, M; McMillan, K; Zankl, M; Cagnon, C; McNitt-Gray, M

    2016-01-01

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  5. An estimate of the doubling dose of ionizing radiation for humans

    International Nuclear Information System (INIS)

    Neel, J.V.

    1990-01-01

    All accumulated data on the children of Hiroshima and Nagasaki survivors have been analyzed employing the revised procedures for estimating gonadal radiation exposures that became effective in 1986. The basic statistical procedure employed has been to obtain a linear regression of indicator on the combined gonadal exposures of the parents. There is no statistically significant regression of indicator on dose for any of the indicators; however, it is accepted that some mutations were produced in the survivors of the bombings. The implications of the data for the genetic doubling dose of radiation for humans have been explored. The appropriate dose rate factor to be applied in extrapolating to the effect of chronic radiation is 2. This leads to a doubling dose estimate for the chronic irradiation of humans of between 3.4 and 4.5 Sv. The error is large but indeterminate, but the estimate is based on conservative assumptions. (3 tabs.)

  6. Accuracy of effective dose estimation in personal dosimetry: a comparison between single-badge and double-badge methods and the MOSFET method.

    Science.gov (United States)

    Januzis, Natalie; Belley, Matthew D; Nguyen, Giao; Toncheva, Greta; Lowry, Carolyn; Miller, Michael J; Smith, Tony P; Yoshizumi, Terry T

    2014-05-01

    The purpose of this study was three-fold: (1) to measure the transmission properties of various lead shielding materials, (2) to benchmark the accuracy of commercial film badge readings, and (3) to compare the accuracy of effective dose (ED) conversion factors (CF) of the U.S. Nuclear Regulatory Commission methods to the MOSFET method. The transmission properties of lead aprons and the accuracy of film badges were studied using an ion chamber and monitor. ED was determined using an adult male anthropomorphic phantom that was loaded with 20 diagnostic MOSFET detectors and scanned with a whole body CT protocol at 80, 100, and 120 kVp. One commercial film badge was placed at the collar and one at the waist. Individual organ doses and waist badge readings were corrected for lead apron attenuation. ED was computed using ICRP 103 tissue weighting factors, and ED CFs were calculated by taking the ratio of ED and badge reading. The measured single badge CFs were 0.01 (±14.9%), 0.02 (±9.49%), and 0.04 (±15.7%) for 80, 100, and 120 kVp, respectively. Current regulatory ED CF for the single badge method is 0.3; for the double-badge system, they are 0.04 (collar) and 1.5 (under lead apron at the waist). The double-badge system provides a better coefficient for the collar at 0.04; however, exposure readings under the apron are usually negligible to zero. Based on these findings, the authors recommend the use of ED CF of 0.01 for the single badge system from 80 kVp (effective energy 50.4 keV) data.

  7. Estimation of population doses from chest mass screening, 1975

    International Nuclear Information System (INIS)

    Hashizume, Tadashi; Maruyama, Takashi

    1977-01-01

    The population doses in mass photofluorography of the chest were estimated on the basis of nation-wide radiological survey. A total frequency of photofluorographic examinations for the chest mass survey was 18.3 million for males and 15.0 million for females, with a total of 33.3 million. Mass surveys of the chest during the school age are carried out only at the time of admission into the primary school (5 or 6 years old) and at the second class of the junior high school (13 or 14 years old). The gonad doses were determined with an ionization chamber placed at the position of gonad in tissue-equivalent phantoms. The active bone marrow was subdivided into 72 elements. The dose contribution to the marrow arising from the particular exposure conditions was calculated at each site within the elements, using the depth-dose curves experimentally determined and the proportion of the total active bone marrow present at that site. The resultant genetically significant dose for males and females was 0.07 and 0.025 mrad per person per year, respectively, with a total of 0.032 mrad per person per year. The per Caput mean marrow dose for male and female was 5.5 and 4.2 mrad per year, respectively, with a total of 9.7 mrad per year. The leukemia significant dose was calculated from the per Caput mean marrow dose by adopting weighting factor, that is leukemia significant factor. The resultant leukemia significant factor for male and female was 5.2 and 4.1 mrad per person per year, respectively. (auth.)

  8. Necessary accuracy of dose estimation during cohort epidemiologic study after irradiation

    International Nuclear Information System (INIS)

    Orlov, M.Yu.; Stepanenko, V.F.; Khoshi, M.; Takada, Dzh.

    2003-01-01

    Effect of breadth of dose ranges on values of radiation risk was estimated. Ratios of observed numbers of mortalities because of leukemia in the cohort in 1950 - 1974 under deferent radiation dose to expected number of mortalities in this cohort only under background radiation were used as degree of risk. Data of cooperative Japan-American Program LSS (Life Span Study) were applied in the researches. It is established that required for the risk assessment with uncertainty 20 - 30 % the accuracy of dose estimation comprises 30 - 35 % in the range 1 - 5 rad and 5 - 10 % in the range 5 - 30 rad [ru

  9. Estimation dose in patients of nuclear medicine. Implementation of a calculi program and methodology

    International Nuclear Information System (INIS)

    Prieto, C.; Espana, M.L.; Tomasi, L.; Lopez Franco, P.

    1998-01-01

    Our hospital is developing a nuclear medicine quality assurance program in order to comply with medical exposure Directive 97/43 EURATOM and the legal requirements established in our legislation. This program includes the quality control of equipment and, in addition, the dose estimation in patients undergoing nuclear medicine examinations. This paper is focused in the second aspect, and presents a new computer program, developed in our Department, in order to estimate the absorbed dose in different organs and the effective dose to the patients, based upon the data from the ICRP publication 53 and its addendum. (Author) 16 refs

  10. Analysis of data on radon monitoring and dose estimates for uranium mines

    International Nuclear Information System (INIS)

    Khan, A.H.; Srivastava, G.K.; Jha, Shankar; Sagar, D.V.

    1994-01-01

    Radon progeny are the major contributors to the radiation dose to uranium miners. Monitoring for radon and gamma radiation is an integral part of radiation protection in such mines. Data for equilibrium equivalent radon and the estimated mean annual doses are presented in this paper for Jaduguda uranium mine from 1986 to 1992. The 1992 data for Jaduguda and Bhatin mines are compared. The average annual effective dose for uranium miners is estimated at around 15.5 mSv. (author). 1 ref., 2 figs

  11. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  12. Estimation of Dose Received in Decommissioning of Phosphate Acid Factory-Petro Kimia Gresik

    International Nuclear Information System (INIS)

    Lubis, Erwansyah; Heru Umbara; Agus Gindo S

    2007-01-01

    The estimation of dose received in decommissioning of Phosphate Acid Factory-Petro Kimia Gresik (PAF-PKG) was carried out. The external dose estimated base on the radiation rate in each working area of zona-1, 2, 3 and 4. The internal dose estimated base on the radionuclides activity and diameter of particulate exist in each working area. The calculation of the internal dose was carried out by LUDEP 2.0 computer code. The results indicated that in the normal activity of decommissioning, the effective dose will received by the worker per year were 0.27 mSv in zona-1, 1.23 mSv in zona-2, 1.37 mSv in zona-3 and 11.85 mSv in zona-4. The internal dose received when a worse accident happens in decommissioning activity is 21.06 mSv for lung organ or 4.2 % of the dose limit for that organ. Based on the discussion above, indicated that in the decommissioning of PAF-PKG the dose received by the workers is far lower than the dose limit. (author)

  13. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  14. Estimation of the population dose from medical X-ray diagnostic examination in Shandong province, China

    International Nuclear Information System (INIS)

    Su Xieming

    1985-01-01

    The exposure doses on the examinated body surface for verious types of X-ray diagnostic examanition in Shandong Province were surveyed. The collective effective dose equivalent in per million population were calculated with the measured results, the ratios of orga absorbed doses to irradiated surface exposure doses and the frequencies of X-ray examination in Shandong Province. The result was 326 man.Sv per million total population in 1980, of which chest fluoroscopies. lumbar spine radiographies and G.I. examination were estimated to be about 78, 9 and 5 precent, respectively

  15. External dose estimates for future Bikini Atoll inhabitants

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Crites, T.R.; Robison, W.L.

    1976-01-01

    To evaluate the potential radiation doses that may be received by the returning Bikinians, we surveyed the residual radioactivity on Bikini and Eneu Islands in June of 1975. An integral part of the survey included measurements of gamma-ray exposure rates which are used to estimate external gamma-ray doses. The survey showed that on Bikini Island the rates are highly variable: values near the shores are generally of the order of 10 to 20 μR/h, while those within the interior average about 40 μR/h with a range of roughly 30 to 100 μR/h. Eneu Island, however, is characterized by more or less uniformly distributed gamma radiation levels of less than 10 μR/h over the entire island. These data, in conjunction with population statistics and expected life styles, allowed us to estimate the potential external gamma-ray doses associated with proposed housing locations along the lagoon road and within the interior portions of Bikini Island as well as along the lagoon side of Eneu Island. As expected, living on Eneu Island results in the lowest doses: 0.12 rem during the first year and 2.9 rem during 30 years. The highest values, 0.28 rem during the first year and 5.9 rem over 30 years, may potentially be received by inhabitants living within the interior of Bikini Island. Other options under consideration produce intermediate values

  16. Biological dose estimation in a radiation accident involving low-dose ...

    African Journals Online (AJOL)

    Blood specimens were collected from 8 people 18 days after they had been accidentally exposed to a 947,2 GBq iridium192 source during industrial application. The equivalent whole-body dose received at day 0 was estimated using a model based on quantitative and qualitative chromosome aberration analysis in ...

  17. Estimates of radiation dose to the Australian population as a result of exposure to fallout from the French and the Chinese nuclear bomb tests over the period 1964-1972 and assessments of the adverse effects on public health

    International Nuclear Information System (INIS)

    Cook, J.E.; Combe, Victoria.

    1973-03-01

    Measurements of fallout levels in Australia up to 1971 are reviewed and used to estimate Australian average individual dose commitments. An alternative set of numbers is given based on the most recent figures for global average dose commitments provided by the United Nations Scientific Committee on the Effects of Atomic Radiation. The two sets of numbers show reasonable agreement; the larger are adopted for use in estimating adverse effects. The contribution of the French and Chinese weapons tests relative to that from all tests is derived by inspection and extrapolation where necessary of data on the injection of strontium-90 into the northern and southern hemispheres and its subsequent deposition as a function of time. The risk data reviewed and summarised in the 1972 UNSCEAR and BEIR reports are used to derive estimates of adverse effects. It is concluded that the French and Chinese test series to the end of 1972 may be responsible over the next 20 years for up to 1.4 and 0.2 cases of cancer per year respectively in Australia. Of these cases, 0.25 per year would be leukaemia, 0.75 per year thyroid cancer and 0.6 per year all other forms. Available evidence on the mutagenic effects of radiation suggests that the total number of cases of severe genetic diseases produced may be of the same order as the total number of cases of cancer, with the former spread over many generations whereas the latter are not. (author)

  18. Temperature and Salinity Effects on Bioaccumulation, Gill Structure, and Radiation Dose Estimation in the Milkfish Chanos chanos Exposed to 137Cs

    Directory of Open Access Journals (Sweden)

    W.R. Prihatiningsih

    2016-12-01

    Full Text Available The present trend of global warming has led to an increase in seawater temperature and salinity. The effects of increasing salinity and temperature on the accumulation of 137Cs by milkfish Chanos chanos was studied under laboratory conditions to obtain information on Chanos chanos adaptability under environmental changes. The uptake of radioactive cesium by Chanos chanos increased with temperature of seawater. The concentration factors (CF of 137Cs for temperatures of 25°C, 27°C, 29°C, and 31°C at steady state period were 5.25, 5.91, 6.78, and 9.98 mL g-1 for the whole-body of Chanos chanos. The concentration factors at steady state (CFss of 137Cs for salinities of 26‰, 29‰, 32‰, and 35‰ were 6.23, 9.93, 9.24, and 6.86 mL g-1, respectively. After temperature exposure to 31°C, the fish gills showed hyperplasia of epithelial cells in branchial secondary lamellae, congestion of blood vessels, and hypertrophy of pillar cells. The fish from the treatment group exhibited hemorrhage between the branchial secondary lamellae and an abundance of mucous substance in comparison with control group. This study links radionuclide bioaccumulation data and monitoring data obtained in the field and laboratory experiment with radiation dose determined by ERICA Tools, an approach that will enable better linkages to be made between exposure and dose in Chanos chanos and its marine food web.

  19. Estimating adolescent sleep need using dose-response modeling.

    Science.gov (United States)

    Short, Michelle A; Weber, Nathan; Reynolds, Chelsea; Coussens, Scott; Carskadon, Mary A

    2018-04-01

    This study will (1) estimate the nightly sleep need of human adolescents, (2) determine the time course and severity of sleep-related deficits when sleep is reduced below this optimal quantity, and (3) determine whether sleep restriction perturbs the circadian system as well as the sleep homeostat. Thirty-four adolescents aged 15 to 17 years spent 10 days and nine nights in the sleep laboratory. Between two baseline nights and two recovery nights with 10 hours' time in bed (TIB) per night, participants experienced either severe sleep restriction (5-hour TIB), moderate sleep restriction (7.5-hour TIB), or no sleep restriction (10-hour TIB) for five nights. A 10-minute psychomotor vigilance task (PVT; lapse = response after 500 ms) and the Karolinska Sleepiness Scale were administered every 3 hours during wake. Salivary dim-light melatonin onset was calculated at baseline and after four nights of each sleep dose to estimate circadian phase. Dose-dependent deficits to sleep duration, circadian phase timing, lapses of attention, and subjective sleepiness occurred. Less TIB resulted in less sleep, more lapses of attention, greater subjective sleepiness, and larger circadian phase delays. Sleep need estimated from 10-hour TIB sleep opportunities was approximately 9 hours, while modeling PVT lapse data suggested that 9.35 hours of sleep is needed to maintain optimal sustained attention performance. Sleep restriction perturbs homeostatic and circadian systems, leading to dose-dependent deficits to sustained attention and sleepiness. Adolescents require more sleep for optimal functioning than typically obtained.

