WorldWideScience

Sample records for essentially saturated peat

  1. Transport properties and pore-network structure in variably-saturated Sphagnum peat soil

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Dissanayaka, Shiromi Himalika; Kawamoto, K.

    2016-01-01

    Gas and water transport in peat soil are of increasing interest because of their potentially large environmental and climatic effects under different types of land use. In this research, the water retention curve (WRC), gas diffusion coefficient (Dg) and air and water permeabilities (ka and kw......) of layers in peat soil from two profiles were measured under different moisture conditions. A two-region Archie's Law (2RAL)-type model was applied successfully to the four properties; the reference point was taken at -9.8kPa of soil-water matric potential where volume shrinkage typically started to occur....... For WRC in the very decomposed peat soil, the 2RAL saturation exponents (n) obtained for both the wetter (nw) and drier regions (nd) were smaller than those for the less decomposed peat. For Dg, the saturation exponent in the wetter region was larger than that in the drier one for all layers, which...

  2. Peat

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article looks at the U.S. peat market as of July 2013. Peat is produced from deposits of plant organic materials in wetlands and includes varieties such as reed-sedge, sphagnum moss, and humus. Use for peat include horticultural soil additives, filtration, and adsorbents. Other topics include effects of environmental protection regulations on peat extraction, competition from products such as coir, composted organic waste, and wood products, and peatland carbon sinks.

  3. Saturated and unsaturated salt transport in peat from a constructed fen

    Science.gov (United States)

    Simhayov, Reuven B.; Weber, Tobias K. D.; Price, Jonathan S.

    2018-02-01

    The underlying processes governing solute transport in peat from an experimentally constructed fen peatland were analyzed by performing saturated and unsaturated solute breakthrough experiments using Na+ and Cl- as reactive and non-reactive solutes, respectively. We tested the performance of three solute transport models, including the classical equilibrium convection-dispersion equation (CDE), a chemical non-equilibrium one-site adsorption model (OSA) and a model to account for physical non-equilibrium, the mobile-immobile (MIM) phases. The selection was motivated by the fact that the applicability of the MIM in peat soils finds a wide consensus. However, results from inverse modeling and a robust statistical evaluation of this peat provide evidence that the measured breakthrough of the conservative tracer, Cl-, could be simulated well using the CDE. Furthermore, the very high Damköhler number (which approaches infinity) suggests instantaneous equilibration between the mobile and immobile phases underscoring the redundancy of the MIM approach for this particular peat. Scanning electron microscope images of the peat show the typical multi-pore size distribution structures have been homogenized sufficiently by decomposition, such that physical non-equilibrium solute transport no longer governs the transport process. This result is corroborated by the fact the soil hydraulic properties were adequately described using a unimodal van Genuchten-Mualem model between saturation and a pressure head of ˜ -1000 cm of water. Hence, MIM was not the most suitable choice, and the long tailing of the Na+ breakthrough curve was caused by chemical non-equilibrium. Successful description was possible using the OSA model. To test our results for the unsaturated case, we conducted an unsaturated steady-state evaporation experiment to drive Na+ and Cl- transport. Using the parameterized transport models from the saturated experiments, we could numerically simulate the unsaturated

  4. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.

    Science.gov (United States)

    Blodau, Christian; Siems, Melanie; Beer, Julia

    2011-12-01

    A mechanistic understanding of carbon (C) sequestration and methane (CH(4)) production is of great interest due to the importance of these processes for the global C budget. Here we demonstrate experimentally, by means of column experiments, that burial of water saturated, anoxic bog peat leads to inactivation of anaerobic respiration and methanogenesis. This effect can be related to the slowness of diffusive transport of solutes and evolving energetic constraints on anaerobic respiration. Burial lowered decomposition constants in homogenized peat sand mixtures from about 10(-5) to 10(-7) yr(-1), which is considerably slower than previously assumed, and methanogenesis slowed down in a similar manner. The latter effect could be related to acetoclastic methanogenesis approaching a minimum energy quantum of -25 kJ mol(-1) (CH(4)). Given the robustness of hydraulic properties that locate the oxic-anoxic boundary near the peatland surface and constrain solute transport deeper into the peat, this effect has likely been critical for building the peatland C store and will continue supporting long-term C sequestration in northern peatlands even under moderately changing climatic conditions.

  5. Growing peat

    NARCIS (Netherlands)

    Harpenslager, S.F.

    2015-01-01

    Peat formation is a slow process and the formation of thick peat layers in large parts of e.g. Russia, Canada and Indonesia has generally taken thousands of years. Due to degradation of peatlands throughout the world, as a result of changed land use and pollution, many ecosystem services provided by

  6. Peat in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Ambak, K. [MARDI - Integrated Peat Research Station, Johor (Malaysia); Ah Chye, L. [MARDI Jalan Kebun, Selangor (Malaysia). Vegetable Research Centre

    1996-12-31

    Malaysian peatlands occur mostly in the water-saturated basins of the coastal lowlands. They are approximately 25 000 km{sup 2} in extent, of which about 10 000 km{sup 2} are in Peninsular Malaysia and another 15 000 km{sup 2} are distributed in Sarawak and Sabah. In Peninsular Malaysia, peatland classification is based mainly on peat depth and loss on ignition. In Sarawak, a more comprehensive approach is adopted, based on peat depth and the type of underlying mineral materials. As for Sabah, the classification follows FAD/UNESCO guidelines. Malaysian peatland is utilised mainly for agriculture. At present, about 32 % of the peatland area in Peninsular Malaysia is used for this purpose. In Sarawak, a much smaller percentage is used for agriculture. The main crops grown are oil-palm, rubber, coconut, padi and pineapple. Based on {sup 14}C datings, it has been estimated that peat in this region began to form between 4 000 and 5 000 years ago. The overall rate of accumulation of the peat since its initial formation has been about 2.81 mm ye` whereas the average rate during the early stages of formation ( 12-10 m) was 4.76 mm ye. In the intermediate stage (10-5 m), the average annual accumulation rate decreased to 3.14 mm, and to 2.22 mm in the final phase (5 m to the surface). (orig.) (17 refs.)

  7. Peat Research Seminar

    International Nuclear Information System (INIS)

    1993-01-01

    The VTT Seminar on Peat Research was held in Espoo, Finland, on April 14-15, 1993. The programme consisted of technical session on Peat in Energy Production, Peat Research Programs, Peat Production and Harvesting Technology

  8. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts

    DEFF Research Database (Denmark)

    Larsen, Thomas; Ventura, Marc; Maraldo, Kristine

    2016-01-01

    insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. 3....... To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins...... of amino acids to bacteria, fungi and plants in enchytraeids. 4. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed...

  9. Antibacterial Activity of Essential Oil of Sature jahortensis Against Multi-DrugResistant Bacteria

    Directory of Open Access Journals (Sweden)

    Saeide Saeidi

    2014-05-01

    Full Text Available Background: Development of resistance to many of the commonly used antibiotics is an impetus for further attempts to search for new antimicrobial agents. Objectives: In the present study, the antibacterial activity of Saturejahortensis essential oil against multi-drug resistant bacteria isolated from the urinary tract infections was investigated. Materials and Methods: During the years 2011 to 2012 a total of 36 strains of pathogenic bacteria including 12 Klebsiellapneumoniae, 12 Escherichia coli and 12 Staphylococcus aureus species were isolated from urine samples of hospitalized patients (Amir Al-Momenin Hospital, Zabol, South-eastern Iran suffering from urinary tract infections. After bacteriological confirmatory tests, the minimum inhibitory concentrations of the essential oil of Saturejahortensis were determined using micro-dilution method. Results: The antibiotic resistance profile of the E. coli isolates were as follows: ceftazidime (50% cefixime (41.6%, tetracycline (75%, erythromycin (58.3%. However K. pneumoniae isolates showed resistance to ceftazidime (33.3%, cefixime (58.3%, erythromycin (75% and S. aureus isolates were resistant to cefixime (33.3%, trimethoprim-sulfamethoxazole (41.66%, penicillin (50%, oxacillin (83.3%, ceftazidime (66.6% and vancomycin (8.3%. The essential oil of this plant had inhibitory effect against most isolates. More than 1/3 of the E. coli isolates showed the lowest MIC (10 ppm whereas more than 1/3 of the K. pneumoniae isolates showed the highest (250 ppm MIC values. In contrast ,equal number of S. aureus isolates showed the low MIC values (10 and 50 ppm, while the heighest MIC (250 ppm was seen in 1/3 of isolates and moderate MIC (100 ppm was seen in one isolate only. Conclusions: The Saturejahortensis essential oil has a potent antimicrobial activity against multi-drug resistant bacteria. The present study confirms the usefullness of this essential oil as antibacterial agent but further research is

  10. Radionuclides in peat bogs and energy peat

    International Nuclear Information System (INIS)

    Helariutta, K.; Rantavaara, A.; Lehtovaara, J.

    2000-06-01

    The study was aimed at improving the general view on radionuclides contents in energy peat produced in Finland. The annual harvest of fuel peat in 1994 was studied extensively. Also thirteen peat bogs used for peat production and one bog in natural condition were analysed for vertical distributions of several radionuclides. These distributions demonstrate the future change in radioactivity of energy peat. Both natural nuclides emitting gamma radiation ( 238 U, 235 U, 232 Th, 226 Ra, 40 K) and radiocaesium ( 137 Cs, 134 Cs) origin in fallout from a nuclear power plant accident (1986) and in atmospheric nuclear weapon tests were analysed. The beta and alpha active natural nuclides of lead and polonium ( 210 Pb, 210 Po) were determined on a set of peat samples. These nuclides potentially contribute to radiation exposure through inhalation when partially released to atmosphere during combustion of peat. The activity concentrations of natural radionuclides often increased towards the deepest peat bog layers whereas the radioactive caesium deposited from atmosphere was missing in the deep layers. In undisturbed surface layers of a natural bog and peat production bogs the contents of 210 Pb and 210 Po exceeded those of the deeper peat layers. The nuclides of the uranium series in the samples were generally not in radioactive equilibrium, as different environmental processes change their activity ratios in peat. Radiation exposure from handling and utilisation of peat ash was estimated with activity indices derived from the data for energy peat harvested in 1994. Intervention doses were exceeded in a minor selection of samples due to 137 Cs, whereas natural radionuclides contributed very little to the doses. (orig.)

  11. Peat in environmental management

    International Nuclear Information System (INIS)

    Rinttilae, R.

    1998-01-01

    Peat is the largest natural resource of Finland. The DS-reserves of peat are more than seven times larger than those of wood. Peat is known as a domestic source of energy. Peat is, however, more than an energy source. The most significant problem of water protection in Finland is the eutrophication of the water courses. The reduction of concentrated loads and large emissions sources has up to now been the target for the water protection. The control of diffuse loads has been more difficult. The environmental use of peat can reduce the loads on watercourses, and especially the diffuse emissions. The natural and unique properties of peat can be utilized in several targets: agriculture, pisciculture, fur farming, in small and medium sized industry, and in processing of waste waters of both municipalities and rural areas, as well as in different environmental hazards. The present use of environmental peat is just a small fragment of the annual growth of peat reserves in Finland. The amount of protected mires is about ten times larger than the amount of peatlands taken into peat production. The use of environmental peat makes it possible to reduce the diffuse loads significantly in the future. This, however, requires willingness of cooperation and development by the entrepreneurs, authorities, and peat producers. The present use of agricultural peat binds about three times more phosphor and nearly one and a half fold nitrogen fertilizers compare to the emissions caused by peat production. It has to be noticed that the utilization of peat in reduction of environmental loads does not cause any secondary waste problem. The final product formed can usually be composted and used e.g. in soil remediation or in construction of green areas. The tightening environmental regulations and international agreements increase the utilization of peat. As the demand of peat increased the quality requirements for peat will be increased. Certain grain size and the restoration of the

  12. PDF -- new peat technology

    Energy Technology Data Exchange (ETDEWEB)

    Myreen, P B

    1982-12-01

    The impact of a large-scale utilization of peat must be assessed in each region separately. As it is completely impractical to transport wet peat over long distances, a PDF plant must be built in the peatland region. Such regions often need economic stimulation. The PDF process can be run independent of season and weather, and thus offers permanent jobs. Dredging the peat layer all at once in a wet state is an operation concentrated on a very small land area. If this area can be drained, it can soon afterwards be forested or used for agricultural purposes. Even if the area from which the peat is removed is left as a wetland, when cleverly done, the ecological effects may be favourable. Peat is a significant energy source in many countries now looking for domestic alternatives to expensive imported fuels. The main constraint on large-scale utilization of peat is its ability to retain moisture. The wet-carbonization process, utilized in a PDF plant and yielding a high-quality peat-derived fuel, is believed to be a technically feasible and economically attractive industrial method of dewatering native peat.

  13. Regulations for the peat production water pollution control; Turvetuotannon vesiensuojeluohjeisto

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, M.; Heikkinen, K.; Ihme, R. [ed.] [VTT Communities and Infrastructure, Espoo (Finland)

    1996-12-31

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  14. Regulations for the peat production water pollution control

    International Nuclear Information System (INIS)

    Savolainen, M.; Heikkinen, K.; Ihme, R.

    1996-01-01

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  15. Groundwater and quaternary geological studies of potential peat production areas - useful tool for sustainable peat production

    Energy Technology Data Exchange (ETDEWEB)

    Valpola, S.E.; Paalijaervi, M. (Geological Survey of Finland, Kokkola (Finland)), Email: samu.valpola@gtk.fi, Email: miikka.paalijarvi@gtk.fi

    2009-07-01

    Potential peat production areas in Finland are often situated in vicinity of eskers or other quaternary (glaciofluvial) formations. Frequently these formations are also important groundwater resources and it is essential for sustainable peat production to assure that these resources will not be endangered. The Geological Survey of Finland (GTK) has concluded several quaternary geological studies on potential peat production areas, which are connected to locally important groundwater areas. These studies have been made using mainly ground penetrating radar (GPR) and light drilling equipment. The main objective of these studies has been to establish the local groundwater flow directions and the quality and extent of quaternary deposits. The increasing need of peat production areas has created an evident demand of cost-effective and fast research methods which can be used for providing reliable information for planning of new production areas. (orig.)

  16. The sustainable use of peat

    International Nuclear Information System (INIS)

    Kallas, Rein

    1997-01-01

    The article gives information about the critical and usable reserves of peat, its annual consumption and production allowance, as well as the output in 1996. It is seen from the Table that no increase in peat production is possible in the counties of Paernu and Rapla, as well as in western Estonia unless the exhausted peat fields have been reclaimed, so, after the limit has been released. However, conditions for peat production in southern Estonia are favourable. The low peat production capacity, 1 million t, while the production quota is 2.78 million t, is indicative of the depression of Estonian peat industry. (author)

  17. Chemical properties of peat used in balneology

    Science.gov (United States)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends

  18. Global peat resources

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, E. [ed.] [Geological Survey of Finland (Finland)

    1996-12-31

    The book provides a detailed review of the world`s peat and peatland resources and their role in the biosphere. It was compiled by 68 peat experts. Reports present the valuable mire ecosystem, its characteristics, and the use of peatlands. Maps and photographs illustrate the distribution of mines and their special characteristics, including raised bogs, aapa mires, blanket bogs, mangrove swamps, swamp forests etc. The book contains a total of 57 chapters, the bulk of then giving surveys of peat resources and use in individual countries. They are grouped under the headings: peatlands in biosphere; general review; Europe; Asia; Africa; North America; Central and South America; Australia (and New Zealand); and use of peatlands. One chapter has been abstracted separately for the IEA Coal Research CD-ROM. 7 apps.

  19. Radiocarbon dating of lowbog peat

    International Nuclear Information System (INIS)

    Trettin, R.; Hiller, A.; Mundel, G.

    1982-01-01

    Owing to complex formation conditions, the age determination of lowbog peat is generally considered difficult. Within the framework of peat profile investigations of the Havellaendisches Luch, factors that may exercise an influence on the radiocarbon concentration and disturb an ordered age sequence are discussed. With regard to lowbog peat, the interpretation of the sample material to be measured is of particular importance. (author)

  20. New record in peat utilization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Increment of peat utilization that started in 1990 continued also in 1991, due to which new record was achieved. Peat delivery increased 11.2 % from 16.1 million m 3 in 1990 to 17.9 million m 3 in 1991. The portion of energy peat was 16.4 million m 3 , and the portion of peat for other purposes 1.5 million m 3 . The energy content of fuel peat was 15.8 TWh, of which 13.8 TWh was milled peat and 2.0 TWh sod peat. The main portion of energy peat was used in communal back-pressure power plants for production of electricity and district heat. The second largest utilizer was industry. The rests 0.3 TWh (2 %) was delivered to private small scale utilization and export. About 88 000 MWh of sod peat was exported to Sweden. The portion of horticultural peat of the peat delivered for other purposes than energy production was 662 000 m 3 , of which only 260 000 m 3 was used in Finland and 408 000 m 3 was exported. Agriculture is the main user of peat outside the energy production. Weakly humified peat was used as litter and as absorber for slurrified manure about 286 000 m 3 . The value of the deliveries of peat industry exeeded 800 million FIM, of which the portion of milled peat was about 650 million FIM, the portion of sod peat about 95 million FIM, and the portion of domestic deliveries of horticultural peat 30 million FIM. The export of peat was 36 million FIM. Peat production in 1991 was 10.605 million m 3 , which is nearly a half of the production of 1990. The decrease was caused by both poor weather of may-june 1991 and the large peat supplies from the year 1990. About 60 % of the production target of 1991 was achieved. The production of sod peat increased by over 50 % from 736 000 m 3 in 1990 to 1 147 000 m 3 in 1991

  1. Peat resources in Cuba

    International Nuclear Information System (INIS)

    Casanova Casanova, E.

    1996-01-01

    During the last few years the drastic cut in oil supply provoked a critical situation in Cuba. The shortage of domestic oil production and the absence of alternative energy sources, such as wide rivers and coal deposits, drove us to decide that the most promising option was to develop our huge peat deposits. However, there are problems concerning skills and finance. This report reviews the potential for peat development to date in the Cuban territory. The figures and characteristics are partly taken from the surveys done by the Russian and Cuban specialists during the 60's. There is some new data compiled from the work done more recently in some of the Cuban peat deposits. The conditions for draining and harvesting are very challenging and difficult if the peat deposits are to be developed without doing any unnecessary damage to the fragile environment of Cuban wetlands. However, if the required financing and skills are available, the work can be carried out and significant risks avoided

  2. Cupriferous peat: embryonic copper ore

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D C

    1961-07-01

    A Canadian peat was found to contain up to 10% (dry weight) Cu, and a mechanism for Cu accumulation in peat was discussed. Wet chemical techniques and x-ray diffraction were utilized to identify Cu compounds. Copper was organically bound in peat as a chelate complex and did not occur as an oxide, sulfide, or as elemental Cu. Because of the low S content of peat the Cu was assumed to be bound to nitrogen or oxygen-containing components. Copper, having a greater affinity for N, tended to form the more stable Cu-N chelate. The element was concentrated as circulating cupriferous ground waters filtered through the peat.

  3. adsorption, eosin, humic, peat

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  4. Practical and mechanistic aspects of the removal of cadmium from aqueous systems using peat

    International Nuclear Information System (INIS)

    Fine, Pinchas; Scagnossi, Alessandra; Chen, Yona; Mingelgrin, Uri

    2005-01-01

    A sphagnum peat moss removed Cd from aqueous solutions very efficiently, and its effectiveness in taking up the metal was significantly enhanced by exposure to a 1 N NaOH solution. The capacity of the untreated peat for Cd reached 300 g/kg and that of the NaOH-activated peat was over 400 g/kg. Although saturation was rarely reached, the Cd uptake from concentrated solutions often exceeded 200 g/kg. In column experiments, 1 g of the NaOH-activated peat completely removed the metal from over 0.2 L of a 200-mg/L Cd solution (final Cd concentration c /kg. In addition to uptake by exchange, a significant amount of Cd was sorbed by non-exchange mechanisms. FTIR spectroscopy revealed the importance of carboxyl groups in the uptake. - Peat can efficiently remove transition metals from aqueous media

  5. Precipitation-induced runoff and leaching from milled peat mining mires by peat types: A comparative method for estimating the loading of water bodies during peat production

    Energy Technology Data Exchange (ETDEWEB)

    Svahnbaeck, L.

    2007-07-01

    characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5-8.5 with moisture content in the range 23.4-89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5-6 in the moisture content class 56-75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24-30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5-8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse

  6. Changes in Flow and Transport Patterns in Fen Peat as a Result of Soil Degradation

    Science.gov (United States)

    Liu, Haojie; Janssen, Manon; Lennartz, Bernd

    2016-04-01

    The preferential movement of water and transport of substances play an important role in soils and are not yet fully understood especially in degraded peat soils. In this study, we aimed at deducing changes in flow and transport patterns in the course of soil degradation as resulting from peat drainage, using titanium dioxide (TiO2) as a dye tracer. The dye tracer experiments were conducted on columns of eight types of differently degraded peat soils from three sites taken both in vertical and horizontal directions. The titanium dioxide suspension (average particle size of 0.3 μm; 10 g l-1) was applied in a pulse of 40 mm to each soil core. Twenty-four hours after the application of the tracer, cross sections of the soil cores were prepared for photo documentation. In addition, the saturated hydraulic conductivity (Ks) was determined. Preferential flow occurred in all investigated peat types. From the stained soil structural elements, we concluded that undecomposed plant remains are the major preferential flow pathways in less degraded peat. For more strongly degraded peat, bio-pores, such as root and earthworm channels, operated as the major transport domain. Results show that Ks and the effective pore network in less degraded peat soils are anisotropic. With increasing peat degradation, the Ks and cross section of effective pore network decreased. The results also indicate a strong positive relationship between Ks and number of macropores as well as pore continuity. Hence, we conclude that changes in flow and transport pathways as well as Ks with an increasing peat degradation are due to the disintegration of the peat forming plant material and decrement of number and continuity of macropores after drainage.

  7. Fishery impacts of peat production

    International Nuclear Information System (INIS)

    Laine, A.; Heikkinen, K.

    1991-01-01

    The total area of Finland's peat mining areas is approx. 60 000 ha. Increase in runoff from peat mining areas and changes in the quality of the runoff water, such as rises in solid matter, humus and nutrient content, result in a higher load on the lakes and rivers downstream peat mining areas. Loading from peat mining areas has been found to increase the bacterioplankton densities and change the species composition of phytoplankton in watercourses. Periphytic biomass has increased but zooplankton biomass and diversity have decreased. Corresponding changes and decreases in the number of species have also been observed in the bottom fauna of flowing waters. The loading caused by peat mining affects the fish stocks either directly or via changes in reproduct conditions and the availability of food organisms. Direct effects can be revealed as withdrawal of fish, their weakened condition and increased susceptibility to diseases, tainting or, in the worst case, even fish kills. Both organic and inorganic solid matter loading which deposits on the bottom have the most pronounced effects on fish reproduction and bottom fauna used as their food. Soiling of nets and changes in the condition of the fishing areas have a detrimental effect on fisheries. The changes that take place in the fish stocks are affected by the nature of the water system, the size of the peat mining areas and their location within the catchment area, as well as the quantity and timing of load coming from the peat mining areas. These can be influenced through technical water protection measures

  8. Third technical contractors' conference on peat

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The conference dealt with the estimation of US peat reserves, methods for the gasification of peat, including biogasification, techniques for dewatering peat, and the harvesting of peat. Separate abstracts were prepared for the individual papers. (CKK)

  9. Peat 1999. Resources, use, environmental impact

    International Nuclear Information System (INIS)

    2000-01-01

    This report discusses peat as a natural resource. It describes the peat land area, the peat harvest area, the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation, trade, research and development, and the government grant to the peat industry. In Sweden, the extraction and use of peat for energy production is regulated by several laws. A company planning peat extraction must first apply for an examination concession. Then a harvesting concession must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. Since 1991, a law on municipal energy planning requires descriptions of environmental consequences. Thus, environmental considerations must govern energy planning. Energy taxation in Sweden was changed in 1993. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur. Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. More than six millions hectares have been defined as peat land (with a peat layer of more than 30 cm) in Sweden, which means that about 15 per cent of the total land area consists of peat lands. Thinner peat layers (wet mineral soils) cover an additional 10 per cent of the land area. At the end of 1999 concessions for fuel peat harvesting had been granted for 45 900 hectares or 0.8 per cent of the total peat land area. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the energy crises. In 1999, about 2 650 000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in heating plants. In 1999, the total use

  10. Peat 2000. Resources, use, environmental impact

    International Nuclear Information System (INIS)

    2001-01-01

    This report discusses peat as a natural resource. It describes the peat land area, the peat harvest area, the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation, trade, research and development, and the government grant to the peat industry. In Sweden, the extraction and use of peat for energy production is regulated by several laws. A company planning peat extraction must first apply for an examination concession. Then a harvesting concession must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. Since 1991, a law on municipal energy planning requires descriptions of environmental consequences. Thus, environmental considerations must govern energy planning. Energy taxation in Sweden was changed in 1993. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur. Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. More than six millions hectares have been defined as peat land (with a peat layer of more than 30 cm) in Sweden, which means that about 15 per cent of the total land area consists of peat lands. Thinner peat layers (wet mineral soils) cover an additional 10 per cent of the land area. At the end of 1999 concessions for fuel peat harvesting had been granted for 45,000 hectares or 0.8 per cent of the total peat land area. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the energy crises. In 2000, about 1,372,000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in heating plants. In 2000, the total use

  11. Life-cycle of fuel peat

    International Nuclear Information System (INIS)

    Leijting, J.; Silvo, K.

    1998-01-01

    The share of peat in the primary energy supply in Finland in 1996 was about 6.5 % and the area used for peat production was about 535 km 2 , corresponding to about 0.5 % of the original peatland area of Finland. Fuel peat production is hence a significant form of using natural resources. About 1.4 % of the total peatland area has been reserved for peat production. Approximately 95 % of the peat excavated in Finland is used as fuel peat, and 5 % as horticultural peat. As raw material and fuel peat can be considered to be slowly renewable material. The environmental impacts of fuel peat production, transportation and peat combustion were evaluated in this research by methods used in life-cycle assessment. Preparation and production phases of peat production areas, fuel peat transportation to power plants, combustion of peat in power plants, and disposal of the ashes formed the basis for the investigation. Data collected in 1994-1996 was used as the basic material in the research. Special attention was paid to the estimation of greenhouse gas balance when using a virgin bog and the forest drained peatland areas as starting points. Post-production use of peatlands were not inspected in the life-cycle assessment. The work was carried out in 1997 in cooperation with Vapo Oy. The regional environmental centers, VTT and Helsinki and Joensuu Universities assisted significantly in acquisition of the material and planning of the work 3 refs

  12. Peat 2003. Production, use, environmental impact

    International Nuclear Information System (INIS)

    2004-01-01

    This report discusses the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation and international statistics regarding peat production. In Sweden, the extraction and use of peat for energy production is regulated by several laws. Harvesting concessions must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. Since 1991, a law on municipal energy planning requires descriptions of environmental consequences. Thus, environmental considerations must govern energy planning. Energy taxation in Sweden was changed in 1993. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur. Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the increased energy prices. In 2003, about 2,628,000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in district heating plants. In 2003, the total use of fuel peat amounted to 4,0 TWh. In addition to fuel peat, about 1,825,000 cubic metres of peat litter (mainly for horticultural use) was produced. In 2003, imports amounted to 382,3000 metric tons or 1.3 million cubic metres of peat. Exports amounted to 103,000 metric tons, consisting primarily of peat for horticultural use. The peat market in Sweden is divided into the energy market and the cultivation market. Political decisions regarding combustion taxes have a great impact on the competitive advantages of different fuels. The major competitors to peat are coal, oil, and renewable energy

  13. Fourth technical contractors' conference on peat

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)

  14. The history of the peat manufacturing industry in The Netherlands : peat moss litter and active carbon

    NARCIS (Netherlands)

    Karel, Erwin; Gerding, Michiel; De Vries, Gerben

    This article describes the development of three major forms of peat processing by the manufacturing industry in The Netherlands since the last quarter of the 19th century. At a time when peat as a fuel was gradually being replaced by coal, the first form was the peat moss litter industry. Peat moss

  15. Peat - a slowly renewable biofuel

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The international investigation group of the Finnish Ministry of Trade and Industry suggest that peat should be classified as a slowly renewable energy source. Regeneration of peat can take up to thousands of years. Hence peat differs from wood energy, classified as renewable energy, and on the other hand from fossil fuels, such as coal. The report of the investigation group includes all the present research information on greenhouse gas balances of Finnish peatlands, i.e. how much greenhouse gases are liberated from Finnish mires, and on the other hand how much greenhouse gases they absorb. The net emissions of greenhouse gases of Finnish mires are over 10 million tons per year, and those of combustion of peat, mainly CO 2 , are over 8 million tons. The total greenhouse gas emissions of peat combustion and Finnish mire are estimated to be 19 (+- 9) % per year. This corresponds to about 25% of the total greenhouse gas emissions in Finland. The objective of the report was also to study the effects of the utilization of cutaway peat production areas (reforestation, returning the areas back to mires, agricultural utilization) on the greenhouse gas emission balances. The precise investigation of the effects of the greenhouse gas balances and the utilization of cutaway areas require further investigation and measurements at Finnish mires. The group consisted of Patrick Crill (USA), Ken Hargraves (GB) and Atte Korhola (FIN). The report of the group will be published in the Studies and Reports Serie of the Finnish Ministry of Trade and Industry both in English and in Finnish

  16. Development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt% on sedimentation ratios, drain times and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  17. The development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F; Evans, G O; Harrell, P A; Whitehurst, B M

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents, and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt.% on sedimentation ratios, drain times, and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  18. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  19. Aid policy for peat from the EU's standpoint

    International Nuclear Information System (INIS)

    Alanen, J.; Suvanto-Luomala, S.; Aeimae, K.

    2002-10-01

    The study analyses the restrictions that may be imposed by the European Union on our national taxation schemes supporting the energy use of peat. These restrictions would mainly relate to the EU and international climate policy, which may change the attitudes towards the energy use of peat. The taxation arrangements studied concern the refunds of the electricity tax granted to small peat-fired power plants and the tax on peat, which compared especially with coal, is light in heat production. The study aims to find out whether the arrangements included State aid prohibited by the European Community or whether they gave rise to prohibited tax discrimination of other Member States' energy products. It was concluded that the objectives of the Community, particularly the regional security of energy supply, promotion of combined electricity and heat production, and employment, favour the energy use of peat rather than oppose to it. As for the aid to small power plants, it can be considered that the grounds for obtaining an exemption from the EC State aid prohibition exist, because the benefits of the aid referred to are more important than the disadvantages brought by it for undistorted trade and competition. This situation cannot be expected to change in the near future, either, e.g. as a result of the climate policy. As regards heat production, peat taxation cannot be considered to include State aid or to lead to discrimination against exported fuels like coal. This is essentially based on the taxation sovereignty of Member States and the related right to enhance national goals by means of taxation. The current energy tax regulation by the Community or the Commission's Proposal for an Energy Tax Directive do not seem to pose any obstacles to continuing Finland's present energy taxation policy. (orig.)

  20. Thermal properties of degraded lowland peat-moorsh soils

    Science.gov (United States)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat

  1. Peat - The sustainable energy resource in Finland

    International Nuclear Information System (INIS)

    1994-01-01

    In Finland the level of energy consumption for heating, transportation and industry is higher than in many other European countries. This is due to the northern position of the country and also to the fact that Finland is sparsely inhabited. Peat is one of the Finnish domestic energy resources. This brochure provides a compact package of background information on fuel peat. All the data presented concerning the production and use of peat, employment, investments in the peat industry, emission levels resulting from the production and use of peat, new combustion technologies and peatland resources, have been collected from documents and other sources that are accessible to the general public

  2. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  3. Peat 2002. Resources, use, environmental impact

    International Nuclear Information System (INIS)

    2003-01-01

    This report discusses the use of peat for energy production and other purposes, laws and other regulations affecting peat production and use, environmental impact, market situation and international statistics regarding peat production. In Sweden, the extraction and use of peat for energy production is regulated by several laws. A company planning peat extraction must first apply for an examination concession. Then a harvesting concession must be approved by the county council. All combustion plants must be reported, or verified by regional or central authorities, depending on the size of the plant. Most important in this process is to verify the maximum emission levels permitted for sulphur, nitrogen oxides, particles, etc. At present, the sulphur tax on fuel peat amounts to SEK 30 per kg of sulphur (1 USD approx. 7.8 SEK). Nitrogen oxides are also subject to a tax of SEK 40 per emitted kg. For peat, energy and environmental taxes total SEK 0.02 per kWh, excluding VAT. Peat harvesting for the production of energy aroused interest in the early 1980s as a consequence of the energy crises. In 2002, about 2,885,000 cubic metres of fuel peat were harvested in Sweden. The fuel peat is used mainly for production of hot water in heating plants. In 2001, the total use of fuel peat amounted to 4.1 TWh. In addition to fuel peat, about 1,800,000 cubic metres of peat litter (mainly for horticultural use) was produced. In 2001, imports amounted to 329,311 metric tons or 1.1 million cubic metres of peat. Exports amounted to 91,000 metric tons, consisting primarily of peat for horticultural use. Fuel peat is used at district heating power plants. Political decisions regarding combustion taxes have a great impact on the competitive advantages of different fuels. The major competitors to peat are coal, oil, and renewable energy sources. Some companies are privately owned, while others are owned by municipalities, which also manage district heating plants and thereby integrate

  4. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    Science.gov (United States)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  5. Peat swamp forest of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Niyomdham, C.; Urapeepatanapong, C.; Pitayakajornwute, P. [Pikoolthong Royal Development Study Center, Bangkok (Thailand). Royal Forest Department

    1996-12-31

    Peat swamp forest in Thailand occurs extensively along coastal flatlands in the central and southern parts of the country and some small patches of topogenous peatland are present locally on several mountain tops of the northern region. Many have been deteriorated by recent extensive development programs. However, one large area, about 347.04 km{sup 2}, of ombrogenous peatland is still left intact in the Pru Toh Dang area where conservation activities are being strictly enforced under one of the Royal Initiative Projects. Pru Toh Dang peat consists of 5 metres of fibrous organic soil overlying pyritic marine clay. Despite an inhospitable, submerged and unstable forest floor, the floristic composition of the peat swamp forest is extremely complicated, consisting of 124 families and 470 species of which 109 families and 437 species of flowering plants, and 15 families and 33 species of ferns recorded between 1983-1989 by a team from the Forest Herbarium of the Royal Forest Department of Thailand. (orig.) (4 refs.)

  6. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    Science.gov (United States)

    Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.

    2017-07-01

    Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements

  7. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    Directory of Open Access Journals (Sweden)

    T. V. Raudina

    2017-07-01

    Full Text Available Mobilization of dissolved organic carbon (DOC and related trace elements (TEs from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC, and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg and trace (Al, Ti, Sr, Ga, rare earth elements (REEs, Zr, Hf, Th elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the

  8. Excavating and loading equipment for peat mining

    Science.gov (United States)

    Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.

    2017-10-01

    Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.

  9. Safety indicators for the peat industry

    Energy Technology Data Exchange (ETDEWEB)

    Berezhnoy, S A; Sedov, Yu I; Yenoshevskiy, B A

    1981-01-01

    Members of the inter-institutional department of 'Labor Protection' of the KPI, in cooperation with members of the peat industry, have developed safety indicators for the peat industry in accordance with the requirements of GOST 12.4.026-76 SSBT, and established the range and order for their use. The safety indicators for the peat industry are divided into four groups (prohibiting, warning, regulating, and indicating), depending on the function.

  10. Aerial photography in peat production technology

    International Nuclear Information System (INIS)

    Tervo, M.

    1998-01-01

    In this project, possibilities of using aerial photography in peat technology were studied experimentally, the frequency of self-heating in peat stockpiles was surveyed and the effect of compacting on the inner temperature in a self-heated milled peat stockpile was studied. Air photographs can be used in several sub-fields of the peat production. On the basis of these photos it is possible to draw conclusions from the environmental impacts of peat production, from conditions in the peat field, and from qualitative and moisture differences of surface peat. In addition, aerial photography can be utilised in updating bog maps. On the basis of aerial thermal photography in autumns 1987 - 1993, 29 % of milled peat stockpiles, and 4 % of sod peat stockpiles were found to be self-heated. The susceptibility to self-heating varied at different peatlands. The effect of compacting with a bulldozer was studied at three self-heated test stock-piles, two of which were compacted. The inner temperatures in the test stockpiles decreased significantly over the three-month monitoring period. The falls in the inner temperature of all three stockpiles were identical. Compacting did not have any significant effect on the temperature fall or on the rate of fall. The number of test stockpiles (3) is insufficient to give any statistical reliability. (orig.)

  11. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  12. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  13. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections.

    Science.gov (United States)

    Oldfield, F; Thompson, R; Barber, K E

    1978-02-10

    Magnetic measurements of ombrotrophic peat allow a reconstruction of changes in the past fallout of magnetic particles through the atmosphere. In recent peat profiles from three sites in Britain and Northern Ireland, a marked increase in saturated isothermal remanent magnetization of the peat is recorded in levels which can be shown to postdate the onset of the Industrial Revolution. Furthermore the spatial variation in contemporary isothermal remanent magnetization values is consistent with a recent industrial and urban origin for the bulk of the magnetic minerals present. Pre-Industrial Revolution values are between two and three orders of magnitude lower, suggesting that the natural cosmic and terrestrial sources previously cited for such material have been dominated in recent times by the products of human activity. Magnetic measurements provide a simple, rapid, and nondestructive method of monitoring and differentiating various types of particulate atmospheric fallout for both recent and preindustrial times.

  14. Physical prerequisites for the development of technological systems for draining a peat bed. [Peat; USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, Ye T

    1981-01-01

    It is noted that at the present time, the basic peat reserve is made up primarily of the upper type of peat deposits, which are exceedingly complex for industrial development. In this regard, the development and introduction of new progressive methods for studying peat deposits, which provide for the acquisition of broad and reliable information about the composition and properties of the peat have great practical meaning. Cited in brief form are the conclusions and recommendations produced as a result of comprehensive systematic studies of the composition and properties of peat beds located in different regions of the country which were fulfilled in the KPI since 1970.

  15. Import of biofuels and peat

    International Nuclear Information System (INIS)

    Albertsson, N.

    1993-06-01

    In areas neighbouring Sweden, i.e., foremost the Baltic States, it is probable that a large part of the available amounts will be consumed on the domestic market. Studies of the possible use of wood fuel in Estonia, Latvia and Lithuania are being made by the World Bank. Considerable investments will probably be made in the near future to replace existing coal- and oil-fired boiler plants with plants burning wood fuel. Consequently, the opportunities for exports of wood fuel will probably be small. In a global perspective, peat is used only to a limited extent as fuel. In the former Soviet Union alone it is estimated that the amount of peat that is economically feasible to extract is about 166x10 9 tonnes at a moisture content of 40%. Among the most interesting bio products that can be used in energy production from different food processing industries are nut-shells and fruit stones. Some stones, such as those in olives, plums and peaches, are excellent as fuels. The advantage with olive stones, in comparison with chips is that the bulk weight is high and the moisture content is low. Olive stones are thus similar to processed biofuels such as pellets. Due to their high energy content the olive stones can replace coal, which cannot be done by unprocessed fuels without expensive investments in materials handling equipment. Our survey shows that processed forest fuels and crushed olive stones are the products of greatest interest for the Swedish market. It also shows that both chips and peat-based products from the Baltic States are competitive

  16. International trade with peat and peat products - a challenge to international standardization

    Energy Technology Data Exchange (ETDEWEB)

    Schmilewski, G; Guenther, J [Institut fuer Torf- und Humusforschung GmbH (ITH), Bad Zwischenahn (Germany, F.R.)

    1990-01-01

    On a worldwide scale raised bog peat is the most important basic material for the production of growing media. Peat has greatly contributed to the realization of modern, standardized and even computer-controlled growing techniques in commercial horticulture. No other material can truly compete with the outstanding physical, chemical and biological properties of peat. All present and future substitutes will have to stand comparison with peat. Nonetheless, many other organic, mineral and synthetic materials are use in horticulture mainly to adjust the physical properties of growing media to new growing methods. As a direct or indirect consequence thereof, the spared raw material peat is a fact which is considered progressive in industrial countries strongly characterized by nature conservational ideas also. Some peat consuming countries do not have any indigenous peat resources and meet their demands with imports. Other countries, such as the Fed. Rep. of Germany, the Scandinavian countries and the USSR export considerable amounts of peat and peat products. International transactions have not only increased for big industries, but also for the peat industry. For the grower and for the producer of growing media alike, the knowledge of growing media properties are of fundamental importance. Various standard methods for the analysis of peat and growing media have been developed by national organizations and are being used just as manifold. In some cases national standards have derived from these.

  17. Physical and chemical characteristics of fibrous peat

    Science.gov (United States)

    Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah

    2017-11-01

    Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.

  18. Link between DOC in near surface peat and stream water in an upland catchment.

    Science.gov (United States)

    Clark, Joanna M; Lane, Stuart N; Chapman, Pippa J; Adamson, John K

    2008-10-15

    Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

  19. Structure of peat soils and implications for biogeochemical processes and hydrological flow

    Science.gov (United States)

    Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.

    2017-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.

  20. Geotechnical properties of peat soil stabilised with shredded waste tyre chips

    Directory of Open Access Journals (Sweden)

    M.A. Rahgozar

    2016-02-01

    Full Text Available To accommodate major civil engineering projects in or in the vicinity of peatlands, it is essential to stabilise peat deposits. On the other hand, the accumulation of waste tyres in recent decades has caused environmental problems around the world. An effective remedy for both issues is to use scrap tyre material to stabilise problematic peat soils. This article reports an experimental investigation of the effects of adding shredded tyre chips on the stability and bearing capacity of peat soil. Peat soil samples from the Chaghakhor Wetland (Chaharmahal and Bakhtiari Province, Iran were mixed with sand at a constant dosage of 400 kg m-3 and different percentages (0 %, 5 %, 10 %, 15 % and 20 % by weight of shredded tyre chips. The unconfined compressive strength, effective cohesion, angle of internal friction and coefficient of permeability were measured for all of these mixtures. The results showed that adding shredded tyre chips significantly improved the geotechnical properties of the peat soil. The mixture with 10 % shredded tyre chips showed the highest unconfined compressive strength; the one with 15 % tyre chips exhibited the highest ductility; and adding 20 % shredded tyre chips provided the highest values for angle of internal friction, effective cohesion and coefficient of permeability. Scanning Electron Micrographs (SEM showed that the pore spaces in the stabilised peat were mostly filled with sand.

  1. Potential Phosphorus Mobilisation in Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Re-establishment of wetlands on peat soils containing phosphorus bound to iron(III)-oxides can lead to an undesirable phosphorus loss to the aquatic environment due to the reductive dissolution of iron(III)-oxides. Thus it is important to be able to assess the potential phosphorus mobilisation from...... peat soils before a re-establishment takes place. The potential phosphorus mobilisation from a peat soil depends not only on the geochemical characteristics but also on the redox conditions, the hydrological regime in the area as well as the hydro-physical properties of the soil. The hypothesis...... for this study is (i) the release of phosphorus in peat is controlled by the geochemistry; (ii) the mobilisation of phosphorus is controlled by both geochemistry and hydro-physics of the soil. For this study, 10 Danish riparian lowland areas with peat soil were selected based on their geochemical characteristics...

  2. Agricultural management impact on physical and chemical functions of European peat soils.

    Science.gov (United States)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  3. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    Science.gov (United States)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may

  4. Radionuclides in peat bogs and energy peat; Turvesoiden ja polttoturpeen radionuklidit

    Energy Technology Data Exchange (ETDEWEB)

    Helariutta, K.; Rantavaara, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Lehtovaara, J. [Vapo Oy, Jyvaeskylae (Finland)

    2000-06-01

    The study was aimed at improving the general view on radionuclides contents in energy peat produced in Finland. The annual harvest of fuel peat in 1994 was studied extensively. Also thirteen peat bogs used for peat production and one bog in natural condition were analysed for vertical distributions of several radionuclides. These distributions demonstrate the future change in radioactivity of energy peat. Both natural nuclides emitting gamma radiation ({sup 238}U, {sup 235}U, {sup 232}Th, {sup 226}Ra, {sup 40}K) and radiocaesium ({sup 137}Cs, {sup 134}Cs) origin in fallout from a nuclear power plant accident (1986) and in atmospheric nuclear weapon tests were analysed. The beta and alpha active natural nuclides of lead and polonium ({sup 210}Pb, {sup 210}Po) were determined on a set of peat samples. These nuclides potentially contribute to radiation exposure through inhalation when partially released to atmosphere during combustion of peat. The activity concentrations of natural radionuclides often increased towards the deepest peat bog layers whereas the radioactive caesium deposited from atmosphere was missing in the deep layers. In undisturbed surface layers of a natural bog and peat production bogs the contents of {sup 210}Pb and {sup 210}Po exceeded those of the deeper peat layers. The nuclides of the uranium series in the samples were generally not in radioactive equilibrium, as different environmental processes change their activity ratios in peat. Radiation exposure from handling and utilisation of peat ash was estimated with activity indices derived from the data for energy peat harvested in 1994. Intervention doses were exceeded in a minor selection of samples due to {sup 137}Cs, whereas natural radionuclides contributed very little to the doses. (orig.)

  5. Second technical contractors' conference on peat

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This conference reported the status of the US Department of Energy Peat Program. The program includes peat resource surveys of eleven states, peat gasification process and equipment studies, dewatering studies, and environmental and socioeconomic factors in the development of peat technology. Separate abstracts were prepared for selected papers. (CKK)

  6. Changing of Sumatra backswamp peat properties by seawater and zeolite application

    Science.gov (United States)

    Sarifuddin; Nasution, Z.; Rauf, A.; Mulyanto, B.

    2018-02-01

    This research attempts to improve the properties of backswamp peatsoil originated from Asahan District, North Sumatra Indonesia by adding sea water and zeolite using factorial randomized block design with volume of sea water as first factor, consisting of without seawater, 500 ml, 1000 ml and 1500 ml and second factor are dosages of zeolite consisting of without zeolite, 100 g, 200 g each 10 kgs of wet peat soil. at green house in faculty of agriculture University of Sumatra Utara (USU) Medan, Indonesia. The result showed that the application of seawater decreased pH, C/N and Cation Exchange Capacity and increased of base saturation of peat soil. Adding of zeolite minerals can buffered the increasing of acidity and Electric Conductivity caused by sea water application. Interaction seawater + zeolite decreased of C/N and increased of percent of base saturation.

  7. The history of the peat manufacturing industry in The Netherlands: Peat moss litter and active carbon

    Directory of Open Access Journals (Sweden)

    M.A.W. Gerding

    2015-11-01

    Full Text Available This article describes the development of three major forms of peat processing by the manufacturing industry in The Netherlands since the last quarter of the 19th century. At a time when peat as a fuel was gradually being replaced by coal, the first form was the peat moss litter industry. Peat moss litter was made from white peat that was ground and sieved in factories which were located mainly in bog areas in the south-east of the province of Drenthe. It served as excellent bedding for horses and cattle. The second form of industrial peat processing was the manufacture, from 1921 onwards, of active carbon made from black peat. The Purit (Norit factory, now part of the Cabot Corporation, is still the only active carbon factory using peat as a raw material. The third form of peat processing was the production of garden peat and potting soil. This is still a widespread activity in peat areas all over the world. The peat moss litter industry thrived from the 1880s until shortly after the First World War. The arrival of the horse-drawn tram in all of the major cities of Europe created a great demand for animal bedding to be used in the vast stables of the tramway companies. Peat moss litter was cleaner, healthier and easier to handle than straw. There was similar demand from the armies, which used millions of horses during the First World War. Owing to the development of motorised vehicles, the peat market collapsed after the war and this plunged the industry into a prolonged crisis which was not overcome until peat was found to be a suitable growing medium for horticulture in the 1950s. Living and working conditions in peatlands were harsh, earnings irregular and labourers’ rights limited. The peat manufacturing industry was the first to introduce collective labour agreements, medical benefits and pension plans. Nonetheless massive unemployment, poverty and the necessity to migrate to other parts of the country were clear signs that the era of

  8. Some peat deposits in Penobscot County, Maine

    Science.gov (United States)

    Cameron, Cornelia Clermont; Anderson, Walter A.

    1979-01-01

    Twenty of the peat deposits in Penobscot County, Maine contain an estimated 29,282,000 short tons air-dried peat. The peat is chiefly sphagnum moss and reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. Analyses show that this same volume has high fuel value, low sulfur and high hydrogen contents compared with lignite and sub-bituminous coal, which may indicate that it also has potential for fuel use. On the basis of the metallic trace element content, one area within the region containing the 20 deposits has been delineated for further bedrock studies.

  9. Peat classified as slowly renewable biomass fuel

    International Nuclear Information System (INIS)

    2001-01-01

    The expert group, appointed by the Finnish Ministry of Trade and Industry, consisting of Dr. Patrick Crill from USA, Dr. Ken Hargreaves from UK and college lecturer Atte Korhola from Finland, studied the role of peat in Finnish greenhouse gas emissions. The group did not produce new research information, the report of the group based on the present research data available in Finland on greenhouse gas balances of Finnish mires and peat utilization, how much greenhouse gases, e.g. methane, CO 2 and N 2 O are liberated and bound by the mires. All the virgin peatlands in Finland (4.0 million ha), forest drained peatlands (5.7 million ha), peatlands used as fields in agriculture (0.25 million ha), peat harvesting and storage, as well as the actual peat production areas (0.063 million ha) are reviewed. The main factor intensifying the greenhouse effect, so called radiate forcing, is estimated to be the methane emissions from virgin peatlands, 11 million CO 2 equivalent tons per year. The next largest sources of emissions are estimated to be the CO 2 emissions of peat (8 million t/a), CO 2 emissions from peatlands in agricultural use (3.2 - 7.8 million t/a), the N 2 O emissions (over 2 million t/a) and methane emissions (less than 2 million t/a) of forest ditched peatlands. Other emission sources such as actual peat production and transportation are minimal. Largest carbon sinks are clearly forest-drained peatlands (9.4 - 14.9 million t/a) and virgin peatlands (more than 3 million t/a). Main conclusions of the experts group is that peat is formed continuously via photosynthesis of mosses, sedges and under-shrub vegetation and via forest litter formation. The report discovers that the basics of the formation of peat biomass is similar to that of other plant-based biomasses, such as wood, but the time required by stratification is different. Forests in Southern Finland become ready for harvesting in about 100 years, but the formation of commercially viable peat layers takes

  10. A new soil mechanics approach to quantify and predict land subsidence by peat compression

    NARCIS (Netherlands)

    Koster, K.; Erkens, G.; Zwanenburg, C.

