Sample records for estimate water storage

  1. Estimating restorable wetland water storage at landscape scales (United States)

    Jones, Charles Nathan; Evenson, Grey R.; McLaughlin, Daniel L.; Vanderhoof, Melanie; Lang, Megan W.; McCarty, Greg W.; Golden, Heather E.; Lane, Charles R.; Alexander, Laurie C.


    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  2. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794


    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  3. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.


    Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage

  4. Estimation of soil water storage change from clay shrinkage using satellite radar interferometry

    NARCIS (Netherlands)

    Brake, te Bram


    Measurements of soil water storage are hard to obtain on scales relevant for water management and policy making. Therefore, this research develops a new measurement methodology for soil water storage estimation in clay containing soils. The proposed methodology relies on the specific property of

  5. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.


    The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil) by

  6. Pit Water Storage Ottrupgaard

    DEFF Research Database (Denmark)

    Heller, Alfred


    The pit water storage, a seasonal thermal storage, was built in 1993 with floating lid and hybrid clay-polymer for pit lining. The storage was leaking severe and solutions were to be found. In the paper solutions for pit lining and floating lids are discussed, cost estimations given and coming...

  7. Water storage change estimation from in situ shrinkage measurements of clay soils

    Directory of Open Access Journals (Sweden)

    B. te Brake


    Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.

  8. Global analysis of approaches for deriving total water storage changes from GRACE satellites and implications for groundwater storage change estimation (United States)

    Long, D.; Scanlon, B. R.; Longuevergne, L.; Chen, X.


    Increasing interest in use of GRACE satellites and a variety of new products to monitor changes in total water storage (TWS) underscores the need to assess the reliability of output from different products. The objective of this study was to assess skills and uncertainties of different approaches for processing GRACE data to restore signal losses caused by spatial filtering based on analysis of 1°×1° grid scale data and basin scale data in 60 river basins globally. Results indicate that scaling factors from six land surface models (LSMs), including four models from GLDAS-1 (Noah 2.7, Mosaic, VIC, and CLM 2.0), CLM 4.0, and WGHM, are similar over most humid, sub-humid, and high-latitude regions but can differ by up to 100% over arid and semi-arid basins and areas with intensive irrigation. Large differences in TWS anomalies from three processing approaches (scaling factor, additive, and multiplicative corrections) were found in arid and semi-arid regions, areas with intensive irrigation, and relatively small basins (e.g., ≤ 200,000 km2). Furthermore, TWS anomaly products from gridded data with CLM4.0 scaling factors and the additive correction approach more closely agree with WGHM output than the multiplicative correction approach. Estimation of groundwater storage changes using GRACE satellites requires caution in selecting an appropriate approach for restoring TWS changes. A priori ground-based data used in forward modeling can provide a powerful tool for explaining the distribution of signal gains or losses caused by low-pass filtering in specific regions of interest and should be very useful for more reliable estimation of groundwater storage changes using GRACE satellites.

  9. Estimating water storage changes and sink terms in Volta Basin from satellite missions

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira


    Full Text Available The insufficiency of distributed in situ hydrological measurements is a major challenge for hydrological studies in many regions of the world. Satellite missions such as the Gravity Recovery and Climate Experiment (GRACE and the Tropical Rainfall Measurement Mission (TRMM can be used to improve our understanding of water resources beyond surface water in poorly gauged basins. In this study we combined GRACE and TRMM to investigate monthly estimates of evaporation plus runoff (sink terms using the water balance equation for the period from January 2005 to December 2010 within the Volta Basin. These estimates have been validated by comparison with time series of sink terms (evaporation plus surface and subsurface runoff from the Global Land Data Assimilation System (GLDAS. The results, for the period under consideration, show strong agreement between both time series, with a root mean square error (RMSE of 20.2 mm/month (0.67 mm/d and a correlation coefficient of 0.85. This illustrates the ability of GRACE to predict hydrological quantities, e.g. evaporation, in the Volta Basin. The water storage change data from GRACE and precipitation data from TRMM all show qualitative agreement, with evidence of basin saturation at approximately 73 mm in the equivalent water column at the annual and semi-annual time scales.

  10. Estimating continental water storage variations in Central Asia area using GRACE data

    International Nuclear Information System (INIS)

    Dapeng, Mu; Zhongchang, Sun; Jinyun, Guo


    The goal of GRACE satellite is to determine time-variations of the Earth's gravity, and particularly the effects of fluid mass redistributions at the surface of the Earth. This paper uses GRACE Level-2 RL05 data provided by CSR to estimate water storage variations of four river basins in Asia area for the period from 2003 to 2011. We apply a two-step filtering method to reduce the errors in GRACE data, which combines Gaussian averaging function and empirical de-correlation method. We use GLDAS hydrology to validate the result from GRACE. Special averaging approach is preformed to reduce the errors in GLDAS. The results of former three basins from GRACE are consistent with GLDAS hydrology model. In the Tarim River basin, there is more discrepancy between GRACE and GLDAS. Precipitation data from weather station proves that the results of GRACE are more plausible. We use spectral analysis to obtain the main periods of GRACE and GLDAS time series and then use least squares adjustment to determine the amplitude and phase. The results show that water storage in Central Asia is decreasing

  11. Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System (United States)

    Kumar, Sujay V.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.; Rodell, Matthew; Reichle, Rolf; Li, Bailing; Jasinski, Michael; Mocko, David; Getirana, Augusto; De Lannoy, Gabrielle; hide


    The objective of the North American Land Data Assimilation System (NLDAS) is to provide best available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.

  12. Karstic water storage response to the recent droughts in Southwest China estimated from satellite gravimetry (United States)

    Yao, Chaolong; Luo, Zhicai


    The water resources crisis is intensifying in Southwest China (SWC), which includes the world's largest continuous coverage of karst landforms, due to recent severe drought events. However, because of the special properties of karstic water system, such as strong heterogeneity, monitoring the variation of karstic water resources at large scales remains still difficult. Satellite gravimetry has emerged as an effective tool for investigating the global and regional water cycles. In this study, we used GRACE (Gravity Recovery and Climate Experiment) data from January 2003 to January 2013 to investigate karstic water storage variability over the karst region of SWC. We assessed the impacts of the recent severe droughts on karst water resources, including two heavy droughts in September 2010 to May 2010 and August 2011 to January 2012. Results show a slightly water increase tend during the studied period, but these two severe droughts have resulted in significant water depletion in the studied karst region. The latter drought during 2011 and 2012 caused more water deficits than that of the drought in 2010. Strong correlation between the variations of GRACE-based total water storage and precipitation suggests that climate change is the main driving force for the significant water absent over the studied karst region. As the world's largest continuous coverage karst aquifer, the karst region of SWC offers an example of GRACE applications to a karst system incisively and will benefit for water management from a long-term perspective in karst systems throughout the world.

  13. Use of GRACE Terrestrial Water Storage Retrievals to Evaluate Model Estimates by the Australian Water Resources Assessment System (United States)

    van Dijk, A. I. J. M.; Renzullo, L. J.; Rodell, M.


    Terrestrial water storage (TWS) estimates retrievals from the Gravity Recovery and Climate Experiment (GRACE) satellite mission were compared to TWS modeled by the Australian Water Resources Assessment (AWRA) system. The aim was to test whether differences could be attributed and used to identify model deficiencies. Data for 2003 2010 were decomposed into the seasonal cycle, linear trends and the remaining de-trended anomalies before comparing. AWRA tended to have smaller seasonal amplitude than GRACE. GRACE showed a strong (greater than 15 millimeter per year) drying trend in northwest Australia that was associated with a preceding period of unusually wet conditions, whereas weaker drying trends in the southern Murray Basin and southwest Western Australia were associated with relatively dry conditions. AWRA estimated trends were less negative for these regions, while a more positive trend was estimated for areas affected by cyclone Charlotte in 2009. For 2003-2009, a decrease of 7-8 millimeter per year (50-60 cubic kilometers per year) was estimated from GRACE, enough to explain 6-7% of the contemporary rate of global sea level rise. This trend was not reproduced by the model. Agreement between model and data suggested that the GRACE retrieval error estimates are biased high. A scaling coefficient applied to GRACE TWS to reduce the effect of signal leakage appeared to degrade quantitative agreement for some regions. Model aspects identified for improvement included a need for better estimation of rainfall in northwest Australia, and more sophisticated treatment of diffuse groundwater discharge processes and surface-groundwater connectivity for some regions.

  14. Use of naturally occurring helium to estimate ground-water velocities for studies of geologic storage of radioactive waste

    International Nuclear Information System (INIS)

    Marine, I.W.


    In a study of the potential for storing radioactive waste in metamorphic rock at the Savannah River Plant near Aiken, South Carolina, the rate of water movement was determined to be about 0.06 m/y by analyzing gas dissolved in the water. The gas contained up to 6 percent helium, which originated from the radioactive decay of natural uranium and thorium in the crystalline rock. The residence time of the water in the rock was calculated to be 840,000 years from the quantity of uranium and thorium in the rock, their rates of radioactive decay, and the quantity of helium dissolved in the water. The estimation of ground-water velocities by the helium method is more applicable to the assessment of a geologic site for storage of radioactive waste than are velocities estimated from packer tests, pumping tests, or artificial tracer tests, all of which require extensive time and space extrapolations

  15. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations (United States)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.


    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  16. The effect of water storage change in ET estimation in humid catchments based on water balance models and Budyko framework (United States)

    Wang, Tingting; Sun, Fubao; Liu, Changming; Liu, Wenbin; Wang, Hong


    An accurate estimation of ET in humid catchments is essential in water-energy budget research and water resource management etc, while it remains a huge challenge and there is no well accepted explanation for the difficulty of annual ET estimation in humid catchments so far. Here we presents the ET estimation in 102 humid catchments over China based on the Budyko framework and two hydrological models: abcd model and Xin'anjiang mdoel, in comparison with ET calculated from the water balance equation (ETwb) on the ground that the ΔS is approximately zero at multiannual and annual time scale. We provides a possible explanation for this poorly annual ET estimation in humid catchments as well. The results show that at multi-annual timescale, the Budyko framework works fine in ET estimation in humid catchments, while at annual time scale, neither the Budyko framework nor the hydrological models can estimate ET well. The major cause for this poorly estimated annual ET in humid catchments is the neglecting of the ΔS in ETwb since it enlarge the variability of real actual evapotranspiration. Much improvement has been made when compared estimated ET + ΔS with those ETwb, and the bigger the catchment area is, the better this improvement is. It provides a reasonable explanation for the poorly estimated annual ET in humid catchments and reveals the important role of the ΔS in ET estimation and validation. We highlight that the annual ΔS shouldn't be taken as zero in water balance equation in humid catchments.

  17. Water Storage: Quo Vadis? (United States)

    Smakhtin, V.


    Humans stored water - in various forms - for ages, coping with water resources variability, and its extremes - floods and droughts. Storage per capita, and other storage-related indicators, have essentially become one way of reflecting the progress of economic development. Massive investments went into large surface water reservoirs that have become the characteristic feature of the earth's landscapes, bringing both benefits and controversy. As water variability progressively increases with changing climate, globally, on one hand, and the idea of sustainable development receives strong traction, on another - it may be worth the while to comprehensively examine current trends and future prospects for water storage development. The task is surely big, to say the least. The presentation will aim to initiate a structured discussion on this multi-facet issue and identify which aspects and trends of water storage development may be most important in the context of Sustainable Development Goals, Sendai Framework for Disaster Risk Reduction, Paris Agreement on Climate Change, and examine how, where and to what extent water storage planning can be improved. It will cover questions like i) aging of large water storage infrastructure, the current extent of this trend in various geographical regions, and possible impacts on water security and security of nations; ii) improved water storage development planning overall in the context of various water development alternatives and storage options themselves and well as their combinations iii) prospects for another "storage revolution" - speed increase in dam numbers, and where, if at all this is most likely iv) recent events in storage development, e.g. is dam decommissioning a trend that picks pace, or whether some developing economies in Asia can do without going through the period of water storage construction, with alternatives, or suggestions for alleviation of negative impacts v) the role of subsurface storage as an

  18. An Improved GRACE Terrestrial Water Storage Assimilation System For Estimating Large-Scale Soil Moisture and Shallow Groundwater (United States)

    Girotto, M.; De Lannoy, G. J. M.; Reichle, R. H.; Rodell, M.


    The Gravity Recovery And Climate Experiment (GRACE) mission is unique because it provides highly accurate column integrated estimates of terrestrial water storage (TWS) variations. Major limitations of GRACE-based TWS observations are related to their monthly temporal and coarse spatial resolution (around 330 km at the equator), and to the vertical integration of the water storage components. These challenges can be addressed through data assimilation. To date, it is still not obvious how best to assimilate GRACE-TWS observations into a land surface model, in order to improve hydrological variables, and many details have yet to be worked out. This presentation discusses specific recent features of the assimilation of gridded GRACE-TWS data into the NASA Goddard Earth Observing System (GEOS-5) Catchment land surface model to improve soil moisture and shallow groundwater estimates at the continental scale. The major recent advancements introduced by the presented work with respect to earlier systems include: 1) the assimilation of gridded GRACE-TWS data product with scaling factors that are specifically derived for data assimilation purposes only; 2) the assimilation is performed through a 3D assimilation scheme, in which reasonable spatial and temporal error standard deviations and correlations are exploited; 3) the analysis step uses an optimized calculation and application of the analysis increments; 4) a poor-man's adaptive estimation of a spatially variable measurement error. This work shows that even if they are characterized by a coarse spatial and temporal resolution, the observed column integrated GRACE-TWS data have potential for improving our understanding of soil moisture and shallow groundwater variations.

  19. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission (United States)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.


    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the

  20. Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation (United States)

    Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew


    This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

  1. Improved estimates of global sea level change from Ice Sheets, glaciers and land water storage using GRACE (United States)

    Velicogna, I.; Hsu, C. W.; Ciraci, E.; Sutterley, T. C.


    We use observations of time variable gravity from GRACE to estimate mass changes for the Antarctic and Greenland Ice Sheets, the Glaciers and Ice Caps (GIC) and land water storage for the time period 2002-2015 and evaluate their total contribution to sea level. We calculate regional sea level changes from these present day mass fluxes using an improved scaling factor for the GRACE data that accounts for the spatial and temporal variability of the observed signal. We calculate a separate scaling factor for the annual and the long-term components of the GRACE signal. To estimate the contribution of the GIC, we use a least square mascon approach and we re-analyze recent inventories to optimize the distribution of mascons and recover the GRACE signal more accurately. We find that overall, Greenland controls 43% of the global trend in eustatic sea level rise, 16% for Antarctica and 29% for the GIC. The contribution from the GIC is dominated by the mass loss of the Canadian Arctic Archipelago, followed by Alaska, Patagonia and the High Mountains of Asia. We report a marked increase in mass loss for the Canadian Arctic Archipelago. In Greenland, following the 2012 high summer melt, years 2013 and 2014 have slowed down the increase in mass loss, but our results will be updated with summer 2015 observations at the meeting. In Antarctica, the mass loss is still on the rise with increased contributions from the Amundsen Sea sector and surprisingly from the Wilkes Land sector of East Antarctica, including Victoria Land. Conversely, the Queen Maud Land sector experienced a large snowfall in 2009-2013 and has now resumed to a zero mass gain since 2013. We compare sea level changes from these GRACE derived mass fluxes after including the atmospheric and ocean loading signal with sea level change from satellite radar altimetry (AVISO) corrected for steric signal of the ocean using Argo measurements and find an excellent agreement in amplitude, phase and trend in these estimates

  2. Terrestrial Water Storage (United States)

    Rodell, M.; Chambers, D. P.; Famiglietti, J. S.


    During 2014 dryness continued in the Northern Hemisphere and relative wetness continued in the Southern Hemisphere (Fig. 2.21; Plate 2.1g). These largely canceled out such that the global land surface began and ended the year with a terrestrial water storage (TWS) anomaly slightly below 0 cm (equivalent height of water; Fig. 2.22). TWS is the sum of groundwater, soil moisture, surface water, snow, and ice. Groundwater responds more slowly to meteorological phenomena than the other components because the overlying soil acts as a low pass filter, but often it has a larger range of variability on multiannual timescales (Rodell and Famiglietti 2001; Alley et al. 2002).In situ groundwater data are only archived and made and Tanzania. The rest of the continent experienced mixed to dry conditions. Significant reductions in TWS in Greenland, Antarctica, and southern coastal Alaska reflect ongoing ice sheet and glacier ablation, not groundwater depletion.

  3. Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage (United States)

    Yang, Tao; Wang, Chao; Yu, Zhongbo; Xu, Feng


    Since the launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided us with a new method to estimate terrestrial water storage (TWS) variations by measuring earth gravity change with unprecedented accuracy. Thus far, a number of standardized GRACE-born TWS products are published by different international research teams. However, no characterization of spatio-temporal patterns for different GRACE hydrology products from the global perspective could be found. It is still a big challenge for the science community to identify the reliable global measurement of TWS anomalies due to our limited knowledge on the true value. Hence, it is urgently necessary to evaluate the uncertainty for various global estimates of the GRACE-born TWS changes by a number of international research organizations. Toward this end, this article presents an in-depth analysis for various GRACE-born and GLDAS-based estimates for changes of global terrestrial water storage. The work characterizes the inter-annual and intra-annual variability, probability density variations, and spatial patterns among different GRACE-born TWS estimates over six major continents, and compares them with results from GLDAS simulations. The underlying causes of inconsistency between GRACE- and GLDAS-born TWS estimates are thoroughly analyzed with an aim to improve our current knowledge in monitoring global TWS change. With a comprehensive consideration of the advantages and disadvantages among GRACE- and GLDAS-born TWS anomalies, a summary is thereafter recommended as a rapid reference for scientists, end-users, and policy-makers in the practices of global TWS change research. To our best knowledge, this work is the first attempt to characterize difference and uncertainty among various GRACE-born terrestrial water storage changes over the major continents estimated by a number of international research organizations. The results can provide beneficial reference to usage of

  4. Using GRACE Amplitude Data in Conjunction with the Spatial Distribution of Groundwater Recharge to Estimate the Components of the Terrestrial Water Storage Anomaly across the Contiguous United States (United States)

    Sanford, W. E.; Reitz, M.; Zell, W.


    The GRACE satellite project by NASA has been mapping the terrestrial water storage anomaly (TWSA) across the globe since 2002. To date most of the studies using this data have focused on estimating long-term storage declines in groundwater aquifers or the cryosphere. In this study we are focusing on using the amplitude of the seasonal storage signal to estimate the sources and values of the different water components that are contributing to the TWSA signal across the contiguous United States (CONUS). Across the CONUS the TWSA seasonal amplitude observed by GRACE varies by a factor of ten or more (from 1 to 10+ cm of liquid water equivalent). For a seasonal sinusoidal recharge rate, the change in storage in either the soil (unsaturated zone beneath the root zone) or groundwater (by water-table fluctuation) is limited to the amplitude of the recharge rate divided by π or 2π, respectively. We compiled the GRACE signal for the 18 major HUC watersheds across the CONUS and compared them to estimates of seasonal recharge-rate amplitudes based on a recent map of recharge rates generated by the USGS. The ratios of the recharge to GRACE amplitudes suggest that all but two of the HUCs must have other substantial sources of storage change in addition to soil or groundwater. The most likely additional sources are (1) winter snowpack, (2) seasonal irrigation withdrawals, and/or (3) surface water (rivers or reservoirs). Estimates of the seasonal amplitudes of these three signals across the CONUS suggest they can explain the remaining GRACE seasonal signal that cannot be explained by soil or groundwater fluctuations. Each of these signals has its own unique spatial distribution, with snowpack limited to the northern states, surface water limited to large rivers or reservoirs, and irrigation as a dominant signal limited to arid to semi-arid agricultural regions. Use of the GRACE seasonal signal shows promise in constraining the hydraulic diffusivities of surficial aquifer

  5. Estimation of water storage changes in small endorheic lakes in Burabay National Nature Park (Northern Kazakhstan, Central Asia); the effect of climate change and anthropogenic influences (United States)

    Yapiyev, Vadim; Sagintayev, Zhanay; Verhoef, Anne; Samarkhanov, Kanat; Jumassultanova, Saltanat


    Both climate change and anthropogenic activities contribute to deterioration of terrestrial water resources and ecosystems worldwide. It has been observed in recent decades that water-limited steppe regions of Central Asia are among ecosystems found to exhibit enhanced responses to climate variability. In fact, the largest share of worldwide net loss of permanent water extent is geographically concentrated in the Central Asia and Middle East regions attributed to both climate variability/change and human activities impacts. We used a digital elevation model, digitized bathymetry maps and high resolution Landsat images to estimate the areal water cover extent and volumetric storage changes in small terminal lakes in Burabay National Nature Park (BNNP), located in Northern Central Asia, for the period 2000-2016. Based on the analysis of long-term climatic data from meteorological stations, hydrometeorological network observations as well as regional climate model projections we evaluate the impacts of past thirty years and future climatic conditions on the water balance of BNNP lake catchments. The anthropogenic water consumption was estimated based on data collected at a local water supply company and regulation authorities. One the one hand historical in-situ observations and future climate projections do not show a significant change in precipitation in BNNP. On the other hand both observations and the model demonstrate steadily rising air temperatures in the area. It is concluded that the long-term decline in water levels for most of these lakes can be largely attributed to climate change (but only via changes in air temperature, causing evaporation to exceed precipitation) and not to direct anthropogenic influences such as increased water withdrawals. In addition, the two largest lakes, showing the highest historical water level decline, do not have sufficient water drainage basin area to sustain water levels under increased evaporation rates.

  6. Groundwater and Terrestrial Water Storage (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.


    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  7. Fuel performance in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.


    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950's prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material

  8. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities (United States)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.


    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  9. Gas storage - Estimation of the economic value

    International Nuclear Information System (INIS)


    The main purpose of the project is to investigate the economic benefits of underground gas storage used for seasonal smoothing and a strategical security of supply. The benefits from the storage have to be decided based on the costs of alternative have to be ways of securing the energy supply, including evaluation of: demand-dependent prices on natural gas and other fuels (both domestic and foreign markets); interruptible supply; establishment of extra production and transportation capacity from the North Sea; establishment of new connecting systems to neighbouring countries (i.a. German, Poland, Latvia); establishment for import or production and LNG; contracting of storage capacity abroad (Germany, Czech Republic, Slovakia, Latvia). In order to control the estimated costs of storage of natural gas a comparison with market prices for storage capacity and spot prices of natural gas is carried out. The market prices were estimated through a statistical analysis of seasonal variations in gas prices on the American natural gas market. Due to permanent energy taxes, the energy prices only partially reflect the demand and the price elasticity hence is very small, resulting in a need for e.g. gas storage. One purpose of the project is to investigate this system error and to present alternative suggestions for the tax structure. Additionally, the consequences of differentiating production taxes will be addressed. (EG)

  10. Gas storages - Estimation of the economic value

    Energy Technology Data Exchange (ETDEWEB)



    The main purpose of the project is to investigate the economic benefits of underground gas storage used for seasonal smoothing and a strategical security of supply. The benefits from the storage have to be decided based on the costs of alternative have to be ways of securing the energy supply, including evaluation of: demand-dependent prices on natural gas and other fuels (both domestic and foreign markets); interruptible supply; establishment of extra production and transportation capacity from the North Sea; establishment of new connecting systems to neighbouring countries (i.a. German, Poland, Latvia); establishment for import or production and LNG; contracting of storage capacity abroad (Germany, Czech Republic, Slovakia, Latvia). In order to control the estimated costs of storage of natural gas a comparison with market prices for storage capacity and spot prices of natural gas is carried out. The market prices were estimated through a statistical analysis of seasonal variations in gas prices on the American natural gas market. Due to permanent energy taxes, the energy prices only partially reflect the demand and the price elasticity hence is very small, resulting in a need for e.g. gas storage. One purpose of the project is to investigate this system error and to present alternative suggestions for the tax structure. Additionally, the consequences of differentiating production taxes will be addressed. (EG)

  11. Groundwater and Terrestrial Water Storage (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.


    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  12. A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges

    Directory of Open Access Journals (Sweden)

    J.-P. Vergnes


    Full Text Available Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP river routing model is applied in off-line mode at global scale using a 0.5° model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC and other sources, while the terrestrial water storage (TWS variations derived from the Gravity Recovery and Climate Experiment (GRACE satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data.

  13. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil


    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  14. Estimation of Water Quality

    International Nuclear Information System (INIS)

    Vetrinskaya, N.I.; Manasbayeva, A.B.


    Water has a particular ecological function and it is an indicator of the general state of the biosphere. In relation with this summary, the toxicological evaluation of water by biologic testing methods is very actual. The peculiarity of biologic testing information is an integral reflection of all totality properties of examination of the environment in position of its perception by living objects. Rapid integral evaluation of anthropological situation is a base aim of biologic testing. If this evaluation has deviations from normal state, detailed analysis and revelation of dangerous components could be conducted later. The quality of water from the Degelen gallery, where nuclear explosions were conducted, was investigated by bio-testing methods. The micro-organisms (Micrococcus Luteus, Candida crusei, Pseudomonas algaligenes) and water plant elodea (Elodea canadensis Rich) were used as test-objects. It is known that the transporting functions of cell membranes of living organisms are violated the first time in extreme conditions by difference influences. Therefore, ion penetration of elodeas and micro-organisms cells, which contained in the examination water with toxicants, were used as test-function. Alteration of membrane penetration was estimated by measurement of electrolytes electrical conductivity, which gets out from living objects cells to distillate water. Index of water toxic is ratio of electrical conductivity in experience to electrical conductivity in control. Also, observations from common state of plant, which was incubated in toxic water, were made. (Chronic experience conducted for 60 days.) The plants were incubated in water samples, which were picked out from gallery in the years 1996 and 1997. The time of incubation is 1-10 days. The results of investigation showed that ion penetration of elodeas and micro-organisms cells changed very much with influence of radionuclides, which were contained in testing water. Changes are taking place even in

  15. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2. (United States)

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.


    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  16. Water storage capacity, stemflow and water funneling in Mediterranean shrubs (United States)

    Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J.


    SummaryTo predict water losses and other hydrological and ecological features of a given vegetation, its water storage capacity and stemflow need to be accurately determined. Vast areas of the Mediterranean region are occupied by shrublands yet there is scarce data available on their rainwater interception capacity. In this study, simulated rainfall tests were conducted in controlled conditions on nine Mediterranean shrubs of varying anatomic and morphological features to determine water storage capacity, stemflow and the funneling ratio. After assessing correlations between these hydrological variables and the biometric characteristics of the shrubs, we compared two methods of determining storage capacity: rainfall simulation and immersion. Mean water storage capacity was 1.02 mm (0.35-3.24 mm), stemflow was 16% (3.8-26.4%) and the funneling ratio was 104 (30-260). Per unit biomass, mean storage capacity was 0.66 ml g -1 and ranged from 0.23 ml g -1 for Cistus ladanifer to 2.26 ml g -1 for Lavandula latifolia. Despite their small size, shrubs may generate high water losses to the atmosphere when they form dense communities and this can have a significant impact in regions where water is scarce. When considered the whole shrubs in absolute terms (ml per plant), water storage capacity and stemflow were correlated to biomass and the dendrometric characteristics of the shrubs, yet in relative terms (expressed per surface area unit or as %), anatomic features such as pubescence, branch rigidity or leaf insertion angle emerged as determining factors. The use of a simple procedure to assess storage capacity was inefficient. The immersion method underestimated storage capacity to a different extent for each species. Some shrubs returned high stemflow values typical of their adaptation to the semiarid climate. In contrast, other shrubs seem to have structures that promote stemflow yet have developed other drought-adaptation mechanisms. In this report, we discuss the

  17. Satellite altimetry and GRACE gravimetry for studies of annual water storage variations in Bangladesh

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Berry, P.; Freeman, J.


    Four different data sources have been compared with respect to observations of the annual water storage variations in the region of Bangladesh. Data from satellite altimeters and river gauges estimates the variation in surface water storage in the major rivers of Bangladesh. The GRACE satellites ...

  18. An integrated approach to estimate storage reliability with initial failures based on E-Bayesian estimates

    International Nuclear Information System (INIS)

    Zhang, Yongjin; Zhao, Ming; Zhang, Shitao; Wang, Jiamei; Zhang, Yanjun


    Storage reliability that measures the ability of products in a dormant state to keep their required functions is studied in this paper. For certain types of products, Storage reliability may not always be 100% at the beginning of storage, unlike the operational reliability, which exist possible initial failures that are normally neglected in the models of storage reliability. In this paper, a new integrated technique, the non-parametric measure based on the E-Bayesian estimates of current failure probabilities is combined with the parametric measure based on the exponential reliability function, is proposed to estimate and predict the storage reliability of products with possible initial failures, where the non-parametric method is used to estimate the number of failed products and the reliability at each testing time, and the parameter method is used to estimate the initial reliability and the failure rate of storage product. The proposed method has taken into consideration that, the reliability test data of storage products containing the unexamined before and during the storage process, is available for providing more accurate estimates of both the initial failure probability and the storage failure probability. When storage reliability prediction that is the main concern in this field should be made, the non-parametric estimates of failure numbers can be used into the parametric models for the failure process in storage. In the case of exponential models, the assessment and prediction method for storage reliability is presented in this paper. Finally, a numerical example is given to illustrate the method. Furthermore, a detailed comparison between the proposed and traditional method, for examining the rationality of assessment and prediction on the storage reliability, is investigated. The results should be useful for planning a storage environment, decision-making concerning the maximum length of storage, and identifying the production quality. - Highlights:

  19. Estimating the Competitive Storage Model with Trending Commodity Prices


    Gouel , Christophe; LEGRAND , Nicolas


    We present a method to estimate jointly the parameters of a standard commodity storage model and the parameters characterizing the trend in commodity prices. This procedure allows the influence of a possible trend to be removed without restricting the model specification, and allows model and trend selection based on statistical criteria. The trend is modeled deterministically using linear or cubic spline functions of time. The results show that storage models with trend are always preferred ...

  20. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Steven T., E-mail: [National Center, U.S. Geological Survey (United States)


    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the

  1. Occupational dose estimates for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Harty, R.; Stoetzel, G.A.


    Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding

  2. Alternatives for water basin spent fuel storage using pin storage

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Carlson, R.W.


    The densest tolerable form for storing spent nuclear fuel is storage of only the fuel rods. This eliminates the space between the fuel rods and frees the hardware to be treated as non-fuel waste. The storage density can be as much as 1.07 MTU/ft 2 when racks are used that just satisfy the criticality and thermal limitations. One of the major advantages of pin storage is that it is compatible with existing racks; however, this reduces the storage density to 0.69 MTU/ft 2 . Even this is a substantial increase over the 0.39 MTU/ft 2 that is achievable with current high capacity stainless steel racks which have been selected as the bases for comparison. Disassembly requires extensive operation on the fuel assembly to remove the upper end fitting and to extract the fuel rods from the assembly skeleton. These operations will be performed with the aid of an elevator to raise the assembly where each fuel rod is grappled. Lowering the elevator will free the fuel rod for transfer to the storage canister. A storage savings of $1510 per MTU can be realized if the pin storage concept is incorporated at a new away-from-reactor facility. The storage cost ranges from $3340 to $7820 per MTU of fuel stored with the lower cost applying to storage at an existing away-from-reactor storage facility and the higher cost applying to at-reactor storage

  3. Forming of information support for estimate of potential danger of storage points of the decontamination wastes

    International Nuclear Information System (INIS)

    Skurat, V.V.; Shiryaeva, N.M.; Myshkina, N.K.; Gvozdev, A.A.; Serebryannyj, G.Z.; Golikova, N.B.


    By now 92 storage points of the decontamination wastes that formed in result of decontamination of settlements after the Chernobyl accident is registered on the territory of Belarus. The most of theirs were placed in the unfavorable for storage of radioactive wastes places. It was examine the forming of information support for estimate of potential danger of the storage points of decontamination wastes that base on results of investigations of objects, field and laboratory investigations, theoretical researches, using of literary information about features of radionuclides migration through engineering and natural barriers to water-bearing horizon is examination

  4. Improved regional sea-level estimates from Ice Sheets, Glaciers and land water storage using GRACE time series and other data (United States)

    He, Z.; Velicogna, I.; Hsu, C. W.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; Fettweis, X.; van den Broeke, M. R.


    Changes in ice sheets, glaciers and ice caps (GIC) and land water mass cause regional sea level variations that differ significantly from a uniform re-distribution of mass over the ocean, with a decrease in sea level compared to the global mean sea level contribution (GMSL) near the sources of mass added to the ocean and an increase up to 30% larger than the GMSL in the far field. The corresponding sea level fingerprints (SLF) are difficult to separate from ocean dynamics on short time and spatial scales but as ice melt continues, the SLF signal will become increasingly dominant in the pattern of regional sea level rise. It has been anticipated that it will be another few decades before the land ice SLF could be identified in the pattern of regional sea level rise. Here, we combine 40 years of observations of ice sheet mass balance for Antarctica (1975-present) and Greenland (1978-present), along with surface mass balance reconstructions of glacier and ice caps mass balance (GIC) from 1970s to present to determine the contribution to the SLF from melting land ice (MAR and RACMO). We compare the results with observations from GRACE for the time period 2002 to present for evaluation of our approach. Land hydrology is constrained by GRACE data for the period 2002-present and by the GLDAS-NOAH land hydrology model for the longer time period. Over the long time period, we find that the contribution from land ice dominates. We quantify the contribution to the total SLF from Greenland and Antarctica in various parts of the world over the past 40 years. More important, we compare the cumulative signal from SLF with tide gauge records around the world, corrected for earth dynamics, to determine whether the land ice SLF can be detected in that record. Early results will be reported at the meeting. This work was performed at UC Irvine and at Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.

  5. Impact analysis of a water storage tank

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Jeong, Sang Jin


    This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed

  6. Rapid surface-water volume estimations in beaver ponds (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela


    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  7. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening (United States)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.


    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  8. Disk storage management for LHCb based on Data Popularity estimator

    CERN Document Server

    INSPIRE-00545541; Charpentier, Philippe; Ustyuzhanin, Andrey


    This paper presents an algorithm providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The algorithm takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. This article presents how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the algorithm minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how our algorithm helps to save disk space and to reduce waiting times ...

  9. Behavior of spent nuclear fuel in water pool storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.


    Storage of irradiated nuclear fuel in water pools (basins) has been standard practice since nuclear reactors first began operation approximately 34 years ago. Pool storage is the starting point for all other fuel storage candidate processes and is a candidate for extended interim fuel storage until policy questions regarding reprocessing and ultimate disposal have been resolved. This report assesses the current performance of nuclear fuel in pool storage, the range of storage conditions, and the prospects for extending residence times. The assessment is based on visits to five U.S. and Canadian fuel storage sites, representing nine storage pools, and on discussions with operators of an additional 21 storage pools. Spent fuel storage experience from British pools at Winfrith and Windscale and from a German pool at Karlsruhe (WAK) also is summarized

  10. Estimating the maximum potential revenue for grid connected electricity storage :

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.


    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  11. Preliminary Results from Powell Research Group on Integrating GRACE Satellite and Ground-based Estimates of Groundwater Storage Changes (United States)

    Scanlon, B. R.; Zhang, Z.; Reitz, M.; Rodell, M.; Sanford, W. E.; Save, H.; Wiese, D. N.; Croteau, M. J.; McGuire, V. L.; Pool, D. R.; Faunt, C. C.; Zell, W.


    Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. GRACE (Gravity Recovery and Climate Experiment) satellite-based estimates of groundwater storage changes have attracted considerable media attention in the U.S. and globally and interest in GRACE products continues to increase. For this reason, a Powell Research Group was formed to: (1) Assess variations in groundwater storage using a variety of GRACE products and other storage components (snow, surface water, and soil moisture) for major aquifers in the U.S., (2) Quantify long-term trends in groundwater storage from ground-based monitoring and regional and national modeling, and (3) Use ground-based monitoring and modeling to interpret GRACE water storage changes within the context of extreme droughts and over-exploitation of groundwater. The group now has preliminary estimates from long-term trends and seasonal fluctuations in water storage using different GRACE solutions, including CSR, JPL and GSFC. Approaches to quantifying uncertainties in GRACE data are included. This work also shows how GRACE sees groundwater depletion in unconfined versus confined aquifers, and plans for future work will link GRACE data to regional groundwater models. The wealth of ground-based observations for the U.S. provides a unique opportunity to assess the reliability of GRACE-based estimates of groundwater storage changes.

  12. Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations. (United States)

    Kopka, Ryszard


    In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional-order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated for various input signal shapes and parameters. Very high consistency between estimated and experimental results fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of supercapacitor energy storage.

