WorldWideScience

Sample records for escherichia coli induce

  1. Escherichia coli pathotypes

    Science.gov (United States)

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  2. Escherichia Coli

    Science.gov (United States)

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  3. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  4. Induced clustering of Escherichia coli by acoustic fields.

    Science.gov (United States)

    Gutiérrez-Ramos, Salomé; Hoyos, Mauricio; Ruiz-Suárez, J C

    2018-03-16

    Brownian or self-propelled particles in aqueous suspensions can be trapped by acoustic fields generated by piezoelectric transducers usually at frequencies in the megahertz. The obtained confinement allows the study of rich collective behaviours like clustering or spreading dynamics in microgravity-like conditions. The acoustic field induces the levitation of self-propelled particles and provides secondary lateral forces to capture them at nodal planes. Here, we give a step forward in the field of confined active matter, reporting levitation experiments of bacterial suspensions of Escherichia coli. Clustering of living bacteria is monitored as a function of time, where different behaviours are clearly distinguished. Upon the removal of the acoustic signal, bacteria rapidly spread, impelled by their own swimming. Nevertheless, long periods of confinement result in irreversible bacteria entanglements that could act as seeds for levitating bacterial aggregates.

  5. Endonuclease IV of Escherichia coli is induced by paraquat

    International Nuclear Information System (INIS)

    Chan, E.; Weiss, B.

    1987-01-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H 2 O 2 produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, γ rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O 2 . The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H 2 O 2 -inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals

  6. Endonuclease IV of Escherichia coli is induced by paraquat

    Energy Technology Data Exchange (ETDEWEB)

    Chan, E.; Weiss, B.

    1987-05-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H/sub 2/O/sub 2/ produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, ..gamma.. rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O/sub 2/. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H/sub 2/O/sub 2/-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.

  7. Alterations induced in Escherichia Coli cells by gamma radiation

    International Nuclear Information System (INIS)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da; Jesus, E.F.O. de; Lopes, R.T.; Carlin, N.; Toledo, E.S.

    2007-01-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ( 60 Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  8. Physicochemical Factors: Impact on Spermagglutination Induced by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kiranjeet Kaur

    2014-02-01

    Full Text Available Motility is a sensitive parameter of sperm function which is predictive of its fertilization potential in vitro. The decrease in sperm motility may be associated with sperm agglutination and immobilization due to mere presence of bacteria or excretion of bacterial toxic products. Supplementation with various agents like sucrose, mannitol, calcium, and EDTA is well known to improve the sperm motility in vitro. The present study was designed to check any protective role exerted by the addition of different agents on spermatozoal motility against E. coli induced sperm agglutination. 52 semen specimens were screened for the presence of sperm-agglutinating strain of E. coli. Further, influence of various factors, namely, sugars, salts, and chelating agents was studied. Also, the impact of exposure to high temperature and alcohol on sperm-agglutinating efficiency of E. coli was observed. None of the factors could inhibit the sperm agglutination induced by E. coli, except high temperature suggesting the involvement of protein moiety. In addition, it was observed that agglutinating efficiency of E. coli was limited to spermatozoa and RBCs. It may be concluded that sperm-agglutinating property of E. coli is quite stable as various physicochemical factors tested did not show any negative effect on the same except high temperature.

  9. Breaks induced in the deoxyribonucleic acid of aerosolized Escherichia coli by ozonized cyclohexene.

    Science.gov (United States)

    De Mik, G; De Groot, I

    1978-01-01

    The inactivation of aerosolized Escherichia coli by ozone, cyclohexene, and ozonized cyclohexene was studied. The parameters for damage were loss of reproduction and introduction of breaks in the deoxyribonucleic acid (DNA). Aerosolization of E. coli in clean air at 80 percent relative humidity or in air containing either ozone or cyclohexene hardly affected survival; however, some breaks per DNA molecule were induced, as shown by sucrose gradient sedimentation of the DNA. Aerosolization of E. coli in air containing ozonized cyclohexene at 80 percent relative humidity decreased the survival by a factor of 10(3) or more after 1 h of exposure and induced many breaks in the DNA. PMID:341811

  10. Inducible error-prone repair in Escherichia coli

    International Nuclear Information System (INIS)

    Sedgwick, S.G.

    1975-01-01

    A hypothesis that ultraviolet-induced mutagenesis arises from the induction of an error-prone mode of postreplication repair that requires the exrA + recA + genotype has been tested with alkaline sucrose gradient centrifugation coupled with assays of fixation determined by loss of photoreversibility. The inhibitor of protein synthesis, chloramphenicol, added before irradiation, prevented a small amount of postreplication repair and completely eliminated mutation fixation in E. coli WP2/sub s/ uvrA. However, chloramphenicol did not affect strand joining: in uvrA bacteria allowed 20 min of growth between irradiation and antibiotic treatment; in nonmutable uvrA exrA bacteria; and in urvA tif bacteria grown at 42 0 for 70 min before irradiation. These observations indicate that an inducible product is involved in a fraction of postreplication repair and is responsible for induced mutagenesis. (auth)

  11. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  12. The ygaVP Genes of Escherichia coli Form a Tributyltin-Inducible Operon▿ †

    OpenAIRE

    Gueuné, Hervé; Durand, Marie-José; Thouand, Gérald; DuBow, Michael S.

    2008-01-01

    A tributyltin (TBT) luxAB transcriptional fusion in Escherichia coli revealed that a TBT-activated promoter is located upstream of two cotranscribed orphan genes, ygaV and ygaP. We demonstrate that transcription from the promoter upstream of ygaVP is constitutive in a ygaVP mutant, suggesting that YgaV is an autoregulated, TBT-inducible repressor.

  13. Conjugation in Escherichia coli

    Science.gov (United States)

    Boyer, Herbert

    1966-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905

  14. Radiation-induced mutagenicity and lethality in tryptophan-requiring auxotrophs of escherichia coli

    International Nuclear Information System (INIS)

    Xu Rong; Qian Hongwei; Yao Fenying; Gu Shuzhu; Xu Jiaxin; Bi Hekan; Liu Yuying

    1989-01-01

    Mutation and killing caused by X-ray radiation and 60 Co γ-ray radiation were studied in three different tryptophan-requiring auxotrophs (WP2, Wp2A, Cm 891) of Escherichia coli. These testers are sensitive to base pair substitution mutagens. Cm891 carries a R-factor and is more sensitive than WP2 and WP2A to radiation-induced mutation and lethality. The results of the study show that (1) ionizing radiation was mutagenic to E. coli, (2) the order of mutagenic sensitivity among three strains to ionizing radiation was Cm891 > WP2A > WP2, (3) the dose rate of γ-ray influences mutagenicity and lethalty of E. coli strain, (4) the toxicity and mutagenicity of γ-ray were similar to X-ray when Cm891 was tested, however, γ-ray was more toxic and mutagenic than X-ray to WP2A ang WP2

  15. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    Science.gov (United States)

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  16. Alkylation Induced DNA Repair and Mutagenesis in Escherichia coli.

    Science.gov (United States)

    1987-11-23

    unrepaired 3-methyladenine in DNA 29 2.4.1 Cytotoxic effects of persisting m3A in DNA 30 2.4.2 Mutagenic bypass synthesis of depurinat ,d DNA 30 3 CONCLUDING...induced by a single exposure to the ca’rcinogen N- methyl-N- nitrosourea (MNU) due to activation of the malignant Ha-ras-i locus. Analysis of the induced...ing CO:A uolymerase I for repair synthesis . Since DNA polymerase I would be required to complete repair after the in~uial activity of TagII, we tested

  17. PATHOGENIC POTENTIALS OF ESCHERICHIA COLI ISOLATED ...

    African Journals Online (AJOL)

    Electrolyte and haematological parameters in rabbits infected with pathogenic isolates of Escherichia coli from rural water supplies in Rivers State, Nigeria, where monitored. Rabbits were orally infected with suspension containing 3x107 cfu /ml of Escherichia coli to induce diarrhoea, and the electrolyte (sodium, potassium ...

  18. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    International Nuclear Information System (INIS)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M.

    2009-01-01

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.

  19. Detection and Classification of Live and Dead Escherichia coli by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Sivakumar, P.; Fernández-Bravo, A.; Taleh, L.; Biddle, J.F.

    2015-01-01

    Abstract A common goal for astrobiology is to detect organic materials that may indicate the presence of life. However, organic materials alone may not be representative of currently living systems. Thus, it would be valuable to have a method with which to determine the health of living materials. Here, we present progress toward this goal by reporting on the application of laser-induced breakdown spectroscopy (LIBS) to study characteristics of live and dead cells using Escherichia coli (E. coli) strain K12 cells as a model organism since its growth and death in the laboratory are well understood. Our goal is to determine whether LIBS, in its femto- and/or nanosecond forms, could ascertain the state of a living organism. E. coli strain K12 cells were grown, collected, and exposed to one of two types of inactivation treatments: autoclaving and sonication. Cells were also kept alive as a control. We found that LIBS yields key information that allows for the discrimination of live and dead E. coli bacteria based on ionic shifts reflective of cell membrane integrity. Key Words: E. coli—Trace elements—Live and dead cells—Laser-induced breakdown spectroscopy—Atomic force microscopy. Astrobiology 15, 144–153. PMID:25683088

  20. The Role of Properdin in Zymosan- and Escherichia coli-Induced Complement Activation

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Lindstad, Julie K

    2012-01-01

    Properdin is well known as an enhancer of the alternative complement amplification loop when C3 is activated, whereas its role as a recognition molecule of exogenous pathogen-associated molecular patterns and initiator of complement activation is less understood. We therefore studied the role...... of properdin in activation of complement in normal human serum by zymosan and various Escherichia coli strains. In ELISA, microtiter plates coated with zymosan induced efficient complement activation with deposition of C4b and terminal complement complex on the solid phase. Virtually no deposition of C4b...... cytometry was used to further explore whether properdin acts as an initial recognition molecule reacting directly with zymosan and three E. coli strains. Experiments reported by other authors were made with EGTA Mg(2+) buffer, permitting autoactivation of C3. We found inhibition by compstatin...

  1. Patch size and base composition of ultraviolet light-induced repair synthesis in toluenized Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R; Sharon, R [Technion-Israel Inst. of Tech., Haifa

    1978-04-15

    Small patch repair in ultraviolet-irradiated Escherichia coli was saturated at deoxynucleoside triphosphate concentrations (approximately 2..mu..M of each dNTP) that are severly limiting for DNA replication. The low requirement of the repair process for dNTPs permitted direct demonstration of u.v.-induced DNA synthesis by incorporation of labelled dNTP and determination of its extent, base composition and patch size. It is concluded that DNA polymerase 1 is involved in small patch repair and that an average of 13 to 16 nucleotides are re-inserted per pyrimidine dimer excised. The average base composition of the repaired stretches adjacent to the dimers is similar to that of total E.coli DNA. An assay utilizing endogenous u.v.-specific endonuclease to determine dimer excision is described.

  2. Enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Abdullah Kilic

    2011-08-01

    Full Text Available Escherichia coli is a bacterium that is commonly found in the gut of humans and warm-blooded animals. Most strains of E. coli are harmless for human. E. coli O157:H7 is the most common member of a group of pathogenic E. coli strains known variously as enterohaemorrhagic, verocytotoxin-producing, or Shiga-toxin-producing organisms. EHEC bacterium is the major cause of haemorrhagic colitis and haemolytic uraemic syndrome. The reservoir of this pathogen appears to be mainly cattle and other ruminants such as camels. It is transmitted to humans primarily through consumption of contaminated foods. [TAF Prev Med Bull 2011; 10(4.000: 387-388

  3. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis lipopolysaccharide (LPS and Escherichia coli (E. coli LPS in murine peritoneal macrophages.We studied the cytokine production (TNF-α and IL-10 and Toll-like receptor 2, 4 (TLR2, 4 gene and protein expressions in peritoneal macrophages from young (2-month-old and middle-aged (12-month-old ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (p<0.05, and the markedly lower levels of TNF-α and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p<0.05. In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p<0.05.Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulted from aging might be related to TLR2, 4 and might lead to the incontrollable periodontal inflammation in older adults.

  4. Thioredoxin from Escherichia coli

    International Nuclear Information System (INIS)

    Holmgren, A.; Ohlsson, I.; Grankvist, M.L.