    2016-01-01

    Land subsidence threatens many coastal areas. Quantifying current and predicting future subsidence are essential to sustain the viability of these areas with respect to rising sea levels. Despite its scale and severity, methods to quantify subsidence are scarce. In peat-rich subsidence hot spots,

  11. Peat exploitation - Environment. Effects and measures

    International Nuclear Information System (INIS)

    Stenbeck, G.

    1996-01-01

    This report gives a detailed description of the influence of peat exploitation on the land-, water- and atmospheric environments. Proposals for mitigatory measures to minimize damage to the environment are also given

  12. Radioactivity of peat mud used in therapy.

    Science.gov (United States)

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Distilling peat and other carbonaceous matters

    Energy Technology Data Exchange (ETDEWEB)

    Stones, W B

    1850-03-07

    Improvements in treating peat and other carbonaceous and ligneous matters, so as to obtain products therefrom are disclosed. These improvements consist, first, of a machine for compressing and partially drying peat. The unpressed peat is put into boxes and these into frames which are passed through between the bowls of a machine resembling a pair of squeezers. Secondly, consists in distilling, at a temperature of, say 700/sup 0/F, the compressed peat, with or without the addition of tar or fatty matter in retorts, and condensing the vapors in a series of vessels, arranged after the manner of Wolfe's bottles. The resulting charcoal may be extinguished by passing carbonic acid through it while in an air-tight box or chamber, and it may then be compressed into bricks, and used for locomotives and other purposes.

  14. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Phosphorus release within the soil matrix caused by the changed redox conditions due to re-establishment of a riparian wetland can be critical for the aquatic environment. However, phosphorous released in the soil will not always result in an immediate contribution to this loss to the aquatic...... environment. Lowland soils are primarily peat soils, and only a minor part of the total soil volume of peat soils is occupied by macropores (>30 µm). Since water primarily flows in these macropores, the majority of the soil matrix is bypassed (the immobile domain). Phosphorus released in the immobile domain...... is not actively transported out of the system, but is only transported via diffusion, which is a very slow process. Thus it is interesting to investigate the size of the active pore volume in peat soils. The hypothesis of this study is that the active pores volume of a peat soil can be expressed using bulk...

  15. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sophia V., E-mail: sophia.hansson@emg.umu.se [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden); Kaste, James M. [Geology Department, The College of William and Mary, Williamsburg, VA 23187 (United States); Olid, Carolina; Bindler, Richard [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden)

    2014-09-15

    Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides {sup 210}Pb, {sup 137}Cs, {sup 241}Am, and {sup 7}Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of {sup 7}Be down to 18–20 cm for some cores, and the broad vertical distribution of {sup 241}Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age–depth model leads to unrealistic peat mass accumulation rates (400–600 g m{sup −2} yr{sup −1}), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of {sup 210}Pb through the uppermost peat layers, recent peat accumulation rates (200–300 g m{sup −2} yr{sup −1}) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using {sup 7}Be, and if this information is incorporated into age–depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years. - Highlights: • {sup 210}Pb, {sup 137}Cs, {sup 241}Am and {sup 7}Be, and tot-Pb and tot Hg were measured in 5 peat cores. • Two age–depth models were applied resulting in different accumulation rates

  16. Environmental organizations say no to peat

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A group of environmental protection oriented organizations published in June 10th 1999 in Helsinki a target program for energy solutions in Finland. According to the scenarios, published in 'The Recurrent Energy Policy' (Uusiutuva energiapolitiikka) publication, it would be possible to reduce the CO 2 emissions in Finland by 40 % by the year 2030 by increasing the use of renewable energy sources, and by intensifying the use of energy. The use of peat as energy source is denied in the scenarios. According to the energy scenarios of the environmental organizations the construction of new peat condensing power plants would be denied by political decision and no such plant would be allowed to be constructed after the year 2001. The generation of condensing power by peat would be finished in 2010 as the plants become out of operation. The use of peat as a fuel in back-pressure power generation and in heating plant would diminish gradually, and it would finish totally in 2025-2030. This means that the life-cycle of fuel peat in Finland would remain to 60 years. The adequacy of industrially usable peat reserves has been estimated to be 350 - 500 years. The publication defines the power or heat generated by e.g. wood, energy-willow, biogas and peat as bioenergy, but on the other hand in the program the peat is considered to be fossil fuel, and in the table presenting the carbon dioxide emissions, the emissions of peat have been presented, as characteristic in these connections, as maximum values. The scenario study suggests the heavy increase of the use of wood, natural gas, wind power, solar energy and ground heating. The energy conservation has also high priority, as well as the increasing of the industrial back-pressure power generation based on wood fuels. According to the environmental organizations the power production based on nuclear power, coal, peat and oil, as well as the import of electric power, should be stopped in Finland. New hydroelectric power would not

  17. Phosphorus in virgin peat soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1956-01-01

    Full Text Available In the present paper the total and organic P content of virgin peat soils is studied on the basis of 217 peat samples mostly collected from Northern Finland and consisting of 32 Sp, 34 CSp, 62 SCp, 12 EuSCp, 36 BCp, and 41 Cp samples. The material was found to be satisfactorily typical for a study of Finnish peat soils as to the pH, ash and N contents. Only the BCp samples were, in some respect, of a poorer quality than in general. The total P content of the 217 samples ranged from 190 to 2350 ppm or from 30 to 2440 kg/ha. In the Sp and BCp groups the mean P content was equal, 580 ± 80 ppm and 560 ± 90 ppm resp., and significantly lower than the corresponding value in all the other groups which was 950 ±120 ppm in the Cp-group, 980 ± 290 in the EuSCp-group, 800 ± 60 in the SCp-group, and 800 ± 120 ppm in the CSp-group. A low but significant correlation was found to exist between the degree of land quality estimated on the basis of the surface vegetation and the P content of the surface samples: r = 0.361***. When the BCp samples were excluded an even closer correlation was detected: r = 0.481***. The correlation coefficient between the total P content and the degree of humification was r = 0.317***, that between the total P and the ash contents r = 0.289**, and that between the total P and N contents r = 0.206*. The organic P content of the 217 samples ranged from 130 to 1950 ppm with an average of 600 ± 40 ppm. The Sp and BCp groups showed significantly lower means, 430 ± 60 ppm and 440 ±7O ppm resp., than the other groups with averages of 630 ± 120 ppm in the CSp-group, 620 ± 50 ppm in the SCp-group, 770 ± 100 ppm in the Cp-group and 820 ± 280 in the EuSCp-group. The organic P content was very closely correlated with the total P content; the total correlation coefficient was r = 0.934***. The connection with the degree of humification was not distinct: the total correlation coefficient was r = 0.336***, but the partial correlation

  18. Horticultural peat markets of the world. Finnish export possibilities increasing

    International Nuclear Information System (INIS)

    Knuutinen, O.

    2000-01-01

    The statistics of 1997, collected by Turveruukki Oy, show that the horticultural peat production in Europe and Northern America is about 32.6 million m 3 /a. About 20.2 million m 3 of horticultural peat was produced in 1997 in Western Europe and about 9.5 million m 3 in Northern America. The share of Eastern Europe was 2.9 million m 3 . Production of fuel peat and horticultural peat in Europe are nearly equal, but most of the countries produce only horticultural peat. Finland, Russia, Ireland, Belorussia and Sweden are countries where the share of fuel peat is high. The largest producers of horticultural peat are Germany, Canada and Estonia. The share of these countries is about 60% of the production in Europe and Northern America. Germany and Canada do not produce fuel peat at all, and in Estonia the main portion of peat production area is aimed at horticultural production. About 1.6 million m 3 of horticultural peat was produced in Finland in 1997, corresponding to about 8% of the horticultural peat production in Europe. The share of horticultural peat has been low also in Ireland and Sweden. The main portion of the horticultural peat production in Finland is produced side by side with the fuel peat production. Horticultural peat is exported mainly as processed and sacked peat. The horticultural peat production in Western Europe is about 20 million m 3 /s. The Netherlands is a were large consumer of horticultural peat, but it has no horticultural peat production of its own. Other possible countries for export are Spain and France in Europe, and Japan

  19. The frost peat production; Routapalaturpeen tuotantoketjun tekniikka, talous ja ympaeristoevaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland); Leiviskae, V. [Oulu Univ. (Finland). Thule Inst.

    1997-12-01

    The frost peat production means the cutting of frozen peat in the winter time. The aim of this study is to test the possibilities to prolong the peat production season and to produce peat pieces for the horticultural peat industry. In the frost peat production method the frozen peat field is sawed throughout the length and breadth of by a circle saw. The sawed peat pieces are loosened from the field by a so-called `splitter`. The circle saw is equipped with the five circle saw blades (diameter 90 cm). The distance of the blades is adjustable. The splitter is equipped with a horizontal position blade (width 35 cm). The dimensions of the peat pieces are changeable, but from the point of drying the upper limit of the side of the peat cube can be 15-20 cm. The frost peat production method is technically suitable for production of slightly decomposed (H1-5) energy and horticultural peat. The energy peat pieces are allowed to dry up 70-75 % moisture content on the cutting field and then the pieces can be ridged by the screening ridger. If necessary, the ridges can be turned over. In the frost peat production, the conventional sod peat winning machines can be used in the following stages of the working tasks: harrowing, ridging, loading, turning of ridges and stockpiling. The measured output of the circle saw was about 45-50 m{sup 3}/h of energy peat and 58-63 m{sup 3}/h of horticultural peat. The output of the splitter was 120-150 m{sup 3}/h. Theoretically, the output of circle saw and the splitter can easily be doubled. Thereafter the production costs will be about 19 FIM/MWh of energy peat and 18,6 FIM/m{sup 3} of horticultural peat

  20. Waste water from dewatering of peat

    International Nuclear Information System (INIS)

    Ringqvist, L.; Bergner, K.; Olsson, Tommy; Bystroem, P.

    1991-01-01

    The influence of waste water from mechanical dewatering of peat was tested on two species of stream invertebrates. We compared the effects of waste water from peat without any chemical treatment, and waste water from peat where one of the following treatments of the peat had preceded dewatering; a: acidification combined with addition of the cationic polymer Zetag 78 FS40, b: addition of aluminium in combination with the anionic polymer Magnafloc E10, c: polymerisation of the peat by acidification and addition of ferrous chloride and hydrogen peroxide. Waste water from Al/Magnafloc and from the polymerisation treatments had a higher content of suspended matter and a higher oxygen demand than those of other treatments. Total metal content of the water from all treatments was higher than in water from non-treated peat. Survival and growth of nymphs of the mayfly Heptagenia fuscogrisa and the stonefly Nemoura cinerea were compared in waste water from the different treatments. In all tests, the waste water was diluted to 5% (volume) with unchlorinated tapwater and pH was between 7.0-8.0 in all treatments during the experiment. The nymphs were fed with birch leaves that had been incubated in natural stream water for one month. Under these conditions, we did not find any significant effect of waste water on either survival or growth of these two species

  1. Peat soils stabilization using Effective Microorganisms (EM)

    Science.gov (United States)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  2. Canadian peat harvesting and the environment

    International Nuclear Information System (INIS)

    Keys, D.

    1992-01-01

    In 1990, ca 749,000 tonnes of peat were sold by Canadian producers, a small volume in comparison to the estimated 50 million tonnes or more that accumulate naturally each year in Canada. Most of the harvested peat was used for horticultural purposes. The relationship between peatlands and the peat industry is examined, and issues related to the environment and sustainable resource use are discussed. Case studies are used to examine several specific situations where peatland development proposals have undergone environmental assessments. The present status of peatland conservation in Canada is reviewed. To date, developed peatlands are primarily situated in the boreal wetland regions and consist mainly of the bog wetland class. Environmental issues related to peatland development include the need for conservation of flora, fauna, and other ecological values or functions. The potential for release of carbon gases due to Canadian peat harvesting is considered to be insignificant in relation to other uses of carbon sources such as the combustion of fossil fuel, and is unlikely to influence global warming at the present or projected levels of peatland development in Canada. The influence and mitigation of the effects of drainage of peatlands for peat production on water quality and flow regime are being addressed on a site-specific basis through existing regulatory procedures and research. Reclamation and restoration options are being incorporated during design and operational development of new peat harvesting areas. 39 refs., 15 figs., 3 tabs

  3. Origins of mineral matter in peat marsh and peat bog deposits, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Buendia, A.M. [Unidad Tecnica del Marmol, AIDICO, Cami de Castella, 4, 03660 Novelda, Alicante (Spain); Whateley, M.K.G. [Rio Tinto Technical Services, Castlemead, Lower Castlemead, BS99 7YR Bristol (United Kingdom); Bastida, J.; Urquiola, M.M. [Dpto. Geologia, Univ. Valencia, Dr. Moliner 50. 46100 Burjasot, Valencia (Spain)

    2007-07-02

    The mineralogy of three back-barrier peat marshes (Torreblanca, Benicasim and Moncofar marshes) from Eastern Spain and one peat bog (Orihuela del Tremedal bog) from central east Spain have been investigated, using X-ray diffraction (XRD) and scanning electronic microscope (SEM) techniques. A combination of XRD methods was used to quantify the mineralogy of dried bulk peat samples. The water source in the peat marshes is both continental and marine. Water is highly mineralised. Water flow is both low and slow (accumulative system). The water source in the peat bog is continental, draining from the hill. The higher concentration of ions in the water of the back-barrier peat marshes leads to a higher concentration of authigenic minerals in the peat marshes compared to the peat bog. Three main mineral origins have been recognized, namely: detrital, syngenetic-epigenetic and biogenic. The more important contribution comes from the detrital system. Biogenic and bio-influenced minerals are the main non-detrital minerals in the peatlands. This paper discusses the biogenic origin of halite (and other minor halides and sulphates, such as, sylvite, carnalite, epsomite, glauberite, mirabilite and anhydrite?) from halophytic plants, as well as amorphous silica (opal-A) from sponge spicules and phytoliths of several plants. Pyrite in the peat bog has both syngenetic and epigenetic origins from plant decomposition and sulphur release. In the peat marsh the pyrite has a syngenetic origin from sulphate reduction (S{sub sulphate} {yields} S{sub pyritic}), and an epigenetic origin in the older peat, from plant decomposition (S{sub organic} {yields} S{sub pyritic}). (author)

  4. Precipitation-induced runoff and leaching from milled peat mining mires by peat types : a comparative method for estimating the loading of water bodies during peat pruduction

    OpenAIRE

    Svahnbäck, Lasse

    2007-01-01

    Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predicti...

  5. Diminishing peat oxidation of agricultural peat soils by infiltration via submerged drains

    NARCIS (Netherlands)

    Akker, van den J.J.H.; Hendriks, R.F.A.

    2017-01-01

    Oxidation of peat soils used in dairy farming in the western peat area of The Netherlands causes subsidence rates up to 13 mm.y and emissions of CO2 to about 27 t.ha.y. In 2003 experiments started with subsurface irrigation by submerged drains to raise groundwater levels to reduce oxidation and so

  6. Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency

    Science.gov (United States)

    Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.

  7. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the national health and nutrition examination survey (2003–2006)

    Science.gov (United States)

    2013-01-01

    Background The risk of chronic disease cannot be predicted simply by the content of a single nutrient in a food or food group in the diet. The contribution of food sources of calories, added sugars and saturated fat (SFA) to intakes of dietary fiber and micronutrients of public health importance is also relevant to understanding the overall dietary impact of these foods. Objective Identify the top food sources of calories, added sugars and SFA in the U.S. diet and quantify their contribution to fiber and micronutrient intakes. Methods Single 24-hour dietary recalls (Day 1) collected from participants ≥2 years (n = 16,822) of the What We Eat in America, National Health and Nutrition Examination Survey (WWEIA/NHANES 2003–2006) were analyzed. All analyses included sample weights to account for the survey design. Calorie and nutrient intakes from foods included contributions from disaggregated food mixtures and tabulated by rank order. Results No one food category contributes more than 7.2% of calories to the overall U.S. diet, but half of the top 10 contribute 10% or more of total dietary fiber and micronutrients. Three of the top 10 sources of calories and SFA (beef, milk and cheese) contribute 46.3% of the calcium, 49.5% of the vitamin D, 42.3% of the vitamin B12 as well as other essential nutrients to the American diet. On the other hand, foods categorized as desserts, snacks, or beverages, contribute 13.6% of total calories, 83% of added sugar intake, and provide little or no nutritional value. Including food components of disaggregated recipes more accurately estimated the contribution of foods like beef, milk or cheese to overall nutrient intake compared to “as consumed” food categorizations. Conclusions Some food sources of calories, added sugars and SFA make major contributions to American dietary fiber and micronutrient intakes. Dietary modifications targeting reductions in calories, added sugar, or SFA need to take these key micronutrient

  8. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the National Health and Nutrition Examination Survey (2003-2006).

    Science.gov (United States)

    Huth, Peter J; Fulgoni, Victor L; Keast, Debra R; Park, Keigan; Auestad, Nancy

    2013-08-08

    The risk of chronic disease cannot be predicted simply by the content of a single nutrient in a food or food group in the diet. The contribution of food sources of calories, added sugars and saturated fat (SFA) to intakes of dietary fiber and micronutrients of public health importance is also relevant to understanding the overall dietary impact of these foods. Identify the top food sources of calories, added sugars and SFA in the U.S. diet and quantify their contribution to fiber and micronutrient intakes. Single 24-hour dietary recalls (Day 1) collected from participants ≥2 years (n = 16,822) of the What We Eat in America, National Health and Nutrition Examination Survey (WWEIA/NHANES 2003-2006) were analyzed. All analyses included sample weights to account for the survey design. Calorie and nutrient intakes from foods included contributions from disaggregated food mixtures and tabulated by rank order. No one food category contributes more than 7.2% of calories to the overall U.S. diet, but half of the top 10 contribute 10% or more of total dietary fiber and micronutrients. Three of the top 10 sources of calories and SFA (beef, milk and cheese) contribute 46.3% of the calcium, 49.5% of the vitamin D, 42.3% of the vitamin B12 as well as other essential nutrients to the American diet. On the other hand, foods categorized as desserts, snacks, or beverages, contribute 13.6% of total calories, 83% of added sugar intake, and provide little or no nutritional value. Including food components of disaggregated recipes more accurately estimated the contribution of foods like beef, milk or cheese to overall nutrient intake compared to "as consumed" food categorizations. Some food sources of calories, added sugars and SFA make major contributions to American dietary fiber and micronutrient intakes. Dietary modifications targeting reductions in calories, added sugar, or SFA need to take these key micronutrient sources into account so as not to have the unintended

  9. Influence of the Chernobyl accident on radioactivity of fuel peat and peat ash in Finland

    International Nuclear Information System (INIS)

    Mustonen, R.; Salonen, S.; Itkonen, A.

    1988-04-01

    The accident at the Chernobyl nuclear power plant in April 1986 caused very uneven deposition of radionuclides in Finland. The deposited radionuclides were measured in relative high concentrations in fuel peat and especially in peat ash. The radionuclide concentrations were measured at six peat-fired power plants in different parts of Finland throughout the heating season 1986-87. Also evaporation of different radionuclides in peat combustion and their condensation on fly ash particles were studied at four power plants. The 137 Cs-concentrations in compiled peat samples varied between 30 and 3600 Bq kg -1 dry weight and in ash samples between 600 and 68000 Bq kg -1 . Differences in radionuclide concentrations between the power plants were great and also the radionuclide composition in fuel peat varied regionally. The 137 Cs-concentrations of the fly ash after the ash precipitators varied between 12000 and 120000 Bq kg -1 and fly ash emissions varied from 17 to 1100 mg m -3 , depending on the power plant and the load of the boiler. High radioactivity concentrations in precipitator ash caused some restrictions to the utilization of peat ash for various purposes

  10. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  11. Optimizing outlays for transporting agricultural peat to the consumers

    Energy Technology Data Exchange (ETDEWEB)

    Dem' yanov, Ye S; Prisadkov, V I; Silant' yeza, G P

    1979-01-01

    An economic-mathematical model is described for supplying the consumers with agricultural peat and the corresponding computer program. Certain results are presented of calculating the optimal plans for transporting peat from the enterprises of the association Kalinintorf.

  12. Climate impact from peat utilisation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Uppenberg, S.; Zetterberg, L.; Aahman, M.

    2001-08-01

    The climate impact from the use of peat for energy production in Sweden has been evaluated in terms of contribution to atmospheric radiative forcing. This was done by attempting to answer the question 'What will be the climate impact if one would use 1 m{sup 2} of mire for peat extraction during 20 years?'. Two different methods of after-treatment were studied: afforestation and restoration of wetland. The climate impact from a peatland - wetland energy scenario and a peatland - forestry energy scenario was compared to the climate impact from coal, natural gas and forest residues. Sensitivity analyses were performed to evaluate which parameters that are important to take into consideration in order to minimize the climate impact from peat utilisation.

  13. Climate impact from peat utilisation in Sweden

    International Nuclear Information System (INIS)

    Uppenberg, S.; Zetterberg, L.; Aahman, M.

    2001-08-01

    The climate impact from the use of peat for energy production in Sweden has been evaluated in terms of contribution to atmospheric radiative forcing. This was done by attempting to answer the question 'What will be the climate impact if one would use 1 m 2 of mire for peat extraction during 20 years?'. Two different methods of after-treatment were studied: afforestation and restoration of wetland. The climate impact from a peatland - wetland energy scenario and a peatland - forestry energy scenario was compared to the climate impact from coal, natural gas and forest residues. Sensitivity analyses were performed to evaluate which parameters that are important to take into consideration in order to minimize the climate impact from peat utilisation

  14. Presence of carotinoids in peat wax

    Energy Technology Data Exchange (ETDEWEB)

    Yurkevich, E.A.; Dolidovich, E.F.; Bel' kevich, P.I.; Sheremet, L.S.; Drozdovskaya, S.V.

    1986-05-01

    Discusses biologically active substances present in peat which have various pharmacological properties. Describes separation of fractions rich in carotinoids from extracts of wax tar obtained by benzine treatment of highly decomposed pine-cotton grass peat. Extraction was carried out using hot ethanol. States that although identification of individual carotinoid in the fractions separated is very difficult due to complicity of composition, the tests carried out made it possible to infer that fractions studied contain not only xanthophylls but also fucoxanthains (formed in small amounts in nature) with fairly stable structure. Ultraviolet and infrared spectra of the carotinoid containing fraction in ethanol extracts are given. 6 refs.

  15. Approaches to estimating humification indicators for peat

    Directory of Open Access Journals (Sweden)

    M. Klavins

    2008-10-01

    Full Text Available Degree of decomposition is an important property of the organic matter in soils and other deposits which contain fossil carbon. It describes the intensity of transformation, or the humification degree (HD, of the original living organic matter. In this article, approaches to the determination of HD are thoroughly described and 14C dated peat columns extracted from several bogs in Latvia are investigated and compared. A new humification indicator is suggested, namely the quantity of humic substances as a fraction of the total amount of organic matter in the peat.

  16. Experience of Milled Peat Burning at Thermal Electric Power Plant

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2013-01-01

    Full Text Available The paper presents extensive knowledge and practical experience on burning of milled peat in the boilers of thermal electric power plants in Belarus and Russia. The accumulated experience can be used for solution of problems pertaining to substitution of some types of fuel imported to Belarus by milled peat which is extracted at many fuel effective peat enterprises of the Republic.

  17. Peat compaction in deltas : implications for Holocene delta evolution

    NARCIS (Netherlands)

    van Asselen, S.

    2010-01-01

    Many deltas contain substantial amounts of peat, which is the most compressible soil type. Therefore, peat compaction potentially leads to high amounts of subsidence in deltas. The main objective of this research was to quantify subsidence due to peat compaction in Holocene fluvial-deltaic settings

  18. The role of peat in finnish greenhouse gas balances

    International Nuclear Information System (INIS)

    Crill, P.; Hargreaves, K.; Korhola, A.

    2000-06-01

    Over the past, total annual greenhouse gas (GHG) emissions from Finland, not considering land use change, forestry or peatlands, have remained between 70 000 and 80 000 Gg of CO 2 equivalents. A large portion of which (84% in 1998) is from energy and energy related sources. Signatory members to the 1997 Kyoto protocol of the United Nation's Framework Convention on Climate Change convention, which includes Finland, are compelled to assess their emissions at the national level. This study was undertaken to examine the issues of the role of Finnish peatlands in the national greenhouse gas inventory specifically within the context of the utilization of peatlands for energy production. Our analysis is essentially a literature review and assessment of what has been measured from Finnish peatlands. We are particularly fortunate that there have been a series of recent Ph.D. theses published at the Universities of Helsinki and Joensuu and graduate work at the University of Kuopio on carbon dynamics and greenhouse gas exchange in Finnish peatlands that have both expanded our database and our understanding of peatland processes. Chapter 1 provides a background of the role of peatlands in carbon cycling within the context of changing climate and land use. In Finland about 56 x 103 ha of peatland area were being harvested in 1997, 94% for energy. Even though this is a relatively small area, the implications, on a national scale, for GHG fluxes and carbon balance can be significant The magnitude of GHG fluxes and a qualitative assessment of extant data quality and quantity under different Finnish land use forms and activities is considered in chapter 2. CO 2 fluxes derived from long term C accumulation rates indicate that 3 010 Gg CON and 9 400 Gg CO 2 are sequestered annually from the atmosphere into undrained and peatlands drained for forestry, respectively. Peatlands drained for agriculture emit CO 2 at a rate of 3 200-7 800 Gg annually. Peat harvesting activities and

  19. Time-scales of hydrological forcing on the geochemistry and bacterial community structure of temperate peat soils

    Science.gov (United States)

    Nunes, Flavia L. D.; Aquilina, Luc; De Ridder, Jo; Francez, André-Jean; Quaiser, Achim; Caudal, Jean-Pierre; Vandenkoornhuyse, Philippe; Dufresne, Alexis

    2015-10-01

    Peatlands are an important global carbon reservoir. The continued accumulation of carbon in peatlands depends on the persistence of anoxic conditions, in part induced by water saturation, which prevents oxidation of organic matter, and slows down decomposition. Here we investigate how and over what time scales the hydrological regime impacts the geochemistry and the bacterial community structure of temperate peat soils. Peat cores from two sites having contrasting groundwater budgets were subjected to four controlled drought-rewetting cycles. Pore water geochemistry and metagenomic profiling of bacterial communities showed that frequent water table drawdown induced lower concentrations of dissolved carbon, higher concentrations of sulfate and iron and reduced bacterial richness and diversity in the peat soil and water. Short-term drought cycles (3-9 day frequency) resulted in different communities from continuously saturated environments. Furthermore, the site that has more frequently experienced water table drawdown during the last two decades presented the most striking shifts in bacterial community structure, altering biogeochemical functioning of peat soils. Our results suggest that the increase in frequency and duration of drought conditions under changing climatic conditions or water resource use can induce profound changes in bacterial communities, with potentially severe consequences for carbon storage in temperate peatlands.

  20. Changes in vegetation, peat properties and peat accumulation in Swedish peatlands as revealed by archive data.

    Science.gov (United States)

    Schoning, Kristian; Sohlenius, Gustav

    2016-04-01

    In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.

  1. Elevator for a peat-harvesting machine

    Energy Technology Data Exchange (ETDEWEB)

    Kunitskiy, M.M.; Usoshin, V.G.; Vasilevskiy, A.A.

    1981-10-23

    An addition to certificate of authorship USSR No 623972 is proposed. In order to guarantee the possibility of collecting large inclusions of peat which can be removed from the housing, the latter is equipped with a bin attached opposite the window.

  2. Important physical properties of peat materials

    Science.gov (United States)

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  3. Treatment of peat, brown coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Francke, F C

    1917-11-02

    Treatment of peat, brown coal, lignite, sapropel, oil shale, wood and the like, characterized by the fact, that the material is dried in a drum having side gas-entrance and gas-exit pipes, and is provided in the known way with ledges under slow turning and then is distilled at a temperature below 550/sup 0/ C.

  4. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  5. Development of small-scale peat production; Pienturvetuotannon kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Kallio, E. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The aim of the project is to develop production conditions, methods and technology of small-scale peat production to such a level that the productivity is improved and competitivity maintained. The aim in 1996 was to survey the present status of small-scale peat production, and research and development needs and to prepare a development plan for small-scale peat production for a continued project in 1997 and for the longer term. A questionnaire was sent to producers by mail, and its results were completed by phone interviews. Response was obtained from 164 producers, i.e. from about 75 - 85 % of small-scale peat producers. The quantity of energy peat produced by these amounted to 3.3 TWh and that of other peat to 265 000 m{sup 3}. The total production of energy peat (large- scale producers Vapo Oy and Turveruukki Oy included) amounted to 25.0 TWh in 1996 in Finland, of which 91 % (22.8 TWh) was milled peat and 9 % (2.2 TWh) of sod peat. The total production of peat other than energy peat amounted to 1.4 million m{sup 3}. The proportion of small-scale peat production was 13 % of energy peat, 11 % of milled peat and 38 % of sod peat. The proportion of small-scale producers was 18 % of other peat production. The results deviate clearly from those obtained in a study of small-scale production in the 1980s. The amount of small-scale production is clearly larger than generally assessed. Small-scale production focuses more on milled peat than on sod peat. The work will be continued in 1997. Based on development needs appeared in the questionnaire, the aim is to reduce environmental impacts and runoff effluents from small- scale production, to increase the efficiency of peat deliveries and to reduce peat production costs by improving the service value of machines by increasing co-operative use. (orig.)

  6. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  7. Peat or no peat: Why do the Rajang and Mahakam Deltas differ?

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldo, Robert A. [Department of Geology, Colby College, 5807 Mayflower Hill Drive, Waterville, ME 04901 (United States)

    2010-08-01

    Coastal and deltaic Holocene peat accumulations around the equatorial island of Borneo, Southeast Asia, have served as models for economic coal-bearing sequences in the stratigraphic record. Although climatic conditions, vegetational communities, and sedimentary regimes are comparable, peat accumulations are not found on both the western and eastern sides of the island. The Rajang River delta and coastal plain, Sarawak, East Malaysia, are covered in areally extensive, thick peat deposits that have attained at least a thickness of > 13 m in ombrogenous peat domes (Marudi, Baram River). Peat-swamp biomass began to accumulate over Pleistocene podzols when sea level stabilized {proportional_to} 7.5 ka and delta progradation was initiated. The Mahakam River delta and coastal plain, East Kalimantan, Indonesia, also began progradation at this time, but there is no evidence in any part of the coastal region for peat accumulation. Rather, poorly developed organic-rich gleysols occur throughout the delta plain. Both the Rajang River and Mahakam River deltas are tidally influenced, fine-grained systems, with a sediment provenance in the Central Massif. Sediment transported through the Rajang River delta differs in that as much as 60% of the clay minerals deposited in the system are mixed layer (I/S) and expandable (K/E) clays that act to restrict pore water flow in the tidal and overbank deposits that comprise the delta plain. These result in the development of an aquiclude above which paludal conditions develop, promoting accumulation of organic matter. In contrast, there is a low proportion of mixed layer and expandable clays transported in the Mahakam River system. This precludes the development of a stilted water table within the delta, allowing for organic matter recycling without peat accumulation. The presence of a high proportion of expandable clay minerals on the western side of Borneo is a reflection of the weathering and eroding source rocks on this side of the

  8. Burning peat in Ireland: An electricity market dispatch perspective

    International Nuclear Information System (INIS)

    Tuohy, Aidan; Bazilian, Morgan; Doherty, Ronan; Gallachoir, Brian O; O'Malley, Mark

    2009-01-01

    This paper examines peat power production in Ireland under the three pillars of energy policy-security, competitiveness and environment. Peat contributes to energy security-as an indigenous fuel, it reduces dependency on imports. During a period of low capacity margins, the operation of the peat plants is useful from a system security perspective. Peat generation is being financially supported by consumers through an electricity levy. The fuel also has high carbon intensity. It is not politically viable to consider peat on equal economic criteria to other plant types because of history and location. This paper reviews electricity generation through combustion of peat in Ireland, and quantifies the costs of supporting peat utilising economic dispatch tools, finding the subsidy is not insignificant from a cost or carbon perspective. It shows that while peat is beneficial for one pillar of energy policy (security), the current usage of peat is not optimal from a competitiveness or environmental perspective. By switching from the current 'must-run' mode of operation for peat to the 'dispatched' mode used for the other generation, significant societal savings (in the range Euro 21 m per annum) can be achieved, as well as reducing system emissions by approximately 5% per year.

  9. The Role of Peat Layers on Iron Dynamics in Peatlands

    Directory of Open Access Journals (Sweden)

    Arifin Fahmi

    2010-09-01

    Full Text Available The research aimed to study the effect of peat thickness and humification stage of the peat material on Fe solubility at the peatlands with sulfidic material as substratum. The research was conducted at three conditionals of ombrogen peatlands ie ; deep, moderate and shallow peat. Soil samples were collected by using peat borer according to interlayer (the border layer of peat and mineral layer and conditional of soil horizons. The sample point depth were (cm G.s2 : 25, G.s1 : 50, Int.s : 70, M.s1 : 90 and M.s2 : 100 for shallow peat, G.m2 : 47, G.m1 : 100, Int.m : 120 and M.m1 : 135 for moderate peat and G.d3 : 50, G.d2 : 150, G.d1 : 200, Int.d : 220 and M.d1 : 235 for deep peat respectively. The results showed that most of Fe on the tested soils was found in organic forms. The peat layers above the sulfidic material decreased the Fe2+ solubility at peatlands. Fe2+ concentration in peat layer decreased with its increasing distance from sulfidic material. There was any other processes beside complexation and chelation of Fe2+ by humic material and its processes was reduction of Fe3+ and this conditions was reflected in redox potential values (Eh.

  10. Study of the production of compacted peat; Tiivistetyn turpeen tuotantotutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The so-called Compeat method developed at VTT Energy is applied by field experiments to peat production. The aim of the two-year project (1996 - 1997) is to achieve an increase of 20 % in hectare yield with this new production method of compacted peat in pilot scale in field conditions without any increase in production costs. The aim of the 1996 study was to construct a prototype mining machine for compacted peat and to produce compacted peat from Carex and Sphagnum peat fields in test runs. The operation of the mining machine was studied and drying of compacted peat with that of milled peat were compared at peat production sites of Vapo Oy and Turveruukki Oy. The results of the drying studies were along the same lines with previous laboratory drying tests. The dry matter yield of Compeat was more than twice that of milled peat in the Carex peat field and 1.1-1.5-fold in the Sphagnum field. Compeat moistened significantly less in the rain than normally milled peat. Compeat was ridged with a scraper-ridger. The mining machine produced sufficiently compacted and well-drying peat, but its power demand was too high. The aim is to reduce the power consumption of the mining machine significantly to make it possible to use a wheel- tractor for pulling and to reduce the production costs of the method lower than those of the milled peat method. The drying results of Compeat were so promising that the development of the field machine will be continued. (orig.)

  11. Electro-chemistry of soil formation. VI. Atmospheric salts in relation to soil and peat formation and plant composition

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, S; Sandberg, G; Terning, P E

    1944-01-01

    The Ca/Mg ratios have been determined in the Ramna bog, in the Unden and Annerstad podzol profile series, and in the Dala brown earth series. A number of plant species from each locality have been included. The more ombrogenic the formation, the lower the Ca/Mg ratios. An application of the Donnan equilibrium leads to the conclusion that the saturation with bases may be considerable in ombrogenic peat, whereas the saturation of excessively leached mineral soils must be very small. The latter must, like all weak or unsaturated soil acidoids in general, contain a relatively high proportion of exchangeable alkali cations.

  12. Hydrochar from sewage sludge and urban wastes as a peat replacement in growing media preparation

    Science.gov (United States)

    Álvarez, Maria Luisa; Méndez, Ana; Paz-Ferreiro, Jorge; Soler-Rovira, Pedro; García-Gil, Juan Carlos; Plaza, César; Gascó, Gabriel

    2016-04-01

    Nowadays, there is an important trend in Europe for peat replacement with biochar in growing media formulation in order to reduce the environmental impact of peat exploitation. Hydrothermal carbonization (HTC) is a thermochemical process of converting organic feedstock into a high carbon rich solid product named hydrochar. It is performed in water mild temperature (180-260°C) under pressure conditions (2-6MPa) for 5-250 min. The reaction pressure is not controlled in the process and is autogenic with the saturation vapour pressure of water corresponding to the reaction temperature. In recent years, the possibility of subjecting organic wastes to HTC has attracted the scientific community attention due to their interesting advantages over other thermal treatments such as pyrolysis, torrefaction or gasification. The aim of the present paper is to study the possible use of two hydrochars produced by Ingelia (Spain) from sewage sludge and urban waste treatment as growing media material in horticulture. For this, thermal, chemical and hydrophysical properties were determined and compared with that of brown commercial peat.

  13. New Mechanisms of Mercury Binding to Peat

    Science.gov (United States)

    Nagy, K. L.; Manceau, A.; Gasper, J. D.; Ryan, J. N.; Aiken, G. R.

    2007-12-01

    Mercury can be immobilized in the aquatic environment by binding to peat, a solid form of natural organic matter. Binding mechanisms can vary in strength and reversibility, and therefore will control concentrations of bioreactive mercury, may explain rates of mercury methylation, and are important for designing approaches to improve water quality using natural wetlands or engineered phytoremediation schemes. In addition, strong binding between mercury and peat is likely to result in the fixation of mercury that ultimately resides in coal. The mechanisms by which aqueous mercury at low concentrations reacts with both dissolved and solid natural organic matter remain incompletely understood, despite recent efforts. We have identified three distinct binding mechanisms of divalent cationic mercury to solid peats from the Florida Everglades using EXAFS spectroscopic data (FAME beamline, European Synchrotron Radiation Facility (ESRF)) obtained on experimental samples as compared to relevant references including mercury-bearing solids and mercury bound to various organic molecules. The proportions of the three molecular configurations vary with Hg concentration, and two new configurations that involve sulfur ligands occur at Hg concentrations up to about 4000 ppm. The binding mechanism at the lowest experimental Hg concentration (60-80 ppm) elucidates published reports on the inhibition of metacinnabar formation in the presence of Hg-bearing solutions and dissolved natural organic matter, and also, the differences in extent of mercury methylation in distinct areas of the Florida Everglades.

  14. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  15. OSPW contamination transport through peat soils : laboratory and greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Rezanezhad, F.; Price, J.S. [Waterloo Univ., ON (Canada). Dept. of Geography; Rochefort, L.; Pouliot, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Andersen, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Daly, C. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    Large portions of northern Canada are covered by peatlands, and the majority of post-mined landscapes have increased salinity, heavy metals and naphthenic acids (NA). This PowerPoint presentation discussed laboratory and greenhouse studies conducted to determine oil sands process water (OSPW) contamination transport through peat soils. Peat is a highly complex porous media. The presence of sodium and NA has a toxic effect on aquatic life. Greenhouse studies were conducted to determine the changes caused by OSPW in the microbial community of a peat matrix over 2 growing seasons. The study showed that peat has an exceptional ability to absorb the contaminants in OSPW water. NA and sodium transport through peat was significantly delayed by sorption, and by diffusion into immobile water contained in the peat matrix. The vegetation in the study was healthy and tolerant to the contaminants in the OSPW. tabs., figs.

  16. Peat production. Review of research projects; Turvetuotanto. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The development target in the research area of peat production is to improve the competitiveness of peat by reducing production costs by 20 % (by FIM 5 - 6/MWh) from the level of the year 1992 and to reduce environmental impacts. The most important research objects by which the target in peat production technology will be achieved are drawing and preparation technology, drying technology, mechanical technology, method technology, integration of wood harvesting and peat production, and the application of the results of the OPTIMITURVE Research Programme in practice. (orig.)

  17. Effects of carbon dioxide on pyrolysis of peat

    International Nuclear Information System (INIS)

    Lee, Jechan; Yang, Xiao; Song, Hocheol; Ok, Yong Sik; Kwon, Eilhann E.

    2017-01-01

    This study focuses on the mechanistic understanding of effects of CO 2 on pyrolysis of peat. To do this, three pyrolytic products (i.e., syngas: H 2 and CO, pyrolytic oil (tar), and biochar) were characterized. Thermal cracking of volatile organic carbons (VOCs) generated from pyrolysis of peat was enhanced in the presence of CO 2 . Besides the enhanced thermal cracking of VOCs, unknown reaction between CO 2 and VOCs was also identified. Accordingly, CO 2 played a role in enhancing syngas production and in reducing tar formation in pyrolysis of peat. This study also reveals that peat-biochar produced in CO 2 exhibited a larger surface area than that produced in N 2 . The results shown in this paper would be used for various applications such as energy recovery from peat using a potent greenhouse gas (for example, CO 2 ). - Highlights: • More CO can be produced from pyrolysis of peat in CO 2 than in N 2 . • Less amount of tar produced from pyrolysis of peat in CO 2 than in N 2 . • Surface area of peat-biochar made in CO 2 is larger than that made in N 2 . • CO 2 can modify the quantity/quality of pyrolytic products from peat.

  18. Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine

    Science.gov (United States)

    Raymond, R.; Cameron, C.C.; Cohen, A.D.

    1987-01-01

    The Heath, Great Cranberry Island, Maine, offers a unique locality for studying lateral and vertical relationships between radically different peat types within 1 km2. The majority of The Heath is a Sphagnum moss-dominated raised bog. Surrounding the raised bog is a swamp/marsh complex containing grass, sedge, Sphagnum moss, alder, tamarack, and skunk cabbage. Swamp/ marsh-deposited peat occurs both around the margins of The Heath and under Sphagnum-dominated peat, which was deposited within the raised bog. A third peat type, dominated by herbaceous aquatics, is present underlying the swamp/marsh-dominated peat but is not present as a dominant botanical community of The Heath. The three peat types have major differences in petrographic characteristics, ash contents, and associated minerals. Sulfur contents range from a low of 0.19 wt.% (dry) within the raised bog to a high of 4.44 wt% (dry) near the west end of The Heath, where swamp/marsh peat occurring directly behind a storm beach berm has been influenced by marine waters. The presence of major geochemical variations within a 1-km2 peat deposit suggests the need for in-depth characterization of potential peat resources prior to use. ?? 1987.

  19. Market study on the potential for peat as a fuel

    International Nuclear Information System (INIS)

    1991-01-01

    A report is given on the market potential for peat as a fuel in Scotland. It is concluded that there are two distinct market segments, domestic and industrial/commercial. There is no potential for peat as a fuel in the industrial/commercial segment but there is opportunity for increased peat usage in the domestic sector. The greatest potential for market development is conversion of existing solid fuel users to peat. Pro-active input is required to realise this market potential. The market is constrained by demand. (UK)

  20. Testing of in situ and ex situ bioremediation approaches for an oil-contaminated peat bog following a pipeline break

    International Nuclear Information System (INIS)

    Wilson, J.J.; Lee, D.W.; Yeske, B.M.; Kuipers, F.

    2000-01-01

    The feasibility of treating a 1985 pipeline spill of light Pembina Cardium crude oil at a bog near Violet Grove, Alberta was discussed. Pembina Pipeline Corporation arranged for a treatability test to be conducted on oil-contaminated sphagnum peat moss from the site to determine effective in situ or ex situ remediation options for the site. The test was used to evaluate the biodegradation potential of contaminants. Four tests were designed to simulate field different field treatment approaches and to collect critical data on toxicity and leachability of the peat moss. The tests included a bioslurry test, a soil microcosm test, an aerated water saturated peat column test, and a standard toxicity characteristic leachate potential test. The first three tests gave similar results of at least 74 per cent biodegradation of the residual crude oil on the peat solids and no residual toxicity as measured by the Microtox Assay. It was determined that both in situ bioremediation using an aerated water injection system or an ex situ landfarming approach would achieve required criteria and no fertilizers would be necessary to maintain active bioremediation. The new gas-liquid reactor (GLR) aeration technology used in these tests creates a constant supply of hyperoxygenated water prior to column injection. The continuous release of tiny air bubbles maximizes air surface area and increases the gas transfer rates. 3 tabs., 3 figs

  1. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  2. Peat origin and land use effects on microbial activity, respiration dynamics and exo-enzyme activities in drained peat soils in the Netherlands

    NARCIS (Netherlands)

    Brouns, Karlijn; Keuskamp, Joost; Potkamp, Gerrit; Verhoeven, J.T.A.; Hefting, Mariet M.

    2016-01-01

    This study assessed the risk of decomposition-driven soil subsidence in drained peat soils in the Netherlands, contrasting in peat origin and current land use. In a full factorial design, fen peat and bog peat were sampled from sites in use for nature conservation and for dairy farming, which

  3. Peat filtration, field ditches and sedimentation basins for the purification of runoff water from peat mining areas

    International Nuclear Information System (INIS)

    Ihme, R.; Heikkinen, K.; Lakso, E.

    1991-01-01

    The aim of this research is to develop new methods and to improve those already in use to reduce the loading of watercourses from peat excavation areas. Factors examined were the use of peat filtration for the purification of the runoff water, load retention by the means of field ditches and improvement of the practicability and dredging of the settling ponds. Field research was carried out in peat production areas in the province of Oulu in 1987-1989

  4. Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter

    Directory of Open Access Journals (Sweden)

    H. Biester

    2006-01-01

    Full Text Available Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC (chlorine and IC-ICP-MS (bromine and iodine. Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM is the predominant mechanism of iodine and bromine release from peat.

  5. Gluon saturation in a saturated environment

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-01-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.

  6. Peat in the mountains of New Guinea

    Directory of Open Access Journals (Sweden)

    G.S. Hope

    2015-11-01

    Full Text Available Peatlands are common in montane areas above 1,000 m in New Guinea and become extensive above 3,000 m in the subalpine zone. In the montane mires, swamp forests and grass or sedge fens predominate on swampy valley bottoms. These mires may be 4–8 m in depth and up to 30,000 years in age. In Papua New Guinea (PNG there is about 2,250 km2 of montane peatland, and Papua Province (the Indonesian western half of the island probably contains much more. Above 3,000 m, peat soils form under blanket bog on slopes as well as on valley floors. Vegetation types include cushion bog, grass bog and sedge fen. Typical peat depths are 0.5‒1 m on slopes, but valley floors and hollows contain up to 10 m of peat. The estimated total extent of mountain peatland is 14,800 km2 with 5,965 km2 in PNG and about 8,800 km2 in Papua Province. The stratigraphy, age structure and vegetation histories of 45 peatland or organic limnic sites above 750 m have been investigated since 1965. These record major vegetation shifts at 28,000, 17,000‒14,000 and 9,000 years ago and a variable history of human disturbance from 14,000 years ago with extensive clearance by the mid-Holocene at some sites. While montane peatlands were important agricultural centres in the Holocene, the introduction of new dryland crops has resulted in the abandonment of some peatlands in the last few centuries. Despite several decades of research, detailed knowledge of the mountain peatlands is poor and this is an obstacle to scientific management.

  7. Distillation of coal, wood, peat, etc

    Energy Technology Data Exchange (ETDEWEB)

    Buhrer, J; Price, A P

    1867-02-01

    The production of permanent gas for the purposes of illumination or for heating purposes, and also to the production of oils and other distillatory products from coal, shale, wood, peat, and other bituminous or carbonaceous substances, consists in subjecting the before-mentioned materials, previously reduced to a fine state, to a process of distillation causing the same to pass or fall through the interior of a heated vertical tube, chamber, or retort, or series of the same, in such a manner that the particles in their descent or passage shall be subjected to the action of heat in order that the desired products may be obtained.

  8. Climate mitigation scenarios of drained peat soils

    Science.gov (United States)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC

  9. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  10. Industrial peat utilization and its importance to the Irish economy

    International Nuclear Information System (INIS)

    Bradley, Thomas

    1995-01-01

    Over the centuries peat has been used as a valuable source of fuel for domestic heating and cooking. In contrast to earlier times when all peat extraction and harvesting was carried out by hand, peat production in Ireland to-day has become a highly mechanised, large scale commercial industry, making a significant contribution to the Irish economy. Bord na Mona, the state agency assigned the responsibility for peatland development in Ireland, has developed 88,000 hectares of Ireland's 1.2 million hectares of peatlands. Over 5.2 million tonnes of fuel peat are currently sold each year for electricity generation and for the manufacture of peat briquettes for heating installations. With the introduction of a new 120 MW peat fired power station, the overall sales for fuel peat will be increased by 1.0 million tonnes per annum. On the horticultural front, Bord na Mona produces and sells over 1.5 million cubic metres of horticultural peat products to the domestic and international markets. (author)

  11. Np-237 in peat and lichen in Finland

    DEFF Research Database (Denmark)

    Salminen, S.; Paatero, J.; Roos, Per

    2009-01-01

    Activity concentrations of 237Np in peat and lichen samples in Finland were determined and contributions from nuclear weapons testing in 1950–1960s and the Chernobyl accident were estimated. 237Np was determined with ICP-MS using 235Np as a tracer. Activity concentrations of 237Np in peat samples...

  12. Simulation Model of Automated Peat Briquetting Press Drive

    Directory of Open Access Journals (Sweden)

    A. A. Marozka

    2012-01-01

    Full Text Available The paper presents the developed fully functional simulation model of an automated peat briquetting press drive. The given model makes it possible to reduce financial and time costs while developing, designing and operating a double-stamp peat briquetting press drive.

  13. Peat resource estimation in South Carolina. Final report, Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, M.; Andrejko, M.; Corvinus, D.; Tisdale, M.

    1982-01-01

    South Carolina has few indigenous energy resources. Most widely known and utilized are hydropower, wood, and solar. Peat is a material composed of partially decomposed organic matter that, after burial for long periods of time, may eventually become coal. Peat is utilized as an energy resource for the production of electricity and for home heating in Europe and the Soviet Union. There are peat deposits in South Carolina, but peat has never been used as an energy resource within the state. This report presents the results of the two years of a planned four-year study of the quantity and energy potential of peat in South Carolina. In this year's survey two activities were undertaken. The first was to visit highly probable peat deposits to confirm the presence of fuel-grade peat. The second was to survey and characterize in more detail the areas judged to be of highest potential as major resources. The factors carrying the greatest weight in our determination of priority areas were: (1) a description of peat deposits in the scientific literature or from discussions with state and federal soil scientists; (2) mention of organic soils on soil maps or in the literature; and (3) information from farmers and other local citizens.

  14. Study of settling of peat on channel banks

    Energy Technology Data Exchange (ETDEWEB)

    Amaryan, L S; Bazin, Ye T; Stepanichev, V G

    1983-01-01

    Results are presented of studies of settling of the peat formation of the upper type on banks of drying channels. A technique is presented for forecasting evaluation in the decrease in depth of the channels because of packing of the peat on the sides of the dryers.