  20. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  1. Estimation of dose distribution in occupationally exposed individuals to FDG-{sup 18}F

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson, E-mail: ilacerda.bolsista@cnen.gov.br, E-mail: manuela.omc@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Oliveira, Mercia Liane de; Andrade Lima, Fernando R. de, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG-{sup 18}F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  2. Estimation of dose distribution in occupationally exposed individuals to FDG-18F

    International Nuclear Information System (INIS)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson

    2014-01-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG- 18 F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  3. Estimation of population doses from diagnostic medical examinations in Japan, 1974. II. Estimation of genetically significant dose

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Maruyama, T; Kumamoto, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    1976-03-01

    The genetically significant dose from radiographic and fluoroscopic examination in Japan has been estimated based on a 1974 nation wide survey of randomly sampled hospitals and clinics. The gonad dose during x-ray diagnosis was determined with an ionization chamber placed at the positions of ovary and testis in a Rando phantom. The instrumented phantom was irradiated with medical diagnostic x-rays on the basis of the exposure data on the patients selected in the nation wide survey. In the calculation of the genetically significant dose, the child expectancy of the patients that undergo each particular type of examination was assumed to be same as that of the general population. The resultant genetically significant dose was 11.1 and 5.43 mrad per person per year for radiography and fluoroscopy, respectively. These values were compared with those of 1960 and 1969. Though the number of examinations per year shows a yearly increase, the genetically significant dose is gradually on the decrease. This may be due to technical improvements in medical radiological practices.

  4. Dose estimation of interventional cardiologists in different body regions

    International Nuclear Information System (INIS)

    Borba, Iana Q. de; Luz, Renata M. da; Capaverde, Alexandre S.; Silva, Ana M. Marques da; Caramori, Paulo Ricardo Avancini

    2015-01-01

    Interventional radiology is one of the medical specialties that provides the highest doses to professionals, widely used in cardiology, being called interventional cardiology. In order to contribute to the optimization of occupational radiation protection in interventional cardiology procedures, the aim of this study is to evaluate the dose estimation received in different body regions by physicians in interventional cardiology procedures. Two physicians were followed, named as A and B, during one month period, performing a total of 127 procedures (70 for A and 57 for B) of interventional cardiology. During the procedures, dosimeters in different body regions beyond the full-body dosimeter were positioned. The results showed the highest values for the estimated dose received by workers were in the right wrist and left side face regions, for the physician A, and in the left knee and left side face, for the physician B. Results demonstrate the importance of using individual protection equipment by physicians in interventional cardiology, including lead glasses, besides monitoring dosimeters for other body regions, such as wrist, face and knee. (author)

  5. Early estimates of UK radiation doses from the Chernobyl reactor

    International Nuclear Information System (INIS)

    Fry, F.A.; Clarke, R.H.; O'Riordan, M.C.

    1986-01-01

    The plume of radioactive material from the Chernobyl reactor accident passed over the United Kingdom and will increase the radiation dose to the population in the coming year. The increase above the normal annual dose from natural radiation, averaged over persons of all ages, will be about 15% in the north and 1% in the south of the country. Averaged over all ages and areas, the increase will be about 4%. This excess dose will decrease substantially in subsequent years. The accident at the nuclear power station in Chernobyl, near Kiev, on or after 26 April 1986, led to substantial quantities of radioactive material being released to the atmosphere. Wind initially transported the material towards northern and western Europe. Activity was first detected in the southern United Kingdom, some ∼ 2,000 km away, on 2 May. The National Radiological Protection Board (NRPB), the operators of nuclear installations and the regulating authorities, had anticipated this eventuality and had intensified their normal programmes of environmental monitoring. During the following days many measurements were made and a considerable amount of data was generated throughout the country. NRPB was assigned responsibility for collating and evaluating these results; the initial information is used here to make a preliminary estimate of the radiation doses to the population of the United Kingdom

  6. Estimation of the genetically significant dose resulting from diagnostic radiology

    International Nuclear Information System (INIS)

    Angerstein, W.

    1978-01-01

    Based on the average gonad dose received per examination or per film and on the frequency of x-ray examinations (36 million per annum), the mean annual gonad dose to individuals in the GDR has been determined to be 33 mR. Considering different age groups of patients and the fact that the gonad dose to children is often significantly reduced in comparison to adults, estimates of the genetically significant dose (GSD) range from 7 to 19 mR per annum. Examinations of women have accounted for about 66 per cent of the GSD. The highest contribution to the GSD result from examinations of the following organs: kidneys, colon, bile duct (only in women), lumbar spine, pelois, hips, and proximal femur. Despite their high frequency, examinations of the stomach account for only about 3 per cent of the GSD. All thorax examinations (nearly 10,000,000 per annum) contribute less than 0.5 per cent, and the most frequent x-ray examinations of the skeletal system, skull, cervical spine, and teeth account for less than 3 per cent. The GSD values obtained are comparable with those from countries such as India, Japan, Netherlands, USSR, and USA. (author)

  7. Estimation of frequency, population doses and stochastic risks in brachytherapy in Japan, 1983

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Kumamoto, Yoshikazu; Noda, Yutaka; Nishizawa, Kanae; Furuya, Yoshiro; Iwai, Kazuo.

    1988-01-01

    Based on the replies to a questionnaire distributed throughout Japan in 1983, genetically significant dose (GSD), per Caput mean bone marrow dose (CMD), leukemogenically significant dose (LSD), malignantly significant dose (MSD), and per Caput effective dose equivalent (EDE) from using small sealed radiation sources for radiotherapy were estimated. Annual frequencies of brachytherapy were estimated to be 2.6 x 10 3 for men and 36.3 x 10 3 for women, with a total of 38.9 x 10 3 . The annual frequencies of using afterloading technique were 0.3 x 10 3 for men and 18.8 x 10 3 for women, with a total of 19.1 x 10 3 . The annual population doses per person were 7.9 nGy for GSD, 118 μGy for CMD, 19.3 μGy for LSD, 172 μGy for MSD, and 428 μGy for EDE. The annual collective effective dose equivalent was estimated to be 5.13 x 10 4 man Sv. (Namekawa, K.)

  8. Radiation exposure to examiners and patients during therapeutic ERCP: Dose optimisation and risk estimation

    International Nuclear Information System (INIS)

    Sulieman, A.; Kappas, K.; Theodorou, K.; Paroutoglou, G.; Kapatenakis, A.; Kapsoritakis, A.; Potamianos, S.; Vlychou, M.; Fezoulidis, I.

    2008-01-01

    Aim: This study intended to optimise the radiation dose during therapeutic ERCP, and to estimate the risk for examiners and patients, to compare the doses based on available data obtained by other researchers and reference levels recommended by international organizations, and to evaluate the technique applied in order to reduce patient and examiners doses. Materials and Methods: 153 patients were studied in two Gastroenterology Departments, (group A, 111; group B, 42). Thermoluminescent dosimeters (TLD) were used to measure the staff and patients entrance surface dose (ESD) at different body sites. Results: The mean ESD, exit and thyroid surface dose per procedure was estimated to be 68.75 mGy, 3.45 mGy and 0.67 mGy, respectively. The mean patient effective dose was 3.44 mSv, and the cancer risk per procedure was estimated to be 190 x10 -6 . The effective dose for the first, second and third examiner was 0.4 μSv, 0.2 μSv and 5.0 μSv, respectively. Conclusion: The patient dose can be optimized by the presence of two experienced examiners and reduction of radiographic images. The examiners should use a wrap around lead apron since the highest dose originating from the X-ray tube, is incident on their side and back. The current formulae, which exist, underestimate the effective dose to the examiners, when they are applied for ERCP procedures. For both patients and examiners, our results were up to 60% lower compared to the lowest values found in previous studies. (authors)

  9. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  10. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  11. Estimation of radionuclide ingestion: Lessons from dose reconstruction for fallout from the Nevada Test Site

    International Nuclear Information System (INIS)

    Breshears, D.D.; Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1994-01-01

    The United States conducted atmospheric testing of nuclear devices at the Nevada Test Site from 1951 through 1963. In 1979 the U.S. Department of Energy established the Off-Site Radiation Exposure Review Project to compile a data base related to health effects from nuclear testing and to reconstruct doses to public residing off of the Nevada Test Site. This project is the most comprehensive dose reconstruction project to date, and, since similar assessments are currently underway at several other locations within and outside the U.S., lessons from ORERP can be valuable. A major component of dose reconstruction is estimation of dose from radionuclide ingestion. The PATHWAY food-chain model was developed to estimate the amount of radionuclides ingested. For agricultural components of the human diet, PATHWAY predicts radionuclide concentrations and quantities ingested. To improve accuracy and model credibility, four components of model analysis were conducted: estimation of uncertainty in model predictions, estimation of sensitivity of model predictions to input parameters, and testing of model predictions against independent data (validation), and comparing predictions from PATHWAY with those from other models. These results identified strengths and weaknesses in the model and aided in establishing the confidence associated with model prediction, which is a critical component risk assessment and dose reconstruction. For fallout from the Nevada Test Site, by far, the largest internal doses were received by the thyroid. However, the predicted number of fatal cancers from ingestion dose was generally much smaller than the number predicted from external dose. The number of fatal cancers predicted from ingestion dose was also orders of magnitude below the normal projected cancer rate. Several lessons were learned during the study that are relevant to other dose reconstruction efforts

  12. Influence of TLD position on the estimate of fetal dose

    International Nuclear Information System (INIS)

    Majola, J.; Jamieson, T.J.

    1995-11-01

    This report examines the adequacy of the practice of using a single dosimeter worn at the front of the body as an estimate of the dose received by nuclear medicine technologies. In order to investigate this, a group of approximately 50 technologists at 9 different hospitals were double-badged, i.e. provided with front and back dosimeters, and the ratio of front to back dose computed. Both aggregate data and hospital-specific data are presented and accompanied by several forms of statistical analysis. Apparent trends and possible explanations are discussed. Recommendations are provided for additional studies relating to the badging of nuclear medicine technologists. (author). 125 refs., 15 tabs., 13 figs

  13. Influence of TLD position on the estimate of fetal dose

    Energy Technology Data Exchange (ETDEWEB)

    Majola, J; Jamieson, T J [Science Applications International Corp., Ottawa, ON (Canada)

    1995-11-01

    This report examines the adequacy of the practice of using a single dosimeter worn at the front of the body as an estimate of the dose received by nuclear medicine technologies. In order to investigate this, a group of approximately 50 technologists at 9 different hospitals were double-badged, i.e. provided with front and back dosimeters, and the ratio of front to back dose computed. Both aggregate data and hospital-specific data are presented and accompanied by several forms of statistical analysis. Apparent trends and possible explanations are discussed. Recommendations are provided for additional studies relating to the badging of nuclear medicine technologists. (author). 125 refs., 15 tabs., 13 figs.

  14. Development of dose rate estimation system for FBR maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Iizawa, Katsuyuki [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, International Cooperation and Technology Development Center, Tsuruga, Fukui (Japan); Takeuchi, Jun; Yoshikawa, Satoru [Hitachi Engineering Company, Ltd., Hitachi, Ibaraki (Japan); Urushihara, Hiroshi [Ibaraki Hitachi Information Service Co., Ltd., Omika, Ibaraki (Japan)

    2001-09-01

    During maintenance activities on the primary sodium cooling system by an FBR Personnel radiation exposure arises mainly from the presence of radioactive corrosion products (CP). A CP behavior analysis code, PSYCHE, and a radiation shielding calculation code, QAD-CG, have been developed and applied to investigate the possible reduction of radiation exposure of workers. In order to make these evaluation methods more accessible to plant engineers, the user interface of the codes has been improved and an integrated system, including visualization of the calculated gamma-ray radiation dose-rate map, has been developed. The system has been verified by evaluating the distribution of the radiation dose-rate within the Monju primary heat transport system cells from the estimated saturated CP deposition and distribution which would be present following about 20 cycles of full power operation. (author)

  15. Development of dose rate estimation system for FBR maintenance

    International Nuclear Information System (INIS)

    Iizawa, Katsuyuki; Takeuchi, Jun; Yoshikawa, Satoru; Urushihara, Hiroshi

    2001-01-01

    During maintenance activities on the primary sodium cooling system by an FBR Personnel radiation exposure arises mainly from the presence of radioactive corrosion products (CP). A CP behavior analysis code, PSYCHE, and a radiation shielding calculation code, QAD-CG, have been developed and applied to investigate the possible reduction of radiation exposure of workers. In order to make these evaluation methods more accessible to plant engineers, the user interface of the codes has been improved and an integrated system, including visualization of the calculated gamma-ray radiation dose-rate map, has been developed. The system has been verified by evaluating the distribution of the radiation dose-rate within the Monju primary heat transport system cells from the estimated saturated CP deposition and distribution which would be present following about 20 cycles of full power operation. (author)

  16. Revision of risk estimates and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    It has been apparent for some time that our estimates of the risks associated with exposure to ionizing radiation must be increased above those values reported by UNSCEAR in 1977 an dused by ICRP to form their present recommendations. NRPB foresaw some of these changes and introduced interim advice within the UK to restrict exposures of wordkers and members of the public to levels below the existing limits. Since that advice was given, UNSCEAR has produced a 1988 report reviewing human data to provide new estimates of risks associated with exposure at high doses and high doserates. These risk figures are up to 4 times higher than when UNSCEAR reported in 1977. In this paper, the reasons for the changes in the estimates of risk will be described and the current NRPB guidelines for risk factors for protection purposes will be presented. The implications of these new risk factors for the setting of dose limits will then be discussed. (Author). 10 refs.; 2 tabs

  17. Estimate of ovarian dose and entrance skin dose in uterine artery embolization procedures

    International Nuclear Information System (INIS)

    Silva, Marcia C.; Nasser, Felipe; Affonso, Breno B.; Araujo Junior, Raimundo T.; Zlotnik, Eduardo; Messina, Marcos L.; Baracat, Edmund C.

    2010-01-01

    The goal of this study was to estimate the ovarian dose and entrance skin dose (ESD) of patients who underwent uterine artery embolization (UAE) procedure. To achieve this, 49 UAE procedures were accompanied where the parameters of image acquisition were recorded for the calculation of the DEP from the output of the X-ray tube. The estimation of the ovarian dose was carried out by the insertion of a vaginal probe containing 3 TLD's. The obtained values were compared with the results of other authors and a higher value of ovarian dose (28,97 cGy) and ESD (403,57 cGy) was found in this work. Analysis of the results allowed to observe that this result was obtained mainly as a result of the high number of arteriography series and the frames/second rates employed. Following on from these observations, the protocol of EMUT was altered reducing the frames/seg rate from 2 to 1. Efforts with a view to reducing the number of arteriography series also became part of the next proceedings. (author)

  18. Dosing of cytotoxic chemotherapy: impact of renal function estimates on dose.

    Science.gov (United States)

    Dooley, M J; Poole, S G; Rischin, D

    2013-11-01

    Oncology clinicians are now routinely provided with an estimated glomerular filtration rate on pathology reports whenever serum creatinine is requested. The utility of using this for the dose determination of renally excreted drugs compared with other existing methods is needed to inform practice. Renal function was determined by [Tc(99m)]DTPA clearance in adult patients presenting for chemotherapy. Renal function was calculated using the 4-variable Modification of Diet in Renal Disease (4v-MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Cockcroft and Gault (CG), Wright and Martin formulae. Doses for renal excreted cytotoxic drugs, including carboplatin, were calculated. The concordance of the renal function estimates according to the CKD classification with measured Tc(99m)DPTA clearance in 455 adults (median age 64.0 years: range 17-87 years) for the 4v-MDRD, CKD-EPI, CG, Martin and Wright formulae was 47.7%, 56.3%, 46.2%, 56.5% and 60.2%, respectively. Concordance for chemotherapy dose for these formulae was 89.0%, 89.5%, 85.1%, 89.9% and 89.9%, respectively. Concordance for carboplatin dose specifically was 66.4%, 71.4%, 64.0%, 73.8% and 73.2%. All bedside formulae provide similar levels of concordance in dosage selection for the renal excreted chemotherapy drugs when compared with the use of a direct measure of renal function.