  13. Evaluating water storage variations in the MENA region using GRACE satellite data

    KAUST Repository

    Lopez, Oliver; Houborg, Rasmus; McCabe, Matthew


    estimates of water storage and fluxes over areas covering a minimum of 150,000 km2 (length scales of a few hundred kilometers) and thus prove to be a valuable tool for regional water resources management, particularly for areas with a lack of in-situ data

  14. Hydrological analysis relevant to surface water storage at Jabiluka. Supervising Scientist report 142

    International Nuclear Information System (INIS)

    Chiew, F.H.S.; Wang, Q.J.


    The report is prepared for the Supervising Scientist at Jabiru. It describes part of an investigation into hydrological issues relating to the water management system proposed for the Jabiluka project. Specifically, the objective is to estimate the water storage capacity required to store surface runoff and other water within the total containment zone (TCZ) of the Jabiluka project. The water storage volume is calculated for a range of probabilities up to 0.002% that the pond design volume would be exceeded over a 30-year mine life. In this study, 50 000 sets of 30 years of daily rainfall and monthly pan evaporation data are stochastically generated to simulate the storage water balance. The approach used by Kinhill and Energy Resources of Australia (ERA) is reviewed and the pond design compared with the estimates derived here. The Kinhill-ERA approach is described in the Jabiluka Mill Alternative Public Environment Report and the Jabiluka Mill Alternative Public Environment Report Technical Appendices (hereon referred to as Jabiluka PER Appendices) (1998). The two reports also provide background to many other issues. The structural design of the storage and other features of the mine site are not considered here. This study also assumes that the bunds and other drainage diversion structures will prevent all water outside the TCZ from entering the TCZ and vice versa. The storage water balance components are discussed in section 2. Some of the water inflows into the storage and losses from the storage are discussed in detail, while elsewhere, the values used by Kinhill-ERA are adopted. Section 3 describes the selection of the climate stations used here, the rainfall and pan evaporation characteristics in the area and the stochastic generation of 1.5 million years of daily rainfall and monthly pan evaporation data. Section 4 describes the approach used to estimate the storage capacity, and presents the storage capacity estimates for various probabilities of

  15. Economic performance of water storage capacity expansion for food security (United States)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.


    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  16. Calculating the ecosystem service of water storage in isolated wetlands using LIDAR in north central Florida, USA (United States)

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We ...

  17. Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida, USA (presentation) (United States)

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We f...

  18. Cost estimation of interim dry storage for Atucha I NPP

    International Nuclear Information System (INIS)

    Bergallo, Juan E.; Fuenzalida Troyano, Carlos S.


    A joint effort between NASA and CNEA has been performed in order to evaluate and fix the strategy of interim spent fuel storage for Atucha I nuclear power plant. In this work the cost estimation on the proposed system was performed in order to fix the parameter and design criteria for the next engineering step. The main results achieved show that both alternatives are all in the same range of costs per unit of mass to be stored, the impact on electricity cost is less than 1 US mills/KWh and the scaling factor achieved is 0.85. (author) [es

  19. Intensified water storage loss by biomass burning in Kalimantan: Detection by GRACE (United States)

    Han, Jiancheng; Tangdamrongsub, Natthachet; Hwang, Cheinway; Abidin, Hasanuddin Z.


    Biomass burning is the principal tool for land clearing and a primary driver of land use change in Kalimantan (the Indonesian part of Borneo island). Biomass burning here has consumed millions of hectares of peatland and swamp forests. It also degrades air quality in Southeast Asia, perturbs the global carbon cycle, threatens ecosystem health and biodiversity, and potentially affects the global water cycle. Here we present the optimal estimate of water storage changes over Kalimantan from NASA's Gravity Recovery and Climate Experiment (GRACE). Over August 2002 to December 2014, our result shows a north-south dipole pattern in the long-term changes in terrestrial water storage (TWS) and groundwater storage (GWS). Both TWS and GWS increase in the northern part of Kalimantan, while they decrease in the southern part where fire events are the most severe. The loss rates in TWS and GWS in the southern part are 0.56 ± 0.11 cm yr-1 and 0.55 ± 0.10 cm yr-1, respectively. We use GRACE estimates, burned area, carbon emissions, and hydroclimatic data to study the relationship between biomass burning and water storage losses. The analysis shows that extensive biomass burning results in excessive evapotranspiration, which then increases long-term water storage losses in the fire-prone region of Kalimantan. Our results show the potentials of GRACE and its follow-on missions in assisting water storage and fire managements in a region with extensive biomass burning such as Kalimantan.

  20. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Seneviratne, S.I.; Hinderer, J.


    water storage depletion observed from GRACE can be related to the record-breaking heat wave that occurred in central Europe in 2003. We validate the measurements from GRACE using two independent hydrological estimates and direct gravity observations from superconducting gravimeters in Europe. All...... datasets agree well with the GRACE measurements despite the disparity of the employed information; the difference between datasets tends to be within GRACE margin of error. The April-to-August terrestrial water storage depletion is found to be significantly larger in 2003 than in 2002 from both models......The GRACE twin satellites reveal large inter-annual terrestrial water-storage variations between 2002 and 2003 for central Europe. GRACE observes a negative trend in regional water storage from 2002 to 2003 peaking at -7.8 cm in central Europe with an accuracy of 1 cm. The 2003 excess terrestrial...

  1. Disk storage management for LHCb based on Data Popularity estimator (United States)

    Hushchyn, Mikhail; Charpentier, Philippe; Ustyuzhanin, Andrey


    This paper presents an algorithm providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The algorithm takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. This article presents how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the algorithm minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how our algorithm helps to save disk space and to reduce waiting times for jobs using this data.

  2. Disk storage management for LHCb based on Data Popularity estimator

    International Nuclear Information System (INIS)

    Hushchyn, Mikhail; Charpentier, Philippe; Ustyuzhanin, Andrey


    This paper presents an algorithm providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The algorithm takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. This article presents how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the algorithm minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how our algorithm helps to save disk space and to reduce waiting times for jobs using this data. (paper)

  3. Underground storage of imported water in the San Gorgonio Pass area, southern California (United States)

    Bloyd, Richard M.


    The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.

  4. Spent fuel heatup following loss of water during storage

    International Nuclear Information System (INIS)

    Benjamin, A.S.; McCloskey, D.J.


    Spent fuel assemblies from light water reactors are typically stored for one year or more in the reactor spent fuel pool and then transported for long-term storage at an off-site location. Because of the design, construction, and operation features of spent fuel storage pools, an accident that might drain most of the water from a pool is assessed as being extremely improbable. As a limiting case, however, a hypothetical incident involving instantaneous draining of all the water from a storage pool has been postulated, and the subsequent heatup of the spent fuel elements has been evaluated. The model is analyzed, and results are summarized

  5. Estimated water use in Puerto Rico, 2010 (United States)

    Molina-Rivera, Wanda L.


    Water-use data were aggregated for the 78 municipios of the Commonwealth of Puerto Rico for 2010. Five major offstream categories were considered: public-supply water withdrawals and deliveries, domestic and industrial self-supplied water use, crop-irrigation water use, and thermoelectric-power freshwater use. One instream water-use category also was compiled: power-generation instream water use (thermoelectric saline withdrawals and hydroelectric power). Freshwater withdrawals for offstream use from surface-water [606 million gallons per day (Mgal/d)] and groundwater (118 Mgal/d) sources in Puerto Rico were estimated at 724 million gallons per day. The largest amount of freshwater withdrawn was by public-supply water facilities estimated at 677 Mgal/d. Public-supply domestic water use was estimated at 206 Mgal/d. Fresh groundwater withdrawals by domestic self-supplied users were estimated at 2.41 Mgal/d. Industrial self-supplied withdrawals were estimated at 4.30 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 38.2 Mgal/d, or approximately 5 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 556 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,262 Mgal/d.

  6. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.


    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  7. Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data (United States)

    Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.


    GRACE satellite gravity data is used to estimate terrestrial (surface plus ground) water storage within the Congo Basin in Africa for the period of April, 2002 - May, 2006. These estimates exhibit significant seasonal (30 +/- 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of approximately 280 km(exp 3) of water over the 50-month span of data. We also combine GRACE and precipitation data set (CMAP, TRMM) to explore the relative contributions of the source term to the seasonal hydrological balance within the Congo Basin. We find that the seasonal water storage tends to saturate for anomalies greater than 30-44 mm of equivalent water thickness. Furthermore, precipitation contributed roughly three times the peak water storage after anomalously rainy seasons, in early 2003 and 2005, implying an approximately 60-70% loss from runoff and evapotranspiration. Finally, a comparison of residual land water storage (monthly estimates minus best-fitting trends) in the Congo and Amazon Basins shows an anticorrelation, in agreement with the 'see-saw' variability inferred by others from runoff data.

  8. Structure-function relationships in sapwood water transport and storage. (United States)

    Barbara L. Gartner; Frederick C. Meinzer


    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  9. Integrated collector-storage solar water heater with extended storage unit

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Rosen, Marc A.


    The integrated collector-storage solar water heater (ICSSWH) is one of the simplest designs of solar water heater. In ICSSWH systems the conversion of solar energy into useful heat is often simple, efficient and cost effective. To broaden the usefulness of ICSSWH systems, especially for overnight applications, numerous design modifications have been proposed and analyzed in the past. In the present investigation the storage tank of an ICSSWH is coupled with an extended storage section. The total volume of the modified ICSSWH has two sections. Section A is exposed to incoming solar radiation, while section B is insulated on all sides. An expression is developed for the natural convection flow rate in section A. The inter-related energy balances are written for each section and solved to ascertain the impact of the extended storage unit on the water temperature and the water heater efficiency. The volumes of water in the two sections are optimized to achieve a maximum water temperature at a reasonably high efficiency. The influence is investigated of inclination angle of section A on the temperature of water heater and the angle is optimized. It is determined that a volume ratio of 7/3 between sections A and B yields the maximum water temperature and efficiency in the modified solar water heater. The performance of the modified water heater is also compared with a conventional ICSSWH system under similar conditions.

  10. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data (United States)

    Scanlon, Bridget R.; Zhang, Zizhan; Save, Himanshu; Sun, Alexander Y.; van Beek, Ludovicus P. H.; Wiese, David N.; Reedy, Robert C.; Longuevergne, Laurent; Döll, Petra; Bierkens, Marc F. P.


    Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002–2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤−0.5 km3/y) and increasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y, whereas most models estimate decreasing trends (−71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71–82 km3/y) but negative for models (−450 to −12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. PMID:29358394

  11. Estimation of water percolation by different methods using TDR

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva


    Full Text Available Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR in a drainage lysimeter. We used Darcy's law with K(θ functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ predicted by the method of Hillel et al. (1972 provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980, Sisson et al. (1980 and van Genuchten (1980 underestimated water percolation.

  12. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and... (United States)


    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  13. Effect of sunlight, transport and storage vessels on drinking water ...

    African Journals Online (AJOL)

    Effect of sunlight, transport and storage vessels on drinking water quality in rural Ghana. ... on drinking water quality in rural Ghana. K Obiri-Danso, E Amevor, LA Andoh, K Jones ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  14. Maintaining of the demineralized water quality in storage tanks

    International Nuclear Information System (INIS)

    Hochmueller, K.; Wandelt, E.


    Two processes for maintaining the quality of the mineralized water in storage tanks are considered. A slight overpressure of nitrogen can be created above the water, or the air flowing in the tank can be cleaned by passing it through a soda-containing lime filter [fr

  15. Stochastic estimation of plant-available soil water under fluctuating water table depths (United States)

    Or, Dani; Groeneveld, David P.


    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  16. Economics of water basin storage of spent light water reactor fuel

    International Nuclear Information System (INIS)

    Driggers, F.E.


    As part of the International Spent Fuel Storage program, a preliminary Venture Guidance Assessment of the cost was made. The escalated cost of a reference facility with a capacity to receive 2000 MT/y of spent LWR fuel and to store 5000 MT in water-filled pools was converted to $180 million in 1978 dollars for a stand-alone facility. It was estimated that the receiving rate could be increased to 3000 MT/y for an additional $15 million and that increments could be added to the storage capacity for $13 million per 1000 MT. If a receipt rate of more than 3000 MT/y is required, a new facility in another part of the country might be built to reduce total costs including transportation. Operating costs are determined by the number of people employed and by the costs of stainless steel baskets. An operating crew of 150 is required for the reference facility; the associated cost, including overhead and supplies, is $6 million. During an extended storage-only period, this cost is assumed to drop to $4 million. Fuel baskets are estimated to cost $6.20/kg of spent fuel averaged over a reactor mix of two-thirds PWRs and one-third BWRs. The nominal basket requirements of $10 million for the first year are capitalized. If the facility is financed by the government and a one-time fee is charged to recover all of the away-from-reactor (AFR) basin costs, the fee is about $60/kg of spent fuel plus any government surcharge to cover research and development, overhead, and additional contingencies. If the facility is financed by industry with an annual charge that includes a fixed charge on capital of 25%, the annual fee is about $16/kg-y. In calculating both fees, it is assumed that each storage position is occupied for ten years. 8 tables

  17. Lake and wetland ecosystem services measuring water storage and local climate regulation (United States)

    Wong, Christina P.; Jiang, Bo; Bohn, Theodore J.; Lee, Kai N.; Lettenmaier, Dennis P.; Ma, Dongchun; Ouyang, Zhiyun


    Developing interdisciplinary methods to measure ecosystem services is a scientific priority, however, progress remains slow in part because we lack ecological production functions (EPFs) to quantitatively link ecohydrological processes to human benefits. In this study, we tested a new approach, combining a process-based model with regression models, to create EPFs to evaluate water storage and local climate regulation from a green infrastructure project on the Yongding River in Beijing, China. Seven artificial lakes and wetlands were established to improve local water storage and human comfort; evapotranspiration (ET) regulates both services. Managers want to minimize the trade-off between water losses and cooling to sustain water supplies while lowering the heat index (HI) to improve human comfort. We selected human benefit indicators using water storage targets and Beijing's HI, and the Variable Infiltration Capacity model to determine the change in ET from the new ecosystems. We created EPFs to quantify the ecosystem services as marginal values [Δfinal ecosystem service/Δecohydrological process]: (1) Δwater loss (lake evaporation/volume)/Δdepth and (2) Δsummer HI/ΔET. We estimate the new ecosystems increased local ET by 0.7 mm/d (20.3 W/m2) on the Yongding River. However, ET rates are causing water storage shortfalls while producing no improvements in human comfort. The shallow lakes/wetlands are vulnerable to drying when inflow rates fluctuate, low depths lead to higher evaporative losses, causing water storage shortfalls with minimal cooling effects. We recommend managers make the lakes deeper to increase water storage, and plant shade trees to improve human comfort in the parks.

  18. Estimated use of water in Nebraska, 1985 (United States)

    Steele, Eugene K.


    The estimated volume of 19,187,200 acre-feet of water used in Nebraska during 1985 is an average of 17,116.15 million gallons per day. Surface water supplied 12,925,040 acre-feet or 67.4 percent of the total volume used. The

  19. Experimental analysis of drainage and water storage of litter layers (United States)

    Guevara-Escobar, A.; Gonzalez-Sosa, E.; Ramos-Salinas, M.; Hernandez-Delgado, G. D.


    Leaf litter overlying forested floors are important for erosion control and slope stability, but also reduces pasture growth in silvopastoral systems. Little information exists regarding the value of percolation and storage capacity parameters for litter layers. These estimates are needed for modelling better management practices for leaf litter. Therefore, this work measured the effect of four rainfall intensities: 9.8, 30.2, 40.4 and 70.9 mm h-1 on the hydrological response of layers of three materials: recently senesced poplar leaves, fresh grass and woodchips. Maximum storage (Cmax), defined as the detention of water immediately before rainfall cessation, increased with rainfall intensity. The magnitude of the increment was 0.2 mm between the lowest and highest rainfall intensities. Mean values of Cmax were: 1.27, 1.51, 1.67 and 1.65 mm for poplar leaves; 0.63 0.77, 0.73 and 0.76 for fresh grass and; 1.64, 2.23, 2.21 and 2.16 for woodchips. Drainage parameters were: 9.9, 8.8 and 2.2 mm-1 for poplar, grass and woodchips layers. An underlying soil matrix influenced the drainage flow from poplar leaf layers producing pseudo-Hortonian overland flow, but this occurred only when the rainfall intensity was 40.4 and 70.9 mm h-1 and accounted for 0.4 and 0.8‰ of total drainage. On the other hand, the presence of a poplar leaf layer had a damping effect on the drainage rate from the underlying soil matrix, particularly at intermediate rainfall intensities: 30.2 or 40.4 mm h-1.

  20. Estimation of uranium forms in oceanic water

    International Nuclear Information System (INIS)

    Krylov, O.T.; Novikov, P.D.; Nesterova, M.P.


    A critical consideration is given to the notions about uranium forms in ocean water. To estimate uranium forms a model is suggested which takes into account possjble formation of complexes of uranyl ions and ocean water anions Cl - , SO 4 2- , CO 3 2- , HCO 3 - , OH - , F - . The available published data are used to estimate necessary thermodynamic stability constants of the complexes, activity coefficients and concentration of componenets. The thermodynamic calculation shows that uranium hydroxocomplex compounds UO 2 (OH) 4 2- (99.17%) and UO 2 (OH) 3 - (083%) are the most probable uranium forms in ocear water of 34.3% salinity at 25 deg C and 1 atm pressure

  1. Characteristic mega-basin water storage behavior using GRACE. (United States)

    Reager, J T; Famiglietti, James S


    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.

  2. Implications of alpha-decay for long term storage of advanced heavy water reactor fuels

    International Nuclear Information System (INIS)

    Pencer, J.; McDonald, M.H.; Roubtsov, D.; Edwards, G.W.R.


    Highlights: •Alpha decays versus storage time are calculated for examples of advanced heavy water reactor fuels. •Estimates are made for fuel swelling and helium bubble formation as a function of time. •These predictions are compared to predictions for natural uranium fuel. •Higher rates of damage are predicted for advanced heavy water reactor fuels than natural uranium. -- Abstract: The decay of actinides such as 238 Pu, results in recoil damage and helium production in spent nuclear fuels. The extent of the damage depends on storage time and spent fuel composition and has implications for the integrity of the fuels. Some advanced nuclear fuels intended for use in pressurized heavy water pressure tube reactors have high initial plutonium content and are anticipated to exhibit swelling and embrittlement, and to accumulate helium bubbles over storage times as short as hundreds of years. Calculations are performed to provide estimates of helium production and fuel swelling associated with alpha decay as a function of storage time. Significant differences are observed between predicted aging characteristics of natural uranium and the advanced fuels, including increased helium concentrations and accelerated fuel swelling in the latter. Implications of these observations for long term storage of advanced fuels are discussed.

  3. Modern Estimates of Global Water Cycle Fluxes (United States)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.


    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  4. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics (United States)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.


    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily

  5. Comparison of methods for estimating carbon dioxide storage by Sacramento's urban forest (United States)

    Elena Aguaron; E. Gregory McPherson


    Limited open-grown urban tree species biomass equations have necessitated use of forest-derived equations with diverse conclusions on the accuracy of these equations to estimate urban biomass and carbon storage. Our goal was to determine and explain variability among estimates of CO2 storage from four sets of allometric equations for the same...

  6. SECON - A tool for estimation of storage costs and storage project revenue

    International Nuclear Information System (INIS)

    Hall, O.


    The SECON model Storage ECONomics is useful for gas suppliers, storage operators, gas distributors and consumers when investigating new storage possibilities. SECON has been used within the Sydkraft group to compare cost for different types of storage and to identify the market niche for lined rock cavern (LRC) storage. In the model cost for the different storage types, salt caverns, LNG, and LRC can be compared. By using input according to market needs each storage type can be validated for a specific service e.g. peak shaving, seasonal storage or balancing. The project revenue can also be calculated. SECON includes three models for income calculation; US storage service, Trading and Avoided Supply Contract Costs. The income models calculates annual turnover, pay of time, net present value, internal rate of return and max. liquidity shortfall for the project. The SECON will facilitate sensitivity analysis both regarding cost for different services and different storage types and on the income side by using different scenarios. At the poster session SECON will be presented live and the delegates will have the opportunity to test the model. (au)

  7. Geologic Water Storage in Pre-Columbian Peru

    Energy Technology Data Exchange (ETDEWEB)

    Fairley Jr., Jerry P.


    Agriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the ''elaborated springs'' found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system ''geologic water storage'' because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipon) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.

  8. Water storage and evaporation as constituents of rainfall interception

    NARCIS (Netherlands)

    Klaassen, W; Bosveld, F; de Water, E


    Intercepted rainfall may be evaporated during or after the rain event. Intercepted rain is generally determined as the difference between rainfall measurements outside and inside the forest. Such measurements are often used to discriminate between water storage and evaporation during rain as well.

  9. A water storage adaptation in the maya lowlands. (United States)

    Scarborough, V L; Gallopin, G G


    Prehispanic water management in the Maya Lowlands emphasized collection and storage rather than the canalization and diversion accentuated in highland Mexico. Reexamination of site maps of the ancient Maya city of Tikal, Guatemala, has revealed an important, overlooked factor in Maya centralization and urban settlement organization. In a geographical zone affected by an extended dry season and away from permanent water sources, large, well-planned reservoirs provided resource control as well as political leverage.

  10. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes (United States)

    Klamerus-Iwan, Anna; Błońska, Ewa


    The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.

  11. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)


    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  12. Domestic hot water storage: Balancing thermal and sanitary performance

    International Nuclear Information System (INIS)

    Armstrong, P.; Ager, D.; Thompson, I.; McCulloch, M.


    Thermal stratification within hot water tanks maximises the availability of stored energy and facilitates optimal use of both conventional and renewable energy sources. However, stratified tanks are also associated with the proliferation of pathogenic bacteria, such as Legionella, due to the hospitable temperatures that arise during operation. Sanitary measures, aimed at homogenising the temperature distribution throughout the tank, have been proposed; such measures reduce the effective energy storage capability that is otherwise available. Here we quantify the conflict that arises between thermodynamic performance and bacterial sterilisation within 10 real world systems. Whilst perfect stratification enhances the recovery of hot water and reduces heat losses, water samples revealed significant bacterial growth attributable to stratification (P<0.01). Temperature measurements indicated that users were exposed to potentially unsanitary water as a result. De-stratifying a system to sterilise bacteria led to a 19% reduction in effective hot water storage capability. Increasing the tank size to compensate for this loss would lead to an 11% increase in energy consumed through standing heat losses. Policymakers, seeking to utilise hot water tanks as demand response assets, should consider monitoring and control systems that prevent exposures to unsanitary hot water. - Highlights: • Domestic hot water tanks are a potential demand side asset for power networks. • A preference for bacterial growth in stratified hot water tanks has been observed. • Temperatures in base of electric hot water tanks hospitable to Legionella. • Potential exposures to unsanitary water observed. • De-stratifying a tank to sterilise leads to reduced energy storage capability

  13. Estimation of the proximity of private domestic wells to underground storage tanks: Oklahoma pilot study. (United States)

    Weaver, James W; Murray, Andrew R; Kremer, Fran V


    For protecting drinking water supplies, the locations of areas with reliance on private domestic wells (hereafter referred to as "wells") and their relationship to contaminant sources need to be determined. A key resource in the U.S. was the 1990 Census where the source of domestic drinking water was a survey question. Two methods are developed to update estimates of the areal density of well use using readily accessible data. The first uses well logs reported to the states and the addition of housing units reported to the Census Bureau at the county, census tract and census block group scales. The second uses housing units reported to the Census and an estimated well use fraction. To limit the scope and because of abundant data, Oklahoma was used for a pilot project. The resulting well density estimates were consistent among spatial scales, and were statistically similar. High rates of well use were identified to the north and east of Oklahoma City, primarily in expanding cities located over a productive aquifer. In contrast, low rates of well use were identified in rural areas without public water systems and in Oklahoma's second largest city, Tulsa, each attributable to lack of suitable ground water. High densities of well use may be expected in rural areas without public water systems, expanding cities and suburbs, and legacy areas of well usage. The completeness of reported well logs was tested by counts from neighborhoods with known reliance on wells which showed reporting rates of 20% to 98%. Well densities in these neighborhoods were higher than the larger-scale estimates indicating that locally high densities typically exist within analysis units. A Monte Carlo procedure was used to determine that 27% of underground storage tanks that had at least one well within a typical distance of concern of 300m (1000ft). Published by Elsevier B.V.

  14. Transmissivity and storage coefficient estimates from slug tests, Naval Air Warfare Center, West Trenton, New Jersey (United States)

    Fiore, Alex R.


    Slug tests were conducted on 56 observation wells open to bedrock at the former Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. Aquifer transmissivity (T) and storage coefficient (S) values for most wells were estimated from slug-test data using the Cooper-Bredehoeft-Papadopulos method. Test data from three wells exhibited fast, underdamped water-level responses and were analyzed with the Butler high-K method. The range of T at NAWC was approximately 0.07 to 10,000 square feet per day. At 11 wells, water levels did not change measurably after 20 minutes following slug insertion; transmissivity at these 11 wells was estimated to be less than 0.07 square feet per day. The range of S was approximately 10-10 to 0.01, the mode being 10-10. Water-level responses for tests at three wells fit poorly to the type curves of both methods, indicating that these methods were not appropriate for adequately estimating T and S from those data.

  15. Estimating Residual Solids Volume In Underground Storage Tanks

    International Nuclear Information System (INIS)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.


    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  16. Balance hídrico ciclico y secuencial: estimación de almacenamiento de agua en el suelo Balanço hídrico cíclico e seqüencial: estimativa de armazenamento de água no solo Cyclic and sequential water balance: estimation of the available soil water storage

    Directory of Open Access Journals (Sweden)

    Durval Dourado-Neto


    empiricamente o comportamento da perda de água no solo, sem conhecer todos os atributos e suas complexas interrelações que governam esse comportamento, um modelo cossenoidal foi proposto para estimar o armazenamento de água no solo. O modelo cossenoidal foi comparado com outros modelos e conclui-se que ele é o que melhor estima o armazenamento de água no solo.The objective of this paper is to present a mechanistic model to estimate the available soil water storage to forecast yield for nonphotosensitive annual crops. In this study, concern is devoted to the movement and retention of water within the agricultural system. Crop yield depends upon the basic processes of photosynthesis and respiration. The yield also depends on crop species, crop nutrition, available energy, plant population, weeds and parasite populations, mainly. In addition, actual evapotranspiration also depends on the same attributes and processes. Therefore, the basic hypothesis of this model is that it is possible to forecast crop yield with estimates of actual evapotranspiration. Knowing empirically the process of soil water loss, but without knowing all attributes and their complex relations ruling this behavior, a cosine model was established to estimate available soil water storage. The cosine model was constructed and checked together with other models and the conclusion is that the cosine model best estimates soil water storage.

  17. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements (United States)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.


    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth

  18. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    International Nuclear Information System (INIS)

    Berry, C.J.


    In order to assess the microbial condition of foreign spent nuclear fuel storage facilities and their possible impact on SRS storage basins, twenty-three water samples were analyzed from 12 different countries. Fifteen of the water samples were analyzed and described in an earlier report (WSRC-TR-97-00365 [1]). This report describes nine additional samples received from October 1997 through March 1998. The samples include three from Australia, two from Denmark and Germany and one sample from Italy and Greece. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate-reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to all other foreign samples analyzed to date and monthly samples pulled from the receiving basin for off-site fuel (RBOF), at SRS. Of the nine samples analyzed, four samples from Italy, Germany and Greece had considerably higher microbiological activity than that historically found in the RBOF. This microbial activity included high levels of enzyme diversity and the presence of viable organisms that have been associated with microbial influenced corrosion in other environments. The three samples from Australia had microbial activities similar to that in the RBOF while the two samples from Denmark had lower levels of microbial activity. These results suggest that a significant number of the foreign storage facilities have water quality standards that allow microbial proliferation and survival

  19. Water Storage Changes using Floodplain Bathymetry from InSAR and satellite altimetry in the Congo River Basin (United States)

    Yuan, T.; Lee, H.; Jung, H. C.; Beighley, E.; Alsdorf, D. E.


    Extensive wetlands and swamps expand along the Congo River and its tributaries. These wetlands store water and attenuate flood wave during high water season. Substantial dissolved and solid substances are also transported with the water flux, influencing geochemical environment and biogeochemistry processes both in the wetlands and the river. To understand the role of the wetlands in partitioning the surface water and the accompanied material movement, water storage change is one of the most fundamental observations. The water flow through the wetlands is complex, affected by topography, vegetation resistance, and hydraulic variations. Interferometric Synthetic Aperture Radar (InSAR) has been successfully used to map relative water level changes in the vegetated wetlands with high spatial resolution. By examining interferograms generated from ALOS PALSAR along the middle reach of the Congo River floodplain, we found greater water level changes near the Congo mainstem. Integrated analysis of InSAR and Envisat altimetry data has shown that proximal floodplain with higher water level change has lower elevation during dry season. This indicates that the spatial variation of water level change in the Congo floodplain is mostly controlled by floodplain bathymetry. A method based on water level and bathymetry model is proposed to estimate water storage change. The bathymetry model is composed of (1) elevation at the intersection of the floodplain and the river and (2) floodplain bathymetry slope. We first constructed the floodplain bathymetry by selecting an Envisat altimetry profile during low water season to estimate elevation at the intersection of the floodplain and the river. Floodplain bathymetry slope was estimated using InSAR measurements. It is expected that our new method can estimate water storage change with higher temporal resolution corresponding to altimeter's repeat cycle. In addition, given the multi-decadal archive of satellite altimetry measurements

  20. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari


    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  1. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.


    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  2. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga


    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  3. Carbon footprint estimation of municipal water cycle (United States)

    Bakhshi, Ali A.


    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  4. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo


    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  5. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas (United States)

    Brakenridge, G. R.; Birkett, C. M.


    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA ( program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (, its NASA GSFC partners (, and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  6. Estimating Aquifer Storage and Recovery (ASR Regional and Local Suitability: A Case Study in Washington State, USA

    Directory of Open Access Journals (Sweden)

    Maria T. Gibson


    Full Text Available Developing aquifers as underground water supply reservoirs is an advantageous approach applicable to meeting water management objectives. Aquifer storage and recovery (ASR is a direct injection and subsequent withdrawal technology that is used to increase water supply storage through injection wells. Due to site-specific hydrogeological quantification and evaluation to assess ASR suitability, limited methods have been developed to identify suitability on regional scales that are also applicable at local scales. This paper presents an ASR site scoring system developed to qualitatively assess regional and local suitability of ASR using 9 scored metrics to determine total percent of ASR suitability, partitioned into hydrogeologic properties, operational considerations, and regulatory influences. The development and application of a qualitative water well suitability method was used to assess the potential groundwater response to injection, estimate suitability based on predesignated injection rates, and provide cumulative approximation of statewide and local storage prospects. The two methods allowed for rapid assessment of ASR suitability and its applicability to regional and local water management objectives at over 280 locations within 62 watersheds in Washington, USA. It was determined that over 50% of locations evaluated are suitable for ASR and statewide injection potential equaled 6400 million liters per day. The results also indicate current limitations and/or potential benefits of developing ASR systems at the local level with the intent of assisting local water managers in strategic water supply planning.

  7. Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation (United States)

    Girotto, Manuela


    Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.

  8. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California (United States)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.


    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  9. Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry (United States)

    Lee, H.; Yuan, T.; Jung, H. C.; Aierken, A.; Beighley, E.; Alsdorf, D. E.; Tshimanga, R.; Kim, D.


    Floodplains delay the transport of water, dissolved matter and sediments by storing water during flood peak seasons. Estimation of water storage over the floodplains is essential to understand the water balances in the fluvial systems and the role of floodplains in nutrient and sediment transport. However, spatio-temporal variations of water storages over floodplains are not well known due to their remoteness, vastness, and high temporal variability. In this study, we propose a new method to estimate absolute water storages over the floodplains by establishing relations between water depths (d) and water volumes (V) using 2-D water depth maps from the integration of Interferometric Synthetic Aperture Radar (InSAR) and altimetry measurements. We applied this method over the Congo River floodplains and modeled the d-V relation using a power function (note that d-V indicates relation between d and V, not d minus V), which revealed the cross-section geometry of the floodplains as a convex curve. Then, we combined this relation and Envisat altimetry measurements to construct time series of floodplain's absolute water storages from 2002 to 2011. Its mean annual amplitude over the floodplains ( 7,777 km2) is 3.860.59 km3 with peaks in December, which lags behind total water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) and precipitation changes from Tropical Rainfall Measuring Mission (TRMM) by about one month. The results also exhibit inter-annual variability, with maximum water volume to be 5.9 +- 0.72 km3 in the wet year of 2002 and minimum volume to be 2.01 +- 0.63 km3 in the dry year of 2005. The inter-annual variation of water storages can be explained by the changes of precipitation from TRMM.

  10. Decay ratio estimation in pressurized water reactor

    International Nuclear Information System (INIS)

    Por, G.; Runkel, J.


    The well known decay ratio (DR) from stability analysis of boiling water reactors (BWR) is estimated from the impulse response function which was evaluated using a simplified univariate autoregression method. This simplified DR called modified DR (mDR) was applied on neutron noise measurements carried out during five fuel cycles of a 1300 MWe PWR. Results show that this fast evaluation method can be used for monitoring of the growing oscillation of the neutron flux during the fuel cycles which is a major concern of utilities in PWRs, thus it can be used for estimating safety margins. (author) 17 refs.; 10 figs

  11. Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste

    International Nuclear Information System (INIS)

    DeMuth, S.


    Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author's previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B ± $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author's engineering judgment

  12. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling (United States)

    James A. Thompson; Randall K. Kolka


    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  13. Estimates of CSR Instability Thresholds for Various Storage Rings

    CERN Document Server

    Zimmermann, Frank


    We review the key predictions and conditions by several authors for the onset of longitudinal instabilities due to coherent synchrotron radiation (CSR), and evaluate them numerically for various storage rings, namely the KEKB High Energy Ring (HER) & Low Energy Ring (LER), SuperKEKB HER & LER, old and new designs of the SuperKEKB Damping Ring (DR), SuperB HER & LER, CLIC DR (2009 and 2010 design parameters), SLC DR, and ATF DR. We show that the theoretical uncertainty in the instability onset is at least at the level of 20-30% in bunch intensity. More importantly, we present some doubts about the general applicability for many of these storage rings of some commonly used formulae. To cast further light on these questions, an experiment at lower beam energy on the ATF Damping Ring is proposed.

  14. Methodology proposal for estimation of carbon storage in urban green areas

    NARCIS (Netherlands)

    Schröder, C.; Mancosu, E.; Roerink, G.J.


    Methodology proposal for estimation of carbon storage in urban green areas; final report. Subtitle: Final report of task Task 262-5-6 "Carbon sequestration in urban green infrastructure" Project manager Marie Cugny-Seguin. Date: 15-10-2013

  15. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.


    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  16. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine

    Directory of Open Access Journals (Sweden)

    H. Verbeeck


    Full Text Available Storage water use is an indirect consequence of the interplay between different meteorological drivers through their effect on water flow and water potential in trees. We studied these microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L. growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and – storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May–18 October.

    Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation and vapour pressure deficit (VPD were the main atmospheric drivers of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed. VPD was determined to be one of the main drivers of these differences. During dry atmospheric conditions (high VPD storage water use was reduced. This reduction was higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. The daily minimum tree water content was lower in periods of high VPD, but the reserves were not completely depleted after the first day of high VPD, due to refilling during the night.

    Nevertheless, the tree water content deficit was a third important factor influencing storage water use. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water content

  17. The role of reservoir storage in large-scale surface water availability analysis for Europe (United States)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.


    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  18. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget (United States)

    Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph


    Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.

  19. Estimated risk contribution for dry spent fuel storage cask

    International Nuclear Information System (INIS)

    Santos, C.; Kirk, M.T.; Abramson, L.; Guttmann, J.; Hackett, E.; Simonen, F.A.


    The U.S. Nuclear Regulatory Commission (NRC) is pursuing means to risk-inform its regulations and programs for dry storage of spent nuclear fuel. In pursuit of this objective, the NRC will develop safety goals and probabilistic risk assessments for implementing risk-informed programs. This paper provides one example method for calculating the risk of a dry spent fuel storage cask under normal and accident conditions. The example is on the HI-STORM 100 cask at a proposed site containing four thousand such casks. The paper evaluates the risk to the public by determining the likelihood a welded stainless steel container will leak. In addition, the study addresses the risk at a site where 4,000 casks may be stored until the U.S. Department of Energy accepts the casks for placement in a repository. The methods used employ the PRODIGAL computer code to assess the probability of a faulty weld on a stainless steel-welded canister. These analyses are only the initial stages of a comprehensive risk study that the NRC is performing in support of its regulatory initiatives. (author)

  20. Axial and radial water transport and internal water storage in tropical forest canopy trees. (United States)

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula. Campanello


    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  1. Land water storage from space and the geodetic infrastructure (United States)

    Cazenave, A.; Larson, K.; Wahr, J.