  15. Seasonal methane dynamics in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Schäfer, Carolyn; Elsgaard, Lars; Hoffmann, Carl Christian

    2012-01-01

    Background and Aims Drained peatlands are considered to be insignificant CH4 sources, but the effect of drainage on CH4 dynamics has not been extensively studied. We investigated seasonal dynamics of CH4 in two fen peat soils and one bog peat soil under permanent grassland in Denmark. Methods Soil......, even though soil CH4 concentrations of up to 155 and 1000 μmol CH4 dm−3 were measured in one of the fen peats and in the bog peat, respectively. Significant CH4 concentrations were observed above the water table. Methane production assays confirmed the presence of viable methanogens in the upper parts...... of the bog peat soil. The aerenchymous plant Juncus effusus L. liberated CH4 from the peat at rates of up to 3.3 mg CH4 m−2 h−1. No CH4 dynamics were observed in the second fen peat which, in contrast to the other two sites, had high sulfate concentrations. Conclusions Peat type and the distribution...

  16. Impact of prescribed and repeated vegetation burning on blanket peat hydrology

    Science.gov (United States)

    Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian

    2013-04-01

    dominated by saturation processes rather than infiltration-excess overland flow. In this presentation we focus on the hydrological findings from the EMBER project but where relevant we relate these to other supporting environmental data we collected in order to interrogate process explanations for the differences we observed. For example, surface and near-surface peat temperatures were significantly more variable (both warmer and cooler depending on season and time of day) for burnt sites (and for patches burnt < 5 yrs prior to monitoring within burnt sites) but with warmer peat associated with burning overall. The results provide clear evidence that prescribed vegetation burning on blanket peat significantly impacts peatland hydrology at both the plot and stream scale and therefore raises issues for government bodies who have legal responsibility to protect many peatland landscapes, their integrity, their biogeochemical functions and the ecosystem services that peatlands provide.

  17. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    International Nuclear Information System (INIS)

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work

  18. Radioactive fallout nuclides in a peat-bog ecosystem

    International Nuclear Information System (INIS)

    Pausch, G.; Hofmann, W.; Steger, F.; Tuerk, R.

    1996-01-01

    The Province of Salzburg belongs to the regions with the highest contamination from the Chernobyl-fallout outside the former USSR. The peat-bog investigated in this study is situated in Koppl, east of Salzburg. A peat-bog is a special example of an ecosystem, which is generally not disturbed by human activities because it is under strict nature-conservation and whose soil structure is not affected by animal activities from moles and earthworms. Peat-bogs are characterized by acidic soils which are high in organic material and low in clay mineral content. A number of previous studies have demonstrated that especially in peat-bogs and especially in the Koppl-peat-bog very high amounts of radioactive fallout nuclides from the Chernobyl accident and from the bomb-testings could be found

  19. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  20. Sterilization of peat by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, F E; Vincent, J M [New South Wales Univ., Kensington (Australia). School of Microbiology

    1981-01-01

    The effect of gamma-radiation on the survival of microorganisms has been quantified for the natural population of two types of peat. Data for several microbial types have been separately determined by regular plating and by indirect statistical probability estimates including, a wholly enclosed 'inverted-bottle' technique for higher dose levels to exclude any possibility of post-treatment contamination. The most persistent microorganisms at intermediate dosage (2.5-3.5 Mrad) were commonly a micrococcus (which closely resembled Micrococcus radiodurans) arthrobacter-like rods, myxobacteria and amoeboid forms. The persistent organisms all survived because of high resistance to ..gamma..-irradiation, not because of high initial numbers. The most numerous true bacteria (including spore-formers), actinomycetes, filamentous fungi and yeasts were all readily destroyed. Although the safety margin with the commercially recommended dose of 5 Mrad is low for some of the more resistant organisms, no change is justified at this stage since the organisms most likely to survive such a dose do not seem to seriously affect the subsequent growth and survival of rhizobia. Moreover there would be some risk of radiation-induced peat toxicity if higher doses were applied and some post-irradiation contamination will be difficult to avoid in commercial production.

  1. Site Simulation of Solidified Peat: Lab Monitoring

    Science.gov (United States)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  2. Peat drainage conditions assessment in Scotland

    Science.gov (United States)

    Poggio, Laura; Artz, Rebekka; Donaldson-Selby, Gillian; Aitkenhead, Matt; Donnelly, David; Gimona, Alessandro

    2017-04-01

    Large areas of Scotland are covered in peat, providing an important sink of carbon but also a notable source of emission where peatlands are not in good condition. However, despite data from designated sites that peat degradation is common, a detailed spatial assessment of the condition of most peatlands across the whole of Scotland is missing. An assessment of peatland drainage was carried out at >600 random sampling locations with an expert-based estimation of presence or absence of drainage ditches within a 500 metre block using 25 cm resolution aerial imagery. The resulting dataset was modelled using a scorpan-kriging approach, in particular using Generalised Additive Models for the description of the trend. Remote sensing images from different sensors (i.e. MODIS, Landsat and Sentinel 1 and 2) were used. In particular we used indices describing vegetation greenness (Enhanced Vegetation Index), water availability (Normalised Water Difference index), Land Surface Temperature and vegetation productivity. When considering MODIS indices we used time series and phenological summaries. The model provides also uncertainty of the estimations. The derived dataset can then be used in the decision making process for the selection of sites for restoration, emissions estimation and accounting.

  3. Mitigating Settlement of Structures founded on Peat

    Science.gov (United States)

    Wijeyesekera, D. C.; Numbikannu, L.; Ismail, T. N. H. T.; Bakar, I.

    2016-07-01

    Observations made of two common failures of structures founded on peat/organic soil in Johor, Malaysia is presented. Critical evaluation of current lightweight fill technology to mitigate such settlement is also discussed. Lightweight technology, such as Expanded Polystyrene (EPS), has been used in construction on soft yielding ground for decades. Regrettably, some published information of EPS failures to perform on construction sites are also cited in this paper. This paper outlines some concepts leading to the development of an alternative innovative lightweight fill is that the idealised cellular structure of the GCM permit free flow of water and complemented by the mat structure which evens out any differential settlement A further highlight of this paper is the monitoring of the field performance of this lightweight fill (GCM) as a feasible alternative to fill weight reduction on yielding ground.. Hence, a prime research objective was to compare the fill settlements observed with 1m high fill of surcharge loading on peat ground (comparison of the case of using a partial 0.6m high GCM and that of a total of 1m of conventional sand backfill).

  4. TEMPORAL VEGETATION DYNAMICS IN PEAT SWAMP AREA USING MODIS TIME-SERIES IMAGERY: A MONITORING APPROACH OF HIGH-SENSITIVE ECOSYSTEM IN REGIONAL SCALE

    Directory of Open Access Journals (Sweden)

    Yudi Setiawan

    2016-10-01

    Full Text Available Peat swamp area is an essential ecosystem due to high vulnerability of functions and services. As the change of forest cover in peat swamp area has increased considerably, many studies on peat swamp have focused on forest conversion or forest degradation. Meanwhile, in the context of changes in the forestlands are the sum of several processes such as deforestation, reforestation/afforestation, regeneration of previously deforested areas, and the changing spatial location of the forest boundary. Remote sensing technology seems to be a powerful tool to provide information required following that concerns. A comparison imagery taken at the different dates over the same locations for assessing those changes tends to be limited by the vegetation phenology and land-management practices. Consequently, the simultaneous analysis seems to be a way to deal with the issues above, as a means for better understanding of the dynamics changes in peat swamp area. In this study, we examined the feasibility of using MODIS images during the last 14 years for detecting and monitoring the changes in peat swamp area. We identified several significant patterns that have been assigned as the specific peat swamp ecosystem. The results indicate that a different type of ecosystem and its response to the environmental changes can be portrayed well by the significant patterns. In understanding the complex situations of each pattern, several vegetation dynamics patterns were characterized by physical land characteristics, such as peat depth, land use, concessions and others. Characterizing the pathways of dynamics change in peat swamp area will allow further identification for the range of proximate and underlying factors of the forest cover change that can help to develop useful policy interventions in peatland management.

  5. Water and peat chemistry comparisons of natural and peat-harvested peatlands across Canada and their relevance to peatland restoration

    International Nuclear Information System (INIS)

    Windmulder, H.L.; Rochefort, L.; Vitt, D.H.

    1996-01-01

    Water and peat chemistry comparisons of four post-harvested and neighbouring, undisturbed peatlands across Canada show that harvesting alters chemical conditions. Commercial harvesting removes the surface peat and exposes layers farther down the peat deposit. The newly exposed peat layers that were formed in earlier developmental stages of the peatland can be more minerotrophic and/or more variable in chemical composition than undisturbed bog peat. All the harvested sites were originally bogs. Only one site, which had minimal peat removed, presently has chemical conditions somewhat similar to the original surface, with low elemental levels typical of bogs. Two sites are now chemically similar to poor fens and one site is similar to a moderate-rich fen. Levels of sodium, potassium, calcium, magnesium, sulphate and chloride in three of the harvested sites are higher than normal values found in natural, unharvested bogs, and result from the exposure of fen peat. Higher levels of ammonium-nitrogen and nitrate-nitrogen in the peat and water of all the harvested sites are present, with higher ammonium associated with wetter sites and higher nitrate levels associated with drier sites

  6. Post-Fire Peat Land Understory Plant in Rimba Panjang, Sumatera, Indonesia

    Science.gov (United States)

    Firdaus, L. N.; Nursal; Wulandari, Sri; Syafi'i, Wan; Fauziah, Yuslim

    2017-12-01

    The existence of understory plants during early post-fire succession is essential in term of natural post-fire ecological restoration. More than fifty percent of fire incidents in Riau, Sumatera, Indonesia occurred in shallow peat lands which have the huge impact on vegetation damage. This study aims to explore the understory plants species and diversity in post-fire peat land at Rimba Panjang, Kampar Regency, Sumatera, Indonesia. By using survey method, the observations were conducted on 150 plots which were distributed randomly over four locations based on the year after fire: 2009, 2014, 2015 and 2016. We found respectively 12, 14, 19 and 17 species at that sites with respective Shannon Wiener diversity index were 1.72, 2.00, 2.14 and 2.40. All the sites were dominated by Stenochlaena palustris (Burm.). Coverage percentage of understory vegetation were respectively 28.87%, 25.50%, 51.60% and 54.13%. Overall, we found 31 species of 17 familia. The result showed that the species composition, diversity index and coverage percentage of understory plant are likely to decrease in line with the length of time after the fire. Post peatland fires in Rimba Panjang are still having the characteristics of the peat swamp habitat which was dominated by Stenochlaena palustris (Burm.). Ecological restoration of that habitat is still possible, but it is necessary to consider technological and socio-economical aspects of local communities.

  7. Life cycle assessment of peat utilisation in Finland

    International Nuclear Information System (INIS)

    Maelkki, H.

    1997-01-01

    Environmental issues related to the production of peat and its use in energy generation have been the subject of public debate and research over the past few years in Finland. Peat is both an indigenous and a locally utilised fuel. Finland has no fossil fuel resources, and the transportation distances of imported fuels into Finland are normally long. In Finland the large peat resources can be utilised locally and peat-burning power plants are situated near the peatlands. Peat production and energy conversion methods are being continuously developed to make use of the environmentally and technically best available technology. In Finland peat formation exceeds peat utilisation and an increase in peat utilisation is therefore sustainable. The life cycle assessment concept gives an opportunity to evaluate and improve the environmental quality of peat utilisation options. The study focuses on an inventory analysis, but some of the most common methods of impact assessment with valuation are also included. The study also includes a comparison of fossil fuels and a discussion part. All the calculated results are based on net emissions. The background emissions of natural peatland are subtracted from the emissions of the utilisation phases. Milled peat and sod peat are reported in this study. Horticultural peat is studied simultaneously, but it will be reported later. The Sod Wave, Haku and Tehoturve methods are studied for the production of peat. The power plants of the study are Kempele heating plant and Rauhalahti cogeneration plant. The functional unit is 1 MWh produced total energy. The temporal boundaries vary from 112 to 128 years, depending on the peat production methods used. The restoration time is 100 years in all options. The emissions of greenhouse gases are based on the reports of The Finnish Research Programme on Climate Change. The water emissions are based on control monitoring reports from 1994 and 1995. The water emissions of the restoration phase are

  8. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types.

    Science.gov (United States)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit

    2017-04-01

    Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing

  9. Construction of Infrastructure on Peat: Case Studies and Lessons Learned

    Directory of Open Access Journals (Sweden)

    Hua Ling Jen

    2016-01-01

    Full Text Available Construction of infrastructures on peat land is a very challenging task due to its properties of low shear strength, high compressibility and high water content. This paper summarizes various solutions which could be adopted for the construction of infrastructure on peat, as reviewed by the experts and panels during IConCEES International Workshop 2015. Engineers could (a avoid peat, such as to transfer the load to the hard layers through end bearing piles or to replace the peat with the other soils, or (b construct on peat with special precautions, such as by reducing the weight of the construction materials and dewatering the peat to improve the engineering properties. This paper serves to generate new ideas and give insights of the problems commonly encountered by the industry. Some of the proposed solutions might never be tested on peat. This would rely on the researchers to take up the challenge to further investigate and address the technical issues outlined in this paper.

  10. Peat development in Newfoundland: an historic overview. [Canada - Newfoundland

    Energy Technology Data Exchange (ETDEWEB)

    Rayment, A.F. (Newfoundland and Labrador Peat Association, St. John' s, NF (Canada))

    1994-02-01

    The aboriginal people and early white settlers doubtless had many uses for peat, although we have few specifics. A concerted effort was made in the 1930s to drain and develop certain peat bogs for growing forages, but interest in the agricultural use of peat waned during World War II and did not return until after Confederation in 1949. The Royal Commission Report on Agriculture (1956) recommended investigation of the feasibility of peat moss for agricultural purposes. From this point, research was conducted chiefly by the federal Experimental Farm near St. John's and by the provincial government, with some input from Memorial University. All peat moss developments must be preceded by drainage, which in turn should be preceded by a contour and depth survey. Mechanical aspects for drainage have evolved considerably. About 1,300 acres were drained by the Cuthbertson plow up to 1960 and another 2500 acres drained by the Healy ditcher between then and 1967; no subsequent reports have been obtained. Research has been conducted into fertilizer requirements for forages. Experiments on the grazing of sheep and/or cattle were also conducted and some problems were encountered, particularly with the grazing of sheep. Also studied was the potential of peat moss production for poultry litter, and the use of peat, kelp and fish offal to produce a high value compost. 28 refs.

  11. Biosorption of mercury from aqueous solutions using highly characterised peats

    Directory of Open Access Journals (Sweden)

    A.M. Rizzuti

    2015-02-01

    Full Text Available This research investigated the biosorption of mercury from aqueous solutions by six highly characterised peats. Samples of the peats were tested both in unaltered condition and after being treated with hydrochloric acid (HCl to free up any occupied exchange sites. Other variables tested were sample dose, contact time, mixing temperature, and the concentration and pH of the mercury solution. Desorption studies were also performed, and tests were done to determine whether the peats could be re-used for mercury biosorption. The results indicate that all six peat types biosorb mercury from aqueous solutions extremely well (92−100 % removal and that their mercury removal capacities are not significantly affected by manipulation of the various factors tested. The factor that had the greatest impact on the mercury removal capacities of the peats was the pH of the mercury solution. The optimal mercury solution pH for mercury removal was in the range 5−7 for four of the peats and in the range 2−3 for the other two. The desorption results indicate that it may be possible to recover up to 41 % of the removed mercury. All of the peat types tested can be repeatedly re-used for additional mercury biosorption cycles. Hence, their disposal should not become a hazardous waste problem.

  12. Why are there few gas bubbles in deep peat in British raised and blanket peat bogs?

    Directory of Open Access Journals (Sweden)

    R.S. Clymo

    2015-08-01

    Full Text Available (1 There is evidence of gas-filled voids - ‘bubbles’ - in deep (> 50–100 cm peat in North America. (2 I used corers, designed to collect samples of accurately known volume, to sample peat profiles down to maximum depth 700 cm at five varied bog sites in northern England and southern Scotland, and measured the proportion of space apparently occupied by bubbles. (3 Of 126 samples in peat below 50 cm depth, three had bubbles occupying 12–15 % of the volume (and one of these was at only 55 cm depth. The other 123 had apparent bubbles distributed in Gaussian fashion, positively and negatively, about zero proportion of total volume and with standard deviation less than 2 %, consistent with these ‘bubbles’ being measurement error. (4 In northern England and southern Scotland, compared with North America, less variable temperature and cooler summers may lead to concentrations of dissolved gas that are generally too low to allow bubbles to form. Even where bubbles do form in summer, they may re-dissolve at winter temperatures.

  13. Growing Tomato Plantlets on Various Mixtures of Peat and Sand or Peat and Perlite. Note 1

    Directory of Open Access Journals (Sweden)

    Antonia Patruno

    Full Text Available Given the considerable interest in use of substrates derived from various mixtures in the nursery sector and in light of the enormous variety of possibilities offered by this technique, in contrast with the still small number of researches dedicated to this theme, this study was set out to examine in-depth the growing of tomato plantlets on peat-based substrates. Two series of peat mixtures were produced, one with sand and the other with perlite, with a volume ratio of the other two components with respect to the peat of 1:0, 2.5:1, 1:1 and 1:2.5. Tomato seedlings were cultivated for 30 or 25 days in small perforated pots containing these mixtures. The irrigation was calculated by weighing each pot daily, measuring the water lost by evaporation-transpiration, then just past an established lower threshold value bringing the water back up to a defined upper threshold. Two water regimes were compared in the sand series and three in the perlite series.

  14. Organic matter loss from cultivated peat soils in Sweden

    Science.gov (United States)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  15. VIIRS Product Evaluation at the Ocean PEATE

    Science.gov (United States)

    Patt, Frederick S.; Feldman, Gene C.

    2010-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) mission will support the continuation of climate records generated from NASA missions. The NASA Science Data Segment (SDS) relies upon discipline-specific centers of expertise to evaluate the NPP data products for suitability as climate data records, The Ocean Product Evaluation and Analysis Tool Element (PEATE) will build upon Well established NASA capabilities within the Ocean Color program in order to evaluate the NPP Visible and Infrared Imager/Radiometer Suite (VIIRS) Ocean Color and Chlorophyll data products. The specific evaluation methods will support not only the evaluation of product quality but also the sources of differences with existing data records.

  16. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  17. IR-spectroscopy as an analytical method for identification of horticultural peat

    International Nuclear Information System (INIS)

    Lehtovaara, J.; Herranen, M.; Nyroenen, T.; MacDonald, A.

    1988-01-01

    The process of selecting different peat types for horticultural purposes involves many physical and chemical determinations. Infrared spectroscopy could be used together with the usual methods for the evaluation of peat quality. Due to the fact that different peats contain different amounts of infrared absorbing functional groups, each peat produces a characteristic spectrum. From the spectrum, one may determine the botanical composition, degree of humification, ash content, cation exchange capacity, nitrogen content and carbon content, of the natural peat. The spectrum also shows whether the peat has been fertilized and limed and in some cases the presence of mineral soil or wetting agent mixed in the peat may be detected

  18. Proceedings: 7th international peat congress. Vols. 1, 2, 3, and 4

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Proceedings from a conference on peat published in four volumes. These comprise six different sections: survey, classification, ecology and conservation of peatlands; winning, harvesting, storage, transportation and processing of peat and sapropel for industrial, agricultural and horticultural purposes; bog cultivation and peatland forestry - the use of peat, peat products, and sapropel in agriculture and horticulture; chemistry, physics, biochemistry and microbiology of peat and sapropel - production and utilization of physiologically active substances, growth stimulators, medical preparations and related material; terminology, notation, and standardization of peat products; and peat balneology and therapeutics.

  19. Relation of peat to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Linker, S

    1924-01-01

    Samples of oil shale from the Green River formation and from Elko (Nev.), Brazil, Austria, and South Africa were examined, and several varieties of shale were found. Green River oil shale represents three of the more common types plus one less common type. These were: contorted shale with a velvety appearance, thin paper shale resembling the curled-up leaves of a book, massive black shale resembling a piece of rubber, and a less common type, which showed the bedding planes very clearly. The Elko (Nev.) shale was a light buff color; the shale from Brazil resembled a piece of petrified peat. When the shales were cut very thin, their colors ranged from yellow to reddish-brown. The composition, as seen under the microscope, was of well-preserved plant material such as spores, pollen grains, fragments of cell tissues, algae, fungi, bacteria, macerated organic residue, small pieces of resin, animal fossils, and translucent bodies. Oil shale was produced from organic material that accumulated in peat bogs, marshes, or swamps in fresh or salt waters. The organic matter was decomposed by bacterial action. Certain parts of the plants decayed more readily than others. Before lithification occurred, a chemical action took place that changed the softer tissues of the plant debris into a gel. This collodial matter penetrated and surrounded the more resistant fragments and preserved them from further decay. Certain bog waters contain a high percentage of humic acids in solution or collodial suspension and produce insoluble humates when neutralized. These humates are probably the so-called kerogen bodies.

  20. Gluon Saturation and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Sichtermann, Ernst

    2016-12-15

    The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.

  1. Geochemical characteristics of peat from two raised bogs of Germany

    Science.gov (United States)

    Mezhibor, A. M.

    2016-11-01

    Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their geochemical characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The geochemical composition of the bogs reflects the regional environmental features and anthropogenic influence.

  2. Biochemical processes of oligotrophic peat deposits of Vasyugan Mire

    Science.gov (United States)

    Inisheva, L. I.; Sergeeva, M. A.

    2009-04-01

    The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56˚ 03´ and 56˚ 57´ NL, 82˚ 22´ and 82˚ 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms

  3. Sedimentology and Rock Magnetism of Bailey River Peat Cores, Sudbury Area: Preliminary Results

    Science.gov (United States)

    Yurtseven, A.; Cioppa, M. T.; Dean, K.

    2009-05-01

    Magnetic measurements on peat can reveal atmospheric anthropogenic contamination. Two cores were collected from a marsh surrounding the Bailey River, 10 km north of Sudbury, Ontario, using a Russian peat borer. The BR1 core (1.4 m) was collected right at the river's edge, whereas the BR2 core (2.5 m) was collected about 50 m away from the river's edge, close to the edge of the marsh and near the forest. Significant sedimentological variation between the two cores was observed: core BR1 had several centimeter to decimeter scale fine to coarse grey sand layers at 0.14 m, 0.46 m and 0.87 m between thicker organic-rich (peat) zones, whereas core BR2 had only one 5 cm sand-rich layer at 0.94 m within the organic-rich material. The cores were subsampled at 2.5 cm intervals for laboratory magnetic analysis. Volume susceptibility was measured using a Bartington MS2B meter, and mass-specific susceptibility was then calculated. In core BR1, the sand layers had relatively higher susceptibility (13 x 10-8 m3/kg) , while the organic rich layers had very low susceptibility (0 - 2 x 10-8 m3/kg). In core BR2, which had little sand, the susceptibility variation was dominated by higher values near-surface (10 x 10-8 m3/kg), and very low susceptibility (0.3 x 10-8 m3/kg) below 0.3 m depth. Since the lithology in this core did not vary substantially, susceptibility variations may be controlled by anthropogenic deposition in the near-surface during the peak mining and smelting decades. These preliminary results suggest that any anthropogenic signal in core BR1 appears to be masked by the sedimentological variation. On pilot results from eight samples in core BR1, saturation isothermal remanence acquisition showed 95% saturation by 200 mT, and the S-ratios (0.3T/0.9T) were above 0.93, suggesting that magnetite is the major magnetization carrier. In core BR2, six out of eight samples showed similar results; however, two samples had slightly more higher coercivity minerals (90% saturation

  4. Serum albumin--a non-saturable carrier

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B; Larsen, F G

    1984-01-01

    The shape of binding isotherms for sixteen ligands to human serum albumin showed no signs of approaching saturation at high ligand concentrations. It is suggested that ligand binding to serum albumin is essentially different from saturable binding of substrates to enzymes, of oxygen to haemoglobi...

  5. Overview of the Sustainable Uses of Peat Soil in Malaysia with Some Relevant Geotechnical Assessments

    OpenAIRE

    Rashidah Adon; Ismail Bakar; Devapriya Chitral Wijeyesekera; Adnan Zainorabidin

    2013-01-01

    Peat soil is an important ecosystem that provides a significant contribution to the global climate stability. In Malaysia, peat soils are considered as a soil with little economic benefit, apart from it being used for agricultural activity. The total world coverage of peat soil is about thirty million hectares with Canada and Russia having the largest distribution of peat (Zainorabiddin,2010). More than sixty percent of the world’s tropical peat lands are found in South-East Asia (Lette,2006...

  6. Construction of Buildings on Peat: Case Studies and Lessons Learned

    Directory of Open Access Journals (Sweden)

    Mahmod Ali Abdul-Wadoud

    2016-01-01

    Full Text Available Building construction on soft soils including on peat has many challenges and difficulties. The failed and deteriorated buildings have a big impact on the community. The IConCEES International Workshop 2015 which was conducted on October 2015 convened as a joint venture between Universiti Tun Hussein Onn Malaysia (UTHM and the University College of Technology Sarawak (UCTS. The aim was to invite regional experts from academia and the industry to formally present and discuss the various construction problems encountered when working with peat. The discussions were divided into two divisions; infrastructure and building construction. This paper discusses the outcomes of the workshop and focuses on the factors and relevant challenges when constructing buildings on peat. The experts have discussed regulatory and construction issues including: drainage issues, site investigation practices, monitoring and construction guidelines. A few suggestions were outlined as a remedy to these problems and to better assist the peat practitioner at work.

  7. The climate impact of future energy peat production

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Linus; Holmgren, Kristina

    2008-09-15

    The aim of this study was to estimate total greenhouse gas emissions and climate impact of different peat utilisation scenarios, using a life cycle perspective. This and previous studies show that the climate impact from energy peat utilisation is more complex than just considering the emissions at the combustion stage. There are important emissions and uptake of greenhouse gases that occur on the peatland before, during and after peat harvest. The results show that the climate impact of future peat utilisation can be significantly reduced compared to current utilisation and will be lower than the climate impact resulting from only the combustion phase. This can be achieved by choosing already drained peatlands with high greenhouse gas emissions, using a more efficient production method and by securing a low-emission after-treatment of the cutaway (e.g. afforestation)

  8. Impact on the greenhouse effect of peat mining and combustion

    International Nuclear Information System (INIS)

    Rodhe, H.; Svensson, Bo

    1995-01-01

    Combustion of peat leads to emission of carbon dioxide (CO 2 ) in the atmosphere. In addition, mining of the peat alters the environment such that the natural fluxes of CO 2 and other greenhouse gases are modified. Of particular interest is a reduction in the emission of methane (CH 4 ) in the drained parts of the mires. We estimate the total impact on the greenhouse effect of these processes. The results indicate that the decreased emission of methane from the drained mires compensates for about 15% of the CO 2 emission during the combustion of the peat. It follows that, in a time perspective of less than several hundred years, peat is comparable to a fossil fuel, as far as the contribution to the greenhouse effect is concerned. 39 refs, 1 fig, 4 tabs

  9. Guidelines for the environmental protection in peat mining; Turvetuotannon ympaeristoensuojeluohje

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    The objective of these guidelines is to accelerate environmental protection in peat mining and to reduce the harmful effects caused by its related activities. The guidelines promote achievement of environmental objectives set both in legislation and government programmes through uniform practices and interpretations. The guidelines are based on current valid legislation. The guidelines provide up-to-date information on best practices in peat mining, especially in water protection but also in reducing noise and dust. They are intended to ease the work of both peat producers and the licensing and controlling authorities. The guidelines are not legally binding and must be applied on case-by-case basis. The current guidelines replace the 'Guidelines for environmental protection in peat mining' given in 2008. (orig.)

  10. Fuel peat utilization in Finland: resource use and emissions

    International Nuclear Information System (INIS)

    Leijting, J.

    1999-01-01

    The aim of the study was to inventorize the emissions and other stressors caused by fuel peat use in Finland. The life cycle approach was used to organise and compile the burdens associated with the fuel peat utilisation sector in the years 1994 and 1995. Fuel peat accounts for about 6.5 % of the total primary energy production in Finland. The study showed that most emissions out into the air occur during combustion of peat in energy plants. The emissions account for about 13 - 14 % of the CO 2 emissions released by fossil fuel utilisation in Finland, for 12 % of the SO 2 for 8 % of the N 2 O and approximately 4 % of the NOR emissions released by anthropogenic sources in Finland. Phosphorus releases into waters contributes for about 0.2 % while nitrogen releases account for 0.3 % in the total anthropogenic discharge in Finland. (orig.) 88 refs

  11. Foam concrete of increased strength with the thermomodified peat additives

    Science.gov (United States)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

  12. TEHOPALA - Intensification of peat production; TEHOPALA - palaturvetuotannon tehostaminen

    Energy Technology Data Exchange (ETDEWEB)

    Nurminen, T.; Katainen, E. [Vapo Oy, Jyvaeskylae (Finland); Leinonen, A.; Aalto, J. [VTT Energy, Jyvaeskylae (Finland); Hoelttae, P. [Biomasters Oy, Oulu (Finland)

    1996-12-31

    The objective of the Tehopala project is to increase the hectare yield of sod peat by 50 % and to reduce the production costs by 30 % by developing the sod peat production methods and equipment. The main aim of the research is in machine development, the target of which is to develop a new efficient machine chain for ridge-drying method. A new more effective cutting disc, suitable for 600 mm nozzles for production wave-like sod, has been developed for PK-1S sod peat excavator. The RYT-MP excavator has been developed to operationally reliable stage, and a nozzle for production of wave-like sod has been constructed for it. Prototype machines have been developed for ridging and loading. The development work of these will be carried out further. Ridge-drying method and wave-like sod peat method have been proven to be more effective than the cylindrical sod technology and field-drying method

  13. Weeds optimally grow in peat swamp after burning

    Directory of Open Access Journals (Sweden)

    P.D. Susanti

    2014-07-01

    Full Text Available After clearing land by burning the peat, then the weeds and undergrowth will flourish. Even sometimes, the weeds are eventually burned again. Weed is known as a destroyer plant that has to be controlled. Through proper treatment, the existing weeds in peatlands can be potentiallly exploited. The purpose of this study was to determine the calorific value of briquettes as one of peatland weeds utilization. The results showed that the calorific value ranged from 2,492 cal/g to 5,230 cal/g. The lowest calorific value was on ‘teki kecil’ grass (Scirpus grossus Lf, while the highest calorific value was observed for ‘bantalaki grass’ (Hymenachne amplexicaulis Nees. The high calorific value of the peat weeds are potential for biomass briquettes raw materials. The utilization and use of peat weed briquettes as a raw materials expected can reduce land degradation due to peat swamp burning

  14. Influence of the level of subsoil water on the distribution of moisture content in a peat formation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.I.; Kostyuk, N.S.

    1983-01-01

    Under laboratory and field conditions, observations are made of the influence of the level of subsoil water on the distribution of moisture content in the upper layers of the peat formation. It is established that prolonged evaporation sharply reduces the moisture content of the upper layers of the formation at a depth up to 20cm. Precipitation is mainly absorbed by the upper layers of the formation and can penetrate in the season with level of subsoil water about 1m at depth of no more than 50cm. The zone of complete capillary water-saturation of the upper formation does not exceed 45cm.

  15. Constructing deposition chronologies for peat deposits using radiocarbon dating

    Directory of Open Access Journals (Sweden)

    N. Piotrowska

    2011-06-01

    Full Text Available Radiocarbon dating is one of the main methods used to establish peat chronologies. This article reviews the basis of the method and its application to dating of peat deposits. Important steps in the radiocarbon dating procedure are described, including selection and extraction of material (and fractions for dating, chemical and physical preparation of media suitable for measurements, measurements of 14C activity or concentration, calculations, calibration of results and age-depth modelling.

  16. Radioactivity changes during burning of peat and chip

    International Nuclear Information System (INIS)

    Hedvall, R.; Erlandsson, B.; Mattsson, S.

    1985-01-01

    The increasing use of peat and chip as fuel materials in fossil-fuel power plants has resulted in the need for information about the change in radionuclides concentration in fuel after combustion. The paper describes a study of natural radionuclides from the uranium- and the thorium series and 40 K, as well as fission products from atmospheric nuclear explosions, in ashes from five peat and chip fuelled power plants in Sweden

  17. Fluvial organic carbon losses from oil palm plantations on tropical peat, Sarawak, Southeast Asia

    Science.gov (United States)

    Cook, Sarah; Page, Susan; Evans, Chris; Whelan, Mick; Gauci, Vincent; Lip Khoon, Kho

    2017-04-01

    peatland carbon budget. Given the increasing expansion of oil palm plantations on tropical peat, within Southeast Asia, it is essential that fluvial organic carbon data is incorporated into assessment criteria, helping countries to better monitor, report and verify their land-based greenhouse gas emissions.

  18. Influence of Biodegradation on the Organic Compounds Composition of Peat.

    Science.gov (United States)

    Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina

    2016-06-01

    Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.

  19. Uranium/thorium dating of Late Pleistocene peat deposits in NW Europe, uranium/thorium isotope systematics and open-system behaviour of peat layers

    NARCIS (Netherlands)

    Heijnis, H.; Plicht, J. van der

    1992-01-01

    The possibility of dating peat by the uranium-series disequilibrium method is discussed. In principle, this method can be used to date peat to approximately 350 ka. The application of the U/Th disequilibrium method (UTD) on peat provides us with the probability of constructing a new chronology for

  20. Low-frequency electrical properties of peat

    Science.gov (United States)

    Comas, Xavier; Slater, Lee

    2004-12-01

    Electrical resistivity/induced polarization (0.1-1000 Hz) and vertical hydraulic conductivity (Kv) measurements of peat samples extracted from different depths (0-11 m) in a peatland in Maine were obtained as a function of pore fluid conductivity (σw) between 0.001 and 2 S/m. Hydraulic conductivity increased with σw (Kv ∝ σw0.3 between 0.001 and 2 S/m), indicating that pore dilation occurs due to the reaction of NaCl with organic functional groups as postulated by previous workers. Electrical measurements were modeled by assuming that "bulk" electrolytic conduction through the interconnected pore space and surface conduction in the electrical double layer (EDL) at the organic sediment-fluid interface act in parallel. This analysis suggests that pore space dilation causes a nonlinear relationship between the "bulk" electrolytic conductivity (σel) and σw (σel ∝ σw1.3). The Archie equation predicts a linear dependence of σel on σw and thus appears inappropriate for organic sediments. Induced polarization (IP) measurements of the imaginary part (σ″surf) of the surface conductivity (σ*surf) show that σ″surf is greater and more strongly σw-dependent (σ″surf ∝ σw0.5 between 0.001 and 2 S/m) than observed for inorganic sediments. By assuming a linear relationship between the real (σ'surf) and the imaginary part (σ″surf) of the surface conductivity, we develop an empirical model relating the resistivity and induced polarization measurements to σw in peat. We demonstrate the use of this model to predict (a) σw and (b) the change in Kv due to an incremental change in σw from resistivity and induced polarization measurements on organic sediments. Our study has implications for noninvasive geophysical characterization of σw and Kv with potential to benefit studies of carbon cycling and greenhouse gas fluxes as well as nutrient supply dynamics in peatlands.

  1. Forms and rates of release of Cs-137 in 2 peat soils

    International Nuclear Information System (INIS)

    Livens, F.R.; Howe, M.T.; Hemingway, J.D.; Goulding, K.W.T.; Howard, B.J.; IACR Rothamsted, Harpenden; Liverpool Univ.; Institute of Terrestrial Ecology, Grange-on-Sands

    1996-01-01

    Cation exchange resin saturated with H+ and Ca2+ was used to extract Cs-137 from peat soil at two sites in Britain affected by Cs-137 deposition following the Chernobyl accident. The technique identified three classes of Cs-137, similar to those observed for K+ in soils: ''Fast'', ''Intermediate'' and ''Slow''. These classes are probably related to the selectivity for Cs-137 of the cation exchange sites on the organic matter and the clay minerals, and to the structure of the soil. With one exception, most Cs-137 was in the ''Slow'' form and was only very slowly released to the resins, if at all. However, there was enough Cs-137 in the ''Fast'' and ''Intermediate'' forms to contaminate pasture and thus grazing animals for some years. Based on the resin technique, it is estimated that contamination will persist for several decades in uplands contaminated at these activity concentrations. (Author)

  2. The role of meson dynamics in nuclear matter saturation

    International Nuclear Information System (INIS)

    Goncalves, E.

    1988-01-01

    The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author) [pt

  3. Effect of Different Peat Size and Pre-Consolidation Pressure of Reconstituted Peat on Effective Undrained Shear Strength Properties

    Science.gov (United States)

    Azhar, ATS; Norhaliza, W.; Ismail, B.; Ezree, AM; Nizam, ZM

    2017-08-01

    Shear strength of the soil is one of the most important parameters in engineering design, especially during the pre- or post-construction periods, since it is mainly used to measure and evaluate the foundation or slope stability of soil. Peat normally known as a soil that has a very low value of shear strength, and in order to determine and understand the shear strength of the peat, it is a difficult task in geotechnical engineering due to several factors such as types of fabrics, the origin of the soil, water content, organic matter and the degree of humification. The aim of this study is to determine the effective undrained shear strength properties of reconstituted peat of different sizes. All the reconstituted peat samples were formed with the size that passed the opening sieve of 0.425 mm (effective undrained shear strength properties for reconstituted peat effective shear strength properties for the reconstituted peat effective undrained shear strength properties result obtained from the tests show that the reconstituted peat pore pressure, Δu, show both of peat

  4. Mineral capacity of peat soils organic matter and entry of Cs137 into perennial grasses

    International Nuclear Information System (INIS)

    Tsybulko, N.N.; Shapsheeva, T.P.; Arastovich, T.V.; Zajtsev, A.A.

    2010-01-01

    The results of the study of peat soils organic substance structure with various peat ash content are given. Contents of active organic substance and carbon of microbial biomass in peat and boggy soil with 20% peat ash content is 3.0-3.5 and 1.6-1.8 times higher correspondingly, than thus in peaty-gley soil with 70% peat ash content. At peat and boggy soil with low peat ash content Cs137 transition into hay is minimal. 14 times higher than at peaty-gley soil with 70% peat ash content. Application of fertilizers at peat and boggy soil reduces Cs137 transition factor 4.7-6.4 times if compared to peaty-gley soil (2.1-4.7 times). Close positive interconnection between Cs137 transition factors from soil into the plants and organic carbon soil contents, absolute contents of potentially mineralized carbon and mineralization degree

  5. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    Science.gov (United States)

    Weber, Tobias Karl David; Iden, Sascha Christian; Durner, Wolfgang

    2017-12-01

    In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP) were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten-Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD) that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of > 300, 300-30, and 30-10 µm, respectively.

  6. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    Directory of Open Access Journals (Sweden)

    T. K. D. Weber

    2017-12-01

    Full Text Available In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten–Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of >  300, 300–30, and 30–10 µm, respectively.

  7. Review of pre-treated peat applied in treating domestic wastewaters and oily waters

    International Nuclear Information System (INIS)

    Jiang, X.; Coles, C.A.; Asapo, E.S.

    2008-01-01

    This paper discussed recent research related to the use of peat in removing contaminants from domestic wastewater, oil-contaminated water, and soil. The review also discussed methods of pretreating peat before its application to polluted area. Pretreatment processes are needed to remove components in peat that interfere with treatment mechanisms. Polymers are added to peat in order to encourage the aggregation of the peat particles into larger colloidal particles that are easy to dewater. Phosphoric acid treatments are also applied to increase the swelling capacity of peat. Hydrogen peroxide is used to break down oil-contaminated peat in order to facilitate its subsequent decomposition. Experiments have demonstrated that peat is an effective adsorbent for many different types of oil. Studies have demonstrated that the removal rate for standard mineral and crude oils from wastewater using peat was 83 and 70 per cent. Applications of commercial peat to the surface of oily contaminated waters resulted in oil removal efficiencies of 99.998 per cent. It was concluded that peat is an effective, low-cost material for removing contaminants from domestic waste water and oil-contaminated water. The peat can also be used as a secondary energy source after the sorption process. While peat is an abundant resource in Canada, the resource is found mainly in wetlands. Effective harvesting strategies should be used to ensure the environmental sustainability of peat filtration systems. 38 refs., 1 tab

  8. Process for distilling shales, peats, etc

    Energy Technology Data Exchange (ETDEWEB)

    Felizat, G

    1922-01-09

    The invention has for its object: a process for the distillation of shales, peats, and analogous products characterized by injecting across the substance a very rapid stream of superheated steam under pressure in order to effect a rapid removal of the products of distillation, to lower also the temperature at which it distills, to equalize the temperature throughout the mass, to hydrogenate the heavy hydrocarbons. An apparatus is put into operation characterized by the combination of a retort receiving the material to be distilled with a superheater for the steam, the combustion products which escape from the hearth of the superheater going to encircle the retort while the steam which comes off the superheater traverses this retort, the pressure of the steam being regulated by a convenient regulator; the products of the distillation result from the simultaneous action of the hot gases and steam on the contents of the retort being, on the other hand, separated at the outlet of this retort by means of cooling in a gas separator, a condenser, and part of the gas after being separated serving to heat the mentioned superheater.

  9. Peat-accumulating depositional systems of Sarawak, East Malaysia

    Science.gov (United States)

    Staub, James R.; Esterle, Joan S.

    1994-02-01

    Many coal deposits originate in deltaic, estuarine, and coastal plain settings and a knowledge of interrelationships between the tectonic and depositional elements active at the time of sediment deposition is necessary to formulate basin scale models. The prograding coastal depositional systems of Sarawak all contain domed peat-accumulating environments in which low-ash, low-sulfur peats are being deposited in areas of active clastic siliciclastic sedimentation. These depositional systems are as large as 11,400 km 2 and individual peat deposits within systems are in excess of 20 m thick and 1000 km 2 in area. The geographic positions and drainage basin areas of each depositional system are controlled by fault and fold systems. Although prograding into the same receiving basin, individual system geomorphology is variable and ranges from a wave-dominated microtidal delta, to a wave-dominated meso- to macro-tidal delta/coastal plain system, to a tide-dominated macrotidal estuarine embayment along a 450 km stretch of coastline. System variation is a function of sediment supply, shelf and embayment geometry, wave climate, and tidal range. These factors, which control depositional system geomorphology, also control the resulting long axis orientation of the thick, domed peat deposits. The surface vegetation and internal characteristics of most domed peat deposits, however, are similar. Internal characteristics consist of basal high-ash, high-sulfur, degraded peats overlain by low-ash, low-sulfur, well preserved peats in vertical profile. These systems demonstrate variable responses to late Pleistocene/Holocene sea-level rise and, in these instances, the variation is most attributable to local differences in siliciclastic sediment supply, which is a function of the drainage basin area.

  10. Non-destructive methods for peat layer assessment in oligotrophic peat bogs: a case study from Poiana Ştampei, Romania

    Directory of Open Access Journals (Sweden)

    Iuliana F. Gheorghe

    2011-01-01

    Full Text Available Practices currently employed in the investigation and characterisation of peat deposits are destructive and may irremediable perturb peat bog development even in cases when exploitation is not carried out. We investigated the correlation between vegetation characteristics in the active area of Poiana Ştampei peat bog, Romania, and the underlying peat layer depth, aiming at establishing a non-destructive method of peat layer depth estimation. The presence of the Sphagneto-Eriophoretum vaginati association, dominated by Sphagnum fimbriatum, Eriophorum vaginatum, Andromeda polifolia, Vaccinium oxycoccos, V. myrtillus, V. vitis-idaea, Polytrichum commune, Picea excelsa, Pinus sylvestris and Betula verrucosa was found to predict the existence of the peat layer but not its depth. Out of the seven identified vegetation types, one type was associated with a very thin or no peat layer, one type was characterised by the presence of a thick (over 100 cm peat layer and five types indicated the presence of variable average depths of the peat layer. pH values correlated with peat layer depth only within the vegetation type associated with thick peat layers.

  11. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. RETENTION TIME EFFECT ON METAL REMOVAL BY PEAT COLUMNS

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E

    2007-02-28

    The potential use of a peat bed to treat the H-12 Outfall discharge to bring it to new compliance limits was previously investigated and reported utilizing a 7 hour retention time. The influence of retention time (contact time) of water with peat moss on the removal of copper from the water was investigated under laboratory conditions using vertical flow peat moss columns. Reduction of the necessary retention time has a large influence on the design sizing of any peat bed that would be constructed to treat the H-12 discharge on a full scale basis. Retention times of 5 hours, 3 hours and 1 hour were tested to determine the copper removal by the peat columns using vertical flow. Water samples were collected after 4, 8, 12, and 16 water volumes had passed through the columns and analyzed for a suite of metals, with quantitative emphasis on copper. Laboratory results indicated that copper removal was very high at each of the 3 retention times tested, ranging from 99.6 % removal at 5 and 3 hours to 98.8% removal at 1 hour. All these values are much lower that the new compliance limit for the outfall. The results also indicated that most divalent metals were removed to their normal reporting detection limit for the analytical methods used, including zinc. Lead levels in the H-12 discharge used in this study were below PQL in all samples analyzed. While each of the retention times studied removed copper very well, there were indications that 1 hour is probably too short for an operational, long-term facility. At that retention time, there was about 6% compaction of the peat in the column due to the water velocity, and this may affect long term hydraulic conductivity of the peat bed. At that retention time, copper concentration in the effluent was higher than the other times tested, although still very low. Because of the potential compacting and somewhat reduced removal efficiency at a 1 hour retention time, it would be prudent to design to at least a 3 hour retention

  13. Regional Haze Evolved from Peat Fires - an Overview

    Science.gov (United States)

    Hu, Yuqi; Rein, Guillermo

    2016-04-01

    This work provides an overview of haze episodes, their cause, emissions and health effects found in the scientific literature. Peatlands, the terrestrial ecosystems resulting from the accumulation of partially decayed vegetation, become susceptible to smouldering fires because of natural droughts or anthropogenic-induced drainages. Once ignited, smouldering peat fires persistently consume large amounts of soil carbon in a flameless form. It is estimated that the average annual carbon gas emissions (mainly CO2 and CO) from peat fires are equivalent to 15% of manmade emissions, representing influential perturbation of global carbon circle. In addition to carbon emissions, smouldering peat fires emit substantial quantities of heterogeneous smoke, which is responsible for haze phenomena, has not yet been fully studied. Peat-fire-derived smoke is characterized by high concentration of particulate matter (PM), ranging from nano-scale ultrafine fraction (PM1, particle diameter condition, and then low buoyant smoke plume could accumulate and migrate long distances, leading to regional haze. Apart from air quality deterioration, haze leads to severe reduction in visibility, which strongly affects local transportation, construction, tourism and agriculture-based industries. For example, an unprecedented peatland mega-fire burst on the Indonesian islands Kalimantan and Sumatra during the 1997 El-Niño event, resulting in transboundary smoke-haze disaster. Severe haze events continue to appear in Southeast Asia every few years due to periodical peat fires in this region. In addition, smouldering peat fires have been frequently reported in tropical, temperate and boreal regions (Botswana in 2000, North America in 2004, Scotland in 2006 and Central Russia in 2010 et al.), peat-fire-induced haze has become a regional seasonal phenomenon. Exposure to smoky haze results in deleterious physiologic responses, predominantly to the respiratory and cardiovascular systems. In 1997, an

  14. Peat is regarded as slowly renewable biomass fuel

    International Nuclear Information System (INIS)

    Myllylae, I.

    2000-01-01

    The Finnish Ministry of Trade and Industry commissioned an investigation on the role of peat in Finnish greenhouse gas balance in 1999. An international scientist group, consisting of Dr. Patrick Crill from USA, Dr. Ken Hargreaves from United Kingdom and docent Atte Korhola from Finland conducted the investigation. The scientist group made the proposition that peat should be classified as a slowly renewable biomass fuel, which is significant from the peat industry's point of view. An interesting detail of the investigation was the calculations, which showed that ditching of peatlands, have decreased the methane emissions from peatlands. Virgin peatlands bind carbon dioxide from the air, but simultaneously they emit methane, which is more harmful than CO 2 emissions. The carbon sink effect of Finnish peatlands is based on the CO 2 binding of virgin and ditched peatlands in Finland. The CO 2 emissions of peat production and combustion are smaller than the CO 2 binding. Virgin peatlands form a relative large source of methane. The investigation shows that when reviewing the effects of all the greenhouse gases on climate, the virgin peatlands may accelerate the greenhouse effect due to the methane emissions. The final conclusion is that ditching of virgin peatlands has reduced the radiation enforcement in Finland in some extent. When a virgin peatland is ditched the methane emissions from it are reduced significantly, and simultaneously more CO 2 is bound into vegetation. According to the investigation the net emissions of greenhouse gases in Finland exceed 10 million tonnes calculated as CO 2 . Of this the share of virgin peatlands is 8.4 million tonnes, which is of the same magnitude as the emissions from peat combustion. The life cycle analysis has shown that peat production should be directed to swampy fields removed from agricultural production. In most of the cases the combination of reforestation and repaludification into a functional peatland ecosystem could

  15. Excavation and drying of compressed peat; Tiivistetyn turpeen nosto ja kuivaus

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Frilander, P.; Hillebrand, K.; Nurmi, H.