  19. Estimation of absorbed doses on the basis of cytogenetic methods

    International Nuclear Information System (INIS)

    Shevchenko, V.A.; Rubanovich, A.V.; Snigiryova, G.P.

    1998-01-01

    Long-term studies in the field of radiation cytogenetics have resulted in the discovery of relationship between induction of chromosome aberrations and the type of ionizing radiation, their intensity and dose. This has served as a basis of biological dosimetry as an area of application of the revealed relationship, and has been used in the practice to estimate absorbed doses in people exposed to emergency irradiation. The necessity of using the methods of biological dosimetry became most pressing in connection with the Chernobyl accident in 1986, as well as in connection with other radiation situations that occurred in nuclear industry of the former USSR. The materials presented in our works demonstrate the possibility of applying cytogenetic methods for assessing absorbed doses in populations of different regions exposed to radiation as a result of accidents at nuclear facilities (Chernobyl, the village Muslymovo on the Techa river, the Three Mile Island nuclear power station in the USA where an accident occurred in 1979). Fundamentally, new possibilities for retrospective dose assessment are provided by the FISH-method that permits the assessment of absorbed doses after several decades since the exposure occurred. In addition, the application of this method makes it possible to restore the dynamics of unstable chromosome aberrations (dicentrics and centric rings), which is important for further improvement of the method of biological dosimetry based on the analysis of unstable chromosome aberrations. The purpose of our presentation is a brief description of the cytogenetic methods used in biological dosimetry, consideration of statistical methods of data analysis and a description of concrete examples of their application. (J.P.N.)

  20. Estimation of patient dose in mammography screening examinations

    International Nuclear Information System (INIS)

    Suzuki, S.; Fujii, S.; Orito, T.; Asada, Y.; Koga, S.; Horita, K.; Kido, C.

    1996-01-01

    Mammography is one of the most effective examinations for detecting breast carcinoma. Although the dose is usually much higher than that in other types of X-ray examination, that is accepted by the patient because for fears of suffering cancer. Benefit of relatively high doses derived from mammographic examinations is considered to well exceed the risk of cancer induction by radiation exposure. The purpose of this study is to investigate patient dose of mammography in Japan by questionnaire sent to 531 institutions selected from whole Japan and direct measurements carried out in 28 hospitals in Aichi Prefecture. The user's guide in mammography published by NCRP and Quality Assurance Program of American College of Radiology were used to assess the exposure and image quality of mammogram. (author)

  1. Perspectives on radiation dose estimates for A-bomb survivors

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1986-12-01

    Four decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modeling and concomitant detail, and by its decentralized direction, both internationally and internally to the US and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here. 4 refs., 8 figs., 3 tabs

  2. Perspectives on radiation dose estimates for A-bomb survivors

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1987-01-01

    For decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modelling and concomitant detail, and by its decentralized direction, both internationally and internally to the U.S. and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here

  3. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.; Bolch, Wesley E.

    2012-01-01

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI vol (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependent reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI vol - and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI vol for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose differences up to

  4. 324 Building life cycle dose estimates for planned work

    International Nuclear Information System (INIS)

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed

  5. 324 Building life cycle dose estimates for planned work

    Energy Technology Data Exchange (ETDEWEB)

    Landsman, S.D.; Peterson, C.A.; Thornhill, R.E.

    1995-09-01

    This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed.

  6. Dose estimate of exposure to radioisotopes in molecular and cellular biology

    International Nuclear Information System (INIS)

    Onado, C.; Faretta, M.; Ubezio, P.

    1999-01-01

    A method for prospectively evaluating the annual equivalent doses and effective dose to biomedical researchers working with unsealed radioisotopes, and their classification, is presented here. Simplified formulae relate occupational data to a reasonable overestimate of the annual effective dose, and the equivalent doses to the hands and to the skin. The procedure, up to the classification of personnel and laboratories, can be made fully automatic, using a common spreadsheet on a personal computer. The method is based on occupational data, accounting for the amounts of each radioisotope used by a researcher, the time of exposure and the overall amounts employed in the laboratories where experiments are performed. The former data serve to forecast a contribution to the dose arising from a researcher's own work, the latter to a forecast of an 'environmental' contribution deriving simply from the presence in a laboratory where other people are working with radioisotopes. The estimates of the doses due to one's own radioisotope handling and to 'environment' were corrected for accidental exposure, considered as a linear function of the manipulated activity or of the time spent in the laboratories respectively, and summed up to give the effective dose. The effective dose associated with some common experiments in molecular and cellular biology is pre-evaluated by this method. (author)

  7. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  8. Estimates of radiation doses and cancer risk from food intake in Korea

    International Nuclear Information System (INIS)

    Moon, Eun Kyeong; Lee, Won Jin; Ha, Wi Ho; Seo, Song Won; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil; Choi, Hoon

    2016-01-01

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  9. Estimates of radiation doses and cancer risk from food intake in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Korea University, Seoul (Korea, Republic of); Ha, Wi Ho; Seo, Song Won; Jin, Young Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Kyu Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Choi, Hoon [Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  10. Studies on the assessment of radio activity in vegetables and fruits grown and consumed by residents of a typical natural high background area of South India and estimation of committed effective ingestion dose for the general public

    International Nuclear Information System (INIS)

    Maniyan, C.G.; Selvan, Esai; Tripathi, R.M.; Puranik, V.D.

    2007-01-01

    Radioactivity content of vegetables and fruits commonly grown and consumed by residents of a natural High Background Area (NHBRA) has been studied. Of the studied vegetable tapioca and tomato were found to have maximum activity accumulation and Kovai, minimum. Of the fruits studied, banana was found to have maximum activity. The radio activity of the corresponding soil in which they grew, was also estimated. It was found that uptake of the plant increases with the soil concentration. The maximum uptake was by tapioca and the minimum was by coconut kernel. From the gross alpha activity, concentration of Th and U were estimated and the committed effective dose, via ingestion, for general public consuming an average amount of 30 Kg per year veg and fruits, each, was calculated to be about 0.5 mSv. (author)

  11. Variability in dose estimates associated with the food-chain transport and ingestion of selected radionuclides

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Gardner, R.H.; Eckerman, K.F.

    1982-06-01

    Dose predictions for the ingestion of 90 Sr and 137 Cs, using aquatic and terrestrial food chain transport models similar to those in the Nuclear Regulatory Commission's Regulatory Guide 1.109, are evaluated through estimating the variability of model parameters and determining the effect of this variability on model output. The variability in the predicted dose equivalent is determined using analytical and numerical procedures. In addition, a detailed discussion is included on 90 Sr dosimetry. The overall estimates of uncertainty are most relevant to conditions where site-specific data is unavailable and when model structure and parameter estimates are unbiased. Based on the comparisons performed in this report, it is concluded that the use of the generic default parameters in Regulatory Guide 1.109 will usually produce conservative dose estimates that exceed the 90th percentile of the predicted distribution of dose equivalents. An exception is the meat pathway for 137 Cs, in which use of generic default values results in a dose estimate at the 24th percentile. Among the terrestrial pathways of exposure, the non-leafy vegetable pathway is the most important for 90 Sr. For 90 Sr, the parameters for soil retention, soil-to-plant transfer, and internal dosimetry contribute most significantly to the variability in the predicted dose for the combined exposure to all terrestrial pathways. For 137 Cs, the meat transfer coefficient the mass interception factor for pasture forage, and the ingestion dose factor are the most important parameters. The freshwater finfish bioaccumulation factor is the most important parameter for the dose prediction of 90 Sr and 137 Cs transported over the water-fish-man pathway

  12. Dose estimation for the eye lens dealing with radioactive wastes

    International Nuclear Information System (INIS)

    Krause, A.; Lorenz, B.; Wuertemberger, M.

    2013-01-01

    A significant reduction of the dose limit for the lens of the eye is currently discussed in international committees. The ICRP had recommended a reduction from 150 mSv to 20 mSv, the IAEA-BSS have already adopted this value and the Euratom-BSS propose this too. In the practice of radiation protection the compliance with the limit for the lens of the eye has played a minor role so far. This was in practice assured by the compliance with the limit for the effective dose. With a possible stipulation of a much lower value in the Radiation Protection Ordinance (StrlSchV), the question of compliance arises again. When handling radioactive waste where often gamma radiation is dominant it may happen that the (unshielded) eye region is much more exposed as the location of the (shielded) personal dosimeter. A theoretical study of typical GNS-workplaces in radioactive waste management has shown that up to a factor of 4 higher exposures may occur. A generic assessment under very conservative assumptions that was done first did not allow for the conclusion that the compliance of the new dose limit for the lens of the eye is given by complying with the limit for the effective dose. To get a more reliable basis the exposure situation will now be investigated by measurements that are carried out with specific TLDs provided by the MPA Dortmund. (orig.)

  13. Estimating the population dose from nuclear medicine examinations towards establishing diagnostic reference levels

    International Nuclear Information System (INIS)

    Niksirat, Fatemeh; Monfared, Ali Shabestani; Deevband, Mohammad Reza; Amiri, Mehrangiz; Gholami, Amir

    2016-01-01

    This study conducted a review on nuclear medicine (NM) services in Mazandaran Province with a view to establish adult diagnostic reference levels (DRLs) and provide updated data on population radiation exposure resulting from diagnostic NM procedures. The data were collected from all centers in all cities of Mazandaran Province in the North of Iran from March 2014 to February 2015. The 75 th percentile of the distribution and the average administered activity (AAA) were calculated and the average effective dose per examination, collective effective dose to the population and annual effective dose per capita were estimated using dose conversion factors. The gathered data were analyzed via SPSS (version 18) software using descriptive statistics. Based on the data of this study, the collective effective dose was 95.628 manSv, leading to a mean effective dose of 0.03 mSv per capita. It was also observed that the myocardial perfusion was the most common procedure (50%). The 75 th percentile of the distribution of administered activity (AA) represents the DRL. The AAA and the 75 th percentile of the distribution of AA are slightly higher than DRL of most European countries. Myocardial perfusion is responsible for most of the collective effective dose and it is better to establish national DRLs for myocardial perfusion and review some DRL values through the participation of NM specialists in the future

  14. The impact of involved node, involved field and mantle field radiotherapy on estimated radiation doses and risk of late effects for pediatric patients with Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M. V.; Jorgensen, M.; Brodin, N. P.

    2014-01-01

    –II classical HL patients 4 x 2 plans for each patient. The lifetime excess risks of cardiac morbidity, cardiac mortality, lung, breast, and thyroid cancer with each technique were estimated. The estimated excess risks attributable to RT were based on HL series with long-term follow......IFRT), and Involved Node RT (INRT) and the risk of radiation-induced cardiovascular disease, secondary cancers, and the corresponding Life Years Lost (LYL) is estimated with each technique. PROCEDURE: INRT, mIFRT, IFRT, and MF plans (20 and 30 Gy) were simulated for 10 supradiaphragmatic, clinical stage I...... to the heart, lungs, breasts, and thyroid compared to past,extended fields, even for patients with mediastinal disease. This translated into a significantly reduced estimated risk of cardiovascular disease, secondary cancers, and LYL. CONCLUSIONS: Involved Node Radiotherapy should be considered for pediatric...

  15. Estimation of absorbed dose by newborn patients subjected to chest radiographs

    International Nuclear Information System (INIS)

    Bunick, Ana P.; Schelin, Hugo R.; Denyak, Valeriy

    2016-01-01

    The aim of this study is to present an estimate of the effective dose received by newborn patients hospitalized in NICU and subjected to X-ray examinations of the chest in the AP projection. Initially, were followed examinations chest X-rays performed on newborn patients and subsequently, simulated in a newborn simulator object. The ESAK values obtained by TLDs were used to calculate the effective dose obtained at each examination by Caldose_X software. The estimated values for the effective dose in the simulated exams in this study range from 2,3μSv the 10,7μSv. The results achieved are, generally, inferior to those reported for similar previous studies. (author)

  16. Estimation of the optimal dosing regimen of escitalopram in dogs: A dose occupancy study with [11C]DASB.

    Science.gov (United States)

    Taylor, Olivia; Van Laeken, Nick; Polis, Ingeborgh; Dockx, Robrecht; Vlerick, Lise; Dobbeleir, Andre; Goethals, Ingeborg; Saunders, Jimmy; Sadones, Nele; Baeken, Chris; De Vos, Filip; Peremans, Kathelijne

    2017-01-01

    Although the favourable characteristics of escitalopram as being the most selective serotonin reuptake inhibitor and having an increased therapeutic efficacy via binding on an additional allosteric binding site of the serotonin transporter, its dosing regimen has not yet been optimized for its use in dogs. This study aimed to estimate the optimal dosing frequency and the required dose for achieving 80% occupancy of the serotonin transporters in the basal ganglia. The dosing frequency was investigated by determining the elimination half-life after a four day oral pre-treatment period with 0.83 mg/kg escitalopram (3 administrations/day) and a subsequent i.v. injection 0.83 mg/kg. Blood samples were taken up to 12 hours after i.v. injection and the concentration of escitalopram in plasma was analysed via LC-MSMS. The dose-occupancy relationship was then determined by performing two PET scans in five adult beagles: a baseline PET scan and a second scan after steady state conditions were achieved following oral treatment with a specific dose of escitalopram ranging from 0.5 to 2.5 mg/kg/day. As the elimination half-life was determined to be 6.7 hours a dosing frequency of three administrations a day was proposed for the second part of the study. Further it was opted for a treatment period of four days, which well exceeded the minimum period to achieve steady state conditions. The optimal dosing regimen to achieve 80% occupancy in the basal ganglia and elicit a therapeutic effect, was calculated to be 1.85 mg/kg/day, divided over three administrations. Under several circumstances, such as insufficient response to other SSRIs, concurrent drug intake or in research studies focused on SERT, the use of escitalopram can be preferred over the use of the already for veterinary use registered fluoxetine, however, in case of long-term treatment with escitalopram, regularly cardiac screening is recommended.