    1978-01-01

    A competition radioimmunoassay for Escherichia coli thioredoxin using 125 I-labeled thioredoxin-S 2 and a double antibody technique was developed. The method permits determination of picomole amounts of thioredoxin in crude cell extracts and was used to study the localization of thioredoxin cell fractions. E. coli B was calculated to have approximately 10,000 copies of thioredoxin per cell mainly located in the soluble fraction after separation of the membrane and soluble fractions by gentle lysis and centrifugation. E. coli B tsnC mutants which are defective in the replication of phage T7 DNA in vivo and in vitro were examined for their content of thioredoxin. E. coli B tsnC 7004 contained no detectable level of thioredoxin in cell-free extracts examined under a variety of conditions. The results strongly suggest that tsnC 7004 is a nonsense or deletion mutant. Two other E. coli tsnC mutants, 7007 and 7008, contained detectable levels of thioredoxin in crude extracts as measured by thioredoxin reductase and gave similar immunoprecipitation reactions as the parent strain B/1. By radioimmunoassay incompletely cross-reacting material was present in both strains. These results show that tsnC 7007 and 7008 belong to a type of thioredoxin mutants with missence mutations in the thioredoxin gene affecting the function of thioredoxin as subunit in phage T7 DNA polymerase

  5. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  7. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    International Nuclear Information System (INIS)

    Alexopoulos, Eftichia; Kanjee, Usheer; Snider, Jamie; Houry, Walid A.; Pai, Emil F.

    2008-01-01

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta 6 Br 12 2+ ) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222 1 ; the Ta 6 Br 12 2+ cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta 6 Br 12 2+ -derivatized structure to 5 Å resolution. Many of the Ta 6 Br 12 2+ -binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546

  8. Changes in thermal nociceptive responses in dairy cows following experimentally induced Escherichia coli mastitis

    Directory of Open Access Journals (Sweden)

    Klaas Ilka C

    2011-05-01

    Full Text Available Abstract Background Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS in dairy cows with experimentally induced Escherichia coli mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables. Methods Seven Danish Holstein-Friesian cows were kept in tie-stalls, where the E. coli associated mastitis was induced and laser stimulations were conducted. Measurements of rectal temperature, somatic cell counts, white blood cell counts and E. coli counts were conducted. Furthermore, scores were given for anorexia, local udder inflammation and milk appearance to quantify the local and systemic disease response. In order to quantify the nociceptive threshold, behavioral responses toward cutaneous NLS applied to six skin areas at the tarsus/metatarsus and udder hind quarters were registered at evening milking on day 0 (control and days 1, 2, 3, 6 and 10 after experimental induction of mastitis. Results All clinical and paraclinical variables were affected by the induced mastitis. All cows were clinically ill on days 1 and 2. The cows responded behaviorally toward the NLS. For hind leg stimulation, the proportion of cows responding by stepping was higher on day 0 than days 3 and 6, and the frequency of leg movements after laser stimulation tended to decrease on day 1 compared to the other days. After udder stimulation, the proportion of cows responding by stepping was higher on day 1 than on all other days of testing. Significant correlations between the clinical and paraclinical variables of disease and the behavioral responses toward nociceptive stimulation were found. Conclusions Changes in behavioral responses coincide with peaks in local and systemic signs of E

  9. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tobias Dörr

    2010-02-01

    Full Text Available Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival. The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA transcripts. We have found previously that one or more components of the SOS response induce persister formation after exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of persister formation.

  10. PART I. ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Sanaa Mahdi Oraibi

    2016-11-01

    Full Text Available The presence of Escherichia coli in the air of facilities involved in management and composting of post-slaughter poultry wastes in selected plants of West Western Pomerania region was studied. Measurements were made on four dates in a variety of weather conditions during the year. The study was conducted at 5 objects that differ in the type of waste and the degree of preparation for composting. These were: chemical treatment and preliminary processing plant, liquid wastes reservoir, platform for preparation of materials for composting, storage of biological sediments, and composting facility. Measurement of bacteria count was carried out in accordance with the applicable procedures on selective chromogenic TBX medium. The assays revealed the presence of E. coli at all test objects, but not always on all measurement dates. It has been shown that the presence of E. coli was from 20 to 3047 CFU∙m-3 of air, although the largest quantities were most frequently detected in the air of the building for post-slaughter waste pre-treatment in chemical treatment plant.

  11. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  12. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response.

    Science.gov (United States)

    Mori, Tetsuya; Nakamura, Tatsuro; Okazaki, Naoto; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi

    2012-01-01

    The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.

  13. Deletions induced by gamma rays in the genome of Escherichia coli

    International Nuclear Information System (INIS)

    Raha, Manidipa; Hutchinson, Franklin

    1991-01-01

    An Escherichia coli lysogen was constructed with a lambda phage bearing a lacZ gene surrounded by about 100 x 10 3 base-pairs of dispensable DNA. The lacZ mutants induced by gamma rays in this lysogen were more than 10% large deletions, ranging in size from 0.6 x 10 -3 to 70 x 10 3 base-pairs. These deletions were centered, not on lacZ, but on a ColE1 origin of DNA replication located 1.2 x 10 3 bases downstream from lacZ, suggesting that this origin of replication was involved in the process by which deletions were formed. In agreement with this hypothesis, a lysogen of the same phage without the ColE1 origin showed a very much lower percentage of radiation-induced deletions, as did a second lysogen of a lambda phage without any known plasmid origin of replication. Indirect evidence is presented for radiation-induced deletions centered on the lambda origin of DNA replication in a lysogen. (author)

  14. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2003-04-01

    Full Text Available Abstract Background Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. Results Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-β-D-thiogalactopyranoside or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. Conclusion Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

  15. Single d(ApG)/cis-diamminedichloroplatinum(II) adduct-induced mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Burnouf, D.; Fuchs, R.P.P.; Gauthier, C.; Chottard, J.C.

    1990-01-01

    The mutation spectrum induced by the widely used antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) showed that cisDDP[d(ApG)] adducts, although they account for only 25% of the lesions formed are ∼5 times more mutagenic than the major GG adduct. The authors report the construction of vectors bearing a single cisDDP[d(ApG)] lesion and their use in mutagenesis experiments in Escherichia coli. The mutagenic processing of the lesion is found to depend strictly on induction of the SOS system of the bacterial host cells. In SOS-induced cells, mutation frequencies of 1-2% were detected. All these mutations are targeted to the 5' base of the adduct. Single A → T transversions are mainly observed (80%), whereas A → G transitions account for 10% of the total mutations. Tandem base-pair substitutions involving the adenine residue and the thymine residue immediately 5' to the adduct occur at a comparable frequency (10%). No selective loss of the strand bearing the platinum adduct was seen, suggesting that, in vivo, cisDDP[d(ApG)] adducts are not blocking lesions. The high mutation specificity of cisDDP-[d(ApG)]-induced mutagenesis is discussed in relation to structural data

  16. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    Science.gov (United States)

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  17. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Adi Oron-Gottesman

    2016-11-01

    Full Text Available Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM, composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF-like element in ribosomal protein bS1 (bacterial S1, apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA.

  18. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance...

  19. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    Science.gov (United States)

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  20. Delayed ultraviolet light-induced cessation of respiration by inadequate aeration of Escherichia coli

    International Nuclear Information System (INIS)

    Joshi, J.G.; Swenson, P.A.; Schenley, R.L.

    1977-01-01

    Inadequately aerated Escherichia coli B/r cultures did not shut their respiration off 60 min after ultraviolet light (52 J/m 2 at 254 nm) as they did when well supplied with oxygen. Since cessation of respiration is associated with cell death, the result suggested that oxygen toxicity by superoxide radicals generated by cell metabolism might be responsible for cell death. The specific activity of superoxide dismutase, which scavenges O 2 - radicals, increased twofold after 90 min of adequate aeration, but the specific activity of catalase remained constant. Respiration and viability of irradiated cells were affected not at all by the presence of superoxide dismutase and only slightly by the presence of catalase. Metal ions such as Mn 2+ and Fe 2+ , inducers of superoxide dismutase, had no effect on respiration and viability. When irradiated cells were incubated under N 2 for 90 min, the respiration, growth, and viability time-course responses were the same as for cells not exposed to anaerobiosis. We conclude that superoxide anions generated at the time of irradiation play no part in cessation of respiration and cell death and that inadequate aeration or anaerobiosis delays the ultraviolet light-induced synthesis of proteins responsible for the irreversible cessation of respiration

  1. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    International Nuclear Information System (INIS)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was produced in coplanar dielectric barrier discharge electrode geometry, and was driven by an amplitude-modulated ac high voltage in humid synthetic air at atmospheric pressure. The response to plasma-induced stress was evaluated by using conventional cultivation, sublethal injury and resazurin assay and the LIVE/DEAD ® BacLight ™ Bacterial Viability kit. Compared to conventional cultivation, the LIVE/DEAD ® test labels bacteria with damaged membranes, while resazurin assay tracks their metabolic activity. Our results clearly demonstrate that the treated bacteria partly lost their ability to grow properly, i.e. they became injured and culturable, or even viable but nonculturable (VBNC). The ability to develop colonies could have been lost due to damage of the bacterial membrane. Damage of the membranes was mainly caused by the lipid peroxidation, evidencing the key role of oxygen reactive species, in particular ozone. We conclude that the conventional cultivation method overestimates the decontamination efficiency of various plasma sources, and must therefore be complemented by alternative techniques capable of resolving viable but nonculturable bacteria. (paper)

  2. Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12.

    Science.gov (United States)

    Tamburini, Sabrina; Anesi, Andrea; Ferrentino, Giovanna; Spilimbergo, Sara; Guella, Graziano; Jousson, Olivier

    2014-06-01

    Supercritical carbon dioxide (SC-CO2) treatment is one of the most promising alternative techniques for pasteurization of both liquid and solid food products. The inhibitory effect of SC-CO2 on bacterial growth has been investigated in different species, but the precise mechanism of action remains unknown. Membrane permeabilization has been proposed to be the first event in SC-CO2-mediated inactivation. Flow cytometry, high performance liquid chromatography–electrospray ionization–mass spectrometry and NMR analyses were performed to investigate the effect of SC-CO2 treatment on membrane lipid profile and membrane permeability in Escherichia coli K12. After 15 min of SC-CO2 treatment at 120 bar and 35 °C, the majority of bacterial cells dissipated their membrane potential (95 %) and lost membrane integrity, as 81 % become partially permeabilized and 18 % fully permeabilized. Membrane permeabilization was associated with a 20 % decrease in bacterial biovolume and to a strong (>50 %) reduction in phosphatidylglycerol (PG) membrane lipids, without altering the fatty acid composition and the degree of unsaturation of acyl chains. PGs are thought to play an important role in membrane stability, by reducing motion of phosphatidylethanolamine (PE) along the membrane bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. In addition, the decrease in intracellular pH induced by SC-CO2 likely alters the chemical properties of phospholipids and the PE/PG ratio. Biophysical effects of SC-CO2 thus cause a strong perturbation of membrane architecture in E. coli, and such alterations are likely associated with its strong inactivation effect.

  3. Absence of ultraviolet-inducible DNA polymerase I-like activity in Escherichia coli strains harbouring R plasmids

    International Nuclear Information System (INIS)

    Upton, C.; Pinney, R.J.

    1981-01-01

    No DNA polymerase I-like activity was found associated with the ultraviolet (u.v.)-protecting plasmids R205, R46 or pKM101 in either uninduced or u.v.-induced wild-type or DNA polymerase I-deficient strains of Escherichia coli. Nor was any plasmid-associated polymerase activity detectable in similar systems containing u.v.-irradiated DNA as template. However, plasmids R205, R46 and pKM 101 still increased survival and mutagenesis of the polymerase I-deficient E. coli strain after u.v. irradiation. (author)

  4. Photoreactivation reverses ultraviolet radition induced premutagenic lesions leading to frameshift mutations in Escherichia coli

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo

    1985-01-01

    The effect of photoreactivation of the ultraviolet radiation induced reversion of a trpE9777 frameshift mutation was studied in a uvr A6 derivative of Escherichia coli K12. Two different photoreactivation treatments were used, one providing a single flash of photoreactivating light and another providing 10 min of light from fluorescent lamps. The reversion frequency of the trpE9777 frameshift mutation was strongly reduced when subsueqently exposed to visible light. The dose modification factor (the ratio of equally effective doses), for cells challenged with single-flash photoreactivation, for survival and induction of reversion to Trp + was 3.6 and 3.4, respectively. UV induction of RecA protein synthesis was not reversed by a single flash of photoreactivation. The dose modification factor for 10 min of fluorescent lamp photoreactivation for survival and for induction of reversion to Trp + was 6.5 and 6.3, respectively. The dose modification factor for 10 min of photoreactivation for induction of RecA protein was 1.7-2.5. Photoreactivation decreased the reversion of trpE9777 and increased survival to the same extent. We concluded that cyclobutyl pyrimidine dimers are the premutagenic lesions of UV mutagenesis of the trpE9777 allele in a uvr A6 background. (orig.)