    1996-12-31

    The target of this three year (1993 - 1995) project was to improve the peat product-ion efficiency by developing an energy economical excavation method for compressed peat, by which it is possible to obtain best possible degree of compression and load from the DS-production point of view. It is possible to improve the degree of utilization of solar radiation in drying from 30 % to 40 %. The main research areas were drying of the compressed peat and peat compression. The third sub-task for 1995 was demonstration of the main parts of the method in laboratory scale. Experimental compressed peat (Compeat) drying models were made for peats Carex-peat H7, Carex-peat H5 and Carex-Sphagnum-peat H7. Compeat dried without turning in best circumstances in 34 % shorter time than milled layer made of the same peat turned twice, the initial moisture content being 4 kgH2OkgDS-1. In the tests carried out in 1995 with Carex-peat the compression had not corresponding effect on intensifying of the drying of peat. Compression of Carex-Sphagnum peat H7 increased the drying speed by about 10 % compared with the drying time of uncompressed milled layer. In the sprinkling test about 30-50 % of the sprinkled water was sucked into the compressed peat layer, while about 70 % of the rain is sucked into the corresponding uncompressed milled layer. Use of vibration decreased the energy consumption of the steel-surfaced nozzles about 20 % in the maximum, but the effect depend on the rotation speed of the macerator and the vibration power. In the new Compeat method (production method for compressed peat), developed in the research, the peat is loosened from the field surface by milling 3-5 cm thick layer of peat of moisture content 75-80 %

  16. Evaluation of ecological constraints on peat mining in New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Gautreau-Daigle, H

    1990-07-01

    A study was undertaken to obtain baseline information on moose and waterfowl usage of peatlands in the Escuminac bog complex in New Brunswick, in order to determine the impact of existing peat mining activities and to assist in making decisions regarding future resource development. The bog complex comprises a relatively large number of freshwater ponds which support breeding populations for waterfowl and serve as staging areas during bird migrations. Aerial surveys were carried out to quantify the use of these ponds by waterfowl and to determine changes in their level of use as a result of peat extraction. Results indicate that usage of ponds by birds seems mostly limited to staging and migration, except for black and ring-necked ducks. Those species are the most significant users of bog ponds and have been found to breed and raise young in the ponds. Some areas were found to get more waterfowl than others, but this was not shown to be related to peat mining activity. Active mined areas were devoid of waterfowl, but this area was a relatively small portion of the total bog area. The moose survey examined moose activity in a control area (without peat mining) and a representative bog area where peat mining occurred. Results do not indicate a difference in the moose activity patterns between the two areas. 9 refs., 25 figs., 17 tabs.

  17. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  18. Study on Magnesium in Rainwater and Fertilizer Infiltration to Solidified Peat

    Science.gov (United States)

    Tajuddin, S. A. M.; Rahman, J. A.; Mohamed, R. M. S. R.

    2018-04-01

    Magnesium is a component of several primary and secondary minerals in the soil which are essentially insoluble for agricultural purpose. The presence of water infiltrate in the soil allows magnesium to dissolve together into the groundwater. In fertilizers, magnesium is categorized as secondary macronutrient which supplies food and encouraging for plants growth. The main objective of this study was to determine the concentration of magnesium in fibric peat when applied the solidification under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of magnesium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of magnesium for flush and control condition at outlet 4 was 12.50 ppm and 1.29 ppm respectively. Similarly, fibric with solidified peat under rainwater recorded the highest value of 3.16 at outlet 1 for wet condition while for dry condition at outlet 4 of 1.33 ppm. However, the difference in fibric with solidified peat under rainwater and fertilizer condition showed that the highest value for the wet condition was achieved at outlet 1 with 5.43 ppm while highest value of 1.26 ppm was obtained for the dry condition at the outlet 4. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of magnesium in the soil which was influenced by the environmental conditions.

  19. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  20. Study of the sorption properties of the peat for removal of heavy metals

    International Nuclear Information System (INIS)

    Hayrapetyan, S.S.; Gevorgyan, S.A.; Hayrapetyan, L.S.; Bareghamyan, S.F.; Pirumyan, G.P.

    2016-01-01

    The processes of sorption of several heavy metals on peat samples taken from basin of lake Sevan (near Vardenis Gegharkunik region of Armenia) were investigated. The peat samples were taken from different locations from 1 m depth. The sorption processes have been done in the static mode. The peat samples were used without any modification, i.e. the sorption properties of natural raw peat were studied. The studies were conducted on the basis of synthetic solution containing ions of these following metals - Ni, Co, As, U, Ba. The sorption properties of peat were estimated by ICP-MS. Thus, peat can be a very effective sorption medium for removal of heavy metals from water. Most of them are absorbed in the first minutes of peat exposure to aqueous solution. For the sorption of barium, uranium, arsenic peat exhibits very high sorption efficiency. For comparison, their relative sorption values about 10 times more than those of cobalt, nickel and zinc.

  1. Stable strontium isotopic ratios from archaeological organic remains from the Thorsberg peat bog

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech; von Carnap-Bornheim, Claus; Grupe, Gisela

    2007-01-01

    Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog.......Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog....

  2. The association of uranium with organic matter in peat and peat water in a wetland from the Carson Range, Nevada

    International Nuclear Information System (INIS)

    Orem, W.; Zielinski, R.; Otton, J.; Lerch, H.

    1992-01-01

    Uranium has a high affinity for organic matter and is frequently found in high concentrations in coal and peat beds. The nature of the U/organic matter association was investigated in peat from cores obtained from a small wetland (Upper Zephyr Fen) near Lake Tahoe, NV. The peat contains U concentrations of up to 0.5% dry weight, supplied by surface and ground water weathering the U-rich granodiorite rocks of the surrounding mountains. Uranium concentrations are highly correlated with both organic C and N contents, but show no apparent relationship to specific organic moieties such as carboxyl or phenolic functional groups. Sieve studies of the peat show the U is concentrated in the 2,000--250 um size fraction. This fraction also has the lowest atomic C/N ratio, suggesting a possible role of N-containing organic compounds in U complexation. In peat pore waters, dissolved U is primarily associated with high molecular weight dissolved organic matter, as shown by equilibrium models and experimental data

  3. Essential Tremor

    Science.gov (United States)

    ... Treatment There is no definitive cure for essential tremor. Symptomatic drug therapy may include propranolol or other beta blockers and primidone, an anticonvulsant drug. Eliminating tremor "triggers" ...

  4. TECHNOLOGY AND EFFICIENCY OF PEAT ASH USAGE IN CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2015-01-01

    Full Text Available One of the main ways to improve physical and mechanical properties of cement concrete is an introduction of ash obtained due to burning of fossil fuels into concrete mix. The concrete mixes with ash are characterized by high cohesion, less water gain and disintegration. At the same time the concrete has high strength, density, water resistance, resistance to sulfate corrosion. The aim of this paper is to explore the possibility to use peat ash and slag of peat enterprises of the Republic of Belarus in the concrete for improvement of its physical and mechanical properties and characteristics of peat ash, slag, micro-silica, cement, superplasticizing agent. Compositions and technology for preparation of concrete mixes have been developed and concrete samples have been have been fabricated and tested in the paper. It has been shown that the concrete containing ash, slag obtained due to burning of peat in the industrial installations of the Usiazhsky and Lidsky Peat Briquette Plants and also MK-85-grade micro-silica NSPKSAUsF-1-grade superplasticizing agent have concrete tensile strength within 78–134 MPa under axial compression and 53 MPa – for the control composition. This index is 1.5–2.5 times more than for the sample containing no additives.The usage of peat ash, slag together with MK-85-grade micro-silica and NSPKSAUsF-1-grade superplasticizing agent for fabrication of concrete and reinforced bridge and tunnel structures will provide the following advantages: reduction of cross-sectional area of structures while maintaining their bearing capacity due to higher value of tensile strength in case of axial compression; higher density, waterand gas tightness due to low water cement ratio; high resistance to aggressive environment due to lower content of capillary pores that ensures bridge structure longevity; achievement of environmental and social impacts.

  5. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark........ Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling....

  6. An approach to peat formation period on both coast of Fildes Strait, Antarctica

    International Nuclear Information System (INIS)

    Wenfen, Z.

    1997-01-01

    Because peat consist mainly of organic matter, both credibility and comparability of the peat 14 C age are high. This paper discuss the use of radiocarbon ( 14 C) to study the peat age. The results of a comparative study of ten samples from China Great Wall Station in Antarctica and the nearby area (on both sides of Fildes Strait) are presented, indicating differences of peat formation period between the pole and other areas

  7. A new approach for peat inventory methods; Turvetutkimusten menetelmaekehitystarkastelu

    Energy Technology Data Exchange (ETDEWEB)

    Laatikainen, M.; Leino, J.; Lerssi, J.; Torppa, J.; Turunen, J. Email: jukka.turunen@gtk.fi

    2011-07-01

    Development of the new peatland inventory method started in 2009. There was a need to investigate whether new methods and tools could be developed cost-effectively so field inventory work would more completely cover the whole peatland area and the quality and liability of the final results would remain at a high level. The old inventory method in place at the Geological Survey of Finland (GTK) is based on the main transect and cross transect approach across a peatland area. The goal of this study was to find a practical grid-based method linked to the geographic information system suitable for field conditions. the triangle-grid method with even distance between the study points was found to be the most suitable approach. A new Ramac-ground penetrating radar was obtained by the GTK in 2009, and it was concluded in the study of new peatland inventory methods. This radar model is relatively light and very suitable, for example, to the forestry drained peatlands, which are often difficult to cross because of the intensive ditch network. the goal was to investigate the best working methods for the ground penetrating radar to optimize its use in the large-scale peatland inventory. Together with the new field inventory methods, a novel interpolation-based method (MITTI) for modelling peat depths was developed. MITTI makes it possible to take advantage of all the available peat-depth data including, at the moment, aerogeophysical and ground penetrating radar measurements, drilling data and the mire outline. The characteristic uncertainties of each data type are taken into account and, in addition to the depth model itself, an uncertainty map of the model is computed. Combined with the grid-based field inventory method, this multi-approach provides better tools to more accurately estimate the peat depths, peat amounts and peat type distributions. The development of the new peatland inventory method was divided into four separate sections: (1) Development of new field

  8. KNIME essentials

    CERN Document Server

    Bakos, Gábor

    2013-01-01

    KNIME Essentials is a practical guide aimed at getting the results you want, as quickly as possible.""Knime Essentials"" is written for data analysts looking to quickly get up to speed using the market leader in data processing tools, KNIME. No knowledge of KNIME is required, but we will assume that you have some background in data processing.

  9. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Science.gov (United States)

    Kumaran, Navnith K P; Padmalal, Damodaran; Limaye, Ruta B; S, Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G

    2016-01-01

    Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of land

  10. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Directory of Open Access Journals (Sweden)

    Navnith K P Kumaran

    Full Text Available Holocene sequences in the humid tropical region of Kerala, South-western (SW India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The

  11. Soil ecology and ecosystem services of dairy and semi-natural grasslands on peat

    NARCIS (Netherlands)

    Deru, Joachim G.C.; Bloem, Jaap; Goede, de Ron; Keidel, Harm; Kloen, Henk; Rutgers, Michiel; Akker, van den Jan; Brussaard, Lijbert; Eekeren, van Nick

    2018-01-01

    Peat wetlands are of major importance for ecosystem services such as carbon storage, water regulation and maintenance of biodiversity. However, peat drainage for farming leads to CO2 emission, soil subsidence and biodiversity losses. In the peat areas in the Netherlands, solutions are sought in

  12. How sustainable is the use of peat for commercial energy production?

    NARCIS (Netherlands)

    Schilstra, AJ

    The sustainability argument that more peat grows in Finland than is used does not hold. On designated peatlands, growth is about 85 times slower than peat use; growth elsewhere in Finland does not add to available resources. Claiming undisturbed peatlands as carbon sinks for sustainable peat use is

  13. Study of the organic material in peat formations in Puerto de Tornos (Santander)

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, M C; Almendrus, G; Dorado, E; Polo, A

    1985-01-01

    Different hydrophysical, agrochemical and biochemical features in a raised peat from Puerto de Tornos (Santander, Northern Spain) have been described. Correlations and affinities among data were studied in seven peat horizons. The studied peat was constituted by the alternance of humic and sapric layers, showing a very high content in extractable humic substances, and a low proportion of exchangeable cations, mainly in deeper layers.

  14. Peat subsidence and its practical implications: a case study in Malaysia

    NARCIS (Netherlands)

    Wösten, J.H.M.; Ismail, A.B.; Wijk, van A.L.M.

    1997-01-01

    Due to pressure for land, substantial areas of peat swamps in South-East Asia have been and presently are being reclaimed for agriculture or for other land use. As soon as peat swamps are drained, the irreversible process of subsidence starts, which can only be stopped by waterlogging the peat

  15. Assessing the conservation potential of damaged peat bog networks in Central and Northern Meshera (Central Russia)

    NARCIS (Netherlands)

    Butovsky, R.O.; Reijnen, M.J.S.M.; Aleshenko, G.M.; Melik-Bagdasarov, E.M.; Otchagov, D.M.

    2004-01-01

    Peat bogs are one of the most characteristic ecosystems of Central Russian landscape. Because of peat mining and transformation of peat bogs into agricultural land after drainage, suitable habitats for several characteristic species now show a very fragmented pattern. The potentials for viable

  16. How sustainable is the use of peat for commercial energy production?

    NARCIS (Netherlands)

    Schilstra, AJ

    2001-01-01

    The sustainability argument that more peat grows in Finland than is used does not hold. On designated peatlands, growth is about 85 times slower than peat use; growth elsewhere in Finland does not add to available resources. Claiming undisturbed peatlands as carbon sinks for sustainable peat use is

  17. Greenhouse gas balances of Frisian peat pastures. Long term effects of land use options.

    NARCIS (Netherlands)

    Keijzer, Elisabeth

    2010-01-01

    SUMMARY Peat pastures in the Dutch province of Friesland emit high amounts of greenhouse gases (CO2, N2O, and CH4). These high emissions are the results of deep drainage of the peat for agricultural purposes and consequently oxidation of the peat. Other

  18. Ecological networks and nature policy in central Russia : peat bogs in central and northern Meshera

    NARCIS (Netherlands)

    Butovsky, R.O.; Reijnen, R.; Otchagov, D.M.; Aleshenko, G.M.; Melik-Bagdasarov, E.

    2001-01-01

    In central and northern Meshera, Russia, the habitat of many characteristic peat bog species now show a very fragmented pattern. Peat mining and other human influences are the most important causes. As a result the potentials for viable populations ofcharacteristic peat bog species have decreased

  19. Investigating the impact of land cover change on peak river flow in UK upland peat catchments, based on modelled scenarios

    Science.gov (United States)

    Gao, Jihui; Holden, Joseph; Kirkby, Mike

    2014-05-01

    Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal

  20. Gluon saturation and baryon stopping in the SPS, RHIC, and LHC energy regions

    International Nuclear Information System (INIS)

    Li Shuang; Feng Shengqin

    2012-01-01

    A new geometrical scaling method with a gluon saturation rapidity limit is proposed to study the gluon saturation feature of the central rapidity region of relativistic nuclear collisions. The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering. We take advantage of the gluon saturation model with geometric scaling of the rapidity limit to investigate net baryon distributions, nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions. Predictions for net baryon rapidity distributions, mean rapidity loss and gluon saturation feature in central Pb + Pb collisions at the LHC are made in this paper. (authors)

  1. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  2. The Use of Ameliorant Fe3+ and Rock Phosphates in Peat Soil at Several Water Condition on the P Content of Plants Rice and Carbon Emission

    Directory of Open Access Journals (Sweden)

    Nelvia

    2009-09-01

    Full Text Available The addition of ameliorant Fe3+ and rock phosphates containing high Fe cation can reduce effect of toxic organic acids, increase peat stability through formation of complex compounds and reduce carbon emission. The research was conducted in the laboratory and green house of the Departement of Soil Science, Faculty of Agriculture, Bogor Agriculture University. Peat samples with hemic degree of decomposition were taken from Riau. Rock phosphates were taken from the rock phosphates of PT. Petrokimia Gresik, Christmas Island phosphates, and Huinan China and FeCl3.6H2O was used as the other Fe3+ source. The aims of the research were to study (a the effect of the applications of ameliorant Fe3+ and rock phosphates on the P content of plants dan (b the effect of the application ameliorant Fe3+ and the contribution of Fe cation in rock phosphates in the decrease of carbon emission. The results showed that the P content of plants rice increased 58 – 286% with the applications of ameliorant Fe3+ and rock phosphates. The estimation of carbon loss through CO2 and CH4 emissions from peats if planted continuously with rice was around 2.5, 2.2 and 2.6 Mg of C ha-1 year-1 respectively in field capacity condition, two times of field capacity condition, and 5 cm of saturated condition. The application of ameliorant Fe3+ and rock phosphates containing high Fe cation increased the stability of peats and reduced the carbon loss around 1.7 Mg of C ha-1 year-1 (64% in 5 cm of saturated condition, 1.3 Mg of C ha-1 year-1 (58% in two times of field capacity condition, and 1.0 Mg of C ha-1 year-1 (41% in field capacity condition.

  3. Astronomy essentials

    CERN Document Server

    Brass, Charles O

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Astronomy includes the historical perspective of astronomy, sky basics and the celestial coordinate systems, a model and the origin of the solar system, the sun, the planets, Kepler'

  4. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  5. Classifying and mapping wetlands and peat resources using digital cartography

    Science.gov (United States)

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  6. A statistical approach to determining the uncertainty of peat thickness

    Directory of Open Access Journals (Sweden)

    J. Torppa

    2011-06-01

    Full Text Available This paper presents statistical studies of peat thickness to define its expected maximum variation (∆dm(∆r as a function of separation distance Δr. The aim was to provide an estimate of the observational uncertainty in peat depth due to positioning error, and the prediction uncertainty of the computed model. The data were GPS position and ground penetrating radar depth measurements of six mires in different parts of Finland. The calculated observational uncertainty for Finnish mires in general caused, for example, by a 20 m positioning error, is 43 cm in depth with 95 % confidence. The peat depth statistics differed among the six mires, and it is recommended that the mire specific function ∆dm(∆r is defined for each individual mire to obtain the best estimate of observational uncertainty. Knowledge of the observational error and function ∆dm(∆r should be used in peat depth modelling for defining the uncertainty of depth predictions.

  7. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss

    NARCIS (Netherlands)

    van Winden, J.F.; Talbot, H.M.; Kip, N.; Reichart, G.J.; Pol, A.; McNamara, N.P.; Jetten, M.S.M.; Op den Camp, H.J.M.; Sinninghe Damsté, J.S.

    2012-01-01

    Bacteriohopanepolyols (BHPs) are bacterial biomarkers with a likely potential to identify present and past methanotrophic communities. To unravel the methanotrophic community in peat bogs, we report the BHP signatures of type I and type II methanotrophs isolated from Sphagnum mosses and of an

  8. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss

    Science.gov (United States)

    van Winden, Julia F.; Talbot, Helen M.; Kip, Nardy; Reichart, Gert-Jan; Pol, Arjan; McNamara, Niall P.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; Sinninghe Damsté, Jaap S.

    2012-01-01

    Bacteriohopanepolyols (BHPs) are bacterial biomarkers with a likely potential to identify present and past methanotrophic communities. To unravel the methanotrophic community in peat bogs, we report the BHP signatures of type I and type II methanotrophs isolated from Sphagnum mosses and of an extreme acidophilic verrucomicrobial methanotroph. A type I Methylovulum-like strain (M200) contains a remarkable combination of BHPs, including a complete suite of mono-unsaturated aminobacteriohopanepentol, -tetrol and -triol. The Methylomonas-like strain (M5) mainly produces aminobacteriohopanepentol, characteristic for type I methanotrophs, and the Methylosinus-like strain (29) contains both aminobacteriohopanetetrol and aminobacteriohopanetriol, typical for a type II methanotroph. The type II methanotroph Methylocella palustris and the verrucomicrobial Methylacidiphilum fumariolicum strain SolV primarily produce aminotriol, which is also produced by many other bacteria. In Sphagnum mosses and underlying peat from a peat bog from Moorhouse, UK, the only detectable BHPs indicative of methanotrophs are aminobacteriohopanepentol (aminopentol) and aminobacteriohopanetetrol (aminotetrol), although both are relatively low in abundance compared to other BHPs. Aminopentol serves as a marker for type I methanotrophs, while aminotetrol may reflect the presence of both type I and type II methanotrophs. The similar quantities of aminotetrol and aminopentol indicate that the methanotrophic community in Sphagnum peat probably consist of a combination of both type I and type II methanotrophs, which is in line with previously published pmoA-based micro-array results.

  9. Application of peat filters for treating milkhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fahie, C.R.; Gagnon, G.A. [Dalhousie Univ., Dept. of Civil Engineering, Halifax, Nova Scotia (Canada); Gordon, R.J. [Nova Scotia Agricultural College, Dept. of Engineering, Bible Hill, Nova Scotia (Canada)

    2002-06-15

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm{sup -3} . Parameters that were monitored include BOD, pH, NO{sub 3}-N, SO{sub 4}, TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD{sub 5} of approximately 1500 mg L{sup -1} , an average TSS concentration of 510 mg L{sup -1} and an average SRP concentration of 100 mg L{sup -1} . Removal efficiencies of BOD{sub 5} and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  10. Application of peat filters for treating milkhouse wastewater

    International Nuclear Information System (INIS)

    Fahie, C.R.; Gagnon, G.A.; Gordon, R.J.

    2002-01-01

    This study investigates the suitability of using peat as a filtering media for the treatment of agricultural wastewater. A full-scale experimental filter system was used to evaluate the ability of the filter system to treat milkhouse wastewater. The full-size modular peat filtration system was installed and monitored on a dairy farm located in Hilden, NS. The peat filter models used in the study were constructed from pre-cast concrete, which are approximately 3.2 m long by 1.8 m wide and 1.0 m high and filled are packed with sphagnum peat moss compacted to a density of 0.15 g cm -3 . Parameters that were monitored include BOD, pH, NO 3 -N, SO 4 , TSS, SRP, and TP. The milkhouse wastewater was characterized by having a BOD 5 of approximately 1500 mg L -1 , an average TSS concentration of 510 mg L -1 and an average SRP concentration of 100 mg L -1 . Removal efficiencies of BOD 5 and TSS were observed to be 59% and 82% respectively. In general, phosphorus removal was poor and subsequent research will examine mechanisms of improving phosphorus removal. (author)

  11. Physical and mathematical modeling of pollutant emissions when burning peat

    Science.gov (United States)

    Vasilyev, A.; Lozhkin, V.; Tarkhov, D.; Lozhkina, O.; Timofeev, V.

    2017-11-01

    The article presents an original neural network model of CO dispersion around the experimentally simulated peat fire. It is a self-learning model considering both the measured CO concentrations in the smoke cloud and the refined coefficients of the main equation. The method is recommended for the development of air quality control and forecasting systems.

  12. Association of postfire peat accumulation and microtopography in boreal bogs

    Energy Technology Data Exchange (ETDEWEB)

    Benscoter, B.W.; Vitt, D.H. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Plant Biology; Wieder, R.K. [Villanova Univ., Villanova, PA (United States). Dept. of Biology

    2005-09-01

    Fire impacts peatland species composition by differentially removing vegetation and resetting succession, which results in peat accumulation changes. A study of peat accumulation and microtopography in 2 burned bogs in Alberta was presented in this paper. Measurements of current and historic microtopography were made, and cores were collected along the gradient to identify the depth of peat accumulated since fires, as well as to assess its properties. It was observed that current microtopography was significant and correlated with the immediate post-fire surface relief. Differences in the magnitude of variability between sites suggested that differential rates of growth between features were exacerbated between sites and reflected in bog microtopography. Rates of organic matter accumulation ranged from 156 to 257 g/m{sup 2} per year, and were elevated but comparable to recent published rates. It was noted that organic matter content and accumulation rates were greater for hummocks than hollows at the Athabasca bog, but the difference between features diminished at Sinkhole Lake. It was concluded that the pattern and properties of peat accumulation and microtopography post-fire is topographical, and hence species dependent. Rates of change are dependent on fire severity and its effect on vegetation composition and succession. 33 refs., 4 figs.

  13. A carbon fibre composite (CFC Byelorussian peat corer

    Directory of Open Access Journals (Sweden)

    L.G. Franzén

    2009-01-01

    Full Text Available The design specification, development and manufacture of a Byelorussian (Russian peat corer constructed from carbon fibre composite (CFC are described. The availability of this new composite material introduces new possibilities for constructing field instruments that are as strong as, or stronger than, equipment made from steel and other metals. One advantage is a significant weight reduction. A 10.5 metre coring set in standard stainless and soft steel weighs around 16 kg, whereas the total weight of a similar CFC set is 5.2 kg, giving a weight reduction of almost 70%. The CFC sample chamber is 500 mm long with internal diameter 65 mm, and so contains almost twice the volume of peat that can be collected with a standard 45 mm diameter steel corer. The diameter of the rods is 30 mm, which improves ergonomics, and the CFC has better thermic properties for winter use. Another advantage is that the contamination of samples (notably by chromium and nickel associated with the use of steel corers is eliminated. The CFC sampler works well in soft peats such as Sphagnum and Carex types. It is less suitable for little-decomposed fibrous and forest peats (e.g. Polytrichum type and those containing hardwood remains, especially in the more compacted bottom layers. It should be totally satisfactory for organic lake sediments, but probably not for stiff and coarse mineral deposits.

  14. DATING RECENT PEAT ACCUMULATION IN EUROPEAN OMBROTROPHIC BOGS

    NARCIS (Netherlands)

    van der Plicht, Johannes; Yeloff, Dan; van der Linden, Marjolein; van Geel, Bas; Brain, Sally; Chambers, Frank M.; Webb, Julia; Toms, Phillip; Hatté, C.; Jull, A.J.T.

    2013-01-01

    This study compares age estimates of recent peat deposits in 10 European ombrotrophic (precipitation-fed) bogs produced using the C-14 bomb peak, Pb-210, Cs-137, spheroidal carbonaceous particles (SCPs), and pollen. At 3 sites, the results of the different dating methods agree well. In 5 cores,

  15. Remediation of diesel-oil-contaminated soil using peat

    International Nuclear Information System (INIS)

    Ghaly, R.A.; Pyke, J.B.; Ghaly, A.E.; Ugursal, V.I.

    1999-01-01

    We investigated a remediation process for diesel-contaminated soil, in which water was used to remove the diesel from the soil and peat was used to absorb the diesel layer formed on the surface of the water. The percolation of water through the soil was uniform. The time required for water to percolate the soil and for the layers (soil, water, and diesel) to separate depended on the soil depth. Both the depth of soil and mixing affected the thickness of the diesel layer and thus diesel recovery from the contaminated soil. Higher diesel recovery was achieved with smaller soil depth and mixing. The initial moisture content and the lower heating value of the peat were 7.1% and 17.65 MJ/kg, respectively. The final moisture content and lower heating value of the diesel-contaminated peat obtained from the experiment with mixing were 8.65 - 10.80% and 32.57 - 35.81 MJ/kg, respectively. The energy content of the diesel-contaminated peat is much higher than that of coal, and the moisture content is within the range recommended for biomass gasification. (author)

  16. Peat Biomass Smoke Particle Exposure in Rats Decreases ...

    Science.gov (United States)

    Wildland fires, favored by prolonged drought and rising temperatures, generate significant amounts of ambient particulate matter (PM), which has been linked to adverse health outcomes. The eastern North Carolina peat fires of Pocosin Lake in 2008 and Pains Bay in 2011 were some of the more prominent recent wildland fires and were associated with increased cardiovascular hospitalizations. The biological impacts of peat biomass emissions and the specific mechanisms driving these responses are unclear. The purpose of this study was to investigate the cardiopulmonary responses of peat biomass smoke exposure in rats. We hypothesized that PM exposure would dose-dependently alter cardiopulmonary function. Male Sprague-Dawley rats were exposed to 30 µg (Lo PM) or 300 µg (Hi PM) of peat biomass smoke PM extracts suspended in 200 µL of saline, or saline vehicle alone by oropharyngeal aspiration (OA). Immediately following OA rats were placed in a whole-body plethysmograph and ventilatory data were recorded for 12 minutes. One day following OA, rats were anesthetized with isoflurane for ultrasound assessment of cardiovascular function. Hi PM caused decreases in expiratory timing as early as 4-6 minutes after exposure relative to Lo PM (p = 0.02) and Vehicle (p= 0.06), which resolved shortly thereafter. One day after OA, ultrasounds revealed that Hi PM exposure increased end diastolic volume (EDV) by 16% (p = 0.03) over Vehicle and 13% (p = 0.06) over Lo PM. In addition,

  17. Physical properties of peats as related to degree of decomposition

    Science.gov (United States)

    D.H. Boelter

    1969-01-01

    Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...

  18. Diatoms in peat – dominant producers in a changing environment?

    DEFF Research Database (Denmark)

    Kokfelt, Ulla; Struyf, Eric; Randsalu, Linda

    2009-01-01

    to another, the old vegetation may be suppressed, die out or start to decay, and some time may pass until a new mire vegetation is fully established. Here, we demonstrate that diatoms may thrive during such transitions, creating isolated and shallow peat layers with significantly elevated biogenic silica...

  19. Annual sulfate budgets for Dutch lowland peat polders

    NARCIS (Netherlands)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; Geest, van der Harm G.; Klein, de Jeroen J.M.; Kosten, Sarian; Smolders, Alfons J.P.; Verhoeven, Jos T.A.; Mes, Ron G.; Ouboter, Maarten

    2016-01-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species.

  20. Developing of milled peat production control in Turveruukki Oy

    Energy Technology Data Exchange (ETDEWEB)

    Ljokkoi, R

    1985-01-01

    Control research on the production of milled peat has as its primary aim the ability to control the peat drying process under different weather and field conditions. Actual development work connected with production control was begun in 1982 with the clear aim of developing and applying in practice a monitoring adn control system complete with measuring equipment which would permit the drying process to be measured indirectly and weather forecasts to be used systematically in the planning of production at each individual peat site. During the 1984 production season development work reached the stage of experimental use. Experiences gained from trial use have been mainly positive and trial use of the manual system can be considered the first step in the application o the system. As regards the measuring technique, it is justified to say that an adequate technical level has already been attained and the correlation of the indirect measuring method with peat drying can be further improved by adjusting the location height of the evaporation meter. On the other hand, calculation of the length of the harvesting cycle requires further research, which from the point of view of practice must be orientated towards control of field conditions and changes in them during the production season. Although the application of the production control system is informative in nature, it is clearly of assistance when deciding how to carry out production. By means of this system iy id possible to achieve financial benefit in the form of lowered production costs and a larger harvest per hectare.

  1. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  2. Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor

    Science.gov (United States)

    Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.

    2016-11-01

    Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.

  3. Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore-size distributions

    Science.gov (United States)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang

    2017-01-01

    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. The Richards equation is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. Transient laboratory evaporation experiments were conducted to observe evaporative water fluxes in the acrotelm, containing living Sphagnum moss, and a deeper layer containing decomposed moss peat. The experimental data were evaluated by inverse modeling using the Richards equation as process model for variably-saturated flow. It was tested whether water fluxes and time series of measured pressure heads during evaporation could be simulated. The results showed that the measurements could be matched very well providing the hydraulic properties are represented by a suitable model. For this, a trimodal parametrization of the underlying pore-size distribution was necessary which reflects three distinct pore systems of the Sphagnum constituted by inter-, intra-, and inner-plant water. While the traditional van Genuchten-Mualem model led to great discrepancies, the physically more comprehensive Peters-Durner-Iden model which accounts for capillary and noncapillary flow, led to a more consistent description of the observations. We conclude that the Richards equation is a valid process description for variably saturated moisture fluxes over a wide pressure range in peatlands supporting the conceptualization of the live moss as part of the vadose zone.

  4. Caesium dynamics in the peats and associated vegetation of northern Greece and northern Scotland

    International Nuclear Information System (INIS)

    Heaton, B.; Mitchell, R.D.J.; Killham, K.; Veresoglou, D.S.

    1990-01-01

    Sequential analyses have shown that Chernobyl-derived caesium has been largely retained in Greek basin peats (highly cultivated, base-rich, sedge peats) and retained/cycled in Scottish upland peats (uncultivated, base-poor, blanket peats). To investigate the mechanisms of retention and cycling in the Scottish peat/vegetation system, a laboratory experiment was carried out involving 'microcosms' intact peat cores. Festuca ovina was grown from seed in the cores prior to nebuliser-application of simulated rain containing caesium-134. The major factors investigated were competitive ion exchange from ammonium (designed to simulate animal waste inputs), freeze-thaw activity, and cropping (designed to simulate upland grazing). The effects of these factors are discussed in relation to the physio-cochemical and biological properties of the peat and vegetation and to our observations of the movement of caesium in the field. (author)

  5. Response of tropical peat swamp forest tree species seedlings to macro nutrients

    Directory of Open Access Journals (Sweden)

    Tri Wira Yuwati

    2015-10-01

    Full Text Available Abstract Efforts of restoration of degraded tropical peat swamp forest were facing constraints due to the low available nutrient level of peat. The transplanted peat swamp forest species seedlings experienced low survival rate and poor growth performance. This study aimed to demonstrate the response of ten tropical peat swamp forest species seedlings whether climax and pioneer species to macro-nutrients addition in the nursery. The growth performance of climax and pioneer tropical peat swamp species seedlings was recorded following addition of macro nutrients of Nitrogen (N, Phosphorus(P, Potassium(K and Dolomitic limestone (CaMg. The result showed that Alstonia spatulata and Parartocarpus venenosus showed positive growth response following macro nutrients addition. This study concluded that tropical peat swamp pioneer species has lower necessity for macro-nutrients addition than tropical peat swamp climax species.

  6. An analytical protocol for the determination of total mercury concentrations in solid peat samples

    DEFF Research Database (Denmark)

    Roos-Barraclough, F; Givelet, N; Martinez-Cortizas, A

    2002-01-01

    Traditional peat sample preparation methods such as drying at high temperatures and milling may be unsuitable for Hg concentration determination in peats due to the possible presence of volatile Hg species, which could be lost during drying. Here, the effects of sample preparation and natural.......12 and 8.52 ng kg(-1) h(-1), respectively). Fertilising the peat slightly increased Hg loss (3.08 ng kg(-1) h(-1) in NPK-fertilised peat compared to 0.28 ng kg(-1) h(-1) in unfertilised peat, when averaged over all temperatures used). Homogenising samples by grinding in a machine also caused a loss of Hg....... A comparison of two Hg profiles from an Arctic peat core, measured in frozen samples and in air-dried samples, revealed that no Hg losses occurred upon air-drying. A comparison of Hg concentrations in several plant species that make up peat, showed that some species (Pinus mugo, Sphagnum recurvum...

  7. Carbon balance of rewetted and drained peat soils used for biomass production: A mesocosm study

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka

    2016-01-01

    of lower CO2 emissions without losing agricultural land. The present study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different ground water levels (GWL......), i.e., 0, 10, 20 cm below the soil surface, representing rewetted peat soils, and 30 and 40 cm below the soil surface, representing drained peat soils. Net ecosystem exchange (NEE) of CO2 and CH4 emissions were measured during the growing period of RCG (May to September) using transparent and opaque...... closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha−1) than drained peat soils (15 Mg ha−1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than drained peat...

  8. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  9. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  10. Decision making for economic development; A case study of peat and selective alternative energy developments on the island of Newfoundland

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, B. (Dept. of Mines and Energy, St. John' s, NF (Canada))

    1994-02-01

    This paper highlights the essential issues and concepts that must be understood and addressed in the performance of sound economic decision making in peat production. The desired result is the identification of a practical, yet thorough, approach to economic analysis. The paper's highlights are summarized by the following nine recommendations: clearly determine the objective; clearly determine the perspective; identify project owners; consider all relevant benefits and all relevant costs; focus on net benefits; consider the opportunity cost of alternative opportunities; take care to avoid double counting; understand and evaluate the relevant risks and recognize that economic success requires global competitiveness. 4 figs., 5 tabs.

  11. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  12. Studies on sphagnum peat. III. A quantitative study on the carbohydrate constituents of sphagnum mosses and sphagnum peat

    Energy Technology Data Exchange (ETDEWEB)

    Theander, O

    1954-01-01

    A qualitative and a quantitative investigation of the carbohydrates in two sphagnum mosses and five samples of sphagnum peat of different age and degree of huminosity has been performed. The two mosses investigated showed no significant differences. Samples of very different age but with the same degree of physical huminosity were very similar, indicating that the chief changes occur at the top of the bog and/or are determined by the conditions at the start of the humification. The total amount of carbohydrates was about 90% of the organic material in the mosses and about 65% and 35% in peats with a degree of huminosity of 3-4 and 6-7 respectively. Of the constituent sugars, fructose which occurred in the mosses, was completely absent in the peat. Another sugar, which occurs in nature as a furanoside, arabinose, disappeared almost completely during the humification. The uronic acids and galactose decreased faster, while ylose and glucose decreased at about the same rate as the total carbohydrates. Mannose and probably also rhamnose are the most stable components and accumulate during the humification. The polysaccharides in mosses and peat seem to constitute a very complex mixture. The presence of a fructan in the living moss, of a polyuronide (pectin) and a large amount of more complex polysaccharides built up of galactose, xylose, rhamnose and uronic acids is indicated. The glucose, the most important constituent, probably occurs chiefly as cellulose, the presence of which has been demonstrated by other workers. Finally the behaviour of mannose during the humification indicates the presence of a stable mannan. There is no evidence of polysaccharides formed by microorganisms in the peat.

  13. Pedochronology and development of peat bog in the environmental protection area pau-de-fruta - Diamantina, Brazil

    Directory of Open Access Journals (Sweden)

    José Ricardo da Rocha Campos

    2010-12-01

    Full Text Available In the region of the Serra do Espinhaço Meridional, peat bog is formed in hydromorphic environments developed in sunken areas on the plain surfaces with vegetation adapted to hydromorphic conditions, favoring the accumulation and preservation of organic matter. This pedoenvironment is developed on the regionally predominant quartzite rocks. Peat bog in the Environmental Protection Area - APA Pau-de-Fruta, located in the watershed of Córrego das Pedras, Diamantina,Brazil, was mapped and three representative profiles were morphologically characterized and sampled for physical, chemical and microbiological analyses. The organic matter was fractionated into fulvic acid (FA, humic acids (HA and humin (H. Two profiles were sampled to determine the radiocarbon age and δ13C. The structural organization of the three profiles is homogeneous. The first two layers consist of fibric, the two subsequent of hemic and the four deepest of sapric peat, showing that organic matter decomposition advances with depth and that the influence of mineral materials in deeper layers is greater. Physical properties were homogeneous in the profiles, but varied in the sampled layers. Chemical properties were similar in the layers, but the Ca content, sum of bases and base saturation differed between profiles. Contents of H predominated in the more soluble organic matter fractions and were accumulated at a higher rate in the surface and deeper layers, while HA levels were higher in the intermediate and FA in the deeper layers. Microbial activity did not vary among profiles and was highest in the surface layers, decreasing with depth. From the results of radiocarbon dating and isotope analysis, it was inferred that bog formation began about 20 thousand years ago and that the vegetation of the area had not changed significantly since then.

  14. Role of the energy use of peat in the Finnish energy system

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this study was to combine the current knowledge of the production and use of energy peat and of the significance of peat in the Finnish energy system. The study deals with the development, current state and future prospects of the production and use of energy peat, as well as the factors that have influenced or are influencing them. The use of peat has established its position in the Finnish energy system. Peat has traditionally been well available and thus its security of supply has been considered good. It has also been regarded as a high-quality indigenous fuel. In recent years many investments have been made in power plants using indigeneous fuels and in co-use of peat and wood. In fact, the use of the peat and wood of indigeneous fuels is very closely inter-linked and their use support one another. Regionally speaking, peat consumption is highest in North Ostrobothnia and inland. The negative effects of peat use are considered to be the high carbon dioxide factor of peat combustion and in some cases the possible effects of production on the local environment. Emissions trading, which was started at the beginning of 2005, weakens the competitiveness of peat in relation to other fuels. When the value of an emission allowance rises enough, also the use of coal may become cheaper than that of peat in installations in which peat has earlier been the main fuel. As the role of peat decreases, the effects are also reflected in the production and use of peat, and in the use of wood fuels, if the supply conditions of peat, which is used as the support and mixed fuel for wood, weaken. The low production of the rainy summer of 2004, combined with the low peat storage levels, led to difficulties in peat deliveries during the winter 2004-2005, and without the milder winter and good water situation in the Nordic countries the supply of peat would not necessarily have been sufficient to cover all demand. If the current role of peat is to be maintained, the

  15. Essential AOP

    DEFF Research Database (Denmark)

    De Fraine, Bruno; Ernst, Erik; Südholt, Mario

    2010-01-01

    Aspect-oriented programming (AOP) has produced interesting language designs, but also ad hoc semantics that needs clarification. We contribute to this clarification with a calculus that models essential AOP, both simpler and more general than existing formalizations. In AOP, advice may intercept...

  16. Highcharts essentials

    CERN Document Server

    Shahid, Bilal

    2014-01-01

    If you are a web developer with a basic knowledge of HTML, CSS, and JavaScript and want to quickly get started with this web charting technology, this is the book for you. This book will also serve as an essential guide to those who have probably used a similar library and are now looking at migrating to Highcharts.

  17. Swift essentials

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    Whether you are a seasoned Objective-C developer or new to the Xcode platform, Swift Essentials will provide you with all you need to know to get started with the language. Prior experience with iOS development is not necessary, but will be helpful to get the most out of the book.

  18. New Approach in Modelling Indonesian Peat Fire Emission

    Science.gov (United States)

    Putra, E. I.; Cochrane, M. A.; Saharjo, B.; Yokelson, R. J.; Stockwell, C.; Vetrita, Y.; Zhang, X.; Hagen, S. C.; Nurhayati, A. D.; Graham, L.

    2017-12-01

    Peat fires are a serious problem for Indonesia, producing devastating environmental effects and making the country the 3rd largest emitter of CO2. Extensive fires ravaged vast areas of peatlands in Sumatra, Kalimantan and Papua during the pronounced El-Nino of 2015, causing international concern when the resultant haze blanketed Indonesia and neighboring countries, severely impacting the health of millions of people. Our recent unprecedented in-situ studies of aerosol and gas emissions from 35 peat fires of varying depths near Palangka Raya, Central Kalimantan have documented the range and variability of emissions from these major fires. We strongly suggest revisions to previously recommended IPPC's emission factors (EFs) from peat fires, notably: CO2 (-8%), CH4 (-55%), NH3 (-86%), and CO (+39%). Our findings clearly showed that Indonesian carbon equivalent measurements (100 years) might have been 19% less than what current IPCC emission factors indicate. The results also demonstrate the toxic air quality in the area with HCN, which is almost only emitted by biomass burning, accounting for 0.28% and the carcinogenic compound formaldehyde 0.04% of emissions. However, considerable variation in emissions may exist between peat fires of different Indonesian peat formations, illustrating the need for additional regional field emissions measurements for parameterizing peatland emissions models for all of Indonesia's major peatland areas. Through the continuous mutual research collaboration between the Indonesian and USA scientists, we will implement our standardized field-based analyses of fuels, hydrology, peat burning characteristics and fire emissions to characterize the three major Indonesian peatland formations across four study provinces (Central Kalimantan, Riau, Jambi and West Papua). We will provide spatial and temporal drivers of the modeled emissions and validate them at a national level using biomass burning emissions estimations derived from Visible

  19. Sources and distribution of trace elements in Estonian peat

    Science.gov (United States)

    Orru, Hans; Orru, Mall

    2006-10-01

    This paper presents the results of the distribution of trace elements in Estonian mires. Sixty four mires, representative of the different landscape units, were analyzed for the content of 16 trace elements (Cr, Mn, Ni, Cu, Zn, and Pb using AAS; Cd by GF-AAS; Hg by the cold vapour method; and V, Co, As, Sr, Mo, Th, and U by XRF) as well as other peat characteristics (peat type, degree of humification, pH and ash content). The results of the research show that concentrations of trace elements in peat are generally low: V 3.8 ± 0.6, Cr 3.1 ± 0.2, Mn 35.1 ± 2.7, Co 0.50 ± 0.05, Ni 3.7 ± 0.2, Cu 4.4 ± 0.3, Zn 10.0 ± 0.7, As 2.4 ± 0.3, Sr 21.9 ± 0.9, Mo 1.2 ± 0.2, Cd 0.12 ± 0.01, Hg 0.05 ± 0.01, Pb 3.3 ± 0.2, Th 0.47 ± 0.05, U 1.3 ± 0.2 μg g - 1 and S 0.25 ± 0.02%. Statistical analyses on these large database showed that Co has the highest positive correlations with many elements and ash content. As, Ni, Mo, ash content and pH are also significantly correlated. The lowest abundance of most trace elements was recorded in mires fed only by precipitation (ombrotrophic), and the highest in mires fed by groundwater and springs (minerotrophic), which are situated in the flood plains of river valleys. Concentrations usually differ between the superficial, middle and bottom peat layers, but the significance decreases depending on the type of mire in the following order: transitional mires - raised bogs - fens. Differences among mire types are highest for the superficial but not significant for the basal peat layers. The use of peat with high concentrations of trace elements in agriculture, horticulture, as fuel, for water purification etc., may pose a risk for humans: via the food chain, through inhalation, drinking water etc.

  20. Trophic interactions among the heterotrophic components of plankton in man-made peat pools

    Directory of Open Access Journals (Sweden)

    Michał Niedźwiecki

    2017-03-01

    Full Text Available Man-made peat pools are permanent freshwater habitats developed due to non-commercial man-made peat extraction. Yet, they have not been widely surveyed in terms of ecosystem functioning, mainly regarding the complexity of heterotrophic components of the plankton. In this study we analysed distribution and trophic interrelations among heterotrophic plankton in man-made peat pools located in different types of peatbogs. We found that peat pools showed extreme differences in environmental conditions that occurred to be important drivers of distribution of microplankton and metazooplankton. Abundance of bacteria and protozoa showed significant differences, whereas metazooplankton was less differentiated in density among peat pools. In all peat pools stress-tolerant species of protozoa and metazoa were dominant. In each peat pool five trophic functional groups were distinguished. The abundance of lower functional trophic groups (bacteria, heterotrophic nanoflagellates (HNF and ciliates feeding on bacteria and HNF was weakly influenced by environmental drivers and was highly stable in all peat pool types. Higher functional trophic groups (naupli, omnivorous and carnivorous ciliates, cladocerans, adult copepods and copepodites were strongly influenced by environmental variables and exhibited lower stability. Our study contributes to comprehensive knowledge of the functioning of peat bogs, as our results have shown that peat pools are characterized by high stability of the lowest trophic levels, which can be crucial for energy transfer and carbon flux through food webs.

  1. Radiocarbon dating of Sphagnum cellulose from Mohos peat bog, East Carpathians

    Science.gov (United States)

    Hubay, Katalin; Braun, Mihály; Harangi, Sándor; Palcsu, László; Túri, Marianna; Rinyu, László; Molnár, Mihály

    2015-04-01

    This work focuses on building a high-resolution age-depth model for quantitative paleoclimate study from the Mohos peat bog, East Carpathians. Peats are important archives for Quaternary science, because they preserve environmental changes. To study the chronology of peat profiles the key is in the precise coring and reliable dating. However, many studies dealing with coring and radiocarbon dating of peat deposits they often shown problems with the proper methods and material. With our novel coring technique we reached undisturbed and uncompressed peat cores from the Mohos bog. A 10 meter deep peat profile was drilled in 2012 using a modified technique of a piston corer. The core presents a continuous peat profile from the last 11.500 cal. yr BP. The chronology was based on AMS radiocarbon analyses of the separated Sphagnum samples from different depths of the profile. The peat samples were wet sieved (40-280 μm) to avoid contamination by rootlets. Dry Sphagnum samples for AMS dating were prepared using the classical acid-base-acid (ABA) method completed with an oxidative bleaching step to get clean cellulose. Sphagnum cellulose samples were converted to CO2 and later graphite and measured by EnvironMICADAS accelerator mass spectrometry (AMS) in Hertelendi Laboratory (Debrecen, Hungary). Fine peat accumulation rate changes (sections with lowest accumulation values) were observed along the profile. Based on the chronology in further studies we want to focus special intervals to investigate environmental changes in the Holocene. Key words: peat, radiocarbon, cellulose

  2. The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests

    Science.gov (United States)

    Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri

    2017-12-01

    Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.

  3. The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows : the roles of peat type and land use

    NARCIS (Netherlands)

    Brouns, Karlijn; Verhoeven, Jos T A; Hefting, Mariet M

    2014-01-01

    Peat soils comprise a large part of the western and northern Netherlands. Drainage for agriculture has caused increased soil aeration which has stimulated decomposition and, hence, soil subsidence, currently amounting to 1-2 cm/yr. River water is supplied to these peat areas in summer to prevent

  4. Three-dimensional distribution of organic matter in coastal-deltaic peat : Implications for subsidence and carbon dioxide emissions by human-induced peat oxidation

    NARCIS (Netherlands)

    Koster, K.; Stafleu, J.; Cohen, K. M.; Stouthamer, E.; Busschers, Freek S.; Middelkoop, H.

    2018-01-01

    Human-induced groundwater level lowering in the Holocene coastal-deltaic plain of the Netherlands causes oxidation of peat organic matter, resulting in land subsidence and carbon dioxide (CO2) emissions. Here, a three-dimensional (3D) analysis of the distribution of the remaining peat organic matter

  5. Peat Deposits at Bijoynagar Upazila, Brahmanbaria District, Bangladesh : A Potential Local Source of Energy

    Directory of Open Access Journals (Sweden)

    Md. Nazwanul Haque

    2013-12-01

    Full Text Available Bangladesh with about 160 million people in land of 147,570 square km which is one of the most densely populated countries in the world. With the increase of population and diversifying of economic activities, Bangladesh has become an energy hunger country. Presently, 80% peoples depend on non commercial energy sources living in the rural area. Peat exploration at Bijoynagar Upazila, Brahmanbaria district. Bangladesh has been carried out for reserve estimation and its economic aspect evaluation. Total peat exploration area is about 4000 hectare. In explored area, nine peat bearing locations are identified in which peat deposits are observed from 0.152 to 3.0 meters below the surface. Total reserves are about 32.61 million tons in wet condition and 13.044 million tons in dry conditions. The peat is grayish brown to grayish black, fibrous, less to medium compacted and water content is about 60-80 % in wet condition. Chemical analyses of the peat shows that fixed carbon content is 15-25 %, Sulfur is 0.1 to 0.8 % and calorific value of the peat is 3000-7000 BTU. The peat of the area is medium to good quality. The peat may be extracted by open peat mining because of its surface to near surface position. This peat can be conveniently used for small industrial and domestic purpose as briquette and compressed tablet form to meet the growing energy demand of the area. But most of the people of Bijoynagar area live on agriculture. So, peat extraction and related geo-environmental degradation may change living style of the people. Proper land use planning, environmental management and policy should be taken before peat extraction.