  17. Measurement and estimation of maximum skin dose to the patient for different interventional procedures

    International Nuclear Information System (INIS)

    Cheng Yuxi; Liu Lantao; Wei Kedao; Yu Peng; Yan Shulin; Li Tianchang

    2005-01-01

    Objective: To determine the dose distribution and maximum skin dose to the patient for four interventional procedures: coronary angiography (CA), hepatic angiography (HA), radiofrequency ablation (RF) and cerebral angiography (CAG), and to estimate the definitive effect of radiation on skin. Methods: Skin dose was measured using LiF: Mg, Cu, P TLD chips. A total of 9 measuring points were chosen on the back of the patient with two TLDs placed at each point, for CA, HA and RF interventional procedures, whereas two TLDs were placed on one point each at the postero-anterior (PA) and lateral side (LAT) respectively, during the CAG procedure. Results: The results revealed that the maximum skin dose to the patient was 1683.91 mGy for the HA procedure with a mean value of 607.29 mGy. The maximum skin dose at the PA point was 959.3 mGy for the CAG with a mean value of 418.79 mGy; While the maximum and the mean doses at the LAT point were 704 mGy and 191.52 mGy, respectively. For the RF procedure the maximum dose was 853.82 mGy and the mean was 219.67 mGy. For the CA procedure the maximum dose was 456.1 mGy and the mean was 227.63 mGy. Conclusion: All the measured dose values in this study are estimated ones which could not provide the accurate maximum value because it is difficult to measure using a great deal of TLDs. On the other hand, the small area of skin exposed to high dose could be missed as the distribution of the dose is successive. (authors)

  18. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  19. Radiation doses to patients in computed tomography including a ready reckoner for dose estimation

    International Nuclear Information System (INIS)

    Szendroe, G.; Axelsson, B.; Leitz, W.

    1995-11-01

    The radiation burden from CT-examinations is still growing in most countries and has reached a considerable part of the total from medical diagnostic x-ray procedures. Efforts for avoiding excess radiation doses are therefore especially well motivated within this field. A survey of CT-examination techniques practised in Sweden showed that standard settings for the exposure variables are used for the vast majority of examinations. Virtually no adjustments to the patient's differences in anatomy have been performed - even for infants and children on average the same settings have been used. The adjustment of the exposure variables to the individual anatomy offers a large potential of dose savings. Amongst the imaging parameters, a change of the radiation dose will primarily influence the noise. As a starting point it is assumed that, irrespective of the patient's anatomy, the same level of noise can be accepted for a certain diagnostic task. To a large extent the noise level is determined by the number of photons that are registered in the detector. Hence, for different patient size and anatomy, the exposure should be adjusted so that the same transmitted photon fluence is achieved. An appendix with a ready reckoner for dose estimation for CT-scanners used in Sweden is attached. 7 refs, 5 figs, 8 tabs

  20. Chernobyl source term, atmospheric dispersion, and dose estimation

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Harvey, T.F.; Lange, R.

    1988-02-01

    The Chernobyl source term available for long-range transport was estimated by integration of radiological measurements with atmospheric dispersion modeling, and by reactor core radionuclide inventory estimation in conjunction with WASH-1400 release fractions associated with specific chemical groups. These analyses indicated that essentially all of the noble gases, 80% of the radioiodines, 40% of the radiocesium, 10% of the tellurium, and about 1% or less of the more refractory elements were released. Atmospheric dispersion modeling of the radioactive cloud over the Northern Hemisphere revealed that the cloud became segmented during the first day, with the lower section heading toward Scandinavia and the uppper part heading in a southeasterly direction with subsequent transport across Asia to Japan, the North Pacific, and the west coast of North America. The inhalation doses due to direct cloud exposure were estimated to exceed 10 mGy near the Chernobyl area, to range between 0.1 and 0.001 mGy within most of Europe, and to be generally less than 0.00001 mGy within the US. The Chernobyl source term was several orders of magnitude greater than those associated with the Windscale and TMI reactor accidents, while the 137 Cs from the Chernobyl event is about 6% of that released by the US and USSR atmospheric nuclear weapon tests. 9 refs., 3 figs., 6 tabs

  1. Improved estimates of external gamma dose rates in the environs of Hinkley Point Power Station

    International Nuclear Information System (INIS)

    Macdonald, H.F.; Thompson, I.M.G.

    1988-07-01

    The dominant source of external gamma dose rates at centres of population within a few kilometres of Hinkley Point Power Station is the routine discharge of 41-Ar from the 'A' station magnox reactors. Earlier estimates of the 41-Ar radiation dose rates were based upon measured discharge rates, combined with calculations using standard plume dispersion and cloud-gamma integration models. This report presents improved dose estimates derived from environmental gamma dose rate measurements made at distances up to about 1 km from the site, thus minimising the degree of extrapolation introduced in estimating dose rates at locations up to a few kilometres from the site. In addition, results from associated chemical tracer measurements and wind tunnel simulations covering distances up to about 4 km from the station are outlined. These provide information on the spatial distribution of the 41-Ar plume during the initial stages of its dispersion, including effects due to plume buoyancy and momentum and behaviour under light wind conditions. In addition to supporting the methodology used for the 41-Ar dose calculations, this information is also of generic interest in the treatment of a range of operational and accidental releases from nuclear power station sites and will assist in the development and validation of existing environmental models. (author)

  2. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  3. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  4. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  5. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  6. Estimation of patient dose in abdominal CT examination in some Sudanese hospitals

    International Nuclear Information System (INIS)

    Adam, Ebthal Adam Shikhalden

    2016-04-01

    The use of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. The aim of this study was to estimate radiation doses in abdomen CT examinations of patients in two Sudanese hospitals. Details were obtained from approximately 80 CT examinations and included all age groups ( adults and pediatric). The results from the two hospitals were compared with each other as well as with the IAEA guidance level for this particular investigation. The estimation of radiation doses were carried out by calculating volume dose index (CTD1vol), dose length product (DLP), doses to some organs of interest and effective dose (E) using the software program "CT EXPO V2.1". The study showed that the mean DLP of the one hospitals ASH is 1736.7 mGy.cm which is by far much higher than that for the other hospital NMDC which stands at 185.3 mGy.cm, as well as higher than the IAEA level which is 696 mGy.cm. The study showed that the mean CTD1vol for patients in ASH is 36.2 mGy which again higher than that for the other hospital which is 3.9 mGy and higher than the IAEA level which is 10.9 mGy calculating the effective dose for patients in the two hospitals reveals that the mean effective dose of patient in one hospital (ASH) is 26.25 mSv, which is quite high compared with other hospital (NMDC), which has the mean value of 2.8 mGv and also higher than the IAEA level from this investigation which is 7.6 mSv. Regarding organ doses, the study showed that organ doses in hospital ASH are always higher than that calculated in hospital NMDC and the highest doses in both hospital were delivered to the kidneys with mean values of 50.24 mGy and 5045 mGy for the two hospitals respectively. The study showed that there is an urgent need for optimizing patient doses in such CT examinations. This can be ensured by providing training and retraining for workers and conducting quality control measurements and preventive maintenance regularly so

  7. Fetus dose estimation in thyroid cancer post-surgical radioiodine therapy

    International Nuclear Information System (INIS)

    Mianji, Fereidoun A.; Karimi Diba, Jila; Babakhani, Asad

    2015-01-01

    Unrecognised pregnancy during radioisotope therapy of thyroid cancer results in hardly definable embryo/fetus exposures, particularly when the thyroid gland is already removed. Sources of such difficulty include uncertainty in data like pregnancy commencing time, amount and distribution of metastasized thyroid cells in body, effect of the thyroidectomy on the fetus dose coefficient etc. Despite all these uncertainties, estimation of the order of the fetus dose in most cases is enough for medical and legal decision-making purposes. A model for adapting the dose coefficients recommended by the well-known methods to the problem of fetus dose assessment in athyrotic patients is proposed. The model defines a correction factor for the problem and ensures that the fetus dose in athyrotic pregnant patients is less than the normal patients. A case of pregnant patient undergone post-surgical therapy by I-131 is then studied for quantitative comparison of the methods. The results draw a range for the fetus dose in athyrotic patients using the derived factor. This reduces the concerns on under- or over-estimation of the embryo/fetus dose and is helpful for personal and/or legal decision-making on abortion. (authors)

  8. Estimation dose in organs of hyperthyroidism patients treated with I-131

    International Nuclear Information System (INIS)

    Farias de Lima, F.; Khoury, H.C.; Bertelli Neto, L.; Hazin, C.

    1997-01-01

    Full text: The absorbed dose in organs of hyperthyroidism patients, which received 370 MBq and 555 MBq of I-131 were estimated, using the MIRDOSE computational program and data of the ICRP-53 publication. The calculus were done considering an equal uptake to 45% and an effective half life of 5 days, these values are closed to the average values found in 17 studied patients. The thyroidal masses were previously determined by the physicians and varied between 40 g and 80 g The results showed that the dose in the thyroid, for an activity of 370 MBq, varied between 99 Gy and 49,5 Gy for the masses of 40 g and 80 g respectively. In the case of the administration of 555 MBq the patients had thyroidal masses between 60 g and 80 g and the doses varied between 99 Gy and 74,2 Gy, respectively. These values showed that the absorbed doses in thyroid are within limits expected for the hyperthyroidism therapy, which are of 506 Gy to 100 Gy. The 100 Gy dose would be exceeded, if the patients with thyroidal mass of 40 g had received a therapeutic dose of 555 MBq. The estimated media doses in others organs were relatively low, with inferior values of 0,1 Gy in kidneys, bone marrow and ovaries and of 0,19 Gy in stomach

  9. An estimate of cosmic dose component around Kudankulam site

    International Nuclear Information System (INIS)

    Vijayakumar, B.; Thomas, G.; Rajan, P.S.; Selvi, B.S.; Balamurugan, M.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    Natural ionizing radiation pervades the whole environment and enters human lives in a wide variety of ways. It arises from natural processes such as the decay of terrestrially deposited radionuclides in the earth, and artificial processes like the use of X-rays in medicine. Thus, radiation can be classified as natural and artificial depending on its origin. Natural sources include cosmic rays, terrestrial gamma radiation, radon and its decay products in air and various radio nuclides found naturally in food and drink. Cosmic rays reach the earth from outer space. Artificial sources include medical X-rays, therapeutic use of radioisotopes, fallout from past weapon tests, discharges from nuclear industry, industrial gamma rays and use of radioisotopes in consumer products. This paper attempts to estimate the natural cosmic dose component around Kudankulam Nuclear Power Plant site in the south eastern coast of India. (author)

  10. Use of doubling doses for the estimation of genetic risks

    International Nuclear Information System (INIS)

    Searle, A.G.

    1977-01-01

    Doubling dose estimates derived from radiation experiments in mice are proving of great value for the assessment of genetic hazards to man from extra radiation exposure because they allow the latest information on mutation frequencies and the incidence of genetic disease in man to be used in the assessment process. The similarity in spectra of 'spontaneous' and induced mutations increases coincidence in the validity of this approach. Data on rates of induction of dominant and recessive mutations, translocations and X-chromosome loss are used to derive doubling doses for chronic exposures to both low and high-LET radiations. Values for γ and X-rays, derived from both male and female germ-cells, fall inside a fairly small range and it is felt that the use of an overall figure of 100 rads is justifiable for protection purposes. Values for neutrons and α-particles, obtained from male germ-cells, varied according to neutron energy etc. but clustered around a value of 5 rads for fission neutrons

  11. Effect of the energy dependence of response of neutron personal dosemeters routinely used in the UK on the accuracy of dose estimation

    CERN Document Server

    Tanner, R J; Thomas, D J

    2002-01-01

    A large set of neutron energy distributions have been classified by workplace to provide a guide to the neutron fields to which workers in particular industries are likely to be exposed. These have been combined (folded) with the results of a major programme of neutron personal dosemeter response function measurements, to provide results for the systematic errors that those dosemeters would give in workplaces. Data for neutron doses recorded for UK classified workers have been taken from the CIDI tables, and related to the results from the folding process. It has hence been possible to draw conclusions about the probable systematic errors that result from the use of the currently available neutron personal dosemeters, which have inherent problems associated with their energy dependence of response.

  12. Effect of the energy dependence of response of neutron personal dosemeters routinely used in the UK on the accuracy of dose estimation

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.

    2002-01-01

    A large set of neutron energy distributions have been classified by workplace to provide a guide to the neutron fields to which workers in particular industries are likely to be exposed. These have been combined (folded) with the results of a major programme of neutron personal dosemeter response function measurements, to provide results for the systematic errors that those dosemeters would give in workplaces. Data for neutron doses recorded for UK classified workers have been taken from the CIDI tables, and related to the results from the folding process. It has hence been possible to draw conclusions about the probable systematic errors that result from the use of the currently available neutron personal dosemeters, which have inherent problems associated with their energy dependence of response. (author)

  13. Estimating skin sensitization potency from a single dose LLNA.

    Science.gov (United States)

    Roberts, David W

    2015-04-01

    Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990 s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Radiation Dose Assesment And Risk Estimation During Extracorporeal Shock Wave Lithotripsy

    International Nuclear Information System (INIS)

    Sulieman, A.; Ibrahim, A.A.; Osman, H.; Yousef, M.

    2011-01-01

    Extracorporeal shockwave lithotripsy (ESWL) is considered the gold standard for calculi fragmentation. The aims of this study are to measure the entrance surface dose (ESD) using thermo-luminescence dosimeter (TLDs) and to estimate the probability of carcinogenesis during ESWL procedure. The study was carried out at two centers (Group A, 50 patients) and (Group B, 25 patients). The mean ESD and effective doses were 36 mGy and 34 mSv. The results show that the probability of carcinogenesis is a tiny value 100 per million patients) but the main biological effect is occurring due to the accumulative impact of radiation.