  5. Expression of ultraviolet-induced restriction alleviation in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Thoms, B.; Wackernagel, W.

    1983-01-01

    Ultraviolet-induced restriction alleviation is an SOS function which partially relieves the K-12-specific DNA restriction in Escherichia coli. Restriction alleviation is determined by observing elevated survival of unmodified phage lambda in cells irradiated with ultraviolet prior to infection. The authors demonstrate that restriction of lambda is also relieved when log-phase cells are irradiated as late as 50 min after adsorption of lambda. At this time more than 60% of the lambda DNA is already released as acid-soluble material from the cells. Experiments involving reextraction of lambda DNA from infected cells and a mild detergent treatment removing adsorbed phages from the cellular surface showed that only a small specific fraction of all lambda infections is destined to escape restriction due to restriction alleviation. This fraction (10-20%) has a retarded mode of DNA injection (60 min or longer) after adsorption which allows the expression of the restriction alleviation function before the phage DNA is exposed to restriction endonucleases. This behaviour of a fraction of lambda phages explains why the SOS function restriction alleviation could initially be discovered. The authors show that the retarded mode of DNA injection is not required for another SOS function acting on lambda DNA, the increased repair of ultraviolet-irradiated DNA (Weigle reactivation). (Auth.)

  6. The in vitro synthesis of β-galactosidase induced in a subcellular structure of Escherichia coli (1961)

    International Nuclear Information System (INIS)

    Nisman, B.; Kayser, A.; Demailly, J.; Genin, C.

    1961-01-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P 1 ). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of β-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [fr

  7. Modified Vero cell induced by Bifidobacterium bifidum inhibits enterohemorrhagic Escherichia coli O157:H7 cytopathic effect

    Directory of Open Access Journals (Sweden)

    Tahamtan, Y.

    2014-11-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC, such as E. coli O157:H7, are emerging food-borne pathogens worldwide. This micro-organism can damage the epithelial tissue of the large intestine. The cytotoxic effects can be neutralized by probiotics such as Bifidobacterium bifidum. Probiotics are viable cells that have beneficial effects on the health of the host. The preventing activity of B. bifidum against E. coli O157 was studied using a Vero cell model. Vero cell was pretreated with viable B. bifidum and incubated for either 3 h to 24 h and then collected from the cell to make modified Vero cell (MVC. Indirect antibacterial effects of B. bifidum were demonstrated by reduction of attachment of E. coli O157:H7 to MVC. The maximum reduction was resulted in pretreatment of Vero cell with B. bifidum for 24 h before infection. B. bifidum attenuated E. coli O157:H7 attachment to MVC up to 10 days of incubation. To our knowledge, MCV prevented Vero cell line injury induced by E. coli O157:H7. Therefore, B. bifidum can be used for inhibition of E. coli O157:H7 cytopathic effect (CPE in Vero cell model, even as pretreatment of the cell line.

  8. escherichia coli serotypes confirmed in experimental mammary ...

    African Journals Online (AJOL)

    DJFLEX

    VARIATIONS IN VIRULENCE OF THREE (3) ESCHERICHIA COLI. SEROTYPES CONFIRMED IN ... ows are susceptible to E. coli infection because. E. coli exist in the .... Coli infections in mice: A laboratory animal model for research in.

  9. Genetic toxicology of metal compounds. II. Enhancement of ultraviolet light-induced mutagenesis in Escherichia coli WP2

    International Nuclear Information System (INIS)

    Rossman, T.G.; Molina, M.

    1986-01-01

    Salts of metals which are carcinogenic, noncarcinogenic, or of unknown carcinogenicity were assayed for their abilities to modulate ultraviolet (UV)-induced mutagenesis in Escherichia coli WP2. In addition to the previously reported comutagenic effect of arsenite, salts of three other compounds were found to enhance UV mutagenesis. CuCl 2 , MnCl 2 (and a small effect by KMnO 4 ), and NaMoO 4 acted as comutagens in E coli WP2, which has wild-type DNA repair capability, but were much less comutagenic in the repair deficient strain WP2/sub s/ (uvrA). The survival of irradiated or unirradiated cells was not affected by these compounds. No effects on UV mutagenesis were seen for 16 other metal compounds. We suggest that the comutagenic effects might occur either via metal-induced decreases in the fidelity of repair replication or via metal-induced depurination

  10. Mutagenic DNA repair in Escherichia coli

    International Nuclear Information System (INIS)

    Bridges, B.A.; Sharif, Firdaus

    1986-01-01

    The authors report a study of the misincorporation step in excision proficient umuC Escherichia coli as revealed by delayed photoreversal and show that it parallels the loss of photoreversibility of mutations induced in isogenic umu + bacteria; in both cases the end-point was mutation to streptomycin resistance. (author)

  11. Pharmacokinetics of amoxicillin administered in drinking water to recently weaned 3- to 4-week-old pigs with diarrhea experimentally induced by Escherichia coli O149 : F4

    DEFF Research Database (Denmark)

    Jensen, G.M.; Lykkesfeldt, J.; Frydendahl, K.

    2006-01-01

    Objective-To measure effects of Escherichia coli 0149:F4-induced diarrhea on water consumption and pharmacokinetics of amoxicillin after administration in drinking water. Animals-24 recently weaned 24- to 28-day-old crossbred pigs. Procedure-10 pigs were inoculated with E coli O149:F4; all 10 pigs...... of amoxicillin may be appropriate for administration in drinking water during a 4-hour period on the first day that pigs have diarrhea attributable to E coli 0149:F4....

  12. Asymptomatic bacteriuria Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast...... to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete...

  13. X-ray-induced mutations in Escherichia coli K-12 strains with altered DNA polymerase I activities

    International Nuclear Information System (INIS)

    Nagata, Yuki; Kawata, Masakado; Komura, Jun-ichiro; Ono, Tetsuya; Yamamoto, Kazuo

    2003-01-01

    Spectra of ionizing radiation mutagenesis were determined by sequencing X-ray-induced endogenous tonB gene mutations in Escherichia coli polA strains. We used two polA alleles, the polA1 mutation, defective for Klenow domain, and the polA107 mutation, defective for flap domain. We demonstrated that irradiation of 75 and 50 Gy X-rays could induce 3.8- and 2.6-fold more of tonB mutation in polA1 and polA107 strains, respectively, than spontaneous level. The radiation induced spectrum of 51 tonB mutations in polA1 and 51 in polA107 indicated that minus frameshift, A:T→T:A transversion and G:C→T:A transversion were the types of mutations increased. Previously, we have reported essentially the same X-ray-induced tonB mutation spectra in the wild-type strain. These results indicate that (1) X-rays can induce minus frameshift, A:T→T:A transversion and G:C→T:A transversion in E. coli and (2) presence or absence of polymerase I (PolI) of E. coli does not have any effects on the process of X-ray mutagenesis

  14. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    Directory of Open Access Journals (Sweden)

    Donna Vanhauteghem

    Full Text Available Our previous work described a clear loss of Escherichia coli (E. coli membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine and N,N-dimethylglycine (DMG, but not N,N,N-trimethylglycine (betaine, under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.

  15. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    Science.gov (United States)

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  16. 76 FR 20542 - Escherichia coli

    Science.gov (United States)

    2011-04-13

    ... beef, Escherichia coli and coliphages were found in chicken, fresh pork, fresh oyster, fresh mushrooms, lettuce, chicken pot pie, biscuit dough, deli loaf, deli roasted turkey, and package roasted chicken... surfaces, and in foods such as ground beef, pork sausage, chicken, oysters, cheese, fresh mushrooms, and...

  17. ESCHERICHIA COLI AND STAPHYLOCOCCUS AUREUS

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The bio-effects of the ethanol extracts from the leaf and stem of Momordica charantia were studied with the view to ascertain the medical usefulness ascribed to the plant by the locals. The plant parts, stem and leaf, revealed remarkable activity against Escherichia coli and Staphlococcus aureus. The leaves ...

  18. Conjugal Pairing in Escherichia Coli

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...

  19. Escherichia coli as a probiotic?

    NARCIS (Netherlands)

    Jansen, GJ; Wildeboer-Veloo, ACM; van der Waaij, D; Degener, JE

    1998-01-01

    The influence of oral treatment with a suspension of non-pathogenic Escherichia coli cells (commercially available as: Symbioflor II(R)) on the morphological composition of the gut microflora and on the systemic humoral immune response (the IgG-, IgA- and IgM-isotype) against the bacterial cells in

  20. Mapping Stress-Induced Changes in Autoinducer AI-2 Production in Chemostat-Cultivated Escherichia coli K-12

    Science.gov (United States)

    DeLisa, Matthew P.; Valdes, James J.; Bentley, William E.

    2001-01-01

    Numerous gram-negative bacteria employ a cell-to-cell signaling mechanism, termed quorum sensing, for controlling gene expression in response to population density. Recently, this phenomenon has been discovered in Escherichia coli, and while pathogenic E. coli utilize quorum sensing to regulate pathogenesis (i.e., expression of virulence genes), the role of quorum sensing in nonpathogenic E. coli is less clear, and in particular, there is no information regarding the role of quorum sensing during the overexpression of recombinant proteins. The production of autoinducer AI-2, a signaling molecule employed by E. coli for intercellular communication, was studied in E. coli W3110 chemostat cultures using a Vibrio harveyi AI-2 reporter assay (M. G. Surrette and B. L. Bassler, Proc. Natl. Acad. Sci. USA 95:7046–7050, 1998). Chemostat cultures enabled a study of AI-2 regulation through steady-state and transient responses to a variety of environmental stimuli. Results demonstrated that AI-2 levels increased with the steady-state culture growth rate. In addition, AI-2 increased following pulsed addition of glucose, Fe(III), NaCl, and dithiothreitol and decreased following aerobiosis, amino acid starvation, and isopropyl-β-d-thiogalactopyranoside-induced expression of human interleukin-2 (hIL-2). In general, the AI-2 responses to several perturbations were indicative of a shift in metabolic activity or state of the cells induced by the individual stress. Because of our interest in the expression of heterologous proteins in E. coli, the transcription of four quorum-regulated genes and 20 stress genes was mapped during the transient response to induced expression of hIL-2. Significant regulatory overlap was revealed among several stress and starvation genes and known quorum-sensing genes. PMID:11292813

  1. Role of UV-inducible proteins in repair of various wild-type Escherichia coli cells

    International Nuclear Information System (INIS)

    Sedliakova, M.; Slezarikova, V.; Brozmanova, J.; Masek, F.; Bayerova, V.

    1980-01-01

    3 wild-type strains of E. coli, namely K12 AB2497, B/r WP2 and 15 555-7, proficient in excision and post-replication repair, differ markedly in their UV resistance. To elucidate this difference, the influence was investigated of induction by application of inducing fluence (IF) before lethal fluence (LF) on repair processes after LF. In cells distinguished by low UV resistance (E. coli 15 555-7; E. coli B/r WP2), dimer excision was less complete in cultures irradiated with IF + LF than in cultures irradiated with LF only. The highly resistant E. coli K12 AB2497 performed complete excision both after IF + LF or after LF alone. All 3 types of cell survived better after IF + LF than after LF only. Because, in most strains so far investigated, the application of IF reduced dimer excision and increased survival, dimer excision per se does not appear important for survival. We conclude that the rate and completeness of dimer excision can serve as a measure of efficiency of the excision system whose action is necessary for repair of another lesion. Cells of all investigated strains could not resume DNA replication and died progressively when irradiated with LF and post-incubated with chloramphenicol (LF CAP + ). Thus, it appears that inducible proteins are necessary for repair in all wild-type E. coli cells given with potentially lethal doses of UV irradiation. (orig.)

  2. Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli

    DEFF Research Database (Denmark)

    Boysen, Anders; Møller-Jensen, Jakob; Kallipolitis, Birgitte H.