  6. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    Science.gov (United States)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  7. Simulation of peat accumulation: an aid in carbon cycling research

    Energy Technology Data Exchange (ETDEWEB)

    Dierendonck, M.C. van (Amsterdam Univ. (Netherlands). Hugo de Vries Laboratory)

    1992-01-01

    Some preliminary results of a technique used to compare primary production and peat accumulation data mainly from published sources and the results of a peat accumulation simulation model are presented. Emphasis is on differences among micro-sites (hummock, lawn, hollow and pool) and among various Sphagnum species (S. fuscum, S. magellanicum, S. cuspidatum and S. balticum) associated with raised bogs. The primary production of lawns and pools were significantly greater than those of hummocks and hollows. Sphagnum balticum had the highest primary production (mean=339 g/m[sup -]2a[sup -1]) Over 90 % of the primary production of Sphagnum fuscum is accumulated while for the other Sphagnum species, the value is <50 %. The data are used in a simulation model to show the influence of doubling of rainfall on primary production over a 50 year period

  8. Isolation of peat swamp forest foliar endophyte fungi as biofertilizer

    Directory of Open Access Journals (Sweden)

    Safinah Surya Hakim

    2017-01-01

    Full Text Available Peatland restoration activity is facing many obstacles, particularly in planting techniques and poor nutrient in peat soil. Naturally, endophytic fungi are abundant and have great potential as biofertilizer. This research investigates the potential endophytic fungi isolated from leaves of peat swamp tree species for biofertilizer. Research activities include: exploration, in vitro test to examine the phosphate solubilization and identification. Result showed that there were 360 leave segments collected from 4 sampling locations. The colonization percentage of 222 isolates ranged from 52.17% - 60.17%. Fifty seven morphospecies were selected from 222 isolates. Twelve isolates demonstrated ability to produce clear zones and ten isolates were selected for identification. It is concluded that twelve isolated demonstrated potential ability to produce clear zone and Penicillum citrinum isolate P3.10 was identified as an isolate that show the highest potential ability as a biofertilizer

  9. [The release of biologically active compounds from peat peloids].

    Science.gov (United States)

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated.

  10. Simulation of peat accumulation: an aid in carbon cycling research

    International Nuclear Information System (INIS)

    Dierendonck, M.C. van

    1992-01-01

    Some preliminary results of a technique used to compare primary production and peat accumulation data mainly from published sources and the results of a peat accumulation simulation model are presented. Emphasis is on differences among micro-sites (hummock, lawn, hollow and pool) and among various Sphagnum species (S. fuscum, S. magellanicum, S. cuspidatum and S. balticum) associated with raised bogs. The primary production of lawns and pools were significantly greater than those of hummocks and hollows. Sphagnum balticum had the highest primary production (mean=339 g/m - 2a -1 ) Over 90 % of the primary production of Sphagnum fuscum is accumulated while for the other Sphagnum species, the value is <50 %. The data are used in a simulation model to show the influence of doubling of rainfall on primary production over a 50 year period

  11. Pollution abatement with peat onsite wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J L [University of Maine, Orano, ME (United States). Dept. of Civil Engineering

    1994-02-01

    The purpose of onsite wastewater treatment is to provide economical removal of dissolved nutrients, pathogens and other contaminates from septic tank effluent to avoid the pollution of groundwater or creation of other health hazards. The effective use of conventional soil adsorption systems is limited by a number of factors including site characteristics, soil type and condition, and the proximity of the system to surface waters or a source of potable water. On adverse sites, where the use of conventional subsurface soil adsorption systems does not provide acceptable levels of treatment, Sphagnum peat may be used as an economical method of onsite wastewater treatment. The peat system, when properly designed and constructed, is relatively simple to install, requires minimal energy and maintenance, and provides a high quality effluent without additional disinfection. 19 refs.

  12. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  13. Emissions of peat production into watercourses are decreasing

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The emissions of peat production into watercourses are tried to be decreased by chemical addition into drying waters of peat production area. In the chemical adding test, which is a part of the Aqua Peat-95 research program, carried out in Haapasuo peat production area in Leivonmaeki commune, was used techniques commonly used in purification of drinking water. The method is based on precipitation of dissolved substances from mire water using ferric sulphate, and settling of formed precipitate in multi-stage settling pond system. The ferric sulphate decreases the pH of the water by 2.0-2.5 units, so the acidified water is neutralized with sodium hydroxide before leading into watercourses. In Haapavesi the drying water is pumped from the collecting pond, built in main ditch, via chemical adding station into settling pond, from which the water flows into compartment ponds and from there into lake Rutajaervi. The ferric sulphate is added into water in sewage pipe, mounted after the pumping station, there it is mixed well into water coming from the mire due to strong and turbulent flow. The chemical adding test was started in 26th of may. The concentrations of the chemicals were varied during the test in order to find the optimal dosage, the pond volume and the delay of water in the ponds have been increased, the pump power has been adjusted and the mixing of the chemicals have been improved in order to achieve the right efficiency. The price of the chemical adding is not yet available, but the chemical costs in Haapasuo mire in 1992 were about 0.30 FIM/pumped water m 3 , which equals to about 500 FIM/d. The equipment costs and the utilization and maintenance costs of the equipment must be added into this

  14. Carbonization process for peat, wood, shale, and the like

    Energy Technology Data Exchange (ETDEWEB)

    1924-10-21

    A carbonization process for peat, wood, shale and the like, in intermittently operating shaft furnaces with leading in of hot gases through the charge from over to under, is characterized in that the charge is brought in for a carbonization action in single layers in such time intervals under the same distances of heating gas paths, that every fresh layer is brought first only to about 200/sup 0/ C, then to the highest layer where the carbonization is carried out completely.

  15. Old carbon efflux from tropical peat swamp drainage waters

    Science.gov (United States)

    Vihermaa, Leena; Waldron, Susan; Evers, Stephanie; Garnett, Mark; Newton, Jason

    2014-05-01

    Tropical peatlands constitute ~12% of the global peatland carbon pool, and of this 10% is in Malaysia1. Due to rising demand for food and biofuels, large areas of peat swamp forest ecosystems have been converted to plantation in Southeast Asia and are being subjected to degradation, drainage and fire, changing their carbon fluxes eg.2,3. Dissolved organic carbon (DOC) lost from disturbed tropical peat can be derived from deep within the peat column and be aged from centuries to millennia4 contributing to aquatic release and cycling of old carbon. Here we present the results of a field campaign to the Raja Musa Peat Swamp Forest Reserve in N. Selangor Malaysia, which has been selectively logged for 80 years before being granted timber reserve status. We measured CO2 and CH4efflux rates from drainage systems with different treatment history, and radiocarbon dated the evasion CO2 and associated [DOC]. We also collected water chemistry and stable isotope data from the sites. During our sampling in the dry season CO2 efflux rates ranged from 0.8 - 13.6 μmol m-2 s-1. Sediments in the channel bottom contained CH4 that appeared to be primarily lost by ebullition, leading to sporadic CH4 efflux. However, dissolved CH4 was also observed in water samples collected from these systems. The CO2 efflux was aged up to 582±37 years BP (0 BP = AD 1950) with the associated DOC aged 495±35 years BP. Both DOC and evasion CO2 were most 14C-enriched (i.e. younger) at the least disturbed site, and implied a substantial component of recently fixed carbon. In contrast, CO2 and DOC from the other sites had older 14C ages, indicating disturbance as the trigger for the loss of old carbon. 1Page et al., 2010 2Hooijer et al., 2010 3Kimberly et al., 2012 4Moore et al., 2013

  16. Development of an underdrained peat production field; Salaojitetun tuotantokentaen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrand, K.

    1996-12-31

    The objective of the study is to examine the possibilities to improve the drainage of a peat production field using a numerical groundwater model. The effects of the ditch spacing and the drainage method on the groundwater level are studied. The way of ditching for basic drainage of virgin peatland, and the calculation of possible additional ditching in peat production fields, including the shallow areas, are considered. Also, the possibility of increasing the customary ditch spacing of 20 m is examined. The objective for drainage techniques is to cut the time for peatland preparation in half, and to increase the space between open field ditches from the present 20 meters to 60 - 80 meters by making use of underdrains. In this way it is possible to reduce the peat production costs about 5%. In 1995 the numerical groundwater model has been validated at Pajusuo drainage area. According to the comparison of the groundwater level calculated with the model and measured at Pajusuo, the agreement was very satisfactory. Uncertainty in the calculations derived mainly from the difficulties of assessing the pF curve and the hydraulic conductivity of the soil, as well as the water-carrying capacity of the mole drains. In general one can predict the groundwater level with an accuracy of +- 10 cm. Also the possibility to increase the hydraulic conductivity of peat by a chemical additive was studied. Adding 3 kg chemical per 1 kg dry matter it was possible to increase the hydraulic conductivity over twenty fold. In this way it is possible to construct vertical underdrains to improve the infiltration after rainfall

  17. Radioactive materials in ashes from peat fired plants

    International Nuclear Information System (INIS)

    Erlandsson, B.; Hedvall, R.

    1984-11-01

    Measurements of the gamma radiation have been used for determination of radioactive materials in peat ashes from five Swedish heating plants. The results show that the amount of radioactive materials was almost the same in all samples. The concentration of 125 Sb, 137 Cs, 144 Cs and 155 Eu were in good conformity with the concentrations found in the environment. The 235 U-concentration was hardly possible to measure. (Edv)

  18. Leaf size indices and structure of the peat swamp forest

    Directory of Open Access Journals (Sweden)

    L.G. Aribal

    2017-12-01

    Full Text Available Leaf size indices of the tree species in the peatland of Agusan del Sur in Mindanao in Philippines was examined to deduce the variation of forest structure and observed forest zonation.  Using raunkiaer and webb’s leaf size classification, the leaf morphometrics of seven tree species consistently found on the established sampling plots were determined.  The species includes Ternstroemia philippinensis Merr., Polyscias aherniana Merr. Lowry and G.M. Plunkett, Calophyllum sclerophyllum Vesque, Fagraea racemosa Jack, Ilex cymosa Blume, Syzygium tenuirame (Miq. Merr. and Tristaniopsis micrantha Merr. Peter G.Wilson and J.T.Waterh.The LSI were correlated against the variables of the peat physico-chemical properties (such as bulk density, acrotelm thickness, peat depth, total organic carbon, nitrogen, phosphorus, and potassium, pH; water (pH, ammonium, nitrate, phosphate; and leaf tissue elements (nitrogen, phosphorus and potassium.  Result showed a decreasing leaf size indices and a three leaf size category consisting of mesophyllous, mesophyllous-notophyllous and microphyllous were observed which corresponds to the structure of vegetation i.e., from the tall-pole forest having the biggest average leaf area of 6,142.29 mm2 to the pygmy forest with average leaf area of 1,670.10 mm2.  Such decreased leaf size indices were strongly correlated to soil nitrogen, acrotelm thickness, peat depth, phosphate in water, nitrogen and phosphorus in the plant tissue.

  19. Carbon dioxide emission from raised bog surface after peat extraction

    Directory of Open Access Journals (Sweden)

    Turbiak Janusz

    2017-12-01

    Full Text Available Research on CO2 emission from a raised bog after completion of peat extraction was performed in 2011–2013. CO2 emissions were determined by the chamber method. Twenty years after the termination of peat extraction, the bog surface was almost entirely devoid of plants. CO2 emission from the bog varied depending on temperature and water conditions and was 418 mg·m−2·h−1 on average during the research period. CO2 losses on the raised bog were on average 19.7 Mg·ha−1·year−1 during the research period which corresponded to a carbon loss of 5.37 Mg·ha−1·year−1 or mineralisation of 9.6 Mg·ha−1·year−1 of organic mass of 56% carbon content. It is possible to reduce organic mass losses and CO2 emission to the atmosphere from the bog surface after peat extraction has been terminated by reconstruction of initial water conditions, i.e. retaining a high ground water level and restoration of aquatic plant communities.

  20. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  1. Sulfur Speciation in Peat: a Time-zero Signature for the " Spruce and Peatland Responses Under Climate and Environmental Change" Experiment

    Science.gov (United States)

    Furman, O.; Toner, B. M.; Sebestyen, S. D.; Kolka, R. K.; Nater, E. A.

    2014-12-01

    As part of the "Spruce and Peatland Responses Under Climate and Environmental Change" (SPRUCE) experiment, we made initial measurements of sulfur speciation in peat. These observations represent a "time-zero" relative to the intended soil warming experiment which begins in 2015. Total sulfur and sulfur speciation were measured in peat cores (solid phase) from nine plots (hollows and hummocks) to a depth of 2 m. Peat samples were packed under nitrogen and frozen in the field immediately after collection. All subsequent sample storage, handling, and processing were conducted under inert gas. Sulfur speciation was measured using bulk sulfur 1s X-ray absorption near edge structure (XANES) spectroscopy at the SXRMB instrument at the Canadian Light Source, Saskatoon, SK, Canada and at the 9-BM instrument, Advanced Photon Source, Argonne National Laboratory, IL, USA. Total sulfur concentrations ranged from 968 to 4077 mg sulfur / kg dry peat. Sulfur content increased with depth from 2 g sulfur / m2 in the 0-10 cm increment to a maximum value of 38 g sulfur / m2 in the 50-60 cm increment. These sulfur loadings produced high quality XANES spectra. The nine cores exhibited reproducible trends with depth in both total sulfur and specific sulfur species; however, variability in sulfur speciation was greatest in the top 40 cm. All sulfur detected within the peat solids was in an organic form. The most abundant sulfur species group was composed of organic mono-sulfide and thiol forms, representing approximately half of the total sulfur at all depths. Sulfonate and ester-sulfate species were 10-15 mol% of sulfur and exhibited low variability with depth. A subsurface maximum in organic di-sulfide was observed in the 20-30 cm depth increment, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Quantification of major sulfur pools is important for the SPRUCE experiment as they are likely to be indicators of changes in the

  2. Effects of Unsaturated Microtopography on Nitrate Concentrations in Tundra Ecosystems: Examples from Polygonal Terrain and Degraded Peat Plateaus

    Science.gov (United States)

    Heikoop, J. M.; Arendt, C. A.; Newman, B. D.; Charsley-Groffman, L.; Perkins, G.; Wilson, C. J.; Wullschleger, S.

    2017-12-01

    Under the auspices of the Next Generation Ecosystem Experiment - Arctic, we have been studying hydrogeochemical signals in Alaskan tundra ecosystems underlain by continuous permafrost (Barrow Environmental Observatory (BEO)) and discontinuous permafrost (Seward Peninsula). The Barrow site comprises largely saturated tundra associated with the low gradient Arctic Coastal Plain. Polygonal microtopography, however, can result in slightly raised areas that are unsaturated. In these areas we have previously demonstrated production and accumulation of nitrate, which, based on nitrate isotopic analysis, derives from microbial degradation. Our Seward Peninsula site is located in a much steeper and generally well-drained watershed. In lower-gradient areas at the top and bottom of the watershed, however, the tundra is generally saturated, likely because of the presence of underlying discontinuous permafrost inhibiting infiltration. These settings also contain microtopographic features, though in the form of degraded peat plateaus surrounded by wet graminoid sag ponds. Despite being very different microtopographic features in a very different setting with distinct vegetation, qualitatively similar nitrate accumulation patterns as seen in polygonal terrain were observed. The highest nitrate pore water concentration observed in an unsaturated peat plateau was approximately 5 mg/L, whereas subsurface pore water concentrations in surrounding sag ponds were generally below the limit of detection. Nitrate isotopes indicate this nitrate results from microbial mineralization and nitrification based on comparison to the nitrate isotopic composition of reduced nitrogen sources in the environment and the oxygen isotope composition of site pore water. Nitrate concentrations were most similar to those found in low-center polygon rims and flat-centered polygon centers at the BEO, but were significantly lower than the maximum concentrations seen in the highest and driest polygonal features

  3. Palaeoecology of Holocene peat deposits from Nordvestø, north-west Greenland

    DEFF Research Database (Denmark)

    Bennike, Ole; Goodsite, Michael Evan; Heinemeier, Jan

    2008-01-01

    Two extensive peat deposits on Nordvestø, between Greenland and Canada, were examined for macroscopic remains of plants and animals. One of the peat deposits accumulated during the period from c. 7,100 to 5,100 cal. years BP. This peat is guanogenic and completely dominated by the coprophilous...... bryophyte Aplodon wormskioldii, and also contains frequent remains of feathers. The peat formed close to a large former sea bird colony, probably a puffin (Fratercula arctica) colony. Puffins are now rare in the region, but the population may have been larger during the mid Holocene, when the sea was ice......-free for a longer period than at present. The other peat deposit is dated to c. 9,300-7,400 cal. years BP, it is minerogenic and the macrofossils reflect deposition in a shallow, richly vegetated pond. This peat formed during warmer summers than at present....

  4. Linux Essentials

    CERN Document Server

    Smith, Roderick W

    2012-01-01

    A unique, full-color introduction to Linux fundamentals Serving as a low-cost, secure alternative to expensive operating systems, Linux is a UNIX-based, open source operating system. Full-color and concise, this beginner's guide takes a learning-by-doing approach to understanding the essentials of Linux. Each chapter begins by clearly identifying what you will learn in the chapter, followed by a straightforward discussion of concepts that leads you right into hands-on tutorials. Chapters conclude with additional exercises and review questions, allowing you to reinforce and measure your underst

  5. Essential SQLAlchemy

    CERN Document Server

    Copeland, Rick

    2008-01-01

    Essential SQLAlchemy introduces a high-level open-source code library that makes it easier for Python programmers to access relational databases such as Oracle, DB2, MySQL, PostgreSQL, and SQLite. SQLAlchemy has become increasingly popular since its release, but it still lacks good offline documentation. This practical book fills the gap, and because a developer wrote it, you get an objective look at SQLAlchemy's tools rather than an advocate's description of all the "cool" features. SQLAlchemy includes both a database server-independent SQL expression language and an object-relational mappe

  6. Prezi essentials

    CERN Document Server

    Sinclair, Domi

    2014-01-01

    If you want to learn Prezi, and specifically design within Prezi, this is the book for you. Perhaps you already know a bit about Prezi but have never used it, or perhaps you have used Prezi before but want to learn how to incorporate your own custom design elements. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic design concepts and the use of Prezi, but prior experience is not essential.

  7. Carbohydrates and phenols as quantitative molecular vegetation proxies in peats

    Science.gov (United States)

    Kaiser, K.; Benner, R. H.

    2012-12-01

    Vegetation in peatlands is intricately linked to local environmental conditions and climate. Here we use chemical analyses of carbohydrates and phenols to reconstruct paleovegetation in peat cores collected from 56.8°N (SIB04), 58.4°N (SIB06), 63.8°N (G137) and 66.5°N (E113) in the Western Siberian Lowland. Lignin phenols (vanillyl and syringyl phenols) were sensitive biomarkers for vascular plant contributions and provided additional information on the relative contributions of angiosperm and gymnosperm plants. Specific neutral sugar compositions allowed identification of sphagnum mosses, sedges (Cyperaceae) and lichens. Hydroxyphenols released by CuO oxidation were useful tracers of sphagnum moss contributions. The three independent molecular proxies were calibrated with a diverse group of peat-forming plants to yield quantitative estimates (%C) of vascular plant, sphagnum moss and lichen contributions in peat core samples. Correlation analysis indicated the three molecular proxies produced fairly similar results for paleovegetation compositions, generally within the error interval of each approach (≤26%). The lignin-based method generally lead to higher estimates of vascular plant vegetation. Several significant deviations were also observed due to different reactivities of carbohydrate and phenolic polymers during peat decomposition. Rapid vegetation changes on timescales of 50-200 years were observed in the southern cores SIB04 and SIB06 over the last 2000 years. Vanillyl and syringyl phenol ratios indicated these vegetation changes were largely due to varying inputs of angiosperm and gymnosperm plants. The northern permafrost cores G137 and E113 showed a more stable development. Lichens briefly replaced sphagnum mosses and vascular plants in both of these cores. Shifts in vegetation did not correlate well with Northern hemisphere climate variability over the last 2000 years. This suggested that direct climate forcing of peatland dynamics was overridden

  8. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  9. Peat soil composition as indicator of plants growth environment

    Science.gov (United States)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    Exhausted milled peat areas have been left behind as a result of decades-lasting intensive peat production in Estonia and Europe. According to different data there in Estonia is 10 000 - 15 000 ha of exhausted milled peat areas that should be vegetated. Restoration using Sphagnum species is most advantageous, as it creates ecological conditions closest to the natural succession towards a natural bog area. It is also thought that the large scale translocation of vegetation from intact bogs, as used in some Canadian restoration trials, is not applicable in most of European sites due to limited availability of suitable donor areas. Another possibility to reduce the CO2 emission in these areas is their use for cultivation of species that requires minimum agrotechnical measures exploitation. It is found by experiments that it is possible to establish on Vaccinium species for revegetation of exhausted milled peat areas. Several physiological activity of the plant is regulated by the number of phytohormones. These substances in low quantities move within the plant from a site of production to a site of action. Phytohormone, indole-3-acetic acid (IAA) is formed in soils from tryptophane by enzymatic conversion. This compound seems to play an important function in nature as result to its influence in regulation of plant growth and development. A principal feature of IAA is its ability to affect growth, development and health of plants. This compound activates root morphology and metabolic changes in the host plant. The physiological impact of this substance is involved in cell elongation, apical dominance, root initiation, parthenocarpy, abscission, callus formation and the respiration. The investigation areas are located in the county of Tartu (58˚ 22' N, 26˚ 43' E), in the southern part of Estonia. The soil of the experimental fields belongs according to the WRB soil classification, to the soils subgroups of Fibri-Dystric Histosols. The investigation areas were

  10. Low-rank coal study: national needs for resource development. Volume 6. Peat

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.

  11. Peatlands in Finland accumulate carbon more than the peat production and utilization liberates it

    International Nuclear Information System (INIS)

    Maentymaa, E.

    1997-01-01

    The peatlands in Finland bind more carbon dioxide then it is liberated into the air in peat combustion and production. Because the carbon accumulation into peatlands is higher than that of liberation, the peat deposits increase all the time in spite of peat economy. The emissions of methane, which is tens of times worse greenhouse gas then CO 2 , have decreased by 40 % due to forest drainage. Very small amounts of methane is released into the atmosphere from peat production sites. This is proven by the national SILMU research programme investigating the atmospheric changes

  12. Ecology of Coom Rigg Moss, Northumberland. II. The chemistry of peat profiles and the development of the bog system

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, S B

    1964-01-01

    Chemical analyses of peat profiles are described. They demonstrate changes in peat composition at the different stages in the bog's development from the minerotrophic conditions under which fen peat was formed to ombrotrophic conditions under which sphagnum-eriophorum peat was formed. The peats of the eastern sector of the bog are shown to have been minerotrophic until a comparatively late stage in the bog's development due to the surrounding topography allowing phragmites to persist even till the present day. Increased silica and aluminum in the upper peat layers are discussed in terms of increased deposition brought about by the activities of man through deforestation and the production of open habitats.

  13. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  14. Microbial Activity in Peat Soil Treated With Ordinary Portland Cement (OPC) and Coal Ashes

    Science.gov (United States)

    Rahman, J. A.; Mohamed, R. M. S. R.; Al-Gheethi, A. A.

    2018-04-01

    Peat soil is a cumulative of decayed plant fragment which developed as a result of microbial activity. The microbes degrade the organic matter in the peat soils by the production of hydrolysis enzyme. The least decomposed peat, known as fibric peat has big particles and retain lots of water. This made peat having high moisture content, up to 1500 %. The most decomposed peat known as sapric peat having fines particles and less void ratio. The present study aimed to understand the effects of solidification process on the bacterial growth and cellulase (CMCase) enzyme activity. Two types of mixing were designed for fibric, hemic and sapric peats; (i) Ordinary Portland cement (OPC) at an equal amount of dry peat, with 25 % of fly ash (FA) and total of coarse particle, a combination of bottom ash and fibre of 22 – 34 %, (ii) fibric peat was using water-to-binder ratio (w/b) = 1, 50% OPC, 25 % bottom ash (BA) and 25 % FA. For hemic and sapric peat, w/b=3 with 50 % OPC and 50 % BA were used. All samples were prepared triplicates, and were cured for 7, 14, 28 and 56 days in a closed container at room temperature. The results revealed that the first mix design giving a continuous strength development. However, the second mix design shows a decreased in strength pattern after day 28. The influence of the environment factors such as alkaline pH, reduction of the water content and peat temperature has no significant on the reduction amount of native microbes in the peat. The microbes survived in the solidified peat but the amount of microbes were found reduced for all types of mixing Fibric Mixed 1 (FM1), Hemic Mixed 1(HM1) and Sapric Mixed 1 (SM1) were having good strength increment for about 330 – 1427 % with enzymatic activity recorded even after D56. Nevertheless, with increase in the strength development through curing days, the enzymatic activities were reduced. For the time being, it can be concluded that the microbes have the ability to adapt with new environment

  15. Coal-peat compositions for co-combustion in local boilers

    Directory of Open Access Journals (Sweden)

    А. В. Михайлов

    2016-08-01

    Full Text Available In article results of experiments on creation of coal and peat fuel compositions for burning in solid-fuel boilers are described. The main objective of research consisted in development of combination of coal dust and natural peat without binding additives. The role of peat consists that it increases efficiency of process of granulation, being natural binding. The method of granulation allows to utilize waste of the coal industry. Joint burning of two types of fuel – coal dust and peat reduces emission of sulfur dioxides. The cost of peat raw materials is lower, than artificial binding, applied to briquetting of coal dust. The composition of mix of coal dust and peat varied in the ratio 2:1, 1:1 and 1:2 in volume ratio at humidity of mix before extrusion of 65 %. In the course of preparatory operations of coal raw materials its crushing and sifting through sieve of 24 mesh (0,707 mm was carried out. Procedure of hashing of samples of coal and peat was carried out before receiving homogeneous mixture. After hashing mix was located in piston press for receiving granules. Coal dust and wet peat pass semifixed extrusion on piston press with formation of cylindrical granules with a diameter of 16 mm. After extrusion of granule are dried to operational humidity of 25 %. Coal and peat fuel granules showed sufficient mechanical strength for transportation and power feed in solid-fuel boilers. Burning of coal and peat fuel granules in vitro at temperature of 800 °C does not lead to ashes agglomeration. The conducted preliminary researches showed prospects of utilization of coal waste by granulation method in mix with natural peat.

  16. Distribution of sulphur and trace elements in peat. A literature survey with some additional sulphur analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S; Karhu, M

    1981-01-01

    A survey on the literature and contemporary research was made on peat sulphur and trace element studies. Marked variance between different peatlands and peat types has been noted. The available information is still inadequate for generalizations or statistical analysis mainly due to methodological variations and temporal and spatial variations in results. At the moment, the criteria applied in peatland inventories and evaluations are inadequate with respect to peat quality determinations. To some extent the quality of fuel peat should be determined in a mire inventory prior to peatland utilization. The areas over sulphide clay and some sulphate depositions may considerably increase the peat sulphur content. A proposal has been made to include the sulphur content monitoring in the cases where it exceeds 0.3 per cent. The trace elements may also bring about an increase in peat emissions if the deepest peat layers or polluted layers are burnt. The most important elements in this respect are Al, Fe, Mn, Pb, Zn, V, Ni, Hg, Cu, Cr, as well as As and U. The first ten because of the relatively high concentrations and last two because of pollution or toxocity and ore deposit factors. The peat hydrogen ion concentration has a positive correlation with copper and vanadium. The correlation is positive with the cobalt and nickel contents when the pH is low, and negative at a higher pH. A general peat type correlation shows maximum trace element contents in basal Carex peats with subsoil effects. The peat ash content and the Ti, Pb, V, Cr, Ni, and S contents have positive correlations. (Refs. 290).

  17. Distribution of sulphur and trace elements in peat. [Literature survey with some additional sulphur analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S; Karhu, M

    1981-01-01

    A survey on the literature and contemporary research was made on peat sulphur and trace element studies. Marked variance between different peatlands and peat types has been noted. The available information is still inadequate for generalizations or statistical analysis mainly due to methodological variations and temporal and spatial variations in results. At the moment, the criteria applied in peatland inventories and evaluations are inadequate with respect to peat quality determinations. To some extent the quality of fuel peat should be determined in a mire inventory prior to peatland utilization. The areas over sulphide clay and some sulphate depositions may considerably increase the peat sulphur content. A proposal has been made to include the sulphur content monitoring in the cases where it exceeds 0.3 per cent. The trace elements may also bring about an increase in peat emissions if the deepest peat layers or polluted layers are burnt. The most important elements in this respect are Al, Fe, Mn, Pb, Zn, V, Ni, Hg, Cu, Cr, as well as As and U. The first ten because of the relatively high concentrations and last two because of pollution or toxocity and ore deposit factors. The peat hydrogen ion concentration has a positive correlation with copper and vanadium. The correlation is positive with the cobalt and nickel contents when the pH is low, and negative at a higher pH. A general peat type correlation shows maximum trace element contents in basal Carex peats with subsoil effects. The peat ash content and the Ti, Pb, V, Cr, Ni and S contents have positive correlations.

  18. The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska

    Science.gov (United States)

    Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.

    2017-12-01

    Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in

  19. The contribution to the greenhouse effect from the use of peat and coal for energy

    International Nuclear Information System (INIS)

    Zetterberg, L.; Klemedtsson, L.

    1996-06-01

    Emissions and uptake of greenhouse gases have been estimated for the production and combustion of peat in four Swedish regions. Net emissions have been defined as the sum of emissions and uptake from mining, loading, transportation, combustion and forestation of the peat land minus emissions from the virgin peat land. Cropping of the forested peat land is not considered. Net CO 2 -emissions from the production and combustion of peat is estimated to be 87 g/MJ in the regions Bergslagen and Smaaland, 99 g/MJ in Haerjedalen and 95 g/MJ in Vaesterbotten kustland. Net N 2 -emissions are estimated to be 66 mg/MJ for all regions. Due to the natural methane emissions from a virgin peat bog, the production and combustion of peat reduces net CH 4 -emissions by 0.9 g CH 4 /MJ peat. A hypothetical case has been studied where all the drained peat areas are forested (instead of about half of the area as it is today). According to this scenario the net CO 2 -emissions are reduced from 87 to 57 g CO 2 /MJ peat for Bergslagen. As a comparison, CO 2 -emissions from the combustion of coal are ca 92 g CO 2 /MJ. Based on the emissions inventory the contribution to the greenhouse effect has been calculated in terms of the contribution to atmospheric radiative forcing. In conclusion, the contribution to the greenhouse effect from the use of peat for energy from Southern Sweden (Smaaland and Bergslagen) is ca 20% lower than the contribution from coal, counted as an average over 100 years after the mining starts. Corresponding figures for Northern Sweden (Haerjedalen and Vaesterbotten kustland) is ca 15% lower than coal. 21 refs, 12 figs, 7 tabs

  20. Sedimentology of Fraser River delta peat deposits: a modern analogue for some deltaic coals

    Energy Technology Data Exchange (ETDEWEB)

    Styan, W B; Bustin, R M

    1984-01-01

    On the Recent lobe of the Fraser River delta, peat accumulation has actively occurred on the distal lower delta plain, the transition between upper and lower delta plains, and the alluvial plain. Distal lower delta plain peats developed from widespread salt and brackish marshes and were not influenced appreciably by fluvial activity. Lateral development of the marsh facies were controlled by compaction and eustatic sea-level rise. The resulting thin, discontinuous peat network contains numerous silty clay partings and high concentrations of sulphur. Freshwater marsh facies formed but were later in part eroded and altered by transgressing marine waters. Peats overlie a thin, fluvial, fining-upward sequence which in turn overlies a thick, coarsening-upward, prodelta-delta front succession. Lower- upper delta plain peats initially developed from interdistributary brackish marshes and were later fluvially influenced as the delta prograded. Thickest peats occur in areas where distributary channels were abandoned earliest. Sphagnum biofacies replace sedge-grass-dominated communities except along active channel margins, where the sedge-grass facies is intercalated with overbank and splay deposits. Peats are underlain by a relatively thin sequence of fluvial deposits which in turn is underlain by a major coarsening-upward delta front and pro-delta sequence. Alluvial plain peats accumulated in back swamp environments of the flood plain. Earliest sedge-clay and gyttja peats developed over thin fining-upward fluvial cycles or are interlaminated with fine-grained flood deposits. Thickest accumulations occur where peat fills small avulsed flood channels. Overlying sedge-grass and sphagnum biofacies are horizontally stratified and commonly have sharp boundaries with fine-grained flood sediments. At active channel margins, however, sedge-grass peats are intercalated with natural levee deposits consisting of silty clay.

  1. Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda

    International Nuclear Information System (INIS)

    Hakizimana, Jean de Dieu K.; Kim, Hyung-Taek

    2016-01-01

    Commercialization of peat briquetting technology was analyzed to know whether the technology is economically viable or not compared to commercialization of charcoal. The investigation of economic viability was assessed from raw-peat production to briquetting technologies. The briquettes were made by naturally dried of peat from Bisika, Bahimba, Ndongozi and Nyirabirande bogs, through a rotary pulverizer and a briquette press; they were carbonized into furnace at 450 °C to reduce its health effects. The burning rate of peat briquettes made varied from 0.178 kg/hour to 0.222 kg/hour. Ash content varying between 3 and 7.2 percent was also observed. The results showed that peat briquettes can be sold at USD0.18 per unit, with a total NPV of USD17.2 million. However, as the NPV tends to be zero, the selling price would be approximately USD0.155 per briquette. Monthly charcoal expenses were about USD23.20/household compared to a per-household cost of USD16.20/month of peat briquettes consumption; the supplanting of charcoal by peat briquettes would help the average Rwandan household reduce its monthly expenses by 30 percent. Peat briquettes utilization as cooking fuel in Rwanda could save 0.05 percent of CO_2 and more than 99 percent of CH_4 emissions, compared to charcoal emissions. - Highlights: • A technical process for peat production and peat briquetting. • An efficiency test of carbonized briquettes. • Commercialization of peat briquettes is compared to commercialization of charcoal. • Opportunities for greenhouse gas emissions reduction.

  2. Evaluation of the Seismic Characterision of Select Engineered Nanoparticles in Saturated Glass Beads

    Science.gov (United States)

    A laboratory testing apparatus was developed for the study of seismic body wave propagation through nanoparticles dispersed in pore fluid that is essentially saturating glass beads. First, the responses of water-saturated glass bead specimens were studied to establish baseline si...

  3. Import of biofuels and peat; Import av biobraenslen och torv

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, N

    1993-06-01

    In areas neighbouring Sweden, i.e., foremost the Baltic States, it is probable that a large part of the available amounts will be consumed on the domestic market. Studies of the possible use of wood fuel in Estonia, Latvia and Lithuania are being made by the World Bank. Considerable investments will probably be made in the near future to replace existing coal- and oil-fired boiler plants with plants burning wood fuel. Consequently, the opportunities for exports of wood fuel will probably be small. In a global perspective, peat is used only to a limited extent as fuel. In the former Soviet Union alone it is estimated that the amount of peat that is economically feasible to extract is about 166x10{sup 9} tonnes at a moisture content of 40%. Among the most interesting bio products that can be used in energy production from different food processing industries are nut-shells and fruit stones. Some stones, such as those in olives, plums and peaches, are excellent as fuels. The advantage with olive stones, in comparison with chips is that the bulk weight is high and the moisture content is low. Olive stones are thus similar to processed biofuels such as pellets. Due to their high energy content the olive stones can replace coal, which cannot be done by unprocessed fuels without expensive investments in materials handling equipment. Our survey shows that processed forest fuels and crushed olive stones are the products of greatest interest for the Swedish market. It also shows that both chips and peat-based products from the Baltic States are competitive.

  4. Experimental evaluation of drainage filters sealing in peat soils

    Directory of Open Access Journals (Sweden)

    Nevzorov Aleksandr Leonidovich

    2014-02-01

    Full Text Available The article deals with research results of the sealing of pores in drainage filters by organic particles. Permeability tests were carried out with the constant gradient 1.5. The water flow through the sample of soil was top-down.The tests were carried out with 2 types of samples: the first part of samples had layers (from up to down 300 mm peat and 2 layers of geotextile, the second part consisted of 250 mm peat, 200 mm fine sand and 2 layers of geotextile. Well decomposed peatsamples were used. Peat had the following characteristics: density is 1,05...1,06 g/cm3, specific density — 1,53...1,56 g/cm3, void ratio — 12,0...12,5. The duration of each test was 15 days. During testing the hydraulic conductivity of samples was decreased by 1.3...1.9.After completing the tests the hydraulic conductivity of sand and geotextile were measured. The content of organic matter in geotextile and fine sand was determined as well. Dry mass of organic matter in the first layer of geotextile in the first type of samples were 1,0…1,3 g per 75 cm2. The organic matter in the second layer of geotextile in the first type of samples and in the first layer of geotextile in the second type wasn’t exposed. Fine sands protected the drainage geotextile as a result of sealing of pore space of sands by organic matter.

  5. Availability for plants of phosphorus in some virgin peat samples

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1958-01-01

    Full Text Available The availability to plants of native peat phosphorus was studied by chemical methods and by a pot experiment in which three successive oat crops were grown with peat as the only source of phosphorus. The eight samples were collected from virgin peat lands. They were air-dried and ground. The samples were found to represent three different types of phosphorus condition: the first group contained relatively high amounts of inorganic phosphorus which was fairly easily available; the second group had a very high capacity to fix phosphorus which made its high quantity of inorganic phosphorus difficultly available; the third group was very poor in total and inorganic phosphorus but the latter was easily soluble and available to plants. On the basis of the capacity and intensity factors determined according to the method by Teräsvuori and also on the basis of inorganic phosphorus extractable by water fairly reliable predictions could be made of the mutual order of the samples as phosphorus supplyer to the plants in the pot experiment. In an incubation experiment at 27°C the amounts of organic phosphorus mineralized during the period of four months were in some of the samples quite marked, even 40 mg/l, and in most of the samples they corresponded to 5 to 15 per cent of the organic phosphorus. The amounts of phosphorus taken up by the oat crops under the favourable conditions of the pot experiment varied from 11 to 60 mg/l or from 20 to 120 kg/ha.

  6. A method for processing peat or brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Belkevich, P.I.; Lishtvan, I.I.; Prokhorov, G.M.; Tolstikov, G.A.

    1983-01-01

    A method is patented for extraction of peat and brown coal using dimethylformamide or dimethylsulfoxide in order to increase the output of bitumen and to produce dyes and acids from it and to utilize the debituminized fuel. The extraction is conducted at a solvent to raw material ratio of 1 to 5 at a temperature of 95 to 160 degrees for 0.5 to 3 hours. The extract is processed by hydroxides or carbonates of alkaline metals at a ratio of extract to the bitumen of 0.1 to 0.5 at 95 to 160 degrees for 0.5 to 2 hours with isolation of the salts of carbonic acids and recrystallization of them from the hydroxide with the acquisition of the target product of humic acids. The solvent is distilled from the extraction residue and after drying the sediment, a dye D is produced, while the debituminized fuel is processed by hydroxides of alkaline metals in a 0.1 to 1 to 1 ratio at 100 to 150 degrees for 0.5 to 2 hours with the acquisition of thinner for cement solutions. Example. A suspension of 180 grams of peat with a particle size of 0.25 to 10 millimeters with indicators (in percent) of the degree of breakdown of 40, moisture level of 20, ash content of 3.1 and bitumen content of 4.2, is mixed with 810 grams of dimethylformamide (an extraction agent to peat ratio of 4.5) and is heated at 95 degrees for three hours. Eight hundred and seventy grams of the extract (the bitumen output is 33 percent) are acquired, along with 120 grams of debituminized peat. Thirty grams of NaOH (an alkaline to bitumen ratio of 0.5) is gradually added to the bitumen extract at 90 to 100 degrees. The reaction mixture is heated to 160 degrees and is cured at this temperature for 2 hours and subsequently cooled to 20 degrees, filtered off and the salts of the carbonic acids are washed out by a fresh portion of dimethylsulfoxide with the production of 21.3 grams of salts with a melting point of 122 to 175 degrees.

  7. Significance of peat on the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    24 and 31 meters. The cores were subsampled depending upon the lithology. A core off Karwar was chosen for geochemical analyses. Calcium carbonate was determined using a 'KarbonatBombe' (Muller and Gastner, 1971). Organic carbon and sulfur were... the present sea level; it is found up to 27 km from the coast. The resulls suggest that peat on the shelf occurs as layers of restricted thickness (2 to 30 em) with a limited lateral distribution and hence appear to be impersistent layers. A strong hydrogen...

  8. Chemical composition of raw and deresinated peat waxes

    Energy Technology Data Exchange (ETDEWEB)

    Bel' kevich, P I; Ivanova, L A; Piskunova, T A; Tserlyukevich, Ya V; Yurkevich, E A

    1980-01-01

    Research was conducted using absorption chromatography and spectroscopy to study the changes in the chemical composition of raw peat wax taking place in the deresination process. Characteristics of the raw, deresinated waxes and resins removed are given. The fractions obtained showed that both raw and deresinated wax contain the same basic compound classes: hydrocarbons, alcohols, complex ether and acids; but their proportions in the waxes are different. After deresination most of the dark-colored polyfunctional compounds, a portion of the soluble unsaturated hydrocarbons and alcohols, and all the sterenes transfer into the resin. This causes the light color and specific physical properties of deresinated wax. (13 refs.) (In Russian)

  9. Impact of peat mining, and restoration on methane turnover potentials and methane-cycling microorganisms in a northern bog

    NARCIS (Netherlands)

    Reumer, Max; Harnisz, M.; Lee, H.J.; Reim, A.; Grunert, O.; Putkinen, A.; Fritze, H.; Bodelier, P.L.E.; Ho, A.

    2018-01-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing its carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the peat

  10. Towards sustainable ecological networks of peat bogs in central Russia; development of local environmental action program (LEAP) as a practical tool for protection and restoration of peat bogs in Egorievsk sub region

    NARCIS (Netherlands)

    Butovsky, R.O.; Reijnen, R.; Bondartchuk, E.A.; Otchagov, D.M.; Melik-Bagdasarov, E.M.

    2001-01-01

    In central and northern Meshera the habitats for many characteristic peat bog species now show a very fragmented pattern. As a result, the potential for viable populations of characteristic peat bog species has decreased considerably. Peat-mining and other human influences are the most important

  11. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    Science.gov (United States)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  12. The genesis, stratigraphy and age of Finnish peat deposits. Soiden syntvy, rakenne ja ikae Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Glueckert, G [Turun yliopisto (Finland). Maaperaegeologian osasto

    1986-01-01

    The genesis, stratigraphy and age of Finnish peat deposits are briefly described. Finnish peats are classified according to their botanical composition to Sphagnum, sedge (Carex) and wood peats. They form complex types of peat land: the ombrotrophic raised bogs in southern Finland and the minerotrophic open sedge (aapa) bogs in northern Finland. The structural bog types in the geological classification are mainly composed of Sphagnum and Carex peats. The raised bogs are predominantly built up of Sphagnum peat, the aapa bogs of Carex peat. The bogs are formed by paludification of lakes, of rising coasts or of low-lying forests. The thickness of peat varies from 3 to 8 m in southern Finland and from 1 to 3 m in northern Finland. The age of the bogs varies according to the uplift of land and the altitude of the bog gasin above sea level. The oldest bogs are 9500-10000 years old and formed in southern and eastern Finland on high-lying upland tracts just after the retreat of the ice at the end of the last glaciation. The geological and palaeontological development of bogs and the history of climate and vegetation can be studied and dated pollenanalytically and with the radiocarbon method.

  13. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    NARCIS (Netherlands)

    van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  14. Temperature-induced increase in methane release from peat bogs: A mesocosm experiment

    NARCIS (Netherlands)

    Winden, J.F. van; Reichart, G.-J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  15. Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns

    International Nuclear Information System (INIS)

    Peregon, Anna; Uchida, Masao; Shibata, Yasuyuki

    2007-01-01

    A region of western Siberia is vulnerable to the predicted climatic change which may induce an important modification to the carbon balance in wetland ecosystems. This study focuses on the evaluation of both the long-term and contemporary trends of peat (carbon) accumulation and its patterns at the southern climatic range of Sphagnum peatlands in western Siberia. Visible and physical features of peat and detailed reconstructions of successional change (or sediment stratigraphies) were analysed at two types of forest-peatland ecotones, which are situated close to each other but differ by topography and composition of their plant communities. Our results suggest that Siberian peatlands exhibit a general trend towards being a carbon sink rather than a source even at or near the southern limit of their distribution. Furthermore, two types of peat accumulation were detected in the study area, namely persistent and intermittent. As opposed to persistent peat accumulation, the intermittent one is characterized by the recurrent degradation of the upper peat layers at the marginal parts of raised bogs. Persistent peat accumulation is the case for the majority of Sphagnum peatlands under current climatic conditions. It might be assumed that more peat will accumulate under the 'increased precipitation' scenarios of global warming, although intermittent peat accumulation could result in the eventual drying that may change peatlands from carbon sinks to carbon sources

  16. Peat in horticulture and conservation: the UK response to a changing world

    Directory of Open Access Journals (Sweden)

    P.D. Alexander

    2008-11-01

    Full Text Available Peat bogs are increasingly recognised as valuable habitats for wildlife and important stores of carbon. Yet the UK horticultural industry relies heavily on peat sourced from bogs in the UK and Republic of Ireland. Environmentalists, government and horticultural businesses in the UK now recognise the environmental consequences of using peat in horticulture, and the industry is turning increasingly to sustainable raw materials. In this paper, the strengths and weaknesses of campaigning since 1990 to implement this change are analysed, with the intention of providing useful information for other countries facing similar challenges. The campaign encountered deeply-ingrained practices so that the shift in behaviour has been slow and, although now widespread, still meets resistance in some quarters. The UK Government introduced targets for peat replacement which have helped stimulate the industry to develop suitable alternatives. The major gardening retailers have included peat replacement targets in their environmental codes of practice, and these are being met through incremental peat dilution with alternative materials such as green compost and processed timber by-products. Legislative requirements for European biodiversity conservation have led the UK government to terminate peat extraction on significant areas of former commercial extraction. The importance of peatlands for carbon sequestration and the major issue of climate change are increasingly focusing attention on peatland conservation, pointing towards the need for a more consistent approach to the use of peat across the European Community.

  17. Uranium/thorium dating of late Pleistocene peat deposits in N.W. Europe.

    NARCIS (Netherlands)

    Heijnis, Hendrik

    1992-01-01

    Dating of peat by means of uranium series disequilibrium (230-Th/234-U, also known as UTD) with special emphasis on dating the early Weichselian interstadial and last interglacial peats in north western Europe, is the subject of this study. ... Zie: Introduction

  18. Comparison of termite assemblages along a landuse gradient on peat areas in Sarawak, Malaysia.

    NARCIS (Netherlands)

    Vaessen, T.; Verwer, C.; Demies, M.; Kaliang, H.; Meer, van der P.J.

    2011-01-01

    VAESSEN T, VERWER C, DEMIES M, KALIANG H & VAN DER MEER PJ. 2011. Comparison of termite assemblages along a landuse gradient on peat areas in Sarawak, Malaysia. In this study we assessed the species density and relative abundance of termites in peat land in Sarawak, Malaysia. Termites were

  19. Behaviour of Chernobyl fallout radionuclides deposited on peat and urban surfaces in Finland

    International Nuclear Information System (INIS)

    Reponen, A.

    1992-10-01

    In the thesis the impact of the Chernobyl nuclear reactor accident on Finland was studied in three aspects: (1) the areal distribution of Chernobyl fallout in Finland was determined by measuring peat samples, (2) the behaviour of fallout radionuclides was investigated in the combustion of peat in power plants, and (3) the removal rates of fallout radionuclides on urban surfaces were resolved

  20. A Palynological investigation of the Lower peat in the Province of Friesland, the Netherlands

    NARCIS (Netherlands)

    Donselaar, van J.; Jonker, F.P.

    1952-01-01

    Up till now the lower deposits of peat (in Dutch: veen-op-groterediepte = peat at greater depth) have been investigated in the Netherlands mainly in the Western part of the country, viz. in the provinces of Noord-Holland, Zuid-Holland and Zeeland. The analyses have shown that the development of

  1. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    Science.gov (United States)

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...

  2. The future role of peat. The Finnish Ministry of Trade and Industry's investigation on the role of peat in the greenhouse gas balance in Finland

    International Nuclear Information System (INIS)

    Knuutinen, O.

    2000-01-01

    Due to contradictory opinions on the role of peat as a renewable energy source and carbon sink as well as the fact that no comprehensive research are made in this area, the Finnish Ministry of Trade and Industry (KTM) assigned an impartial working group to investigate the role of peat in climatic change. The working group consists of Patrick Crill from USA, Ken Hargreaves from Great Britain, and Atte Korhola from Finland. The objective of the working group is to study the greenhouse gas balances of virgin peatland, ditched peatlands, and cultivated peatlands. The carbon cycles will be investigated, as well as the effects of utilisation of peat on greenhouse gas balance, and the possibilities of effecting the balance with active measures. The alternatives for utilisation peatlands after the peat has been harvested, and the effects of these alternatives on greenhouse gas balance will also be studied. The effects of the peatlands left in passive natural state, the regeneration of peatlands, forestation and other usage on greenhouse gas balance will be investigated, and the need for regulations and instructions for recycling have to be estimated. The greenhouse gas emissions and the carbon sinks have to be defined, the alternative means for definition of them have to be inspected. The mutual dependence of peat and wood fuels has also to be taken into consideration. The report will to include the effects of peat on watercourses, versatility of the nature, the effect of the peat production on the amount of peat production areas, and suggestions for possible need of further investigations

  3. Score Mining Rents in Terms of Investment Attractiveness of Peat Mining

    Science.gov (United States)

    Alexandrov, Gennady; Yablonev, Alexander

    2017-11-01

    In this article, as determinants in the system factors underlying the investment attractiveness of the peat industry is considered a rental factor, which predetermines the significant differences and peculiarities of the investment climate in the mining business and, in particular, in the sphere of peat mining. In contrast to modern studies treated the essence and role of rents in the economic mechanism, is proposed for a new approach to solving the problems of its formation. Our approach differs in that it, firstly, adequate rental relations, objectively in extractive industries, secondly, provides consensus in the interests of the owner of peat deposits and entrepreneurs, businesses in these deposits and, thus, thirdly, contributes to the creation of a favourable investment climate in the peat extraction industry. In practical terms, in accordance with the proposed approach, we have proposed specific allocation algorithm of mining rents from the profits of peat extraction enterprises.

  4. Effect of increased utilization of wetland for peat harvesting and forest drainage on employment

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, O; Muller, A

    1984-01-01

    Wetlands cover 15 percent of the area of Sweden. Most of it is peatland and part of it supports forest growth. The prognosis of peat production and ditching for drainage is based upon economical evaluations. A questioning of peat producers has also been performed. Two prognoses have been made for the effect of peat fuel production on the employment. By 1990 about 800 man-years were expected. On the advent of government subsidies to peat fuelled plants, about 1000 more jobs were expected. Unemployment and coal fuelled plants as an alternative are understood by implication. Indirect effects are expected among equipment manufacturers amounting to 50-100 yearly workers. Draining of forests and peat-lands will take 124 man-years as a minimum by 1990 and about 200 more if there will be financial assistance.