    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  2. Contribution of climate-driven change in continental water storage to recent sea-level rise (United States)

    Milly, P. C. D.; Cazenave, A.; Gennero, C.


    Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981–1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981–1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993–1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system. PMID:14576277

  3. Hydrological storage variations in a lake water balance, observed from multi-sensor satellite data and hydrological models. (United States)

    Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas


    Freshwater lakes and reservoirs account for 74.5% of continental water storage in surface water bodies and only 1.8% resides in rivers. Lakes and reservoirs are a key component of the continental hydrological cycle but in-situ monitoring networks are very limited either because of sparse spatial distribution of gauges or national data policy. Monitoring and predicting extreme events is very challenging in that case. In this study we demonstrate the use of optical remote sensing, satellite altimetry and the GRACE gravity field mission to monitor the lake water storage variations in the Aral Sea. Aral Sea is one of the most unfortunate examples of a large anthropogenic catastrophe. The 4th largest lake of 1960s has been decertified for more than 75% of its area due to the diversion of its primary rivers for irrigation purposes. Our study is focused on the time frame of the GRACE mission; therefore we consider changes from 2002 onwards. Continuous monthly time series of water masks from Landsat satellite data and water level from altimetry missions were derived. Monthly volumetric variations of the lake water storage were computed by intersecting a digital elevation model of the lake with respective water mask and altimetry water level. With this approach we obtained volume from two independent remote sensing methods to reduce the error in the estimated volume through least square adjustment. The resultant variations were then compared with mass variability observed by GRACE. In addition, GARCE estimates of water storage variations were compared with simulation results of the Water Gap Hydrology Model (WGHM). The different observations from all missions agree that the lake reached an absolute minimum in autumn 2009. A marked reversal of the negative trend occured in 2010 but water storage in the lake decreased again afterwards. The results reveal that water storage variations in the Aral Sea are indeed the principal, but not the only contributor to the GRACE signal of

  4. Thermal stratification in storage tanks of integrated collector storage solar water heaters

    International Nuclear Information System (INIS)

    Oshchepkov, M.Y.; Frid, S.E.


    To determine the influence of the shape of the tank, the installation angle, and the magnitude of the absorbed heat flux on thermal stratification in integrated collector-storage solar water heaters, numerical simulation of thermal convection in tanks of different shapes and same volume was carried out. Idealized two-dimensional models were studied; auto model stratification profiles were obtained at the constant heat flux. The shape of the tank, the pattern of the heat flux dynamics, the adiabatic mixing on the circulation rate and the degree of stratification were shown to have significant influence. (authors)

  5. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications (United States)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.


    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to

  6. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin (United States)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu


    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  7. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brooks, Kriston P. [Pacific Northwest National Laboratory; Tamburello, David A. [Savannah River National Laboratory


    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3).

  8. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Sprik, Sam; Tamburello, David; Thornton, Matthew


    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.

  9. Experimental and theoretic investigations of thermal behavior of a seasonal water pit heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Chatzidiakos, Angelos

    Seasonal heat storages are considered essential for district heating systems because they offer flexibility for the system to integrate different fluctuating renewable energy sources. Water pit thermal storages (PTES) have been successfully implemented in solar district heating plants in Denmark....... Thermal behavior of a 75,000 m3 water pit heat storage in Marstal solar heating plant was investigated experimentally and numerically. Temperatures at different levels of the water pit storage and temperatures at different depths of the ground around the storage were monitored and analyzed. A simulation...... model of the water pit storage is built to investigate development of temperatures in and around the storage. The calculated temperatures are compared to the monitored temperatures with an aim to validate the simulation model. Thermal stratification in the water pit heat storage and its interaction...

  10. Relationship of regional water quality to aquifer thermal energy storage

    International Nuclear Information System (INIS)

    Allen, R.D.; Raymond, J.R.


    Aquifer thermal energy storage (ATES) involves injection and withdrawal of temperature-conditioned water into and from a permeable water-bearing formation. The groundwater quality and associated geological characteristics were assessed as they may affect the feasibility of ATES system development in any hydrologic region. Seven physical and chemical mechanisms may decrease system efficiency: particulate plugging, chemical precipitation, clay mineral dispersion, piping corrosion, aquifer disaggregation, mineral oxidation, and the proliferation of biota. Factors affecting groundwater quality are pressure, temperature, pH, ion exchange, evaporation/transpiration, and commingling with diverse waters. Modeling with the MINTEQ code showed three potential reactions: precipitation of calcium carbonate at raised temperatures; solution of silica at raised temperature followed by precipitation at reduced temperatures; and oxidation/precipitation of iron compounds. Low concentrations of solutes are generally favorable for ATES. Near-surface waters in high precipitation regions are low in salinity. Groundwater recharged from fresh surface waters also has reduced salinity. Rocks least likely to react with groundwater are siliceous sandstones, regoliths, and metamorphic rocks. On the basis of known aquifer hydrology, ten US water resource regions are candidates for selected exploration and development, all characterized by extensive silica-rich aquifers

  11. Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage

    NARCIS (Netherlands)

    Yan, C.; Shi, W.; Li, X.; Zhao, Y.


    Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not

  12. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. (United States)

    Kurek, Wojciech; Ostfeld, Avi


    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Estimating soil water evaporation using radar measurements (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.


    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  14. Evaluation of the CDC safe water-storage intervention to improve ...

    African Journals Online (AJOL)

    Evaluation of the CDC safe water-storage intervention to improve the microbiological quality of point-of-use drinking water in rural communities in South Africa. ... use of safe household water-storage devices and water treatment processes and improvement of hygiene and sanitation practices in these rural households.

  15. Assessment of economically optimal water management and geospatial potential for large-scale water storage (United States)

    Weerasinghe, Harshi; Schneider, Uwe A.


    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms

  16. Modelling rainfall interception by forests: a new method for estimating the canopy storage capacity (United States)

    Pereira, Fernando; Valente, Fernanda; Nóbrega, Cristina


    Evaporation of rainfall intercepted by forests is usually an important part of a catchment water balance. Recognizing the importance of interception loss, several models of the process have been developed. A key parameter of these models is the canopy storage capacity (S), commonly estimated by the so-called Leyton method. However, this method is somewhat subjective in the selection of the storms used to derive S, which is particularly critical when throughfall is highly variable in space. To overcome these problems, a new method for estimating S was proposed in 2009 by Pereira et al. (Agricultural and Forest Meteorology, 149: 680-688), which uses information from a larger number of storms, is less sensitive to throughfall spatial variability and is consistent with the formulation of the two most widely used rainfall interception models, Gash analytical model and Rutter model. However, this method has a drawback: it does not account for stemflow (Sf). To allow a wider use of this methodology, we propose now a revised version which makes the estimation of S independent of the importance of stemflow. For the application of this new version we only need to establish a linear regression of throughfall vs. gross rainfall using data from all storms large enough to saturate the canopy. Two of the parameters used by the Gash and the Rutter models, pd (the drainage partitioning coefficient) and S, are then derived from the regression coefficients: pd is firstly estimated allowing then the derivation of S but, if Sf is not considered, S can be estimated making pd= 0. This new method was tested using data from a eucalyptus plantation, a maritime pine forest and a traditional olive grove, all located in Central Portugal. For both the eucalyptus and the pine forests pd and S estimated by this new approach were comparable to the values derived in previous studies using the standard procedures. In the case of the traditional olive grove, the estimates obtained by this methodology

  17. Experimentation of a Solar Water Heater with Integrated Storage Tank

    International Nuclear Information System (INIS)

    Elhmidi, I; Frikha, N; Chaouchi, B; Gabsi, S


    An integrated collector storage (ICS) solar water heater was constructed in 2004 and studied its optical and thermal performance. It was revealed that it has some thermal shortcomings of thermal performances. The ICS system consists of one cylindrical horizontal tank properly mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective was to delimit the causes of these deficiencies and trying to diagnose them. A rigorous experimentation of the solar water heater has been done over its daily energetic output as well as the evolution of the nocturnal thermal losses. In fact, three successive days, including nights, of operation have permitted to obtain diagrams describing the variations of mean temperature in the tank and the thermal loss coefficient during night of our installation. The experimental results, compared with those obtained by simulation, showed a perfecting of thermal performances of system which approach from those of other models introduced on the international market

  18. HDR flood-water storage-tank modal vibration tests

    International Nuclear Information System (INIS)

    Gorman, V.W.; Thinnes, G.L.


    Modal vibration tests were conducted by EG and G Idaho on two vessels located at West Germany's Heissdampfreaktor (HDR) facility which is 25 kilometers east of Frankfurt. The tests were performed during May and June 1982 for the US Nuclear Regulatory Commission (NRC) as part of their cooperative effort with Kernforschungszentrum Karlsruhe (KfK) of West Germany. The primary purpose for performing this task was to determine modal properties (frequencies, mode shapes and associated damping ratios) in order to eventually provide guidelines for standards development by the NRC in modeling similar vessels. One of the vessels tested was a flood water storage tank (FWST) for empty, half full and full water conditions. The FWST was excited randomly with an electromagnetic shaker and by impulsive hammer blows. Excitation or input forces together with measured vessel responses were processed by a digital modal analyzer and stored on magnetic disks for subsequent evaluation

  19. Climate Change Predominantly Caused U.S. Soil Water Storage Decline from 2003 to 2014 (United States)

    Zhang, X.; Ma, C.; Song, X.; Gao, L.; Liu, M.; Xu, X.


    The water storage in soils is a fundamental resource for natural ecosystems and human society, while it is highly variable due to its complicated controlling factors in a changing climate; therefore, understanding water storage variation and its controlling factors is essential for sustaining human society, which relies on water resources. Although we are confident for water availability at global scale, the regional-scale water storage and its controlling factors are not fully understood. A number of researchers have reported that water resources are expected to diminish as climate continues warming in the 21stcentury, which will further influence human and ecological systems. However, few studies to date have fully quantitatively examined the water balances and its individual controlling mechanisms in the conterminous US. In this study, we integrated the time-series data of water storage and evapotranspiration derived from satellite imageries, regional meteorological data, and social-economic water consumption, to quantify water storage dynamics and its controlling factors across the conterminous US from 2003 to 2014. The water storage decline was found in majority of conterminous US, with the largest decline in southwestern US. Net atmospheric water input, which is difference between precipitation and evapotranspiration, could explain more than 50% of the inter-annual variation of water storage variation in majority of US with minor contributions from human water consumption. Climate change, expressed as precipitation decreases and warming, made dominant contribution to the water storage decline in the conterminous U.S. from 2003 to 2014.

  20. Dynamic modeling of stratification for chilled water storage tank

    International Nuclear Information System (INIS)

    Osman, Kahar; Al Khaireed, Syed Muhammad Nasrul; Ariffin, Mohd Kamal; Senawi, Mohd Yusoff


    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  1. Electrochemical corrosion protection of storage water heaters in the building services; Elektrochemischer Korrosionsschutz von Speicher-Wassererwaermern in der Gebaeudetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Bytyn, Wilfried [MAGONTEC GmbH, Bottrop (Germany)


    Storage water heaters currently experience a new consideration as a central thermal energy storage with an energy buffer characteristics. The contribution under consideration presents the principles and conditions of use for the cathodic corrosion protection of storage water heaters.

  2. Alternatives for water basin spent fuel storage: executive summary and comparative evaluation

    International Nuclear Information System (INIS)

    Viebrock, J.M.


    A five part report identifies and evaluates alternatives to conventional methods for water basin storage of irradiated light water reactor fuel assemblies (spent fuel). A recommendation is made for development or further evaluation of one attractive alternative: Proceed to develop fuel disassembly with subsequent high density storage of fuel pins (pin storage). The storage alternatives were evaluated for emplacement at reactor, in existing away-from-reactor storage facilities and in new away-from-reactor facilities. In the course of the study, the work effort necessarily extended beyond the pool wall in scope to properly assess the affects of storage alternatives on AFT systems

  3. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren


    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  4. Relationship of regional water quality to aquifer thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.


    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  5. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA


    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  6. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study

    Directory of Open Access Journals (Sweden)

    Aya Tafech


    Full Text Available In this paper, we scrutinized the energy storage options used in mitigation of the intermittent nature of renewable energy resources for desalination process. In off-grid islands and remote areas, renewable energy is often combined with appropriate energy storage technologies (ESTs to provide a consistent and reliable electric power source. We demonstrated that in developing a renewable energy scheme for desalination purposes, product (water storage is a more reliable and techno-economic solution. For a King Island (Southeast Australia case-study, electric power production from renewable energy sources was sized under transient conditions to meet the dynamic demand of freshwater throughout the year. Among four proposed scenarios, we found the most economic option by sizing a 13 MW solar photovoltaic (PV field to instantly run a proportional RO desalination plant and generate immediate freshwater in diurnal times without the need for energy storage. The excess generated water was stored in 4 × 50 ML (mega liter storage tanks to meet the load in those solar deficit times. It was also demonstrated that integrating well-sized solar PV with wind power production shows more consistent energy/water profiles that harmonize the transient nature of energy sources with the water consumption dynamics, but that would have trivial economic penalties caused by larger desalination and water storage capacities.

  7. Water Storage, Mixing and Transit Times During a Multiyear Drought. (United States)

    Van der Velde, Y.; Visser, A.; Thaw, M.; Safeeq, M.


    From 2012 to 2016, a five year intensive drought occurred in the Californian Sierra Nevada. We use this drought period as an opportunity to investigate how catchment water storage, mixing and transit times changes from wet to dry conditions using long term datasets of river discharge, evapotranspiration, water quality, and multiple cosmogenic radioactive isotopes. Characteristic features of the test catchment (4.6 km2 , altitude 1660-2117 m) include a thick (>5m) unsaturated zone in deeply weathered granite mountain soils, snow melt and events of high intensity rainfall, dry summers and numerous wetland meadows along the stream. Our data and model analysis suggest that under drought conditions, river flow predominantly consist of deep groundwater tapped by deeply incised sections of the stream, while the wetlands hold on to their water just below the root system of its shallow rooting vegetation. In contrast, during wet periods, most runoff is generated on the flat riparian wetland meadows, while the regional groundwater system slowly refills itself as water makes its way through the thick unsaturated zones. Antecedent wet or dry years play an crucial role as antecedent wet years cause a substantial regional groundwater flow towards the riparian wetlands, filling up the riparian wetlands and yielding a much stronger discharge response of the wetlands to rainfall events than under antecedent dry years This interaction between the regional groundwater system and the local wetland systems weakens as the drought progresses and regional groundwater flow to the wetlands lessens. Although, due to the wet events in 2016-2017, the catchment fills up rapidly to pre-drought conditions, we show that water transit times and therefore likely the water quality will contain drought signs for several years to come. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- XXXXXX

  8. Categorization of failed and damaged spent LWR [light-water reactor] fuel currently in storage

    International Nuclear Information System (INIS)

    Bailey, W.J.


    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs

  9. 77 FR 42486 - Intent To Prepare an Integrated Water Supply Storage Reallocation Report; Environmental Impact... (United States)


    ... Water Supply Storage Reallocation Report; Environmental Impact Statement for Missouri River Municipal... Policy Act of 1969 (NEPA), as amended and the 1958 Water Supply Act, as amended, the U.S. Army Corps of... purpose of the study is to determine if changes to the current allocation of storage for M&I water supply...

  10. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.


    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  11. Criticality evaluations of scrambled fuel in water basin storage

    International Nuclear Information System (INIS)

    Fast, E.


    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections

  12. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour


    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  13. Comparative estimates of risks arising from storage of intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Moore, D.


    Estimates are presented of risks arising from accidents occuring during storage of nine types of conditioned intermediate level waste. Additional data are introduced relating to the risks from accidents affecting raw waste, and to risks associated with the occupational doses received during normal operation of a waste store. Risks in all three categories are shown to be extremely small. (author)

  14. Generic environmental impact statement on handling and storage of spent light water power reactor fuel. Appendices

    International Nuclear Information System (INIS)


    Detailed appendices are included with the following titles: light water reactor fuel cycle, present practice, model 1000MW(e) coal-fired power plant, increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data (1976-2000), characteristics of nuclear fuel, and ''away-from-reactor'' storage concept

  15. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)


    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  16. Radiolysis of water confined in zeolites 4A: application to tritiated water storage

    International Nuclear Information System (INIS)

    Frances, Laetitia


    Self-radiolysis of tritiated water (HTO) adsorbed in zeolites 4A shows differences compared to free-bulk water radiolysis. We studied the roles of zeolites on that. We took special care with the influence of water loading ratio. We first exposed zeolites to external irradiations, reproducing selectively the dose or the dose rate measured in the case of tritiated water storage. This strategy enables the characterising of the samples after their irradiation since they are not contaminated by tritium. Those experiments revealed the high stability of zeolites 4A. We used a second approach which consisted in studying the precise case of self-radiolysis of tritiated water, in order to obtain radiolytic yields representative of HTO storage. The comparison between the quantities of gas released when zeolites are exposed to the three different sources that we used (electrons accelerated at 10 MeV, γ released by radioactive decay of 137 Cs and β - released by radioactive decay of tritium) revealed the strong influence of the dose rate. Moreover, whatever the irradiation source, zeolites 4A first favour hydrogen release and secondarily oxygen release too. On the contrary, zeolites favour next a recombination between those radiolytic products, with a dependence on their water loading ratio. Several processes are discussed to explain such a phenomena, not noticed during the free-bulk water radiolysis. (author) [fr

  17. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    DEFF Research Database (Denmark)

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.


    estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been...

  18. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.


    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  19. Terrestrial Water Storage and Vegetation Resilience to Drought (United States)

    Meyer, V.; Reager, J. T., II; Konings, A. G.


    The expected increased occurrences of hydrologic extreme events such as droughts in the coming decades motivates studies to better understand and predict the response of vegetation to such extreme conditions. Previous studies have addressed vegetation resilience to drought, defined as its ability to recover from a perturbation (Hirota et al., 2011; Vicente-Serrano et al., 2012), but appear to only focus on precipitation and a couple of vegetation indices, hence lacking a key element: terrestrial water storage (TWS). In this study, we combine and compare multiple remotely-sensed hydro-ecological datasets providing information on climatic and hydrological conditions (Tropical Rainfall Measuring Mission (TRMM), Gravity Recovery and Climate Experiment (GRACE)) and indices characterizing the state of the vegetation (vegetation water content using Vegetation Optical Depth (VOD) from SMAP (Soil Moisture Active and Passive), Gross Primary Production (GPP) from FluxCom and Specific Fluorescence Intensity (SFI, from GOSat)) to assess the ability of vegetation to face and recover from droughts across the globe. Our results suggest that GRACE hydrological data bridge the knowledge gap between precipitation deficit and vegetation response. All products are aggregated at a 0.5º spatial resolution and a monthly temporal resolution to match the GRACE Mascon product. Despite these coarse spatiotemporal resolutions, we find that the relationship between existing remotely-sensed eco-hydrologic data varies spatially, both in terms of strength of relationship and time lag, showing the response time of vegetation characteristics to hydrological changes and highlighting the role of water storage. A special attention is given to the Amazon river basin, where two well documented droughts occurred in 2005 and 2010, and where a more recent drought occurred in 2015/2016. References : Hirota, Marina, et al. "Global resilience of tropical forest and savanna to critical transitions." Science

  20. Experimental test of a hot water storage system including a macro-encapsulated phase change material (PCM) (United States)

    Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.


    Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.

  1. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data]. (United States)

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang


    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  2. Channel Storage change: a new remote sensed surface water measurement (United States)

    Coss, S. P.; Durand, M. T.; Yi, Y.; Guo, Q.; Shum, C. K.; Allen, G. H.; Pavelsky, T.


    Here we present river channel storage change (CSC) measurements for 17 major world rivers from 2002-2016. We combined interpolated daily 1 km resolution Global River Radar Altimeter Time Series (GRRATS) river surface elevation data with static widths from the global river Global River Widths from Landsat (GRWL) dataset, to generate preliminary channel storage measurements. CSC is a previously unmeasured component of the terrestrial water balance It is a fundamental Earth science quantity with global bearing on floodplains, ecology, and geochemistry. CSC calculations require only remote sensed data, making them an ideal tool for studying remote regions where hydrological data is not easily accessible. CSC is uniquely suited to determine the role of hydrologic and hydraulic controls in basins with strong seasonal cycles (freeze-up and break-up). The cumulative CSC anomaly can impart spatial details that discharge measurements cannot. With this new measurement, we may be able to determine critical hydrological and hydraulic controls on rapidly changing systems like Arctic rivers. Results for Mississippi River indicate that peak CSC anomaly was the highest in 2011 (12.6 km3) and minimum CSC anomaly was in 2012 (-12.2 km3). Peak CSC has most frequently occurs in May (5 years), but has come as late in the year as July, and as early as January. Results for the Yukon River indicate that peak CSC anomaly was the highest in 2013 (13.9 km3) and minimum CSC anomaly was in 2010 (-14.2 km3). Peak CSC has most frequently come in early to mid-June (4-18), but has occurred in May (19-31) four years in the study period (three of the last 6 years) and once on April 30th.

  3. Large-Scale Total Water Storage and Water Flux Changes over the Arid and Semiarid Parts of the Middle East from GRACE and Reanalysis Products (United States)

    Forootan, E.; Safari, A.; Mostafaie, A.; Schumacher, M.; Delavar, M.; Awange, J. L.


    Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris-Euphrates river basin and Iran's six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003-2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to -5.2 and -2.6 (mm/month/year) over 2003-2013, respectively, for the Urmia and Tigris-Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of -11.1, -6.6, -6.1, -4.8, -4.7, -3.8, and -1.2 (mm/year) for Urmia, Tigris-Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar -8.6 (mm/year) and Sarakhs -7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris-Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.

  4. Evaluating water storage variations in the MENA region using GRACE satellite data

    KAUST Repository

    Lopez, Oliver


    Terrestrial water storage (TWS) variations over large river basins can be derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites. These signals are useful for determining accurate estimates of water storage and fluxes over areas covering a minimum of 150,000 km2 (length scales of a few hundred kilometers) and thus prove to be a valuable tool for regional water resources management, particularly for areas with a lack of in-situ data availability or inconsistent monitoring, such as the Middle East and North Africa (MENA) region. This already stressed arid region is particularly vulnerable to climate change and overdraft of its non-renewable freshwater sources, and thus direction in managing its resources is a valuable aid. An inter-comparison of different GRACE-derived TWS products was done in order to provide a quantitative assessment on their uncertainty and their utility for diagnosing spatio-temporal variability in water storage over the MENA region. Different processing approaches for the inter-satellite tracking data from the GRACE mission have resulted in the development of TWS products, with resolutions in time from 10 days to 1 month and in space from 0.5 to 1 degree global gridded data, while some of them use input from land surface models in order to restore the original signal amplitudes. These processing differences and the difficulties in recovering the mass change signals over arid regions will be addressed. Output from the different products will be evaluated and compared over basins inside the MENA region, and compared to output from land surface models.

  5. Evaluating Water Storage Variations in the MENA region using GRACE Satellite Data (United States)

    Lopez, O.; Houborg, R.; McCabe, M. F.


    Terrestrial water storage (TWS) variations over large river basins can be derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites. These signals are useful for determining accurate estimates of water storage and fluxes over areas covering a minimum of 150,000 km2 (length scales of a few hundred kilometers) and thus prove to be a valuable tool for regional water resources management, particularly for areas with a lack of in-situ data availability or inconsistent monitoring, such as the Middle East and North Africa (MENA) region. This already stressed arid region is particularly vulnerable to climate change and overdraft of its non-renewable freshwater sources, and thus direction in managing its resources is a valuable aid. An inter-comparison of different GRACE-derived TWS products was done in order to provide a quantitative assessment on their uncertainty and their utility for diagnosing spatio-temporal variability in water storage over the MENA region. Different processing approaches for the inter-satellite tracking data from the GRACE mission have resulted in the development of TWS products, with resolutions in time from 10 days to 1 month and in space from 0.5 to 1 degree global gridded data, while some of them use input from land surface models in order to restore the original signal amplitudes. These processing differences and the difficulties in recovering the mass change signals over arid regions will be addressed. Output from the different products will be evaluated and compared over basins inside the MENA region, and compared to output from land surface models.

  6. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa


    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...

  7. Seasonal water storage, stress modulation and California seismicity (United States)

    Johnson, C. W.; Burgmann, R.; Fu, Y.


    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Depending on fault geometry, the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze 9 years of M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault-normal and fault-shear stresses for the focal geometry. Our results reveal 10% more earthquakes occurring during slip-encouraging fault-shear stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by stress changes on the order of 1-5 kPa. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles.

  8. Shield requirement estimation for pin storage room in fuel fabrication plant

    International Nuclear Information System (INIS)

    Shanthi, M.M.; Keshavamurthy, R.S.; Sivashankaran, G.


    Fast Reactor Fuel Cycle Facility (FRFCF) is an upcoming project in Kalpakkam. It has the facility to recycle the fuel from PFBR. It is an integrated facility, consists of fuel reprocessing plant, fuel fabrication plant (FFP), core subassembly plant, Reprocessed Uranium plant (RUP) and waste management plant. The spent fuel from PFBR would be reprocessed in fuel reprocessing plant. The reprocessed fuel material would be sent to fuel fabrication plant. The main activity of fuel fabrication plant is the production of MOX fuel pins. The fuel fabrication plant has a fuel pin storage room. The shield requirement for the pin storage room has been estimated by Monte Carlo method. (author)

  9. Cokriging model for estimation of water table elevation

    International Nuclear Information System (INIS)

    Hoeksema, R.J.; Clapp, R.B.; Thomas, A.L.; Hunley, A.E.; Farrow, N.D.; Dearstone, K.C.


    In geological settings where the water table is a subdued replica of the ground surface, cokriging can be used to estimate the water table elevation at unsampled locations on the basis of values of water table elevation and ground surface elevation measured at wells and at points along flowing streams. The ground surface elevation at the estimation point must also be determined. In the proposed method, separate models are generated for the spatial variability of the water table and ground surface elevation and for the dependence between these variables. After the models have been validated, cokriging or minimum variance unbiased estimation is used to obtain the estimated water table elevations and their estimation variances. For the Pits and Trenches area (formerly a liquid radioactive waste disposal facility) near Oak Ridge National Laboratory, water table estimation along a linear section, both with and without the inclusion of ground surface elevation as a statistical predictor, illustrate the advantages of the cokriging model

  10. Weighty data: importance information influences estimated weight of digital information storage devices.

    Directory of Open Access Journals (Sweden)

    Iris eSchneider


    Full Text Available Previous work has suggested that perceived importance of an object influences estimates of its weight. Specifically, important books were estimated to be heavier than non-important books. However, the experimental set-up of these studies may have suffered from a potential confound and findings may be confined to books only. Addressing this, we investigate the effect of importance on weight estimates by examining whether the importance of information stored on a data storage device (USB-stick or portable hard drive can alter weight estimates. Results show that people thinking a USB-stick holds important tax information (vs. expired vs. no information estimate it to be heavier (Experiment 1 compared to people who do not. Similarly, people who are told a portable hard-drive holds personally relevant information (vs. irrelevant, also estimate the drive to be heavier (Experiment 2a and 2b. The current work shows that importance influences weight perceptions beyond specific objects.

  11. Assimilating GRACE terrestrial water storage data into a conceptual hydrology model for the River Rhine (United States)

    Widiastuti, E.; Steele-Dunne, S. C.; Gunter, B.; Weerts, A.; van de Giesen, N.


    Terrestrial water storage (TWS) is a key component of the terrestrial and global hydrological cycles, and plays a major role in the Earth’s climate. The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission provided the first space-based dataset of TWS variations, albeit with coarse resolution and limited accuracy. Here, we examine the value of assimilating GRACE observations into a well-calibrated conceptual hydrology model of the Rhine river basin. In this study, the ensemble Kalman filter (EnKF) and smoother (EnKS) were applied to assimilate the GRACE TWS variation data into the HBV-96 rainfall run-off model, from February 2003 to December 2006. Two GRACE datasets were used, the DMT-1 models produced at TU Delft, and the CSR-RL04 models produced by UT-Austin . Each center uses its own data processing and filtering methods, yielding two different estimates of TWS variations and therefore two sets of assimilated TWS estimates. To validate the results, the model estimated discharge after the data assimilation was compared with measured discharge at several stations. As expected, the updated TWS was generally somewhere between the modeled and observed TWS in both experiments and the variance was also lower than both the prior error covariance and the assumed GRACE observation error. However, the impact on the discharge was found to depend heavily on the assimilation strategy used, in particular on how the TWS increments were applied to the individual storage terms of the hydrology model.

  12. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  13. Energy optimization through probabilistic annual forecast water release technique for major storage hydroelectric reservoir

    International Nuclear Information System (INIS)

    Abdul Bahari Othman; Mohd Zamri Yusoff


    One of the important decisions to be made by the management of hydroelectric power plant associated with major storage reservoir is to determine the best turbine water release decision for the next financial year. The water release decision enables firm energy generated estimation for the coming financial year to be done. This task is usually a simple and straightforward task provided that the amount of turbine water release is known. The more challenging task is to determine the best water release decision that is able to resolve the two conflicting operational objectives which are minimizing the drop of turbine gross head and maximizing upper reserve margin of the reservoir. Most techniques from literature emphasize on utilizing the statistical simulations approach. Markovians models, for example, are a class of statistical model that utilizes the past and the present system states as a basis for predicting the future [1]. This paper illustrates that rigorous solution criterion can be mathematically proven to resolve those two conflicting operational objectives. Thus, best water release decision that maximizes potential energy for the prevailing natural inflow is met. It is shown that the annual water release decision shall be made in such a manner that annual return inflow that has return frequency smaller than critical return frequency (f c ) should not be considered. This criterion enables target turbine gross head to be set to the well-defined elevation. In the other words, upper storage margin of the reservoir shall be made available to capture magnitude of future inflow that has return frequency greater than or equal to f c. A case study is shown to demonstrate practical application of the derived mathematical formulas

  14. Estimating the Determinants of Residential Water Demand in Italy


    Giulia Romano; Nicola Salvati; Andrea Guerrini


    The aim of this study was to estimate the determinants of residential water demand for chief towns of every Italian province, in the period 2007–2009, using the linear mixed-effects model estimated with the restricted-maximum-likelihood method. Results confirmed that the applied tariff had a negative effect on residential water consumption and that it was a relevant driver of domestic water consumption. Moreover, income per capita had a positive effect on water consumption. Among measured cli...

  15. Design and operation problems related to water curtain system for underground water-sealed oil storage caverns

    Directory of Open Access Journals (Sweden)

    Zhongkui Li


    Full Text Available The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years' experiences obtained from the first large-scale (millions of cubic meters underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles

  16. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.


    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  17. Estimates of Forest Biomass Carbon Storage in Liaoning Province of Northeast China: A Review and Assessment (United States)

    Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J.; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin


    Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations. PMID:24586881

  18. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    Energy Technology Data Exchange (ETDEWEB)



    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  19. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    International Nuclear Information System (INIS)


    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information

  20. Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland

    Directory of Open Access Journals (Sweden)

    J. Palmtag


    Full Text Available Soils in the northern high latitudes are a key component in the global carbon cycle, with potential feedback on climate. This study aims to improve the previous soil organic carbon (SOC and total nitrogen (TN storage estimates for the Zackenberg area (NE Greenland that were based on a land cover classification (LCC approach, by using geomorphological upscaling. In addition, novel organic carbon (OC estimates for deeper alluvial and deltaic deposits (down to 300 cm depth are presented. We hypothesise that landforms will better represent the long-term slope and depositional processes that result in deep SOC burial in this type of mountain permafrost environments. The updated mean SOC storage for the 0–100 cm soil depth is 4.8 kg C m−2, which is 42 % lower than the previous estimate of 8.3 kg C m−2 based on land cover upscaling. Similarly, the mean soil TN storage in the 0–100 cm depth decreased with 44 % from 0.50 kg (± 0.1 CI to 0.28 (±0.1 CI kg TN m−2. We ascribe the differences to a previous areal overestimate of SOC- and TN-rich vegetated land cover classes. The landform-based approach more correctly constrains the depositional areas in alluvial fans and deltas with high SOC and TN storage. These are also areas of deep carbon storage with an additional 2.4 kg C m−2 in the 100–300 cm depth interval. This research emphasises the need to consider geomorphology when assessing SOC pools in mountain permafrost landscapes.

  1. Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland (United States)

    Palmtag, Juri; Cable, Stefanie; Christiansen, Hanne H.; Hugelius, Gustaf; Kuhry, Peter


    Soils in the northern high latitudes are a key component in the global carbon cycle, with potential feedback on climate. This study aims to improve the previous soil organic carbon (SOC) and total nitrogen (TN) storage estimates for the Zackenberg area (NE Greenland) that were based on a land cover classification (LCC) approach, by using geomorphological upscaling. In addition, novel organic carbon (OC) estimates for deeper alluvial and deltaic deposits (down to 300 cm depth) are presented. We hypothesise that landforms will better represent the long-term slope and depositional processes that result in deep SOC burial in this type of mountain permafrost environments. The updated mean SOC storage for the 0-100 cm soil depth is 4.8 kg C m-2, which is 42 % lower than the previous estimate of 8.3 kg C m-2 based on land cover upscaling. Similarly, the mean soil TN storage in the 0-100 cm depth decreased with 44 % from 0.50 kg (± 0.1 CI) to 0.28 (±0.1 CI) kg TN m-2. We ascribe the differences to a previous areal overestimate of SOC- and TN-rich vegetated land cover classes. The landform-based approach more correctly constrains the depositional areas in alluvial fans and deltas with high SOC and TN storage. These are also areas of deep carbon storage with an additional 2.4 kg C m-2 in the 100-300 cm depth interval. This research emphasises the need to consider geomorphology when assessing SOC pools in mountain permafrost landscapes.

  2. Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin

    Directory of Open Access Journals (Sweden)

    Fabrice Papa


    New hydrological insights: Basin-scale monthly SWS variations for the period 2003–2007 show a mean annual amplitude of ∼410 km3, contributing to about 45% of the Gravity Recovery And Climate Experiment (GRACE-derived total water storage variations (TWS. During the drought-like conditions in 2006, we estimate that the SWS deficit over the entire GB basin in July–August–September was about 30% as compared to other years. The SWS variations are then used to decompose the GB GRACE-derived TWS and isolate the variations of SSWS whose mean annual amplitude is estimated to be ∼550 km3. This new dataset of water storage variations represent an unprecedented source of information for hydrological and climate modeling studies of the ISC.

  3. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths (United States)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.


    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  4. Estimation of Potential Carbon Dioxide Storage Capacities of Onshore Sedimentary Basins in Republic of Korea (United States)

    Park, S.; Kim, J.; Lee, Y.


    The potential carbon dioxide storage capacities of the five main onshore sedimentary basins (Chungnam, Gyeongsang, Honam, Mungyeong, and Taebaeksan Basins) in Republic of Korea are estimated based on the methods suggested by the United States National Energy Technology Laboratory (NETL). The target geologic formations considered for geologic storage of carbon dioxide in the sedimentary basins are sandstone and coal beds. The density of carbon dioxide is set equal to 446.4 kg/m3. The adsorption capacity and density of coal (anthracite) are set equal to 2.71 × 10-2 kg/kg and 1.82 × 103 kg/m3, respectively. The average storage efficiency factors for sandstone and coal are set equal to 2.5% and 34.0%, respectively. The Chungnam Basin has the sandstone volume of 72 km3 and the coal volume of 1.24 km3. The average porosity of sandstone in the Chungnam Basin is 3.8%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Chungnam Basin are estimated to be 31 Mton and 21 Mton, respectively. The Gyeongsang Basin has the sandstone volume of 1,960 km3. The average porosity of sandstone in the Gyeongsang Basin is 4.6%. As a result, the potential carbon dioxide storage capacity of sandstone in the Gyeongsang Basin is estimated to be 1,011 Mton. The Honam Basin has the sandstone volume of 8 km3 and the coal volume of 0.27 km3. The average porosity of sandstone in the Honam Basin is 1.9%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Honam Basin are estimated to be 2 Mton and 5 Mton, respectively. The Mungyeong Basin has the sandstone volume of 60 km3 and the coal volume of 0.66 km3. The average porosity of sandstone in the Mungyeong Basin is 2.0%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Mungyeong Basin are estimated to be 13 Mton and 11 Mton, respectively. The Taebaeksan Basin has the sandstone volume of 71 km3 and the coal volume of 0.73 km3. The

  5. Climate model biases in seasonality of continental water storage revealed by satellite gravimetry (United States)

    Swenson, Sean; Milly, P.C.D.


    Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low latitudes. Seasonal extrema of low‐latitude, hemispheric storage generally occur too early in the models, and model‐specific errors in amplitude of the low‐latitude annual variations are substantial. These errors are potentially explicable in terms of neglected or suboptimally parameterized water stores in the land models and precipitation biases in the climate models.

  6. The effect of plant water storage on water fluxes within the coupled soil-plant system. (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G


    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Evaluating radon loss from water during storage in standard PET, bio-based PET, and PLA bottles

    International Nuclear Information System (INIS)

    Lucchetti, Carlo; De Simone, Gabriele; Galli, Gianfranco; Tuccimei, Paola


    Polyethylene terephthalate (PET) and polylactic acid (PLA) bottles were tested to evaluate radon loss from water during 15 days of storage. PET bottles (lower surface/volume-ratio vials) lost 0.4–7.1% of initial radon, whereas PLA bottles lost 3.7% of it. PET bottles with volume of 0.5 L, lower surface/weight ratio, and hence higher thickness display proportionally reduced radon loss. Corrections for dissolved radium are needed during analyses. Formulas for calculating degassing efficiency and water interference on electrostatic collections are developed. - Highlights: • Radon loss from water during storage in polyethylene terephthalate (PET) and polylactic acid (PLA) bottles was evaluated. • Surface/volume ratio and thickness of plastic materials were studied. • A correction for dissolved radium concentration was applied to estimate gas loss. • Proper corrections for degassing efficiency of aerators were developed. • The interference of H 2 O on radon daughter electrostatic collection was quantified.

  8. Carbon storage estimation of main forestry ecosystems in Northwest Yunnan Province using remote sensing data (United States)

    Wang, Jinliang; Wang, Xiaohua; Yue, Cairong; Xu, Tian-shu; Cheng, Pengfei


    Estimating regional forest organic carbon pool has became a hot issue in the study of forest ecosystem carbon cycle. The forest ecosystem in Shangri-La County, Northwest Yunnan Province, are well preserved, and the area of Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis amounts to 80% of the total arboreal forest area in Shangri-La County. Based on the field measurements, remote sensing data and GIS analysis, three models were established for carbon storage estimation. The remote sensing information model with the highest accuracy were used to calculate the carbon storages of the four main forest ecosystems. The results showed: (1) the total carbon storage of the four forest ecosystems in Shangri-La is 302.984 TgC, in which tree layer, shrub layer, herb layer, litter layer, soil layer are 60.196TgC, 5.433TgC, 1.080TgC, 3.582TgC and 232.692TgC, accounting for 19.87%, 1.79%, 0.36%, 1.18%, 76.80% of the total carbon storage respectively. (2)The order of the carbon storage from high to low is soil layer, tree layer, shrub layer, litter layer and herb layer respectively for the four main forest ecosystems. (3)The total average carbon density of the four main forest ecosystems is 403.480 t/hm2, and the carbon densities of the Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis are 576.889 t/hm2, 326.947 t/hm2, 279.993 t/hm2 and 255.792 t/hm2 respectively.

  9. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.


    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  10. Energy Storage. (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  11. The influence of Critical Zone structure on runoff paths, seasonal water storage, and ecosystem composition (United States)

    Hahm, W. J.; Dietrich, W. E.; Rempe, D.; Dralle, D.; Dawson, T. E.; Lovill, S.; Bryk, A.


    Understanding how subsurface water storage mediates water availability to ecosystems is crucial for elucidating linkages between water, energy, and carbon cycles from local to global scales. Earth's Critical Zone (the CZ, which extends from the top of the vegetation canopy downward to fresh bedrock) includes fractured and weathered rock layers that store and release water, thereby contributing to ecosystem water supplies, and yet are not typically represented in land-atmosphere models. To investigate CZ structural controls on water storage dynamics, we intensively studied field sites in a Mediterranean climate where winter rains arrive months before peak solar energy availability, resulting in strong summertime ecosystem reliance on stored subsurface water. Intra-hillslope and catchment-wide observations of CZ water storage capacity across a lithologic boundary in the Franciscan Formation of the Northern California Coast Ranges reveal large differences in the thickness of the CZ and water storage capacity that result in a stark contrast in plant community composition and stream behavior. Where the CZ is thick, rock moisture storage supports forest transpiration and slow groundwater release sustains baseflow and salmon populations. Where the CZ is thin, limited water storage is used by an oak savanna ecosystem, and streams run dry in summer due to negligible hillslope drainage. At both sites, wet season precipitation replenishes the dynamic storage deficit generated during the summer dry season, with excess winter rains exiting the watersheds via storm runoff as perched groundwater fracture flow at the thick-CZ site and saturation overland flow at the thin-CZ site. Annual replenishment of subsurface water storage even in severe drought years may lead to ecosystem resilience to climatic perturbations: during the 2011-2015 drought there was not widespread forest die-off in the study area.

  12. Spent fuel heatup following loss of water during storage

    International Nuclear Information System (INIS)

    Benjamin, A.S.; McCloskey, D.J.; Powers, D.A.; Dupree, S.A.


    An analysis of spent fuel heatup following a hypothetical accident involving drainage of the storage pool is presented. Computations based upon a new computer code called SFUEL have been performed to assess the effect of decay time, fuel element design, storage rack design, packing density, room ventilation, drainage level, and other variables on the heatup characteristics of the spent fuel and to predict the conditions under which clad failure will occur. Possible storage pool design modifications and/or onsite emergency action have also been considered

  13. Estimation of disaggregated canal water deliveries in Pakistan using geomatics

    NARCIS (Netherlands)

    Mobin-ud-Din, A.; Stein, A.; Bastiaanssen, W.G.M.


    Lack of accurate information on water distribution within an irrigation system is a major roadblock for effective management of scarce water resources. Numerical techniques to estimate canal water distribution require large amounts of data with respect to hydraulic parameters and operation of the

  14. Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers

    DEFF Research Database (Denmark)

    Leiriao, Silvia; He, Xin; Christiansen, Lars


    Total water storage change in the subsurface is a key component of the global, regional and local water balances. It is partly responsible for temporal variations of the earth's gravity field in the micro-Gal (1 mu Gal = 10(-8) m s(-2)) range. Measurements of temporal gravity variations can thus...... be used to determine the water storage change in the hydrological system. A numerical method for the calculation of temporal gravity changes from the output of hydrological models is developed. Gravity changes due to incremental prismatic mass storage in the hydrological model cells are determined to give...

  15. Evaluation of water stress and groundwater storage using a global hydrological model (United States)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.


    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From

  16. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service.

    Directory of Open Access Journals (Sweden)

    Paul S Lavery

    Full Text Available The recent focus on carbon trading has intensified interest in 'Blue Carbon'-carbon sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass carbon storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic carbon (C org stocks. The habitats encompassed 10 species, in mono-specific or mixed meadows, depositional to exposed habitats and temperate to tropical habitats. There was an 18-fold difference in the Corg stock (1.09-20.14 mg C org cm(-3 for a temperate Posidonia sinuosa and a temperate, estuarine P. australis meadow, respectively. Integrated over the top 25 cm of sediment, this equated to an areal stock of 262-4833 g C org m(-2. For some species, there was an effect of water depth on the C org stocks, with greater stocks in deeper sites; no differences were found among sub-tidal and inter-tidal habitats. The estimated carbon storage in Australian seagrass ecosystems, taking into account inter-habitat variability, was 155 Mt. At a 2014-15 fixed carbon price of A$25.40 t(-1 and an estimated market price of $35 t(-1 in 2020, the C org stock in the top 25 cm of seagrass habitats has a potential value of $AUD 3.9-5.4 bill. The estimates of annual C org accumulation by Australian seagrasses ranged from 0.093 to 6.15 Mt, with a most probable estimate of 0.93 Mt y(-1 (10.1 t. km(-2 y(-1. These estimates, while large, were one-third of those that would be calculated if inter-habitat variability in carbon stocks were not taken into account. We conclude that there is an urgent need for more information on the variability in seagrass carbon stock and accumulation rates, and the factors driving this variability, in order to improve global estimates of seagrass Blue Carbon storage.

  17. Current perceptions of spent nuclear fuel behavior in water pool storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.


    A survey was conducted of a cross section of U.S. and Canadian fuel storage pool operators to define the spent fuel behavior and to establish the range of pool storage environments. There is no evidence for significant corrosion degradation. Fuel handling causes only minimal damage. Most fuel bundles with defects generally are stored without special procedures. Successful fuel storage up to 18 years with benign water chemistry has been demonstrated. 2 tables

  18. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for... (United States)


    ... Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting... Act (FPA), proposing to study the feasibility of the East Maui Pumped Storage Water Supply Project to.... Bart M. O'Keeffe, East Maui Pumped Storage Water Supply LLC; P.O. Box 1916; Discovery Bay, CA 94505...

  19. Towards regional, error-bounded landscape carbon storage estimates for data-deficient areas of the world.

    Directory of Open Access Journals (Sweden)

    Simon Willcock

    Full Text Available Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as 'lowland tropical forest' are often used, termed 'Tier 1 type' analyses by the Intergovernmental Panel on Climate Change (IPCC. Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC 'Tier 2' reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92-6.74 Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced

  20. A study on the performance valuation of small size water storage electric boiler

    International Nuclear Information System (INIS)

    Mo, Joung Gun; Shin, Jae Ho; Bae, Chul Whan; Suh, Jeong Se; Chung, Han Shik; Jeong, Hyo Min


    We was made 150L a water storage electric boiler and obtained various performances of the storage, radiant and keeping by experimentation. The storage performance is that the heat were off about 50 minutes after heating start. Then the temperature of outlet was arrived the stead state at 91 deg. C and the storage performance was appeared 93.64%. In the radiant performance, the water temperature was decreased from 90 .deg. C to 44.8 deg. C after 960 minutes. Then the calorific value changed from 675kcal/h to 72kcal/h and the temperature decreased about 50%. The keeping performance showed mean temperature, 67.06 .deg. C according to progress 800 minutes and the maximum temperature drop were 0.2 .deg. C. By the results of the performance valuation, the water storage electric boiler was verified fitted quality on the test prescription of KERI (Korea Electrotechnology Research Institute.)

  1. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source


    Fronk, Robert Charles


    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  2. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Lin, Hu; Li, Xin-hong; Cheng, Peng-sheng; Xu, Bu-gong


    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  3. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan


    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  4. Comparison of Decadal Water Storage Trends from Global Hydrological Models and GRACE Satellite Data (United States)

    Scanlon, B. R.; Zhang, Z. Z.; Save, H.; Sun, A. Y.; Mueller Schmied, H.; Van Beek, L. P.; Wiese, D. N.; Wada, Y.; Long, D.; Reedy, R. C.; Doll, P. M.; Longuevergne, L.


    Global hydrology is increasingly being evaluated using models; however, the reliability of these global models is not well known. In this study we compared decadal trends (2002-2014) in land water storage from 7 global models (WGHM, PCR-GLOBWB, and GLDAS: NOAH, MOSAIC, VIC, CLM, and CLSM) to storage trends from new GRACE satellite mascon solutions (CSR-M and JPL-M). The analysis was conducted over 186 river basins, representing about 60% of the global land area. Modeled total water storage trends agree with those from GRACE-derived trends that are within ±0.5 km3/yr but greatly underestimate large declining and rising trends outside this range. Large declining trends are found mostly in intensively irrigated basins and in some basins in northern latitudes. Rising trends are found in basins with little or no irrigation and are generally related to increasing trends in precipitation. The largest decline is found in the Ganges (-12 km3/yr) and the largest rise in the Amazon (43 km3/yr). Differences between models and GRACE are greatest in large basins (>0.5x106 km2) mostly in humid regions. There is very little agreement in storage trends between models and GRACE and among the models with values of r2 mostly store water over decadal timescales that is underrepresented by the models. The storage capacity in the modeled soil and groundwater compartments may be insufficient to accommodate the range in water storage variations shown by GRACE data. The inability of the models to capture the large storage trends indicates that model projections of climate and human-induced changes in water storage may be mostly underestimated. Future GRACE and model studies should try to reduce the various sources of uncertainty in water storage trends and should consider expanding the modeled storage capacity of the soil profiles and their interaction with groundwater.

  5. Surface water storage capacity of twenty tree species in Davis, California (United States)

    Qingfu Xiao; E. Gregory. McPherson


    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  6. The influence of nutrient and water availability on carbohydrate storage in loblolly pine (United States)

    K.H. Ludovici; H.L. Allen; T.J. Albaugh; P.M. Dougherty


    We quantified the effects of nutrient and water availability on monthly whole-tree carbohydrate budgets and determined allocation patterns of storage carbohydrates in loblolly pine (Pinus taeda) to test site resource impacts on internal carbon (C) storage. A factorial combination of two nutrient and two irrigation treatments were imposed on a 7-year...

  7. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie


    Full Text Available This paper reviews current knowledge on sampling, storage and analysis of phosphorus (P in river waters. Potential sensitivity of rivers with different physical, chemical and biological characteristics (trophic status, turbidity, flow regime, matrix chemistry is examined in terms of errors associated with sampling, sample preparation, storage, contamination, interference and analytical errors. Key issues identified include: The need to tailor analytical reagents and concentrations to take into account the characteristics of the sample matrix. The effects of matrix interference on the colorimetric analysis. The influence of variable rates of phospho-molybdenum blue colour formation. The differing responses of river waters to physical and chemical conditions of storage. The higher sensitivities of samples with low P concentrations to storage and analytical errors. Given high variability of river water characteristics in space and time, no single standardised methodology for sampling, storage and analysis of P in rivers can be offered. ‘Good Practice’ guidelines are suggested, which recommend that protocols for sampling, storage and analysis of river water for P is based on thorough site-specific method testing and assessment of P stability on storage. For wider sampling programmes at the regional/national scale where intensive site-specific method and stability testing are not feasible, ‘Precautionary Practice’ guidelines are suggested. The study highlights key areas requiring further investigation for improving methodological rigour. Keywords: phosphorus, orthophosphate, soluble reactive, particulate, colorimetry, stability, sensitivity, analytical error, storage, sampling, filtration, preservative, fractionation, digestion

  8. Estimation of evaporative losses during storage of crude oil and petroleum products

    Directory of Open Access Journals (Sweden)

    Mihajlović Marina A.


    Full Text Available Storage of crude oil and petroleum products inevitably leads to evaporative losses. Those losses are important for the industrial plants mass balances, as well as for the environmental protection. In this paper, estimation of evaporative losses was performed using software program TANKS 409d which was developed by the Agency for Environmental Protection of the United States - US EPA. Emissions were estimated for the following types of storage tanks: fixed conical roof tank, fixed dome roof tank, external floating roof tank, internal floating roof tank and domed external floating roof tank. Obtained results show quantities of evaporated losses per tone of stored liquid. Crude oil fixed roof storage tank losses are cca 0.5 kg per tone of crude oil. For floating roof, crude oil losses are 0.001 kg/t. Fuel oil (diesel fuel and heating oil have the smallest evaporation losses, which are in order of magnitude 10-3 kg/tone. Liquids with higher Reid Vapour Pressure have very high evaporative losses for tanks with fixed roof, up to 2.07 kg/tone. In case of external floating roof tank, losses are 0.32 kg/tone. The smallest losses are for internal floating roof tank and domed external floating roof tank: 0.072 and 0.044, respectively. Finally, it can be concluded that the liquid with low volatility of low BTEX amount can be stored in tanks with fixed roof. In this case, the prevailing economic aspect, because the total amount of evaporative loss does not significantly affect the environment. On the other hand, storage of volatile derivatives with high levels of BTEX is not justified from the economic point of view or from the standpoint of the environment protection.

  9. Soil-Water Storage Predictions for Cultivated Crops on the Záhorská Lowlands

    Directory of Open Access Journals (Sweden)

    Jarabicová Miroslava


    Full Text Available The main objective of this paper is to evaluate the impact of climate change on the soil-water regime of the Záhorská lowlands. The consequences of climate change on soil-water storage were analyzed for two crops: spring barley and maize. We analyzed the consequences of climate change on soil-water storage for two crops: spring barley and maize. The soil-water storage was simulated with the GLOBAL mathematical model. The data entered into the model as upper boundary conditions were established by the SRES A2 and SRES B1 climate scenarios and the KNMI regional climate model for the years from 2071 to 2100 (in the text called the time horizon 2085 which is in the middle this period. For the reference period the data from the years 1961-1990 was used. The results of this paper predict soil-water storage until the end of this century for the crops evaluated, as well as a comparison of the soil-water storage predictions with the course of the soil-water storage during the reference period.

  10. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hosein, E-mail: [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)


    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  11. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    International Nuclear Information System (INIS)

    Aghoyeh, Reza Gholizadeh; Khalafi, Hosein


    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  12. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. (United States)

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw


    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  13. Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. (United States)

    F.G. Scholz; S.J. Bucci; G. Goldstein; F.C. Meinzer; A.C. Franco; F. Miralles-Wilhelm


    Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. Both the sapwood and outer parenchyma tissues played an important role in regulation of internal water deficits of Cerrado...

  14. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida (United States)


    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  15. Activity of water content and storage temperature on the seed-borne mycoflora of lens culinaris

    International Nuclear Information System (INIS)

    Rahim, S.; Dawar, S.


    Storage of seeds with high water content and temperatures favors the growth of mould fungi which in turn affect the germination of seeds while low temperature with low water content prevent the growth of storage fungi and help in maintaining seed viability for longer duration of time. Seed sample from Sukkur district was stored at 4 degree C and room temperature (25-30 degree C) with water content of 8, 13 and 17% for about 80 days. The fungi were isolated at 0, 20, 40, 60 and 80 days intervals. Highest infection percentage of fungi was observed at 13 and 17% water contents at room temperature after 20 days of storage. High infection percentage of storage fungi affected the germination of seeds. Aspergillus spp were the most dominant fungi. (author)

  16. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)


    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  17. Estimating the Determinants of Residential Water Demand in Italy

    Directory of Open Access Journals (Sweden)

    Giulia Romano


    Full Text Available The aim of this study was to estimate the determinants of residential water demand for chief towns of every Italian province, in the period 2007–2009, using the linear mixed-effects model estimated with the restricted-maximum-likelihood method. Results confirmed that the applied tariff had a negative effect on residential water consumption and that it was a relevant driver of domestic water consumption. Moreover, income per capita had a positive effect on water consumption. Among measured climatic and geographical features, precipitation and altitude exerted a strongly significant negative effect on water consumption, while temperature did not influence water demand. Further, data show that small towns in terms of population served were characterized by lower levels of consumption. Water utilities ownership itself did not have a significant effect on water consumption but tariffs were significantly lower and residential water consumption was higher in towns where the water service was managed by publicly owned water utilities. However, further research is needed to gain a better understanding of the connection between ownership of water utilities and water prices and water consumption.

  18. Do Estimates of Water Productivity Enhance Understanding of Farm-Level Water Management?


    Dennis Wichelns


    Estimates of water productivity are appearing with increasing frequency in the literature pertaining to agronomy, water management, and water policy. Some authors report such estimates as one of the outcome variables of experiment station studies, while others calculate water productivities when comparing regional crop production information. Many authors suggest or imply that higher values of water productivity are needed to ensure that future food production goals are achieved. Yet maximizi...

  19. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.


    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  20. Estimating water equivalent snow depth from related meteorological variables

    International Nuclear Information System (INIS)

    Steyaert, L.T.; LeDuc, S.K.; Strommen, N.D.; Nicodemus, M.L.; Guttman, N.B.


    Engineering design must take into consideration natural loads and stresses caused by meteorological elements, such as, wind, snow, precipitation and temperature. The purpose of this study was to determine a relationship of water equivalent snow depth measurements to meteorological variables. Several predictor models were evaluated for use in estimating water equivalent values. These models include linear regression, principal component regression, and non-linear regression models. Linear, non-linear and Scandanavian models are used to generate annual water equivalent estimates for approximately 1100 cooperative data stations where predictor variables are available, but which have no water equivalent measurements. These estimates are used to develop probability estimates of snow load for each station. Map analyses for 3 probability levels are presented

  1. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    Priyabrata Santra


    Mar 27, 2018 ... of the global population (Millennium Ecosystem. Assessment 2005). Likewise, there is a .... Therefore, the main objective of this study was to develop PTFs for arid soils of India to estimate soil water content at FC and PWP.

  2. Multiple leakage localization and leak size estimation in water networks

    NARCIS (Netherlands)

    Abbasi, N.; Habibi, H.; Hurkens, C.A.J.; Klabbers, M.D.; Tijsseling, A.S.; Eijndhoven, van S.J.L.


    Water distribution networks experience considerable losses due to leakage, often at multiple locations simultaneously. Leakage detection and localization based on sensor placement and online pressure monitoring could be fast and economical. Using the difference between estimated and measured

  3. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo


    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  4. Influence of storage conditions on aluminum concentrations in serum, dialysis fluid, urine, and tap water. (United States)

    Wilhelm, M; Ohnesorge, F K


    The influence of storage temperature, vessel type, and treatment on alterations of aluminum (Al) concentrations in serum, urine, and dialysis fluid samples was studied at three different concentrations for each sample over an 18-month period. Furthermore, the influence of acidification on Al levels in tap water, urine, and dialysis fluid samples was studied over a four-month period. Al was measured by atomic absorption spectrometry. Sample storage in glass vessels was unsuitable, whereas only minor alterations of Al levels were observed with storage in polypropylene tubes, polystyrene tubes, and Monovettes. By using appropriate plastic containers, acid washing of the vessels showed no improvement. Frozen storage was superior compared with 4 degrees C, whereas storage at -80 degrees C offered no advantage compared with storage at -20 degrees C. Acidification of tap water samples was necessary to stabilize Al levels during storage. No striking effect of acidification on Al levels in urine and dialysis fluid samples was found. It is concluded that longterm storage of serum, urine, tap water, and dialysis fluid samples is possible if appropriate conditions are used.

  5. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.


    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  6. Estimation of doses to individuals from radionuclides disposed of in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Fields, D.E.; Boegly, W.J. Jr.; Huff, D.D.


    A simple methodology has been applied to estimate maximum possible doses to individuals from exposure to radionuclides released from Solid Waste Storage Area No. 6. This is the only operating shallow-land disposal site for radioactive waste at the Oak Ridge National Laboratory. The methodology is based upon simple, conservative assumptions. A data base of radionuclides disposed of in trenches and auger holes was prepared, and several radionuclide transport and ingestion scenarios were considered. The results of these simulations demonstrate the potential for adverse health effects associated with this waste disposal area, and support the need for further calculations using more complete and realistic assumptions

  7. Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hinti, I.; Al-Ghandoor, A.; Maaly, A.; Abu Naqeera, I.; Al-Khateeb, Z.; Al-Sheikh, O. [The Hashemite University, Zarqa 13115 (Jordan)


    This paper presents an experimental investigation of the performance of water-phase change material (PCM) storage for use with conventional solar water heating systems. Paraffin wax contained in small cylindrical aluminum containers is used as the PCM. The containers are packed in a commercially available, cylindrical hot water storage tank on two levels. The PCM storage advantage is firstly demonstrated under controlled energy input experiments with the aid of an electrical heater on an isolated storage tank, with and without the PCM containers. It was found that the use of the suggested configuration can result in a 13-14 C advantage in the stored hot water temperature over extended periods of time. The storage performance was also investigated when connected to flat plate collectors in a closed-loop system with conventional natural circulation. Over a test period of 24 h, the stored water temperature remained at least 30 C higher than the ambient temperature. The use of short periods of forced circulation was found to have minimum effect on the performance of the system. Finally, the recovery effect and the storage performance of the PCM was analyzed under open-loop operation patterns, structured to simulate daily use patterns. (author)

  8. Estimating Green Water Footprints in a Temperate Environment

    Directory of Open Access Journals (Sweden)

    Tim Hess


    Full Text Available The “green” water footprint (GWF of a product is often considered less important than the “blue” water footprint (BWF as “green” water generally has a low, or even negligible, opportunity cost. However, when considering food, fibre and tree products, is not only a useful indicator of the total appropriation of a natural resource, but from a methodological perspective, blue water footprints are frequently estimated as the residual after green water is subtracted from total crop water use. In most published studies, green water use (ETgreen has been estimated from the FAO CROPWAT model using the USDA method for effective rainfall. In this study, four methods for the estimation of the ETgreen of pasture were compared. Two were based on effective rainfall estimated from monthly rainfall and potential evapotranspiration, and two were based on a simulated water balance using long-term daily, or average monthly, weather data from 11 stations in England. The results show that the effective rainfall methods significantly underestimate the annual ETgreen in all cases, as they do not adequately account for the depletion of stored soil water during the summer. A simplified model, based on annual rainfall and reference evapotranspiration (ETo has been tested and used to map the average annual ETgreen of pasture in England.

  9. Scaling and Parametric Studies of Condensation Oscillation in an In-Containment Refueling Water Storage Tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon


    The purpose of this paper is to study the condensation oscillation phenomena by steam-jetting into subcooled water through a multihole sparger, implementing a scaling methodology and the similarity correlation between the test facility and model prototype. To corroborate the scaling methodology, various experimental tests were conducted. The thickness of the boundary layer that encloses the steam cavity was found to be equal to the maximum length of the steam cavity formed. Three key scaling parameters were identified and correlated with the maximum amplitude of pressure oscillation: flow restriction coefficient, area ratio of discharge hole to steam cavity, and density ratio of water to steam. Variations of the oscillation amplitude were small when steam-jetting directions were altered. The concept of a reduction factor was introduced for estimating the oscillation amplitude of the multihole sparger with test data from a single-hole sparger. The results of this study can provide suitable guidelines for sparger design utilized in the in-containment refueling water storage tank for the Advanced Power Reactor 1400

  10. An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas (United States)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Bird, Broxton W.; Tian, Lide; Zhang, Xiaowen; Wang, Weicai; Xiang, Yang; Dai, Yufeng; Lazhu; Zhou, Jing; Wang, Lei


    Since the late 1990s, lakes in the southern Tibetan Plateau (TP) have shrunk considerably, which contrasts with the rapid expansion of lakes in the interior TP. Although these spatial trends have been well documented, the underlying hydroclimatic mechanisms are not well understood. Since 2013, we have carried out comprehensive water budget observations at Paiku Co, an alpine lake in the central Himalayas. In this study, we investigate water storage and lake level changes on seasonal to decadal time scales based on extensive in-situ measurements and satellite observations. Bathymetric surveys show that Paiku Co has a mean and maximum water depth of 41.1 m and 72.8 m, respectively, and its water storage was estimated to be 109.3 × 108 m3 in June 2016. On seasonal scale between 2013 and 2017, Paiku Co's lake level decreased slowly between January and May, increased considerably between June and September, and then decreased rapidly between October and January. On decadal time scale, Paiku Co's lake level decreased by 3.7 ± 0.3 m and water storage reduced by (10.2 ± 0.8) × 108 m3 between 1972 and 2015, accounting for 8.5% of the total water storage in 1972. This change is consistent with a trend towards drier conditions in the Himalaya region during the recent decades. In contrast, glacial lakes within Paiku Co's basin expanded rapidly, indicating that, unlike Paiku Co, glacial meltwater was sufficient to compensate the effect of the reduced precipitation.

  11. Plant-available soil water capacity: estimation methods and implications

    Directory of Open Access Journals (Sweden)

    Bruno Montoani Silva


    Full Text Available The plant-available water capacity of the soil is defined as the water content between field capacity and wilting point, and has wide practical application in planning the land use. In a representative profile of the Cerrado Oxisol, methods for estimating the wilting point were studied and compared, using a WP4-T psychrometer and Richards chamber for undisturbed and disturbed samples. In addition, the field capacity was estimated by the water content at 6, 10, 33 kPa and by the inflection point of the water retention curve, calculated by the van Genuchten and cubic polynomial models. We found that the field capacity moisture determined at the inflection point was higher than by the other methods, and that even at the inflection point the estimates differed, according to the model used. By the WP4-T psychrometer, the water content was significantly lower found the estimate of the permanent wilting point. We concluded that the estimation of the available water holding capacity is markedly influenced by the estimation methods, which has to be taken into consideration because of the practical importance of this parameter.

  12. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.


    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  13. Estimating the burden of disease attributable to unsafe water and ...

    African Journals Online (AJOL)

    Objectives. To estimate the burden of disease attributable to unsafe water, sanitation and hygiene (WSH) by age group for South Africa in 2000. Design. World Health Organization comparative risk assessment methodology was used to estimate the disease burden attributable to an exposure by comparing the observed risk ...

  14. bathymetric survey and estimation of the water balance of lake

    African Journals Online (AJOL)

    Preferred Customer

    The average annual open water evaporation, estimated from Colorado Class-A Pan records and Penman modified method is 23.49 million cubic .... Therefore, the ∆S term in equation 2 can be replaced by the net unmeasured ground .... appears that the steady-state water balance is reasonable. Because, the residual value ...

  15. Estimation of water pollution by genetic biomarkers in tilapia and ...

    African Journals Online (AJOL)

    This study was aimed at the estimation of water pollution with heavy metals using four biomarkers as well as to study the species-site interaction. Two species of tilapia as well as two catfish species caught from four sites that represent differential environmental stresses were used for this purpose. Water samples and gills ...

  16. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)


    available scarce water resources in dry land agriculture, but direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ...

  17. A Geology-Based Estimate of Connate Water Salinity Distribution (United States)


    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  18. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)


    Jan 21, 2005 ... silt (0.002 to 0.05 mm) percentage to estimate the soil-water content at a given soil-water .... ar and br are the intercept and slope values of the regres- .... tions use the particle size classification of the South African Soil.

  19. Estimation of soil water retention curve using fractal dimension ...

    African Journals Online (AJOL)

    The soil water retention curve (SWRC) is a fundamental hydraulic property majorly used to study flow transport in soils and calculate plant-available water. Since, direct measurement of SWRC is time-consuming and expensive, different models have been developed to estimate SWRC. In this study, a fractal-based model ...

  20. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina


    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  1. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben


    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  2. Radiation and storage effects on water uptake and cooking behaviour of mungbean

    International Nuclear Information System (INIS)

    Aurangzeb; Bibi, N.; Badshah, A.; Sattar, A.


    Effect of different doses of gamma irradiation (0-10 kGy) and storage for 6 months at room conditions was studied on seed size, water uptake and cooking time of mungbeans. Irradiation exhibited insignificant effect on seed weight, seed volume, density, hydration capacity/index, swelling capacity/index, as well as water hydration capacity (WHC) and pH of flour, but significantly (P .ltoreq. 0.01) reduced the cooking time of mungbean seeds (15.37 to 9.93 min.). Storage time increased the cooking time of this legume (11.55 to 12.75 min.). The water uptake parameters of seed and pH of flour decreased significantly due to storage, whereas seed size (weight and volume) remained unaffected during storage

  3. Groundwater storage and water security: making better use of our largest reservoir. (United States)

    Tuinhof, A; Olsthoorn, T; Heederik, J P; de Vries, J


    Provision of sufficient storage capacity under growing water demands and increasing climate variability is one the main concerns for water managers in the coming decades. It is expected that 150-300 km3 of additional storage capacity will be needed by 2025 especially in semi-arid and arid regions where changes in climate variability will have most impact on rainfall and drought. Storage of substantial amounts of water can either be above ground, in reservoirs behind dams or underground in aquifers (sub-surface storage). Recharge enhancement through management of aquifer recharge (MAR) and sub-surface storage (SSS) is a known technology and already successfully applied in a number of countries for many years at different scales. MAR-SSS is a flexible and cost-effective means to increase storage capacity both at village level and in modern water management schemes. A dialogue and information exchange between climate experts and water managers can provide an effective contribution to the planning, design and operation of MAR-SSS schemes.

  4. Water Storage, US EPA Region 9, 2013, SDWIS (United States)

    U.S. Environmental Protection Agency — EPAâ??s Safe Drinking Water Information System (SDWIS) databases store information about drinking water. The federal version (SDWIS/FED) stores the information EPA...

  5. Sensitivity of probabilistic MCO water content estimates to key assumptions

    International Nuclear Information System (INIS)

    DUNCAN, D.R.


    Sensitivity of probabilistic multi-canister overpack (MCO) water content estimates to key assumptions is evaluated with emphasis on the largest non-cladding film-contributors, water borne by particulates adhering to damage sites, and water borne by canister particulate. Calculations considered different choices of damage state degree of independence, different choices of percentile for reference high inputs, three types of input probability density function (pdfs): triangular, log-normal, and Weibull, and the number of scrap baskets in an MCO


    African Journals Online (AJOL)

    H. Benfetta


    Sep 1, 2017 ... This dam is located in an arid zone where water resources are becoming increasingly scarce. It is situated 5 km ... Leakage leads to considerable losses of valuable, scarce water. ...... Detection of water leaks in the restraints ...

  7. Satellite-based estimates of surface water dynamics in the Congo River Basin (United States)

    Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J. Santos; Prigent, C.; Seyler, F.


    In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, there is a limited understanding of the large-scale variability of its present-day hydrologic components and their link with climate. In this context, remote sensing observations provide a unique opportunity to better characterize those dynamics. Analyzing the Global Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers and their tributaries, and with two annual maxima located: i) in the lakes region of the Lwalaba sub-basin and ii) in the "Cuvette Centrale", including Tumba and Mai-Ndombe Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO and the Indian Ocean dipole events. We then estimate water level maps and surface water storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-2007, using a multi-satellite approach, which combines the GIEMS dataset with the water level measurements derived from the ENVISAT altimeter heights. The mean annual variation in SWS in the CRB is 81 ± 24 km3 and contributes to 19 ± 5% of the annual variations of GRACE-derived terrestrial water storage (33 ± 7% in the Middle Congo). It represents also ∼6 ± 2% of the annual water volume that flows from the Congo River into the Atlantic Ocean.

  8. Microflora of hydrobionts digestive tract in Kaunas water storage reservoir

    International Nuclear Information System (INIS)

    Shyvokiene, J.; Mickiene, L.; Mileriene, E.


    Microbiological and ichthiological investigations carried out in 1990 and 1992 showed the variability of bacterial cenoses in the digestive tract of hydrobionts before and after setting in motion Kruonis hydro pumped storage. The studies also showed that microorganisms of the digestive tract of the hydrobionts investigated were involved in the degradation of nutritional substrates and could serve as indicators of an anthropogenic effect. Before setting in motion the hydro pumped storage hydrocarbon-degrading bacteria (HDB) were detected in the digestive tract of the freshwater shrimps, opossum shrimps, sticklebacks, zebra mussels and roaches. The greatest number of HDB was found in the digestive tract of the roach while in perches they were not detected. However after setting in motion the hydro pumped storage , high numbers of HDB were determined in the digestive tracts of all the hydrobionts investigated. It has been shown that the function of bacterial digestion is conditioned not only by the nutrition specificity of the macroorganism, but on its environment as well. With the aid of enzymes secreted by microorganisms organic compounds difficult to assimilate are transformed into valuable nutrients. Besides, the functional activity of microorganisms of the digestive tract of the hydrobionts indicate the intensity of the digestive process and physiological state of their organism. Therefore, when investigating fish stocks in hydrosystems one must evaluate inner resources of their organism, i.e. functional activities and the activity of digestive tract microorganisms, their quantitative and qualitative composition, relationship with the macroorganism, its growth rate and environment. (author). 15 refs., 5 tabs

  9. Modelling surface-water depression storage in a Prairie Pothole Region (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie


    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  10. Improving groundwater storage and soil moisture estimates by assimilating GRACE, SMOS, and SMAP data into CABLE using ensemble Kalman batch smoother and particle batch smoother frameworks (United States)

    Han, S. C.; Tangdamrongsub, N.; Yeo, I. Y.; Dong, J.


    Soil moisture and groundwater storage are important information for comprehensive understanding of the climate system and accurate assessment of the regional/global water resources. It is possible to derive the water storage from land surface models but the outputs are commonly biased by inaccurate forcing data, inefficacious model physics, and improper model parameter calibration. To mitigate the model uncertainty, the observation (e.g., from remote sensing as well as ground in-situ data) are often integrated into the models via data assimilation (DA). This study aims to improve the estimation of soil moisture and groundwater storage by simultaneously assimilating satellite observations from the Gravity Recovery And Climate Experiment (GRACE), the Soil Moisture Ocean Salinity (SMOS), and the Soil Moisture Active Passive (SMAP) into the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model using the ensemble Kalman batch smoother (EnBS) and particle batch smoother (PBS) frameworks. The uncertainty of GRACE observation is obtained rigorously from the full error variance-covariance matrix of the GRACE data product. This method demonstrates the use of a realistic representative of GRACE uncertainty, which is spatially correlated in nature, leads to a higher accuracy of water storage computation. Additionally, the comparison between EnBS and PBS results is discussed to understand the filter's performance, limitation, and suitability. The joint DA is demonstrated in the Goulburn catchment, South-East Australia, where diverse ground observations (surface soil moisture, root-zone soil moisture, and groundwater level) are available for evaluation of our DA results. Preliminary results show that both smoothers provide significant improvement of surface soil moisture and groundwater storage estimates. Importantly, our developed DA scheme disaggregates the catchment-scale GRACE information into finer vertical and spatial scales ( 25 km). We present an

  11. Estimated use of water in Alabama in 2005 (United States)

    Hutson, Susan S.; Littlepage, Thomas M.; Harper, Michael J.; Tinney, James O.