    2010-01-01

    Small non-coding RNAs (sRNA) have emerged as important elements of gene regulatory circuits. In enterobacteria such as Escherichia coli and Salmonella many of these sRNAs interact with the Hfq protein, an RNA chaperone similar to mammalian Sm-like proteins and act in the post...... that adaptation to anaerobic growth involves the action of a small regulatory RNA....... of at least one sRNA regulator. Here, we extend this view by the identification and characterization of a highly conserved, anaerobically induced small sRNA in E. coli, whose expression is strictly dependent on the anaerobic transcriptional fumarate and nitrate reductase regulator (FNR). The sRNA, named Fnr...

  3. Effect of carprofen treatment following experimentally induced Escherichia coli mastitis in primiparous cows.

    Science.gov (United States)

    Vangroenweghe, F; Duchateau, L; Boutet, P; Lekeux, P; Rainard, P; Paape, M J; Burvenich, C

    2005-07-01

    Acute Escherichia coli mastitis is one of the major sources of economic loss in the dairy industry due to reduced milk production, treatment costs, discarded milk, and occasional fatal disease. Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used as adjunctive therapy to antibiotics. The objective of the current study was to evaluate the effect of carprofen treatment following infusion of Escherichia coli into the mammary glands of primiparous cows during the periparturient period. Severity of mastitis was scored based on the average milk production in the uninfected quarters on d +2 postinoculation and a clinical severity score. Carprofen was administered intravenously at 9 h postchallenge, when clinical signs of mastitis appeared. In previous work, efficacy of NSAIDs was mainly evaluated using clinical symptoms. In the present study, the effect of carprofen on innate immune response was also assessed by quantification of inflammatory mediators. All primiparous cows reacted as moderate responders throughout the experimental period. Primiparous cows were intramammarily inoculated with 1 x 10(4) cfu of E. coli P4:O32 in 2 left quarters. Analysis of blood and milk parameters, including IL-8, complement component C5a, lipopolysaccharide-binding protein (LBP), soluble CD14, prostaglandin E2, and thromboxane B2 was performed from d 0 to d +6 relative to intramammary inoculation. Rectal temperature in carprofen-treated animals was lower than in control animals at 3 and 6 h posttreatment. Treatment also restored the decreased reticulorumen motility that occurs during E. coli mastitis to preinfection levels faster than in control animals. Carprofen treatment resulted in an earlier normalization of the clinical severity score. Eicosanoid (prostaglandin E2 and thromboxane B2) production in milk tended to be inhibited by carprofen. No significant differences in the kinetic patterns of somatic cell count, IL-8, complement component C5a, LBP, and soluble CD14 were

  4. Endogenous CO2 may inhibit bacterial growth and induce virulence gene expression in enteropathogenic Escherichia coli.

    Science.gov (United States)

    Martínez, Haydee; Buhse, Thomas; Rivera, Marco; Parmananda, P; Ayala, Guadalupe; Sánchez, Joaquín

    2012-07-01

    Analysis of the growth kinetics of enteropathogenic Escherichia coli (EPEC) revealed that growth was directly proportional to the ratio between the exposed surface area and the liquid culture volume (SA/V). It was hypothesized that this bacterial behavior was caused by the accumulation of an endogenous volatile growth inhibitor metabolite whose escape from the medium directly depended on the SA/V. The results of this work support the theory that an inhibitor is produced and indicate that it is CO(2). We also report that concomitant to the accumulation of CO(2), there is secretion of the virulence-related EspB and EspC proteins from EPEC. We therefore postulate that endogenous CO(2) may have an effect on both bacterial growth and virulence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Science.gov (United States)

    Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K

    2017-01-01

    Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  6. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Bryan E Bunnell

    Full Text Available Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  7. Recovery from damage induced by acridine plus near-ultraviolet light in Escherichia coli

    International Nuclear Information System (INIS)

    Wagner, S.; Feldman, A.; Snipes, W.

    1982-01-01

    Escherichia coli cells treated with sublethal doses of acridine plus near-UV light exhibit an effective split-dose recovery response that requires an incubation period of about 30-45 min. Studies of the metabolic requirements for split-dose recovery revealed the following: (a) DNA synthesis is not required for split-dose recovery: (b) inhibition of electron transport or protein synthesis reduces the efficiency of split-dose recovery by about one-half: (c) inhibition of phospholipid synthesis or cell wall synthesis completely eliminates the split-dose recovery response. These results suggest an involvement of membrane repair mechanisms in response to damage by acridine plus near-UV light. Additional evidence for such a process was provided by more direct assays for membrane recovery. It was found that cells treated with sublethal doses of acridine plus near-UV light are sensitive to low concentrations of detergents, and lose that sensitivity upon incubation. Likewise, treated cells are susceptible to lethal osmotic shock, but can recover from this susceptibility if incubated after treatment but prior to exposure to low osmotic conditions. Based on accumulating evidence it is proposed that E. coli cells are capable of repairing membrane damage resulting from exposure to acridine plus near-UV light. (author)

  8. Escherichia coli morphological changes and lipid A removal induced by reduced pressure nitrogen afterglow exposure.

    Directory of Open Access Journals (Sweden)

    Hayat Zerrouki

    Full Text Available Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm, pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes. The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria.

  9. Bipyridine (2,2′-dipyridyl) potentiates Escherichia coli lethality induced by nitrogen mustard mechlorethamine

    International Nuclear Information System (INIS)

    De Alencar, T.A.M.; Wilmart-Gonçalves, T.C.; Vidal, L.S.; Fortunato, R.S.; Leitão, A.C.; Lage, C.

    2014-01-01

    Highlights: • Reduction of Fe 2+ ensues a respiratory burst to reduce the oxidized iron pool. • Through Harber–Weiss recycling, superoxide electrons can reduce oxidized iron. • Redox imbalance sensitized repair proficient Escherichia coli to mustard lethal crosslinks. • A stronger synergism impacted survival of a superoxide dismutase-deficient strain. • Anti-cancer cocktails added of an iron chelator may impact hypoxia and genotoxicity. - Abstract: Alkylating agents are used in anti-tumor chemotherapy because they bind covalently to DNA and generate adducts that may lead to cell death. Bifunctional (HN2) and monofunctional (HN1) nitrogen are two such agents, and HN2 was the first drug successfully employed in anti-leukemia chemotherapy. Currently, HN2 is used either alone or combined with other drugs to treat Hodgkin's disease. It is well known that several crosslinking agents require metabolic activation via reactive oxygen species (ROS) to exert their lethal effects. The objective of this work was therefore to determine whether the abovementioned mustards would also require metabolic activation to exert lethal action against Escherichia coli. For this purpose, we measured survival following exposure to HN2 in E. coli strains that were deficient in nucleotide excision repair (uvrA NER mutant), base excision repair (xthA nfo nth fpg BER mutant) or superoxide dismutase (sodAB mutant) activity. We also performed the same experiments in cells pretreated with an iron chelator (2,2′-dipyridyl, DIP). The NER and BER mutants were only sensitive to HN2 treatment (survival rates similar to those of the wild-type were achieved with 5-fold lower HN2 doses). However, wild-type and sodAB strains were not sensitive to treatment with HN2. In all tested strains, survival dropped by 2.5-fold following pretreatment with DIP compared to treatment with HN2 alone. Furthermore, DIP treatment increased ROS generation in both wild type and sodAB-deficient strains. Based

  10. Bipyridine (2,2′-dipyridyl) potentiates Escherichia coli lethality induced by nitrogen mustard mechlorethamine

    Energy Technology Data Exchange (ETDEWEB)

    De Alencar, T.A.M.; Wilmart-Gonçalves, T.C.; Vidal, L.S.; Fortunato, R.S.; Leitão, A.C. [Laboratório de Radiobiologia Molecular (Brazil); Lage, C., E-mail: claudia_lage_dna@yahoo.com.br [Laboratório de Radiações em Biologia (Brazil)

    2014-07-15

    Highlights: • Reduction of Fe{sup 2+} ensues a respiratory burst to reduce the oxidized iron pool. • Through Harber–Weiss recycling, superoxide electrons can reduce oxidized iron. • Redox imbalance sensitized repair proficient Escherichia coli to mustard lethal crosslinks. • A stronger synergism impacted survival of a superoxide dismutase-deficient strain. • Anti-cancer cocktails added of an iron chelator may impact hypoxia and genotoxicity. - Abstract: Alkylating agents are used in anti-tumor chemotherapy because they bind covalently to DNA and generate adducts that may lead to cell death. Bifunctional (HN2) and monofunctional (HN1) nitrogen are two such agents, and HN2 was the first drug successfully employed in anti-leukemia chemotherapy. Currently, HN2 is used either alone or combined with other drugs to treat Hodgkin's disease. It is well known that several crosslinking agents require metabolic activation via reactive oxygen species (ROS) to exert their lethal effects. The objective of this work was therefore to determine whether the abovementioned mustards would also require metabolic activation to exert lethal action against Escherichia coli. For this purpose, we measured survival following exposure to HN2 in E. coli strains that were deficient in nucleotide excision repair (uvrA NER mutant), base excision repair (xthA nfo nth fpg BER mutant) or superoxide dismutase (sodAB mutant) activity. We also performed the same experiments in cells pretreated with an iron chelator (2,2′-dipyridyl, DIP). The NER and BER mutants were only sensitive to HN2 treatment (survival rates similar to those of the wild-type were achieved with 5-fold lower HN2 doses). However, wild-type and sodAB strains were not sensitive to treatment with HN2. In all tested strains, survival dropped by 2.5-fold following pretreatment with DIP compared to treatment with HN2 alone. Furthermore, DIP treatment increased ROS generation in both wild type and sodAB-deficient strains

  11. Inhibition of Inducible Nitric Oxide Controls Pathogen Load and Brain Damage by Enhancing Phagocytosis of Escherichia coli K1 in Neonatal Meningitis

    OpenAIRE

    Mittal, Rahul; Gonzalez-Gomez, Ignacio; Goth, Kerstin A.; Prasadarao, Nemani V.

    2010-01-01

    Escherichia coli K1 is a leading cause of neonatal meningitis in humans. In this study, we sought to determine the pathophysiologic relevance of inducible nitric oxide (iNOS) in experimental E. coli K1 meningitis. By using a newborn mouse model of meningitis, we demonstrate that E. coli infection triggered the expression of iNOS in the brains of mice. Additionally, iNOS−/− mice were resistant to E. coli K1 infection, displaying normal brain histology, no bacteremia, no disruption of the blood...

  12. The new pLAI (lux regulon based auto-inducible expression system for recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nocadello Salvatore

    2012-01-01

    Full Text Available Abstract Background After many years of intensive research, it is generally assumed that no universal expression system can exist for high-level production of a given recombinant protein. Among the different expression systems, the inducible systems are the most popular for their tight regulation. However, induction is in many cases less favorable due to the high cost and/or toxicity of inducers, incompatibilities with industrial scale-up or detrimental growth conditions. Expression systems using autoinduction (or self-induction prove to be extremely versatile allowing growth and induction of recombinant proteins without the need to monitor cell density or add inducer. Unfortunately, almost all the actual auto inducible expression systems need endogenous or induced metabolic changes during the growth to trigger induction, both frequently linked to detrimental condition to cell growth. In this context, we use a simple modular approach for a cell density-based genetic regulation in order to assemble an autoinducible recombinant protein expression system in E. coli. Result The newly designed pLAI expression system places the expression of recombinant proteins in Escherichia coli under control of the regulatory genes of the lux regulon of Vibrio fischeri's Quorum Sensing (QS system. The pLAI system allows a tight regulation of the recombinant gene allowing a negligible basal expression and expression only at high cell density. Sequence optimization of regulative genes of QS of V. fischeri for expression in E. coli upgraded the system to high level expression. Moreover, partition of regulative genes between the plasmid and the host genome and introduction of a molecular safety lock permitted tighter control of gene expression. Conclusion Coupling gene expression to cell density using cell-to-cell communication provides a promising approach for recombinant protein production. The system allows the control of expression of the target recombinant gene

  13. Infectious endocarditis caused by Escherichia coli

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Arpi, Magnus; Fritz-Hansen, Thomas

    2011-01-01

    Although Escherichia coli is among the most common causes of Gram-negative bacteraemia, infectious endocarditis (IE) due to this pathogen is rare. A 67-y-old male without a previous medical history presented with a new mitral regurgitation murmur and persisting E. coli bacteraemia in spite of broad......-spectrum intravenous antibiotics. Transthoracic and transoesophageal echocardiography revealed a severe mitral endocarditis. E. coli DNA was identified from the mitral valve and the vegetation, and no other pathogen was found. The case was further complicated by spondylodiscitis and bilateral endophthalmitis. Extra......-intestinal pathogenic E. coli (ExPEC) are able to colonize tissue outside the gastrointestinal tract and contain a variety of virulence factors that may enable the pathogens to invade and induce infections in the cardiac endothelia. In these cases echocardiography as the imaging technology is of paramount importance...