  15. Impact of purity aluminum filters in the value of the half-value layer and the estimation of effective dose in patients

    International Nuclear Information System (INIS)

    Lima, Nathan Willig; Hoff, Gabriela

    2014-01-01

    The half-value layer test (HVL) is important in the context of conventional radiology, it is the only test that allow us to obtain information about the quality of the radiation beam. This work promotes a preliminary analysis of the influence of the composition of the aluminum filters used in determining the value of HVL considering a realistic geometry. Deterministic Calculations were compared and results calculated with the Monte Carlo method to do the analysis proposed. Six different aluminum alloys (with one percent of each impurity) marketed worldwide and pure aluminum are used as the basis for the realization of deterministic calculations and Monte Carlo simulation. Experimental arrangement in conventional radiology, a combination of tungsten track and aluminum filtration was used for three different peak voltages: (66 kVp, 81 kVp, 125 kVp). For determining HVL on mammography, were used three track combinations and filter (Molybdenum-Molybdenum, Molybdenum-Rhodium, Tungsten-Rhodium) for three different peak voltages (25 kVp, 30 kVp, 35 kVp). The spectrum used for deterministic calculations were taken from the Report No 78 of the Engineering Institute of Physics in Medicine, 1997. The results show that the composition of aluminum filters may impact significantly in the outcome of the HVL test and therefore the dose calculations that use it as a correction factor. In mammography, one percent impurities can result in variations showed about 20% of the HVL value

  16. Estimation of individual doses from external exposures and dose-group classification of cohort members in high background radiation area in Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Sun Quanfu; Wei Luxin

    1999-01-01

    Objective: In order to estimate annual effective doses from external exposures in the high background radiation area (HBRA) and in the control area (CA) , the authors measured absorbed dose rates in air from terrestrial gamma radiation with different dosimeters. A dose group classification was an important step for analyzing the dose effects relationship among the cohort members in the investigated areas. The authors used the hamlet specific average annual effective doses of all the 526 hamlets in the investigated areas. A classification of four dose groups was made for the cohort members (high, moderate, low and control) . Methods: For the purpose of studying the dose effect relationships among the cohort members in HBRA and CA, it would be ideal that each subject has his own record of individual accumulated doses received before the evaluation. However, rt is difficult to realize it in practice (each of 106517 persons should wear TLD for a long time) . Thus the authors planned two sets of measurements. Firstly, to measure the environmental dose rates (outdoor, indoor, over the bed) in every hamlet of the investigated area (526 hamlets) , considering the occupancy factors for males and females of different age groups to convert to the annual effective dose from the data of dose rates. Secondly, to measure the individual cumulative dose with TLD for part of the subjects in the investigated areas. Results: Based on the two sets of measurements, the estimates of average annual effective doses in HBRA were 211.86 and 206.75 x 10 -5 Sv/a, respectively, 68.60 and 67.11 x 10 -5 Sv/a, respectively(gamma radiation only) . The intercomparison between these two sets of measurement showed that they were in good correlation. Thus the authors are able to yield the equations of linear regression: Y = 0.9937 + 6.0444, r = 0.9949. Conclusions: The authors took the value obtained from direct measurement as 'standard' , and 15 % for uncertainty of measurement. Since the estimates of

  17. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    . Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed

  18. Estimate of the absorbed dose in the mouse organs and tissues after tritium administration

    International Nuclear Information System (INIS)

    Saito, Masahiro

    2000-01-01

    Chronic and accidental release of tritium from future fusion facilities may cause some extent of hazardous effect to the public health. Various experiments using small animals such as mice have been performed to mimic the dose accumulation due to tritium intake by the human body. An difficulty in such animal experiments using small animals is that it is rather difficult to administer tritium orally and estimate the dose to small organs or tissues. In the course of our study, a simple method to administer THO and T-labeled amino acids orally to the mouse was dictated and dose accumulation in various organs and tissues was determined. The tritium retention in the bone marrow was also determined using the micro-centrifuge method. Throughout our experiment, colony-bred DDY mice were used. The 8-10 week old male mice were orally and intraperitoneally administered THO water or T-amino acids mixture solution. For the purpose of oral administration, a 10 μl aliquot of T-containing saline solution was placed on the tongue of the mice using an automatic micropipette. At various times after tritium administration, the animals were sacrificed and the amount of tritium in various tissues and organs including bone marrow was examined. Dose accumulation pattern after THO intake and T-amino acids was compared between intraperitoneal injection and oral administration. The accumulated dose after oral administration of THO exhibited a tendency to be 10-20% higher than after intraperitoneal injection. The bone marrow dose after oral intake of THO was found to be lower than the doses to urine, blood, liver and testis. In contrast, the blood dose gave a conservative estimate for the dose to the other tissues and organs. (author)

  19. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  20. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); University Cairo (Egypt); Mora, G [de Lisboa, Codex, Lisboa (Portugal)

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  1. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  2. Effective dose for patient in multimode panoramic radiography

    International Nuclear Information System (INIS)

    Yasaki, Shiro; Daibo, Motoji

    1999-01-01

    In recent years, multimode panoramic radiography has had various functions, such as the auto exposure function, auto focus function (auto function), TMJ radiography and tomogram radiography functions. The purpose of this study was to estimate the effective dose for patients in each mode of the new multimode panoramic radiography (J. MORITA MFG. CORP. Dental Panorama X-ray Apparatus: Veraview Scope X 600). The absorbed doses in important organs involved in the causation of stochastic effects were measured by a thermoluminescent dosimeter using RANDO phantom. The effective doses were calculated using modified tissue weighting factors recommended by the International Commission on Radiological Protection (ICRP) in 1999. The mean field size over skin in typical panoramic and tomographic examinations was about 3% and 0.4% of the total body surface area of 15000 cm 2 . Assuming that the incidence of skin cancer is proportional to the area of skin exposed to ionizing radiation, the tissue weighting factor of skin can be estimated to be about 0.0003 and 0.00004. The estimate in effective dose was lower (5.3 μSv) in the panoramic auto function mode (an average exposure condition of 69 kV 7 mA) than that (6.5-13.8 μSv) in the linear tomogram modes. Since the linear tomogram mode requires a scout view, such as standard panoramic radiography, the dose in the linear tomogram mode becomes higher than other modes. A percentage of gonad doses in effective doses was negligible. (author)

  3. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    Rosu, Mihaela; Chetty, Indrin J.; Balter, James M.; Kessler, Marc L.; McShan, Daniel L.; Ten Haken, Randall K.

    2005-01-01

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  4. IDACstar: A MCNP Application to Perform Realistic Dose Estimations from Internal or External Contamination of Radiopharmaceuticals.

    Science.gov (United States)

    Ören, Ünal; Hiller, Mauritius; Andersson, M

    2017-04-28

    A Monte Carlo-based stand-alone program, IDACstar (Internal Dose Assessment by Computer), was developed, dedicated to perform radiation dose calculations using complex voxel simulations. To test the program, two irradiation situations were simulated, one hypothetical contamination case with 600 MBq of 99mTc and one extravasation case involving 370 MBq of 18F-FDG. The effective dose was estimated to be 0.042 mSv for the contamination case and 4.5 mSv for the extravasation case. IDACstar has demonstrated that dosimetry results from contamination or extravasation cases can be acquired with great ease. An effective tool for radiation protection applications is provided with IDACstar allowing physicists at nuclear medicine departments to easily quantify the radiation risk of stochastic effects when a radiation accident has occurred. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. CY 1995 radiation dose reconciliation report and resulting CY 1996 dose estimate for the 324 nuclear facility

    International Nuclear Information System (INIS)

    Landsman, S.D.; Thornhill, R.E.; Peterson, C.A.

    1996-04-01

    In this report, the dose estimate for CY 1995 is reconciled by month wih actual doses received. Results of the reconciliation were used to revise estimates of worker dose for CY 1996. Resulting dose estimate for the facility is also included. Support for two major programs (B-Cell Cleanout and Surveillance and Maintenance) accounts for most of the exposure received by workers in the faility. Most of the expousre received by workers comes from work in the Radiochemical Engineering Complex airlock. In spite of schedule and work scope changes during CY 1995, dose estimates were close to actual exposures received. A number of ALARA measures were taken throughout the year; exposure reduction due to those was 20.6 Man-Rem, a 28% reduction from the CY 1995 estimate. Baseline estimates for various tasks in the facility were used to compile the CY 1996 dose estimate of 45.4 Man-Rem; facility goal for CY 1996 is to reduce worker dose by 20%, to 36.3 Man-Rem

  6. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.; O'Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h -1 (1 rad d -1 ). A dose rate no greater than 0.4 mGy h -1 to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h -1 will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted

  7. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  8. Estimation of the fetal dose by dose measurement during an irradiation of a parotid tumor; Estimation de la dose foetale par mesure de dose lors d'une irradiation d'une tumeur de la parotide

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, V.; Graff-Cailleaud, P.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Noel, A. [Institut National Polytechnique de Lorraine, CRAN CNRS UMR-7039, 54 - Vandoeuvre-les-Nancy (France)

    2006-11-15

    The irradiation of a five months pregnant patient has been made for a right parotid attack. In conformation with the legislative texts relative to radiation protection ( publication 84 of the ICRP) an estimation of the dose received for the fetus has been led by dose measurement on phantom. With the dose limit ( 100 mGy) recommended in the publication 84 of the ICRP neither modification of the treatment nor abortion was necessary. (N.C.)

  9. Estimation of the average glandular dose on a team of tomosynthesis

    International Nuclear Information System (INIS)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-01-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  10. Reliability of single aliquot regenerative protocol (SAR) for dose estimation in quartz at different burial temperatures: A simulation study

    International Nuclear Information System (INIS)

    Koul, D.K.; Pagonis, V.; Patil, P.

    2016-01-01

    The single aliquot regenerative protocol (SAR) is a well-established technique for estimating naturally acquired radiation doses in quartz. This simulation work examines the reliability of SAR protocol for samples which experienced different ambient temperatures in nature in the range of −10 to 40 °C. The contribution of various experimental variables used in SAR protocols to the accuracy and precision of the method is simulated for different ambient temperatures. Specifically the effects of paleo-dose, test dose, pre-heating temperature and cut-heat temperature on the accuracy of equivalent dose (ED) estimation are simulated by using random combinations of the concentrations of traps and centers using a previously published comprehensive quartz model. The findings suggest that the ambient temperature has a significant bearing on the reliability of natural dose estimation using SAR protocol, especially for ambient temperatures above 0 °C. The main source of these inaccuracies seems to be thermal sensitization of the quartz samples caused by the well-known thermal transfer of holes between luminescence centers in quartz. The simulations suggest that most of this inaccuracy in the dose estimation can be removed by delivering the laboratory doses in pulses (pulsed irradiation procedures). - Highlights: • Ambient temperatures affect the reliability of SAR. • It overestimates the dose with increase in burial temperature and burial time periods. • Elevated temperature irradiation does not correct for these overestimations. • Inaccuracies in dose estimation can be removed by incorporating pulsed irradiation procedures.

  11. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  12. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  13. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008

    Energy Technology Data Exchange (ETDEWEB)

    Moseeva, Maria B.; Azizova, Tamara V.; Grigoryeva, Evgenia S. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Haylock, Richard [Public Health of England, London (United Kingdom)

    2014-05-15

    The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure. (orig.)

  14. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates

    International Nuclear Information System (INIS)

    Beamish, David

    2014-01-01

    technologically enhanced, localised contributions to dose rate values are also apparent in the data sets. Two detailed examples are provided that reveal the detectability of site-scale environmental impacts due to former industrial activities and the high dose values (>500 nGy h −1 ) that are associated with former, small-scale Uranium mining operations. - Highlights: • UK airborne estimates of dose rates have been obtained across 40,000 km 2 . • Spatial mapping densities range from 10 to 50 m. • Wide scale (geological) and localized (technological) effects are quantified. • Theory and data indicate soil attenuation effects are pervasive. • Comparison of ground geochemical and airborne dose estimates

  15. Reevaluation of nasal swab method for dose estimation at nuclear emergency accident

    International Nuclear Information System (INIS)

    Yamada, Yuji; Fukutsu, Kumiko; Kurihara, Osamu; Akashi, Makoto

    2008-01-01

    ICRP Publication 66 human respiratory tract model has been used extensively over in exposure dose assessment. It is well known that respiratory deposition efficiency of inhaled aerosol and its deposition region strongly depend on the particle size. In most of exposure accidents, however, nobody knows a size of inhaled aerosol. And thus two default aerosol sizes of 5μ in AMAD for the workers and 1μ in AMAD for the public are given as being representative in the ICRP model, but both sizes are not linked directly to the maximum dose. In this study, the most hazardous size to our health effects and how to estimate an intake activity was discussed from a viewpoint of emergency medicine. In exposure accident of alpha emitter such as Pu-239, lung monitor and bioassay measurements are not the best methods for rapid estimation with high sensitivity, so that an applicability of nasal swab method has been investigated. A computer software, LUDEP, was used in the calculation of respiratory deposition. It showed that the effective dose per unit intake activity strongly depended on the inhaled aerosol size. In case of Pu-239 dioxide aerosols, it was confirmed that the maximum of dose conversion factor was observed around 0.01μ. It means that this 0.01μ is the most hazardous size at exposure accident of Pu-239. From analysis of the relationship between AI and ET l deposition, it was found that the dose conversion factor from the activity deposited in ET l region also was affected by the aerosol size. The usage of the ICRP's default size in nasal swab method might cause obvious underestimation of the intake activity. Dose estimation based on nasal swab method is possible from safety side at nuclear emergency, and the availability in quantity should be reevaluated for emergency medicine considering of chelating agent administration. (author)

  16. The concept of the effective dose

    International Nuclear Information System (INIS)

    Jacobi, W.

    1975-01-01

    Irradiation of the human body by external or internal sources leads mostly to a simultaneous exposure of several organs. However, so far no clear and consistent recommendations for the combination of organ doses and the assessment of an exposure limit under such irradiation conditions are available. Following a proposal described in ICRP-publication 14 one possible concept for the combination of organ doses is discussed in this paper. This concept is based on the assumption that at low doses the total radiation detriment to the exposed person is given by the sum of radiation detriments to the single organs. Taking into account a linear dose-risk relationship, the sum of weighted organ doses leads to the definition of an 'Effective Dose'. The applicability and consequences of this 'Effective Dose Concept' are discussed especially with regard to the assessment of the maximum permissible intake of radionuclides into the human body and the combination of external and internal exposure. (orig.) [de

  17. Estimation of the optimal dosing regimen of escitalopram in dogs: A dose occupancy study with [11C]DASB.

    Directory of Open Access Journals (Sweden)

    Olivia Taylor

    Full Text Available Although the favourable characteristics of escitalopram as being the most selective serotonin reuptake inhibitor and having an increased therapeutic efficacy via binding on an additional allosteric binding site of the serotonin transporter, its dosing regimen has not yet been optimized for its use in dogs. This study aimed to estimate the optimal dosing frequency and the required dose for achieving 80% occupancy of the serotonin transporters in the basal ganglia. The dosing frequency was investigated by determining the elimination half-life after a four day oral pre-treatment period with 0.83 mg/kg escitalopram (3 administrations/day and a subsequent i.v. injection 0.83 mg/kg. Blood samples were taken up to 12 hours after i.v. injection and the concentration of escitalopram in plasma was analysed via LC-MSMS. The dose-occupancy relationship was then determined by performing two PET scans in five adult beagles: a baseline PET scan and a second scan after steady state conditions were achieved following oral treatment with a specific dose of escitalopram ranging from 0.5 to 2.5 mg/kg/day. As the elimination half-life was determined to be 6.7 hours a dosing frequency of three administrations a day was proposed for the second part of the study. Further it was opted for a treatment period of four days, which well exceeded the minimum period to achieve steady state conditions. The optimal dosing regimen to achieve 80% occupancy in the basal ganglia and elicit a therapeutic effect, was calculated to be 1.85 mg/kg/day, divided over three administrations. Under several circumstances, such as insufficient response to other SSRIs, concurrent drug intake or in research studies focused on SERT, the use of escitalopram can be preferred over the use of the already for veterinary use registered fluoxetine, however, in case of long-term treatment with escitalopram, regularly cardiac screening is recommended.