    Water use in Alabama was about 9,958 million gallons per day (Mgal/d) during 2005. Estimates of withdrawals by source indicate that total surface-water withdrawals were about 9,467 Mgal/d (95 percent of the total withdrawals) and the remaining 491 Mgal/d (5 percent) were from ground water. More surface water than ground water was withdrawn for all categories except aquaculture, mining, and self-supplied residential. During 2005, estimated withdrawals by category and in descending order were: thermoelectric power, 8,274 Mgal/d; public supply, 802 Mgal/d; self-supplied industrial, 550 Mgal/d; irrigation, 161 Mgal/d; aquaculture, 75 Mgal/d; self-supplied residential, 39 Mgal/d; livestock, 28 Mgal/d; and mining, 28 Mgal/d.

  12. Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas

    Directory of Open Access Journals (Sweden)

    George C. Zalidis


    Full Text Available Agricultural use is by far the largest consumer of fresh water worldwide, especially in the Mediterranean, where it has reached unsustainable levels, thus posing a serious threat to water resources. Having a good estimate of the water used in an agricultural area would help water managers create incentives for water savings at the farmer and basin level, and meet the demands of the European Water Framework Directive. This work presents an integrated methodology for estimating water use in Mediterranean agricultural areas. It is based on well established methods of estimating the actual evapotranspiration through surface energy fluxes, customized for better performance under the Mediterranean conditions: small parcel sizes, detailed crop pattern, and lack of necessary data. The methodology has been tested and validated on the agricultural plain of the river Strimonas (Greece using a time series of Terra MODIS and Landsat 5 TM satellite images, and used to produce a seasonal water use map at a high spatial resolution. Finally, a tool has been designed to implement the methodology with a user-friendly interface, in order to facilitate its operational use.

  13. Estimation of the amount of surface contamination of a water cooled nuclear reactor by cooling water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, G. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)]. E-mail:; Somogyi, A. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary); Patek, G. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Pinter, T. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Schiller, R. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)


    Calculations, based upon on-the-spot measurements, were performed to estimate the contamination of NPP primary circuit and spent fuel storage pool solid surfaces via the composition of the cooling water in connection with a non-nuclear incident in the Paks NPP. Thirty partially burnt-up fuel element bundles were damaged during a cleaning process, an incident which resulted in the presence of fission products in the cooling water of the cleaning tank (CT) situated in a separate pool (P1). Since this medium was in contact for an extended period of time with undamaged fuel elements to be used later and also with other structural materials of the spent fuel storage pool (SP), it was imperative to assess the surface contamination of these latter ones with a particular view to the amount of fission material. In want of direct methods, one was restricted to indirect information which rested mainly on the chemical and radiochemical data of the cooling water. It was found that (i) the most important contaminants were uranium, plutonium, cesium and cerium; (ii) after the isolation of P1 and SP and an extended period of filtering the only important contaminants were uranium and plutonium; (iii) the surface contamination of the primary circuit (PC) was much lower than that of either SP or P1; (iv) some 99% of the contamination was removed from the water by the end of the filtering process.

  14. Estimation methods of eco-environmental water requirements: Case study

    Institute of Scientific and Technical Information of China (English)

    YANG Zhifeng; CUI Baoshan; LIU Jingling


    Supplying water to the ecological environment with certain quantity and quality is significant for the protection of diversity and the realization of sustainable development. The conception and connotation of eco-environmental water requirements, including the definition of the conception, the composition and characteristics of eco-environmental water requirements, are evaluated in this paper. The classification and estimation methods of eco-environmental water requirements are then proposed. On the basis of the study on the Huang-Huai-Hai Area, the present water use, the minimum and suitable water requirement are estimated and the corresponding water shortage is also calculated. According to the interrelated programs, the eco-environmental water requirements in the coming years (2010, 2030, 2050) are estimated. The result indicates that the minimum and suitable eco-environmental water requirements fluctuate with the differences of function setting and the referential standard of water resources, and so as the water shortage. Moreover, the study indicates that the minimum eco-environmental water requirement of the study area ranges from 2.84×1010m3 to 1.02×1011m3, the suitable water requirement ranges from 6.45×1010m3 to 1.78×1011m3, the water shortage ranges from 9.1×109m3 to 2.16×1010m3 under the minimum water requirement, and it is from 3.07×1010m3 to 7.53×1010m3 under the suitable water requirement. According to the different values of the water shortage, the water priority can be allocated. The ranges of the eco-environmental water requirements in the three coming years (2010, 2030, 2050) are 4.49×1010m3-1.73×1011m3, 5.99×10m3?2.09×1011m3, and 7.44×1010m3-2.52×1011m3, respectively.

  15. Simulation of Porous Medium Hydrogen Storage - Estimation of Storage Capacity and Deliverability for a North German anticlinal Structure (United States)

    Wang, B.; Bauer, S.; Pfeiffer, W. T.


    Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.

  16. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples (United States)

    John L. Korfmacher; Robert C. Musselman


    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets...

  17. Contribution of water vapor pressure to pressurization of plutonium dioxide storage containers (United States)

    Veirs, D. Kirk; Morris, John S.; Spearing, Dane R.


    Pressurization of long-term storage containers filled with materials meeting the US DOE storage standard is of concern.1,2 For example, temperatures within storage containers packaged according to the standard and contained in 9975 shipping packages that are stored in full view of the sun can reach internal temperatures of 250 °C.3 Twenty five grams of water (0.5 wt.%) at 250 °C in the storage container with no other material present would result in a pressure of 412 psia, which is limited by the amount of water. The pressure due to the water can be substantially reduced due to interactions with the stored material. Studies of the adsorption of water by PuO2 and surface interactions of water with PuO2 show that adsorption of 0.5 wt.% of water is feasible under many conditions and probable under high humidity conditions.4,5,6 However, no data are available on the vapor pressure of water over plutonium dioxide containing materials that have been exposed to water.

  18. modelling for optimal number of line storage reservoirs in a water

    African Journals Online (AJOL)


    RESERVOIRS IN A WATER DISTRIBUTION SYSTEM. By. B.U. Anyata. Department ... water distribution systems, in order to balance the ... distribution line storage systems to meet peak demands at .... Evaluation Method. The criteria ... Pipe + Energy Cost (N). 191, 772 ... Economic Planning Model for Distributed information ...

  19. Analysis of water content in salt deposits: its application to radioactive waste storage

    International Nuclear Information System (INIS)

    Cuevas Muller, C. de la.


    The salt deposits as radioactive storage medium are analyzed. This report studies the physical-chemical characteristics of water into salts deposits, its implications for the safety of the repository, and the transport water release mechanism. The last part analyzes the geochemical numerical data of correlation analysis, geostatistics analysis and interpretation of statistical data

  20. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.


    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods

  1. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.


    Background: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Results: Water migration in cellular solid foods

  2. Linking xylem water storage with anatomical parameters in five temperate tree species. (United States)

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven


    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights

  3. Is Storage a Solution to End Water Shortage? (United States)

    Narayanan, M.


    Water shortage is a problem of supply and demand. Some authors refer to it as Water Scarcity. The author has discussed this in his previous presentation at the 2008 AGU International Conference. Part of it is reproduced here for purposes of clarification. It is important to recognize that water is essential for the survival of all life on earth. Many water-rich states have thought of water conservation as an art that is practiced mainly in the arid states. But one has to recite the famous quote: “You will never miss water till the well runs dry.” Researchers have also concluded that quantity deficiency experienced by groundwater supplies are affecting many communities around the world. Furthermore federal regulations pertaining to the quality of potable or drinking water have become more stringent (Narayanan, 2008). One must observe that water conservation schemes and efficient utilization practices also benefit the environment to a large extent. These water conservation practicies indeed have a short payback period althought it may seem that there is a heavy initial investment is required. Research scientists have studied MARR (Mean Annual River Runoff) pattern over the years and have arrived at some significant conclusions. Vörsömarty and other scientists have indicated that water scarcity exists when the demand to supply ratio exceeds the number 0.4. (Vörsömarty, 2005). Furthermore other researchers claim to have documented a six-fold increase in water use in the United States during the last century. It is interesting to note that the population of the United States has hardly doubled during the last century. This obviously, is indicative of higher living standards. Nevertheless, it also emphasizes an urgent need for establishing a strong, sound, sensible and sustainable management program for utilizing the available water supplies efficiently (Narayanan, 2008). Author of the 1998 book, Last Oasis: Facing Water Scarcity, Dr. Sandra Postel predicts big

  4. Using Rising Limb Analysis to Estimate Uptake of Reactive Solutes in Advective and Transient Storage Sub-compartments of Stream Ecosystems (United States)

    Thomas, S. A.; Valett, H.; Webster, J. R.; Mulholland, P. J.; Dahm, C. N.


    Identifying the locations and controls governing solute uptake is a recent area of focus in studies of stream biogeochemistry. We introduce a technique, rising limb analysis (RLA), to estimate areal nitrate uptake in the advective and transient storage (TS) zones of streams. RLA is an inverse approach that combines nutrient spiraling and transient storage modeling to calculate total uptake of reactive solutes and the fraction of uptake occurring within the advective sub-compartment of streams. The contribution of the transient storage zones to solute loss is determined by difference. Twelve-hour coinjections of conservative (Cl-) and reactive (15NO3) tracers were conducted seasonally in several headwater streams among which AS/A ranged from 0.01 - 2.0. TS characteristics were determined using an advection-dispersion model modified to include hydrologic exchange with a transient storage compartment. Whole-system uptake was determined by fitting the longitudinal pattern of NO3 to first-order, exponential decay model. Uptake in the advective sub-compartment was determined by collecting a temporal sequence of samples from a single location beginning with the arrival of the solute front and concluding with the onset of plateau conditions (i.e. the rising limb). Across the rising limb, 15NO3:Cl was regressed against the percentage of water that had resided in the transient storage zone (calculated from the TS modeling). The y-intercept thus provides an estimate of the plateau 15NO3:Cl ratio in the absence of NO3 uptake within the transient storage zone. Algebraic expressions were used to calculate the percentage of NO3 uptake occurring in the advective and transient storage sub-compartments. Application of RLA successfully estimated uptake coefficients for NO3 in the subsurface when the physical dimensions of that habitat were substantial (AS/A > 0.2) and when plateau conditions at the sampling location consisted of waters in which at least 25% had resided in the

  5. Analysis on engineering application of CNP1000 in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Wang Bin; Wang Yong; Qiu Jian; Weng Minghui


    Based on the basic design of CNP1000 (three loops), which is self-reliance designed by China National Nuclear Cooperation, and investigation results from abroad advanced nuclear power plant design of In-containment Refueling Water Storage tank, this paper describe the system flowsheet, functional requirements, structural design and piping arrangement about In-containment Refueling Water Storage Tank. The design takes the lower structural space as the IRWST. Four areas are configured to meet the diverse functional requirements, including depressurization area, water collection area, safety injection and/or containment spray suction area, TSP storage area / reactor cavity flooding holdup tank. Also the paper depict the corresponding analysis and demonstration, such as In-containment Refueling Water Storage Tank pressure transient on depressurization area of IRWST, suction and internal flow stream of IRWST, configuration of strains, the addition method and amount of chemical addition, design and engineering applicant of Reactor Cavity Flooding System. All the analysis results show the basic design of IRWST meeting with the Utility Requirement Document's requirements on performance of safety function, setting of overfill passage, overpressure protection, related interference, etc., and show the reliability of Engineering Safety Features being improved for CNP1000 (three loops). Meanwhile, it is demonstrated that the design of In-containment Refueling Water Storage Tank can apply on the future nuclear power plant project in China. (authors)

  6. Estimation of water demand in water distribution systems using particle swarm optimization

    CSIR Research Space (South Africa)

    Letting, LK


    Full Text Available and an evolutionary algorithm is a potential solution to the demand estimation problem. This paper presents a detailed process simulation model for water demand estimation using the particle swarm optimization (PSO) algorithm. Nodal water demands and pipe flows...

  7. Estimated use of water in the United States in 1970 (United States)

    Murray, Charles Richard; Reeves, E. Bodette


    Estimates of water use in the United States in 1970 indicate that an average of about 370 bgd (billion gallons per day)about 1,800 gallons per capita per day--was withdrawn for the four principal off-channel uses which are (1) public-supply (for domestic, commercial, and industrial uses), (2) rural (domestic and livestock), (3) irrigation, and (4) self-supplied industrial (including thermoelectric power). In 1970, withdrawals for these uses exceeded by 19 percent the 310 bgd estimated for 1965. Increases in the various categories of off-channel water use since 1965 were: approximately 25 percent for self-supplied industry (mainly in electric-utility thermoelectric plants), 13 percent for public supplies, 13 percent for rural supplies, and 8 percent for irrigation. Industrial water withdrawals included 54 bgd of saline water, a 20 percent increase in 5 years. The fifth principal withdrawal use, hydroelectric power (an in-channel use), amounted to 2,800 bgd, a 5-year increase of 22 percent. In computing total withdrawals, recycling within a plant (reuse) is not counted, but withdrawal of the same water by a downstream user (cumulative withdrawals) is counted. The quantity of fresh water consumed--that is, water made unavailable for further possible withdrawal because of evaporation, incorporation in crops and manufactured products, and other causes--was estimated to average 87 bgd for 1970, an increase of about 12 percent since 1965.

  8. Estimated use of water in the United States, 1960 (United States)

    MacKichan, K.A.; Kammerer, J.C.


    The estimated overage withdrawal use of water in the United States during 1960 was almost 270,000 mgd (million gallons per day), exclusive of water used to develop water power. This estimated use amounts to about 1,500 gpd (galIons per day) per capita. An additional 2,000,000 mgd were used to develop waterpower.Withdrawal use of water requires that the water be removed from the ground or diverted from a stream or lake. In this report the use is divided into five types: public supplies, rural, irrigation, self-supplied industrial, and waterpower. Consumptive use of water is the quantity discharged to the atmosphere or incorporated in the products of the process in which it was used. Only 61,000 mgd of the 270,000 mgd withdrawn was consumed.Of the water withdrawn in 1960, 220,000 mgd (including irrigation conveyance losses) was taken from surface sources and 47,000 from underground sources. Withdrawal of water for uses other than waterpower has increased 12 percent since 1955. The amount of water used for generation of waterpower has! increased 33 percent since 1955. The use of saline water was almost twice as great in 1960 as in 1955.The upper limit of our water supply is the average annual runoff, nearly 1,200,000 mgd. The supply in 1960 was depleted by 61,000 mgd, the amount of water consumed. However, a large part of the water withdrawn but not consumed was deteriorated in quality.

  9. Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15 (United States)

    McGuire, Virginia L.


    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes and change in recoverable water in storage in the High Plains aquifer from predevelopment (about 1950) to 2015 and from 2013 to 2015.The methods to calculate area-weighted, average water-level changes; change in recoverable water in storage; and total recoverable water in storage used geospatial data layers organized as rasters with a cell size of 500 meters by 500 meters, which is an area of about 62 acres. Raster datasets of water-level changes are provided for other uses.Water-level changes from predevelopment to 2015, by well, ranged from a rise of 84 feet to a decline of 234 feet. Water-level changes from 2013 to 2015, by well, ranged from a rise of 24 feet to a decline of 33 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.8 feet from predevelopment to 2015 and a decline of 0.6 feet from 2013 to 2015. Total recoverable water in storage in the aquifer in 2015 was about 2.91 billion acre-feet, which was a decline of about 273.2 million acre-feet since predevelopment and a decline of 10.7 million acre-feet from 2013 to 2015.

  10. Increased container-breeding mosquito risk owing to drought-induced changes in water harvesting and storage in Brisbane, Australia. (United States)

    Trewin, Brendan J; Kay, Brian H; Darbro, Jonathan M; Hurst, Tim P


    Extended drought conditions in south-east Queensland during the early 2000s have resulted in a culture of water harvesting and legislated water restrictions. Aedes notoscriptus is a container-breeding mosquito vector of Ross River and Barmah Forest viruses. From 2008-2009, the larval habitats and seasonal abundance of domestic container-breeding mosquitoes were recorded from three suburbs of Brisbane. A knowledge, attitudes and practice questionnaire was administered to householders. A low-cost, desktop methodology was used to predict the proportion of shaded premises compared with front-of-property estimates. We highlight changes in the frequency of container categories for A. notoscriptus as a response to human behavioural changes to drought. Garden accoutrements, discarded household items and water storage containers accounted for 66.2% (525/793) of positive containers and 77.5% (73 441/94 731) of all immature mosquitoes. Of all household premises surveyed, 52.6% (550/1046) contained rainwater tanks and 29.4% (308/1046) harvested water in other containers, contrasting with a previous 1995 survey where neither category was observed. Both Premise Condition Index and shade directly correlated with positive premises. Human response to drought has resulted in new habitats for domestic container-breeding mosquitoes. This recent trend of prolific water storage is similar to earlier years (1904-1943) in Brisbane when Aedes aegypti was present and dengue epidemics occurred.

  11. Estimation of precipitable water from surface dew point temperature

    International Nuclear Information System (INIS)

    Abdel Wahab, M.; Sharif, T.A.


    The Reitan (1963) regression equation which is of the form lnw=a+bT d has been examined and tested to estimate precipitable water content from surface dew point temperature at different locations. The study confirms that the slope of this equation (b) remains constant at the value of .0681 deg. C., while the intercept (a) changes rapidly with the latitude. The use of the variable intercept can improve the estimated result by 2%. (author). 6 refs, 4 figs, 3 tabs

  12. Problems of estimation of water content history of loesses

    International Nuclear Information System (INIS)

    Rendell, H.M.


    The estimation of 'mean water content' is a major source of error in the TL dating of many sediments. The engineering behaviour of loesses can be used, under certain circumstances, to interfer their content history. The construction of 'stress history' for particular loesses is therefore proposed in order to establish the critical conditions of moisture and applied stress (overburden) at which irreversible structural change occurs. A programme of field and laboratory tests should enable more precise estimates of water content history to be made. (author)

  13. Estimation of octanol/water partition coefficients using LSER parameters (United States)

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.


    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  14. Preliminary estimates of the charge for spent-fuel storage and disposal services

    International Nuclear Information System (INIS)


    The purpose of this report is to stimulate discussion among a wide range of interested parties concerning a one-time charge by the U.S. Government for disposal, or interim storage and disposal, of spent unreprocessed nuclear fuel. The report contains a set of estimates of the charge based on current cost figures and a variety of demand, logistical, institutional, and cost overrun assumptions. The services are to be offered to domestic utilities by the U.S. Government in connection with the spent fuel policy approved by the President and announced by the Department of Energy (DOE) on October 18, 1977. This policy is a direct result of the indefinite deferral of all commercial reprocessing of spent fuel announced by President Carter on April 7, 1977. The services will also be offered to foreign governments on a limited basis in cases where this action would contribute to U.S. goals for nonproliferation of nuclear weapons. The report does not establish new policy and it does not commit DOE to any specific program, schedule or charge. No scenario or case is to be considered most important, no methodology is to be considered definitive, and no charge is to be considered most likely or to represent a proposed charge. The report describes basic principles and methodologies for calculating the charge and highlights primary cost centers. Current estimates of program and facility costs are used. Various aspects of the DOE Spent Fuel Storage Program are brought into focus through this analysis. Interested parties should find these assessment criteria helpful for their planning and useful in discussions concerning the program

  15. Estimated water requirements for gold heap-leach operations (United States)

    Bleiwas, Donald I.


    This report provides a perspective on the amount of water necessary for conventional gold heap-leach operations. Water is required for drilling and dust suppression during mining, for agglomeration and as leachate during ore processing, to support the workforce (requires water in potable form and for sanitation), for minesite reclamation, and to compensate for water lost to evaporation and leakage. Maintaining an adequate water balance is especially critical in areas where surface and groundwater are difficult to acquire because of unfavorable climatic conditions [arid conditions and (or) a high evaporation rate]; where there is competition with other uses, such as for agriculture, industry, and use by municipalities; and where compliance with regulatory requirements may restrict water usage. Estimating the water consumption of heap-leach operations requires an understanding of the heap-leach process itself. The task is fairly complex because, although they all share some common features, each gold heap-leach operation is unique. Also, estimating the water consumption requires a synthesis of several fields of science, including chemistry, ecology, geology, hydrology, and meteorology, as well as consideration of economic factors.

  16. Linkage between canopy water storage and drop size distributions of leaf drips (United States)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu


    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  17. Developing a methodological framework for estimating water productivity indicators in water scarce regions (United States)

    Mubako, S. T.; Fullerton, T. M.; Walke, A.; Collins, T.; Mubako, G.; Walker, W. S.


    Water productivity is an area of growing interest in assessing the impact of human economic activities on water resources, especially in arid regions. Indicators of water productivity can assist water users in evaluating sectoral water use efficiency, identifying sources of pressure on water resources, and in supporting water allocation rationale under scarcity conditions. This case study for the water-scarce Middle Rio Grande River Basin aims to develop an environmental-economic accounting approach for water use in arid river basins through a methodological framework that relates water use to human economic activities impacting regional water resources. Water uses are coupled to economic transactions, and the complex but mutual relations between various water using sectors estimated. A comparison is made between the calculated water productivity indicators and representative cost/price per unit volume of water for the main water use sectors. Although it contributes very little to regional economic output, preliminary results confirm that Irrigation is among the sectors with the largest direct water use intensities. High economic value and low water use intensity economic sectors in the study region include Manufacturing, Mining, and Steam Electric Power. Water accounting challenges revealed by the study include differences in water management regimes between jurisdictions, and little understanding of the impact of major economic activities on the interaction between surface and groundwater systems in this region. A more comprehensive assessment would require the incorporation of environmental and social sustainability indicators to the calculated water productivity indicators.

  18. Estimating irrigation water use in the humid eastern United States (United States)

    Levin, Sara B.; Zarriello, Phillip J.


    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  19. Characterization of water distribution in bread during storage using magnetic resonance imaging. (United States)

    Lodi, Alessia; Abduljalil, Amir M; Vodovotz, Yael


    A soy bread of fully acceptable quality and containing 49% soy ingredients (with or without 5% almond powder) has been recently developed in our laboratory. An investigation on water distribution and mobility, as probed by proton signal intensity and T2 magnetic resonance images, during storage was designed to examine possible relations between water states and hindered staling rate upon soy or soy-almond addition. Water proton distribution throughout soy-containing loaves was found to be very homogeneous in fresh breads with and without almond, with minimal water migration occurring during prolonged storage. In contrast, traditional wheat bread displayed an inhomogeneous water proton population that tended to change (with higher moisture migration towards the outer perimeter of the slice) during storage. Similar results were found for water mobility throughout the loaves, as depicted in T2 images. On intensity images of all considered bread varieties, the outer perimeter corresponding to the crust exhibited lower signal intensity due to decreased water content. Higher T2 values were found in the crust of soy breads with and without almond, which were attributed to lipids. The results indicated that the addition of soy to bread improved the homogeneous distribution of water molecules, which may hinder the staling rate of soy-containing breads. However, incorporation of almond had little effect on the water proton distribution or mobility of soy breads.

  20. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for... (United States)


    ... Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...-acre reservoir; (4) a turnout to supply project effluent water to an existing irrigation system; (5) a...,000 megawatt-hours. Applicant Contact: Bart M. O'Keeffe, West Maui Pumped Storage Water Supply, LLC, P...

  1. Estimate of livestock water use in Nebraska during 1980 (United States)

    Steele, E.K.


    The estimated volume of 148,120 acre-ft of water used by livestock in Nebraska during 1980 is the second largest (after Texas) volume used for livestock production in the fifty Sates. Although water used by livestock is a small percentage of the total water used in Nebraska, this use has a major impact on the farm economy of the State, as livestock sales accounted for 59% of the total farm market cash receipts in 1980. About 16%, or 23 ,590 acre-ft, of this use is estimated to be from surface water sources, with the remaining 124,530 acre-ft pumped from the State 's groundwater supply. The estimated livestock water use in Nebraska 's 93 counties during 1980 ranged from 340 acre-ft in Hooker County to 6,770 acre-ft in Cherry County. Livestock water use by Hydrologic Units ranged from 20 acre-ft in the Hat Creek basin 10120106) to 10,370 acre-ft in the Elkhorn River basin, and the Natural Resources Districts ' use ranged from 1 ,880 acre-ft in the South Platte NRD to 17,830 acre-ft in the Lower Elkhorn NRD. (Author 's abstract)

  2. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed (United States)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.


    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  3. Bacterial communities in an ultrapure water containing storage tank of a power plant. (United States)

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M


    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion.

  4. Estimation Of Height Of Oil -Water Contact Above Free Water Level ...

    African Journals Online (AJOL)

    An estimate of oil-water contact (OWC) and the understanding of the capillary behaviour of hydrocarbon reservoirs are vital for optimum reservoir characterization, hydrocarbon exploration and production. Hence, the height of oil-water contact above free water level for different rock types from some Niger Delta reservoirs ...

  5. A simulation of water pollution model parameter estimation (United States)

    Kibler, J. F.


    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  6. Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest


    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin


    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning):

  7. Estimates of Leaf Relative Water Content from Optical Polarization Measurements (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.


    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  8. MONITOR: A computer model for estimating the costs of an integral monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Reimus, P.W.; Sevigny, N.L.; Schutz, M.E.; Heller, R.A.


    The MONITOR model is a FORTRAN 77 based computer code that provides parametric life-cycle cost estimates for a monitored retrievable storage (MRS) facility. MONITOR is very flexible in that it can estimate the costs of an MRS facility operating under almost any conceivable nuclear waste logistics scenario. The model can also accommodate input data of varying degrees of complexity and detail (ranging from very simple to more complex) which makes it ideal for use in the MRS program, where new designs and new cost data are frequently offered for consideration. MONITOR can be run as an independent program, or it can be interfaced with the Waste System Transportation and Economic Simulation (WASTES) model, a program that simulates the movement of waste through a complete nuclear waste disposal system. The WASTES model drives the MONITOR model by providing it with the annual quantities of waste that are received, stored, and shipped at the MRS facility. Three runs of MONITOR are documented in this report. Two of the runs are for Version 1 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2A (backup) version of the MRS cost estimate. In one of these runs MONITOR was run as an independent model, and in the other run MONITOR was run using an input file generated by the WASTES model. The two runs correspond to identical cases, and the fact that they gave identical results verified that the code performed the same calculations in both modes of operation. The third run was made for Version 2 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2B (integral) version of the MRS cost estimate. This run was made with MONITOR being run as an independent model. The results of several cases have been verified by hand calculations

  9. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, David; Ellett, Kevin; Leetaru, Hannes


    The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of this report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a

  10. Effects of an alternative management of water storage on aridisol at the Bolivian Altiplane

    International Nuclear Information System (INIS)

    Orsag, Vladimir.


    In the present study, we deal with a test as a base to recommend the preparation of soil for cultures different from the usual method. On a 5 year old fellow land, a parcel was ploughed before and another after the wet season. Differences on the water storage appear in both horizons of the studied aridisol, because of a structural improvement on the ploughed ground. During the five months of the rainy season, November through March, the values of water storage were between 5 and 12% higher in the ploughed soil

  11. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm. (United States)

    Fang, Fang; Ni, Bing-Jie; Yu, Han-Qing


    In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.

  12. Nutrient storage rates in a national marsh receiving waste water (United States)

    J.A. Nyman


    Artificial wetlands are commonly used to improve water quality in rivers and the coastal zone. In most wetlands associated with rivers, denitrification is probably the primary process that reduces nutrient loading. Where rivers meet oceans, however, significant amounts of nutrients might be permanently buried in wetlands because of global sea-level rise and regional...

  13. Migration of toxicants from plastics into drinking water during storage ...

    African Journals Online (AJOL)

    In this study, migration of toxicants, such as, manufacturing additives and previously adsorbed materials into drinking water stored inside plastic containers was investigated. The study considered virgin containers as well as those previously used to store sulphuric acid, calcium hypochlorite, methyl ethyl ketone (MEK) and ...

  14. Sample container and storage for paclobutrazol monitoring in irrigation water (United States)

    Paclobutrazol is a plant growth retardant commonly used on greenhouse crops. Residues from paclobutrazol applications can accumulate in recirculated irrigation water. Given that paclobutrazol has a long half-life and potential biological activity in parts per billion concentrations, it would be de...

  15. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B


    but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...

  16. Debate on Uncertainty in Estimating Bathing Water Quality

    DEFF Research Database (Denmark)

    Larsen, Torben


    Estimating the bathing water quality along the shore near a planned sewage discharge requires data on the source strength of bacteria, the die-off of bacteria and the actual dilution of the sewage. Together these 3 factors give the actual concentration of bacteria on the interesting spots...

  17. Estimation of water pollution by genetic biomarkers in tilapia and ...

    African Journals Online (AJOL)



    Apr 2, 2007 ... environmental pollution. Acid phosphatase was used to estimate the effect of heavy metals pollutants as indica- ted by the analysis of water samples and gills of Cyprinus carpio (Ozmen et al., 2006). The enzyme was employed in fish liver to study the effects of the extensive dredging in Goteborg harbor ...

  18. Estimating the burden of disease attributable to unsafe water and ...

    African Journals Online (AJOL)

    Estimating the burden of disease attributable to unsafe water and lack of sanitation and hygiene in South Africa in 2000. ... Disease burden from diarrhoeal diseases, intestinal parasites and schistosomiasis, measured by deaths and disability-adjusted life years (DALYs). Results. 13 434 deaths were attributable to unsafe ...

  19. Estimates of Storage Capacity of Multilayer Perceptron with Threshold Logic Hidden Units. (United States)

    Kowalczyk, Adam


    We estimate the storage capacity of multilayer perceptron with n inputs, h(1) threshold logic units in the first hidden layer and 1 output. We show that if the network can memorize 50% of all dichotomies of a randomly selected N-tuple of points of R(n) with probability 1, then Nmemory capacity (in the sense of Cover) between nh(1)+1 and 2(nh(1)+1) input patterns and for the most efficient networks in this class between 1 and 2 input patterns per connection. Comparing these results with the recent estimates of VC-dimension we find that in contrast to a single neuron case, the VC-dimension exceeds the capacity for a sufficiently large n and h(1). The results are based on the derivation of an explicit expression for the number of dichotomies which can be implemented by such a network for a special class of N-tuples of input patterns which has a positive probability of being randomly chosen.

  20. Estimating the system price of redox flow batteries for grid storage (United States)

    Ha, Seungbum; Gallagher, Kevin G.


    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  1. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements (United States)

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S.


    Water impoundment in the Three Gorges Reservoir (TGR) of China caused a large mass redistribution from the oceans to a concentrated land area in a short time period. We show that this mass shift is captured by the Gravity Recovery and Climate Experiment (GRACE) unconstrained global solutions at a 400 km spatial resolution after removing correlated errors. The WaterGAP Global Hydrology Model (WGHM) is selected to isolate the TGR contribution from regional water storage changes. For the first time, this study compares the GRACE (minus WGHM) estimated TGR volume changes with in situ measurements from April 2002 to May 2010 at a monthly time scale. During the 8 year study period, GRACE-WGHM estimated TGR volume changes show an increasing trend consistent with the TGR in situ measurements and lead to similar estimates of impounded water volume. GRACE-WGHM estimated total volume increase agrees to within 14% (3.2 km3) of the in situ measurements. This indicates that GRACE can retrieve the true amplitudes of large surface water storage changes in a concentrated area that is much smaller than the spatial resolution of its global harmonic solutions. The GRACE-WGHM estimated TGR monthly volume changes explain 76% (r2 = 0.76) of in situ measurement monthly variability and have an uncertainty of 4.62 km3. Our results also indicate reservoir leakage and groundwater recharge due to TGR filling and contamination from neighboring lakes are nonnegligible in the GRACE total water storage changes. Moreover, GRACE observations could provide a relatively accurate estimate of global water volume withheld by newly constructed large reservoirs and their impacts on global sea level rise since 2002.

  2. Water vapor estimation using digital terrestrial broadcasting waves (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.


    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  3. Water storage changes in North America retrieved from GRACE gravity and GPS data

    Directory of Open Access Journals (Sweden)

    Hansheng Wang


    Full Text Available As global warming continues, the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management. In North America as elsewhere in the world, changes in water resources strongly impact agriculture and animal husbandry. From a combination of Gravity Recovery and Climate Experiment (GRACE gravity and Global Positioning System (GPS data, it is recently found that water storage from August, 2002 to March, 2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005. In this paper, we use GRACE monthly gravity data of Release 5 to track the water storage change from August, 2002 to June, 2014. In Canadian Prairies and the Great Lakes areas, the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a, which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error. We also find a long term decrease of water storage at a rate of −12.0 ± 4.2 Gt/a in Ungava Peninsula, possibly due to permafrost degradation and less snow accumulation during the winter in the region. In addition, the effect of total mass gain in the surveyed area, on present-day sea level, amounts to −0.18 mm/a, and thus should be taken into account in studies of global sea level change.

  4. Development of a thermal storage system based on the heat of adsorption of water in hygroscopic materials

    NARCIS (Netherlands)

    Wijsman, A.J.T.M.; Oosterhaven, R.; Ouden, C. den


    A thermal storage system based on the heat of adsorption of water in hygroscopic materials has been studied as a component of a solar space heating system. The aim of this project is to decrease the storage volume in comparison with a rock-bed storage system by increasing the stored energy density.

  5. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey


    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  6. A national perspective on paleoclimate streamflow and water storage infrastructure in the conterminous United States (United States)

    Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward


    Large-scale water storage infrastructure in the Conterminous United States (CONUS) provides a means of regulating the temporal variability in water supply with storage capacities ranging from seasonal storage in the wetter east to multi-annual and decadal-scale storage in the drier west. Regional differences in water availability across the CONUS provides opportunities for optimizing water dependent economic activities, such as food and energy production, through storage and transportation. However, the ability to sufficiently regulate water supplies into the future is compromised by inadequate monitoring of non-federally-owned dams that make up around 97% of all dams. Furthermore, many of these dams are reaching or have exceeded their economic design life. Understanding the role of dams in the current and future landscape of water requirements in the CONUS is needed to prioritize dam safety remediation or identify where redundant dams may be removed. A national water assessment and planning process is needed for addressing water requirements, accounting for regional differences in water supply and demand, and the role of dams in such a landscape. Most dams in the CONUS were designed without knowledge of devastating floods and prolonged droughts detected in multi-centennial paleoclimate records, consideration of projected climate change, nor consideration of optimal operation across large-scale regions. As a step towards informing water supply across the CONUS we present a paleoclimate reconstruction of annual streamflow across the CONUS over the past 555 years using a spatially and temporally complete paleoclimate record of summer drought across the CONUS targeting a set of US Geological Survey streamflow sites. The spatial and temporal structures of national streamflow variability are analyzed using hierarchical clustering, principal component analysis, and wavelet analyses. The reconstructions show signals of contemporary droughts such as the Dust Bowl (1930s

  7. The estimation of soil water fluxes using lysimeter data (United States)

    Wegehenkel, M.


    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  8. Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation (United States)

    Seoane, L.; Ramillien, G.; Frappart, F.; Leblanc, M.


    Time series of regional 2°-by-2° GRACE solutions have been computed from 2003 to 2011 with a 10 day resolution by using an energy integral method over Australia [112° E 156° E; 44° S 10° S]. This approach uses the dynamical orbit analysis of GRACE Level 1 measurements, and specially accurate along-track K Band Range Rate (KBRR) residuals (1 μm s-1 level of error) to estimate the total water mass over continental regions. The advantages of regional solutions are a significant reduction of GRACE aliasing errors (i.e. north-south stripes) providing a more accurate estimation of water mass balance for hydrological applications. In this paper, the validation of these regional solutions over Australia is presented as well as their ability to describe water mass change as a reponse of climate forcings such as El Niño. Principal component analysis of GRACE-derived total water storage maps show spatial and temporal patterns that are consistent with independent datasets (e.g. rainfall, climate index and in-situ observations). Regional TWS show higher spatial correlations with in-situ water table measurements over Murray-Darling drainage basin (80-90%), and they offer a better localization of hydrological structures than classical GRACE global solutions (i.e. Level 2 GRGS products and 400 km ICA solutions as a linear combination of GFZ, CSR and JPL GRACE solutions).