  14. Carvacrol Induces Heat Shock Protein 60 and Inhibits Synthesis of Flagellin in Escherichia coli O157:H7▿

    Science.gov (United States)

    Burt, Sara A.; van der Zee, Ruurd; Koets, Ad P.; de Graaff, Anko M.; van Knapen, Frans; Gaastra, Wim; Haagsman, Henk P.; Veldhuizen, Edwin J. A.

    2007-01-01

    The essential oils of oregano and thyme are active against a number of food-borne pathogens, such as Escherichia coli O157:H7. Carvacrol is one of the major antibacterial components of these oils, and p-cymene is thought to be its precursor in the plant. The effects of carvacrol and p-cymene on protein synthesis in E. coli O157:H7 ATCC 43895 cells were investigated. Bacteria were grown overnight in Mueller-Hinton broth with a sublethal concentration of carvacrol or p-cymene, and their protein compositions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by Western blotting. The presence of 1 mM carvacrol during overnight incubation caused E. coli O157:H7 to produce significant amounts of heat shock protein 60 (HSP60) (GroEL) (P < 0.05) and inhibited the synthesis of flagellin highly significantly (P < 0.001), causing cells to be aflagellate and therefore nonmotile. The amounts of HSP70 (DnaK) were not significantly affected. p-Cymene at 1 mM or 10 mM did not induce HSP60 or HSP70 in significant amounts and did not have a significant effect on flagellar synthesis. Neither carvacrol (0.3, 0.5, 0.8, or 1 mM) nor p-cymene (0.3, 0.5, or 0.8 mM) treatment of cells in the mid-exponential growth phase induced significant amounts of HSP60 or HSP70 within 3 h, although numerical increases of HSP60 were observed. Motility decreased with increasing concentrations of both compounds, but existing flagella were not shed. This study is the first to demonstrate that essential oil components induce HSP60 in bacteria and that overnight incubation with carvacrol prevents the development of flagella in E. coli O157:H7. PMID:17526792

  15. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  16. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  17. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.; Jagger, J.

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315 to 405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis (''relaxed'' or rel - strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-uv fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similar to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-uv irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-uv-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay

  18. Phleomycin-induced lethality and DNA degradation in Escherichia coli K12

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H

    1975-01-01

    The cell lethality and DNA fragmentation caused by phleomycin (PM) were studied in E. coli K12 strains with special reference to the effects of repair or recombination deficiencies and metabolic inhibitors. Unlike excision-defective derivatives of E. coli B, uvrA, uvrB, and uvrC mutants of strain K12 showed no peculiarities compared with wild type in regard to cell survival. Likewise, mutant alleles at uvrD and polA loci had no effect. In contrast, rec mutants were more sensitive to PM-killing than were rec/sup +/ strains. PM-induced strand breakage in DNA was observed in all strains tested including the above-mentioned mutants. There was no significant distinction between the uvr mutants and the wild type strain, indicating that the uvr-endonuclease was not responsible for the strand breaks. Involvement of endonuclease I was also ruled out. At least some of the PM-induced strand breaks were repairable. PM-induced lethality and strand breakage were totally dependent on energy supply. Inhibition of protein synthesis resulted in a partial and parallel suppression of the two effects. Our results suggest that the lethality is due to DNA strand breakage and the repair of such damage is postulated to be controlled by rec genes.

  19. Repair of damage induced by ultraviolet radiation in mutator T-1 Escherichia coli transductants

    International Nuclear Information System (INIS)

    Sideropoulos, A.S.; Greenberg, J.; Warren, G.

    1975-01-01

    To ascertain whether a relationship commonly exists between azide resistance, ultraviolet (uv) resistance, and the mutator property (mut T-1), we performed uv survival and mutation frequency determinations with and without caffeine (2.571 mM) in nonmutator azide resistant (azi/sup r/) and phage mediated mut T-1 transductants of Escherichia coli K-12, B/r, B/r T-, Bs-1, and Bs-8. The strains constructed were assumed to be ''co-isogenic'' except for the mutator factor. The frequency of mutation to streptomycin resistance (str/sup r/) was relatively constant and approximated 2 x 10- 7 . Transductants carrying the azide marker with or without the mut T-1 gene had the same level of uv survival as the parent with the same mutator phenotype. Dark repair of the prelethal uv lesion is equally caffeine sensitive in the nonmutator and mutator HCR+ strains. Our results indicated that the mut T-1 strains possess an efficient dark repair system for uv damage and that the mechanism of mut T-1 action is independent of uv dark repair processes. (auth)

  20. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis

    International Nuclear Information System (INIS)

    Radman, M.

    1974-01-01

    A hypothesis is proposed according to which E. coli possesses an inducible DNA repair system. This hypothetical repair, which we call SOS repair, is manifested only following damage to DNA, and requires de novo protein synthesis. SOS repair in E. coli requires some known genetic elements: recA + , lex + and probably zab + . Mutagenesis by ultraviolet light is observed only under conditions of functional SOS repair: we therefore suspect that this is a mutation-prone repair. A number of phenomena and experiments is reviewed which at this point can best be interpreted in terms of an inducible mutagenic DNA repair system. Two recently discovered phenomena support the proposed hypothesis: existence of a mutant (tif) which, after a shift to elevated temperature, mimicks the effect of uv irradiation in regard to repair of phage lambda and uv mutagenesis, apparent activation of SOS repair by introduction into the recipient cell of damaged plasmid or Hfr DNA. Several specific predictions based on SOS repair hypothesis are presented in order to stimulate further experimental tests. (U.S.)

  1. Decreased survival of the λ15 bacteriophage induced by UV-365 nanometers in Escherichia coli

    International Nuclear Information System (INIS)

    Luca, M.E.M. de.

    1989-01-01

    The results of our investigation showed a new effect (not yet described in the current literature) of the UV-365 nm, verified when the bacteria E. coli was irradiated with this wavelenght and then infected with bacteriophage irradiated with short UV (254 nm). In these conditions we observed a decrease in the phage survival. This phenomenon was called Decreased Survival of the Bacteriophage (DSB). We were able to show that DSB was only induced in bacteria irradiated with UV-365 nm, proficient in recombination repair and owning 4-thiouridine in their tRNA. For the induction of DSB it is necessary to promote damage in the bacteriophage through UVA and UVB. It seems that DSB and SOS are antagonistic since DSB is able to suppress the mutation induced by SOS. (author)

  2. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  3. Porphyromonas endodontalis lipopolysaccharides induce RANKL by mouse osteoblast in a way different from that of Escherichia coli lipopolysaccharide.

    Science.gov (United States)

    Tang, Yin; Sun, Feifei; Li, Xiaoting; Zhou, Yuan; Yin, Shihai; Zhou, Xuedong

    2011-12-01

    Porphyromonas endodontalis lipopolysaccharide (LPS) has been shown to have a high positive rate in infected root canals and symptomatic apical periodontitis. It may play an integral role as a potent stimulator of inflammatory cytokines involved in apical lesions. The receptor activator of nuclear factor-κB ligand (RANKL) has been proven to be the key regulator of bone remodeling. This study investigated P. endodontalis LPS-induced RANKL production and LPS signaling in mouse osteoblasts. LPS-induced RANKL production in mouse osteoblast MC3T3-E1 cells was measured by Western blot and real-time polymerase chain reaction, and the Toll-like receptors (TLRs) were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. Both of the anti-TLR2 and anti-TLR4 antibodies significantly (P endodontalis LPS; only anti-TLR2 antibody had a significant (P endodontalis LPS-infected osteoblasts (P endodontalis LPS has the ability to promote the expression of RANKL in mouse osteoblasts, and this induction was mainly through the TLR2/4-JNK signaling pathway, a situation quite different from that of typical bacterial endotoxin (E. coli LPS). Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. The in vitro synthesis of {beta}-galactosidase induced in a subcellular structure of Escherichia coli (1961); Synthese in vitro de {beta}-galactosidase induite dans une structure subcellulaire d'Escherichia coli (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Nisman, B; Kayser, A; Demailly, J; Genin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P{sub 1}). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of {beta}-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [French] L'isopropylthiogalactoside (IPTG), inducteur de la 3-galactosidase, permet la synthese in vitro de cette enzyme dans la structure subcellulaire (P{sub 1}) isolee a partir des bacteries d'Escherichia coli K 12, inductibles mais non induites. L'incorporation d'acides amines radioactifs, stimulee par la presence d'inducteur, a ete etudiee au cours de la synthese de l'enzyme. Le saccharose supprime l'induction de la 3-galactosidase. La presence du represseur specifique dans la structure etudiee est consideree. (auteurs)

  5. Enteroaggregative Escherichia coli in Daycare

    DEFF Research Database (Denmark)

    Hebbelstrup Jensen, Betina; Stensvold, Christen R.; Struve, Carsten

    2016-01-01

    Enteroaggregative Escherichia coli (EAEC) has been associated with persistent diarrhea, reduced growth acceleration, and failure to thrive in children living in developing countries and with childhood diarrhea in general in industrialized countries. The clinical implications of an EAEC carrier...... and answered a questionnaire regarding gastrointestinal symptoms and exposures. Exposures included foreign travel, consumption of antibiotics, and contact with a diseased animal. In the capital area of Denmark, a total of 179 children aged 0-6 years were followed in a cohort study, in the period between 2009...

  6. Involvement of UV-inducible repair in pyrimidine dimer excision in Escherichia coli

    International Nuclear Information System (INIS)

    Masek, F.; Sedliakova, M.

    1978-01-01

    The influence of UV radiation on pyrimidine dimer excision in the cells of three excision-proficient E.coli strains was studied. For this purpose cells were irradiated with a first fluence of 300 ergs/mm 2 and at different time intervals with a second fluence of 500 ergs/mm 2 . After the second fluence dimer excision was found to be partly inhibited in E.coli B/r Hcr + and E.coli 15 555-7, but not in E.coli K12 SR20. (author)

  7. Involvement of UV-inducible repair in pyrimidine dimer excision in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Masek, F; Sedliakova, M [Slovenska Akademia Vied, Bratislava (Czechoslovakia)

    1978-11-15

    The influence of UV radiation on pyrimidine dimer excision in the cells of three excision-proficient E.coli strains was studied. For this purpose cells were irradiated with a first fluence of 300 ergs/mm/sup 2/ and at different time intervals with a second fluence of 500 ergs/mm/sup 2/. After the second fluence dimer excision was found to be partly inhibited in E.coli B/r Hcr/sup +/ and E.coli 15 555-7, but not in E.coli K12 SR20.

  8. Receptor for Advanced Glycation End Products Facilitates Host Defense during Escherichia coli-Induced Abdominal Sepsis in Mice

    NARCIS (Netherlands)

    van Zoelen, Marieke A. D.; Schmidt, Ann-Marie; Florquin, Sandrine; Meijers, Joost C.; de Beer, Regina; de Vos, Alex F.; Nawroth, Peter P.; Bierhaus, Angelika; van der Poll, Tom

    2009-01-01

    Background. The receptor for advanced glycation end products (RAGE) mediates a variety of inflammatory responses. Methods. To determine the role of RAGE in the innate immune response to abdominal sepsis caused by Escherichia coli, RAGE-deficient (RAGE(-/-)) and normal wild-type mice were

  9. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.

    Science.gov (United States)

    Song, Hun-Suk; Jeon, Jong-Min; Choi, Yong Keun; Kim, Jun-Young; Kim, Wooseong; Yoon, Jeong-Jun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2017-12-28

    Lignocellulose is now a promising raw material for biofuel production. However, the lignin complex and crystalline cellulose require pretreatment steps for breakdown of the crystalline structure of cellulose for the generation of fermentable sugars. Moreover, several fermentation inhibitors are generated with sugar compounds, majorly furfural. The mitigation of these inhibitors is required for the further fermentation steps to proceed. Amino acids were investigated on furfural-induced growth inhibition in E. coli producing isobutanol. Glycine and serine were the most effective compounds against furfural. In minimal media, glycine conferred tolerance against furfural. From the IC₅₀ value for inhibitors in the production media, only glycine could alleviate growth arrest for furfural, where 6 mM glycine addition led to a slight increase in growth rate and isobutanol production from 2.6 to 2.8 g/l under furfural stress. Overexpression of glycine pathway genes did not lead to alleviation. However, addition of glycine to engineered strains blocked the growth arrest and increased the isobutanol production about 2.3-fold.