  18. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  19. Equivalent dose, effective dose and risk assessment from cephalometric radiography to critical organs

    International Nuclear Information System (INIS)

    Kang, Seong Sook; Cho, Bon Hae; Kim, Hyun Ja

    1995-01-01

    In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites (18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The following results were obtained; 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (3.6 μSv) and the next highest dose was that received by the bone marrow (3 μSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (2 μSv) and the next highest dose was that received by the bone marrow (1.8 μSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland (31.4 μSv) and the next highest dose was that received by the salivary gland (13.3 μSv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were 0.72 X 10 -6 , 0.49 X 10 -6 and 3.51 X 10 -6 , respectively.

  20. The dose-rate effect

    International Nuclear Information System (INIS)

    Steel, G.G.

    1989-01-01

    This paper presents calculations that illustrate two conclusions; for any particular cell type there will be a critical radius at which tumor control breaks down, and the radius at which this occurs is strongly dependent upon the low-dose-rate radiosensitivity of the cells

  1. Estimation of natural radiation background level and population dose in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1992-01-01

    The authors describe in general the natural radiation background level in China, and based on available data present an estimated annual effective dose equivalent of the population to natural radiation that is some 2.3 mSv, of which about 0.54 mSv is from original γ radiation and about 0.8 mSv from radon and its short-lived daughters

  2. Biological dose estimation and comet analysis of the victims in a high dose 60Co radiation accident

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Luo Yisheng; Li You; Yao Bo

    2007-01-01

    Objective: To explore the methods of chromosome preparation in human peripheral blood and bone marrow after very high dose exposure and fit the dose-response curve of dicentrics and tings in the range of high doses over 6 Gy for estimating biological dose and detecting DNA damage in the victims of '10.21' accident. Methods: The samples of peripheral blood and bone marrow in 2 victims were collected to prepare chromosome mataphases and dicentrics (multicentrics) + rings were counted. The dose-response curve and equation of human blood irradiated between 6-22 Gy in vitro were established and applied to assess biological dose of 2 victims. In addition, their DNA damages were tested by alkaline single cell gel electrophoresis. Results: The dicentric + ring numbers of 4.47 per cell in victims B's peripheral blood lymphocytes and 9.15 per cell in victim A's bone marrow who had no mitosis in peripheral blood cell. The whole body average doses of victims B and A estimated by 6-22 Gy equation arrived at 9.4 Gy and 19.5 Gy, respectively. The serious DNA damages were expressed by small head and large tail comet figures. Conclusions: The biological doses of 2 victims estimated by 6-22 Gy dose-response curve have reached the levels of extreme grave bone marrow and intestinal ARS, respectively. (authors)

  3. Estimation of annual radiation dose received by some industrial workers

    International Nuclear Information System (INIS)

    Garg, Ajay; Chauhan, R.P.; Kumar, Sushil

    2013-01-01

    Radon and its progeny in the atmosphere, soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, enhanced interest exhibited in tracking its concentration is thus fundamental for radiation protection. The combustion of coal in various industrial units like thermal power plants. National fertilizer plants, paper mill etc. results in the release of some natural radioactivity to the atmosphere through formation of fly ash and bottom ash or slag. This consequent increases the radioactivity in soil, water and atmosphere around thermal power plants. Keeping this in mind the measurements of radon, thoron and their progeny concentration in the environment of some industrial units has been carried out using solid state nuclear track detectors (SSNTD). The specially designed twin cup dosimeter used here consists two chambers of cylindrical geometry separated by a wall in the middle with each having length of 4.5 cm and radius of 3.1 cm. This dosimeter employs three SSNTDs out of which two detectors were placed in each chamber and a third one was placed on the outer surface of the dosimeter. One chamber is fitted with glass fiber filter so that radon and thoron both can diffuse into the chamber while in other chamber, a semi permeable membrane is used. The membrane mode measures the radon concentration alone as it can diffuse through the membrane but suppresses the thoron. The twin cup dosimeter also has a provision for bare mode enabling it to register tracks due to radon, thoron and their progeny in total. Therefore, using this dosimeter we can measure the individual concentration of radon, thoron, and their progeny at the same time. The annual effective doses received by the workers in some industrial units has been calculated. The results indicate some higher levels in coal handling and fly ash area of the plants. (author)

  4. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects

    International Nuclear Information System (INIS)

    Buonanno, Giorgio; Marks, Guy B.; Morawska, Lidia

    2013-01-01

    Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35 × 10 3 mm 2 . The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child's activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles. -- Highlights: •Particle dose was estimated through personal monitoring on more than 100 children. •We focused on real-time daily dose of particle alveolar deposited surface area. •Spirometry, skin prick and exhaled Nitric Oxide tests were performed. •Negative link was found between changes in pulmonary functions and individual doses. •A child's lifestyle appeared to have a strong impact on health respiratory outcomes. -- The respiratory health effects of daily airborne particle dose on children through personal monitoring

  5. Dose estimation in the crystalline lens of industrial radiography personnel using Monte Carlo Method

    International Nuclear Information System (INIS)

    Lima, Alexandre Roza de

    2014-01-01

    The International Commission on Radiological Protection, ICRP, in its publication 103, reviewed recent epidemiological evidence and indicated that, for the eye lens, the absorbed dose threshold for induction of late detriment is around 0.5 Gy. On this basis, on April 21, 2011, the ICRP recommended changes to the occupational dose limit in planned exposure situations, reducing the eye lens equivalent dose limit from 150 mSv to 20 mSv per year, on average, during the period of 5 years, with exposure not to exceed 50 mSv in a single year. This paper presents the dose estimation to eye lens, H p (10), effective dose and doses to important organs in the body, received by industrial gamma radiography workers, during planned or accidental exposure situations. The computer program Visual Monte Carlo was used and two relevant scenarios were postulated. The first is a planned exposure situation scenario where the operator is directly exposed to radiation during the operation. 12 radiographic exposures per day for 250 days per year, which leads to an exposure of 36,000 seconds or 10 hours per year were considered. The simulation was carried out using the following parameters: a 192 Ir source with 1.0 TBq of activity, the source/operator distance varying from 5 m to 10 m at three different heights of 0.2 m, 1.0 m and 2.0 m. The eyes lens doses were estimated as being between 16.9 mSv/year and 66.9 mSv/year and for H p (10) the doses were between 17.7 mSv/year and 74.2 mSv/year. For the accidental exposure situation scenario, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m e 2.0 m, the source/operator distance was 40 cm and, the exposure time 74 seconds. The eyes lens doses, for 1.5 m, were 12.3 mGy and 0.28 mGy without and with a collimator, respectively. Three conclusions resulted from this work. The first was that the estimated doses show that the new

  6. HASCAL -- A system for estimating contamination and doses from incidents at worldwide nuclear facilities

    International Nuclear Information System (INIS)

    Sjoreen, A.L.

    1995-01-01

    The Hazard Assessment System for Consequence Analysis (HASCAL) is being developed to support the analysis of radiological incidents anywhere in the world for the Defense Nuclear Agency (DNA). HASCAL is a component of the Hazard Prediction and Assessment Capability (HPAC), which is a comprehensive nuclear, biological, and chemical hazard effects planning and forecasting modeling system that is being developed by DNA. HASCAL computes best-guess estimates of the consequences of radiological incidents. HASCAL estimates the amount of radioactivity released, its atmospheric transport and deposition, and the resulting radiological doses

  7. A new online detector for estimation of peripheral neutron equivalent dose in organ

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L., E-mail: leticia@us.es; Sanchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain and Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Lorenzoli, M.; Pola, A. [Departimento di Ingegneria Nuclear, Politecnico di Milano, Milano 20133 (Italy); Bedogni, R. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Frascati Roma 00044 (Italy); Terrón, J. A. [Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Sanchez-Nieto, B. [Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 4880 (Chile); Expósito, M. R. [Departamento de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Lagares, J. I.; Sansaloni, F. [Centro de Investigaciones Energéticas y Medioambientales y Tecnológicas (CIEMAT), Madrid 28040 (Spain)

    2014-11-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  8. A new online detector for estimation of peripheral neutron equivalent dose in organ

    International Nuclear Information System (INIS)

    Irazola, L.; Sanchez-Doblado, F.; Lorenzoli, M.; Pola, A.; Bedogni, R.; Terrón, J. A.; Sanchez-Nieto, B.; Expósito, M. R.; Lagares, J. I.; Sansaloni, F.

    2014-01-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  9. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  10. A three-dimensional dose-distribution estimation system using computerized image reconstruction

    International Nuclear Information System (INIS)

    Nishijima, Akihiko; Kidoya, Eiji; Komuro, Hiroyuki; Tanaka, Masato; Asada, Naoki.

    1990-01-01

    In radiotherapy planning, three dimensional (3-D) estimation of dose distribution has been very troublesome and time-consuming. To solve this problem, a simple and fast 3-D dose distribution image using a computer and Charged Couple Device (CCD) camera was developed. A series of X-ray films inserted in the phantom using a linear accelerator unit was exposed. The degree of film density was degitized with a CCD camera and a minicomputer (VAX 11-750). After that these results were compared with the present depth dose obtained by a JARP type dosimeter, with a dose error being less than 2%. The 3-D dose distribution image could accurately depict the density changes created by aluminum and air put into the phantom. The contrast resolution of the CCD camera seemed to be superior to the convention densitometer in the low-to-intermediate contrast range. In conclusion, our method seem to be very fast and simple for obtaining 3-D dose distribution images and is very effective when compared with the conventional method. (author)

  11. Prospective estimation of organ dose in CT under tube current modulation

    International Nuclear Information System (INIS)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2015-01-01

    account for the effect of the TCM scheme, a weighted organ-specific CTDI vol [denoted as (CTDI vol ) organ,weighted ] was computed for each organ based on the TCM profile and the anatomy of the “matched” phantom; (4) the organ dose was predicted by multiplying the weighted organ-specific CTDI vol with the organ dose coefficients (h organ ). To quantify the prediction accuracy, each predicted organ dose was compared with the corresponding organ dose simulated from the Monte Carlo program with the TCM profile explicitly modeled. Results: The predicted organ dose showed good agreements with the simulated organ dose across all organs and modulation profiles. The average percentage error in organ dose estimation was generally within 20% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. For an average CTDI vol of a CT exam of 10 mGy, the average error at full modulation strength (α = 1) across all organs was 0.91 mGy for chest exams, and 0.82 mGy for abdominopelvic exams. Conclusions: This study developed a quantitative model to predict organ dose for clinical chest and abdominopelvic scans. Such information may aid in the design of optimized CT protocols in relation to a targeted level of image quality

  12. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1980-04-01

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  13. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  14. Estimation of exposed radiation dose in radiography of the chest. Mainly on the dose at health examination on automobiles

    International Nuclear Information System (INIS)

    Suzuki, Shoichi; Oda, Akiko; Ohkura, Masaki

    1998-01-01

    The exposure doses in radiography and photofluorography of the chest at health examination on automobiles were estimated and compared with those using other hospital equipments. The tube voltage, effective energy and half value layer under ordinary conditions for radiography and fluorography were measured by KYOKKO model 100 X-ray analyzer and output pulse shape was confirmed by the fluorometer (TOREKEY-1001 C). The dose at the body surface was measured by the ionization chambers (VICTOREEN RADCON 500 and 30-330) which had been equipped in the WAC chest phantom (JIS Z 4915, Kyoto Kagaku). Nine automobiles of 3 facilities were used, of which X-ray generating apparatuses of either condenser or inverter type were manufactured by Hitachi (5 machines), Toshiba (1) and Shimadzu (3). The examined apparatuses not for the automobile were Toshiba-20 and Hitachi SIRIUS-100 portable ones and Hitachi DH-1520 TM high-voltage one. The effective energy was found dependent on the tube voltage (100-130 kV) and X-ray generating system (35.1-54.37 keV in the condenser type and 41.1-43.9 keV in the inverter type). Pulse shape analysis revealed that the pulse height and area under the pulse height-time curve were larger in the inverter system. The mean doses in photofluorography and radiography on automobiles were 0.525 and 0.297 mGy, respectively. The mean dose of 0.61 mGy in radiography at home with the portable apparatus was the highest even when compared with that of 0.525 mGy for fluorography on the automobile. Thus, the inverter system on the car can guarantee the level of 0.4 mGy defined by IAEA guideline (Safety series No. 115, 1996). (K.H.)

  15. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ''family'' of phantoms

    International Nuclear Information System (INIS)

    Smith, T.

    2000-01-01

    The aim of this study was to use a new system of realistic voxel phantoms, based on computed tomography scanning of humans, to assess its ability to specify the internal dosimetry of selected human examples in comparison with the well-established MIRD system of mathematical anthropomorphic phantoms. Differences in specific absorbed fractions between the two systems were inferred by using organ dose estimates as the end point for comparison. A ''family'' of voxel phantoms, comprising an 8-week-old baby, a 7-year-old child and a 38-year-old adult, was used and a close match to these was made by interpolating between organ doses estimated for pairs of the series of six MIRD phantoms. Using both systems, doses were calculated for up to 22 organs for four radiopharmaceuticals with widely differing biodistribution and emission characteristics (technetium-99m pertechnetate, administered without thyroid blocking; iodine-123 iodide; indium-111 antimyosin; oxygen-15 water). Organ dose estimates under the MIRD system were derived using the software MIRDOSE 3, which incorporates specific absorbed fraction (SAF) values for the MIRD phantom series. The voxel system uses software based on the same dose calculation formula in conjunction with SAF values determined by Monte Carlo analysis at the GSF of the three voxel phantoms. Effective doses were also compared. Substantial differences in organ weights were observed between the two systems, 18% differing by more than a factor of 2. Out of a total of 238 organ dose comparisons, 5% differed by more than a factor of 2 between the systems; these included some doses to walls of the GI tract, a significant result in relation to their high tissue weighting factors. Some of the largest differences in dose were associated with organs of lower significance in terms of radiosensitivity (e.g. thymus). In this small series, voxel organ doses tended to exceed MIRD values, on average, and a 10% difference was significant when all 238 organ doses

  16. Radon and radium concentrations in bottled waters: An estimate of ingestion doses

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Carretero, J.; Liger, E.