  5. Preliminary evaluation of environmental issues on the use of peat as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    King, R.; Richardson, S.; Walters, A.; Boesch, L.; Thomson, W.; Irons, J.

    1980-03-14

    A study to characterize the environmental issues, that would arise from an extensive peat utilization program has been initiated. The objectives of this preliminary report are to: identify the environmental issues and potential problems; examine the significance of issues in the geographical regions where peat use could be developed; and establish a methodology by which issues can be resolved or clarified through future coordinated private, state, and federal programs. An overview of peat development including discussions on conversion technologies, extraction and harvesting procedures, and land reclamation is presented. Environmental concerns are in the areas of water resources and quality, air quality, health and safety issues, solid waste management, and land reclamation. The general environmental issues, resource availability, and attitudes associated with potential peat development in ten states, containing an estimated 90 percent of US peat resources were described. The ten states reviewed are Alaska, Minnesota, Michigan, Maine, North and South Carolina, Wisconsin, New York, Florida, and Louisiana. (DMC)

  6. Estonian horticultural peat marketing: sales promotion and price formation. 2. part

    International Nuclear Information System (INIS)

    Hammer, Hele

    1999-01-01

    When forming prices, Estonian peat companies' decisions should be based on marginal cost analysis. Unfortunately most Estonian companies sell peat to intermediaries and cannot influence its price. Estonian peat producers have to choose between either selling peat directly or selling through a central marketing organization. Both systems have their pros and cons. Direct selling gives more freedom to individual producers but is more risky. Central marketing makes cost saving possible and is more effective and stable, but may alienate producers from clients and markets. Whichever marketing system Estonian peat companies choose, the most important elements in their marketing strategy should be: careful market analysis, personal sales, attending trade shows, catalogues, quality service and offering transportation services. (author)

  7. Contribution to the development of peat-bog and history of landscape in the Havellaendische Luch

    International Nuclear Information System (INIS)

    Mundel, G.; Trettin, R.; Hiller, A.

    1983-01-01

    By means of the 14 C method a low-bog profile of the Havellaendische Luch measuring 200 cm in depth was dated systematically. The peat formation had started as early as at the end of the late-glacial. Approximately 6000 years ago a stagnation of bog growth had occured and then about 3700 years ago a stronger bog growth had begun again. The change in peat components and thereby in the geological structure is largely attributed to different ground water levels. According to the relatively low total thickness the annual mean rates of accumulation are small. In muddy soils, values between 0.2 and 1.2 mm were ascertained. In peat soils these values are still smaller. But here it is a question of remainders of the protogenic peat formation. As a result of former or recent mineralization the original peat substance has been diminished. (author)

  8. Biodiversity on mire ecosystems and drained peatlands - a basis for environmental peat harvesting; Biologisk maangfald paa myrar och dikad torvmark - underlag foer ett miljoemaessigt torvbruk

    Energy Technology Data Exchange (ETDEWEB)

    Stedingk, Henrik von (Swedish Biodiversity Centre, Uppsala (Sweden))

    2009-07-01

    biodiversity than not drained peatlands. The plant succession following drainage leads to denser vegetation and dominance of forest plants. Often drainage is followed by forestry, leading to even lower nature conservation values. Conservation values on drained peatlands are rarely studied. Potential environments for nature conservation in drained peatlands are: 1) Areas with little drainage influence and preserved mire function. 2) Late forest successions after drainage with deciduous trees and dead wood. 3) Open pine forest or swamp forest that act as refugia for old growth lichens and wood fungi. 4) Pools and stream like older ditches with running water. An inventory focused on conservation values on drained peatlands is recommended. Peat harvesting causes ecosystem shift and species living on the mire disappear. An estimation of biodiversity effects from peat harvesting must include the lost mire, time of exploitation, as well as the after-treatment. A longer time perspective is therefore required when evaluating consequences of peat harvesting. The development of a broader spectra of after-treatment involving biodiversity is essential, as well as a system that guarantees a long term perspective in after-treatment for biodiversity. Methods for evaluating effects on the landscape level from increased peat harvesting are required. Increased peat harvesting on drained peatlands could be in convergence with the Swedish environmental goals, if choice of site and after-treatment is based on landscape analysis focusing on biodiversity

  9. Evolution of niche preference in Sphagnum peat mosses.

    Science.gov (United States)

    Johnson, Matthew G; Granath, Gustaf; Tahvanainen, Teemu; Pouliot, Remy; Stenøien, Hans K; Rochefort, Line; Rydin, Håkan; Shaw, A Jonathan

    2015-01-01

    Peat mosses (Sphagnum) are ecosystem engineers-species in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients. We find little to no evidence for phylogenetic signal in most component descriptors of the ionic gradient, but interspecific variation along the hummock-hollow gradient shows considerable phylogenetic signal. We find support for a change in the rate of niche evolution within the genus-the hummock-forming subgenus Acutifolia has evolved along the multivariate hummock-hollow gradient faster than the hollow-inhabiting subgenus Cuspidata. Because peat mosses themselves create some of the ecological gradients constituting their own habitats, the classic microtopography of Sphagnum-dominated peatlands is maintained by evolutionary constraints and the biological properties of related Sphagnum species. The patterns of phylogenetic signal observed here will instruct future study on the role of functional traits in peatland growth and reconstruction. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  10. Chemicalization in water treatment in peat production areas

    International Nuclear Information System (INIS)

    Madekivi, O.; Marja-Aho, J.; Selin, P.; Jokinen, S.

    1995-01-01

    Chemicalization of runoff waters of peat production has been studied since 1989, first in laboratory and since 1990 in practice. The methods have been developed as cooperation between Vapo Oy and Kemira Chemicals Oy. In chemicalization the dissolved substances are coagulated and they settle after that into sedimentation basins. Good purification results require rapid and effective mixing, so the formed particles are combined to larger particles, and they form settleable flock. The coagulation efficiency depends on the properties of the water to be purified, such as alkalinity and pH, the quality and the quantity of humic substances, and the quality and the quantity of the flocking chemicals. Chemicalization is at present the most effective, but also the most expensive method for purification of drying waters of peat production areas. The chemicalized water is on the basis of most quality factors cleaner than water running off a virgin bog. The most visible change is the clarification of the water which is due to the coagulation of the colouring humic substances and iron. The colorimetric value is decreased by over 70 %, the best results being over 90 %. The colorimetric value of the purified water (30-100 mg Pt/l) is below the values of the runoff water of a virgin bog (100-200 mg Pt/l). The chemicalization process and the results of the researches are presented in the article. (3 refs., 6 figs., 2 tabs.)

  11. Additives for cement compositions based on modified peat

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  12. Soil carbon dioxide emissions from a rubber plantation on tropical peat.

    Science.gov (United States)

    Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi

    2017-03-01

    Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO 2 ) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO 2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO 2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr -1 outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr -1 . As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr -1 ) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  14. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  15. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  16. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  17. Influence of temperature upon the mobilization of nitrogen in peat

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1953-01-01

    Full Text Available The preliminary experiments the results of which are recorded in the present paper, have been carried out in order to obtain some information on the microbiological and chemical mobilization of peat nitrogen at various temperatures. In the incubation experiment at 5°, 20°, 35°, 50°, and 65CC the accumulation of ammonia nitrogen increased with a rising temperature except in the limed series where a minimum was found at 20°. The maximum of nitrate-nitrogen lay at 20 in both the series. The amount of nitrite-nitrogen was almost negligible in all the samples. The mineral nitrogen in the samples incubated at 50° and 65° represented 10—20 % of the total nitrogen. Thus, the organic nitrogen in peat soils can be mobilized to a marked extent, if the conditions are favourable. Accumulation of mineral nitrogen could be stated also at the lower temperatures where the reutilization of released nitrogen in the synthesis of new microbial substance is always more intensive than in the range of thermophilic organisms. Even at 5° a release of nitrogen was noticable. In these experiments liming did not show any beneficial effect upon the accumulation of mineral nitrogen, on the contrary, the values for total nitrogen and ammonia nitrogen were lower in the limed series. The nitrate formation was generally somewhat higher in the limed samples than in the corresponding unlimed ones. It was supposed that the considerable increase in the ammonia content of the samples incubated at 50° and 65° was partly due to purely chemical transformations, since the mere heating of moist samples at 75° for two hours brought about a marked accumulation of ammonia nitrogen. The treatment with dry heat was less effective except when the temperature was raised to 200° in which case a carbonization of the peat took place. The losses of organic matter and of total nitrogen due to the heating were almost negligible at the temperatures below 150°. At 150° and at 200

  18. The Characteristics of Electrical and Physical Properties of Peat Soil in Rasau Village, West Kalimantan

    Science.gov (United States)

    Aminudin, A.; Hasanah, T. R.; Iryati, M.

    2018-05-01

    The Electrical and physical properties can be used as indicators for measuring soil conditions. One of the methods developed in agricultural systems to obtain information on soil conditions is through measuring of electrical conductivity. Peat soil is one of the natural resources that exist in Indonesia. This study aims to determine the characteristics of peat soil in Rasau village, West Kalimantan. This research was conducted by the properties of electrical conductivity and water content using 5TE Water Contents and EC Sensor equipment, but also to know the change of physical nature of peat soil covering peat soil and peat type. The results showed that the electrical conductivity value of 1-4 samples was 0.02 -0.29 dS/m and the volume water content value (VWC) was 0.255-0.548 m3/m3 and the physical characteristics obtained were peat colour brown to dark brown that allegedly the soil still has a very high content of organic material derived from weathering plants and there are discovery of wood chips, wood powder and leaf powder on the ground. Knowing the information is expected to identify the land needs to be developed to be considered for future peat soil utilization.

  19. Behaviour of sulphur during diagenesis of a maritime ombrotrophic peat from Yell, Shetland Islands, UK

    International Nuclear Information System (INIS)

    Bartlett, Rebecca; Bottrell, Simon; Coulson, Jonathan

    2005-01-01

    Surface water, pore water, vegetation and peat cores were sampled from a waterlogged ombrotrophic peat bog on the Shetland Isles, UK and analysed for different S forms and their isotopic composition, in an attempt to elucidate the biogeochemical processes affecting S during peat diagenesis. Surface waters show that inputs of S to the peat have a maritime-dominated isotopic composition close to +20%% CDT . Uptake of S by vegetation introduces a -10%% shift in δ 34 S from these input values. Below the vegetation layer and down to 18cm depth, bacterial SO 4 2- reduction is the major control on S species distribution and isotopic composition within the solid peat and pore waters. In this part of the peat, preferential reduction of 32 SO 4 in pore water during metabolism produces isotopically light sulphide, which is incorporated into the solid phase in both inorganic and organic forms, while pore water SO 4 2- becomes enriched in 34 S. From 18 to 28cm, organic S content falls relative to C and residual organic S becomes 34 S-enriched, indicative of mineralization of organic S, a process which releases isotopically light S to the pore waters. Still deeper in the core (28 to ∼50cm), bacterial reduction of pore-water SO 4 2- , now enriched in 34 S, results in addition of isotopically heavy S to the solid phase. Limited pore water data suggest that below 50cm mineralization reactions again release S from the organic fraction of the peat

  20. The occurrence and development of peat mounds on King George Island (Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    Jerzy Fabiszewski

    2014-01-01

    Full Text Available On King George Island, South Shetlands Islands, a type of peat formation has been discovered which has not previously been reported from the Antarctic. These formations are in shape of mounds up to 7x 15 m in area, with a peat layer of about I m thick. About twenty five cm below the surface there is a layer of permanently frozen peat. The mounds are covered by living mosses (Polytrichum alpinum and Drepanocladus uncinatus, Antarctic hair grass (Deschampsia antarctica and lichens. Erosion fissures occurring on the surface are evidence of contemporary drying and cessation of the mound's growth. The initial phase of the development of the mounds began with a community dominated by Calliergidium austro-stramineum and Deschampsia antarctica, and their further development has been due to peat accumulation formed almost entirely by Calliergidium. The location of the mounds is near a penguin rookery, which clearly conditioned the minerotrophic character of these formations, as compared with the "moss peat banks" formed by Chorisodontium aciphyllum and Polytrichum al-pestre. Moreover, the peat mounds differ from the latter in several ways, e.g. rate of growth and floristic composition. Radiocarbon dating of peat from the base of one mound gave an age of 4090±60 years B.P. This suggests that the age of the tundra on King George Island is about 5000-4000 years.

  1. Utilization of new materials in peat machines; Uusien materiaalien kaeyttoe turvekoneissa

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, M.; Poeyhoenen, P. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The objective of this three year research (1993-1995) was to study the suitability of new materials for different applications in peat production industry, exploiting the plastic and brush technologies, and surface coatings. The peat production machines will be intensified, lightened, made more firesafe, and ergonomical by using new materials (plastics, composites, compound metals and surface coatings). The research targets and materials were surveyed in 1993, the possibilities to construct an unsparkling miller were investigated, and low-friction materials, on which the peat glides easily, were sought in the beginning of the research. The unsparkling miller was studied and developed further in 1994 using plastic blades, the application of brushing technology in sod peat technology, and a ridger, equipped with horizontal brushes, for sod peat were studied, and the possibilities to lighten the construction of the collector-wagon using light materials was investigated. The tasks for 1995 were to study the brushing technology for peat production, the properties of the bristle, and the applications of new materials for milling and sieving of peat using laboratory tests. This work continued partly in 1996

  2. GIS-based examination of peats and soils in Surfers Paradise, Australia

    Directory of Open Access Journals (Sweden)

    Al-Ani Haider

    2014-03-01

    Full Text Available The subsoil conditions of Surfers Paradise in Southeast Queensland of Australia have been examined in terms of soil stiffness by using geographic information system (GIS. Peat is a highly organic and compressible material. Surfers Paradise (as a study area has problematic peat layer due to its high water content, high compressibility, and low shear strength. This layer has various thicknesses at different locations ranging between R.L. . 10 to R.L. -19.6 m. Buildings in Surfers Paradise are using piled foundations to avoid the high compressibility and low shear strength peat layer. Spatial Analyst extension in the GIS ArcMap10 has been utilised to develop zonation maps for different depths in the study area. Each depth has been interpolated as a surface to create Standard Penetration Test SPT-N value GIS-based zonation maps for each depth. In addition, 8 interpolation techniques have been examined to evaluate which technique gives better representation for the Standard Penetration Test (SPT data. Inverse Distance weighing (IDW method in Spatial Analyst extension gives better representation for the utilised data with certain parameters. Two different cross sections have been performed in the core of the study area to determine the extent and the depth of the peat layer underneath already erected buildings. Physical and engineering properties of the Surfers Paradise peat have been obtained and showed that this peat falls within the category of tropical peat.

  3. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades

    International Nuclear Information System (INIS)

    Craft, C.B.; Richardson, C.J.

    1993-01-01

    Recent rates of peat accretion (as determined by Cs-137) and N, P, organic C, Ca and Na accumulation were measured along a 10 km eutrophication gradient in the northern Everglades area of Water Conservation Area 2A (WCA 2A) that has received agricultural drainage from the Hillsboro canal for the past 25-30 yrs. Rates of peat accretion were highest at sampling locations closest to the Hillsboro canal. Phosphorus and Na accumulation were a function of both peat accretion and soil P and Na concentrations. Although sodium enrichment of the peat was limited to 1.6 km downstream of the Hillsboro canal, increased rates of Na accumulation penetrated 5.2 km downstream of the Hillsboro canal, the extent of the area of enhanced peat accretion. In contrast to P and Na, there was no difference in the concentration of soil organic C, N and Ca along the eutrophication gradient. However, there was a gradient of organic C, N and Ca accumulation corresponding to the area of enhanced peat accretion. The areal extent of enhanced peat accretion and organic C, N, Ca and Na accumulation encompasses approximately 7700 ha of the northern part of WCA 2A. The area of enhanced P accumulation is larger, covering 11,500 ha or 26% of the total area of WCA 2A. The findings suggest that P accumulation is dependent on the P concentration in the water column and that decreasing P loadings per unit area result in less P storage per unit area

  4. Greenhouse impact assessment of peat-based Fischer-Tropsch diesel life-cycle

    International Nuclear Information System (INIS)

    Kirkinen, Johanna; Soimakallio, Sampo; Maekinen, Tuula; Savolainen, Ilkka

    2010-01-01

    New raw materials for transportation fuels need to be introduced, in order to fight against climate change and also to cope with increasing risks of availability and price of oil. Peat has been recognised suitable raw material option for diesel produced by gasification and Fischer-Tropsch (FT) synthesis. The energy content of Finnish peat reserves is remarkable. In this study, the greenhouse impact of peat-based FT diesel production and utilisation in Finland was assessed from the life-cycle point of view. In 100 year's time horizon the greenhouse impact of peat-based FT diesel is likely larger than the impact of fossil diesel. The impact can somewhat be lowered by producing peat from the agricultural peatland (strong greenhouse gas emissions from the decaying peatlayer are avoided) with new peat production technique, and utilising the produced biomass from the after-treatment area for diesel also. If diesel production is integrated with pulp and paper mill to achieve energy efficiency benefits and if the electricity demand can be covered by zero emission electricity, the greenhouse impact of peat-based FT diesel reduces to the level of fossil diesel when agricultural peatland is used, and is somewhat higher when forestry-drained peatland is used as raw material source.

  5. Excavation-drier method of energy-peat extraction reduces long-term climatic impact

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, N.; Silvan, K.; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)], e-mail: niko.silvan@metla.fi; Vaisanen, S.; Soukka, R. [Lappeenranta Univ.of Techology (Finland)

    2012-11-01

    Climatic impacts of energy-peat extraction are of increasing concern due to EU emissions trading requirements. A new excavation-drier peat extraction method has been developed to reduce the climatic impact and increase the efficiency of peat extraction. To quantify and compare the soil GHG fluxes of the excavation drier and the traditional milling methods, as well as the areas from which the energy peat is planned to be extracted in the future (extraction reserve area types), soil CO{sub 2}, CH{sub 4} and N{sub 2}O fluxes were measured during 2006-2007 at three sites in Finland. Within each site, fluxes were measured from drained extraction reserve areas, extraction fields and stockpiles of both methods and additionally from the biomass driers of the excavation-drier method. The Life Cycle Assessment (LCA), described at a principal level in ISO Standards 14040:2006 and 14044:2006, was used to assess the long-term (100 years) climatic impact from peatland utilisation with respect to land use and energy production chains where utilisation of coal was replaced with peat. Coal was used as a reference since in many cases peat and coal can replace each other in same power plants. According to this study, the peat extraction method used was of lesser significance than the extraction reserve area type in regards to the climatic impact. However, the excavation-drier method seems to cause a slightly reduced climatic impact as compared with the prevailing milling method. (orig.)

  6. Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin

    Science.gov (United States)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.

    2017-07-01

    Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.

  7. The role of peat in assuring the quality of growing media

    Directory of Open Access Journals (Sweden)

    G. Schmilewski

    2008-02-01

    Full Text Available Producers and users of growing media are exposed to high risk if significant quantities of potentially unsuitable ingredients are included in the product. Combined with economic reasoning, this dictates that the constituents of growing media should possess as many suitable characteristics as possible. Sphagnum peat has been the most important growing medium constituent for many decades because its properties are the best available. The use of other organic and mineral-organic materials is being forced ahead by research and development against a background of public favour for peat replacement, recycling and re-use of biodegradable waste. Considerably more resources have been invested in the testing of peat alternatives than in peat itself during recent years, and the utility of a large number of alternatives has been assessed. Most candidate materials are only slightly or not at all suitable for use in growing media. The exceptions are composts, wood fibre products, bark and composted bark, and coir. These have become established, to a greater or lesser degree, as reliable substrate constituents. Their manufacture, characteristics, advantages and disadvantages are reviewed. A continuing need for peat as a constituent of growing media, at least for dilution purposes, is foreseen. Thus, increased imports of peat and growing media to countries with intensive or expanding commercial horticulture and inadequate domestic peat reserves are to be expected in the future.

  8. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  9. Effects of copper and aluminum on the adsorption of sulfathiazole and tylosin on peat and soil

    International Nuclear Information System (INIS)

    Pei, Zhiguo; Yang, Shuang; Li, Lingyun; Li, Chunmei; Zhang, Shuzhen; Shan, Xiao-quan; Wen, Bei; Guo, Baoyuan

    2014-01-01

    Effects of copper (Cu) and aluminum (Al) on the adsorption of sulfathiazole (STZ) and tylosin (T) to peat and soil were investigated using a batch equilibration method. Results show that Cu suppressed STZ adsorption onto peat and soil at pH 5.0 due to the formation of STZ–Cu complexes and/or Cu bridge. In contrast, Al only decreased STZ adsorption at pH 6.0. As for T, both Cu and Al suppressed its adsorption over the entire pH range owing to three reasons: 1) electrostatic competition between Cu/Al and T + ; 2) Cu/Al adsorption made the soil and peat surface less negatively charged, which was unfavorable for T + adsorption; 3) the shrunken pore size of peat and soil retarded the diffusion of large-sized T into these pores. -- Highlights: • Cu decreases STZ adsorption at pH 5.0. • Al decreases STZ adsorption at pH 6.0. • Cu and Al suppress T adsorption. • Cu and Al change partial properties of peat and soil. -- Cu and Al changed the adsorption behavior of STZ and T in soil and peat via complexation and/or change in partial properties of peat and soil

  10. Markers of Soil Organic Matter Transformation in Permafrost Peat Mounds of Northeastern Europe

    Science.gov (United States)

    Pastukhov, A. V.; Knoblauch, C.; Yakovleva, E. V.; Kaverin, D. A.

    2018-01-01

    For the paleoreconstruction of permafrost peat mounds and the identification of plant communities participating in the formation of peat, the contents of n-alkanes (C20-C33) have been determined, and relative changes in the stable isotope compositions of carbon and nitrogen and the C/N ratio have been analysed. Several indices ( CPI alkanes, P aq, P wax) have been calculated to assess the degree of decomposition of the peats studied and the contributions of different plant species to their formation. It has been found that shortand long-chain n-alkanes are concentrated in high-moor peat, while medium-chain alkanes are typical for transitional peat. Integrated analysis of the studied markers has shown that the botanical and material composition of peat, anaerobic conditions of bog formation, and permafrost play an important role in the preservation of organic carbon in permafrost peat mounds. Alternation of plant associations is the main reason for changes in n-alkane concentrations, C/N ratios, and δ13C values.

  11. Pressurized gasification solves many problems. IVOSDIG process for peat, wood and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Repo, A.

    1996-11-01

    Research is now being done on one of the essential elements of pressurized gasification: the feeding of fuel into high pressure. At the IVOSDIG pilot plant in Jyvaeskylae, a pilot-scale piston feeder for peat, wood and sludge has been tested. A piston feeder achieves pressurization through the movement of the piston, not by inert pressurization gas. The feeder cylinder then turns 180 degrees to another position, and the piston forces the fuel contained in the cylinder into the pressure vessel, which is at the process pressure. The feeder has to cylinders; one is filled while the other is being emptied. In pilot-scale tests, the capacity of the feeder is ten cubic metres of fuel per hour. The commercial-scale feeder has been designed for a capacity of fifty cubic metres per hour. The feeder operates hydraulically, and the hydraulic system can be assembled from commercially available components. IVO began development work to devise a feeder based on the piston technique in 1992. During 1993, short tests were performed with the pilot-scale feeder. Tests under real conditions were begun during 1994 at the laboratory of VTT Energy in Jyvaeskylae, which houses the IVOSDIG pressurized gasification pilot plant for moist fuels developed by IVO

  12. Ground-penetrating radar study of the Cena Bog, Latvia: linkage of reflections with peat moisture content

    Directory of Open Access Journals (Sweden)

    Karušs, J.

    2015-12-01

    Full Text Available Present work illustrates results of the ground-penetrating radar (GPR study of the Cena Bog, Latvia. Six sub-horizontal reflections that most probably correspond to boundaries between sediments with different electromagnetic properties were identified. One of the reflections corresponds to bog peat mineral bottom interface but the rest are linked to boundaries within the peat body. The radar profiles are incorporated with sediment cores and studies of peat moisture and ash content, and degree of decomposition. Most of the electromagnetic wave reflections are related to changes in peat moisture content. The obtained data show that peat moisture content changes of at least 3 % are required to cause GPR signal reflection. However, there exist reflections that do not correlate with peat moisture content. As a result, authors disagree with a dominant opinion that all reflections in bogs are solely due to changes in volumetric peat moisture content.

  13. The analysis of charcoal in peat and organic sediments

    Directory of Open Access Journals (Sweden)

    S.D. Mooney

    2011-03-01

    Full Text Available The abundance of charcoal in sediments has been interpreted as a ‘fire history’ at about 1,000 sites across the globe. This research effort reflects the importance of fire in many ecosystems, and the diversity of processes that can be affected by fire in many landscapes. Fire appears to reflect climate through the intermediary of vegetation, but arguably responds faster than vegetation to climate change or variability. Fire and humans are also intricately linked, meaning that the activity of fire in the past is also of relevance to prehistoric and historic human transitions and to contemporary natural resource management. This article describes recent advances in the analysis of charcoal in peat and other sediments, and offers a simple method for the quantification of larger charcoal fragments (>100 µm and a standardised method for the quantification of microscopic charcoal on pollen slides. We also comment on the challenges that the discipline still faces.

  14. Enhanced mobilization of major inorganics during coalification of peats

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, A.M. [Univ. of Southwestern Louisiana, Lafayette, LA (United States); Cohen, A.D. [Univ. of South Carolina, Columbia, SC (United States); Orem, W.H. [Geological Survey, Reston, VA (United States)

    1995-12-01

    Release patterns for Na, Cl, Ca, Mg, and Si from Cladium, Rhizophora, and Cyrilla peats have been determined by means of experiments to 60{degrees}C and 2100 psi. Where pore solution concentrations are high, significant mobilization is directly through loss of pore solutions. Changes in organic structures during early stage coalification may also mobilize exchangeable ions. Attack on solid inorganic phases begins during peatification and may be accelerated at temperatures above 40{degrees}C by increased organic acid production. Respective maximum concentrations for acetate, formate, and oxalate are around 900, 700, and 70 mg/l in the Cyrilla experiments at 60{degrees}C. Enhanced concentrations of Si, Al and other inorganics may result from these.

  15. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  16. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  17. Mobile geophysical study of peat deposits in Fuhrberger Field, Germany

    Science.gov (United States)

    Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.

    2012-04-01

    In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  18. Treatment of peat bogs harvested by deep digging technique

    International Nuclear Information System (INIS)

    Hoernsten, L.

    1992-06-01

    The aim of this study is to describe how peat bogs harvested by deep digging technique can be treated after harvesting has come to an end. The study points out treatment methods, how the treatments are carried out and to indicate the most appropriate method of harvest for optimum results. Costs and benefits are calculated for the methods involving cultivation. The knowledge gained from traditional peat harvesting technique indicate forestry, energy wood production and establishment of ponds as possible alternatives. Energy grass cultivation and establishments of game parks have not been tested. but are assumed to be viable on suitable sites. Establishment of duck ponds are also possible, even though conditions for these are better on firm ground. In this study spruce is estimated to produce 200 cubic meters during 105 year whilst pine produces 300 cubic meters. Calculations for pine and spruce estimate costs of respectively 17000 and 18000 SEK per hectare after 105 years. Energy wood production is estimated to be 11.6 tons dry matter per hectare and year which gives a net cost of 19000 SEK per hectare. Similarly energy grass cultivation results in an average annual harvest of 6.5 ton dry matter and a cost of 59000 SEK per hectare. If the results are applied to three specific cases, then forest cultivation and establishment of ponds are possible in all cases. Neither energy wood nor energy grass are appropriate in any of the three regions. At the particular site for this study all methods mentioned are possible. Depending on whether draining leads to a high or low water table, the most appropriate course would be the establishment of a pond respectively a game park of forest cultivation. (59 refs., 12 tabs., 4 figs.)

  19. Aged anthropogenic iodine in a boreal peat bog

    International Nuclear Information System (INIS)

    Maillant, S.; Sheppard, M.I.; Denys, S.; Leclerc Cessac, E.

    2004-01-01

    Iodine-129 is a radionuclide of major concern in the international safety assessments for deep geological storage and disposal of nuclear waste because it migrates quickly through the geosphere to the biosphere and then from the soil to humans through the food-chain. However, in organic soils the 129 I may be immobilized over a long time period, and so these soils represent a potential accumulation point in the biosphere. Effects of long residence times of iodine in soils are scarce. The present paper gives some insight on the aging of stable iodine, under natural conditions. Stable iodine was introduced as KI in 1987 at the base of a small natural sphagnum bog to simulate arrival of iodine via a groundwater discharge from the geosphere. Previous data revealed the spread of the iodine outwards spatially from the basal spike and also recorded its rise towards the bog surface. Fifteen years later, the groundwater, the soil and the vegetation have been sampled and analyzed for iodine. The results we will present give insight on the mobility of 'aged' iodine with time, the retention properties of the peat, and provide iodine transfer factors for native boreal plant species. The data show iodine: - continues to slowly spread from the spike after 15 years, - is more strongly retained on the solid phase at the surface than at depth, - the chemical structure of the peat may influence the retention of iodine as shown by NMR analysis, - iodine retention has become greater with time, and - herbaceous species are the greatest accumulators. This study demonstrates bogs present good sinks for iodine and limit the transfer of iodine to some of the 'wildlife' food-chains. (author)

  20. Geochemistry of peat over kimberlites in the Attawapiskat area, James Bay Lowlands, northern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Keiko H. [Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)], E-mail: khattori@uOttawa.ca; Hamilton, Stewart [Ontario Geological Survey, Sudbury, Ontario, P3E 6B5 (Canada)

    2008-12-15

    The James Bay Lowlands, which is the SE part of the Hudson Bay Lowlands, Canada, and within the Paleozoic limestone terrane, is covered mostly by peatlands. Peat samples were examined in the Attawapiskat area, a region of discontinuous permafrost, where more than 19 kimberlite pipes have been found beneath a cover of peat (2-4 m thick) and Quaternary sediments (up to 20 m thick) of Tyrell Sea clay beds and glacial tills. Pore water at a depth of 40 cm in the peat has a consistently low pH, <4, and high Eh, {approx}290 mV, in the areas over limestones far from kimberlites. On the other hand, peat pore water close to kimberlites has a high pH, up to 6.7, and low Eh, down to 49 mV; the values of pH and Eh are inversely correlated. The high pH and low Eh close to kimberlites suggest active serpentinization of olivine in the underlying kimberlites. The bulk compositions of peat indicate precipitation of secondary CaCO{sub 3} and Fe-O-OH. The secondary carbonate contains high concentrations of kimberlite pathfinder elements, such as Ni, rare earth elements (REE) and Y. The ratios of metal concentrations extracted by ammonium acetate solution at pH 5 (AA5) to those in a total digestion confirm that a majority of the divalent cations are hosted by the secondary carbonate, whereas tri-, tetra- and penta-valent cations are not. As these charged cations are not leached in Enzyme Leach, they are most likely adsorbed on Fe-O-OH. The compositions of peat show spatial variation with the distribution of kimberlites, suggesting that they are influenced by the underlying rocks even through there are thick layers of tills and sediments between the bedrocks and peat. However, elevated concentrations of pathfinder elements of kimberlites in bulk peat samples and AA5 leach are not necessarily directly above kimberlites. The diffused metal anomalies around kimberlites are attributed to the dissolution-precipitation of secondary phases (carbonates and Fe-O-OH) in acidic and reduced waters

  1. Drainage of shallow peat harvesting areas with pipe drains; Madaltuneen turvetuotantokentaen kuivatustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, V. [Vapo Oy, Jyvaeskylae (Finland)

    1997-12-01

    This study aims to develop pipe draining techniques in peat harvesting areas, which have been in active use so long time that the remaining peat layer is about one meter thick. The method should be technically and economically feasible as well as environmentally acceptable. Special attention is paid to pipe installation techniques, drain spacing and impacts on watercourses, which receive the drainage waters. After pipe installation the area was monitored by measuring pipe runoffs, water tables, moisture content of peat and quality of drain water. These are the results of second year. (orig.)

  2. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  3. Drainage of shallow peat harvesting areas with pipe drains; Mataloituneen turvekentaen kuivatus putkisalaojilla

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, V.; Saenkiaho, K. [Vapo Oy, Jyvaeskylae (Finland); Rautiainen, O. [Ojamarkkinointi Oy, Heinola (Finland)

    1996-12-31

    This study aims to develop pipe draining technics in peat harvesting areas, which have been in active use so long time that the remaining peat layer is about one meter thick. The method should be technically and economically feasible as well as environmentally acceptable. Special attention is paid to pipe installation techniques, drain spacing and impacts on watercourses, which receive the drainage waters. After pipe installation the area is monitored by measuring pipe runoffs, water tables, moisture content of peat and quality of drain water

  4. Receptor saturation in roentgen films

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  5. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  6. Mechanics of non-saturated soils

    International Nuclear Information System (INIS)

    Coussy, O.; Fleureau, J.M.

    2002-01-01

    This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)

  7. Distribution of 35 Elements in Peat Cores from Ombrotrophic Bogs Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2004-01-01

    In ombrotrophic bogs the surface peat layer is supplied with chemical substances only from the atmosphere. Peat cores from these bogs therefore can be used to study temporal trends in atmospheric deposition of pollutants. In this work epithermal neutron activation analysis was applied for the first time to study the distribution of 35 elements in peat profiles from ombrotrophic bogs. The selected examples were from Finnmark county in northern Norway: one pristine site far from any local pollution source, and another strongly affected by long-term operation of Russian copper-nickel smelters located close to the border. The elements are classified with respect to their behavior in the uppermost 40 cm of the peat, and similarities and differences between the two profiles are discussed. As compared with other more commonly used analytical techniques based on acid decomposition of the sample ENAA has the advantage of providing the total concentrations of the elements.

  8. Sorption distribution coefficients of uranium, thorium and radium of selected Malaysian peat soils

    International Nuclear Information System (INIS)

    Mohd Zaidi Ibrahim; Zalina Laili; Muhamat Omar; Phillip, Esther

    2010-01-01

    A study on sorption of uranium, thorium and radium on Malaysian peat soils was conducted to determine their distribution coefficient (K d ) values. Batch studies were performed to investigate the influence of pH and the concentrations of radionuclides. Peat soil samples used in this study were collected from Bachok, Batu Pahat, Dalat, Hutan Melintang and Pekan. The peat samples from different location have different chemical characteristics and K d values. No correlation was found between chemical characteristics and the K d values for radium and thorium, but K d value for uranium was found correlated with humic and organic content. The K d value was found to be influenced by soluble humic substances or humic substances leach out from peat soils. (author)

  9. Peat leachmound treatment of on-site domestic septic effluent in cold region environments

    Energy Technology Data Exchange (ETDEWEB)

    Riznyk, Z; Rockwell, J [Alaska Pacific University, Anchorage (Alaska); Reid, L C; Reid, S L [Alaska Pacific University, Anchorage (Alaska). Environmental Control Services

    1990-01-01

    A two-year study of two pilot peat leachmounds has demonstrated that under cold region conditions of subzero temperatures, severe periodic storm events and break-up of winter ice and snow, that domestic septic tank effluent can be treated for subsurface or suface discharge. The quality of the peat leachate is similar to wastewater which has undergone tertiary treatment. It is our contention that peat leachmounds can be designed to treat the wastewater of Alaskan bush communities which to date still rely on privies and honey buckets. Not only could peat leachmounds be used in rural Alaska, but this technology could be extended to other northern tier counties such as the Soviet Union and Canada to improve the living conditions of the area's rural residents.

  10. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-15

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  11. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-01

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  12. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants.

    Science.gov (United States)

    Abad, Manuel; Noguera, Patricia; Puchades, Rosa; Maquieira, Angel; Noguera, Vicente

    2002-05-01

    Selected physico-chemical and chemical characteristics of 13 coconut coir dust (mesocarp pithy tissue plus short-length fibres) samples from Asia, America and Africa were evaluated as peat alternatives. All properties studied differed significantly between and within sources, and from the control Sphagnum peat. pH of coir dust was slightly acidic, whereas salinity varied dramatically between 39 and 597 mS m(-1) in the saturated media extract. The cation exchange capacity and carbon/nitrogen (C/N) ratio ranged from 31.7 to 95.4 cmol(c) kg(-1) and from 75 to 186, respectively. Most carbon was found as lignin and cellulose. The concentrations of available nitrogen, calcium, magnesium and micro-elements were low, while those of phosphorus and potassium were remarkably high (0.28-2.81 mol m(-3) and 2.97-52.66 mol m(-3) for P and K, respectively). Saline ion concentrations, especially chloride and sodium, were also high.

  13. Development of Tropical Lowland Peat Forest Phasic Community Zonations in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohamad Tarmizi Mohamad

    2016-01-01

    Full Text Available Logging observations of auger profiles (Tarmizi, 2014 indicate a vertical, downwards, general decrease of peat humification levels with depth in a tropical lowland peat forest in the Kota Samarahan-Asajaya area in the region of West Sarawak (Malaysia. Based on pollen analyses and field observations, the studied peat profiles can be interpreted as part of a progradation deltaic succession. Continued regression of sea levels, gave rise to the development of peat in a transitional mangrove to floodplain/floodbasin environment, followed by a shallow, topogenic peat depositional environment with riparian influence at approximately 2420 ± 30 years B.P. (until present time. The inferred peat vegetational succession reached Phasic Community I at approximately 2380 ± 30 years B.P. and followed by Phasic Community II at approximately 1780 ± 30 years B.P., towards the upper part of the present, ombrogenic, peat profile. Observations of the presence of large, hollow, Shorea type trees, supports that successive vegetational zonation of the tropical lowland peat dome may have reached Phasic Community II. Some pollen types were found that are also known to occur in the inferred vegetational zonation of Phasic Community III and IV or higher. Pollen analyses indicate that estuarine and deltaic, brackish to saline water influence may have gradually ceased at approximately 0.5 m below the lithological boundary between peat and underlying soil (floodplain deposit in the tropical lowland peat basin.

  14. Assessment of the peat resources of Florida, with a detailed survey of the northern everglades

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.M.; Wieland, C.C.; Hood, L.Q.; Goode, R.W. III; Sawyer, R.K.; McNeill, D.F.

    1982-01-01

    Available data, including previous publications, modern soil surveys, and detailed coring in the Northern Everglades for this project have been used to update information on Florida's peat resources. It is now estimated that Florida could, if no other constraints existed, produce 606 million tons of moisture-free fuel-grade peat, which may yield approximately 10.0 x 10/sup 15/ Btu of energy. These estimates are much lower than previously published projections for the state. The principal effort of this survey was in the largest peat region of the state, the Northern Everglades of Palm Beach and adjacent counties, where more than 800 core holes were drilled. Based on analyses of these cores, the Northern Everglades is now estimated to contain 191 million tons of moisture-free peat, with a potential energy yield of 2.98 x 10/sup 15/ Btu. These values are considerably less than previously published estimates, probably due to bacterial oxidation and other forms of drainage-induced subsidence in the Everglades agricultural areas. The present fuel-peat resources of the Northern Everglades occur in 19 separate deposits. Of these, the deposits in the Port Mayaca, Bryant, Six Mile Bend, and Loxahatchee Quadrangles comprise the highest concentration of the resource. These lands are generally privately owned and used for sugar cane and other crops, and the conversion of these lands to peat removal seems unlikely. It seems even less likely that the extensive peat deposits within the Loxahatchee National Wildlife Refuge will be available for fuel use, barring a dire national emergency. The utilization of peat as a fuel must be approached with caution and careful study; large scale use may require state or federal action. 34 references.

  15. Permeability Characteristics of Compacted and Stabilized Clay with Cement, Peat Ash and Silica Sand

    OpenAIRE

    Seyed Esmaeil Mousavi; Leong Sing Wong

    2016-01-01

    The present paper investigates the influence of stabilization with cement, peat ash, and silica sand on permeability coefficient (kv) of compacted clay, using a novel approach to stabilize the clay with peat ash as a supplementary material of cement in the compacted and stabilized soil. In order to assess the mentioned influence, test specimens of both untreated and stabilized soil have been tested in the laboratory so that their permeability could be evaluated. Falling head and one dimension...

  16. Growth of lowland broccoli coconut coir dust and peat based growing media using fertigation system

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Asiah; Abdul Rahman, Shyful Azizi; Nordin, Latiffah; Abdullah, Hazlina; Ruslan, Abdul Razak [Malaysian Inst. for Nuclear Technology Research MINT, Bangi (Malaysia). Agrotechnology and Bioscineces Div.; Taib, Mohd Idris [Malaysian Inst. for Nuclear Technology Research MINT, Bangi (Malaysia). Intelligent Group

    2004-07-01

    A study was carried out inside the greenhouse to determine the response of lowland broccoli (Brassica oleracea) plants grown in five mixtures of coconut coir dust and peat as the growing media. The growing mixes were prepared in the following ratios (% by vol): 100% coconut coir dust, 75% coconut coir dust + 25% peat, 50% coconut coir dust + 50% peat, 25% coconut coir dust + 75% peat and 100% peat. The plants were supplied with 200 mg 1-1 nitrogen using a computerized fertigation system developed at MINT Plants grown on 100% peat exhibited reduced plant growth and yield compared to plants grown on mixes containing coconut coir dust. Plants growth and yield were increased on growing media contained > 50% coconut coir dust; however, the highest total plant dry weight, plant height and yield were obtained from plants grown on 100% coconut coir dust. Total nitrogen concentration in the leaves and stems was not significantly different in all mixture of the growing media regardless of whether coconut coir dust or peat was used. In general, nitrate -nitrogen concentrations were lowest in the floret than in the leaves and stem tissues of plants grown on all growing media used in the study. However, nitrate-nitrogen concentrations in the leaves, stems and florets were lowest in the plants grown on 100% peat compared to the plants grown on growing media containing coconut coir dust. The concentrations of nitrate-nitrogen in the florets, which ranged from 290 to 450 mg N kg-l/dry weight, are considered to be under permissible levels by European standards. (Author)

  17. Growth of lowland broccoli coconut coir dust and peat based growing media using fertigation system

    International Nuclear Information System (INIS)

    Asiah Ahmad; Shyful Azizi Abdul Rahman; Latiffah Nordin; Hazlina Abdullah; Abdul Razak Ruslan; Mohd Idris Taib

    2004-01-01

    A study was carried out inside the greenhouse to determine the response of lowland broccoli (Brassica oleracea) plants grown in five mixtures of coconut coir dust and peat as the growing media. The growing mixes were prepared in the following ratios (% by vol): 100% coconut coir dust, 75% coconut coir dust + 25% peat, 50% coconut coir dust + 50% peat, 25% coconut coir dust + 75% peat and 100% peat. The plants were supplied with 200 mg 1-1 nitrogen using a computerized fertigation system developed at MINT Plants grown on 100% peat exhibited reduced plant growth and yield compared to plants grown on mixes containing coconut coir dust. Plants growth and yield were increased on growing media contained > 50% coconut coir dust; however, the highest total plant dry weight, plant height and yield were obtained from plants grown on 100% coconut coir dust. Total nitrogen concentration in the leaves and stems was not significantly different in all mixture of the growing media regardless of whether coconut coir dust or peat was used. In general, nitrate -nitrogen concentrations were lowest in the floret than in the leaves and stem tissues of plants grown on all growing media used in the study. However, nitrate-nitrogen concentrations in the leaves, stems and florets were lowest in the plants grown on 100% peat compared to the plants grown on growing media containing coconut coir dust. The concentrations of nitrate-nitrogen in the florets, which ranged from 290 to 450 mg N kg-l/dry weight, are considered to be under permissible levels by European standards. (Author)

  18. Saturation in dual radiation action

    International Nuclear Information System (INIS)

    Rossi, H.H.; Zaider, M.

    1988-01-01

    The theory of dual radiation action (TDRA) was developed with the aim of applying microdosimetry to radiobiology. It therefore can deal only with the first phases in a long chain of events that results in patent effects. It is, however, clear that the initial spatial and temporal pattern of energy deposition has a profound influence on the ultimate outcome. As often happens, the early formulation of the theory contained a number of simplifying assumptions. Although most of these were explicitly stated when the first version of the TDRA was published experimental data obtained when the limitations are important were cited as contrary evidence causing considerable confusion. A more advanced version eliminated some of the restrictions but there remain others, one of which relates to certain aspects of saturation which are addressed here

  19. The Climate Impact of Energy Peat Utilisation in Sweden - the Effect of former Land-Use and After-treatment

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Nilsson, Mats

    2004-12-01

    The potential climate impact from the use of peat for energy production in Sweden was evaluated in terms of contribution to atmospheric radiative forcing. The calculations consider emissions from combustion and from the peatlands before, during and after harvesting. Four main groups of peatlands in use for peat harvesting were identified: 1. pristine peatlands; 2. drained peatlands used for agriculture; 3. drained peatlands used for forestry (low productive); 4. peatlands previously (historically) used for peat harvesting. The radiative forcing of different scenarios using the mentioned peatland types for energy peat production was calculated, using literature and empirical data related to peat harvesting, at these four types of mires. In the calculations the original land-use was set as reference scenario. The radiative forcing caused by using agricultural peatlands for energy peat production was much lower than for the corresponding use of pristine peatlands and old peat harvesting areas. The calculated value for the radiative forcing of current (20-year period of harvesting and combustion) peat utilisation for energy in a 100-year perspective ranges between 80-90% of the corresponding radiative forcing from using coal and 165-180% from using natural gas. The scenarios for different peatland types and the currently used peatlands show that there is a potential to reduce the radiative forcing caused by energy peat production and utilisation in Sweden by selecting peat harvesting area and after-treatment method. It was concluded that both the greenhouse gas balance of the peatland before harvesting and the after-treatment methods strongly impact the radiative forcing from energy peat utilisation. The radiative forcing from continuous utilisation of energy peat was also calculated a few scenarios. The results show a slower development than the shorter harvesting/combustion scenarios. Since new peat continuously is burnt it will take longer time before the benefit of

  20. The Climate Impact of Energy Peat Utilisation in Sweden - the Effect of former Land-Use and After-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kristina [Swedish Environmental Research Institute, Stockholm (Sweden); Nilsson, Mats [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Ecology

    2004-12-01

    The potential climate impact from the use of peat for energy production in Sweden was evaluated in terms of contribution to atmospheric radiative forcing. The calculations consider emissions from combustion and from the peatlands before, during and after harvesting. Four main groups of peatlands in use for peat harvesting were identified: 1. pristine peatlands; 2. drained peatlands used for agriculture; 3. drained peatlands used for forestry (low productive); 4. peatlands previously (historically) used for peat harvesting. The radiative forcing of different scenarios using the mentioned peatland types for energy peat production was calculated, using literature and empirical data related to peat harvesting, at these four types of mires. In the calculations the original land-use was set as reference scenario. The radiative forcing caused by using agricultural peatlands for energy peat production was much lower than for the corresponding use of pristine peatlands and old peat harvesting areas. The calculated value for the radiative forcing of current (20-year period of harvesting and combustion) peat utilisation for energy in a 100-year perspective ranges between 80-90% of the corresponding radiative forcing from using coal and 165-180% from using natural gas. The scenarios for different peatland types and the currently used peatlands show that there is a potential to reduce the radiative forcing caused by energy peat production and utilisation in Sweden by selecting peat harvesting area and after-treatment method. It was concluded that both the greenhouse gas balance of the peatland before harvesting and the after-treatment methods strongly impact the radiative forcing from energy peat utilisation. The radiative forcing from continuous utilisation of energy peat was also calculated a few scenarios. The results show a slower development than the shorter harvesting/combustion scenarios. Since new peat continuously is burnt it will take longer time before the benefit of

  1. The emissions of peat production and utilization chain, the effects of the emissions, proportion and valuing of them

    International Nuclear Information System (INIS)

    Ahonen, A.; Leiviskae, V.; Kiukaanniemi, E.

    1992-01-01

    The solid matter flush off of peat production areas do not differ remarkably from those of forest drainage and clear felling excluding the nitrogen flush out, which remain on higher level longer, for the 15-20 years of peat production. The fertilizer flush off of peat production is remarkably smaller than that of agriculture. The portion of peat of the total N-load in Finnish watercourses is 0.3 % and 0.2 % of the P-load. The low load value of peat production is due to the marginality of peat production areas of the total utilization of the ground. The portion of loads of peat production are increased on those areas there the portion of peat production of the total ground utilization is high, and no other water loading activities except forestry does not exist. The portion of peat of the total primary energy consumption is about 5 %. The portion of peat fuelled boilers of the solid matter, SO2 and NOx emissions of the energy production was 3 % and of CO2 emissions 8 % in 1991. The CO2 emissions of peat production and combustion into the air are about 360 k/produced m 3 . Some of the environmental effects of the peat production and utilization can be priced using market prices, and hence it is easy to estimate their costs if the reason-action connections are known. Others, like health effects and the conservational value of the mire, are very hard to prize. The estimation of environmental effects cause problems in valoring. the effects of peat production load to watercourses are not easy to separate from the effects of other loads on water courses

  2. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants

    International Nuclear Information System (INIS)

    Dispenza, V.; Pasquale, C. de; Fascella, G.; Mammano, M.M.; Alonzo, G.

    2016-01-01

    Biochar from conifers wood was used in soilless culture as growing substrate alternative to peat for ornamental crops. Potted plants of Euphorbia × lomi Rauh cv. ‘Ilaria’ were grown with different mixtures (v:v) of brown peat and biochar in order to evaluate main physical and chemical characteristics of this biomaterial as well as its effect on plant growth, ornamental characteristics and nutrients uptake. Biochar addition to peat increased pH, EC and K content of the growing substrates, as well as air content and bulk density. Biochar content of substrates significantly affected plant growth and biomass partitioning: higher number of shoots and leaves, leaf area and leaf dry weight were recorded in plants grown in 40% peat-60% biochar, with respect to plants grown in 100% peat and secondarily in 100% biochar. Leaf chlorophyll content was higher in plants grown in 60% and 80% biochar, while biomass water use efficiency was higher with 60% biochar. Plant uptake of K and Ca increased as biochar content of the substrates increased. Hence, a growing substrate containing 40% brown peat and 60% conifers wood biochar was identified as the more suitable mixture allowing to have a high-quality production of Euphorbia × lomi potted plants.