  10. DinB Upregulation Is the Sole Role of the SOS Response in Stress-Induced Mutagenesis in Escherichia coli

    Science.gov (United States)

    Galhardo, Rodrigo S.; Do, Robert; Yamada, Masami; Friedberg, Errol C.; Hastings, P. J.; Nohmi, Takehiko; Rosenberg, Susan M.

    2009-01-01

    Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(oc) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(oc) alleles fully suppress the phenotype of constitutively SOS-“off” lexA(Ind−) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(oc) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition. PMID:19270270

  11. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli

    Science.gov (United States)

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  12. Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15.

    Science.gov (United States)

    Choi, Heejun; Yang, Zhilin; Weisshaar, James C

    2015-01-20

    Antibiotics target specific biochemical mechanisms in bacteria. In response to new drugs, pathogenic bacteria rapidly develop resistance. In contrast, antimicrobial peptides (AMPs) have retained broad spectrum antibacterial potency over millions of years. We present single-cell fluorescence assays that detect reactive oxygen species (ROS) in the Escherichia coli cytoplasm in real time. Within 30 s of permeabilization of the cytoplasmic membrane by the cationic AMP CM15 [combining residues 1-7 of cecropin A (from moth) with residues 2-9 of melittin (bee venom)], three fluorescence signals report oxidative stress in the cytoplasm, apparently involving O2 (-), H2O2, and •OH. Mechanistic studies indicate that active respiration is a prerequisite to the CM15-induced oxidative damage. In anaerobic conditions, signals from ROS are greatly diminished and the minimum inhibitory concentration increases 20-fold. Evidently the natural human AMP LL-37 also induces a burst of ROS. Oxidative stress may prove a significant bacteriostatic mechanism for a variety of cationic AMPs. If so, host organisms may use the local oxygen level to modulate AMP potency.

  13. Mutagenic DNA repair in Escherichia coli. Pt. 2. Factors affecting loss of photoreversibility of UV induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Doubleday, O P; Bridges, B A; Green, M H.L. [Medical Research Council, Brighton (UK). Cell Mutation Unit

    1975-01-01

    The photoreversibility of UV-induced mutations to Trp/sup +/ in strain Escherichia coli WP2 uvr A trp (unable to excise pyrimidine dimers) was lost at different rates during incubation in different media. In Casamino acids medium after a short initial lag, photoreversibility was lost over about one generation time; in minimal medium with tryptophan, photoreversibility persisted for more than two generations; in Casamino acids medium with pantoyl lactone photoreversibility was lost extremely slowly. The rate of loss of photoreversibility was unaffected by UV dose in either Casamino acids medium or in minimal medium. The same eventual number of induced mutants was obtained when cells were incubated for two generations in any of the three media before being transferred to selective plates supplemented with Casamino acids. Thus in each the proportion of cells capable of giving rise to a mutant was the same and only the rate at which these cells did so during post-irradiation growth varied, suggesting that there might be a specific fraction of pyrimidine dimers at a given site capable of initiating a mutagenic repair event, and that the size of this fraction is dose dependent. Segregation experiments have shown that error-prone repair appears to occur once only and is not repeated in subsequent replication cycles, in contrast to (presumed error-free) recombination repair. The results are discussed in the light of current models of UV mutagenesis.

  14. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    Science.gov (United States)

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  15. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  16. Translesion DNA synthesis and mutation induced in a plasmid with a single adduct of the environmental contaminant 3-nitrobenzanthrone in SOS-induced Escherichia coli

    International Nuclear Information System (INIS)

    Kawanishi, M.; Kanno, T.; Yagi, T.; Enya-Takamura, T.; Fuchs, R.P.

    2003-01-01

    Full text: 3-Nitrobenzanthrone (NBA) is a powerfully mutagenic nitrated aromatic hydrocarbon found in diesel exhaust and in airborne particulate matters. NBA forms an unusual DNA adduct in vitro that has a C-C bond between the C-8 position of deoxyguanosine and the C-2 position of NBA. We previously found that this adduct is also present in the human cells treated with NBA, and induces mutations in supF shuttle vector system. In this study, we analyzed translesion DNA synthesis (TLS) over a single adduct in lacZ' gene in a plasmid in uvrAmutS Escherichia coli. The result showed that the adduct blocked DNA replication and an observed TLS frequency was 5.4% in non-SOS-induced E. coli. All progenies after the TLS had no mutation. On the other hand, TLS increased to 11.3%, and 4.8% of them had mostly G to T mutations in SOS-induced E. coli. These results suggest that this unusual adduct would be one of causes of lung cancer that is increasing in the urban areas polluted with diesel exhaust. It must be interesting to reveal which DNA polymerase is involved in this TLS

  17. Effects of Bos taurus autosome 9-located quantitative trait loci haplotypes on the disease phenotypes of dairy cows with experimentally induced Escherichia coli mastitis

    DEFF Research Database (Denmark)

    Khatun, Momena; Sørensen, Peter; Jørgensen, Hanne Birgitte Hede

    2013-01-01

    Several quantitative trait loci (QTL) affecting mastitis incidence and mastitis-related traits such as somatic cell score exist in dairy cows. Previously, QTL haplotypes associated with susceptibility to Escherichia coli mastitis in Nordic Holstein-Friesian (HF) cows were identified on Bos taurus...... autosome 9. In the present study, we induced experimental E. coli mastitis in Danish HF cows to investigate the effect of 2 E. coli mastitis-associated QTL haplotypes on the cows' disease phenotypes and recovery in early lactation. Thirty-two cows were divided in 2 groups bearing haplotypes with either low...... the HH group did. However, we also found interactions between the effects of haplotype and biopsy for body temperature, heart rate, and PMNL. In conclusion, when challenged with E. coli mastitis, HF cows with the specific Bos taurus autosome 9-located QTL haplotypes were associated with differences...

  18. pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system.

    Science.gov (United States)

    Ip, Hermia; Stratton, Kelly; Zgurskaya, Helen; Liu, Jun

    2003-12-12

    The multidrug efflux system AcrA-AcrB-TolC of Escherichia coli expels a wide range of drugs directly into the external medium from the bacterial cell. The mechanism of the efflux process is not fully understood. Of an elongated shape, AcrA is thought to span the periplasmic space coordinating the concerted operation of the inner and outer membrane proteins AcrB and TolC. In this study, we used site-directed spin labeling (SDSL) EPR (electron paramagnetic resonance) spectroscopy to investigate the molecular conformations of AcrA in solution. Ten AcrA mutants, each with an alanine to cysteine substitution, were engineered, purified, and labeled with a nitroxide spin label. EPR analysis of spin-labeled AcrA variants indicates that the side chain mobilities are consistent with the predicted secondary structure of AcrA. We further demonstrated that acidic pH induces oligomerization and conformational change of AcrA, and that the structural changes are reversible. These results suggest that the mechanism of action of AcrA in drug efflux is similar to the viral membrane fusion proteins, and that AcrA actively mediates the efflux of substrates.

  19. Near-ultraviolet radiation-induced lipid peroxidation and membrane effects in Escherichia coli and human skin fibroblasts

    International Nuclear Information System (INIS)

    Chamberlain, J.

    1987-01-01

    The first part of this thesis examines the response of an unsaturated fatty acid auxotroph, Escherichia coli K1060 to broad-band near-UV radiation. Sensitivity, lipid peroxidation and leakage of rubidium from irradiated cells were found to increase with increasing unsaturation of membrane fatty acids. The involvement of singlet oxygen was implicated by an increase in sensitivity, lipid peroxidation and leakage of rubidium following irradiation in deuterium oxide. Some factors influencing survival following irradiation were investigated, where lower growth rates were shown to enhance survival. In the second part, the study was extended to human fibroblasts where a normal human skin fibroblast strain, GM730 and a strain derived from an actinic reticuloid patient, AR6LO, are compared. Lipid peroxidation was measured in both cell lines following broad-band near-UV irradiation. Membrane activity, as assessed by the pinocytic uptake of 14 C-sucrose and its subsequent release from the cell, was measured. Near-UV irradiation was found to increase such activity in both strains. Vitamin E and Trolox-C were found to decrease this response in AR6LO but not GM730 cells. The final part consists of preliminary investigations into the near-UV induced peroxidation of fatty acids and liposomes, and the subsequent increase in the level of hydroperoxides in the hours following irradiation. (author)

  20. (ESBL) producing Escherichia coli and Klebsiella pneumoniae

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... the most common serious bacterial infections in infants ... UTI is a common cause of morbidity .... of ESBL and non-ESBL producing Escherichia coli and Klebsiella pneumonia. ... in hospital and community acquired infections.

  1. Characterization of Escherichia coli Phylogenetic Groups ...

    African Journals Online (AJOL)

    tract infection (UTI), bacteremia, pneumonia, soft-tissue infection, and ... Keywords: Drug resistance, Escherichia coli, Extraintestinal infections, Polymerase chain reaction, .... gynecology, 12 from orthopedics and 5 from pediatrics units.

  2. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose.

    Directory of Open Access Journals (Sweden)

    Chaudhari Archana Somabhai

    Full Text Available To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN on metabolic effects induced by chronic consumption of dietary fructose.EcN was genetically modified with fructose dehydrogenase (fdh gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq, EcN (pqq-glf-mtlK, EcN (pqq-fdh was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ production.EcN (pqq-glf-mtlK, EcN (pqq-fdh transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK and EcN (pqq-fdh showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA demonstrated the prebiotic effects of mannitol and gluconic acid.Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.

  3. Pharmacokinetics of amoxicillin after oral administration in recently weaned piglets with experimentally induced Escherichia coli subtype O149 : F4 diarrhea

    DEFF Research Database (Denmark)

    Jensen, G.M.; Lykkesfeldt, J.; Frydendahl, K.

    2004-01-01

    Objective-To measure the effect of Escherichia coli subtype 0149:F4-induced diarrhea on the pharmacokinetics of orally administered amoxicillin in affected piglets relative to that of uninfected piglets. Animals-22 healthy 4-week-old recently weaned Danish crossbred piglets. Procedure-12 piglets...... were orally inoculated through gastric intubation with 10(9) CFUs of an E coli 0149:F4 strain and responded by developing diarrhea 12 to 16 hours later. Piglets were dosed with amoxicillin trihydrate solution (20 mg/kg) by gastric intubation. A control group of 10 age-matched piglets without signs...... that the concentration of the antimicrobial at the site of infection reflects the systemic concentration, higher doses of amoxicillin in the treatment of piglets with E coli 0149:F4-induced diarrhea may be appropriate....

  4. Respiration shutoff in Escherichia coli K12 strains is induced by far ultraviolet radiations and by mitomycin C

    International Nuclear Information System (INIS)

    Swenson, P.A.; Norton, I.L.

    1984-01-01

    Near ultraviolet radiations (UV) cause respiration to shutoff in Escherichia coli B/r. It has been reported that E. coli K12 strains do not shut off respiration after UV. It is also reported that mitomycin C did not cause this 'SOS' response. In this paper it is reported that higher UV fluences than were previously used will cause respiration shutoff in K12 strain W3110 and that cyclic AMP increases the sensitivity of respiration shutoff of irradiated cell suspensions. Also mitomycin C shuts off respiration in this strain. Neither UV nor mitomycin C causes respiration shutoff in the recA56 derivative of W3110. Thus respiration shutoff is a recA dependent response to UV and mitomycin C in E. coli K12 strains. (Auth.)

  5. Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Wu, Qiong; Liu, Ming-Chao; Yang, Jun; Wang, Jiu-Feng; Zhu, Yao-Hong

    2016-02-15

    Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained from 382 samples.

  7. Characterization of Escherichia coli Phylogenetic Groups ...

    African Journals Online (AJOL)

    Background: Escherichia coli strains mainly fall into four phylogenetic groups (A, B1, B2, and D) and that virulent extra‑intestinal strains mainly belong to groups B2 and D. Aim: The aim was to determine the association between phylogenetic groups of E. coli causing extraintestinal infections (ExPEC) regarding the site of ...

  8. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA.

    Science.gov (United States)

    Alrowais, Hind; McElheny, Christi L; Spychala, Caressa N; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A; Doi, Yohei

    2015-11-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.