    1997-01-01

    Concentration levels of Ra-226 and Rn-222 have been analysed in most of the bottled waters commercially available in Spain. Concentrations up to about 600 Bq/m 3 with a geometric mean of 12 Bq/m 3 were observed for Ra-226. For Rn-222 a geometric mean of 1200 Bq/m 3 with values ranging from 52000 to 1400 Bq/m 3 were measured. Doses resulting from the consumption of these waters were calculated. The effective dose equivalents due to the intake of Ra-226 present in these waters are expected to range from about 102 to 2 μSv·y -1 . Dose equivalents to the stomach due to Rn-222 intake through water consumption are estimated to reach values around 30 μSv·y -1 . (author)

  17. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  18. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L [UCSF Comprehensive Cancer Center, San Francisco, CA (United States)

    2015-06-15

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.

  19. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    International Nuclear Information System (INIS)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L

    2015-01-01

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low

  20. Estimation of rectal dose using daily megavoltage cone-beam computed tomography and deformable image registration.

    Science.gov (United States)

    Akino, Yuichi; Yoshioka, Yasuo; Fukuda, Shoichi; Maruoka, Shintaroh; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Isohashi, Fumiaki; Ogawa, Kazuhiko

    2013-11-01

    The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CT value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. The DSC of all treatment fractions of 8 patients was improved from 0.75±0.04 (mean ±SD) to 0.90 ±0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R(2)=0.18±0.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R(2)=0.61±0.16). We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Estimation of Rectal Dose Using Daily Megavoltage Cone-Beam Computed Tomography and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Department of Radiology, Osaka University Hospital, Suita, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Fukuda, Shoichi [Department of Radiation Oncology, Osaka General Medical Center, Osaka (Japan); Maruoka, Shintaroh [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Takahashi, Yutaka [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota (United States); Yagi, Masashi [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan); Mizuno, Hirokazu [Department of Radiology, Osaka University Hospital, Suita, Osaka (Japan); Isohashi, Fumiaki [Oncology Center, Osaka University Hospital, Suita, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka (Japan)

    2013-11-01

    Purpose: The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Methods and Materials: Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CT value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. Results: The DSC of all treatment fractions of 8 patients was improved from 0.75±0.04 (mean ±SD) to 0.90 ±0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R{sup 2}=0.18±0.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R{sup 2}=0.61±0.16). Conclusion: We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume.

  2. Organ doses and effective doses in some medical and industrial applications

    International Nuclear Information System (INIS)

    Keshavkumar, Biju

    2000-01-01

    The ICRP recommends radiation protection standards for the safe use of radiation and also prescribes the radiation protection quantities and periodically reviews them. In this context, the quantities like organ doses and effective doses are defined by ICRP. In this work we calculate these quantities and hence the conversion functions for the industrial radiation sources and those for CT and diagnostic X-ray exposures. Workers who are occupationally exposed to radiation are regularly monitored to evaluate the radiation dose received by them. It is quite possible that in an accident situation, the worker involved in the accident might not have worn a personal monitor, popularly known as the monitoring badge. In addition, even some non radiation workers (who are obviously not monitored) may also have received exposure. Under these circumstances, the persons involved are interviewed, the accident site inspected, and on the basis of realistic assumptions, the likely doses received by the exposed persons are estimated

  3. Estimation of organ doses of patient undergoing hepatic chemoembolization procedures

    International Nuclear Information System (INIS)

    Jaramillo, G.W.; Kramer, R.; Khoury, H.J.; Barros, V.S.M.; Andrade, G.

    2015-01-01

    The aim of this study is to evaluate the organ doses of patients undergoing hepatic chemoembolization procedures performed in two hospitals in the city of Recife-Brazil. Forty eight patients undergoing fifty hepatic chemoembolization procedures were investigated. For the 20 cases with PA projection only, organ and tissue absorbed doses as well as radiation risks were calculated. For this purpose organs and tissues dose to KAP conversion coefficients were calculated using the mesh-based phantom series FASH and MASH coupled to the EGSnrc Monte Carlo code. Clinical, dosimetric and irradiations parameters were registered for all patients. The maximum organ doses found were 1.72 Gy, 0.65Gy, 0.56 Gy and 0.33 Gy for skin, kidneys, adrenals and liver, respectively. (authors)

  4. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  5. Building shielding effects on radiation doses from routine radionuclide releases

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1977-01-01

    In calculating population doses from the release of radionuclides to the atmosphere, it is usually assumed that man spends all of his time outdoors standing on a smooth infinite plane. Realistically, however, man spends most of the time indoors, so that substantial reductions in radiation doses may result compared with the usual estimates. Calculational models were developed to study the effects of building structures on radiation doses from routine releases of radionuclides to the atmosphere. Both internal dose from inhaled radionuclides and external photon dose from airborne and surface-deposited radionuclides are considered. The effect of building structures is described quantitatively by a dose reduction factor, which is the ratio of the dose inside a structure to the corresponding dose with no structure present. The internal dose from inhaled radionuclides is proportional to the radionuclide concentration in the air. Assuming that the outdoor airborne concentration is constant with time, the time-dependence of the indoor airborne concentration in terms of the structure air ventilation rate, the deposition velocities for radionuclides on the inside floor, walls, and ceiling, and the radioactive decay constant, were calculated

  6. Dose estimation using different ways of irradiation in a group of infants from zones affected by the Chernobyl accident

    International Nuclear Information System (INIS)

    Cruz Suarez, R.; Jova Sed, L.; Corripio, J.A.

    1993-01-01

    A dosimetry study is done to 4506 children from the Republic of Ukraine (69,3%), Belarus (8,1%) and Russian (22,5%) from 659 village and with ages between 1 and 17 years old. The study covers several stages. We can mention, for example, the dose estimation of iodine 121 in thyroids, the dose estimation for contamination with strontium 90 in the field and the calculation of the effective dose integrated in 70 years for the incorporation of cesium 137 in the body of the children, assuming a model of chronic incorporation. The estimation of the effective dose due to the strontium 90 was limited to a small group of 1314 children of those zones where the values of surface contamination of the field with this radionuclide are know

  7. Estimation of lens dose of radioactive isotopes using ED3

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ha Jin; Ju, Yong Jin; Jang, Han; Kang, Kyeong Won; Chung, Woon Kwan [Chosun University, Gwangju (Korea, Republic of); Dong, Kyung Rae [Gwangju Health University, Gwangju (Korea, Republic of); Choi, Eun Jin; Kwak, Jong Gil [Dongshin University Graduate School, Naju (Korea, Republic of); Ryu, Jae Kwang [Asan Medical Center, Seoul (Korea, Republic of)

    2017-03-15

    It is suggested that the dose limit recommended in the Enforcement Decree of Korea's Nuclear Safety Act should not exceed 150 mSv per year for radiation workers. Recently, however, ICRP 118 report has suggested that the threshold dose of the lens should be reduced to 0.2⁓0.5 Gy and the mean dose should not exceed 50 mSv per year for an average of 20 mSv over 5 years. Based on these contents, '1'2'3I, '9'9mTc, and '1'8F-FDG, which are radioisotope drugs that are used directly by radiation workers in the nuclear medicine department in Korea are expected to receive a large dose of radiation in the lens in distribution and injection jobs to administer them to patients. The ED3 Active Extremity Dosimeter was used to measure the dose of the lens in the nuclear medicine and radiation workers and how much of the dose was received per 1 mCi.

  8. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections

    Directory of Open Access Journals (Sweden)

    Adeleye Bamise

    2017-12-01

    Full Text Available The preference for computed tomography (CT for the clinical assessment of pulmonary tuberculosis (PTB infections has increased the concern about the potential risk of cancer in exposed patients. In this study, we investigated the correlation between cancer risk and radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation doses from three 16-slice units were estimated using the CT-Expo dosimetry software version 2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime risk of cancer for each scanner was determined using the methodology outlined in the BEIR VII report. Organ doses were significantly different (P < 0.05 between the scanners. The calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1 respectively. A high and statistically significant correlation was observed between estimated lifetime cancer risk for both male (r2 = 0.943, P < 0.05 and female patients (r2 = 0.989, P < 0.05. The risk variation between the scanners was slightly higher than 2% for all ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%, respectively. These variations provide an indication that the use of a scanner optimizing protocol is imperative.

  9. Estimating doses and risks associated with decontamination and decommissioning activities using the CRRIS

    International Nuclear Information System (INIS)

    Miller, C.W.; Sjoreen, A.L.; Cotter, S.J.

    1986-01-01

    The Computerized Radiological Risk Investigation System (CRRIS) is applicable to determining doses and risks from a variety of decontamination and decommissioning activities. For example, concentrations in air from resuspended radionuclides initially deposited on the ground surface and the concentrations of deposited radionuclides in various soil layers can be obtained. The CRRIS will estimate exposure to radon and its progeny in terms of working-level months, and will compute the resulting health risks. The CRRIS consists of seven integrated computer codes that stand alone or are run as a system to calculate environmental transport, doses, and risks. PRIMUS output provides other CRRIS codes the capability to handle radionuclide decay chains. ANEMOS and RETADD-II calculate atmospheric dispersion and deposition for local and regional distances, respectively. Multiple ANEMOS runs for sources within a small area are combined on a master grid by SUMIT. MLSOIL is used to estimate effective ground surface concentrations for dose computations. TERRA calculates food chain transport, and ANDROS calculates individual or population exposures, doses, and risks. Applications of the CRRIS to decontamination problems are discussed. 16 refs., 1 fig

  10. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections

    Science.gov (United States)

    Adeleye, Bamise; Chetty, Naven

    2017-12-01

    The preference for computed tomography (CT) for the clinical assessment of pulmonary tuberculosis (PTB) infections has increased the concern about the potential risk of cancer in exposed patients. In this study, we investigated the correlation between cancer risk and radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation doses from three 16-slice units were estimated using the CT-Expo dosimetry software version 2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime risk of cancer for each scanner was determined using the methodology outlined in the BEIR VII report. Organ doses were significantly different (P < 0.05) between the scanners. The calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1 respectively. A high and statistically significant correlation was observed between estimated lifetime cancer risk for both male (r2 = 0.943, P < 0.05) and female patients (r2 = 0.989, P < 0.05). The risk variation between the scanners was slightly higher than 2% for all ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%, respectively). These variations provide an indication that the use of a scanner optimizing protocol is imperative.

  11. Dose-response effects in an outbreak of Salmonella enteritidis.

    OpenAIRE

    Mintz, E. D.; Cartter, M. L.; Hadler, J. L.; Wassell, J. T.; Zingeser, J. A.; Tauxe, R. V.

    1994-01-01

    The effects of ingested Salmonella enteritidis (SE) dose on incubation period and on the severity and duration of illness were estimated in a cohort of 169 persons who developed gastroenteritis after eating hollandaise sauce made from grade-A shell eggs. The cohort was divided into three groups based on self-reported dose of sauce ingested. As dose increased, median incubation period decreased (37 h in the low exposure group v. 21 h in the medium exposure group v. 17.5 h in the high exposure ...

  12. Estimation of internal exposure dose from food after the Fukushima Daiichi Nuclear Power Station disaster

    International Nuclear Information System (INIS)

    Takizawa, Mari; Yoshizawa, Nobuaki; Kawai, Masaki; Miyatake, Hirokazu; Hirakawa, Sachiko; Murakami, Kana; Sato, Osamu; Takagi, Shunji; Suzuki, Gen

    2016-01-01

    In order to estimate the internal exposure dose from food due to the Fukushima Daiichi Nuclear Power Station accident, total diet study (TDS) has been carried out. TDS is a method for estimating how much of certain chemicals people intake in the normal diet. A wide range of food products are chosen as targets, and the increase or decrease of chemicals depending on processing or cooking is taken into account. This paper glanced at the transition of TDS survey results, and with a focus on the survey results of the market basket (MB) system, which is one of the TDS techniques, it examined a decrease in the committed effective dose per year of radioactive cesium. Although the values of internal exposure dose from food in Fukushima Prefecture and surrounding prefectures are even now in a relatively high tendency compared with those in the distant regions, the difference has been narrowing. According to the attenuation prediction of internal exposure dose in each region of Fukushima Prefecture, the values after 5 years from the accident will be lower than the measured value on the food in market that has been investigated during 1989 and 2005. In addition, the internal exposure dose that was the survey results based on MB system in September - October 2014 was 0.0007 to 0.0022 mSv/year. These values are very small at 1% or less of the upper limit dose of 1 mSv/year as the setting basis of current reference value in Japan. (A.O.)

  13. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  14. Estimated routine radiation doses to transportation workers in alternative spent-fuel transportation systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Smith, R.I.; Daling, P.M.; Ross, W.A.; McNair, G.W.

    1988-01-01

    The federal system for the management of spent fuel and high-level radioactive waste includes the acceptance by the US Department of Energy (DOE) of the spent fuel or waste loaded in casks at the reactor or other waste generators, its transportation to a repository, and its handling and final emplacement in the repository. The DOE plans to implement a transportation system that is safe, secure, efficient, and cost-effective and will meet applicable regulatory safety and security requirements. The DOE commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the routine radiation doses that would result from the operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in the higher fraction of doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. The study is one of a series used in making overall system design and operational decisions in the development of the DOE's spent-fuel/high-level waste transportation system. This paper contains the highlights from the PNL study of the estimated radiation doses to the transportation workers in a postulated reference transportation system and potential alternatives to that system

  15. Dose formation and hematologic effects with prolonged internal exposure of rats by isotope 131I

    International Nuclear Information System (INIS)

    Sova, O.A.; Drozd, Yi.P.

    2013-01-01

    Processes in single dose formation and long-term domestic revenue 131 I in rats was investigated. Original method of estimating absorbed doses in hemacyte for macro-dosemeters indicators was proposed. Dose factors for hemacyte and the dynamics of the blood-forming organs doses for prolonged two cases of prolonged exposure was calculated. Hematologic effects were studied for two variants of entry of the isotope. Peculiarities of doses formation and identified hematological effects are discussed

  16. Estimated neutron dose to embryo and foetus during commercial flight

    International Nuclear Information System (INIS)

    Chen, J.; Lewis, B. J.; Bennett, L. G. I.; Green, A. R.; Tracy, B. L.