  3. Growth of micropropagated lowbush blueberry with defined fungi in irradiated peat mix

    International Nuclear Information System (INIS)

    Litten, Walter; Smagula, J.M.; Dalpe, Yolande

    1992-01-01

    There is an interest in vegetative multiplication of high-yielding clones of Vaccinium angustifolium Ait. to establish or enhance blueberry production. This study evaluates mycorrhizal inoculation as an aid in such propagation from microcuttings. Shoots of Vaccinium angustifolium (clone 7062) generated in vitro were rooted in a peat-vermiculite-perlite substrate with or without ericoid mycorrhizal fungi fortification by Hymenoscyphus ericae or Scytalidium vaccinii and with or without peat sterilization by γ irradiation. Both in irradiated peat mix inoculated with S. vaccinii and in unirradiated peat mix with H. ericae, microcuttings grew taller and branched more than with the four other treatments. The profusely rooted plantlets available from all treatments of the cuttings put on significantly more total length of stems and branches after 167 days in the greenhouse when growing with either inoculant in unirradiated peat than in the unirradiated peat without inoculation. However, the magnitude of difference might be of borderline importance in commercial nursery operations. A higher level of copper and zinc in stem tissue was observed in stem tissue of plants grown with H. ericae with or without irradiation but not with S. vaccinii

  4. Carbon storage change in a partially forestry-drained boreal mire determined through peat column inventories

    Energy Technology Data Exchange (ETDEWEB)

    Pitkanen, A.; Tahvanainen, T.; Simola, H. [Univ. of Eastern Finland, Joensuu (Finland). Dept. pf Biology; Turunen, J. [Geological Survey of Finland, Kuopio (Finland)

    2013-09-01

    To study the impact of forestry drainage on peat carbon storage, we cored paired quantitative peat samples from undrained and drained sides of an eccentric bog. Five pairs of 0 to {<=} 100-cm-deep surface-peat cores, and a pair of profiles representing the full peat deposit provided stratigraphic evidence of marked loss of surface peat due to drainage. For the drained side cores, we found a relative subsidence of 25-37 cm of the surface, and a loss of about 10 kg{sub DW}{sup m-2}, corresponding to 131 {+-} 28 g C m{sup -2} a{sup -1} (mean {+-} SE) for the post-drainage period. Similar peat loss was also found in the full deposit profiles, thus lending credibility to the whole-column inventory approach, even though the decrease (9 kg{sub DW} m{sup -2}) was relatively small in comparison with the total carbon storage (233 and 224 kg{sub DW} m{sup -2} for the undrained and drained sides, respectively). (orig.)

  5. Peat growth and carbon accumulation rates during the holocene in boreal mires

    International Nuclear Information System (INIS)

    Klarqvist, M.

    2001-01-01

    This thesis is based on accumulation processes in northern mires. In the first study, problems concerning carbon 14 dating of peat were examined by fractionation of bulk peat samples and 14 C AMS dating of the separate fractions. In the following studies, peat cores from twelve Swedish mire sites were investigated. Macrofossil analysis was performed on the sampled cores to describe and classify the plant communities during mire development. Between 6 to 18 14 C AMS datings were performed on one core from each mire in order to estimate the peat growth and carbon accumulation rates for the identified plant communities. Different fractions within single peat bulk samples gave considerably differing 14 C ages. The range in age differed between mire types and depth. For accurate 14 C dating, moss-stems, preferably of Sphagnum spp. are recommended. Both autogenic and allogenic factors, e.g. climate and developmental stage, respectively, were identified as important influences on carbon accumulation. Both peat growth and carbon accumulation rates differed between plant communities. The major factors explaining the variations in accumulation rates of the different plant communities were the amount of Carex and Sphagnum remains and the geographical position of the mire. Carbon accumulation rates decrease along with development in most mires. The results indicate that some mires may have alternated between being carbon sinks and sources, at least over the last several hundred years. The inter-annual variation in carbon accumulation is probably explained by climatic variations

  6. Lead-210 and heavy metal contents in dated ombrotrophic peat hummocks from Finland

    International Nuclear Information System (INIS)

    El-Daoushy, F.; Tolonen, K.

    1984-01-01

    Two Sphagnum fuscum hummock cores, core 1, Kaerpaensuo bog and core F9, Kunonniemensuo bog. from Finland were used in this study. The peats are ombrotrophic and were dated using the moss-increment method. The mosses in both cores were carefully examined for their botanical composition, degree of humification, ash percentage and bulk density. The total accumulated dry peat-matter in the Kunonniemensuo core was almost double that in the Kaerpaensuo core. The total 210 Pb and the supported 210 Pb were measured by isotope dilution and the radon emanation technique. Materials in the same peat samples were analysed for their 210 Pb content at the Institute of Physics, Uppsala, Sweden and the Technical Research Centre of Finland, Espoo, Finland. The annual content of unsupported 210 Pb in the dated peat-layers shows that peat materials are effective traps which could yield information on atmospheric-fluxes both chronologically and regionally. Lead, copper, zinc, iron and manganese were also measured by flame atomic absorption spectrometry (AAS). The total accumulated amounts over the past 150 y of the heavy metals investigated are almost identical for both cores apart from manganese which is considerably higher in the Kunonniemensuo core. However, the metal profiles studied exhibit discontinuity zones more pronounced in the Kunonniemensuo core. The 210 Pb data indicate that growth rate and bulk density variations in ombrotrophic peat bogs affects the accumulation of 210 Pb and similar trace metals. (orig.)

  7. Spring barley yield and nitrogen recovery after application of peat manure and pig slurry

    Directory of Open Access Journals (Sweden)

    P. K. MATTILA

    2008-12-01

    Full Text Available The effectiveness of peat manure, manufactured of pig slurry and moderately humified Sphagnum peat (slurry:peat ca. 1:1.5 v/v, as nitrogen (N source for spring barley was investigated in a four.year field experiment on a clay loam soil in south-western Finland. Pig slurry, NPK fertilizer and plain peat were used as references. Manures were incorporated before sowing or surface-applied after sowing in spring at an ammoniacal N rate of.54.106 kg.ha-1 with or without supplementary NPK fertilizer (40.kg N.ha-1. Soil moisture conditions were varied by different irrigation treatments. Peat manure produced 5.15% higher grain yields than pig slurry, with the largest difference after surface application. Incorporation was more important for slurry than for peat manure in increasing N uptake and yield. Soil moisture deficit in spring and early summer limited the availability of manure N. Part of the manure N that was not available in the early growing period was apparently taken up by the crop later. Consequently, N concentration tended to be higher with lower yields, and differences in the recovery of manure N were smaller than the differences in grain yield. Supplementation of manures with inorganic fertilizer N increased yield by 37%, on average, and improved the N recovery.;

  8. Applications of scanning electron microscopy to the study of mineral matter in peat

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, R. Jr.; Andrejko, M.J.; Bardin, S.W.

    1983-01-01

    Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) have been used for in situ analysis of minerals in peats by combining methods for producing oriented microtome sections of peat with methods for critical point drying. The combined technique allows SEM analysis of the inorganic components and their associated botanical constituents, along with petrographic identification of the botanical constituents. In peat deposits with abundant fluvial- or marine-derived minerals, one may use the above technique and/or medium- or low-temperature ashing followed by x-ray diffraction to readily identify the various mineral components. However, in some freshwater environments the scarcity of non-silica minerals makes the above techniques impractical. By separating the inorganic residues from the peat, one can isolate the non-silica mineral matter in the SEM for analysis by EDS. Furthermore, such separation allows SEM analysis of features and textures of both silica and non-silica mineral particles that might otherwise be unidentifiable. Results indicate the occurrence of detritial minerals in both Okefenokee and Snuggedy Swamp peats, the presence of authigenic or diagenetic minerals growing within peats, and dissolution features on freshwater sponge spicules that may account for the absence of spicules in Tertiary lignites.

  9. The influence of peat water to the colony number of aerob bacteria in mouth

    Directory of Open Access Journals (Sweden)

    Peni Purwandari

    2016-08-01

    Full Text Available Peatlands in Borneo is the second which the pH is 32% below normal that is 2-5, the pH of the acid contained in the peat water can trigger the acid environment of the oral cavity resulting in increased aerobic bacteria of the oral cavity. Most small communities of South Kalimantan who lives inland which is unreachable with clean water still use peat water for daily necessities. The purpose of this study was to determine the effect of peat water to the number of aerobic bacteria colonies of the oral cavity. This study used the quasi-experimental research design with pre-posttest control group design. The study sample consisted of 20 students of Faculty of Dentistry, Lambung Mangkurat University. The research used peat water after mouth rinsing with 10 ml of water and then the number of aerobic bacteria colonies which were present in bacterial growth media was counted. The result of this study showed that the result of paired t-test showed no significant differences between the groups before and after rinsing with  peat water (p = 0.001 (p <0.005. Based on the research we conclude that the peat water may cause an increasing in the number of colonies of aerobic bacteria of the oral cavity.

  10. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    Science.gov (United States)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  11. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants

    Directory of Open Access Journals (Sweden)

    Vincenzo Dispenza

    2016-12-01

    Full Text Available Biochar from conifers wood was used in soilless culture as growing substrate alternative to peat for ornamental crops. Potted plants of Euphorbia × lomi Rauh cv. ‘Ilaria’ were grown with different mixtures (v:v of brown peat and biochar in order to evaluate main physical and chemical characteristics of this biomaterial as well as its effect on plant growth, ornamental characteristics and nutrients uptake. Biochar addition to peat increased pH, EC and K content of the growing substrates, as well as air content and bulk density. Biochar content of substrates significantly affected plant growth and biomass partitioning: higher number of shoots and leaves, leaf area and leaf dry weight were recorded in plants grown in 40% peat-60% biochar, with respect to plants grown in 100% peat and secondarily in 100% biochar. Leaf chlorophyll content was higher in plants grown in 60% and 80% biochar, while biomass water use efficiency was higher with 60% biochar. Plant uptake of K and Ca increased as biochar content of the substrates increased. Hence, a growing substrate containing 40% brown peat and 60% conifers wood biochar was identified as the more suitable mixture allowing to have a high-quality production of Euphorbia × lomi potted plants.

  12. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants

    Energy Technology Data Exchange (ETDEWEB)

    Dispenza, V.; Pasquale, C. de; Fascella, G.; Mammano, M.M.; Alonzo, G.

    2016-07-01

    Biochar from conifers wood was used in soilless culture as growing substrate alternative to peat for ornamental crops. Potted plants of Euphorbia × lomi Rauh cv. ‘Ilaria’ were grown with different mixtures (v:v) of brown peat and biochar in order to evaluate main physical and chemical characteristics of this biomaterial as well as its effect on plant growth, ornamental characteristics and nutrients uptake. Biochar addition to peat increased pH, EC and K content of the growing substrates, as well as air content and bulk density. Biochar content of substrates significantly affected plant growth and biomass partitioning: higher number of shoots and leaves, leaf area and leaf dry weight were recorded in plants grown in 40% peat-60% biochar, with respect to plants grown in 100% peat and secondarily in 100% biochar. Leaf chlorophyll content was higher in plants grown in 60% and 80% biochar, while biomass water use efficiency was higher with 60% biochar. Plant uptake of K and Ca increased as biochar content of the substrates increased. Hence, a growing substrate containing 40% brown peat and 60% conifers wood biochar was identified as the more suitable mixture allowing to have a high-quality production of Euphorbia × lomi potted plants.

  13. Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties

    Science.gov (United States)

    Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq

    2018-02-01

    This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.

  14. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  15. Using of peat sorbents in bivalent metals sorption from municipal solid waste landfills leachate

    Energy Technology Data Exchange (ETDEWEB)

    Teirumnieka, E.; Teirumnieks, E. [Rezeknes Augskola, Rezekne (Latvia). Faculty of Engineering; Klavins, M. [Latvia Univ., Riga (Latvia). Faculty of Geography and Earth Sciences

    2009-07-01

    Landfill leachate in acidic regions can pollute surface and ground waters with heavy metals and other pollutants. This study investigated the use of peat as an effective media for removing dissolved metal pollutants. As an adsorbent, peat can effectively remove metals from aqueous solutions. The experiment used 10 grams of peat mixed with heat metal solutions in a reaction vessel at temperatures of 20 degrees C. The solution was analyzed using an inductively coupled plasma optical emission spectrometer. A pH meter was used to measure pH values. The study showed that the maximum adsorption capacity for cobalt (Co) was approximately 75 mg per gram. Adsorption quantity was estimated at 68 per cent, with an initial pH of 5.6. The maximum adsorption capacity for nickel (Ni) was approximately 77 mg per gram, and copper (Cu) was 58 mg per gram with initial pH values of 6.8. Results varied with variations in peat composition and structure. Adsorption affinities correlated with electronegativity and softness. Adsorption capacity of peat for each metal decreased due to the competitive effect of binary and ternary solute systems. Approximately 85 per cent of Ni ions were adsorbed in 30 minutes. It was concluded that the sorption efficiency of the peat decreased with increasing initial concentrations of the metals. The pH levels were influenced by the ion exchange effect in the sorption mechanism. 12 refs., 3 tabs., 7 figs.

  16. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    Science.gov (United States)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  17. Mycobacterium avium subsp. hominissuis infection in swine associated with peat used for bedding.

    Science.gov (United States)

    Johansen, Tone Bjordal; Agdestein, Angelika; Lium, Bjørn; Jørgensen, Anne; Djønne, Berit

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an environmental bacterium causing opportunistic infections in swine, resulting in economic losses. Additionally, the zoonotic aspect of such infections is of concern. In the southeastern region of Norway in 2009 and 2010, an increase in condemnation of pig carcasses with tuberculous lesions was seen at the meat inspection. The use of peat as bedding in the herds was suspected to be a common factor, and a project examining pigs and environmental samples from the herds was initiated. Lesions detected at meat inspection in pigs originating from 15 herds were sampled. Environmental samples including peat from six of the herds and from three peat production facilities were additionally collected. Samples were analysed by culture and isolates genotyped by MLVA analysis. Mycobacterium avium subsp. hominissuis was detected in 35 out of 46 pigs, in 16 out of 20 samples of peat, and in one sample of sawdust. MLVA analysis demonstrated identical isolates from peat and pigs within the same farms. Polyclonal infection was demonstrated by analysis of multiple isolates from the same pig. To conclude, the increase in condemnation of porcine carcasses at slaughter due to mycobacteriosis seemed to be related to untreated peat used as bedding.

  18. Holocene climate variability in the western Mediterranean through a multiproxy analysis from Padul peat bog (Sierra Nevada, Spain)

    Science.gov (United States)

    Ramos-Román, María J.; Jiménez-Moreno, Gonzalo; Camuera, Jon; García-Alix, Antonio; Anderson, R. Scott; Jiménez-Espejo, Francisco J.; Sachse, Dirk

    2017-04-01

    The Iberian Peninsula, located in the Mediterranean area, is an interesting location for paleoclimate studies due to its geographic situation between arid and humid climates. Sediments from peat bogs and lakes from Sierra Nevada, in southeastern Iberian Peninsula, have been very informative in terms of how vegetation and wetland environments were impacted by Holocene climate change. These studies are essential if we want to understand the past climate change in the area, which is the key to identify the possible environmental response of the Sierra Nevada ecosystems to future climate scenarios. Padul basin, located in the southwest of the Sierra Nevada mountain range, contains a ca. 100 m-thick peat bog sedimentary sequence that was deposited during the past 1 Ma making this area interesting for paleoenvironmental and paleoclimatic reconstructions. A new 43 m-long sedimentary record has recently been retrieved from the Padul peat bog. In this study we have developed a multiproxy analysis of the Holocene part of the Padul-15-05 core including pollen analysis, XRF-core scanner, magnetic susceptibility and organic geochemistry, supported by an age control based on AMS radiocarbon dates, providing with information about vegetation and climate variability during the past 9.9 cal ka BP. This multiproxy reconstruction of the Padul-15-05 evidences the Mediterranean as a sensitive area with respect to global-scale climate system, showing relevant climate episodes such as the ca. 8, 7.5, 6.5 and 5.5 cal ka BP events during the early and middle Holocene. The trend to aridification to the late Holocene is interrupted by more arid and humid periods as the Iberian Roman Humid Period (from ca. 3 to 1.6 cal ka BP), the Dark Ages (from ca. 1.5 to 1.1 cal ka BP), the Medieval Climate Anomaly (from ca. 1.1 to 1.3 cal ka BP) and the Little Ice Age period (from ca. 500 to 100 cal yr BP).

  19. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  20. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E.; Smith, E.J.; Lawlor, A.J.; Hughes, S.; Stevens, P.A

    2003-05-01

    Metals stored in peats can be remobilised by sulphuric acid, generated by the drought-induced oxidation of reduced sulphur. - Ombrotrophic peats in northern England and Scotland, close to industrial areas, have substantial contents of potentially toxic metals (Al, Ni, Cu, Zn, Cd and Pb) and of pollutant sulphur, all derived from atmospheric deposition. The peat sulphur, ordinarily in reduced form, may be converted to sulphuric acid under drought conditions, due to the entry of oxygen into the peats. The consequent lowering of soil solution pH is predicted to cause the release of metals held on ligand sites of the peat organic matter. The purpose of the present study was to explore, by simulation modelling, the extent of the metal response. Chemical variables (elemental composition, pH, metal contents) were measured for samples of ombrotrophic peats from three locations. Water extracts of the peats, and samples of local surface water, were also analysed, for pH, dissolved organic carbon (DOC) and metals. Metal release from peats due to acidification was demonstrated experimentally, and could be accounted for reasonably well using a speciation code (WHAM/Model VI). These data, together with information on metal and S deposition, and meteorology, were used to construct a simple description of peat hydrochemistry, based on WHAM/Model VI, that takes into account ion-binding by humic substances (assumed to be the 'active' constituents of the peat with respect to ion-binding). The model was used to simulate steady state situations that approximated the observed soil pH, metal pools and dissolved metal concentrations. Then, drought conditions were imposed, to generate increased concentrations of H{sub 2}SO{sub 4}, in line with those observed during the drought of 1995. The model calculations suggest that the pH will decrease from the initial steady state value of 4.3 to 3.3-3.6 during rewetting periods following droughts, depending upon assumptions about the

  1. Experimental restoration of a fen plant community after peat mining

    Energy Technology Data Exchange (ETDEWEB)

    Cobbaert, D.; Rochefort, L.; Price, J.S. [Univ. Laval, Sainte-Foy (Canada). Dept. de Phytologie

    2004-11-01

    Methods: The effectiveness of introducing fen plants with the application of donor diaspore material was tested. The donor diaspore material, containing seeds, rhizomes, moss fragments, and other plant propagules, was collected from two different types of natural fens. We tested whether the application of straw mulch would increase fen species cover and biodiversity compared to control plots without straw mulch. Terrace levels of different peat depths (15 cm, 40 cm, and 56 cm) were created to test the effects of different environmental site conditions on the success of re-vegetation. Results: Applying donor seed bank from natural fens was found to significantly increase fen plant cover and richness after the two growing seasons. Straw mulch proved to significantly increase fen plant richness. The intermediate terrace level (40 cm) had the highest fen plant establishment. Compared to reference sites, the low terrace level (15 cm) was richer in base cations, whereas the high terrace level (56 cm) was much drier. Conclusions: The application of donor diaspore material was demonstrated as an effective technique for establishing vascular fen plants. Further rewetting measures are considered necessary at the restoration site to create a fen ecosystem rather than simply restoring some fen species (Location: Riviere-du-Loup peatland, southern Quebec, Canada at 100 m a.s.l.)

  2. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  3. Uranium geochemistry in a calcareous peat: mineral-organic-microorganisms interactions and implications on uranium mobility in a contaminated soil

    International Nuclear Information System (INIS)

    Phrommavanh, V.; Descostes, M.; L'Orphelin, J.M.; Beaucaire, C.; Gaudet, J.P.

    2009-01-01

    The authors discuss the different approaches and techniques which have been implemented to study the behaviour of uranium in an as complex medium as a natural peat, in this case, a calcareous peat located on an old industrial site which was dedicated to uranium processing and which is now being decontaminated. They report and comment a chemical and mineralogical characterization of this peat, its hydrochemical characterization, and a microbial flora characterization

  4. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation

    OpenAIRE

    Ranneklev, Sissel Brit; Bååth, Erland

    2001-01-01

    The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25°C to 35, 45, o...

  5. Patterning via optical saturable transitions

    Science.gov (United States)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.

  6. Sensorial saturation for infants' pain.

    Science.gov (United States)

    Bellieni, Carlo Valerio; Tei, Monica; Coccina, Francesca; Buonocore, Giuseppe

    2012-04-01

    Sensorial saturation (SS) is a multisensorial stimulation consisting of delicate tactile, gustative, auditory and visual stimuli. This procedure consists of simultaneously: attracting the infant's attention by massaging the infant's face; speaking to the infant gently, but firmly, and instilling a sweet solution on the infant's tongue. We performed a systematic Medline search of for articles focusing on human neonatal studies related to SS. The search was performed within the last 10 years and was current as of January 2012. We retrieved 8 articles that used a complete form of SS and 2 articles with an incomplete SS. Data show that the use of SS is effective in relieving newborns' pain. Oral solution alone are less effective than SS, but the stimuli without oral sweet solution are ineffective. the partial forms of SS have some effectiveness, but minor than the complete SS. Only one article showed lack of SS as analgesic method, after endotracheal suctioning. SS can be used for all newborns undergoing blood samples or other minor painful procedures. It is more effective than oral sugar alone. SS also promotes interaction between nurse and infant and is a simple effective form of analgesia for the neonatal intensive care unit.

  7. Δ isobars and nuclear saturation

    Science.gov (United States)

    Ekström, A.; Hagen, G.; Morris, T. D.; Papenbrock, T.; Schwartz, P. D.

    2018-02-01

    We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the Δ -isobar Δ (1232 ) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use pion-nucleon (π N ) low-energy constants (LECs) from a Roy-Steiner analysis of π N scattering data, optimize the LECs in the contact potentials up to NNLO to reproduce low-energy nucleon-nucleon scattering phase shifts, and constrain the three-nucleon interaction at NNLO to reproduce the binding energy and point-proton radius of 4He. For heavier nuclei we use the coupled-cluster method to compute binding energies, radii, and neutron skins. We find that radii and binding energies are much improved for interactions with explicit inclusion of Δ (1232 ) , while Δ -less interactions produce nuclei that are not bound with respect to breakup into α particles. The saturation of nuclear matter is significantly improved, and its symmetry energy is consistent with empirical estimates.

  8. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions

    International Nuclear Information System (INIS)

    Barrett, Sophie E.; Watmough, Shaun A.

    2015-01-01

    The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. - Highlights: • Surface peat in wetlands in Sudbury is contaminated with Cu and Ni. • The pH of peat is positively related to species richness and diversity. • Metal levels in peat is negatively related to vascular vegetation and Sphagnum cover. • Loss of Sphagnum at contaminated peatlands may impede recovery. - Sudbury peatlands remain impacted by industrial activities as indicated by elevated copper and nickel concentrations and diminished vascular plant cover and Sphagnum frequency.

  9. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes.

    Science.gov (United States)

    Chen, Yanhui; Xie, Tuanhui; Liang, Qiaofeng; Liu, Mengjiao; Zhao, Mingliu; Wang, Mingkuang; Wang, Guo

    2016-04-01

    In paddy soils, amendments and moisture play important role in the immobilization of cadmium (Cd). The effects of applying lime, peat, and a combination of both on soil Eh, pH, and Cd availability in contaminated soils were investigated under wetted (80 ± 5 % of water holding capacity) and flooded (completely submerged) conditions. In wetted soils, there was little change in Eh, compared to flooded soils where Eh reduced rapidly. Amendments of lime only or in a mixture with peat increased soil pH to different degrees, depending on the lime application rate. However, peat addition only slightly affected soil pH. The decreased Cd availability in flooded soils was related to submergence duration and was significantly lower than that in wetted soils after 14 days. Liming wetted and flooded soils decreased exchangeable Cd and increased carbonates or Fe-Mn oxides bound fractions, while peat addition transformed Cd from carbonates to organic matter bound fractions. The combined application of peat and lime generally showed better inhibitory effects on the availability of Cd than separately application of lime or peat. Higher application rates of lime, peat, or their mixture were more effective at reducing Cd contamination in flooded soil. This indicates that application of peat and lime mixture under flooded conditions was most effective for in situ remediation of Cd-contaminated soils. Further studies are required to assess the long-term effectiveness of the peat and lime mixture on Cd availability in paddy soils.

  10. Tarkkaturve - Peat production on shallow fields; Tarkkaturve - mataloituvien soiden tuotantomenetelmien ja laitteiden kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Nurminen, T; Honkanen, J; Jormalainen, R; Laaksoharju, T; Rytkoenen, P; Viitanen, J [Vapo Oy, Jyvaeskylae (Finland); Aho, V J; Aalto, J; Kallio, M; Leinonen, A.; Tiihonen, I [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    It is important to produce the peat of the bogs under production as completely as possible when improving the efficiency and economy of milled peat production. Hence the service life of bog areas is being extended, and the investment costs per produced peat mass are decreased. Research, in which new planning, production and ditching methods, as well as production machines for production from shallowing fields, has been carried out in order to obtain the targets. Data obtained from charting of the bog, by which it is possible to take the regional differences of the production areas into account while planning and making of the production strips and ditching, is used in planning of the production fields. Stones are removed from the strips on the mineral soil areas during preparation of the fields, and peat is conveyed from the depletable areas into production strips, hence it is possible to make ditching with open ditches excavated into mineral soil. The new milled peat production machines are lighter than the older ones, and non-sparkling materials, e.g. plastics, are used in the construction of them in every phase of the production. The new machines are able to operate on strips of varying width and on the fields of poor load carrying capacity. Brushing technology is used in collection of peat. By this method it is possible to improve in addition to the fire safety, also the collecting accuracy, and hence the efficiency of the production. The new methods and equipment developed in the researches are now in wide utilisation in Finnish peat production. (orig.)

  11. Distribution and speciation of mercury in the peat bog of Xiaoxing'an Mountain, northeastern China

    International Nuclear Information System (INIS)

    Liu Ruhai; Wang Qichao; Lu Xianguo; Fang Fengman; Wang Yan

    2003-01-01

    Peat bogs in northeastern China contain high levels of mercury from atmospheric deposition. - Most reports on mercury (Hg) in boreal ecosystems are from the Nordic countries and North America. Comparatively little information is available on Hg in wetlands in China. We present here a study on Hg in the Tangwang River forested catchment of the Xiaoxing'an Mountain in the northeast of China. The average total Hg (THg) in peat profile ranged from 65.8 to 186.6 ng g -1 dry wt with the highest at the depth of 5-10 cm. THg in the peat surface was higher than the background in Heilongjiang province, the Florida Everglades, and Birkeness in Sweden. MethylHg (MeHg) concentration ranged from 0.16 to 1.86 ng g -1 dry wt, with the highest amount at 10-15 cm depth. MeHg content was 0.2-1.2% of THg. THg and MeHg all decreased with the depth. THg in upland layer of soil (0-20 cm) was comparable to the peat surface, but in deeper layers THg concentration in peat was much higher than that in the forested mineral soil. THg in the peat bog increased, but MeHg decreased after it was drained. THg content in plant was different; THg contents in moss (119 ng g -1 dry wt, n=12) were much higher than in the herbage, the arbor, and the shrubs. The peat bog has mainly been contaminated by Hg deposition from the atmosphere

  12. Development of low thermal mass cement-sand block utilizing peat soil and effective microorganism

    Directory of Open Access Journals (Sweden)

    Irham Hameeda Mohamad Idris

    2018-06-01

    Full Text Available The development of low thermal mass cement-sand block by incorporating peat soil and Effective Microorganism (EM was studied systematically. In total, seven mixtures of cement-sand block targeted at a 28-days compressive strength of 7 MPa are designed. One control sample is made with a water/cement ratio (w/c of 0.5, three mixes using 3%, 6% and 10% peat soil replacing sand and three mixes using 10%, 20% and 30% EM replacing water. Modified blocks with 6% of peat soil and 30% of EM are the most optimum blocks to be used in the construction of masonry as they successfully reduced the thermal conductivity of the blocks with the value of 1.275 W/mK and 1.792 W/mK respectively when being compared to the thermal conductivity of the control sample which is 2.400 W/mK. Besides, they are also able to achieve higher strength than the desired compressive strength which is 7 MPa. The compressive strength of the samples with 6% of peat soil is 16.48 MPa at 28-days while 30.39 MPa for samples with 30% of EM. On the other hand, the water absorption rate of samples with 6% of peat soil is 7.6% while 6.1% for samples with 30% EM and both are okay since their rate of water absorption is lower than 20%. In conclusion, the addition of peat soil and EM in the cement-sand mix show promising performance as a low cost material to produce low thermal mass cement-sand block. Keywords: Effective microorganism, Peat soil, Thermal conductivity, Cement brick

  13. Life cycle assessment of climate impact of Fischer-Tropsch diesel based on peat and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina; Hagberg, Linus

    2009-02-15

    By combining biomass gasification and Fischer-Tropsch synthesis it is possible to produce biodiesel. Vapo is investigating the possibilities for a plant where a mixture of different biomass fractions and peat would be used as raw material. In this study the climate impact of such synthetic diesel is calculated in terms of radiative forcing. The calculations show that the following parameters have large impact on the results: the emission factors associated with external power demand (purchased electricity) the use of carbon capture and storage the time perspective used in the analysis the raw material mix (amount of peat vs. amount of forest residues) the reference scenario for the peat production (type of peatland) All the FT-diesel scenarios with a peat input of 90% will have higher climate impact than fossil diesel after 100 years, except when CCS is applied and Swedish electricity mix is assumed for the external power demand. In order to have lower climate impact than conventional diesel after 100 years, the peat input must be significantly lower than the biomass input. Substantial reductions of the climate impact can be achieved by applying CCS. With CCS, all peat based FT-diesel scenarios (except the ones based on 90% peat) result in lower climate impact than fossil diesel after both 100 and 300 years. For scenarios with marginal electricity, the reductions are 50-84% after 100 years compared to conventional diesel. For scenarios with Swedish electricity mix the reductions are 100-135% (i.e. zero or negative radiative forcing). The scenarios in this study are based on the assumption that the biodiesel refinery is located close to a harbour so that transportation of captured CO{sub 2} to a storage site can be made by ship. An inland location would require truck transport or pipelines and the cost, infrastructure and logistics for this might not be feasible

  14. Controls on boreal peat combustion and resulting emissions of carbon and mercury

    Science.gov (United States)

    Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.

    2018-03-01

    Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.

  15. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990

    Science.gov (United States)

    Miettinen, Jukka; Hooijer, Aljosja; Vernimmen, Ronald; Liew, Soo Chin; Page, Susan E.

    2017-02-01

    Tropical peatlands of the western part of insular Southeast Asia have experienced extensive land cover changes since 1990. Typically involving drainage, these land cover changes have resulted in increased peat oxidation in the upper peat profile. In this paper we provide current (2015) and cumulative carbon emissions estimates since 1990 from peat oxidation in Peninsular Malaysia, Sumatra and Borneo, utilizing newly published peatland land cover information and the recently agreed Intergovernmental Panel on Climate Change (IPCC) peat oxidation emission values for tropical peatland areas. Our results highlight the change of one of the Earth’s most efficient long-term carbon sinks to a short-term emission source, with cumulative carbon emissions since 1990 estimated to have been in the order of 2.5 Gt C. Current (2015) levels of emissions are estimated at around 146 Mt C yr-1, with a range of 132-159 Mt C yr-1 depending on the selection of emissions factors for different land cover types. 44% (or 64 Mt C yr-1) of the emissions come from industrial plantations (mainly oil palm and Acacia pulpwood), followed by 34% (49 Mt C yr-1) of emissions from small-holder areas. Thus, altogether 78% of current peat oxidation emissions come from managed land cover types. Although based on the latest information, these estimates may still include considerable, yet currently unquantifiable, uncertainties (e.g. due to uncertainties in the extent of peatlands and drainage networks) which need to be focused on in future research. In comparison, fire induced carbon dioxide emissions over the past ten years for the entire equatorial Southeast Asia region have been estimated to average 122 Mt C yr-1 (www.globalfiredata.org/_index.html). The results emphasise that whilst reducing emissions from peat fires is important, urgent efforts are also needed to mitigate the constantly high level of emissions arising from peat drainage, regardless of fire occurrence.

  16. Utilization of new materials in peat machines; Uusien materiaalien kaeyttoe turvekoneissa

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, M.; Poeyhoenen, P.

    1996-12-31

    The objective of this three year research (1993-1995) was to study the suitability of new materials for different applications in peat production industry, exploiting the plastic and brush technologies, and surface coatings. The peat production machines will be intensified, lightened, made more firesafe, and ergonomical by using new materials (plastics, composites, metals and surface coatings). The research targets and materials were surveyed, the possibilities to construct an unsparkling miller were investigated, and low-friction materials, on which the peat glides easily, were sought in the beginning of the research. The unsparkling miller was studied and developed further in 1994 using platic plates, the application of brushing technology in sod peat technology, and a ridger, equipped with horizontal brushes, for sod peat were studied, and the possibilities to lighten the construction of the collector-wagon using light materials was investigated. The tasks for 1995 were to study the brushing technology for peat production, the properties of the bristle, and the applications of new materials for milling and sewing of peat using laboratory tests. The brush-ridger tests were made in cooperation with the brush experts of the NIITP. A rotating brush harrower mixed and ruffled the milled layer. The brush-harrower seemed to be more effective than the spoon-harrower with the driving speed higher than 8 km/h. The power consumption of the brush varied in between 1.5 - 4 kW/m, when the rotation speed was 200-300 1/min, the milled layer load 44 mm and the deformation of the bristles 20 mm

  17. TARKKATURVE - Peat production on shallow fields; TARKKATURVE - mataloituvien soiden tuotantomenetelmien ja laitteiden kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Nurminen, T. [Vapo Oy, Jyvaeskylae (Finland); Aho, V.J.; Tiihonen, I. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    It is important to produce the peat of the bogs under production as completely as possible when improving the efficiency and economy of milled peat production. Hence the service life of bog areas is being extended, and the investment costs per produced peat mass are decreased. Research, in which new planning, production and ditching methods, as well as production machines for production from shallowing fields, has been carried out in order to obtain the targets. Data obtained from charting of the bog, by which it is possible to take the regional differences of the production areas into account while planning and making of the production strips and ditching, is used in planning of the production fields. Stones are removed from the strips on the mineral soil areas during preparation of the fields, and peat is conveyed from the depleted areas into production strips, hence it is possible to make ditching with open ditches excavated into mineral soil. The new milled peat production machines are lighter than the older ones, and non-sparkling materials, e.g. plastics, are used in the construction of them in every phase of the production. The new machines are able to operate on strips of varying width and on the fields of poor load carrying capacity. Brushing technology is used in collection of peat. By this method it is possible to improve in addition to the fire safety, also the collecting accuracy, and hence the efficiency of the production. The new methods and equipment developed in the researches are now in wide utilization in Finnish peat production

  18. Substitution of peat, fertiliser and manure by compost in hobby gardening: user surveys and case studies.

    Science.gov (United States)

    Andersen, Jacob K; Christensen, Thomas H; Scheutz, Charlotte

    2010-12-01

    Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users' households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n=74). The estimate from the survey in Copenhagen (n=1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors' knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    Science.gov (United States)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation

  20. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.

    2012-01-01

    Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated

  1. Geophysical surveying in the Sacramento Delta for earthquake hazard assessment and measurement of peat thickness

    Science.gov (United States)

    Craig, M. S.; Kundariya, N.; Hayashi, K.; Srinivas, A.; Burnham, M.; Oikawa, P.

    2017-12-01

    Near surface geophysical surveys were conducted in the Sacramento-San Joaquin Delta for earthquake hazard assessment and to provide estimates of peat thickness for use in carbon models. Delta islands have experienced 3-8 meters of subsidence during the past century due to oxidation and compaction of peat. Projected sea level rise over the next century will contribute to an ongoing landward shift of the freshwater-saltwater interface, and increase the risk of flooding due to levee failure or overtopping. Seismic shear wave velocity (VS) was measured in the upper 30 meters to determine Uniform Building Code (UBC)/ National Earthquake Hazard Reduction Program (NEHRP) site class. Both seismic and ground penetrating radar (GPR) methods were employed to estimate peat thickness. Seismic surface wave surveys were conducted at eight sites on three islands and GPR surveys were conducted at two of the sites. Combined with sites surveyed in 2015, the new work brings the total number of sites surveyed in the Delta to twenty.Soil boreholes were made at several locations using a hand auger, and peat thickness ranged from 2.1 to 5.5 meters. Seismic surveys were conducted using the multichannel analysis of surface wave (MASW) method and the microtremor array method (MAM). On Bouldin Island, VS of the surficial peat layer was 32 m/s at a site with pure peat and 63 m/s at a site peat with higher clay and silt content. Velocities at these sites reached a similar value, about 125 m/s, at a depth of 10 m. GPR surveys were performed at two sites on Sherman Island using 100 MHz antennas, and indicated the base of the peat layer at a depth of about 4 meters, consistent with nearby auger holes.The results of this work include VS depth profiles and UBC/NEHRP site classifications. Seismic and GPR methods may be used in a complementary fashion to estimate peat thickness. The seismic surface wave method is a relatively robust method and more effective than GPR in many areas with high clay

  2. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia

    Directory of Open Access Journals (Sweden)

    T. Broder

    2012-04-01

    Full Text Available Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR measurements of solid peat, C/N ratio, and δ13C and δ15N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (R2 > 0.55, p < 0.01 with FTIR-derived humification indices. The degree of decomposition was lowest at a site presently dominated by Sphagnum mosses. The peat was most strongly decomposed at the driest site, where currently peat-forming vegetation produced less refractory organic material, possibly due to fertilizing effects of high sea spray deposition. Decomposition of peat was also advanced near ash layers, suggesting a stimulation of decomposition by ash deposition. Values of δ13C were 26.5 ± 2‰ in the peat and partly related to decomposition indices, while δ15N in the peat varied around zero and did not consistently relate to any decomposition index. Concentrations of DOM partly related to C/N ratios, partly to FTIR derived indices. They were not conclusively linked to the decomposition degree of the peat. DOM was enriched in 13C and in 15N relative to the solid phase probably due to multiple microbial modifications and recycling of N in these N-poor environments. In summary, the depth profiles of C/N ratios, δ13C values, and FTIR spectra seemed to reflect changes in environmental conditions affecting decomposition, such as bog wetness, but were dominated by site specific factors, and are further influenced by ash

  3. Studies on liquefaction and pyrolysis of peat and biomass at KTH

    International Nuclear Information System (INIS)

    Bjoernbom, E.; Sjoestrom, K.; Hoernel, C.; Zanzi, R.; Bjoernbom, P.

    1996-01-01

    A brief review of the study on thermochemical conversion of solid fuels is done. The study have been performed in the Royal Institute of Technology, Stockholm, since the outbreak of energy crisis in the seventies. The main problems connected with utilisation of peat for energy are: 90% moisture content in the deposits and 35-40% oxygen content in the dry substance. Simultaneous dewatering and liquefaction of peat have been achieved by the Bjoerbom method. The wet peat has been treated with CO and H 2 O without preliminary drying, using water as a medium agent. After treatment water has been phase-separated from the heavy oil product. Another approach is de-oxygenation of peat prior to liquefaction. A significant part of oxygen in peat and biomass can be removed by thermal decomposition of the fuels prior to liquefaction and removal of carbon dioxide and water from the organic matter in them. The products obtained after de-oxygenation demand low consumption of external hydrogenation agent because they are rich in hydrogen. Some criteria for selection of peat as a raw material for liquefaction are given. The equipment and experimental procedure for pyrolysis of peat and biomass are described. A free fall tubular reactor with max operating pressure of 5 MPa and temperature of 1100 o C has been used. The effect of treatment conditions under the rapid pyrolysis in the free fall reactor on the yield and the reactivity of char obtained after the final pyrolysis is shown. Peat and wood are transformed into pyrolysis products for less than 1 second; 35-50% of the moisture- and ash-free peat and 70% of the wood have been converted into gaseous products.The char obtained in the rapid pyrolysis contains a fraction which can be further de-volatilized by slow pyrolysis for a few minutes - time much longer than the time for formation of primary products. High reactivity of char is favoured by lower pyrolysis temperature, shorter residence time and larger particle size of the fuel

  4. Greenhouse gas efflux from an impacted Malaysian tropical peat swamp (Invited)

    Science.gov (United States)

    Waldron, S.; Vihermaa, L. E.; Evers, S.; Garnett, M.; Newton, J.; Padfield, R.

    2013-12-01

    Tropical peatlands constitute ~11% of global peatland area and ~12% of the global peat C pool. Malaysia alone contains 10% of tropical peats. Due to rising global demands for food and biofuels, SE-Asia peat swamp forest ecosystems are threatened by increasing amounts of drainage, fire and conversion to plantation. These processes can change the GHG emissions and thus net ecosystem C balance. However, in comparison to temperate and boreal peatlands, there is a lack of data on terrestrial-aquatic-atmospheric carbon transfer from tropical peatlands, both those that are little disturbed and those facing anthropogenic pressures. Lateral transport of soil-respired carbon, and fluvial respiration or UV-oxidation of terrestrial DOC primes atmospheric carbon dioxide efflux. We now know that DOC lost from disturbed tropical peat swamp forests can be centuries to millennia old and originates deep within the peat column - this carbon may fuel efflux of old carbon dioxide and so anthropogenic land-use change renders the older, slower carbon cycles shorter and faster. Currently we have no knowledge of how significant ';older-slower' terrestrial-aquatic-atmospheric cycles are in disturbed tropical peatlands. Further, in some areas for commercial reasons, or by conservation bodies trying to minimise peat habitat loss, logged peats have been left to regenerate. Consequently, unpicking the legacy of multiple land uses on magnitude, age and source of GHG emissions is challenging but required to support land management decisions and projections of response to a changing climate. Here, we present the results of our first field campaign in July 2013 to the Raja Musa and Sungai Karang Peat Swamp Forest Reserves in North Selangor, Malaysia. This is one of Malaysia's largest oceanic peat swamps, and has been selectively logged and drained for 80 years, but is now subject to a 30 year logging ban to aid forest regeneration and build up wood stocks. From sites subject to different land use

  5. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  6. Influence of Potassium on Sapric Peat under Different Environmental Conditions

    Science.gov (United States)

    Tajuddin, Syafik Akmal Mohd; Rahman, Junita Abdul; Rahim, Nor Haakmal Abd; Saphira Radin Mohamed, Radin Maya; Saeed Abduh Algheethi, Adel Ali, Dr

    2018-04-01

    Potassium is mainly present in soil in the natural form known as the K-bearing mineral. Potassium is also available in fertilizer as a supplement to plants and can be categorized as macronutrient. The application of potassium improves the texture and structure of the soil beside to improves plant growth. The main objective of this study was to determine the concentration of potassium in sapric peat under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of potassium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of potassium for flush condition at outlet 4 was 13.58 ppm. Similarly, sapric under rainwater condition recorded the highest value of 13.32 and 12.34 ppm respectively at outlet 4 for wet and dry condition. However, the difference in Sapric, rainwater and fertilizer category showed that the highest value for the wet condition was achieved at outlet 2 with 13.99 ppm while highest value of 14.82 ppm was obtained for the dry condition at the outlet 3. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of potassium in the soil which was influenced by the environmental conditions.

  7. Geoinformatics meets education for a peat bog information system

    Science.gov (United States)

    Michel, Ulrich; Fiene, Christina; Plass, Christian

    2010-10-01

    Within the project "Expedition Bog: Young researchers are experimenting, exploring and discovering" a bog-information- system is developed by the Department of Geography (University of Education Heidelberg, Germany), the Institute for Geoinformatics and Remote Sensing (University of Osnabrueck, Germany; the NABU Umweltpyramide gGmbH. This information system will be available for schools and to the public. It is supplemented by teaching units on various topics around the bog via an online platform. The focus of the project, however, is the original encounter with the bog habitat. This is realized by a GPS scavenger hunt with small research tasks and observations, mapping and experiments. The project areas are the Huvenhoops bog and the Lauenbruecker bog in Rotenburg in Lower Saxony, Germany. Equipped with a researcher backpack, GPS device and a mobile bog book by means of a pocket PC, students can discover different learning stations in the project bogs. In our areas the students can learn more about different topics such as "the historical memory of the bog", "water", "peat moss and other plants" and "animals of the bog". Moreover small inquiry research projects can be executed. Experimenting on site helps students to develop important scientific findings and increases their curiosity and enthusiasm for nature. It also promotes a number of other basic skills such as literacy, language skills, social skills or fine motor skills. Moreover it also fosters the development of a positive attitude to science in general. The main objective of the project is to promote sustainable environmental education, as well as the development of environmental awareness. This will be accomplished through the imparting of knowledge but also through experiencing nature with all senses in the context of original encounters.

  8. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  9. Modeling the Effect of Plants and Peat on Evapotranspiration in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Florent Chazarenc

    2010-01-01

    Full Text Available Evapotranspiration (ET in constructed wetlands (CWs represents a major factor affecting hydrodynamics and treatment performances. The presence of high ET was shown to improve global treatment performances, however ET is affected by a wide range of parameters including plant development and CWs age. Our study aimed at modelling the effect of plants and peat on ET in CWs; since we hypothesized peat could behave like the presence of accumulated organic matter in old CWs. Treatment performances, hydraulic behaviour, and ET rates were measured in eight 1 m2 CWs mesocosm (1 unplanted, 1 unplanted with peat, 2 planted with Phragmites australis, 2 planted with Typha latifolia and 2 planted with Phragmites australis with peat. Two models were built using first order kinetics to simulate COD and TKN removal with ET as an input. The effect of peat was positive on ET and was related to the better growth conditions it offered to macrophytes. Removal efficiency in pilot units with larger ET was higher for TKN. On average, results show for COD a k20 value of 0.88 d-1 and 0.36 d-1 for TKN. We hypothesized that the main effect of ET was to concentrate effluent, thus enhancing degradation rates.

  10. Sorption of V and VI group metalloids (As, Sb, Te on modified peat sorbents

    Directory of Open Access Journals (Sweden)

    Ansone-Bertina Linda

    2016-01-01

    Full Text Available The present work investigates arsenic, antimony and tellurium sorption using iron modified peat. The results were obtained using batch tests and the sorption was studied as a function of initial metalloid concentration, pH and sorption time, as well as the presence of competing substances. The obtained results indicate that modification of peat with Fe compounds significantly enhances the sorption capacity of the sorbents used for sorption of arsenic, antimony and tellurium. The optimal pH interval for the sorption of Sb(III is 6.5–9 and for As(V and Sb(V – 3–6, while As(III and tellurium sorption using Fe-modified peat is favourable in a wider interval of 3–9. The presence of competing ions as well as HA affect sorption of metalloids on Fe-modified peat. A minor impact on the reduction of metalloid sorption was detected in the presence of nitrate, sulphate, carbonate and tartrate ions, while in the presence of phosphate and HA the sorption ability of metalloids can be considerably reduced. The obtained results of kinetic experiments indicate that sorption of metalloids on Fe-modified peat mainly occurs relying on mechanisms of physical sorption processes.

  11. Palaeoecological studies as a source of peat depth data: A discussion and data compilation for Scotland

    Directory of Open Access Journals (Sweden)

    J. Ratcliffe

    2016-06-01

    Full Text Available The regional/national carbon (C stock of peatlands is often poorly characterised, even for comparatively well-studied areas. A key obstacle to better estimates of landscape C stock is the scarcity of data on peat depth, leading to simplistic assumptions. New measurements of peat depth become unrealistically resource-intensive when considering large areas. Therefore, it is imperative to maximise the use of pre-existing datasets. Here we propose that one potentially valuable and currently unexploited source of peat depth data is palaeoecological studies. We discuss the value of these data and present an initial compilation for Scotland (United Kingdom which consists of records from 437 sites and yields an average depth of 282 cm per site. This figure is likely to be an over-estimate of true average peat depth and is greater than figures used in current estimates of peatland C stock. Depth data from palaeoecological studies have the advantages of wide distribution, high quality, and often the inclusion of valuable supporting information; but also the disadvantage of spatial bias due to the differing motivations of the original researchers. When combined with other data sources, each with its own advantages and limitations, we believe that palaeoecological datasets can make an important contribution to better-constrained estimates of peat depth which, in turn, will lead to better estimates of peatland landscape carbon stock.

  12. Soil Fungal Community Associated with Peat in Sarawak Identified Using 18S rDNA Marker

    International Nuclear Information System (INIS)

    Siti Ramlah Ahmad Ali; Sakinah Safari; Mohd Shawal Thakib; Shamsilawani Ahamed Bakeri; Nur Aziemah Ab Ghani

    2016-01-01

    Fungi are principal decomposing microorganisms in acidic environment of peat lands. A useful tool for molecular screening of soil fungal communities using the 18S ribosomal DNA primer has been proven capable of identifying a broad range of fungi species within Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota. Currently, very little information is available on fungal communities in deep peat of Sarawak, Malaysia. In this study, we have isolated the fungi from soil samples taken in deep peat forests and oil palm cultivated areas. The fungal identity was undertaken using 18S ribosomal DNA primer which is EF4-F/ fung5-R. The microscopic structures were conducted to confirm the identity of the isolates. Based on this study, the fungal division most commonly found in deep peat is the Ascomycota. Aspergillus fumigatus was the most common species and more dominant in oil palm cultivated areas and logged-over forest than in primary forest. In the primary forest, the dominant species was the A. flavus, while Hypocrea atroviridis was commonly associated with oil palm cultivated areas and logged-over forest. Other species of fungi isolated in peat primary forests were Penicillium chrysogenum, Trichoderma sp., Phanerochaete sp., Mortierella chlamydospora, A. niger, A. alliaceus, etc. The in-depth difference in the fungal communities for the different sites will be further investigated using the next generation sequencing technology. (author)

  13. The effects of peat mining on fluvial fish and their environment

    International Nuclear Information System (INIS)

    Laine, A.; Sutela, T.; Heikkinen, K.; Karvonen, K.; Huhta, A.; Mutka, T.; Lappalainen, A.

    1996-01-01

    The effects of peat mining on the quality of the stream bed, benthic fauna and fluvial fish were studied at rifles of the Rivers Iijoki and Kiiminkijoki in 1991-94. The amount of organic matter that accumulated on the bottom increased below peat mining areas. Some shifts were seen also in the composition and density of the benthic fauna. In spite of the increase in the total density of the benthic fauna, the growth of the young salmonids was weaker in the riffles that were affected by peat production. Especially large-sized caddish fly larvae were eaten less and also the stomachs of one- year-old salmon were on the average less full there than in the reference areas. Fish densities varied a lot, and no statistical differences were observed between the loaded and the reference areas. The survival of the stocked 0+ salmon fry, however, decreased along with increasing load from peat mining areas. Below the peat mining areas, also the mortality of the incubated brown trout roe was higher than in the reference areas, most probably because of the siltage of the river bottom

  14. Case-specific comparison of water pollution control alternatives in peat production

    International Nuclear Information System (INIS)

    Savolainen, M.; Kaasinen, A.; Heikkinen, K.; Ihme, R.; Kaemae, T.; Alasaarela, E.