  9. Application of minidisk infiltrometer to estimate soil water repellency (United States)

    Alagna, Vincenzo; Iovino, Massimo; Bagarello, Vincenzo; Mataix-Solera, Jorge; Lichner, Ľubomír


    Soil water repellency (SWR) reduces affinity of soils to water resulting in detrimental implication for plants growth as well as for hydrological processes. During the last decades, it has become clear that SWR is much more widespread than formerly thought, having been reported for a wide variety of soils, land uses and climatic conditions. The repellency index (RI), based on soil-water to soil-ethanol sorptivity ratio, was proposed to characterize subcritical SWR that is the situation where a low degree of repellency impedes infiltration but does not prevent it. The minidisk infiltrometer allows adequate field assessment of RI inherently scaled to account for soil physical properties other than hydrophobicity (e.g., the volume, connectivity and the geometry of pores) that directly influence the hydrological processes. There are however some issues that still need consideration. For example, use of a fixed time for both water and ethanol sorptivity estimation may lead to inaccurate RI values given that water infiltration could be negligible whereas ethanol sorptivity could be overestimated due to influence of gravity and lateral diffusion that rapidly come into play when the infiltration process is very fast. Moreover, water and ethanol sorptivity values need to be determined at different infiltration sites thus implying that a large number of replicated runs should be carried out to obtain a reliable estimate of RI for a given area. Minidisk infiltrometer tests, conducted under different initial soil moisture and management conditions in the experimental sites of Ciavolo, Trapani (Italy) and Javea, Alicante (East Spain), were used to investigate the best applicative procedure to estimate RI. In particular, different techniques to estimate the water, Sw, and ethanol, Se, sorptivities were compared including i) a fixed 1-min time interval, ii) the slope of early-time 1D infiltration equation and iii) the two-term transient 3D infiltration equation that explicitly

  10. Estimated Colorado Golf Course Irrigation Water Use, 2005 (United States)

    Ivahnenko, Tamara


    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  11. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir (United States)

    Toth, Elena


    approach is then applied for modelling the streamflow originated in the fourth, ungauged, diversion watershed. Finally, the potential reservoir water availability is estimated, hypothesising to take from the diversion catchments all the streamflow exceeding the minimum flow requirements. The results indicate that modifying the water intake structures might allow a consistent increase in the storage volumes in the reservoir during the water scarcity periods: the water available to the reservoir would in fact - on average - increase of around the 13% of the abstracted annual volume.

  12. Water quality estimation method for primary coolant circuit

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Hidefumi.


    The present invention is suitable to water quality diagnosis at each of the portions in a reactor upon hydrogen injection for preventing stress corrosion crackings (SCC) of a BWR type reactor. That is, a plurality of simulations are conducted how the water quality at each of the portions in the reactor is changed when hydrogen injection amount is changed depending on the design and operation conditions of the plant. The result of the calculation is stored in a memory device. A water quality distribution in a pressure vessel having a solution which agrees with a value actually measured by a water quality measuring device disposed at the outside of a reactor core is retrieved from the results of the calculation. If no agreeing solution can be found, water quality distribution containing the actually measured value is determined based on the result of the calculation by using interpolation. In the present invention, the result of the calculation obtained by the simulation and the actually measured value at the outside of the reactor core can be utilized, to map the distribution of reactor water ingredients on a screen, which can accurately estimate the water quality at the periphery of the reactor core on real time. As a result, an operational efficiency of a reactor which can control water quality upon hydrogen injection at an optimum condition. (I.S.)

  13. Terrestrial Water Storage from GRACE and Satellite Altimetry in the Okavango Delta (Botswana)

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Krogh, Pernille Engelbredt; Bauer-Gottwein, Peter


    New technology can for the first time enable the accurate retrieval of the global and regional water budgets from space-borne and ground-based gravity surveys. Water is mankind’s most critical natural resource, but it is being heavily used throughout the globe. The aim of this paper is to outline...... the HYDROGRAV project dealing with improving large scale hydrological model with time variable gravity observations. Also preliminary HYDROGRAV investigationsa of terrestrial water storage variations in the Okavango delta in Botswana are presented. Data from 4 years of satellite altimetry, GRACE derived TWS...... and GLDAS hydrological model all show a clear annual variation corresponding to the well known seasonality of the delta. However, they also all show an increasing trend in the amount of water storage in the region over the last 4 years....

  14. Measuring gravity change caused by water storage variations: Performance assessment under controlled conditions

    DEFF Research Database (Denmark)

    Christiansen, Lars; Lund, Sanne; Andersen, Ole Baltazar


    Subsurface water content is an important state variable in hydrological systems. Established methods to measure subsurface water content have a small support scale which causes scaling problems in many applications. Time-lapse relative gravimetry can give an integrated measure of soil water storage...... changes over tens to hundreds of cubic meters. The use of time-lapse gravimetry in hydrology has until recent years been limited by the large efforts required to obtain precise and accurate gravity data at the 1μGal (10−8ms−2) scale. A typical modern relative gravimeter, the Scintrex CG-5, has...... lead to a loss of accuracy. As a performance test of a CG-5 for applications of time-lapse gravity in hydrology, we have measured the change in water storage in an indoor basin. The experiment was designed to resemble a field application, e.g. a pumping test, a forced infiltration experiment...

  15. Good Practices for Water Quality Management in Research Reactors and Spent Fuel Storage Facilities

    International Nuclear Information System (INIS)


    Water is the most common fluid used to remove the heat produced in a research reactor (RR). It is also the most common media used to store spent fuel elements after being removed from the reactor core. Spent fuel is stored either in the at-reactor pool or in away-from-reactor wet facilities, where the fuel elements are maintained until submission to final disposal, or until the decay heat is low enough to allow migration to a dry storage facility. Maintaining high quality water is the most important factor in preventing degradation of aluminium clad fuel elements, and other structural components in water cooled research reactors. Excellent water quality in spent fuel wet storage facilities is essential to achieve optimum storage performance. Experience shows the remarkable success of many research reactors where the water chemistry has been well controlled. In these cases, aluminium clad fuel elements and aluminium pool liners show few, if any, signs of either localized or general corrosion, even after more than 30 years of exposure to research reactor water. In contrast, when water quality was allowed to degrade, the fuel clad and the structural parts of the reactor have been seriously corroded. The driving force to prepare this publication was the recognition that, even though a great deal of information on research reactor water quality is available in the open literature, no comprehensive report addressing the rationale of water quality management in research reactors has been published to date. This report is designed to provide a comprehensive catalogue of good practices for the management of water quality in research reactors. It also presents a brief description of the corrosion process that affects the components of a research reactor. Further, the report provides a basic understanding of water chemistry and its influence on the corrosion process; specifies requirements and operational limits for water purification systems of RRs; describes good practices

  16. Variability of basin-scale terrestrial water storage from a novel application of the water budget equation: the Amazon and the Mississippi (United States)

    Yoon, J.; Zeng, N.; Mariotti, A.; Swenson, S.


    In an approach termed the P-E-R (or simply PER) method, we apply the basin water budget equation to diagnose the long-term variability of the total terrestrial water storage (TWS). The key input variables are observed precipitation (P) and runoff (R), and estimated evaporation (E). Unlike typical offline land-surface model estimate where only atmospheric variables are used as input, the direct use of observed runoff in the PER method imposes an important constraint on the diagnosed TWS. Although there lack basin-scale observations of evaporation, the tendency of E to have significantly less variability than the difference between precipitation and runoff (P-R) minimizes the uncertainties originating from estimated evaporation. Compared to the more traditional method using atmospheric moisture convergence (MC) minus R (MCR method), the use of observed precipitation in PER method is expected to lead to general improvement, especially in regions atmospheric radiosonde data are too sparse to constrain the atmospheric model analyzed MC such as in the remote tropics. TWS was diagnosed using the PER method for the Amazon (1970-2006) and the Mississippi Basin (1928-2006), and compared with MCR method, land-surface model and reanalyses, and NASA's GRACE satellite gravity data. The seasonal cycle of diagnosed TWS over the Amazon is about 300 mm. The interannual TWS variability in these two basins are 100-200 mm, but multi-dacadal changes can be as large as 600-800 mm. Major droughts such as the Dust Bowl period had large impact with water storage depleted by 500 mm over a decade. Within the short period 2003-2006 when GRACE data was available, PER and GRACE show good agreement both for seasonal cycle and interannual variability, providing potential to cross-validate each other. In contrast, land-surface model results are significantly smaller than PER and GRACE, especially towards longer timescales. While we currently lack independent means to verify these long-term changes

  17. Investigation on Floating Lid Construction, pit Water Storage, Ottrupgaard, Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    metallic covers. The elements are joint in situ by special steel profiles. A two-step sealing with silicone mass and bitumen-tape is applied to tighten the construction.To ensure a proper lid design, two test lids of 1.5x1.5 metres were tested at the Department of Buildings and Energy under ambient...... on the colder side of the construction where it does no harm. Anyway the worst case of hot water lying at the bottom of the insulation is examined by experiments. The experiments proof that the water will penetrate into the PUR-foam in time. It is not to say from the experiments if the PUR-foam cells...... and damp in highly insulated constructions plus conductive heat transport are to be found.Although there is no applicable lid design after this first project phase, the project has brought the lid design a step ahead. The project has disclosed a finite number of ways to go on and find final solutions....

  18. Influence of water storage on fatigue strength of self-etch adhesives. (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Scheidel, Donal D; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi


    The purpose of this study was to determine enamel and dentin bond durability after long-term water storage using self-etch adhesives. Two single step self-etch adhesives (SU, Scotchbond Universal and GB, G-ӕnial Bond) and a two-step self-etch adhesive (OX, OptiBond XTR) were used. The shear bond strength (SBS) and shear fatigue strength (FS) of the enamel and dentin were obtained with and without phosphoric acid pre-etching prior to application of the adhesives. The specimens were stored in distilled water at 37 °C for 24 h, 6 months, and one year. A staircase method was used to determine the FS using a frequency of 10 Hz for 50,000 cycles or until failure occurred. The SBS and FS of enamel bonds were significantly higher with pre-etching, when compared to no pre-etching for the same water storage period. The FS of dentin bonds with pre-etching tended to decrease relative to no pre-etching at the same storage period. For the one year storage period, SU and GB with pre-etching showed significantly lower FS values than the groups without pre-etching. The influence of water storage on FS of the self-etch adhesives was dependent on the adhesive material, storage period and phosphoric acid pre-etching of the bonding site. Phosphoric acid pre-etching of enamel improves the effectiveness of self-etch adhesive systems. Inadvertent contact of phosphoric acid on dentin appears to reduce the ability of self-etch adhesives to effectively bond resin composite materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Analysis of long-term terrestrial water storage variations in the Yangtze River basin

    NARCIS (Netherlands)

    Huang, Ying; Salama, M.S.; Krol, Martinus S.; van der Velde, R.; Hoekstra, Arjen Ysbert; Zhou, Y.; Su, Zhongbo


    In this study, we analyze 32 yr of terrestrial water storage (TWS) data obtained from the Interim Reanalysis Data (ERA-Interim) and Noah model from the Global Land Data Assimilation System (GLDAS-Noah) for the period 1979 to 2010. The accuracy of these datasets is validated using 26 yr (1979–2004)

  20. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.


    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  1. Improvement of the variable storage coefficient method with water surface gradient as a variable (United States)

    The variable storage coefficient (VSC) method has been used for streamflow routing in continuous hydrological simulation models such as the Agricultural Policy/Environmental eXtender (APEX) and the Soil and Water Assessment Tool (SWAT) for more than 30 years. APEX operates on a daily time step and ...

  2. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation (United States)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara


    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  3. Terrestrial water storage changes over Xinjiang extracted by combining Gaussian filter and multichannel singular spectrum analysis from GRACE (United States)

    Guo, Jinyun; Li, Wudong; Chang, Xiaotao; Zhu, Guangbin; Liu, Xin; Guo, Bin


    Water resource management is crucial for the economic and social development of Xinjiang, an arid area located in the Northwest China. In this paper, the time variations of gravity recovery and climate experiment (GRACE)-derived monthly gravity field models from 2003 January to 2013 December are analysed to study the terrestrial water storage (TWS) changes in Xinjiang using the multichannel singular spectrum analysis (MSSA) with a Gaussian smoothing radius of 400 km. As an extended singular spectrum analysis (SSA), MSSA is more flexible to deal with multivariate time-series in terms of estimating periodic components and trend, reducing noise and identifying patterns of similar spatiotemporal behaviour thanks to the data-adaptive nature of the base functions. Combining MSSA and Gaussian filter can not only obviously remove the north-south striping errors in the GRACE solutions but also reduce the leakage errors, which can increase the signal-to-noise ratio by comparing with the traditional procedure, that is, empirical decorrelation method followed with the Gaussian filtering. The spatiotemporal characteristics of TWS changes in Xinjiang were validated against the Global Land Dynamics Assimilation System, the Climate Prediction Center and in-situ precipitation data. The water storage in Xinjiang shows the relatively large fluctuation from 2003 January to 2013 December, with a drop from 2006 January to 2008 December due to the drought event and an obvious rise from 2009 January to 2010 December because of the high precipitation. Spatially, the TWS has been increasing in the south Xinjiang, but decreasing in the north Xinjiang. The minimum rate of water storage change is -4.4 mm yr-1 occurring in the central Tianshan Mountain.

  4. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region

    KAUST Repository

    Ghaffour, Noreddine


    Desalination is no longer considered as a nonconventional resource to supply potable water in several countries, especially in the Gulf Corporation Countries (GCC) and Middle East and North Africa (MENA) region as most of the big cities rely almost 100% on desalinated water for their supply. Due to the continuous increase in water demand, more large-scale plants are expected to be constructed in the region. However, most of the large cities in these countries have very limited water storage capacity, ranging from hours to a few days only and their groundwater capacity is very limited. The growing need for fresh water has led to significant cost reduction, because of technological improvements of desalination technologies which makes it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high peak in the summer season. However, desalination and power plants are economically and technically efficient only if they are fully operated at close to full capacity. In addition, desalination plants are exposed to external constraints leading to unexpected shutdowns (e.g. red tides). Hybridization of different technologies, including reverse osmosis and thermal-based plants, is used to balance the power to water mismatch in the demand by using the idle power from co-generation systems during low power demand periods. This has led to consideration of storage of additional desalinated water to allow for maximum production and stability in operation. Aquifer storage and recovery (ASR) would then be a good option to store the surplus of desalinated water which could be used when water demand is high or during unexpected shutdowns of desalination plants. In addition, increased reuse of treated wastewater could bring an integrated approach to water resources management. In this

  5. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.


    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  6. Protocols for atomistic modeling of water uptake into zeolite crystals for thermal storage and other applications

    International Nuclear Information System (INIS)

    Fasano, Matteo; Borri, Daniele; Chiavazzo, Eliodoro; Asinari, Pietro


    Highlights: • Numerical protocols for modeling water adsorption and infiltration into zeolite. • A priori screening of new materials for heat storage and desalination is possible. • Water uptake isotherms for bridging atomistic and engineering scales. - Abstract: We report numerical protocols for describing the water uptake process into microporous materials, with special emphasis on zeolite crystals. A better understanding and more predictive tools of the latter process are critical for a number of modern engineering applications, ranging from the optimization of loss free and compact thermal storage plants up to more efficient separation processes. Water sorption (and desorption) is indeed the key physical phenomenon to consider when designing several heat storage cycles, whereas water infiltration is to be studied when concerned with sieving through microporous materials for manufacturing selective membranes (e.g. water desalination by reverse osmosis). Despite the two quite different applications above, in this article we make an effort for illustrating a comprehensive numerical framework for predicting the engineering performances of microporous materials, based on detailed atomistic models. Thanks to the nowadays spectacular progresses in synthesizing an ever increasing number of new materials with desired properties such as zeolite with various concentrations of hydrophilic defects, we believe that the reported tools can possibly guide engineers in choosing and optimizing innovative materials for (thermal) engineering applications in the near future.

  7. Estimating the monthly discharge of a photovoltaic water pumping system: Model verification

    International Nuclear Information System (INIS)

    Amer, E.H.; Younes, M.A.


    A simple algorithm has been adopted for estimating the long term performance of a photovoltaic water pumping system without battery storage. The method uses the standard solar utilizability correlation equation to calculate the flow rate of the system, knowing an insolation threshold value. The method uses the monthly average solar radiation as the only input. The nonlinear relation between flow rate and solar insolation has been obtained experimentally in a first step and then used for performance prediction. The meteorological data collected instantaneously at the site of the pumping system has been used to obtain the monthly average values for solar radiation that are needed by the method. The method has been validated by predicting the performance of two PV pumping systems. The average output of the systems predicted by the method has been compared with experimental measurements. The estimated discharge differs by about 5% from the experimental measurements

  8. Online estimation of radionuclide transportation in water environment

    International Nuclear Information System (INIS)

    Yi-Jing Zhang; Li-Sheng Hu


    Transportation evaluation of the radionuclide waste discharged from nuclear power plants is an essential licensing issue, especially for inland sites. Basically, the dynamics of radionuclide transportation are nonlinear and time-varying. Motivated by its time-consuming computation, the work proposed an online estimation method for the radionuclide waste in water surface. After extracting the nonlinearity of factors influencing radionuclide transportation, the method utilizes transfer function and generalized autoregressive conditional heteroskedasticity models to perform deterministic and probabilistic estimations. It turns out that, the resulting predictions show high accuracy and can optimize the online discharge management of radioactive waste for nuclear power plants. (author)

  9. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen


    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  10. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.


    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  11. Estimation of energy storage capacity in power system in japan under future demand and supply factors

    International Nuclear Information System (INIS)

    Kurihara, Ikuo; Tanaka, Toshikatsu


    The desirable capacity of future energy storage facility in power system in Japan is discussed in this paper, putting emphasis on future new electric demand/supply factors such as CO 2 emission problems and social structure change. The two fundamental demand scenarios are considered; one is base case scenario which extrapolates the trend until now and the other is social structure change scenario. The desirable capacity of the energy storage facility is obtained from the result of optimum generation mix which minimizes the yearly expenses of the target year (2030 and 2050). The result shows that the optimum capacity of energy storage facility is about 10 to 15%. The social structure change and demand side energy storage have great influences on the optimum capacity of supply side storage. The former increases storage capacity. The latter reduces it and also contributes to the reduction of generation cost. Suppression of CO 2 emission basically affects to reduce the storage capacity. The load following operation of nuclear plant also reduces the optimum storage capacity in the case it produces surplus energy at night. Though there exist many factors which increase or decrease the capacity of energy storage facility, as a whole, it is concluded that the development of new energy storage technology is necessary for future. (author)

  12. Functionalized single walled carbon nanotubes as template for water storage device

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanjib; Taraphder, Srabani, E-mail:


    Single walled carbon nanotubes, endohedrally functionalized with a protonated/unprotonated carboxylic acid group, are examined as potential templates for water storage using classical molecular dynamics simulation studies. Following a spontaneous entry of water molecules into the core of model functionalized carbon nanotubes (FCNTs), a large fraction of water molecules are found to be trapped inside FCNTs of lengths 50 and 100 Å. Only water molecules near the two open ends of the nanotube are exchanged with the bulk solvent. The residence times of water molecules inside FCNTs are investigated by varying the length of the tube, the length of suspended functional group and the protonation state of the carboxylic acid group. Favorable energetic interactions between the functional group and water, assisted by a substantial gain in rotational entropy, are found to compensate for the entropy loss resulting from restricted translational diffusion of trapped water molecules.

  13. Estimated Use of Water in the United States in 1985 (United States)

    Solley, Wayne B.; Merk, Charles F.; Pierce, Robert R.


    Water withdrawals in the United States during 1985 were estimated to average 399,000 million gallons per day (Mgal/d) of freshwater and saline water for offstream uses--10 percent less than the 1980 estimate. Average per-capita use for all offstream uses was 1,650 gallons per day (gal/d) of freshwater and saline water combined and 1,400 gal/d of freshwater alone. Offstream water-use categories are classified in this report as public supply, domestic, commercial, irrigation, livestock, industrial, mining, and thermoelectric power. During 1985, public-supply withdrawals were estimated to be 36,500 Mgal/d, and self-supplied withdrawals were estimated as follows: domestic, 3,320 Mgal/d: commercial, 1,230 Mgal/d; irrigation, 137,000 Mgal/d: livestock, 4,470 Mgal/d; industrial, 25,800 Mgal/d; mining, 3,440 Mgal/d; and thermoelectric power, 187,000 Mgal/d. Water use for hydroelectric power generation, the only instream use compiled in this report, was estimated to be 3,050,000 Mgal/d during 1985, or 7 percent less than during 1980. This is in contrast to an increasing trend that persisted from 1950 to 1980. Estimates of withdrawals by source indicate that, during 1985, total surface-water withdrawals were 325,000 Mgal/d, or 10 percent less than during 1980, and total ground-water withdrawals were 74,000 Mgal/d, or 12 percent less than during 1980. Total saline-water withdrawals during 1985 were 60,300 Mgal/d, or 16 percent less than during 1980; most was saline surface water. Reclaimed sewage averaged about 579 Mgal/d during 1985, or 22 percent more than during 1980. Total freshwater consumptive use was estimated to be 92,300 Mgal/d during 1985, or 9 percent less than during 1980. Consumptive use by irrigation accounted for the largest part of consumptive use during 1985 and was estimated to be 73,800 Mgal/d. A comparison of total withdrawals (fresh and saline) by State indicates that 37 States and Puerto Rico had less water withdrawn for offstream uses during 1985 than

  14. Proposing water balance method for water availability estimation in Indonesian regional spatial planning (United States)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.


    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  15. Statistical Analysis of Terrestrial Water Storage Change Over Southwestern United States (United States)

    Eibedingil, I. G.; Mubako, S. T.; Hargrove, W. L.; Espino, A. C.


    A warming trend over recent decades has aggravated water resource challenges in the arid southwestern region of the United States (U.S.). An increase in temperature, coupled with decreasing snowpack and rainfall have impacted the region's cities, ecosystems, and agriculture. The region is the largest contributor of agricultural products to the U.S. market resulting from irrigation. Water use through irrigation is stressing already limited terrestrial water resources. Population growth in recent decades has also led to increased water demand. This study utilizes products of the Gravity Recovery and Climate Experiment (GRACE) twin satellites experiment in MATLAB and ArcGIS to examine terrestrial water storage changes in the southwestern region of the U.S., comprised of the eight states of Texas, California, Nevada, Utah, Arizona, Colorado, New Mexico, and Oklahoma. Linear trend analysis was applied to the equivalent water-height data of terrestrial water storage changes (TWSC), precipitation, and air temperature. Correlation analysis was performed on couplings of TWSC - precipitation and TWSC - air temperature to examine the impact of temperature and precipitation on the region's water resources. Our preliminary results show a decreasing trend of TWSC from April 2002 to July 2016 in almost all parts of the region. Precipitation shows a decreasing trend from March 2000 to March 2017 for most of the region, except for sparse areas of increased precipitation near the northwestern coast of California, and a belt running from Oklahoma through the middle of Texas to the El Paso/New Mexico border. From April 2002 to December 2014, air temperature exhibited a negative trend for most of the region, except a larger part of California and a small location in central Texas. Correlation between TWSC and precipitation was mostly positive, but a negative trend was observed when TWSC and air temperature were correlated. The study contributes to the understanding of terrestrial water

  16. Effects of thinning intensities on soil infiltration and water storage capacity in a Chinese pine-oak mixed forest. (United States)

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin


    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity.

  17. Estimation of Water Footprint Compartments in National Wheat Production

    Directory of Open Access Journals (Sweden)

    B. Ababaei


    Full Text Available Introduction: Water use and pollution have raised to a critical level in many compartments of the world. If humankind is to meet the challenges over the coming fifty years, the agricultural share of water use has to be substantially reduced. In this study, a modern yet simple approach has been proposed through the introduction concept ‘Water Footprint’ (WF. This concept can be used to study the connection between each product and the water allocation to produce that product. This research estimates the green, blue and gray WF of wheat in Iran. Also a new WF compartment (white is used that is related about irrigation water loss. Materials and Methods: The national green (Effective precipitation, blue (Net irrigation requirement, gray (For diluting chemical fertilizers and white (Irrigation water losses water footprints (WF of wheat production were estimated for fifteen major wheat producing provinces of Iran. Evapotranspiration, irrigation requirement, gross irrigation requirement and effective rainfall were got using the AGWAT model. Yields of irrigated and rain-fed lands of each province were got from Iran Agricultural-Jihad Ministry. Another compartment of the wheat production WF is related about the volume of water required to assimilate the fertilizers leached in runoff (gray WF. Moreover, a new concept of white water footprint was proposed here and represents irrigation water losses, which was neglected in the original calculation framework. Finally, the national WF compartments of wheat production were estimated by taking the average of each compartment over all the provinces weighted by the share of each province in total wheat production of the selected provinces. Results and Discussion: In 2006-2012, more than 67% of the national wheat production was irrigated and 32.3% were rain-fed, on average, while 37.9% of the total wheat-cultivated lands were irrigated and 62.1% was rain-fed from more than 6,568 -ha. The total national WF of

  18. Accounting for black carbon lowers estimates of blue carbon storage services. (United States)

    Chew, Swee Theng; Gallagher, John B


    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.

  19. Past terrestrial water storage (1980–2008 in the Amazon Basin reconstructed from GRACE and in situ river gauging data

    Directory of Open Access Journals (Sweden)

    M. Becker


    Full Text Available Terrestrial water storage (TWS composed of surface waters, soil moisture, groundwater and snow where appropriate, is a key element of global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE space gravimetry mission provides a new tool to measure large-scale TWS variations. However, for the past few decades, direct estimate of TWS variability is accessible from hydrological modeling only. Here we propose a novel approach that combines GRACE-based TWS spatial patterns with multi-decadal-long in situ river level records, to reconstruct past 2-D TWS over a river basin. Results are presented for the Amazon Basin for the period 1980–2008, focusing on the interannual time scale. Results are compared with past TWS estimated by the global hydrological model ISBA-TRIP. Correlations between reconstructed past interannual TWS variability and known climate forcing modes over the region (e.g., El Niño-Southern Oscillation and Pacific Decadal Oscillation are also estimated. This method offers new perspective for improving our knowledge of past interannual TWS in world river basins where natural climate variability (as opposed to direct anthropogenic forcing drives TWS variations.

  20. Estimation of crop water requirements using remote sensing for operational water resources management (United States)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas


    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  1. Spatiotemporal Variations in the Water Storage of Closed Lakes on the Tibetan Plateau and Their Climatic Responses from 1976-2013 (United States)

    Zhu, L.; Yang, R.


    The water storage of lakes responds sensitively to variations in climate. At the same time, lakes have an important influence on climate by altering the energy exchange between the land surface and the atmosphere. In the present study, water storage changes in 114 closed lakes with areas greater than 50 km2 on the Tibetan Plateau (TP) were estimated by integrating SRTM DEM (Shuttle Radar Topography Mission, Digital Elevation Model) and LandSat images. The results reveal that the total water storage increased by 102.64 Gt from 1976-2013, a rate of 2.77Gt•yr-1. Specifically, the storage changes between 2000 and 2013 account for 97% of the changes during the entire study period, resulting in an overall positive water balance of 7.67 Gt•yr-1. However, the pattern of water balance changes of the studied lakes exhibit significant differences from 1976-2013, and four main patterns were distinguished by using k-mean clustering analysis: a slightly increasing followed by a rapid increase (the southeastern part of the endorheic region of the TP); an initially decreasing water balance, followed by an increase from 1990 (the center and west part of the endorheic region); an initially decreasing, but followed by an increase from 2000 (the northeast part of the endorheic region); and a mainly decreasing water balance (the southern outflow region of the TP). Precipitation was the dominant factor affecting changes in lake water balance; in particular, a large precipitation increase resulted in a dramatic increase of lake water storage from 2000-2013. The relative influence of temperature was opposite before and after 2000. In addition, water storage changes of lakes with and without glaciers melt water input were compared and the results show the influence of glaciers varied. Distinct regional patterns in water storage change indicate clear differences in the climatic sensitivity of lakes in time and space. The findings have important implications both for the interpretation

  2. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten


    spatial resolution; ii) spatially continuous profiles along or across the water body; iii) flexible timing of sampling. A semi-synthetic study was conducted to analyse the value of the new UAV-borne datatype for improving hydrological models, in particular estimates of GW (Groundwater)- SW (Surface Water...

  3. Estimated use of water in South Dakota, 2005 (United States)

    Carter, Janet M.; Neitzert, Kathleen M.


    from surface water. Irrigation withdrawals during 2005 totaled about 292 Mgal/d, of which about 149 Mgal/d was from ground-water sources and about 143 Mgal/d was from surface-water sources. An estimated 421,830 acres was irrigated during 2005. Of the total acres irrigated, 298,160 acres was irrigated by sprinkler application and 123,670 acres was irrigated by surface (or flood) application. The only instream use reported for South Dakota was for hydroelectric power generation. During 2005, about 68,400 Mgal/d was used by the hydroelectric powerplants to generate about 3,688 gigawatt-hours of electricity. Total water use in South Dakota decreased by about 25 percent (175 Mgal/d) between 1985 and 2005 despite an increase in the State's population of about 70,000 people. Total ground-water use increased slightly (about 21 Mgal/d) between 1985 and 2005, whereas surface-water use decreased by about 195 Mgal/d. The decreases in both total use and surface-water use are mostly attributable to decreases in irrigation water use. Total irrigation water use decreased by about 168 Mgal/d between 1985 and 2005, and surface-water irrigation use decreased by about 204 Mgal/d. Ground-water irrigation use increased by about 36 Mgal/d between 1985 and 2005. Water use for public supply increased about 20 Mgal/d between 1985 and 2005, and the population served by public suppliers increased by about 118,000 people. In contrast, the number of people relying on private wells for domestic use decreased by about 48,000 between 1985 and 2005. All self-supplied domestic water use in 2005 was supplied by ground water. Total domestic use decreased about 8 Mgal/d between 1985 and 2005.

  4. Estimation of the conditioning and storage costs of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    Lo Moro, A.; Panciatici, G.


    The conditioning and storage costs of low- and intermediate-level solid radioactive wastes are analyzed. The cost of direct labour is assumed as the reference cost for their computation and the storage cost is considered as resulting from the contract cost ''una tantum'' and from the leasing cost. As an example, the cost trends are reported, relevant to the solution adopted at CAMEN (conditioning in concrete containers and storage on concrete open-air bed)

  5. Using IR Imaging of Water Surfaces for Estimating Piston Velocities (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.


    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  6. Offsetting Water Requirements and Stress with Enhanced Water Recovery from CO2 Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Kelsey Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); The Ohio State Univ., Columbus, OH (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    These are the slides from a presentation at the Mickey Leland Energy Fellowship Forum. The following topics are discussed: motivation, Saline Aquifer Storage, Subsurface Flow, Baseline No Brine Production, Ongoing Work, and the accompanying data visualizations.

  7. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas (United States)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens


    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface

  8. Experimental analysis of distinct design of a batch solar water heater with integrated collector storage system

    Directory of Open Access Journals (Sweden)

    Varghese Jaji


    Full Text Available The performance of a new design of batch solar water heater has been studied. In this system, the collector and storage were installed in one unit. Unlike the conventional design consisting of small diameter water tubes, it has a single large diameter drum which serves the dual purpose of absorber tube and storage tank. In principle it is a compound parabolic collector. The drum is sized to have a storage capacity of 100 liter to serve a family of four persons. The tests were carried out with a single glass cover and two glass covers. The tests were repeated for several days. Performance analysis of the collector has revealed that it has maximum mean daily efficiency with two glass covers as high as 37.2%. The maximum water temperature in the storage tank of 60°C has been achieved for a clear day operation at an average solar beam radiation level of 680 W/m2 and ambient temperature of 32°C. To judge the operating characteristics and to synchronize utility pattern of the collector, the different parameters such as efficiency, mean plate temperature and mass flow rate has been investigated.

  9. Normal and compact spent fuel storage in light water reactor power plants

    International Nuclear Information System (INIS)

    Kuenel, R.R.


    The compact storage of light water reactor spent fuel is a safe, cheap and reliable contribution towards overcoming the momentarily existing shortage in spent fuel reprocessing. The technical concept is described and physical behaviour discussed. The introduction of compact storage racks in nuclear power plants increases the capacity from 100 to about 240 %. The increase in decay heat is not more than about 14%, the increase in activity inventory and hazard potential does not exceed 20%. In most cases the existing power plant equipment fulfils the new requirements. (author)

  10. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment (United States)

    Farrick, Kegan K.; Branfireun, Brian A.


    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  11. Estimating the value of electricity storage in PJM. Arbitrage and some welfare effects

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Denholm, Paul; Jenkin, Thomas; Weiss, Jurgen


    Significant increases in prices and price volatility of natural gas and electricity have raised interest in the potential economic opportunities for electricity storage. In this paper, we analyze the arbitrage value of a price-taking storage device in PJM (power transmission organization in the USA) during the six-year period from 2002 to 2007, to understand the impact of fuel prices, transmission constraints, efficiency, storage capacity, and fuel mix. The impact of load-shifting for larger amounts of storage, where reductions in arbitrage are offset by shifts in consumer and producer surplus as well as increases in social welfare from a variety of sources, is also considered. (author)

  12. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments (United States)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi


    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger

  13. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung


    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified

  14. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico


    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  15. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System (United States)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.


    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy

  16. Estimating effects of improved drinking water and sanitation on cholera. (United States)

    Leidner, Andrew J; Adusumilli, Naveen C


    Demand for adequate provision of drinking-water and sanitation facilities to promote public health and economic growth is increasing in the rapidly urbanizing countries of the developing world. With a panel of data on Asia and Africa from 1990 to 2008, associations are estimated between the occurrence of cholera outbreaks, the case rates in given outbreaks, the mortality rates associated with cholera and two disease control mechanisms, drinking-water and sanitation services. A statistically significant and negative effect is found between drinking-water services and both cholera case rates as well as cholera-related mortality rates. A relatively weak statistical relationship is found between the occurrence of cholera outbreaks and sanitation services.

  17. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)


    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  18. Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events

    Directory of Open Access Journals (Sweden)

    Mohsen Besharat


    Full Text Available An experimental assessment of an air pocket (AP, confined in a compressed air vessel (CAV, has been investigated under several different water hammer (WH events to better define the use of protection devices or compressed air energy storage (CAES systems. This research focuses on the size of an AP within an air vessel and tries to describe how it affects important parameters of the system, i.e., the pressure in the pipe, stored pressure, flow velocity, displaced volume of water and water level in the CAV. Results present a specific range of air pockets based on a dimensionless parameter extractable for other real systems.

  19. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant (United States)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua


    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  20. Recent Changes in Land Water Storage and Its Contribution to Sea Level Variations (United States)

    Wada, Yoshihide; Reager, John T.; Chao, Benjamin F.; Wang, Jida; Lo, Min-Hui; Song, Chunqiao; Li, Yuwen; Gardner, Alex S.


    Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.

  1. Characterization by fluorescence of dissolved organic matter in rural drinking water storage tanks in Morocco. (United States)

    Aziz, Faissal; Ouazzani, Naaila; Mandi, Laila; Assaad, Aziz; Pontvianne, Steve; Poirot, Hélène; Pons, Marie-Noëlle


    Water storage tanks, fed directly from the river through opened channels, are particular systems used for water supply in rural areas in Morocco. The stored water is used as drinking water by the surrounding population without any treatment. UV-visible spectroscopy and fluorescence spectroscopy (excitation-emission matrices and synchronous fluorescence) have been tested as rapid methods to assess the quality of the water stored in the reservoirs as well as along the river feeding them. Synchronous fluorescence spectra (SFS50), collected with a difference of 50 nm between excitation and emission wavelengths, revealed a high tryptophan-like fluorescence, indicative of a pollution induced by untreated domestic and/or farm wastewater. The best correlations were obtained between the total SFS50 fluorescence and dissolved organic carbon (DOC) and biological oxygen demand, showing that the contribution of humic-like fluorescent substances cannot be neglected to rapidly assess reservoir water quality in terms of DOC by fluorescence spectroscopy.

  2. Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation

    Directory of Open Access Journals (Sweden)

    Qingwu Gong


    Full Text Available This paper used a Vanadium Redox flow Battery (VRB as the storage battery and designed a two-stage topology of a VRB energy storage system in which a phase-shifted full bridge dc-dc converter and three-phase inverter were used, considering the low terminal voltage of the VRB. Following this, a model of the VRB was simplified, according to the operational characteristics of the VRB in this designed topology of a VRB energy storage system (ESS. By using the simplified equivalent model of the VRB, the control parameters of the ESS were designed. For effectively estimating the state of charge (SOC of the VRB, a traditional method for providing the SOC estimation was simplified, and a simple and effective SOC estimation method was proposed in this paper. Finally, to illustrate the proper design of the VRB ESS and the proposed SOC estimation method, a corresponding simulation was designed by Simulink. The test results have demonstrated that this proposed SOC estimation method is feasible and effective for indicating the SOC of a VRB and the proper design of this VRB ESS is very reasonable for VRB applications.