  9. Strategies for Protein Overproduction in Escherichia coli.

    Science.gov (United States)

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  10. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  11. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    Escherichia coli is an important component of the biosphere and is an ideal model for studies of processes involved in bacterial genome evolution. Sixty-one publically available E. coli and Shigella spp. sequenced genomes are compared, using basic methods to produce phylogenetic and proteomics...

  12. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    user1

    2012-07-19

    Jul 19, 2012 ... Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained.

  13. Fimbrial adhesins from extraintestinal Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Schembri, Mark A.

    2010-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) represent an important subclass of E. coli that cause a wide spectrum of diseases in human and animal hosts. Fimbriae are key virulence factors of ExPEC strains. These long surface located rod-shaped organelles mediate receptor-specific attachment...

  14. lactamase in clinical isolates of Escherichia coli

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... The beta lactamase enzyme producing E. coli, resistant to β-lactam antibiotics, created many problems ... Key words: Escherichia coli, β-lactamase enzymes, TEM-type extended spectrum ... difficulties in treatment using antibiotics that are currently ... and chloramphenicol (30 µg) (Mast Diagnostics Ltd., UK).

  15. 99mTechnetium labelled Escherichia coli

    International Nuclear Information System (INIS)

    Diniz, S.O.F.; Cardoso, V.N.; Resende, B.M.; Nunan, E.A.; Simal, C.J.R.

    1999-01-01

    Samples of a culture of unlabeled Escherichia coli were incubated with different concentrations of stannous chloride for various time periods. 99m Tc (26.0 MBq) was added to each preparation and the results showed a labelling yield of 98% for E. coli. Since the bacterial viability of 99m Tc-E. coli and E. coli did not show any statistical differences, these results demonstrate that labelling of E. coli with 99m Tc does not modify the bacterial viability, and the radiolabelled bacteria may be a good model to study bacterial translocation

  16. ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli

    OpenAIRE

    ANGGREINI, RAHAYU

    2015-01-01

    2015 RAHAYU ANGGREINI coli Penelitian ini bertujuan untuk melakukan identifikasi cemaran bakteri E. coli O157:H7 pada daging sapi di kota Makassar. Sampel pada penelitian ini sebanyak 72 sampel Kata Kunci : Daging sapi, pasar tradisional, E. coli, E. coli O157:H7, kontaminasi bakteri, identifikasi E. coli O157:H7.

  17. Short communication: Antimicrobial efficacy of intramammary treatment with a novel biphenomycin compound against Staphylococcus aureus, Streptococcus uberis, and Escherichia coli-induced mouse mastitis.

    Science.gov (United States)

    Demon, Dieter; Breyne, Koen; Schiffer, Guido; Meyer, Evelyne

    2013-01-01

    Bovine mastitis undermines udder health, jeopardizes milk production, and entails prohibitive costs, estimated at $2 billion per year in the dairy industry of the United States. Despite intensive research, the dairy industry has not managed to eradicate the 3 major bovine mastitis-inducing pathogens: Staphylococcus aureus, Streptococcus uberis, and Escherichia coli. In this study, the antimicrobial efficacy of a newly formulated biphenomycin compound (AIC102827) was assessed against intramammary Staph. aureus, Strep. uberis, and E. coli infections, using an experimental mouse mastitis model. Based on its effective and protective doses, AIC102827 applied into the mammary gland was most efficient to treat Staph. aureus, but also adequately reduced growth of Strep. uberis or E. coli, indicating its potential as a broad-spectrum candidate to treat staphylococcal, streptococcal, and coliform mastitis in dairy cattle. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Multiple loci affecting photoreactivation in Escherichia coli

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Hausrath, S.G.

    1979-01-01

    Sutherland et al. mapped a phr gene in Escherichia coli at 17 min and found that induction of an E. coli stain lysogenic for a lambda phage carrying this gene increased photoreactivating enzyme levels 2,000-fold. Recently, Smith and Youngs and Sancar and Rupert located a phr gene at 15.9 min. We have therefore investigated the properties of photoreactivating enzyme and cellular photoreactivation in cells containing deletions of the gene at 17 min. Cells with this deletion photoreactivated ultraviolet-induced killing at a rate 20% of normal; they also contained approximately 20% of the normal photoreactivating enzyme level. The residual enzyme in these cells was characterized to determine whether the reduced cellular photoreactivation rate and photoreactivating enzyme levels resulted from reduced numbers of normal enzymes or from an altered enzyme. Photoreactivating enzymes from strains carrying a deletion of the region at 17 min has an apparent K/sub m/ about two- to threefold higher than normal enzyme and showed markedly increased heat lability. The gene at 17 min thus contains information determining the function of the E. coli photoreactivating enzyme rather than the quantity of the enzyme. It is proposed that the gene at 17 min be termed phrA and that located at 15.9 min be termed phrB

  19. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from cultured...

  20. OBSERVATIONS ON CLINICAL TREATMENT TRIALS OF INDUCED ESCHERICHIA COLI DIARRHOEA IN BUFFALO NEONATAL CALVES

    Directory of Open Access Journals (Sweden)

    M. T. Javed, A. Khan, Abid Hussain and Babar Niaz

    2000-01-01

    Full Text Available The study was conducted on 24 calves of one week-age, randomly divided into four groups, of six calves each. First three groups were experimentally infected with E. coli and given treatment in various combinations, while group four was taken as uninfected untreated control. Results obtained on different parameters were, green to yellow-white diarrhoea with variable consistency from watery to semisolid. Generally in all groups during first two days, calves passed faeces around 6-10 times a day and this frequency lowered in about 2-4 days. During first 3-4 days of treatment, all calves appeared weak, dull, depressed with cold skin and wetness of the muzzle, while oral mucosa was pale and eyes were sunken. Overall mean respiration rate of treatment groups was slower (P<0.05 than control group. However, pulse rate showed no difference between treatment and control group. Overall mean rectal temperature was lower (P<0.05 in calves treated with antibiotic alone and with antibiotic + electrolytes, while body weight was higher (P<0.05 in calves treated with antibiotic but was lower along with creatinine (P<0.05 in calves treated with antibiotic + electrolytes and those treated with electrolytes alone.

  1. DNA sequence changes in mutation induced by ultraviolet light in the gpt gene on the chromosome of Escherichia coli uvr+ und uvrA cells

    International Nuclear Information System (INIS)

    Sockett, H.; Romac, S.; Hutchinson, F.

    1991-01-01

    Sequence changes in mutations induced by ultraviolet light are reported for the chromosomal Escherichia coli gpt gene in almost isogenic E. coli uvr + and excision-deficient uvrA cells. Differences between the mutagenic spectra are ascribed to preferential removal of photoproducts in the transcribed strand by excision repair in uvr + cells. This conclusion is confirmed by analysis of published results for genes in both uvr + and uvr − cells, showing a similar selective removal of mutagenic products from the transcribed strand of the E. coli lacI gene and of the lambda phage cl repressor gene. Comparison of these data with published results for ultraviolet mutagenesis of gpt on a chromosome in Chinese hamster ovary cells showed that a mutagenic hot spot in mammalian cells is not present in E. coli; the possibility is suggested that the hot spot might arise from localized lack of excision repair. Otherwise, mutagenesis in hamster cells appeared similar to that in E. coli uvr + cells, except there appears to be a smaller fraction of single-base additions and deletions (frameshifts) in mammalian than in bacterial cells. Phenotypes of 6-thioguanine-resistant E. coli showed there is a gene (or genes) other than gpt involved in the utilization of thioguanine by bacteria

  2. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1

    DEFF Research Database (Denmark)

    Huelsenbeck, Stefanie C; Roggenkamp, Dennis; May, Martin

    2013-01-01

    B expression, based on the inactivation of Rho/Ras proteins. In this study, we report on a long lasting expression of RhoB in cultured cells upon activation of Rho proteins by the cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. The observations of this study highlight a new pathway involving Rac1...... without any signs of cell death. In conclusion, the cytoprotective RhoB response is not only evoked by bacterial protein toxins inactivating Rho/Ras proteins but also by the Rac1-activating toxin CNF1....

  3. Ultraviolet radiation-induced mutability of isogenic uvrA and uvrB strains of Escherichia coli K-12 W3110

    Energy Technology Data Exchange (ETDEWEB)

    Barfknecht, T R; Smith, K C [Stanford Univ., Calif. (USA). Dept. of Radiology

    1977-12-01

    Escherichia coli K-12 W3110 uvrB5 strain has been shown to have a higher uv-induced reversion frequency than its wild-type parent when plotted on the basis of mutation frequency versus survival. However for the E. coli B/r WP2s uvrA strain this higher mutability has been observed only at survival levels of 80 to 100%. A study was undertaken to determine if ly to the uvrA and uvrB mutations, or to other genetic background differences. Isogenic strains of E. coli K-12 W3110 carrying uvrA6, uvrB5, uvrA6, and uvrB5, and the uvrA allele from E.coli B/r WP2s were used. Results indicate that the enrichment of minimal medium with a small amount of nutrient broth is sufficient to inhibit minimal medium recovery (MMR) and to enhance leu/sup +/ reversion of the leu B missense mutation in these uvr/sup -/ strains. This suggests that there may be a relationship between MMR and error-free postreplication repair. Further research is in progress to clarify the relationship between MMR and broth enhancement of uv-induced mutagenesis in uvr/sup -/ strains of E. Coli K-12 W3110.

  4. Escherichia coli as other Enterobacteriaceae: food poisoning and health effects

    Science.gov (United States)

    Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...

  5. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Ulett, G.C.

    2006-01-01

    Escherichia coli 83972 is a clinical asymptomatia bacteriuric isolate that is able to colonize the human urinary bladder without inducing an immune response. Here we demonstrate that one of the mechanisms by which this strain has become attenuated is through the mutation of its genes encoding type...

  6. Comparative study of SOS response induced by hydrogen peroxide in the absence or presence of iron ions, in Escherichia coli

    International Nuclear Information System (INIS)

    Almeida, Carlos Eduardo Bonacossa de

    1994-01-01

    The H 2 O 2 is an reactive oxygen specie that arises from cell respiration process. It may cause deleterious effects on cell, by reacting with transition metals like iron. In this way it yields free radicals that are able to damage organic molecules, mainly DNA. Recent works have suggested that in the absence of Fe ions H 2 O 2 still damages Escherichia coli DNA. This work presents a comparative analysis of cell SOS responses to DNA damage in Escherichia coli and Salmonella typhimurium mutants pretreated or not with a Fe 2+ ion chelator (dipyridyl) and then treated with H 2 O 2 . The systems analysed were the lysogenic induction, Weigle reactivation, mutagenesis and cell inactivation curves. The cell inactivation curves were themselves distinct, in relation to both treatments. The increased sensitivity found in the lexA1 and recA13 mutants, when treated with dipyridyl and H 2 O 2 , suggests an important role of SOS response in repairing the lesions caused by this treatment. The profiles of the lysogenic induction and mutagenesis curves were also distinct in both treatments. The results of Weigle reactivation suggest that the products of uvrA and lexA genes have an important role in UV-damaged bacteriophage DNA repair, when dipyridyl-pretreated cells are treated with H 2 O 2 . All the results suggest that Fe-independent lesions produced by H 2 O 2 are different from the ones produced in the presence of this ion. (author)

  7. Soluble products of Escherichia coli induce mitochondrial dysfunction-related sperm membrane lipid peroxidation which is prevented by lactobacilli.

    Directory of Open Access Journals (Sweden)

    Arcangelo Barbonetti

    Full Text Available Unidentified soluble factors secreted by E. coli, a frequently isolated microorganism in genitourinary infections, have been reported to inhibit mitochondrial membrane potential (ΔΨm, motility and vitality of human spermatozoa. Here we explore the mechanisms involved in the adverse impact of E. coli on sperm motility, focusing mainly on sperm mitochondrial function and possible membrane damage induced by mitochondrial-generated reactive oxygen species (ROS. Furthermore, as lactobacilli, which dominate the vaginal ecosystem of healthy women, have been shown to exert anti-oxidant protective effects on spermatozoa, we also evaluated whether soluble products from these microorganisms could protect spermatozoa against the effects of E. coli. We assessed motility (by computer-aided semen analysis, ΔΨm (with JC-1 dye by flow cytometry, mitochondrial ROS generation (with MitoSOX red dye by flow cytometry and membrane lipid-peroxidation (with the fluorophore BODIPY C11 by flow cytometry of sperm suspensions exposed to E. coli in the presence and in the absence of a combination of 3 selected strains of lactobacilli (L. brevis, L. salivarius, L. plantarum. A Transwell system was used to avoid direct contact between spermatozoa and microorganisms. Soluble products of E. coli induced ΔΨm loss, mitochondrial generation of ROS and membrane lipid-peroxidation, resulting in motility loss. Soluble factors of lactobacilli prevented membrane lipid-peroxidation of E. coli-exposed spermatozoa, thus preserving their motility. In conclusion, sperm motility loss by soluble products of E. coli reflects a mitochondrial dysfunction-related membrane lipid-peroxidation. Lactobacilli could protect spermatozoa in the presence of vaginal disorders, by preventing ROS-induced membrane damage.