    1996-01-01

    The present practice water pollution control in peat production and the elements of planning were analyzed, the water purification methods were classified and their weaknesses estimated. Furthermore, the cost of the water purification constructions was estimated and their significance for the watercourses evaluated. 54 peat production plans were chosen from the catchment areas of the rivers Iijoki, Siikajoki and Pyhaejoki. The suitability of the chosen water pollution control methods was evaluated on the basis of the plans and, further, on the basis of field surveys. The suitability of the purification methods to practical water pollution control was assessed by making plans for 15 peat mining areas. There is a need to develop the planning and implementation of water pollution control in peat mining. The methods that are used do not always work in the expected way in practice. Despite this planning is compatible with the water protection program and the regulations that are in force. The study gives a good idea of how to update the planning instructions for water pollution control. The accompanying report includes plan for 11 peat mining areas. (orig.)

  15. Case-specific comparison of water pollution control alternatives in peat production; Turvetuotannon vesiensuojeluvaihtoehtojen tapauskohtainen vertailu

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, M.; Kaasinen, A.; Heikkinen, K.; Ihme, R.; Kaemae, T.; Alasaarela, E.

    1996-12-31

    The present practice water pollution control in peat production and the elements of planning were analyzed, the water purification methods were classified and their weaknesses estimated. Furthermore, the cost of the water purification constructions was estimated and their significance for the watercourses evaluated. 54 peat production plans were chosen from the catchment areas of the rivers Iijoki, Siikajoki and Pyhaejoki. The suitability of the chosen water pollution control methods was evaluated on the basis of the plans and, further, on the basis of field surveys. The suitability of the purification methods to practical water pollution control was assessed by making plans for 15 peat mining areas. There is a need to develop the planning and implementation of water pollution control in peat mining. The methods that are used do not always work in the expected way in practice. Despite this planning is compatible with the water protection program and the regulations that are in force. The study gives a good idea of how to update the planning instructions for water pollution control. The accompanying report includes plan for 11 peat mining areas. (orig.)

  16. Influence of pore structure on solute transport in degraded and undegraded fen peat soils

    Directory of Open Access Journals (Sweden)

    C. Kleimeier

    2017-10-01

    Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.

  17. Carbon leaching from tropical peat soils and consequences for carbon balances

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2016-07-01

    Full Text Available Drainage and deforestation turned Southeast (SE Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ~200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38% and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia.

  18. Immobilization of Lead from Pb-Contaminated Soil Amended with Peat Moss

    Directory of Open Access Journals (Sweden)

    Seul-Ji Lee

    2013-01-01

    Full Text Available Immobilization of lead (Pb using soil amendments can reduce Pb toxicity and bioavailability in soil. This study evaluated Pb immobilization in a Pb-contaminated soil by using peat moss through various tests. The Pb-contaminated soil (2000 mg Pb·kg−1 was amended with 1%, 5%, and 10% of peat moss to immobilize Pb in the soil. The immobilization properties of Pb in the contaminated soil were evaluated by a column leaching experiment, a microcosm test, and a batch incubation test. Peat moss significantly reduced the Pb leaching in all of the experiments and more effectively reduced mobility and toxicity of Pb in the column leaching and microcosm tests than bioavailability in the batch incubation test. The immobilized lead from the soils amended with 1%, 5%, and 10% of peat moss was 37.9%, 87.1%, and 95.4% from the column leaching test, 18.5%, 90.9%, and 96.4% from the microcosm test, and 2.0%, 36.9%, and 57.9% from the NH4NO3 extraction method, respectively, indicating that peat moss can be effectively used for the remediation of Pb-contaminated soil.

  19. Determining critical groundwater level to prevent degraded peatland from severe peat fire

    Science.gov (United States)

    Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.

    2018-05-01

    Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.

  20. Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal

    Science.gov (United States)

    Bobrov, V. A.; Bogush, A. A.; Leonova, G. A.; Krasnobaev, V. A.; Anoshin, G. N.

    2011-08-01

    When examining the peat deposit discovered in Vydrinaya bog, South Baikal region, the authors encountered anomalous Zn and Cu concentrations for highmoors being up to 600-500 ppm on a dry matter basis in the Early Holocene beds (360-440 cm) formed 11 000-8500 years ago. It has been demonstrated that Zn and Cu are present inside the plant cells of peat moss in the form of authigenic sulfide minerals of micron size. Apart from Zn and Cu, native Ag particles (5-7 um) have been encountered in the peat of the Vydrinaya bog at a depth of 390-410 cm; these particles formed inside the organic matter of the plasma membrane of peat moss containing Ca, Al, S, and Cu. This study suggests probable patterns of the formation of zinc sulfides, copper sulfides, and native silver in peat moss. The results obtained indicate that biogenic mineral formation plays a significant role in this system, which is a very important argument in the discussion on the ore genesis, in which physicochemical processes are normally favored, while the role of living matter is quite frequently disregarded.

  1. Smouldering peat fires in polluted landscapes and their impact on heavy metal mobilisation

    Science.gov (United States)

    Clay, Gareth; Rothwell, James; Shuttleworth, Emma

    2016-04-01

    Whilst wildfires are commonly viewed as a threat confined to Southern Europe, Australia, and North America, recognition of wildfire hazard in the UK has been growing in recent years. UK wildfires often occur on heathland vegetation underlain by peat. These areas can contain industrially-derived legacy pollutants, such as mercury, lead, and arsenic. Ignition of the peat can lead to long-term smouldering fires that are difficult to extinguish, leading to large-scale damage. While work on assessing post-fire damage of peatlands has focussed on carbon and nutrient dynamics, there has been little attention on the release of heavy metals following wildfires. This paper presents initial data from a preliminary study to assess heavy metal release from smouldering peat fires. A homogenised sample of peat from the Peak District National Park, UK was ignited, monitored using thermocouples and an IR camera, and left to smoulder until self-extinguished (~9 hours). Total mass loss was 61%. Samples of pre- and post-burn peat were analysed for their heavy metal concentrations using XRF, ICP-MS, and CVAFS. Sample analysis is ongoing, but initial data shows that there is a substantial (3x) relative enrichment in heavy metal concentrations in post-fire ash. This has important implications for subsequent mobilisation in the aquatic and terrestrial environments, as well as consequences for human health risk through atmospheric redistribution.

  2. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  3. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  4. Effects of peat-winning on the water environment at a sedge fen ecosystem

    International Nuclear Information System (INIS)

    Lundin, L.

    1997-06-01

    Peatlands are used in agriculture and forestry for vegetational growth and in peat-winning for soil improvement, horticulture production and as fuel. A prerequisite in peatland use is drainage, with influences on water conditions in the peatland and in its surroundings. Environmental effects from such peatland use have been investigated at a sedge fen in central Sweden. Groundwater, runoff, water chemistry and streamwater biology were studied during almost 14 years. This period started with a virgin undrained peatland, later being drained for forest production and after a period of seven years intensively drained for peat-winning and with peat harvesting going on for another seven year period with hydrological investigations. Results show a lowered groundwater level, increased runoff and both higher concentrations of most elements and higher leaching from the drained peatland. Biomass and number of individuals of the benthic fauna in streamwater also increased. 7 refs

  5. Effects of peat-winning on the water environment at a sedge fen ecosystem

    International Nuclear Information System (INIS)

    Lundin, L.

    1996-03-01

    Peatlands are used in agriculture and forestry for vegetational growth and in peat-winning for soil improvement, horticulture production and as fuel. A prerequisite in peatland use is drainage, with influences on water conditions in the peatland and its surroundings. Environmental effects from such peatland use have been investigated at a sedge fen in central Sweden. Groundwater, runoff, water chemistry and stream water biology were studied during almost 14 years. This period started with a virgin undrained peatland, later being drained for forest production and after a period of seven years intensively drained for peat-winning and with peat harvesting going on for another seven years period with hydrological investigations. Results show a lowered groundwater level, increased runoff and both higher concentrations of most elements and higher leaching from the drained peatland. Biomass and number of individuals of the benthic fauna in stream water also increased. 7 refs, 7 figs, 2 tabs

  6. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.

    Science.gov (United States)

    Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo

    2015-01-01

    The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Uptake of caesium-137 from peat and compost mould by vegetables in a greenhouse experiment

    International Nuclear Information System (INIS)

    Malm, J.; Uusi-Rauva, A.; Paakkola, O.

    1991-01-01

    A pot experiment was conducted to study the root uptake of 137 Cs by vegetables grown in peat and composite mould in a greenhouse. The 137 Cs in the growing media originated from Chernobyl fallout. The vegetables were cucumber (Cucumis sativus L. var. Farbio VDP SF 76), tomato (Lycopersicon esculentum L. Var. Virosa), parsley (Petroselinum crispum A.W. Hill var. Non plus ultra), radish (Raphanus Sativus L. var. Nondan) and lettuce (Lactuca sativa L. var Atraktion). The effect of adding potassium to the peat was also studied. The transfer factors (activity in plant dry weight/activity in soil dry weight) varied from 0.66 to 1.8 for peat and from 0.060 to 0.19 for compost mould. Addition of potassium did not have any clear effect on the transfer factors. (Author)

  8. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  9. Uptake of caesium-137 from peat and compost mould by vegetables in a greenhouse experiment

    Energy Technology Data Exchange (ETDEWEB)

    Malm, J.; Uusi-Rauva, A.; Paakkola, O. (Helsinki Univ. (Finland). Faculty of Agriculture and Forestry); Rantavaara, A. (Finnish Centre for Radiation and Nuclear Safety (STUK), Helsinki (Finland))

    1991-01-01

    A pot experiment was conducted to study the root uptake of {sup 137} Cs by vegetables grown in peat and composite mould in a greenhouse. The {sup 137}Cs in the growing media originated from Chernobyl fallout. The vegetables were cucumber (Cucumis sativus L. var. Farbio VDP SF 76), tomato (Lycopersicon esculentum L. Var. Virosa), parsley (Petroselinum crispum A.W. Hill var. Non plus ultra), radish (Raphanus Sativus L. var. Nondan) and lettuce (Lactuca sativa L. var Atraktion). The effect of adding potassium to the peat was also studied. The transfer factors (activity in plant dry weight/activity in soil dry weight) varied from 0.66 to 1.8 for peat and from 0.060 to 0.19 for compost mould. Addition of potassium did not have any clear effect on the transfer factors. (Author).

  10. Assessing species saturation: conceptual and methodological challenges.

    Science.gov (United States)

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  11. Gamma-ray sterilization of peat carriers for the production of legume seed inoculants (better production of soya bean)

    International Nuclear Information System (INIS)

    Vojinovic, Z.; Milicic, B.; Radak, B.

    1983-01-01

    In the present work the first Yugoslav experiments on the application of gamma radiation for the sterilization of peat in the production of inoculants for soya bean production are summarised and briefly discussed. A radiation dose of 50 kGy was used. The growth and survival of the soya bean nodule bacteria, Rhizobium japonicum, in the sterilized peat is shown. (U.K.)

  12. Dicranochaete quadriseta (Korš. Nov. and Pop. from an oligominerotrophic peat bog in Lower Silesia (South-Western Poland

    Directory of Open Access Journals (Sweden)

    Jan Matuła

    2011-01-01

    Full Text Available Dicranochaete quadriseta (Korš. Nov. and Pop. was collected during investigations of algae from mountain peat bogs of the Sudeten Mts (Poland. The paper describes the morphology, taxanomy, geographical distribution and ecological conditions of this species. This very rare species was found in an oligominerotrophic peat bog called "Topieliska-Zieleniec" near Duszniki (Orlickie Mts.

  13. Predicting Calcite (CaCO3) Requirements of Sphagnum Peat Moss from pH Titration Curves

    Science.gov (United States)

    Liming materials are required to neutralize acidity in peat moss to make it a suitable substrate for growing container crops. A series of time-consuming incubations of peat:lime mixtures are typically used to determine the liming rate to achieve a desired pH. Our objective was to evaluate the util...

  14. Benchmarking Environmental Impacts of Peat Use for Electricity Generation in Ireland—A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2015-05-01

    Full Text Available The combustion of peat for energy generation accounts for approximately 4.1% of Ireland’s overall greenhouse gas (GHG emissions, with current levels of combustion resulting in the emission of 2.8 Mt of CO2 per annum. The aim of this research is to evaluate the life cycle environmental impacts of peat use for energy generation in Ireland, from peatland drainage and industrial extraction, to transportation, combustion, and subsequent after-use of the cutaway area, utilising Irish-specific emission factors. The environmental impacts considered are global warming potential, acidification potential, and eutrophication potential. In addition, the cumulative energy demand of the system is evaluated. Previous studies on the environmental impact of peat for energy in Ireland relied on default Intergovernmental Panel on Climate Change (IPCC emission factors (EFs. This research utilises Irish-specific EFs and input data to reduce uncertainty associated with the use of default IPCC EFs, and finds that using default IPCC EFs overestimates the global warming potential when compared to Irish-specific EFs by approximately 2%. The greatest contribution to each of the environmental impacts considered arises from emissions generated during peat combustion, which accounts for approximately 95% of each of the environmental impact categories considered. Other stages of the life-cycle, such as impacts emanating from the peat extraction area, fossil fuel usage in harvesting and transportation machinery, and after-use of the cutaway area have much smaller effects on overall results. The transformation of cutaway peatlands to different after-use alternatives has the potential to mitigate some of the effects of peatland degradation and peat combustion.

  15. The hydrophobic modification of gypsum binder by peat products: physico-chemical and technological basis

    Directory of Open Access Journals (Sweden)

    O. Misnikov

    2018-04-01

    Full Text Available Gypsum binder is a quick-setting and fast-hardening material that is used widely in the construction industry for plastering and as an ingredient of concrete, other binding materials, etc. The issue addressed here is its short shelf life (around three months which arises because it is hygroscopic, i.e. it readily absorbs moisture and begins to set during transport and storage. The main methods that are currently available for protecting gypsum binder against unwanted exposure to moisture and water vapour are considered, and hydrophobic modification with the bitumen released during peat thermolysis (a method previously considered for cement is proposed as a promising alternative. Because there is overlap in the temperature ranges used in the manufacture of gypsum binder and those required for the initial stages of thermal decomposition of the organic matter in peat, it is expected that hydrophobisation could be achieved during the established manufacturing process without any changes to plant or procedures. The optimum concentration of organic (peat additive for gypsum rock mined from the Shushokskoye deposit in Russia is derived experimentally. With 0.5–1 % of peat additive, the strength grading of the gypsum plaster is preserved and its storage time without caking and hydration increases, even under adverse conditions (100 % relative humidity. The proposed method is compatible with current gypsum production technology, it does not require any changes in equipment, and the prices of mineral raw materials and semi-finished peat products are approximately the same. Thus, the incorporation of hydrophobic modification using peat into the manufacturing process for gypsum binder is unlikely to increase the cost of the product.

  16. Peat-based organic growbags as a solution to the mineral wool waste problem

    Directory of Open Access Journals (Sweden)

    O. Grunert

    2008-09-01

    Full Text Available The vast amount of solid waste produced each year is one of the greatest problems associated with greenhouse horticulture in some European countries. In particular, the disposal of used growing media arising from the soil-less cultivation of vegetables in mineral wool creates serious difficulties. The non-biodegradability of these mainly inorganic substrates causes environmental concern and has prompted the search for alternative growing media such as cocos derivatives, perlite and resin foam (Fytocell®. Organic substrates in combination with biodegradable material such as plastic, rope and clippings have the advantage that re-use or recycling of the waste is easier, cheaper and more environmentally friendly than for mineral wool. However, the differing physical and chemical characteristics of the alternative substrates may affect yield significantly. Substrates based respectively on peat and peat with cocos derivatives were tested against a mineral wool control for the production of tomato in three consecutive years. Both organic substrates were placed in biodegradable plastic bags. Greenhouse experiments demonstrated that plants grown in the pure peat substrate rooted more easily than plants grown in the peat-cocos substrate or mineral wool, and that they developed less blossom-end rot in both peat substrates than in mineral wool. Due to the buffering capacity of the organic substrates, the electrical conductivity of the draining water appeared to be more stable during cultivation. The total yield of tomato fruits was similar for all substrates, and no differences between substrates could be observed in the quality of the fruits produced. On the other hand, flavour tests demonstrated that plants grown on peat substrate produced more tasty fruits under certain conditions. The results of this study show that organic growbags are promising and competitive alternatives to mineral wool.

  17. Permeability Characteristics of Compacted and Stabilized Clay with Cement, Peat Ash and Silica Sand

    Directory of Open Access Journals (Sweden)

    Seyed Esmaeil Mousavi

    2016-06-01

    Full Text Available The present paper investigates the influence of stabilization with cement, peat ash, and silica sand on permeability coefficient (kv of compacted clay, using a novel approach to stabilize the clay with peat ash as a supplementary material of cement in the compacted and stabilized soil. In order to assess the mentioned influence, test specimens of both untreated and stabilized soil have been tested in the laboratory so that their permeability could be evaluated. Falling head and one dimensional consolidation tests of laboratory permeability were performed on the clay specimens and the chemical compositions of the materials as well as microstructure of the stabilized soil with 18% cement, 2% peat ash, and 5% silica sand were investigated, using X-ray fluorescence and scanning electron microscopy respectively. Results show that for soil stabilization with up to 8% cement content (of the dry weight of the soil, the average value of coefficient of permeability (kv is very close to that of untreated soil, whereas the kv value decreases drastically for 18% cement under identical void ratio conditions. It is further revealed that addition of 18% cement, 2% peat ash, and 5% silica sand had decreased the coefficient of permeability by almost 2.2 folds after 24 h, while about 1.7 folds increase was observed in coefficient of permeability once 13.5% of cement, 1.5% of peat ash, and 20% of silica sand were added. The partial replacement of cement with the 2% peat ash can reduce the consumption of cement for soil stabilization.

  18. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid.

    Directory of Open Access Journals (Sweden)

    Kevin A Thorn

    Full Text Available Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  19. Use of sewage sludge and coconut coir mix as a peat substitute for potted chrysanthemum

    Energy Technology Data Exchange (ETDEWEB)

    Rosenani, A.B.; Lim, F.Y.; Thohirah, L.A.; Fauziah, C.I.

    2003-07-01

    Recent central processing of domestic wastewater in Malaysia has initiated investigations into the disposal/utilization of the sewage sludge produced. We had conducted an experiment to investigate the feasibility of using dewatered sewage sludge and coconut coir as a peat substitute in a potting medium for chrysanthemum. The experiment involved 9 treatments with sewage sludge (SS) and coconut coir (CC) mixed in different ratios (v/v) to replace peat in the standard potting medium of 3:2:1 (soil: peat: sand).The potting medium contained the following treatments, T1: peat + recommended rates of Agroblend (Ag), a slow release fertilizer, and Grofas (Gf), a foliar fertilizer (commonly used medium and fertilization), T2: [1SS:1CC] + Ag, T3: [1SS:1CC] + half recommended rates of Agroblend and Grofas (1/2Ag + 1/2Gf), T4: [2SS:1CC] + Ag, T5: [2SS:1CC] + 1/2Ag + 1/2Gf, T6: [3SS:1CC] + Ag, T7: [3SS:1CC] + 1/2Ag + 1/2Gf, T8: [4SS:1CC] + Ag, and T9: [4SS:1CC] + 1/2Ag + 1/2Gf; laid-out in a randomized complete block design with 5 replications. Results of the study show that in general the media with sludge and coconut coir mixtures produced better plant growth and higher total number of flowers than peat. However, the higher ratio of SS:CC, (4SS:1CC) produced poorer plant growth and less number of flowers. Increase in sewage sludge in the medium resulted in increase in foliar contents of heavy metals. This study demonstrates that sewage sludge and coconut coir mixture in the ratio of 1:1 may best substitute peat in the potting medium for chrysanthemum with only Agroblend fertilizer application. (author)

  20. The composition and character of DOM from an upland peat catchment - sources, roles and fate

    Science.gov (United States)

    Worrall, F.; Moody, C.; Clay, G.; Boothroyd, I.; Burt, T. P.

    2017-12-01

    The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The source, role and fate of this component of the carbon cycle was explored for a peat covered catchment in the north east of England with dissolved organic matter (DOM) being sampled from both a first-order peat-hosted stream and soil water at two depths within the peat profile. All DOM samples were analysed within the context of analysing the particulate organic matter (POM) from the catchment; the peat profile; and biomass. All samples were analysed using: elemental analysis (C, H, N, O, P and S); bomb calorimetry; thermogravimetric analysis (TGA); 13C solid state NMR; and S isotopes. Furthermore, the degradation of fresh DOC was examined over periods of 70 hours every month for 23 months. The analysis has shown that: DOM is highly oxidised compared to all other organic in the ecosystem and DOM did not exist until [C]/[O] lignin breakdown and not the processing of proteins or carbohydrates, i.e. it was not an intermediate of oxidation to CO2. DOM could only be sourced from high in the peat profile at most above 41 cm depth. Thermodynamic inhibition shows that only DOM from the surface layers could be reactive in the catotelmic layers of the peat. There was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The study meant that is was possible to consider the behaviour of DOM in terms of its thermodynamic properties (DH, DS & DG) for both formation and reaction.

  1. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  2. Environmental impact of peat mining. Development of storm water treatment methods

    International Nuclear Information System (INIS)

    Kloeve, Bjoern

    1997-11-01

    The aim of this series of studies has been to develop methods to reduce the environmental impacts of peat mining, that function when the pollution load is high and that are economically viable for all peat mines. Sediment transport and nutrient leaving were studied with the purpose of establishing more efficient treatment alternatives. A controlled experiment was set up to measure the erosion of peat from the soil surface and from ditch beds during heavy rainfall and runoff events and to measure the settling characteristics of base soil peat and peat deposited in channels. The study demonstrates the importance of channel bed erosion as the main source of sediment during peak runoff. Sediment transport and nutrient leaching were further observed in the field during 1995 and 1996. The study showed that suspended solids (SS) is mainly generated during extreme events, such as flooding. These high flow events erode the material deposited on the channel bed during low flows. The leaching of nitrogen occurs after large rain events, while high phosphorous concentrations occur when the water table is low. Treatment alternatives were developed to improve removal of SS and nutrients. Different types of ponds were tested in a laboratory study. The study showed that the main factor affecting the settling of small peat particles is the depth of the settling basin. A mathematical model showed that in the case of bare soil erosion, the best treatment alternative would be to store the water in the large drainage network rather than in the sedimentation basin. Different structures suitable for peak runoff control were tested under laboratory and field conditions 54 refs, 11 figs

  3. Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils

    Science.gov (United States)

    Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.

    2017-12-01

    The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.

  4. Maximization of the sod peat load and treatment; Palaturpeen kuormituksen maksimointi ja kaesittely

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Nurmi, H.; Paappanen, T.; Frilander, P.

    1996-12-31

    The objective of this two year (1994-1995) project was to improve especially the efficiency of sod peat production, carried out using a spreading wagon, by increasing the sod peat load set for the field to value 20 kgDS/m{sup 2} (original value 10-14 kgDS/m{sup 2}), and by studying and developing a collection method for ridging and ridge processing, suitable for high-loads. The research was emphasized to laboratory tests, but some field test were also made. It was possible to increase the sod peat load most accurately to 20 kgDS/m{sup 2} by using wave-like sod peat. The drying speeds of horizontal and vertical wave-like sod peats were near to each other. The functioning of active-sod was rendered by the unevenness of the field. Production of active-sod requires less energy than production of wave-like sod. Horizontal wave-like sod was scaled using Malkov`s drying model, adjusted in cooperation with the researchers of the Russian research centre NIITP to suit better for wave-like sod peat. The best dimensions for wave were calculated for the horizontal wave-like sod using long-term weather conditions data (Pudasjaervi 1971-1990). The picking device of the ridger, developed using laboratory tests, consisted of a grid moving on the field, standing the sod up, above which there is a rotating truncheon coil which transfers the sod along the grid for further processing. The share of the fines by weight, loosened from the field during picking up the sod was 0.5 % of the sod-mass, and the losses were 11 % of the number of the sod. At the driving speed 2.9 km/h the suitable coil rotation speed was about 20 r/min, hence the rotation speed of the truncheons was twice as high as the driving speed

  5. Saturation and forward jets at HERA

    International Nuclear Information System (INIS)

    Marquet, C.; Peschanski, R.; Royon, C.

    2004-01-01

    We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options

  6. Scintillation probe with photomultiplier tube saturation indicator

    International Nuclear Information System (INIS)

    Ruch, J.F.; Urban, D.J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs

  7. Long-term disturbance dynamics and resilience of tropical peat swamp forests.

    Science.gov (United States)

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude

  8. Decadal changes in peat carbon accrual rates in bogs in Northern Minnesota

    Science.gov (United States)

    Fissore, C.; Nater, E. A.; McFarlane, K. J.

    2017-12-01

    Throughout the Holocene, peatland ecosystems have accumulated substantial amounts of carbon (C) and currently store about one third of all soil organic carbon (SOC) worldwide. Large uncertainty still persists on whether peatland ecosystems located in northern latitudes will continue to act as C sinks, or if the effects of global warming will have greater effects on decomposition processes than on net ecosystem production. We investigated decadal C accrual rates of the top 25 cm of peats in three Sphagnum-rich peatlands located in Northern Minnesota (two ombrotrophic bogs and one fen). We used radiocarbon analysis of Sphagnum cellulose and model fitting to determine peat ages, and peat FTIR spectroscopy to determine humification indices and relative decomposition of peat samples with depth. We had the scope to detect whether recent warming has had an effect on peat decomposition and C accumulation rates. Modeled C accumulation rates in the three peatlands during the past five decades ranged between 78 and 107 g C m-2 yr-1 in the top 25 cm analyzed in this study, values that are higher than the 22 to 29 g C m-2 yr-1 obtained for long-term (millennial) accumulations for the entire bog profiles. Peat IR spectra and C:N ratios confirm low levels of decomposition across the bog sites, especially in the uppermost parts of the peat. The fen site showed very limited decomposition across the entire sampled profile. Higher rates of C accumulation, combined with low decomposition rates close to the surface provide a good estimate of net primary productivity. As substrate decomposition progresses over time, net rates of accumulation decrease. Peat decomposition was more pronounced in the lower depths of the sampled cores in the two ombrotrophic bogs than in the fen, likely an effect of larger temporal variation in water table depth in the bogs than in the fen. Some of the variation in C accumulation and decomposition observed in our bogs and fen suggests that future C

  9. The physical properties of peat: a key factor for modern growing media

    Directory of Open Access Journals (Sweden)

    J-C. Michel

    2010-04-01

    Full Text Available This article identifies criteria for assessing the physical properties (water retention characteristics, wettability and physical stability of growing media which influence the availability of air and water to plant roots. The various materials that are currently in use are assessed for these properties. The analysis of physical properties indicates that weakly decomposed (H1–H5, generally referred to as white Sphagnum peat is still indispensable for soil-less horticulture. Whilst a number of materials can be used as peat additives, especially to improve aeration, no alternative products with equivalent physical properties are available at present.

  10. Heavy metals, especially lead, deposition recorded in an ombrotrophic peat bog near Manchester, United Kingdom

    Science.gov (United States)

    Le Roux, G.; Weiss, D.; Cheburkin, A.; Rausch, N.; Grattant, J.; Krachler, M.; Shotyk, W.

    2003-05-01

    A peat monolith representing up to 4,000 years of peat accumulation near Manchester, England, was collected. Major and trace elements were analysed with XRF and for Cd and Pb in the deeper samples with GF-AAS following acid digestion. Pb isotopic composition was measured with TIMS and ICP-MS. The results show a pollution since the Roman Period due to local lead sources and an increase in lead pollution in the last century due to leaded gasoline as fingerprinted by Pb isotopic signatures.

  11. CO2 Emissions in an Oil Palm Plantation on Tropical Peat in Malaysia

    Science.gov (United States)

    Leclerc, M.; Zhang, G.; Jantan, N. M.; Harun, M. H.; Kamarudin, N.; Choo, Y. M.

    2016-12-01

    Tropical peats are large contributors to greenhouse gas emissions and differ markedly from their counterparts at temperate latitudes. The rapid deforestation and subsequent land conversion of tropical virgin forests in Southeast Asia have been decried by environmental groups worldwide even though there is currently little robust scientific evidence to ascertain the net amount of greenhouse gas released to the atmosphere. The conversion to oil palm plantation at a large scale further exacerbates the situation. This paper shows preliminary data on CO2 emissions in a converted oil palm plantation grown on tropical peat in northeast Malaysia.

  12. Environmental effects of fuel peat use in Finland. An LCA-based Decision Analysis Impact Assessment

    International Nuclear Information System (INIS)

    Leijting, J.

    1998-02-01

    Finland is a country where the main domestic energy sources are restricted to hydroelectric power, wood and peat from which hydropower is practically utilized fully. The use of peat as energy source has increased drastically since the oil crisis in the beginning of the seventies and the peat exploitation industry is nowadays a significant supplier of labour in Finland. Peat is, in contrast to fossil energy sources, exploited and used as an energy source within the country's borderline. Therefore, all direct extractions and emissions takes place in Finland.The influence of the processes, which occur during the life cycle of fuel peat, on the environment as a whole is yet somewhat unclear. The aim of the study is to map and assess the overall environmental impacts of production and use of fuel peat in Finland and to bring these impacts in relation with total environmental impacts in Finland caused by anthropogenic emissions. The results should be comparable with the impacts of other product life cycles (for instance other fuels). Furthermore, the detection of data gaps which are present is an important element of the study. Research questions are (1) What are the contributions of the different stressors which are emitted during the life cycle of fuel peat in Finland to global and regional environmental impacts? The environmental impacts involved are global impacts like the greenhouse effect as well as regional environmental impacts, e.g.acidification, eutrophication, toxic effects, ozone formation and effects on biodiversity; and (2) What are the contributions expressed per functional unit? Emissions released during the life cycle of fuel peat were inventorized. The emissions were characterized into the various impact categories and a valuation of the various impacts was performed, based on the Decision Analyses Impact Assessment (DAIA). In DAIA, country specific values were applied for estimating the potential of the stressors to cause adverse environmental effects

  13. The relationship between dissolved organic carbon and hydro-climatic factors in peat-muck soil

    Directory of Open Access Journals (Sweden)

    Jaszczyński Jacek

    2015-03-01

    Full Text Available The object of this study was the concentration of dissolved organic carbon (DOC in soil solution related to groundwater table, soil temperature, moisture, redox potential and intensive storm rain and their changes during ten years (2001–2010. The studies were localized in drained and agriculturally used Kuwasy Mire situated in the middle basin of the Biebrza River, north-eastern Poland. The study site was situated on a low peat soil managed as intensively used grassland. The soil was recognized as peat-muck in the second stage of the mucking process. DOC concentration was determined by means of the flow colorimetric method using the Skalar equipment.

  14. Management of Peat Fires on Smoldering Phase (Case Study: District Siak and District Kampar Riau Province

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2016-01-01

    Full Text Available The difficulty of finding land for farming activities in Indonesia caused some communities began to switch utilizing peat land for agricultural areas such as oil palm. Oil palm plantation is a commodity that has been developed in Indonesia.Oil palm planted area has increased rapidly.Since 1967 extensive oil palm plantations has increased 35times to 5.6 million ha in 2005 and about 7.8 million ha in 2009. The biggest expansion of oil palm plantations occur in 6 province,one of them is Riau.Most people take a practical way to open agricultural areas by burning peat.Riau Province in Indonesia is one of the major hotspots for peat fires during the dry season. Peat fire at smouldering phaseemits a lot of compounds that are not completely oxidized (e.g. CO, VOCs, PAHs that more dangerous than the emissions released during combustion at flaming fires. Particulate Matter (PM 2.5 is one of the emissions from peat fires too.However, existing data on VOCs and PM 2.5 of smoke from peat fires Indonesia is still limited.The aim of this study was to analyze the concentration of VOCs and PM 2.5 on emissions from peat fires in the Langkai Village Siak District and RimboPanjang Village Kampar District Riau Province when compared with background site and the permissible exposure limit and provide recommendations based on the results of this research.VOCs measurement method is based on NIOSH 1500 and EPA TO-17 while the PM 2.5 based on IMPROVE A method. The average concentration of PM 2.5 is 996.72 ± 531.01μg/m3. PM2.5 concentrations increased (compared with the background site was very high at 4,838%.This condition causes a decrease in air quality and serious health problems. While the results of the maximum TVOCs concentration obtained in Siak District was 391,880 g/m3, while in Kampar Districtwas 195,940 g/m3. TVOCs concentration atSiak Districtwas 130.63 times greater than the existing quality standards, while at Kampar District regency was 65.31 times

  15. Covering of milled peat stockpile with wood chips; Jyrsinturveauman peittaeminen hakkeella

    Energy Technology Data Exchange (ETDEWEB)

    Franssila, T.; Leinonen, A.

    1996-12-31

    The aim of this project is to research the applicability of wooden materials for protection of milled peat stockpile against losses during storaging. Water transmission features of sawdust, wastewood chip and whole tree chip were investigated in laboratory with raining experiments. The plan for raining experiments was made with experiment planning program and results were analysed with multivariate analysis. Freezing features were investigated thorough breaking tests with hydraulic piston vice. Laboratory experiments were completed with field tests in Laakasuo near Sotkamo. On the basis of results covering peat stockpiles with sawdust is fully competitive comparing to present covering methods. Chip materials are technically not as good covering materials as sawdust

  16. Preliminary stable isotope results from the Mohos peat bog, East-Carpathians

    Science.gov (United States)

    Túri, Marianna; Palcsu, László; Futó, István; Hubay, Katalin; Molnár, Mihály; Rinyu, László; Braun, Mihály

    2016-04-01

    This work provides preliminary results of an isotope investigation carried out on a peat core drilled in the ombrotrophic Mohos peat bog, Ciomadul Mountain, (46°8'3.60"N, 25°54'19.43"E, 1050 m.a.s.l.), East Carpathians, Romania. The Ciomadul is a single dacitic volcano with two craters: the younger Saint Ana and the older Mohos which is a peat bog, and surrounded by a number of individual lava domes as well as a narrow volcaniclastic ring plain volcano. A 10 m long peat core has been taken previously, and is available for stable oxygen and carbon isotope analysis. It is known from our previous work (Hubay et al., 2015) that it covers a period from 11.500 cal year B.P. to present. The peat bog is composed mainly of Sphagnum, which has a direct relationship with the environment, making it suitable for examine the changes in the surrounding circumstances. Isotopic analysis of the prepared cellulose from Sphagnum moss has the attribute to provide such high resolution quantitative estimates of the past climate and there is no such climate studies in this area where the past climate investigations based on oxygen isotope analysis of the Sphagnum. Oxygen and carbon stable isotope analysis were carried out on the hemicellulose samples, which were chemically prepared for 14C dating and taken from every 30 cm of the 10 m long peat core. The oxygen isotope composition of the precipitation can be revealed from the δ18O values of the prepared cellulose samples, since, while carbon isotope ratio tells more about the wet and dry periods of the past. Studying both oxygen and carbon isotope signatures, slight fluctuations can be seen during the Holocene like some of the six periods of significant climate changes can be seen in this resolution during the time periods of 9000-8000, 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600-150 cal yr B.P. Additionally, the late Pleistocene - early Holocene environmental changes can be clearly observed as Pleistocene peat samples have

  17. The estimation of antistress properties of peat degradation products

    Science.gov (United States)

    Chorna, V. I.; Lyanna, O. L.

    2009-04-01

    Introduction. It is known that polyphenol preparations, produced from peat, represent adaptogens, immunomodulators and can participate in regulation of genetic informational realization as triggers of nonspecific nature. These compounds promote launching of protein-synthesizing system that is very important under unfavorable influence on organism. The experimental data of last years confirmed doth therapeutic value of humic acids as adaptogenes and their antioxidant, anti-inflammatory, antimutogenic, radioprotective and other properties. Lysosomes take the key positions in many physiological and pathological processes of organism owing to their unique structural-functional properties, reactivity and plasticity. These organelles take especial meaning in increased functional activity under stress factors influence. In this way lysosomes become modulators of intracellular processes. It is known that under chronic stress, the systems of neurohumoral regulation and adaptation gradually run out, the function of brain cellular membrane structures disturbs. Understanding of stress developing mechanisms is necessary condition for means development of operative avoiding of the harmful consequences. Purpose. The aim of the work was to investigate corrective influence of hydrohumates on compartmentalization changing of lysosomal cysteine cathepsin H (EC 3.4.22.16) in different rat brain structures. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin H was determined spectrophotometerically by hydrolysis of 2-naphthyl-amid L-leucine (Koch-Light Lab., England). It was found out that intracellular compartmentalization

  18. Atmospheric mercury accumulation between 5900 and 800 calibrated years BP in the high arctic of Canada recorded by Peat Hummocks

    DEFF Research Database (Denmark)

    Givelet, N.; Roos-Barraclough, F.; Goodsite, Michael Evan

    2004-01-01

    In this paper, we present the first comprehensive long-term record of preanthropogenic rates of atmospheric mercury accumulation in dated peat deposits for the High Arctic of Canada. Geochemical studies of two peat hummocks from Bathurst Island, Nunavut reveal substantial inputs from soil dust...... (titanium), marine aerosols (bromine), and mineral-water interactions (uranium). Mercury, however, was supplied to these peat mounds exclusively by atmospheric deposition. Mercury concentration measurements and age dating of the peat profiles indicate rather constant natural "background" mercury flux of ca....... 1 microgram per square meter per year from 5900 to 800 calibrated years BP. These values are well within the range of the mercury fluxes reported from other Arctic locations, but also by peat cores from southern Canada that provide a record of atmospheric Hg accumulation extending back 8000 years...

  19. Microbial activity and biomass of peats in relation to the intrinsic organic matter composition, pH, moisture, and C and N inputs

    Energy Technology Data Exchange (ETDEWEB)

    Amha Amde, Yosef

    2011-03-25

    Excessive decomposition of organic matter (OM) from the potting media (e.g. peat) is known to influence plant growth by decreasing the total porosity, altering the chemical properties (pH, electrical conductivity), and releasing organic compounds that might have phytotoxic or stimulating effects. When peats are used as constitutes of the potting media, they should, therefore, maintain stability during plant production. In this study, twenty peat samples from Estonia, Finland, Germany, Ireland, Latvia, Lithuania and Sweden were evaluated for their microbial activity (measured as CO{sub 2} and N{sub 2}O emissions) and biomass with a special emphasis to the intrinsic organic matter composition, pH, moisture, and C and N inputs as such information on a wide range of peat samples is largely missing from published literature. Overall, the whole peat samples were broadly classified into three distinct groups using the hierarchical cluster analysis: the Irish and two of German peats produced the lowest CO{sub 2} while most peats from Finland produced the highest CO{sub 2}. With few exceptions, peats from the Baltic States occupied the middle ranges. Excessive decomposition of organic matter in the Finish peats might have unintended consequences if these peats are used for long-term pot plant production. With regard to botanical composition, peats containing Sphagnum imbricatum produced the lowest CO{sub 2} and S. angustifolium dominated peats mostly produced the highest CO{sub 2}. (orig.)

  20. High-resolution records of late-Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs

    NARCIS (Netherlands)

    Mauquoy, D; Engelkes, T; Groot, MHM; Markesteijn, F; Oudejans, MG; van der Plicht, J; van Geel, B

    2002-01-01

    The peat stratigraphy (plant macrofossils, colorimetric humification, pollen/non-pollen microfossils, carbon/nitrogen ratios) of three replicate cores from a raised peat bog in the UK (Walton Moss) and a single core from a raised peat bog in Denmark (Lille Vildmose) were examined in an attempt to

  1. Relicts of a peat cover in the Westerkoggepolder (West Friesland, North-Holland, The Netherlands): The genesis of an eluvial clay soil

    NARCIS (Netherlands)

    van Mourik, J.; Ligtendag, W.

    2015-01-01

    This paper presents the result of palynological research of peat relicts, found in the Westerkoggepolder (North-Holland, The Netherlands). In general, such relicts of peat in the actual landscape point to an extensive peat cover in the past that disappeared due to land reclamation and agricultural

  2. Treatment of Essential Tremor

    Science.gov (United States)

    ... for PATIENTS and their FAMILIES TREATMENT OF ESSENTIAL TREMOR This fact sheet is provided to help you understand which therapies help treat essential tremor. Neurologists from the American Academy of Neurology are ...

  3. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  4. Minimum K_2,3-saturated Graphs

    OpenAIRE

    Chen, Ya-Chen

    2010-01-01

    A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.

  5. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  6. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  7. Saturation flow versus green time at two-stage signal controlled intersections

    Directory of Open Access Journals (Sweden)

    A. Boumediene

    2009-12-01

    Full Text Available Intersections are the key components of road networks considerably affecting capacity. As flow levels and experience have increased over the years, methods and means have been developed to cope with growing demand for traffic at road junctions. Among various traffic control devices and techniques developed to cope with conflicting movements, traffic signals create artificial gaps to accommodate the impeded traffic streams. The majority of parameters that govern signalised intersection control and operations such as a degree of saturation, delays, queue lengths, the level of service etc. are very sensitive to saturation flow. Therefore, it is essential to reliably evaluate saturation flow for correctly setting traffic signals to avoid unnecessary delays and conflicts. Generally, almost all guidelines support the constancy of saturation flow irrespective of green time duration. This paper presents the results of field studies carried out to enable the performance of signalised intersections to be compared at different green time durations. It was found that saturation flow decreased slightly with growing green time. Reduction corresponded to between 2 and 5 pcus/gh per second of green time. However, the analyses of the discharge rate during the successive time intervals of 6-seconds showed a substantial reduction of 10% to 13% in saturation flow levels after 36 seconds of green time compared to those relating to 6–36 seconds range. No reduction in saturation flow levels was detected at the sites where only green periods of 44 seconds or less were implemented.

  8. The geology of selected peat-forming environments in temperate and tropical latitudes

    Science.gov (United States)

    Cameron, C.C.; Palmer, C.A.; Esterle, J.S.

    1990-01-01

    We studied peat in several geologic and climatic settings: (1) a glaciated terrain in cold-temperate Maine and Minnesota, U.S.A.; (2) an island in a temperate maritime climate in the Atlantic Ocean off the coast of Maine, U.S.A., where sea level is rising rapidly and changing the environment of peat accumulation; (3) swamps along the warm-temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often, thus creating sites for accumulation; and (4) in a tropical climate along the coast of Sarawak, Malaysia, and the delta of the Batang Hari River, Sumatra, Indonesia (Figs. 1 and 2). With the exception of the deposits on the Atlantic and Gulf Coastal Plains, most of the deposits described are domed bogs in which peat accumulation continued above the surface of the surrounding soil. The bogs of the U.S. Atlantic and Gulf Coastal Plains have almost level surfaces. All domed bogs are not entirely ombrotrophic (watered only from precipitation); multidomed bogs that rise from irregular or hilly surfaces may be crossed by streams that supply water to the bogs. The geologic processes or organic sedimentation, namely terrestrialization and paludification, are similar in all peat deposits considered here. Differences in geomorphology affecting the quantity and that quality of peat that has ash contents of less than 25%, which are desirable for commercial purposes, depend chiefly on: (1) high humidity, which is favorable to luxuriant growth of peat-forming vegetation; (2) a depositional setting that permits extensive accumulation relatively free from inorganic contamination from sea water and streams and from dust and volcanic ash; and (3) a stable regional water table that controls the rate of decomposition under aerobic conditions and protects the deposit against the ravages of fire. Differences in peat textures are due to the type of vegetation and to the degree of decomposition. The rate of decomposition is largely the result of the amount of oxidation

  9. Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography

    Science.gov (United States)

    Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.

    2018-06-01

    Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective

  10. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass

  11. SATURATED ZONE IN-SITU TESTING

    International Nuclear Information System (INIS)

    REIMUS, P.W.

    2004-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid

  12. Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study.

    Science.gov (United States)

    Julian Deiss; Carl Byers; Dave Clover; Dave D' Amore; Alan Love; Malcolm A. Menzies; J. Powell; Todd M. Walter

    2004-01-01

    A set of peat column experiments was used to determine the transport potential of lead (Pb) and diesel range organics (DRO) in palustrine slope wetlands near Juneau, AK. This project is important to southeast Alaskan communities because limited land resources are forcing development of regional wetlands. This study was instigated by concerns that proposed modifications...

  13. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms.

    Science.gov (United States)

    Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M; Urich, Tim

    2013-02-01

    A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH(4) and CO(2) in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH(4)-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO(2) sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH(4) emissions will critically depend on the response of the methanotrophic bacteria.

  14. Functioning of microbial complexes in aerated layers of a highmoor peat bog

    Science.gov (United States)

    Golovchenko, A. V.; Bogdanova, O. Yu.; Stepanov, A. L.; Polyanskaya, L. M.; Zvyagintsev, D. G.

    2010-09-01

    Monitoring was carried out using the luminescent-microscopic method of the abundance parameters of different groups of microorganisms in a monolith and in the mixed layers of a highmoor peat bog (oligotrophic residual-eutrophic peat soil) in a year-long model experiment. The increase of the aeration as a result of mixing of the layers enhanced the activity of the soil fungi. This was attested to by the following changes: the increase of the fungal mycelium length by 6 times and of the fungal biomass by 4 times and the double decrease of the fraction of spores in the fungal complex. The response of the fungal complex to mixing was different in the different layers of the peat bog. The maximal effect was observed in the T1 layer and the minimal one in the T2 layer. The emission of CO2 in the mixed samples was 1.5-2 times higher than that from the undisturbed peat samples. In contrast with the fungi, the bacteria and actinomycetes were not affected by the aeration of the highmoor layers.

  15. Agroindustrial composts to reduce the use of peat and fungicides in the cultivation of muskmelon seedlings.

    Science.gov (United States)

    Morales, Ana Belen; Ros, Margarita; Ayuso, Luis Miguel; Bustamante, Maria de Los Angeles; Moral, Raul; Pascual, Jose Antonio

    2017-02-01

    Environmental concerns about peat extraction in wetland ecosystems have increased. Therefore, there is an international effort to evaluate alternative organic substrates for the partial substitution of peat. The aim of this work was to use different composts (C1-C10) obtained from the fruit and vegetable processing industry (pepper, carrot, broccoli, orange, artichoke residues, sewage sludge (citric and pepper) and vineyard pruning wastes) to produce added-value composts as growing media with suppressive effect against Fusarium oxysporum f.sp. melonis (FOM) in muskmelon. Composts showed values of water-soluble carbon fractions and dehydrogenase activity that allowed them to be considered mature and stabilized. All compost treatments produced significantly (F = 7.382; P values. Treatments T-C5, T-C7 and T-C8 showed percentages of disease incidence that were significantly (F = 16.052; P values below 50%. Composts produced are suitable components of mixed compost-peat growing media, providing a 50% substitution of peat. Furthermore, some of these composts also showed an added value as a suppressive organic medium against Fusarium wilt in muskmelon seedling, a fact probably related to high pH and pepper wastes and high content of pruning waste as initial raw materials. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Process for treating bituminous coal, lignite, peat, and shale, and products obtained

    Energy Technology Data Exchange (ETDEWEB)

    Schabelitz, E J

    1951-06-27

    A process is described comprising leaching bituminous coal, lignite, peat, or shale by immersing said material in ethylene dichloride for a period of time sufficient to remove the ethylene dichloride-soluble constituents, separating the treated material from the ethylene dichloride solution and recovering from the solution the soluble constituents of the material dissolved in the solution. Soluble constituents include oils and waxes.

  17. 3D characterization of Holocene peat in the Netherlands : Implications for coastal-deltaic subsidence

    NARCIS (Netherlands)

    Koster, K.

    2017-01-01

    Human-induced subsidence threatens many coastal-deltaic plains, due to the amplifying effects it has on sea-level rise and flood risk. In the coastal-deltaic plain of the Netherlands, subsidence is primarily caused by the compression and oxidation of Holocene peat. The understanding of subsidence in

  18. Abiotic reaction of iodate with sphagnum peat and other natural organic matter

    International Nuclear Information System (INIS)

    Steinberg, S.M.; Kimble, G.; Schmett, G.T.; Emerson, D.W.; Turner, M.F.; Rudin, M.

    2008-01-01

    Previous studies have shown that iodine (including 129 I) can be strongly retained in organic-rich surface soils and sediment and that a large fraction of soluble iodine may be associated with dissolved humic material. Iodate (IO 3 - ) reacts with natural organic matter (NOM) producing either hypoiodous acid (HIO) or I 2 as an intermediate. This intermediate is subsequently incorporated into the organic matter. Based on reactions of model compounds, we infer that iodine reacts with peat by aromatic substitution of hydrogen on phenolic constituents of the peat. Alternatively, the intermediate, HIO or I 2 , may be reduced to iodide (I - ). The pH (and temperature) dependence of the IO 3 - reaction (reduction) has been explored with sphagnum peat, alkali lignin, and several model compounds. The incorporation of iodine into NOM has been verified by pyrolysis gas chromatography/mass spectrometry (GC/MS). Model compound studies indicate that reduction of IO 3 - to HIO may result from reaction with hydroquinone (or semiquinone) moieties of the peat. (author)

  19. Effect of conservation tillage and peat application on weed infestation on a clay soil

    Directory of Open Access Journals (Sweden)

    P. VANHALA

    2008-12-01

    Full Text Available Amendment of soil with peat is an attempt to avoid crop yield variation in the transition to conservation tillage, as it improves seedbed conditions and crop growth in drought-sensitive clay soils. Weed infestations were compared in 1999-2000 between the original and peat-amended clay (Typic Cryaquept, very fine, illitic or mixed under different autumn tillage systems in an oats-barley rotation. In a field experiment, sphagnum peat (H = 4 had been spread (0.02 m 3 m -2 on the soil surface in August 1995. Tillage treatments included mouldboard ploughing (to 20 cm and stubble cultivations of different working depths (8 or 15 cm and intensity (once or twice. Weed biomass and density were assessed by an area of 1 m 2 per field plot in August 1999-2000 and June 2000. The 1999 season was dry, but soil moisture conditions were more favourable in 2000. Peat application tended to increase the number of volunteer oats and Chenopodium album in 1999, while decreasing Galium spurium biomass. Ploughing significantly increased the abundance of Chenopodium album and Lamium purpureum in barley (Hordeum vulgare in 1999. Weed infestation was much lower in 2000, and tillage effect on Chenopodium album was minor in oats (Avena sativa. Growth of Lamium purpureum and Fumaria officinalis was stimulated in ploughed soils both years. Intensity and working depth of stubble cultivation had no significant effect on weeds.;

  20. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.

    Science.gov (United States)

    Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin

    2010-05-01

    In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.