  3. The challenge of improving boiling: lessons learned from a randomized controlled trial of water pasteurization and safe storage in Peru. (United States)

    Heitzinger, K; Rocha, C A; Quick, R E; Montano, S M; Tilley, D H; Mock, C N; Carrasco, A J; Cabrera, R M; Hawes, S E


    Boiling is the most common method of household water treatment in developing countries; however, it is not always effectively practised. We conducted a randomized controlled trial among 210 households to assess the effectiveness of water pasteurization and safe-storage interventions in reducing Escherichia coli contamination of household drinking water in a water-boiling population in rural Peru. Households were randomized to receive either a safe-storage container or a safe-storage container plus water pasteurization indicator or to a control group. During a 13-week follow-up period, households that received a safe-storage container and water pasteurization indicator did not have a significantly different prevalence of stored drinking-water contamination relative to the control group [prevalence ratio (PR) 1·18, 95% confidence interval (CI) 0·92-1·52]. Similarly, receipt of a safe-storage container alone had no effect on prevalence of contamination (PR 1·02, 95% CI 0·79-1·31). Although use of water pasteurization indicators and locally available storage containers did not increase the safety of household drinking water in this study, future research could illuminate factors that facilitate the effective use of these interventions to improve water quality and reduce the risk of waterborne disease in populations that boil drinking water.

  4. Assessing the adequacy of water storage infrastructure capacity under hydroclimatic variability and water demands in the United States (United States)

    Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.


    As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water

  5. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C


    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common

  6. Switchgrass storage effects on the recovery of carbohydrates after liquid hot water pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Danielle Julie Carrier


    Full Text Available Perennial grasses that would be used for bioenergy and bioproducts production will need to be stored for various periods of time to ensure a continual feedstock supply to a bioprocessing facility. The effects of storage practices on grass composition and the response of grasses to subsequent bioprocesses such as pretreatment and enzymatic hydrolysis needs to be understood to develop the most efficient storage protocols. This study examined the effect of outdoor storage of round switchgrass bales on composition before and after liquid hot water pretreatment (LHW and enzymatic hydrolysis. This study also examined the effect of washing LHW pretreated biomass prior to enzymatic hydrolysis. It was determined that switchgrass composition after baling was stable. As expected, glucan and lignin contents increased after LHW due to decreases in xylan and galactan. Washing biomass prior to enzymatic hydrolysis reduced saccharification, especially in samples from the interior of the bale, by at least 5%.

  7. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions. (United States)

    Hittinger, Eric; Azevedo, Inês M L


    The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO 2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy required to offset the CO 2 emissions resulting from operation of new energy storage. We find that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.

  8. Can dendrochronology procedures estimate historical Tree Water Footprint? (United States)

    Fernandes, Tarcísio J. G.; Del Campo, Antonio D.; Molina, Antonio J.


    Whole estimates of tree water use are becoming increasingly important in forest science and forest scientists have long sought to develop reliable techniques to estimate tree water use. In this sense accurately determining or estimate the quantity of water transpired by trees and forests is important and can be used to determine "green" water footprint. The use of dendrochronology is relative common in the study of effects and interactions between growth and climatic variables, but few studies deal with the relationship with water footprint. The main objective of this study is determining the historical tree water-use in a planted stand by dendrochronological approaches. This study was performed in South-eastern Spain, in an area covered by 50-60 years old Pinus halepensis Mil. plantations with high tree density (ca.1288/ha) due to low forest management. The experimental set-up consisted of two plots (30x30m), one corresponding to a thinning treatment performed in 2008 (t10) and the other thinned in 1998 (t1) to assess the mid-term effects of thinning. After one year of thinning four representative trees were select in each plot to measure transpiration by heat pulse sensor (sapflow velocity, vs). The accumulated daily values of transpiration (L day-1) were estimated multiplying the values of vs by sapwood area of each selected tree. After transpiration measurements two cores per tree were taken for establishing the tree-rings chronologies. The cores were prepared, their ring-width were measured and standardised in basal area increment index (BAI-i) following usual dendrochronological methods. The dendrochronology analyses showed a general variability in ring width during the initial growth (15 years), while in the following years the width rings were very small, conditioned by climate. The year after thinning (1999 or 2009) all trees in the treatments showed significant increases in ring width. The average vs for t1 and t10 were 3.59 cm h-1 and 1.95 cm h-1, and

  9. Abundance and prevalence of Aedes aegypti immatures and relationships with household water storage in rural areas in southern Viet Nam. (United States)

    Nguyen, Le Anh P; Clements, Archie C A; Jeffery, Jason A L; Yen, Nguyen Thi; Nam, Vu Sinh; Vaughan, Gregory; Shinkfield, Ramon; Kutcher, Simon C; Gatton, Michelle L; Kay, Brian H; Ryan, Peter A


    Since 2000, the Government of Viet Nam has committed to provide rural communities with increased access to safe water through a variety of household water supply schemes (wells, ferrocement tanks and jars) and piped water schemes. One possible, unintended consequence of these schemes is the concomitant increase in water containers that may serve as habitats for dengue mosquito immatures, principally Aedes aegypti. To assess these possible impacts we undertook detailed household surveys of Ae. aegypti immatures, water storage containers and various socioeconomic factors in three rural communes in southern Viet Nam. Positive relationships between the numbers of household water storage containers and the prevalence and abundance of Ae. aegypti immatures were found. Overall, water storage containers accounted for 92-97% and 93-96% of the standing crops of III/IV instars and pupae, respectively. Interestingly, households with higher socioeconomic levels had significantly higher numbers of water storage containers and therefore greater risk of Ae. aegypti infestation. Even after provision of piped water to houses, householders continued to store water in containers and there was no observed decrease in water storage container abundance in these houses, compared to those that relied entirely on stored water. These findings highlight the householders' concerns about the limited availability of water and their strong behavoural patterns associated with storage of water. We conclude that household water storage container availability is a major risk factor for infestation with Ae. aegypti immatures, and that recent investment in rural water supply infrastructure are unlikely to mitigate this risk, at least in the short term.

  10. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.


    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  11. Determining water storage depletion within Iran by assimilating GRACE data into the W3RA hydrological model (United States)

    Khaki, M.; Forootan, E.; Kuhn, M.; Awange, J.; van Dijk, A. I. J. M.; Schumacher, M.; Sharifi, M. A.


    Groundwater depletion, due to both unsustainable water use and a decrease in precipitation, has been reported in many parts of Iran. In order to analyze these changes during the recent decade, in this study, we assimilate Terrestrial Water Storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) into the World-Wide Water Resources Assessment (W3RA) model. This assimilation improves model derived water storage simulations by introducing missing trends and correcting the amplitude and phase of seasonal water storage variations. The Ensemble Square-Root Filter (EnSRF) technique is applied, which showed stable performance in propagating errors during the assimilation period (2002-2012). Our focus is on sub-surface water storage changes including groundwater and soil moisture variations within six major drainage divisions covering the whole Iran including its eastern part (East), Caspian Sea, Centre, Sarakhs, Persian Gulf and Oman Sea, and Lake Urmia. Results indicate an average of -8.9 mm/year groundwater reduction within Iran during the period 2002 to 2012. A similar decrease is also observed in soil moisture storage especially after 2005. We further apply the canonical correlation analysis (CCA) technique to relate sub-surface water storage changes to climate (e.g., precipitation) and anthropogenic (e.g., farming) impacts. Results indicate an average correlation of 0.81 between rainfall and groundwater variations and also a large impact of anthropogenic activities (mainly for irrigations) on Iran's water storage depletions.

  12. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong


    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  13. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Dehghan, A.A.; Barzegar, A.


    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ω model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  14. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona (United States)

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel


    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  15. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona (United States)

    Pool, Donald R.; Schmidt, Werner


    The temporal-gravity method was used to estimate ground-water storage change and specific -yield values at wells near Rillito Creek, Tucson, Arizona, between early December 1992 and early January 1994. The method applies Newton's Law of Gravitation to measure changes in the local gravitational field of the Earth that are caused by changes in the mass and volume of ground water. Gravity at 50 stations in a 6-square-mile area was measured repeatedly relative to gravity at two bedrock stations. Ephemeral recharge through streamflow infiltration during the winter of 1992-93 resulted in water-level rises and gravity increases near Rillito Creek as the volume of ground water in storage increased. Water levels in wells rose as much as 30 feet, and gravity increased as much as 90 microgals. Water levels declined and gravity decreased near the stream after the last major winter flow but continued to rise and increase, respectively, in downgradient areas. Water levels and gravity relative to bedrock were measured at 10 wells. Good linear correlations between water levels and gravity values at five wells nearest the stream allowed for the estimation of specific-yield values for corresponding stratigraphic units assuming the mass change occurred in an infinite horizonal slab of uniform thickness. Specific-yield values for the stream-channel deposits at three wells ranged from 0.15 to 0.34, and correlation coefficients ranged from 0.81 to 0.99. Specific-yield values for the Fort Lowell Formation at three wells ranged from 0.07 to 0.18, and correlation coefficients ranged from 0.82 to 0.93. Specific-yield values were not calculated for the five wells farthest from the stream because of insufficient water-level and gravity change or poor correlations between water level and gravity. Poor correlations between water levels and gravity resulted from ground-water storage change in perched aquifers and in the unsaturated zone near ephemeral streams. Seasonal distributions of ground-water

  16. Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water

    Directory of Open Access Journals (Sweden)

    Christian Klassert


    Full Text Available Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 m3 per year significantly below the absolute scarcity threshold of 500 m3, and strong population growth, especially due to the Syrian refugee crisis. A transition to more sustainable water consumption patterns will likely require Jordan’s water authorities to rely more strongly on water demand management in the future. We conduct a case study of the effects of pricing policies, using an agent-based model of household water consumption in Jordan’s capital Amman, in order to analyze the distribution of burdens imposed by demand-side policies across society. Amman’s households face highly intermittent piped water supply, leading them to supplement it with water from storage tanks and informal private tanker operators. Using a detailed data set of the distribution of supply durations across Amman, our model can derive the demand for additional tanker water. We find that integrating these different supply sources into our model causes demand-side policies to have strongly heterogeneous effects across districts and income groups. This highlights the importance of a disaggregated perspective on water policy impacts in order to identify and potentially mitigate excessive burdens.

  17. ICPP calcined solids storage facility closure study. Volume II: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    Energy Technology Data Exchange (ETDEWEB)



    This document contains Volume II of the Closure Study for the Idaho Chemical Processing Plant Calcined Solids Storage Facility. This volume contains draft information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the four options described in Volume I: (1) Risk-Based Clean Closure; NRC Class C fill, (2) Risk-Based Clean Closure; Clean fill, (3) Closure to landfill Standards; NRC Class C fill, and (4) Closure to Landfill Standards; Clean fill.

  18. ICPP calcined solids storage facility closure study. Volume II: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    International Nuclear Information System (INIS)


    This document contains Volume II of the Closure Study for the Idaho Chemical Processing Plant Calcined Solids Storage Facility. This volume contains draft information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the four options described in Volume I: (1) Risk-Based Clean Closure; NRC Class C fill, (2) Risk-Based Clean Closure; Clean fill, (3) Closure to landfill Standards; NRC Class C fill, and (4) Closure to Landfill Standards; Clean fill

  19. Cost Estimation and Comparison of Carbon Capture and Storage Technology with Wind Energy

    Directory of Open Access Journals (Sweden)



    Full Text Available The CCS (Carbon Capture and Storage is one of the significant solutions to reduce CO2 emissions from fossil fuelled electricity generation plants and minimize the effect of global warming. Economic analysis of CCS technology is, therefore, essential for the feasibility appraisal towards CO2 reduction. In this paper LCOE (Levelized Cost of Electricity Generation has been estimated with and without CCS technology for fossil fuel based power plants of Pakistan and also further compared with computed LCOE of WE (Wind Energy based power plants of the Pakistan. The results of this study suggest that the electricity generation costs of the fossil fuel power plants increase more than 44% with CCS technology as compared to without CCS technology. The generation costs are also found to be 10% further on higher side when considering efficiency penalty owing to installation of CCS technology. In addition, the CO2 avoided costs from natural gas plant are found to be 40 and 10% higher than the local coal and imported coal plants respectively. As such, the electricity generation cost of 5.09 Rs/kWh from WE plants is found to be competitive even when fossil fuel based plants are without CCS technology, with lowest cost of 5.9 Rs./kWh of CCNG (Combined Cycle Natural Gas plant. Based on analysis of results of this study and anticipated future development of efficient and cheap WE technologies, it is concluded that WE based electricity generation would be most appropriate option for CO2 reduction for Pakistan.

  20. Integration of Aquifer Storage Transfer and Recovery and HACCP for Ensuring Drinking Water Quality (United States)

    Lee, S. I.; Ji, H. W.


    The integration of ASTR (Aquifer Storage Transfer and Recovery) and HACCP (Hazard Analysis and Critical Control Point) is being attempted to ensure drinking water quality in a delta area. ASTR is a water supply system in which surface water is injected into a well for storage and recovered from a different well. During the process natural water treatment is achieved in the aquifer. ASTR has advantages over surface reservoirs in that the water is protected from external contaminants and free from water loss by evaporation. HACCP, originated from the food industry, can efficiently manage hazards and reduce risks when it is introduced to the drinking water production. The study area is the located in the Nakdong River Delta, South Korea. Water quality of this region has been deteriorated due to the increased pollution loads from the upstream cities and industrial complexes. ASTR equipped with HACCP system is suggested as a means to heighten the public trust in drinking water. After the drinking water supply system using ASTR was decomposed into ten processes, principles of HACCP were applied. Hazardous event analysis was conducted for 114 hazardous events and nine major hazardous events were identified based on the likelihood and the severity assessment. Potential risk of chemical hazards, as a function of amounts, travel distance and toxicity, was evaluated and the result shows the relative threat a city poses to the drinking water supply facility. Next, critical control points were determined using decision tree analysis. Critical limits, maximum and/or minimum values to which biological, chemical or physical parameters must be controlled, were established. Other procedures such as monitoring, corrective actions and will be presented.

  1. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory


    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  2. Terrestrial water storage changes over the Pearl River Basin from GRACE and connections with Pacific climate variability

    Directory of Open Access Journals (Sweden)

    Zhicai Luo


    Full Text Available Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE satellite mission are used to study terrestrial water storage (TWS changes over the Pearl River Basin (PRB for the period 2003–Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long-term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Niño-Southern Oscillation (ENSO events. However, the modulation of the Pacific Decadal Oscillation (PDO may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic influences in the PRB.

  3. Increased Hydrologic Connectivity: Consequences of Reduced Water Storage Capacity in the Delmarva Peninsula (U.S.) (United States)

    Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.


    Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.

  4. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.


    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  5. Water use at pulverized coal power plants with postcombustion carbon capture and storage. (United States)

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L


    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  6. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers (United States)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.


    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low

  7. How soil water storage moderates climate changes effects on transpiration, across the different climates of the Critical Zone Observatories (United States)

    Heckman, C.; Tague, C.


    While the demand side of transpiration is predicted to increase under a warmer climate, actual evapotranspiration (AET) will be moderated by the supply of water available to vegetation. A key question to ask is how will plant accessible water storage capacity (PAWSC) affect the partitioning of precipitation between AET and runoff. Our results indicate that whether AET increases or decreases, and how much, is significantly based upon interactions between PAWSC and characteristics of precipitation such as the amount, frequency, and skew as well the partitioning between rain and snow. In snow dominated climates, if PAWSC cannot make up for the loss of storage as snowpack then AET could decrease, and in rain dominated climates, PAWSC could significantly limit the increase in AET. These results highlight the importance of critical zone research: constraining PAWSC is critical in predicting not only the magnitude but also the direction of the change in AET with climate warming. Due to the highly heterogeneous nature of PAWSC and the difficulty of measuring it across large scales, we use a well-tested hydrologic model to estimate the impacts from a range of PAWSC on the partitioning of precipitation between runoff and AET. We completed this analysis for the range of precipitation and vegetation characteristics found across 9 of the Critical Zone Observatories.

  8. Using Enhanced Grace Water Storage Data to Improve Drought Detection by the U.S. and North American Drought Monitors (United States)

    Houborg, Rasmus; Rodell, Matthew; Lawrimore, Jay; Li, Bailing; Reichle, Rolf; Heim, Richard; Rosencrans, Matthew; Tinker, Rich; Famiglietti, James S.; Svoboda, Mark; hide


    NASA's Gravity Recovery and Climate Experiment (GRACE) satellites measure time variations of the Earth's gravity field enabling reliable detection of spatio-temporal variations in total terrestrial water storage (TWS), including groundwater. The U.S. and North American Drought Monitors rely heavily on precipitation indices and do not currently incorporate systematic observations of deep soil moisture and groundwater storage conditions. Thus GRACE has great potential to improve the Drought Monitors by filling this observational gap. GRACE TWS data were assimilating into the Catchment Land Surface Model using an ensemble Kalman smoother enabling spatial and temporal downscaling and vertical decomposition into soil moisture and groundwater components. The Drought Monitors combine several short- and long-term drought indicators expressed in percentiles as a reference to their historical frequency of occurrence. To be consistent, we generated a climatology of estimated soil moisture and ground water based on a 60-year Catchment model simulation, which was used to convert seven years of GRACE assimilated fields into drought indicator percentiles. At this stage we provide a preliminary evaluation of the GRACE assimilated moisture and indicator fields.

  9. Estimates of forest biomass carbon storage inLiaoning Province of Northeast China: a review and assessment. (United States)

    Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin


    Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.

  10. A consistent approach to CO{sub 2} storage capacity estimation for deep saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Dose, T. [DEA Mineraloel AG, Hamburg (Germany)


    Whereas the methodology of assessing pore volume is well established, a consistent methodology for calculating the pore volume efficiency (PVE) needs to be applied, e.g., as proposed in this paper. (1) Numerical simulations show, that CO{sub 2} storage sites are not restricted to geologic traps like anticlines. Also synclines and flat structures provide feasible storage structures, as long as no shortcut to the surface like leaking faults or wells exist. (2) Among active forces induced by CO{sub 2} injection, differential injection pressure and static pressure increase may turn out to be critical. This can lead to overlap with capillary displacement pressure, fracturing pressure, and exceeding the fault friction limit. (3) If differential injection pressure turns out to be critical, this can be balanced technically. Fault slippage can be avoided by selecting appropriate sites. (4) For the CO{sub 2} storage system to stay in balance, it is required that the static pressure increase stays below the capillary displacement pressure. (5) With this limiting conditions, scenarios show PVEs of 0.1-0.65% for a hydraulic system, mostly dependant on caprock quality and total compressibility. (6) Likely several possible storage sites exist for a hydraulic system. It is almost sure that the sum of the local storage potential will exceed the storage potential of the hydraulic system. (7) Regional pressure effects of CO{sub 2} storage can be significant. Different storage sites injecting at high rates into the same hydraulic system will need large distances between them. (9) Due to likely interference of storage sites and other fluid operations within a hydraulic system, close cooperations between operators may become necessary. (orig.)

  11. Corrosion of aluminium alloy test coupons in water of spent fuel storage pool at RA reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Jordanov, G.; Dobrijevic, R.


    Study on corrosion of aluminium cladding, of the TVR-S type of enriched uranium spent fuel elements of the research reactor RA in the storage water pool is examined in the framework nr the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) 'Corrosion of Research Reactor Clad-Clad Spent Fuel in Water' since 2002. Standard racks with aluminium coupons are exposed to water in the spent fuel pools of the research reactor RA. After predetermined exposure times along with periodic monitoring of the water parameters, the coupons are examined according to the strategy and the protocol supplied by the IAEA. Description of the standard corrosion racks, experimental protocols, test procedures, water quality monitoring and compilation of results of visual examination of corrosion effects are present in this article. (author)

  12. Leak isolation self-repairing tape for a water storage vessel and piping against holes

    International Nuclear Information System (INIS)

    Nagaya, Kosuke; Sekiguchi, Takahiro; Chen, Zhichao; Murakami, Iwanori


    A new type taping for a water storage vessel or piping is presented, in which water leakage is isolated automatically by its self-repairing mechanism against holes. The self-repairing unit (sealant layer) is consisting of three pieces of net with polymer particles inside lattices. Polymer particles, which expand their volume with water, is used for having self-repairing forces. In ordinary tapes, water leaks along the boundary between the tape and the vessel. In order to retain the leak isolation force, this article first discusses a method for making the sealant tape, then develops a method for fixing the sealant to the vessel. The portion of water leakage can be checked on this tape, and the method of detecting the hole or crack portion of the vessel is also presented by using the tape. (author)

  13. The effect of melanin-free extract from Sepia esculenta ink on lipid peroxidation, protein oxidation and water-holding capacity of tilapia fillet during cold storage. (United States)

    Duan, Zhen-Hua; Liu, Hua-Zhong; Luo, Ping; Gu, Yi-Peng; Li, Yan-Qun


    Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.

  14. Seasonal carbon storage and growth in Mediterranean tree seedlings under different water conditions. (United States)

    Sanz-Pérez, Virginia; Castro-Díez, Pilar; Joffre, Richard


    In all Mediterranean-type ecosystems, evergreen and deciduous trees differing in wood anatomy, growth pattern and leaf habit coexist, suggesting distinct adaptative responses to environmental constraints. This study examined the effects of summer water stress on carbon (C) storage and growth in seedlings of three coexisting Mediterranean trees that differed in phenology and wood anatomy characteristics: Quercus ilex subsp. ballota (Desf.) Samp., Quercus faginea Lam. and Pinus halepensis L. Seedlings were subjected to two levels of watering during two consecutive summers and achieved a minimum of -0.5 and -2.5 MPa of predawn water potential in the control and water stress treatment, respectively. Both Quercus species concentrated their growth in the early growing season, demanding higher C in early spring but replenishing C-stores in autumn. These species allocated more biomass to roots, having larger belowground starch and lipid reserves. Quercus species differed in seasonal storage dynamics from P. halepensis. This species allocated most of its C to aboveground growth, which occurred gradually during the growing season, leading to fewer C-reserves. Soluble sugar and starch concentrations sharply declined in August in P. halepensis, probably because reserves support respiration demands as this species closed stomata earlier under water stress. Drought reduced growth of the three species, mainly in Q. faginea and P. halepensis, but not C-reserves, suggesting that growth under water stress conditions is not limited by C-availability.

  15. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands. (United States)

    Porteiro, Jacobo; Míguez, José Luis; Crespo, Bárbara; de Lara, José; Pousada, José María


    Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials) in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  16. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands

    Directory of Open Access Journals (Sweden)

    Jacobo Porteiro


    Full Text Available Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  17. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.


    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  18. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.


    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  19. High water level installation of monitoring wells for underground storage tanks

    International Nuclear Information System (INIS)

    Treadway, C.


    This paper briefly describes a common monitoring well installation design for shallow ground water contamination resulting from leaky underground storage tanks. The paper describes drilling techniques used in unconsolidated Florida aquifers using hollow-stem augers. It describes methods for the prevention of heaving sands and sand-locking problems. It then goes on to describe the proper well casing placement and sealing techniques using neat cements. The proper sell screen level is also discussed to maximize the detection of floating hydrocarbons

  20. Seismic evaluation of BWR spent fuel storage racks using actual damping by vibration test in water

    International Nuclear Information System (INIS)

    Yamasaki, Hiroto; Iwakura, Shigeyoshi; Imaoka, Tetsuo; Okumura, Kazue; Orita, Syuichi; Namita, Yoshio


    Damping value for BWR spent fuel storage racks has been used 1 percent damping, which is applied to welded steel structures in air as defined JEAG4601. However, it is considered that the actual damping is higher than that of the above mentioned, because of its underwater installation. This report shows the actual damping value of the Check Arrayed Rack by vibration test in water and Evaluation by the analysis of rack using actual damping. (author)

  1. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Nearshore Water Quality Estimation Using Atmospherically Corrected AVIRIS Data

    Directory of Open Access Journals (Sweden)

    Sima Bagheri


    Full Text Available The objective of the research is to characterize the surface spectral reflectance of the nearshore waters using atmospheric correction code—Tafkaa for retrieval of the marine water constituent concentrations from hyperspectral data. The study area is the nearshore waters of New York/New Jersey considered as a valued ecological, economic and recreational resource within the New York metropolitan area. Comparison of the Airborne Visible Infrared Imaging Spectrometer (AVIRIS measured radiance and in situ reflectance measurement shows the effect of the solar source and atmosphere in the total upwelling spectral radiance measured by AVIRIS. Radiative transfer code, Tafkaa was applied to remove the effects of the atmosphere and to generate accurate reflectance (R(0 from the AVIRIS radiance for retrieving water quality parameters (i.e., total chlorophyll. Chlorophyll estimation as index of phytoplankton abundance was optimized using AVIRIS band ratio at 675 nm and 702 nm resulting in a coefficient of determination of R2 = 0.98. Use of the radiative transfer code in conjunction with bio optical model is the main tool for using ocean color remote sensing as an operational tool for monitoring of the key nearshore ecological communities of phytoplankton important in global change studies.

  3. Estimate of the coupling impedance for the storage rings of the NSLS

    International Nuclear Information System (INIS)

    Ruggiero, A.G.


    The most important ingredient to evaluate the stability of a particle beam in a storage ring is the longitudinal coupling impedance Z/n and the transverse impedance Z/sub perpendicular/ which is usually associated to the former. These impedances are calculated for the two storage rings which are part of the NSLS, namely the Ultra Violet Ring (UVR) and the X-Ray Ring (XRR)-the parameters for these two rings which are used throughout the paper are shown

  4. Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission (United States)

    Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Sun, Zhongchang; Guo, Bin


    We use GRACE gravity data released by the Center for Space Research (CSR) and the Groupe de Recherches en Geodesie Spatiale (GRGS) to detect the water storage changes over the Tibetan Plateau (TP). A combined filter strategy is put forward to process CSR RL05 data to remove the effect of striping errors. After the correction for GRACE by GLDAS and ICE-5G, we find that TP has been overall experiencing the water storage increase during 2003-2012. During the same time, the glacier over the Himalayas was sharply retreating. Interms of linear trends, CSR's results derived by the combined filter are close to GRGS RL03 with the Gaussian filter of 300-km window. The water storage increasing rates determined from CSR's RL05 products in the interior TP, Karakoram Mountain, Qaidam Basin, Hengduan Mountain, and middle Himalayas are 9.7, 6.2, 9.1,-18.6, and-20.2 mm/yr, respectively. These rates from GRGS's RL03 products are 8.6, 5.8, 10.5,-19.3 and-21.4 mm/yr, respectively.

  5. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua


    to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests......Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...

  6. The effect of sealer and water storage on permanent deformation of a tissue conditioner

    Directory of Open Access Journals (Sweden)

    Rafael Leonardo Xediek Consani


    Full Text Available When they are used to treat inflamed, irritated, or distorted tissues or in implant therapy, tissue conditioners are required to function over relatively long time periods. Purpose: This in vitro study evaluated the effect of sealer and water storage on permanent deformation one tissue conditioner. Material and methods: Sixty cylindrically-shaped specimens (12.7-mm diameter 3 19.0-mm height were used for the deformation tests. Specimens were divided into 6 test groups (n=10, according to surface treatment (sealer application and water storage (1 hour, 1 week and 2 weeks. Permanent deformation, expressed as a percent (%, was determined using ADA specification no. 18. Data were examined a analysis of variance and a Mann-Whitney test (a= 0.05. Results: Significant differences were observed only after 1 week of water storage, for both groups. The surface treated group presented the highest permanent deformation percentage. Conclusions: This in vitro study indicated that the tissue conditioner evaluated is only useful for 1 week. After this period, the material must be replaced.

  7. Climate change in urban areas. Green and water storage in relation to soils

    International Nuclear Information System (INIS)

    Dirven-van Breemen, E.M.; Claessens, J.W.; Hollander, A.


    One of the possible effects of climate change in urban areas is an increased frequency of periods of extreme heat and extreme rainfall events. Public green areas provide shadow and therefore have a cooling effect during periods of extreme heat. Sufficient water storage capacity of the soil may reduce the overburdening of the public water system during extreme rainfall events. Governments do well by taking measures for climate-proofing of their towns. Also citizens may contribute to these climate issues. Governments and citizens should realize that investing in climate-proofing of their towns at this moment will pay off in the future. These are the outcomes of an inventory carried out by the National Institute for Public Health and the Environment, RIVM, ordered by the ministry of Infrastructure and the Environment. With measures for public green areas and water storage capacity local governments should link with other policy areas like infrastructure, public health, safety and sustainability. An example of more public green is a green infrastructure like parks and public gardens. An other advantage of public green is the unsealed soil; that is the soil not covered by roads, buildings, etc. The presence of unsealed soil increases the possibility for water infiltration. For favorable water storage local governments may construct wadis that prevent public water systems for being overburdened by extreme rainfall events. A wadi is a lowering of the surface level mostly covered with plants. During heavy rainfall the wadi is flooded, due to rainwater from the roofs of the surrounding buildings which drains away to the wadi. Citizens may construct green roofs or city gardens with unsealed soil. To promote this, subsidies for private initiatives are an additional boost. [nl

  8. Dismantlement and removal of Old Hydrofracture Facility bulk storage bins and water tank, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)


    The Old Hydrofracture Facility (OHF), located at Oak Ridge National Laboratory (ORNL), was constructed in 1963 to allow experimentation and operations with an integrated solid storage, mixing, and grout injection facility. During its operation, OHF blended liquid low-level waste with grout and used a hydrofracture process to pump the waste into a deep low-permeable shale formation. Since the OHF Facility was taken out of service in 1980, the four bulk storage bins located adjacent to Building 7852 had deteriorated to the point that they were a serious safety hazard. The ORNL Surveillance and Maintenance Program requested and received permission from the US Department of Energy to dismantle the bins as a maintenance action and send the free-released metal to an approved scrap metal vendor. A 25,000-gal stainless steel water tank located at the OHF site was included in the scope. A fixed-price subcontract was signed with Allied Technology Group, Inc., to remove the four bulk storage bins and water tank to a staging area where certified Health Physics personnel could survey, segregate, package, and send the radiologically clean scrap metal to an approved scrap metal vendor. All radiologically contaminated metal and metal that could not be surveyed was packaged and staged for later disposal. Permissible personnel exposure limits were not exceeded, no injuries were incurred, and no health and safety violations occurred throughout the duration of the project. Upon completion of the dismantlement, the project had generated 53,660 lb of clean scrap metal (see Appendix D). This resulted in $3,410 of revenue generated and a cost avoidance of an estimated $100,000 in waste disposal fees

  9. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.


    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  10. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system (United States)

    Namkoong, D.


    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  11. Changes in Isotopic Composition of Bottled Natural Waters Due to Different Storage Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ferjan, T. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Brencic, M. [Faculty of Natural Sciences and Engineering, Department of Geology, and Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Vreca, P. [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)


    To establish the influence of environmental conditions on processes affecting the stable isotopic composition of bottled water during storage, various brands of bottled water were exposed for 2 years in different conditions. Selected low mineralized natural mineral water of one particular brand stored in polyethylene terephthalate (PET) bottles was placed at three different locations with different physical conditions (temperature, relative humidity, air pressure, exposure to sunlight). For comparison, bottles of three other low mineralized natural mineral water brands, each from a different aquifer source, were placed in parallel at one of the locations. Each location was characterized by temperature, relative humidity and air pressure measurements. pH, conductivity and stable isotopic composition of oxygen, hydrogen and carbon in dissolved inorganic carbon ({delta}{sup 18}O, {delta}{sup 2}H, {delta}{sup 13}C{sub DIC}) were measured in regular intervals for nearly two years. Preliminary results from each location show noticeable changes in isotopic composition as well as the physical parameters of water with time of storage.

  12. Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. (United States)

    Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin


    Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.

  13. Evaluating short-term hydro-meteorological fluxes using GRACE-derived water storage changes (United States)

    Eicker, A.; Jensen, L.; Springer, A.; Kusche, J.


    Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. In this contribution we will investigate the closure of the water balance for short-term fluxes, i.e. the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. Missing river runoff observations will be extrapolated using the calibrated rainfall-runoff model GR2M. We will perform a global analysis and will additionally focus on selected river basins in West Africa. The investigations will be carried out for various temporal scales, focusing on short-term fluxes down to daily variations to be detected in daily GRACE time series.

  14. Large Scale Evapotranspiration Estimates: An Important Component in Regional Water Balances to Assess Water Availability (United States)

    Garatuza-Payan, J.; Yepez, E. A.; Watts, C.; Rodriguez, J. C.; Valdez-Torres, L. C.; Robles-Morua, A.


    Water security, can be defined as the reliable supply in quantity and quality of water to help sustain future populations and maintaining ecosystem health and productivity. Water security is rapidly declining in many parts of the world due to population growth, drought, climate change, salinity, pollution, land use change, over-allocation and over-utilization, among other issues. Governmental offices (such as the Comision Nacional del Agua in Mexico, CONAGUA) require and conduct studies to estimate reliable water balances at regional or continental scales in order to provide reasonable assessments of the amount of water that can be provided (from surface or ground water sources) to supply all the human needs while maintaining natural vegetation, on an operational basis and, more important, under disturbances, such as droughts. Large scale estimates of evapotranspiration (ET), a critical component of the water cycle, are needed for a better comprehension of the hydrological cycle at large scales, which, in most water balances is left as the residual. For operational purposes, such water balance estimates can not rely on ET measurements since they do not exist, should be simple and require the least ground information possible, information that is often scarce or does not exist at all. Given this limitation, the use of remotely sensed data to estimate ET could supplement the lack of ground information, particularly in remote regions In this study, a simple method, based on the Makkink equation is used to estimate ET for large areas at high spatial resolutions (1 km). The Makkink model used here is forced using three remotely sensed datasets. First, the model uses solar radiation estimates obtained from the Geostationary Operational Environmental Satellite (GOES); Second, the model uses an Enhanced Vegetation Index (EVI) obtained from the Moderate-resolution Imaging Spectroradiometer (MODIS) normalized to get an estimate for vegetation amount and land use which was

  15. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György


    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  16. Recharge Estimation Using Water, Chloride and Isotope Mass Balances (United States)

    Dogramaci, S.; Firmani, G.; Hedley, P.; Skrzypek, G.; Grierson, P. F.


    Discharge of surplus mine water into ephemeral streams may elevate groundwater levels and alter the exchange rate between streams and underlying aquifers but it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid subtropical Hamersley Basin that has received continuous mine discharge for more than five years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 74 to 120 mg/L across this length, while δ18O increased from -8.24‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ~ 65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ~35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the creek has not extended beyond 27 km from the discharge point. Our approach using a combination of hydrochemical and isotope methods coupled with classical surface flow hydraulic modelling allowed evaluation of components of water budget otherwise not possible in a highly dynamic system that is mainly driven by infrequent but large episodic

  17. Estimating the Mediterranean Sea Water Budget: impact of RCM design (United States)

    Somot, S.; Elguindi, N.; Sanchez-Gomez, E.; Herrmann, M.; Déqué, M.


    The Mediterranean Sea can be considered as a thermodynamic machine that exchanges water and heat with the Atlantic Ocean through the Strait of Gibraltar and with the atmosphere through its surface. Considering the Mediterranean Sea Water Budget (MSWB) multi-year mean, the Mediterranean basin looses water at the surface due to an excess of evaporation over freshwater input (precipitation, river runoff, Black Sea input). Moreover the MSWB largely drives the Mediterranean Sea water mass formation and therefore a large part of its thermohaline circulation. This could even have an impact on the characteristics of the Atlantic thermohaline circulation through the Mediterranean Outflow Waters that flow into the Atlantic at a depth of about 1000 m. From a climate point of view, the MSWB acts as a water source for the Mediterranean countries and therefore plays an important role on the water resources of the region. The regional physical characteristics of the Mediterranean basin (complex orography, strong land-sea contrast, land-atmosphere coupling, air-sea coupling, river inflow, Gibraltar Strait constraint and complex ocean bathymetry) strongly influence the various components of the MSWB. Moreover extreme precipitation events over land and strong evaporation events over the sea due to local winds can play a non-negligible role on the mean MSWB despite their small spatial and temporal scales. Therefore, modelling the mean behaviour, the interannual variability and the trends of the MSWB is a challenging task of the Regional Climate Model community in the context of climate change. It is actually one of the highlighted issues of the HyMex project planned for the 2010-2020 period. We propose here to start investigating some key scientific issues of the regional modelling of the Mediterranean Sea Water Budget using a wide range of regional climate simulations performed at Météo-France or in the framework of FP6 European projects (ENSEMBLES, CIRCE). The addressed

  18. Estimation of the detection limit of an experimental model of tritium storage bed designed for 'in-situ' accountability

    International Nuclear Information System (INIS)

    Bulubasa, Gheorghe; Bidica, Nicolae; Stefanescu, Ioan; Bucur, Ciprian; Deaconu, Mariea


    During the water detritiation process most of the tritium inventory is transferred from water into the gaseous phase, then it is further enriched and finally extracted and safely stored. The control of tritium inventory is an acute issue from several points of view: - Financially - tritium is an expensive material; - Safeguard - tritium is considered as nuclear material of strategic importance; - Safety - tritium is a radioactive material: requirements for documented safety analysis report (to ensure strict limits on the total tritium allowed) and for evaluation of accident consequences associated with that inventory. Large amounts of tritium can be stored, in a very safely manner, as metal tritides. A bench-scale experiment of a tritium storage bed with integrated system for in-situ tritium inventory accountancy was designed and developed at ICSI Rm. Valcea. The calibration curve and the detection limit for this experimental model of tritium storage bed were determined. The experimental results are presented in this paper. (authors)

  19. Variations in surface water-ground water interactions along a headwater mountain stream: comparisons between transient storage and water balance analyses (United States)

    Adam S. Ward; Robert A. Payn; Michael N. Gooseff; Brian L. McGlynn; Kenneth E. Bencala; Christa A. Kellecher; Steven M. Wondzell; Thorsten. Wagener


    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We...