    2005-01-01

    A study has been carried out to assess the radiation exposure from cosmic-ray neutrons to the embryo and foetus of pregnant aircrew and air travellers in consideration of the radiation exposure from cosmic-ray neutrons to the embryo and foetus. A Monte Carlo analysis was performed to determine the equivalent dose from neutrons to the brain and body of an embryo at 8 weeks and to the foetus at the 3, 6 and 9 month periods. Neutron fluence-to-absorbed dose conversion coefficients for the foetal brain and for the entire foetal body (isotropic irradiation geometry) have been determined at the four developmental stages. The equivalent dose rate to the foetus during commercial flights has been further evaluated considering the fluence-to-absorbed dose conversion coefficients, a neutron spectrum measured at an altitude of 11.3 km and an ICRP-92 radiation-weighting factor for neutrons. This study indicates that the foetus can exceed the annual dose limit of 1 mSv for the general public after, for example, 15 round trips on commercial trans-Atlantic flights. (authors)

  17. Estimation of absorbed dose by newborn patients subjected to chest radiographs; Estimativa de dose efetiva para radiografias do torax em pediatria neonatal

    Energy Technology Data Exchange (ETDEWEB)

    Bunick, Ana P. [Faculdades Pequeno Principe, Curitiba, PR (Brazil); Schelin, Hugo R. [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil); Denyak, Valeriy [Hospital Infantil Pequeno Principe, Curitiba, PR (Brazil)

    2016-07-01

    The aim of this study is to present an estimate of the effective dose received by newborn patients hospitalized in NICU and subjected to X-ray examinations of the chest in the AP projection. Initially, were followed examinations chest X-rays performed on newborn patients and subsequently, simulated in a newborn simulator object. The ESAK values obtained by TLDs were used to calculate the effective dose obtained at each examination by Caldose{sub X} software. The estimated values for the effective dose in the simulated exams in this study range from 2,3μSv the 10,7μSv. The results achieved are, generally, inferior to those reported for similar previous studies. (author)

  18. Estimation of population dose and risk to holding assistants from veterinary X-ray examination in Japan

    International Nuclear Information System (INIS)

    Hashizume, Tadashi; Suganuma, Tunenori; Shida, Takuo

    1989-01-01

    For the estimation of the population doses and risks of stochastic effects to assistants who hold animals during veterinary X-ray examination, a random survey of hospitals and clinics was carried out concerning age distribution of such assistants by groups of facilities. The average organ and tissue dose per examination was evaluated from the experimental data using mean technical factors such as X-ray tube voltage, tube current and field size based on the results of a nationwide survey. The population doses to the assistants were calculated to be about 14 nSv per person per year for the genetically significant dose, 3.5 nSv per person per year for per caput mean marrow dose, 3.3 nSv for the leukemia significant dose and 4.5 nSv for the malignant significant dose, respectively. The total risk of stochastic effects to the Japanese population from holding assistants was estimated using population data and it was estimated to be less than one person per year, but the cancer risks to a number of the assistants were estimated to be more than 4 x 10 -5 . (author)

  19. Estimation of internal exposure dose caused by 3H releasted at QNPP base

    International Nuclear Information System (INIS)

    Liang Meiyan; Ma Yongfu; Ni Shiying; Zhang Xinyu

    2010-01-01

    QNPP III is the first heavy water reactors nuclear power plant in China, with its 1, 2 units generating electricity in November 2002 and June 2003, respectively. This paper, based on the monitoring data of tritium concentration in environmental samples at Xiajiawan, Yangliucun, Qinlian, Qinshanzheng and Wuyuanzheng (sampling points) in the external environment around QNPP Base, in combination with the study on living and eating habits of residents around QNPP Base, presents estimated annual tritium intake of air, drinking water and food for residents (not including the organic combination tritium). In accordance with the new dose coefficient at different ages recommended by ICRP 72 Publication, it is calculated that the tritium annual intake by various approaches for infants, children and adults (at the Xiajiawan resident point) are 5.75, 9.59, 15.7 kBq/a, respectively; the annual committed effective dose are 0.33, 0.18, 0.23 μSv/a respectively. The infant group would receive the largest committed effective dose from tritium, 0.33/μSv/a, but this is only less than 1% of the effective target dose (0.05 mSv). In all, the tritium impact on surrounding areas of QNPP Phase III is very small under the normal and safe operation of HWR. (authors)

  20. Dose-effect studies with inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Data are presented for all dogs employed in current life-span dose effect studies with inhaled 239 PuO 2 , and 239 Pu nitrate. Information is presented on the estimated initial alveolar deposition, based on external thorax counts and on estimated lung weights at time of exposure. Information is also provided on the current interpretation of the most prominent clinical-pathological features associated with the death of animals

  1. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    Science.gov (United States)

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-04-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  2. Estimation dose of secondary neutrons in proton therapy

    International Nuclear Information System (INIS)

    Urban, T.

    2014-01-01

    Most of proton therapy centers for cancer treatment are still based on the passive scattering, in some of them there is system of the active scanning installed as well. The aim of this study is to compare secondary neutron doses in and around target volumes in proton therapy for both treatment techniques and for different energies and profile of incident proton beam. The proton induced neutrons have been simulated in the very simple geometry of tissue equivalent phantom (imitate the patient) and scattering and scanning nozzle, respectively. In simulations of the scattering nozzle, different types of scattering filters and brass collimators have been used as well. 3D map of neutron doses in and around the chosen/potential target volume in the phantom/patient have been evaluated and compared in the context of the dose deposited in the target volume. Finally, the simulation results have been compared with published data. (author)

  3. Polonium-210 concentration of cigarettes traded in Cuba and their estimated dose contribution due to smoking

    International Nuclear Information System (INIS)

    Brigido Flores, O.; Montalvan Estrada, A.; Fabelo Bonet, O.; Barreras Caballero, A.

    2015-01-01

    Cigarette smoking is one of the pathways that might contribute significantly to the increase in the radiation dose reaching man, due to the relatively large concentrations of polonium-210 found in tobacco leaves. The results of 200 Po determination on the 11 most frequently smoked brands of cigarettes and cigars which constitute over 75% of the total cigarette consumption in Cuba are presented and discussed. Moreover, the polonium content in cigarette smoke was estimated on the basis of its activity in cigarettes, ash, fresh filters and post-smoking filters. 210 Po was determined by gas flow proportional detector after spontaneous deposition of 210 Po on a high copper-content disk. The annual committed equivalent dose for lungs and the annual effective dose for smokers between 12-17 years old and for adults were calculated on the basis of the 210 Po inhalation through cigarette smoke. The results showed concentration ranging from 9.3 to 14.4 mBq per cigarette with a mean value of 11.8 ± 0.6 mBq.Cig -1 . the results of this work indicate that Cuban smokers who smoke one pack (20 cigarettes) per day inhale from 62 to 98 mBq.d -1 of 210 Po and smokers between 12-17 years old who consume 10 cigarettes daily inhale from 30-50 mBq.d -1 . The average committed equivalent dose for lungs is estimated to be 466 ± 36 and 780 ± 60 μSv.year -1 for young and adult smokers, respectively and annual committed effective dose is calculated to be 60 ± 5 and 100 ± 8 μSv for these two groups of smokers, respectively. (Author)

  4. Photon dose estimation from ultraintense laser–solid interactions and shielding calculation with Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-01-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called “hot electrons”). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 10 19 to 10 21 W/cm 2 . Furthermore, an equation to estimate the photon dose generated from ultraintense laser–solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser–solid interactions. - Highlights: • The laser–driven X-ray ionizing radiation source was analyzed in this study. • An equation to estimate the photon dose based on the laser intensity is given. • The shielding effects of concrete and lead were studied for this new X-ray source. • The aim of this study is to analyze and mitigate the laser–driven X-ray hazard.

  5. Irradiation in helical scanner: doses estimation, parameters choice

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Boyer, B.; Jouan, E.; Beauvais, H.

    2001-01-01

    The new generation of helical scanners improves the diagnosis abilities and the service done to the patients. The rational use allows to give the patients a ratio benefit/risk far better than the almost medical examinations. It is particularly true for over sixty years old aged people, that have a null genetic risk and a practically null carcinogen risk; However, for young adults and children, it is necessary to banish any useless irradiation and limit exposure to the strict necessary for the diagnosis. It is necessary to develop a radiation protection culture, possible by the radiation doses index display and doses benchmarks knowledge. (N.C.)

  6. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    International Nuclear Information System (INIS)

    Ryan, J. W.; Harper, P.V.; Stark, V.S.; Peterson, E.L.; Lathrop, K.A.

    1986-01-01

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  7. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  8. The feasibility of a regional CTDIvol to estimate organ dose from tube current modulated CT exams

    International Nuclear Information System (INIS)

    Khatonabadi, Maryam; Kim, Hyun J.; Lu, Peiyun; McMillan, Kyle L.; Cagnon, Chris H.; McNitt-Gray, Michael F.; DeMarco, John J.

    2013-01-01

    Purpose: In AAPM Task Group 204, the size-specific dose estimate (SSDE) was developed by providing size adjustment factors which are applied to the Computed Tomography (CT) standardized dose metric, CTDI vol . However, that work focused on fixed tube current scans and did not specifically address tube current modulation (TCM) scans, which are currently the majority of clinical scans performed. The purpose of this study was to extend the SSDE concept to account for TCM by investigating the feasibility of using anatomic and organ specific regions of scanner output to improve accuracy of dose estimates. Methods: Thirty-nine adult abdomen/pelvis and 32 chest scans from clinically indicated CT exams acquired on a multidetector CT using TCM were obtained with Institutional Review Board approval for generating voxelized models. Along with image data, raw projection data were obtained to extract TCM functions for use in Monte Carlo simulations. Patient size was calculated using the effective diameter described in TG 204. In addition, the scanner-reported CTDI vol (CTDI vol,global ) was obtained for each patient, which is based on the average tube current across the entire scan. For the abdomen/pelvis scans, liver, spleen, and kidneys were manually segmented from the patient datasets; for the chest scans, lungs and for female models only, glandular breast tissue were segmented. For each patient organ doses were estimated using Monte Carlo Methods. To investigate the utility of regional measures of scanner output, regional and organ anatomic boundaries were identified from image data and used to calculate regional and organ-specific average tube current values. From these regional and organ-specific averages, CTDI vol values, referred to as regional and organ-specific CTDI vol , were calculated for each patient. Using an approach similar to TG 204, all CTDI vol values were used to normalize simulated organ doses; and the ability of each normalized dose to correlate with

  9. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  10. Internal dose estimation by bio-assay techniques

    International Nuclear Information System (INIS)

    Sawant, Pramilla D.

    2016-01-01

    Radiation exposure, both external and internal, can occur to radiation workers during the operation of various nuclear fuel cycle facilities and radiation facilities. The assessment of radiation doses to workers, routinely or potentially exposed to radiation, through intake of radionuclide is an integral part of the radiation protection programme. Internal dose is the radiation exposure that results from the intake of radioactive materials into the body by inhalation, ingestion, absorption through the skin or via wounds. Assessment of radiation doses arising from the intake of radioactive material by the workers is termed as internal exposure assessment. Unlike external exposure, internal exposure cannot be measured directly. Its evaluation is based on the calculation of the intake of radionuclide either from direct measurements (e.g, external monitoring of whole body or of specific organs and tissues) or indirect measurements (e.g. radioactivity in urine, faeces, breath or samples from the working environment) (ICRP Pub. 78, 1997 and NRPB-W60, 2004). Another method of internal dose assessment is based on the measurement of airborne radionuclides in the working areas of the facility and the worker's occupancy in those areas

  11. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    Science.gov (United States)

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    studies of the adult salamanders may be required in order to examine whether the most severe radioactive contamination has any effects on sensitive endpoints, since the estimated highest dose rate to the adults exceeded some of the guidance dose rates proposed by various organisations and programmes for the protection of amphibians, which range from 4 to 400 μGy h(-1). Conversely, at one site in Nakadori, a moderately contaminated region in Fukushima Prefecture, the dose rate to the adult salamanders in spring of 2012 was estimated to be 0.2 μGy h(-1). Estimated dose rates to the overwintering larvae in spring of 2012 were 1 and 0.2 μGy h(-1) at one site in Nakadori, and in Aizu, a less contaminated region in Fukushima Prefecture, respectively. These results suggest that there is a low risk that H. lichenatus will be affected by radioactive contamination in these districts, though further studies on dose rate estimation are required for definitive risk characterisation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  13. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  14. Dose estimative in operators during petroleum wells logging with nuclear wireless probes through computer modelling; Estimativa da dose em operadores durante procedimentos de perfilagem de pocos de petroleo com sondas wireless nucleares atraves de modelagem computacional

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lima, Inaya C.B., E-mail: inaya@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto Politecnico do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil); Correa, Samanda Cristine Arruda, E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil); Rocha, Paula L.F., E-mail: ferrucio@acd.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ)., RJ (Brazil). Dept. de Geologia

    2011-10-26

    This paper evaluates the absorbed dose and the effective dose on operators during the petroleum well logging with nuclear wireless that uses gamma radiation sources. To obtain the data, a typical scenery of a logging procedure will be simulated with MCNPX Monte Carlo code. The simulated logging probe was the Density Gamma Probe - TRISOND produced by Robertson Geolloging. The absorbed dose values were estimated through the anthropomorphic simulator in male voxel MAX. The effective dose values were obtained using the ICRP 103

  15. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  16. Estimation of effective wind speed

    Science.gov (United States)

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.

    2007-07-01

    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  17. PTTL Dose Re-estimation Applied to Quality Control in TLD-100 Based Personal Dosimetry

    International Nuclear Information System (INIS)

    Muniz, J.L.; Correcher, V.; Delgado, A.

    1999-01-01

    A new method for quality control of dose performance in Personal Dosimetry using TLD-100 is presented. This method consists of the application of dose reassessment techniques based on phototransferred thermoluminescence (PTTL). Reassessment is achieved through a second TL readout of the dosemeters worn by the controlled workers, after a reproducible UV exposure. Recent refinements in the PTTL technique developed in our laboratory allow reassessing doses as low as 0.2 mSv, thus extending the reassessment capability to the entire dose range that must be monitored in personal dosimetry. After a one month exposure, even purely environmental doses can be reassessed. This method can be applied for either re-estimation of single doses or of the total dose accumulated after a number of exposures and dose measurements. Several tests to reconfirm low doses in normal working conditions for personal dosimetry have been performed. Each test consisted of several cycles of exposure and TL evaluations and a final PTTL re-estimation of the total accumulated dose in those cycles. The results obtained always showed very good agreement between the sum of the partial doses and the total reassessed dose. The simplicity of the method and the possibility of re-evaluating the doses assessed to the workers employing their own dosemeters are advantageous features to be considered in designing systems for the determination of real performance in personal dosimetry. (author)

  18. Collective effective dose in Europe from x-ray and nuclear medicine procedures

    International Nuclear Information System (INIS) <