  20. Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003-2011 (United States)

    Moore, P.; Williams, S. D. P.


    Terrestrial water storage (TWS) change for 2003-2011 is estimated over Africa from GRACE gravimetric data. The signatures from change in water of the major lakes are removed by utilizing kernel functions with lake heights recovered from retracked ENVISAT satellite altimetry. In addition, the contribution of gravimetric change due to soil moisture and biomass is removed from the total GRACE signal by utilizing the GLDAS land surface model. The residual TWS time series, namely groundwater and the surface waters in rivers, wetlands, and small lakes, are investigated for trends and the seasonal cycle using linear regression. Typically, such analyses assume that the data are temporally uncorrelated but this has been shown to lead to erroneous inferences in related studies concerning the linear rate and acceleration. In this study, we utilize autocorrelation and investigate the appropriate stochastic model. The results show the proper distribution of TWS change and identify the spatial distribution of significant rates and accelerations. The effect of surface water in the major lakes is shown to contribute significantly to the trend and seasonal variation in TWS in the lake basin. Lake Volta, a managed reservoir in Ghana, is seen to have a contribution to the linear trend that is a factor of three greater than that of Lake Victoria despite having a surface area one-eighth of that of Lake Victoria. Analysis also shows the confidence levels of the deterministic trend and acceleration identifying areas where the signatures are most likely due to a physical deterministic cause and not simply stochastic variations.

  1. Domestic transmission routes of pathogens: the problem of in-house contamination of drinking water during storage in developing countries

    DEFF Research Database (Denmark)

    Jensen, Peter Kjaer; Ensink, Jeroen H J; Jayasinghe, Gayathri


    Even if drinking water of poor rural communities is obtained from a 'safe' source, it can become contaminated during storage in the house. To investigate the relative importance of this domestic domain contamination, a 5-week intervention study was conducted. Sixty-seven households in Punjab......, Pakistan, were provided with new water storage containers (pitchers): 33 received a traditional wide-necked pitcher normally used in the area and the remaining 34 households received a narrow-necked water storage pitcher, preventing direct hand contact with the water. Results showed that the domestic...... domain contamination with indicator bacteria is important only when the water source is relatively clean, i.e. contains less than 100 Escherichia coli per 100 ml of water. When the number of E. coli in the water source is above this value, interventions to prevent the domestic contamination would have...

  2. Comparison of temperature estimates from heat transport model and electrical resistivity tomography during a shallow heat injection and storage experiment


    Hermans, Thomas; Daoudi, Moubarak; Vandenbohede, Alexander; Robert, Tanguy; Caterina, David; Nguyen, Frédéric


    Groundwater resources are increasingly used around the world as geothermal systems. Understanding physical processes and quantification of parameters determining heat transport in porous media is therefore important. Geophysical methods may be useful in order to yield additional information with greater coverage than conventional wells. We report a heat transport study during a shallow heat injection and storage field test. Heated water (about 50°C) was injected for 6 days at the rate of 80 l...

  3. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim


    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  4. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report, July 1, 1978-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.N.; Hoovler, G.S.; Eng, R.L.; Welfare, F.G.


    Experimental measurements are being taken on critical configurations of clusters of fuel rods mocking up LWR-type fuel elements in close proximity water storage. The results will serve to benchmark the computer codes used in designing nuclear power reactor fuel storage racks. KENO calculations of Cores I to VI are within two standard deviations of the measured k/sub eff/ values.

  5. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning

    International Nuclear Information System (INIS)

    Lu, Y.Z.; Wang, R.Z.; Zhang, M.; Jiangzhou, S.


    Adsorption cold storage has lately attracted attention for its large storage capacity and zero cold energy loss during the storing process. Thermodynamic and experimental studies on the cold storage capacity and the cold discharging process, in which the adsorber is either air cooled or adiabatic, have been presented. An adsorption cold storage system with zeolite-water working pair has been developed, and some operating results are summarized. This system is used for providing air conditioning for the driver's cab of an internal combustion locomotive. Unlike a normal adsorption air conditioner, the system starts running with the adsorption process, during which the cold energy stored is discharged, and ends running with the generation process. The adsorbent temperature decreases during the cold storing period between two runs. The refrigeration power output for the whole running cycle is about 4.1 kW. It appears that such a system is quite energetically efficient and is comparatively suitable for providing discontinuous refrigeration capacity when powered by low grade thermal energy, such as industrial exhausted heat or solar energy

  6. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology


    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  7. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology


    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  8. Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjin; Kim, Seok Goo; Choi, Jooho; Lee, Jaewook [Korea Aerospace Univ., Koyang (Korea, Republic of); Song, Hwa Seob; Park, Sang Hui [Hyosung Corporation, Seoul (Korea, Republic of)


    Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results.

  9. Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method

    International Nuclear Information System (INIS)

    Kim, Dongjin; Kim, Seok Goo; Choi, Jooho; Lee, Jaewook; Song, Hwa Seob; Park, Sang Hui


    Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results

  10. Estimating MCC System Dryness Index using the Vineyard Water Indicator

    Directory of Open Access Journals (Sweden)

    Conceição Marco Antônio Fonseca


    Full Text Available The Dryness Index (DI is one of the three Geoviticulture Multicriteria Climatic Classification System (MCC System indices and its calculation is based on a soil water balance approach. However, other climatic indices can be used for the same purpose. One of them is the Vineyard Water Indicator (VWI that represents the ratio between the total rainfall and the vineyard water requirement during the productive period of the culture. When compared to DI, the VWI presents a simpler calculation methodology. Therefore, the aim of the present study was to establish a model to estimate DI based on VWI values. Climate data of 80 winegrowing regions in 18 countries were used. Four regression models were evaluated: linear, quadratic, logarithmic and the Mitscherlich model. Real and simulated data were compared using the confidence coefficient (c that corresponds to the product of the correlation coefficient (r by the exactness coefficient (d. The best fit was obtained employing the quadratic model and DI can be calculated using the following equation: DI = −363.84 VWI2+ 834.47 VWI – 257.17 (R2 = 0.93, for VHI <0.905. For VHI values equal to or greater than 0.905, DI is constant and equal to 200.

  11. [Estimation of vegetation canopy water content using Hyperion hyperspectral data]. (United States)

    Song, Xiao-Ning; Ma, Jian-Wei; Li, Xiao-Tao; Leng, Pei; Zhou, Fang-Cheng; Li, Shuang


    Vegetation canopy water content (VCWC) has widespread utility in agriculture, ecology and hydrology. Based on the PROSAIL model, a novel model for quantitative inversion of vegetation canopy water content using Hyperion hyperspectral data was explored. Firstly, characteristics of vegetation canopy reflection were investigated with the PROSAIL radiative transfer model, and it was showed that the first derivative at the right slope (980 - 1 070 nm) of the 970 nm water absorption feature (D98-1 070) was closely related to VCWC, and determination coefficient reached to 0.96. Then, bands 983, 993, 1 003, 1 013, 1 023, 1 033, 1 043, 1 053 and 1 063 nm of Hyperion data were selected to calculate D980-1 070, and VCWC was estimated using the proposed method. Finally, the retrieval result was verified using field measured data in Yingke oasis of the Heihe basin. It indicated that the mean relative error was 12.5%, RMSE was within 0.1 kg x m(-2) and the proposed model was practical and reliable. This study provides a more efficient way for obtaining VCWC of large area.

  12. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)


    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  13. Estimated use of water in the United States in 2015 (United States)

    Dieter, Cheryl A.; Maupin, Molly A.; Caldwell, Rodney R.; Harris, Melissa A.; Ivahnenko, Tamara I.; Lovelace, John K.; Barber, Nancy L.; Linsey, Kristin S.


    Water use in the United States in 2015 was estimated to be about 322 billion gallons per day (Bgal/d), which was 9 percent less than in 2010. The 2015 estimates put total withdrawals at the lowest level since before 1970, following the same overall trend of decreasing total withdrawals observed from 2005 to 2010. Freshwater withdrawals were 281 Bgal/d, or 87 percent of total withdrawals, and saline-water withdrawals were 41.0 Bgal/d, or 13 percent of total withdrawals. Fresh surface-water withdrawals (198 Bgal/d) were 14 percent less than in 2010, and fresh groundwater withdrawals (82.3 Bgal/day) were about 8 percent greater than in 2010. Saline surface-water withdrawals were 38.6 Bgal/d, or 14 percent less than in 2010. Total saline groundwater withdrawals in 2015 were 2.34 Bgal/d, mostly for mining use.Thermoelectric power and irrigation remained the two largest uses of water in 2015, and total withdrawals decreased for thermoelectric power but increased for irrigation. With­drawals in 2015 for thermoelectric power were 18 percent less and withdrawals for irrigation were 2 percent greater than in 2010. Similarly, other uses showed reductions compared to 2010, specifically public supply (–7 percent), self-supplied domestic (–8 percent), self-supplied industrial (–9 percent), and aquaculture (–16 percent). In addition to irrigation (2 percent), mining (1 percent) reported larger withdrawals in 2015 than in 2010. Livestock withdrawals remained essentially the same in 2015 compared to 2010 (0 percent change). Thermoelectric power, irrigation, and public-supply withdrawals accounted for 90 percent of total withdrawals in 2015.Withdrawals for thermoelectric power were 133 Bgal/d in 2015 and represented the lowest levels since before 1970. Surface-water withdrawals accounted for more than 99 percent of total thermoelectric-power withdrawals, and 72 percent of those surface-water withdrawals were from freshwater sources. Saline surface-water withdrawals for

  14. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers. (United States)

    Dada, Nsa; Jumas-Bilak, Estelle; Manguin, Sylvie; Seidu, Razak; Stenström, Thor-Axel; Overgaard, Hans J


    Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Few bacteria from water samples were

  15. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali


    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  16. The influence of small-mammal burrowing activity on water storage at the Hanford Site

    International Nuclear Information System (INIS)

    Landeen, D.S.


    This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator). Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil

  17. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.


    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  18. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA (United States)

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  19. Priority and construction sites of water storage in a watershed in response to climate change (United States)

    Lin, Cheng-Yu; Zhang, Wen-Yan; Lin, Chao-Yuan


    Taiwan is located at the Eastern Asia Monsoon climate zone. Typhoons and/or convectional rains occur frequently and result in high intensity storms in the summer season. Once the detention facilities are shortage or soil infiltration rate become worse in a watershed due to land use, surface runoff is easily to concentrate and threaten the protected areas. Therefore, it is very important to examine the functionality of water storage for a watershed. The purpose of this study is to solve the issue of flooding in the Puzi Creek. A case study of Yizen Bridge Watershed, in which the SCS curve number was used as an index to extract the spatial distribution of the strength of water storage, and the value of watershed mean CN along the main channel was calculated using area-weighting method. Therefore, the hotspot management sites were then derived and the priority method was applied to screen the depression sites for the reference of management authorities in detention ponds placement. The results show that the areas of subzone A with the characteristics of bad condition in topography and soil, which results in poor infiltration. However, the areas are mostly covered with forest and are difficult to create the artificial water storage facilities. Detention dams are strongly recommended at the site of depression in the river channel to decrease discharge velocity and reduce impact from flood disaster. The areas of subzone B are mainly located at the agriculture slope land. The topographic depressions in the farmland are the suitable places to construct the farm ponds for the use of flood detention and sediment deposition in the rainy seasons and irrigation in the dry seasons. Areas of subzone C are mainly occupied the gentle slope land with a better ability in water storage due to low CN value. Farm ponds constructed in the riparian to bypass the nearby river channel can create multifunctional wetland to effectively decrease the peak discharge in the downstream during

  20. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Shirvill, L.C. [Shell Global Solutions (UK), Chester (United Kingdom)


    Liquefied petroleum gas (LPG) storage tanks are often provided with water sprays to protect them in the event of a fire. This protection has been shown to be effective in a hydrocarbon pool fire but uncertainties remained regarding the degree of protection afforded in a jet fire resulting from a liquid or two-phase release of LPG. Two projects, sponsored by the Health and Safety Executive, have been undertaken to study, at full scale, the performance of a water spray system on an empty 13 tonne LPG vessel under conditions of jet fire impingement from nearby releases of liquid propane and butane. The results showed that a typical water deluge system found on an LPG storage vessel cannot be relied upon to maintain a water film over the whole vessel surface in an impinging propane or butane jet fire scenario. The deluge affects the fire itself, reducing the luminosity and smoke, resulting in a lower rate of wall temperature rise at the dry patches, when compared with the undeluged case. The results of these studies will be used by the HSE in assessing the risk of accidental fires on LPG installations leading to boiling liquid expanding vapour explosion (BLEVE) incidents. (Author)

  1. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture (United States)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  2. Next generation of CO2 enhanced water recovery with subsurface energy storage in China (United States)

    Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong


    Carbon dioxide (CO2) utilization and storage (CCUS) is very popular in comparison with traditional CO2 capture and storage (CCS) in China. In particular, CO2 storage in deep saline aquifers with enhanced water recovery (CO2-EWR) [1] is gaining more and more attention as a cleaner production technology. The CO2-EWR was written into the "U.S.-China Joint Announcement on Climate Change" released November 11, 2014. "Both sides will work to manage climate change by demonstrating a new frontier for CO2 use through a carbon capture, use, and sequestration (CCUS) project that will capture and store CO2 while producing fresh water, thus demonstrating power generation as a net producer of water instead of a water consumer. This CCUS project with enhanced water recovery will eventually inject about 1.0 million tonnes of CO2 and create approximately 1.4 million cubic meters of freshwater per year." In this article, at first we reviewed the history of the CO2-EWR and addressed its current status in China. Then, we put forth a new generation of the CO2-EWR with emphasizing the collaborative solutions between carbon emission reductions and subsurface energy storage or renewable energy cycle [2]. Furthermore, we figured out the key challenging problems such as water-CCUS nexus when integrating the CO2-EWR with the coal chemical industry in the Junggar Basin, Xinjiang, China [3-5]. Finally, we addressed some crucial problems and strategic consideration of the CO2-EWR in China with focuses on its technical bottleneck, relative advantage, early opportunities, environmental synergies and other related issues. This research is not only very useful for the current development of CCUS in the relative "cold season" but also beneficial for the energy security and clean production in China. [1] Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. Journal of Cleaner Production 103:330-337. doi:10.1016/j.jclepro.2014.09.073 [2] Streibel M

  3. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.


    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  4. Contrasts between chemical and physical estimates of baseflow help discern multiple sources of water contributing to rivers (United States)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.


    This study compares geochemical and physical methods of estimating baseflow in the upper reaches of the Barwon River, southeast Australia. Estimates of baseflow from physical techniques such as local minima and recursive digital filters are higher than those based on chemical mass balance using continuous electrical conductivity (EC). Between 2001 and 2011 the baseflow flux calculated using chemical mass balance is between 1.8 × 103 and 1.5 × 104 ML yr-1 (15 to 25% of the total discharge in any one year) whereas recursive digital filters yield baseflow fluxes of 3.6 × 103 to 3.8 × 104 ML yr-1 (19 to 52% of discharge) and the local minimum method yields baseflow fluxes of 3.2 × 103 to 2.5 × 104 ML yr-1 (13 to 44% of discharge). These differences most probably reflect how the different techniques characterise baseflow. Physical methods probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow or floodplain storage) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The mismatch between geochemical and physical estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months. Consistent with these interpretations, modelling of bank storage indicates that bank return flows provide water to the river for several weeks after flood events. EC vs. discharge variations during individual flow events also imply that an inflow of low EC water stored within the banks or on the floodplain occurs as discharge falls. The joint use of physical and geochemical techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  5. Effects of Material Choice on Biocide Loss in Orion Water Storage Tanks (United States)

    Wallace, W. T.; Wallace, S. L.; Gazda, D. B.; Lewis, J. F.


    When preparing for long-duration spaceflight missions, maintaining a safe supply of potable water is of the utmost importance. One major aspect of that is ensuring that microbial growth is minimized. Historically, this challenge has been addressed through the use of biocides. When using biocides, the choice of materials for the storage containers is important, because surface reactions can reduce biocide concentrations below their effective range. In the water storage system baselined for the Orion vehicle, the primary wetted materials are stainless steel (316 L) and a titanium alloy (Ti6Al4V). Previous testing with these materials has shown that the biocide selected for use in the system (ionic silver) will plate out rapidly upon initial wetting of the system. One potential approach for maintaining an adequate biocide concentration is to spike the water supply with high levels of biocide in an attempt to passivate the surface. To evaluate this hypothesis, samples of the wetted materials were tested individually and together to determine the relative loss of biocide under representative surface area-to-volume ratios after 24 hours. Additionally, we have analyzed the efficacy of disinfecting a system containing these materials by measuring reductions in bacterial counts in the same test conditions. Preliminary results indicate that the use of titanium, either individually or in combination with stainless steel, can result in over 95% loss of biocide, while less than 5% is lost when using stainless steel. In bacterial testing, viable organisms were recovered from samples exposed to the titanium coupons after 24 hours. By comparison, no organisms were recovered from the test vessels containing only stainless steel. These results indicate that titanium, while possessing some favorable attributes, may pose additional challenges when used in water storage tanks with ionic silver biocide.

  6. Integrating Enhanced Grace Terrestrial Water Storage Data Into the U.S. and North American Drought Monitors (United States)

    Housborg, Rasmus; Rodell, Matthew


    NASA's Gravity Recovery and Climate Experiment (GRACE) satellites measure time variations nf the Earth's gravity field enabling reliable detection of spatio-temporal variations in total terrestrial water storage (TWS), including ground water. The U.S. and North American Drought Monitors are two of the premier drought monitoring products available to decision-makers for assessing and minimizing drought impacts, but they rely heavily on precipitation indices and do not currently incorporate systematic observations of deep soil moisture and groundwater storage conditions. Thus GRACE has great potential to improve the Drought Monitors hy filling this observational gap. Horizontal, vertical and temporal disaggregation of the coarse-resolution GRACE TWS data has been accomplished by assimilating GRACE TWS anomalies into the Catchment Land Surface Model using ensemble Kalman smoother. The Drought Monitors combine several short-term and long-term drought indices and indicators expressed in percentiles as a reference to their historical frequency of occurrence for the location and time of year in question. To be consistent, we are in the process of generating a climatology of estimated soil moisture and ground water based on m 60-year Catchment model simulation which will subsequently be used to convert seven years of GRACE assimilated fields into soil moisture and groundwater percentiles. for systematic incorporation into the objective blends that constitute Drought Monitor baselines. At this stage we provide a preliminary evaluation of GRACE assimilated Catchment model output against independent datasets including soil moisture observations from Aqua AMSR-E and groundwater level observations from the U.S. Geological Survey's Groundwater Climate Response Network.

  7. Value of Clean Water Resources: Estimating the Water Quality Improvement in Metro Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Shokhrukh-Mirzo Jalilov


    Full Text Available While having many positive impacts, a tremendous economic performance and rapid industrial expansion over the last decades in the Philippines has had negative effects that have resulted in unfavorable hydrological and ecological changes in most urban river systems and has created environmental problems. Usually, these effects would not be part of a systematic assessment of urban water benefits. To address the issue, this study investigates the relationship between poor water quality and resident’s willingness to pay (WTP for improved water quality in Metro Manila. By employing a contingent valuation method (CVM, this paper estimates the benefits of the provision of clean water quality (swimmable and fishable in waterbodies of Metro Manila for its residents. Face-to-face interviews were completed with 240 randomly selected residents. Residents expressed a mean WTP of PHP102.44 (USD2.03 for a swimmable water quality (good quality and a mean WTP of PHP102.39 (USD2.03 for fishable water quality (moderate quality. The aggregation of this mean willingness-to-pay value amounted to annual economic benefits from PHP9443 billion to PHP9447 billion (approx. USD190 million per year for all taxpayers in Metro Manila. As expected, these estimates could inform local decision-makers about the benefits of future policy interventions aimed at improving the quality of waterbodies in Metro Manila.

  8. Reducing drinking water supply chemical contamination: risks from underground storage tanks. (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard


    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  9. Prediction of battery storage ageing and solid electrolyte interphase property estimation using an electrochemical model (United States)

    Ashwin, T. R.; Barai, A.; Uddin, K.; Somerville, L.; McGordon, A.; Marco, J.


    Ageing prediction is often complicated due to the interdependency of ageing mechanisms. Research has highlighted that storage ageing is not linear with time. Capacity loss due to storing the battery at constant temperature can shed more light on parametrising the properties of the Solid Electrolyte Interphase (SEI); the identification of which, using an electrochemical model, is systematically addressed in this work. A new methodology is proposed where any one of the available storage ageing datasets can be used to find the property of the SEI layer. A sensitivity study is performed with different molecular mass and densities which are key parameters in modelling the thickness of the SEI deposit. The conductivity is adjusted to fine tune the rate of capacity fade to match experimental results. A correlation is fitted for the side reaction variation to capture the storage ageing in the 0%-100% SoC range. The methodology presented in this paper can be used to predict the unknown properties of the SEI layer which is difficult to measure experimentally. The simulation and experimental results show that the storage ageing model shows good accuracy for the cases at 50% and 90% and an acceptable agreement at 20% SoC.

  10. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi


    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  11. Interactions between CO2, saline water and minerals during geological storage of CO2

    International Nuclear Information System (INIS)

    Hellevang, Helge


    The topic of this thesis is to gain a better understanding of interactions between injected CO 2 , aqueous solutions and formation mineralogies. The main focus is concerned with the potential role mineral reactions play in safe long term storage of CO 2 . The work is divided into an experimental part concentrated on the potential of dawsonite (NaAl(OH) 2 CO 3 ) as a permanent storage host of CO 2 , and the development of a new geochemical code ACCRETE that is coupled with the ATHENA multiphase flow simulator. The thesis is composed of two parts: (I) the first part introducing CO 2 storage, geochemical interactions and related work; and (II) the second part that consists of the papers. Part I is composed as follows: Chapter 2 gives a short introduction to geochemical reactions considered important during CO 2 storage, including a thermodynamic framework. Chapter 3 presents objectives of numerical work related to CO 2 -water-rock interactions including a discussion of factors that influence the outcome of numerical simulations. Chapter 4 presents the main results from paper A to E. Chapter 5 give some details about further research that we propose based on the present work and related work in the project. Several new activities have emerged from research on CO 2 -water-rock interaction during the project. Several of the proposed activities are already initiated. Papers A to F are then listed in Part II of the thesis after the citation list. The thesis presents the first data on the reaction kinetics of dawsonite at different pH (Paper A), and comprehensive numerical simulations, both batch- and large scale 3D reactive transport, that illustrate the role different carbonates have for safe storage of CO 2 in geological formations (Papers C to F). The role of dawsonite in CO 2 storage settings is treated throughout the study (Papers A to E) After the main part of the thesis (Part I and II), two appendices are included: Appendix A lists reactions that are included in the

  12. Response of littoral macrophytes to water level fluctuations in a storage reservoir

    Directory of Open Access Journals (Sweden)

    Krolová M.


    Full Text Available Lakes and reservoirs that are used for water supply and/or flow regulations have usually poorly developed littoral macrophyte communities, which impairs ecological potential in terms of the EU Water Framework Directive. The aim of our study was to reveal controlling factors for the growth of littoral macrophytes in a storage reservoir with fluctuating water level (Lipno Reservoir, Czech Republic. Macrophytes occurred in this reservoir only in the eulittoral zone i.e., the shoreline region between the highest and the lowest seasonal water levels. Three eulittoral sub-zones could be distinguished: the upper eulittoral with a stable community of perennial species with high cover, the middle eulittoral with relatively high richness of emergent and amphibious species present at low cover values, and the lower eulittoral devoid of permanent vegetation. Cover and species composition in particular sub-zones were primarily influenced by the duration and timing of flooding, followed by nutrient limitation and strongly reducing conditions in the flooded organic sediment. Our results stress the ecological importance of eulittoral zone in reservoirs with fluctuating water levels where macrophyte growth can be supported by targeted management of water level, thus helping reservoir managers in improving the ecological potential of this type of water bodies.

  13. Hybrid solution and pump-storage optimization in water supply system efficiency: A case study

    International Nuclear Information System (INIS)

    Vieira, F.; Ramos, H.M.


    Environmental targets and saving energy have become ones of the world main concerns over the last years and it will increase and become more important in a near future. The world population growth rate is the major factor contributing for the increase in global pollution and energy and water consumption. In 2005, the world population was approximately 6.5 billion and this number is expected to reach 9 billion by 2050 [United Nations, 2008. (, accessed on July]. Water supply systems use energy for pumping water, so new strategies must be developed and implemented in order to reduce this consumption. In addition, if there is excess of hydraulic energy in a water system, some type of water power generation can be implemented. This paper presents an optimization model that determines the best hourly operation for 1 day, according to the electricity tariff, for a pumped storage system with water consumption and inlet discharge. Wind turbines are introduced in the system. The rules obtained as output of the optimization process are subsequently introduced in a hydraulic simulator, in order to verify the system behaviour. A comparison with the normal water supply operating mode is done and the energy cost savings with this hybrid solution are calculated

  14. Chlorine dioxide as a disinfectant for Ralstonia solanacearum control in water, storage and equipment

    Directory of Open Access Journals (Sweden)

    Popović Tatjana


    Full Text Available Brown rot or bacterial wilt caused by bacterium Ralstonia solanacearum is the main limiting factor in potato production. Quarantine measures are necessary to avoid spread of disease to disease-free areas. R. solanacearum has been shown to contaminate watercourses from which crop irrigation is then prohibited causing further potential losses in yield and quality. The bacteria also spread via surfaces that diseased seed potatoes come into contact with. This study showed bactericidal activity of chlorine dioxide (CIO2 on R. solanacearum for disinfection of water, surface and equipment. The results showed that CIO2 solution at concentration of 2 ppm at 30 minutes of exposure time had bactericidal effect for disinfection of water. For surface and equipment disinfection, concentration of 50 ppm showed total efficacy at 30 min and 5 sec exposure time, respectively. Results suggest that use of CIO2 as a disinfectant has a potential for control of brown rot pathogen in water, storage and equipment.

  15. Physicochemical changes of cements by ground water corrosion in radioactive waste storage

    International Nuclear Information System (INIS)

    Contreras R, A.; Badillo A, V. E.; Robles P, E. F.; Nava E, N.


    Knowing that the behavior of cementations materials based on known hydraulic cement binder is determined essentially by the physical and chemical transformation of cement paste (water + cement) that is, the present study is essentially about the cement paste evolution in contact with aqueous solutions since one of principal risks in systems security are the ground and surface waters, which contribute to alteration of various barriers and represent the main route of radionuclides transport. In this research, cements were hydrated with different relations cement-aqueous solution to different times. The pastes were analyzed by different solid observation techniques XRD and Moessbauer with the purpose of identify phases that form when are in contact with aqueous solutions of similar composition to ground water. The results show a definitive influence of chemical nature of aqueous solution as it encourages the formation of new phases like hydrated calcium silicates, which are the main phases responsible of radionuclides retention in a radioactive waste storage. (Author)

  16. Water requirement and total body water estimation as affected by species, pregnancy and lactation using tritiated water

    International Nuclear Information System (INIS)

    Kamal, T.H.; El Banna, I.M.; Ayad, M.A.; Kotby, E.A.


    Radiotracer dilution technique was used to determine total body water (TBW) and the water turnover rate (WTR) estimate of water requirements in water buffaloe, Red Dannish cattle, fat tailed Osemi sheep and Camellus Dromedarius. Water buffaloes were found to have highest TBW, followed by camels, sheep and cattle in a descending order. The WTR ranking was highest for sheep followed by water buffaloe endurance to heat was found inseperable to high water usage, while in camels, an intericate water retention mechanism help animals to thrive in deserts. Fat tailled Osemi sheep and cattle failed to cope with high environmental temperature resulting in temporary dehydration. TBW was 17% and 6% higher in pregnant cattle and sheep than non-pregnant animals respectively, while there was no observed change in pregnant buffaloes. Water retention of pregnant cattle was associated with an appriciable increase in WTR, which was not noticable in buffaloe or sheep. Lactating buffaloe have had a higher TBW and WTR than lactating cattle. Milk yield per day during the period of measurement was higher in buffalo than cattle. Wallowing of buffalo in water pools during grazing, represents a behavioural adaptation for life in hot regions, aside of tendency for higher WTR with concomitant water retention

  17. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.). (United States)

    Zhou, Jiaxing; Liu, Dongmiao; Deng, Xiong; Zhen, Shoumin; Wang, Zhimin; Yan, Yueming


    Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  18. A Particle Batch Smoother Approach to Snow Water Equivalent Estimation (United States)

    Margulis, Steven A.; Girotto, Manuela; Cortes, Gonzalo; Durand, Michael


    This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%-82% and 60%-68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBSRMSE was approx.54%of that seen in the EnBS, while for snow courses the PBSRMSE was approx.79%of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.

  19. Parameters influencing deposit estimation when using water sensitive papers

    Directory of Open Access Journals (Sweden)

    Emanuele Cerruto


    Full Text Available The aim of the study was to assess the possibility of using water sensitive papers (WSP to estimate the amount of deposit on the target when varying the spray characteristics. To identify the main quantities influencing the deposit, some simplifying hypotheses were applied to simulate WSP behaviour: log-normal distribution of the diameters of the drops and circular stains randomly placed on the images. A very large number (4704 of images of WSPs were produced by means of simulation. The images were obtained by simulating drops of different arithmetic mean diameter (40-300 μm, different coefficient of variation (0.1-1.5, and different percentage of covered surface (2-100%, not considering overlaps. These images were considered to be effective WSP images and then analysed using image processing software in order to measure the percentage of covered surface, the number of particles, and the area of each particle; the deposit was then calculated. These data were correlated with those used to produce the images, varying the spray characteristics. As far as the drop populations are concerned, a classification based on the volume median diameter only should be avoided, especially in case of high variability. This, in fact, results in classifying sprays with very low arithmetic mean diameter as extremely or ultra coarse. The WSP image analysis shows that the relation between simulated and computed percentage of covered surface is independent of the type of spray, whereas impact density and unitary deposit can be estimated from the computed percentage of covered surface only if the spray characteristics (arithmetic mean and coefficient of variation of the drop diameters are known. These data can be estimated by analysing the particles on the WSP images. The results of a validation test show good agreement between simulated and computed deposits, testified by a high (0.93 coefficient of determination.

  20. An estimation on the derived limits of effluent water concentration

    International Nuclear Information System (INIS)

    Okamura, Yasuharu; Kobayashi, Katuhiko; Kusama, Tomoko; Yoshizawa, Yasuo


    The values of Derived Limits of Effluent Water Concentration, (DLEC)sub(w), have been estimated in accordance with the principles of the recent recommendations of the International Commission on Radiological Protection. The (DLEC)sub(w)'s were derived from the Annual Limits on Intake for individual members of the public (ALIsub(p)), considering realistic models of exposure pathways and annual intake rates of foods. The ALIsub(p)'s were decided after consideration of body organ mass and other age dependent parameters. We assumed that the materials which brought exposure to the public were drinking water, fish, seaweed, invertebrate and seashore. The age dependence of annual intake rate of food might be proportional to a person's energy expenditure rate. The following results were obtained. Infants were the critical group of the public at the time of derivation of (DLEC)sub(w). The ALIsub(p)'s for the infants were about one-hundredth of those for workers and their (DLEC)sub(w)'s were about one-third of those for the adult members of the public. (author)

  1. Water content estimated from point scale to plot scale (United States)

    Akyurek, Z.; Binley, A. M.; Demir, G.; Abgarmi, B.


    Soil moisture controls the portioning of rainfall into infiltration and runoff. Here we investigate measurements of soil moisture using a range of techniques spanning different spatial scales. In order to understand soil water content in a test basin, 512 km2 in area, in the south of Turkey, a Cosmic Ray CRS200B soil moisture probe was installed at elevation of 1459 m and an ML3 ThetaProbe (CS 616) soil moisture sensor was established at 5cm depth used to get continuous soil moisture. Neutron count measurements were corrected for the changes in atmospheric pressure, atmospheric water vapour and intensity of incoming neutron flux. The calibration of the volumetric soil moisture was performed, from the laboratory analysis, the bulk density varies between 1.719 (g/cm3) -1.390 (g/cm3), and the dominant soil texture is silty clay loam and silt loamThe water content reflectometer was calibrated for soil-specific conditions and soil moisture estimates were also corrected with respect to soil temperature. In order to characterize the subsurface, soil electrical resistivity tomography was used. Wenner and Schlumberger array geometries were used with electrode spacing varied from 1m- 5 m along 40 m and 200 m profiles. From the inversions of ERT data it is apparent that within 50 m distance from the CRS200B, the soil is moderately resistive to a depth of 2m and more conductive at greater depths. At greater distances from the CRS200B, the ERT results indicate more resistive soils. In addition to the ERT surveys, ground penetrating radar surveys using a common mid-point configuration was used with 200MHz antennas. The volumetric soil moisture obtained from GPR appears to overestimate those based on TDR observations. The values obtained from CS616 (at a point scale) and CRS200B (at a mesoscale) are compared with the values obtained at a plot scale. For the field study dates (20-22.06.2017) the volumetric moisture content obtained from CS616 were 25.14%, 25.22% and 25

  2. Strategies for estimating the water budget at different scales using the JGrass-NewAGE system (United States)

    Bancheri, M.; Rigon, R.; Serafin, F.; Abera, W.; Bottazzi, M.


    Recently we presented two papers one dedicated to the estimation of the water budget components in a small, basin, the Posina catchment [Abera et al., 2017], and the other in a large basin, the Blue Nile [Abera et al., 2017b]. At the smallest scale the ground measurements available do not guarantee the closure of the budget without making additional hypothesis. The large scale case, instead, was largely supported by remote sensing data either for calibration and/or validation. This contribution explains how we actually did it, clarifies some aspects of the informatics and openly discusses the issues risen in our work. We also consider varying configuration of the water budget schemes at the subbasin level, and how this affects the estimates.Finally we analyse the problem of travel times [Rigon et al., 2016a, Rigon et al, 2016b] as it comes out from considering the multiple fluxes and storages. All considerations and simulations are based on the JGrass-NewAGE system [Formetta et al., 2014] and its evolution (Bancheri [2017]).ReferencesAbera, W., Formetta, G., Borga, M., & Rigon, R. (2017a). Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources,, W., Formetta, G., Brocca, L., & Rigon, R. (2017b). Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences., M., A travel time model for water budget of complex catchments, ph.D Thesis, 2017Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014). Hydrological modelling with components: A GIS-based open-source framework. Environmental Modelling and Software,., R., Bancheri, M., Formetta, G., & de Lavenne, A. (2016). The geomorphological unit hydrograph from a historical-critical perspective

  3. Cost-effectiveness optimization of a solar hot water heater with integrated storage system

    International Nuclear Information System (INIS)

    Kamaruzzaman Sopian; Syahri, M.; Shahrir, A.; Mohd Yusof Othman; Baharuddin Yatim


    Solar processes are generally characterized by high first cost and low operating costs. Therefore, the basic economic problem is one of comparing an initial known investment with estimated future operating cost. This paper present the cost-benefit ratio of solar collector with integrated storage system. Evaluation of the annual cost (AC) and the annual energy gain (AEG) of the collector are performed and the ratio of AC/AEG or the cost benefit ratio is presented for difference combination of mass flow rate, solar collector length and channel depth. Using these cost-effectiveness curves, the user can select optimum design features, which correspond to minimum AC/AEG