  8. Light induced expression of β-glucosidase in Escherichia coli with autolysis of cell.

    Science.gov (United States)

    Chang, Fei; Zhang, Xianbing; Pan, Yu; Lu, Youxue; Fang, Wei; Fang, Zemin; Xiao, Yazhong

    2017-11-07

    β-Glucosidase has attracted substantial attention in the scientific community because of its pivotal role in cellulose degradation, glycoside transformation and many other industrial processes. However, the tedious and costly expression and purification procedures have severely thwarted the industrial applications of β-glucosidase. Thus development of new strategies to express β-glucosidases with cost-effective and simple procedure to meet the increasing demands on enzymes for biocatalysis is of paramount importance. Light activated cassette YF1/FixJ and the SRRz lysis system were successfully constructed to produce Bgl1A(A24S/F297Y), a mutant β-glucosidase tolerant to both glucose and ethanol. By optimizing the parameters for light induction, Bgl1A(A24S/F297Y) activity reached 33.22 ± 2.0 U/mL and 249.92 ± 12.25 U/mL in 250-mL flask and 3-L fermentation tank, respectively, comparable to the controls of 34.02 ± 1.96 U/mL and 322.21 ± 10.16 U/mL under similar culture conditions with IPTG induction. To further simplify the production of our target protein, the SRRz lysis gene cassette from bacteriophage Lambda was introduced to trigger cell autolysis. As high as 84.53 ± 6.79% and 77.21 ± 4.79% of the total β-glucosidase were released into the lysate after cell autolysis in 250 mL flasks and 3-L scale fermentation with lactose as inducer of SRRz. In order to reduce the cost of protein purification, a cellulose-binding module (CBM) from Clostridium thermocellum was fused into the C-terminal of Bgl1A(A24S/F297Y) and cellulose was used as an economic material to adsorb the fusion enzyme from the lysate. The yield of the fusion protein could reach 92.20 ± 2.27% after one-hour adsorption at 25 °C. We have developed an efficient and inexpensive way to produce β-glucosidase for potential industrial applications by using the combination of light induction, cell autolysis, and CBM purification strategy.

  9. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes

    DEFF Research Database (Denmark)

    Victor, Michala E; Bengtsson, Anja; Andersen, Gorm

    2010-01-01

    -exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w...... PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed....

  10. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli.

    Science.gov (United States)

    Song, Wooseok; Kim, Yong-Hak; Sim, Se-Hoon; Hwang, Soonhye; Lee, Jung-Hyun; Lee, Younghoon; Bae, Jeehyeon; Hwang, Jihwan; Lee, Kangseok

    2014-04-01

    Here, we report a resistance mechanism that is induced through the modulation of 16S ribosomal RNA (rRNA) processing on the exposure of Escherichia coli cells to aminoglycoside antibiotics. We observed decreased expression levels of RNase G associated with increased RNase III activity on rng mRNA in a subgroup of E. coli isolates that transiently acquired resistance to low levels of kanamycin or streptomycin. Analyses of 16S rRNA from the aminoglycoside-resistant E. coli cells, in addition to mutagenesis studies, demonstrated that the accumulation of 16S rRNA precursors containing 3-8 extra nucleotides at the 5' terminus, which results from incomplete processing by RNase G, is responsible for the observed aminoglycoside resistance. Chemical protection, mass spectrometry analysis and cell-free translation assays revealed that the ribosomes from rng-deleted E. coli have decreased binding capacity for, and diminished sensitivity to, streptomycin and neomycin, compared with wild-type cells. It was observed that the deletion of rng had similar effects in Salmonella enterica serovar Typhimurium strain SL1344. Our findings suggest that modulation of the endoribonucleolytic activity of RNase III and RNase G constitutes a previously uncharacterized regulatory pathway for adaptive resistance in E. coli and related gram-negative bacteria to aminoglycoside antibiotics.

  11. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145). This new date..., that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121...

  12. Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naïve foetal enterocytes compared to commensal Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nellemann Christine

    2010-01-01

    Full Text Available Abstract Background The first exposure to microorganisms at mucosal surfaces is critical for immune maturation and gut health. Facultative anaerobic bacteria are the first to colonise the infant gut, and the impact of these bacteria on intestinal epithelial cells (IEC may be determinant for how the immune system subsequently tolerates gut bacteria. Results To mirror the influence of the very first bacterial stimuli on infant IEC, we isolated IEC from mouse foetuses at gestational day 19 and from germfree neonates. IEC were stimulated with gut-derived bacteria, Gram-negative Escherichia coli Nissle and Gram-positive Lactobacillus acidophilus NCFM, and expression of genes important for immune regulation was measured together with cytokine production. E. coli Nissle and L. acidophilus NCFM strongly induced chemokines and cytokines, but with different kinetics, and only E. coli Nissle induced down-regulation of Toll-like receptor 4 and up-regulation of Toll-like receptor 2. The sensitivity to stimulation was similar before and after birth in germ-free IEC, although Toll-like receptor 2 expression was higher before birth than immediately after. Conclusions In conclusion, IEC isolated before gut colonisation occurs at birth, are highly responsive to stimulation with gut commensals, with L. acidophilus NCFM inducing a slower, but more sustained response than E. coli Nissle. E. coli may induce intestinal tolerance through very rapid up-regulation of chemokine and cytokine genes and down-regulation of Toll-like receptor 4, while regulating also responsiveness to Gram-positive bacteria.

  13. Infectious endocarditis caused by Escherichia coli

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Arpi, Magnus; Fritz-Hansen, Thomas

    2011-01-01

    Although Escherichia coli is among the most common causes of Gram-negative bacteraemia, infectious endocarditis (IE) due to this pathogen is rare. A 67-y-old male without a previous medical history presented with a new mitral regurgitation murmur and persisting E. coli bacteraemia in spite of broad......-spectrum intravenous antibiotics. Transthoracic and transoesophageal echocardiography revealed a severe mitral endocarditis. E. coli DNA was identified from the mitral valve and the vegetation, and no other pathogen was found. The case was further complicated by spondylodiscitis and bilateral endophthalmitis. Extra...

  14. Optimization of plasmid electrotransformation into Escherichia coli ...

    African Journals Online (AJOL)

    In order to improve electroporation, optical density of bacteria, recovery time and electrical parameter (field strength and capacitance) were optimized using the Taguchi statistical method. ANOVA of obtained data indicated that the optimal conditions of electrotransformation of pET-28a (+) plasmid into Escherichia coli ...

  15. Inhibition of Escherichia Coli, Salmonella and Staphylococcus ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7, Salmonella typhimurium and Staphylococcus. aureus are of great concern to the food industry, especially in foods stored under refrigerated conditions where, unlike most food-borne pathogens are able to multiply. This investigation was conducted to study the inhibitory effect of some spice ...

  16. (ESBL) producing Escherichia coli and Klebsiella pneumoniae

    African Journals Online (AJOL)

    Emerging antibiotic resistance due to extended spectrum β-lactamase (ESBL) production limited the use of β-lactam antibiotics against Escherichia coli and Klebsiella pneumoniae. This observational study was conducted at the Microbiology department of the Children's Hospital, Lahore Pakistan, from June, 2009 to ...

  17. Antibiotic resistance properties of uropathogenic Escherichia coli ...

    African Journals Online (AJOL)

    Purpose: To investigate the antibiotic resistance pattern of uropathogenic Escherichia coli (UPEC) strains isolated from pregnant women with history of recurrent urinary tract infections (RUTIs) and healthy pregnant women. Methods: A total of 485 high vaginal swab specimens were collected from pregnant women with ...

  18. Prevalence of Arcobacter, Escherichia coli, Staphylococcus aureus ...

    African Journals Online (AJOL)

    In this study, varying level of resistance of Escherichia coli 66(84.6%), Salmonella 6(100%) and Arcobacter 57(100%) to amoxicillin was observed. The susceptibility pattern indicates that the bacterial isolates exhibited a varying level of resistance to two or more antimicrobial agents with maximum resistance to amoxicillin.

  19. Leaner and meaner genomes in Escherichia coli

    DEFF Research Database (Denmark)

    Ussery, David

    2006-01-01

    A 'better' Escherichia coli K-12 genome has recently been engineered in which about 15% of the genome has been removed by planned deletions. Comparison with related bacterial genomes that have undergone a natural reduction in size suggests that there is plenty of scope for yet more deletions....

  20. ANTIMICIROBIAL SUSCEPTIBILITY PATTERNS OF Escherichia coli ...

    African Journals Online (AJOL)

    DR. AMINU

    A total of 56 and 24 strains of E. coli and Shigella sp. isolated from children less than five years with diarrhoea attending 3 ... parasitic infections, as well as food intolerance, reaction to ..... Escherichia coil 0157:H7 as a model of entry of a new.

  1. The alpha hemolisina of Escherichia Coli induces increases in the calcium citoplasmico of neutrofilos and monocytes human beings

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) and the calcium ionophores ionomycin and 4 Br A23187 caused increases in cell fluorescence, indicative of elevations in cytoplasmic calcium, in fura 2-loaded human polymorphonuclear leukocytes(PMN) and monocytes (MN). The increase in fluorescence caused by AH was dose dependent. Quelation of extracellular calcium with EGTA prevented fluorescence increases in PMN exposed to 2 HU50/ml AH, but did not prevent a small increase in 4 μM, ionomycin-treated PMN, indicating that ionomycin treatment under conditions of calcium quelation can mobilize calcium from internal stores, and that entry of external calcium accounts for most of the increases in cell fluorescence in cells treated with both AH and calcium ionophores. AH, as well as calcium ionophores and the chemotactic peptide FMLP caused rease of myeloperoxidase (MPO) from PMM suggesting that increments in intracellular calcium cause degramulation with release of granule contents (Author) [es

  2. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    Science.gov (United States)

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  3. Effects of the umuC36 mutation on ultraviolet-radiation-induced base-change and frameshift mutations in Escherichia coli

    International Nuclear Information System (INIS)

    Kato, T.; Nakano, E.

    1981-01-01

    The effects of the umuC36 mutation on the induction of base-change and frameshift mutations were studied. An active umuC gene was necessary in either the uvr + or uvr - strains of Escherichia coli K12 for UV- and X-ray-induced mutations to His + , ColE and Spc, which are presumably base-change mutations, but it was not essential for ethyl methanesulphonate or N-methyl-N'-nitro-N-nitrosoguanidine-induced His + mutations. In contrast, only 1 out of 13 trp - frameshift mutations examined was UV reversible, and the process of mutagenesis was umuC + -dependent, whereas a potent frameshift mutagen, ICR191, effectively induced Trp + mutations in most of the strains regardless of the umu + or umuC genetic background. These results suggest that base substitutions are a major mutational type derived from the umuC + -dependent pathway of error-prone repair. (orig.)

  4. Infektionen mit darmpathogenen Escherichia coli.

    NARCIS (Netherlands)

    Friedrich, Alexander; Stein, Jürgen; Dignass, Axel

    2001-01-01

    E. coli ist ein wesentlicher Bestandteil der physiologischen Darmflora des Menschen. Die üblicherweise im Darm vorkommenden Kolibakterien sind apathogen und für den Menschen eher nützlich (Sonnenborn u. Greinwald 1990). Allerdings kennen wir bei dieser Bakterienspezies auch ein breites Spektrum von

  5. GroEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion

    International Nuclear Information System (INIS)

    Krueger, J.H.; Walker, G.C.

    1984-01-01

    Two proteins with molecular weights of 61,000 and 73,000 were found to be induced by UV light in Escherichia coli mutants in which the SOS responses are constitutively expressed. The induction of these proteins by UV light and nalidixic acid was shown to be independent of the recA + lexA + regulatory system. Analysis of these proteins by two-dimensional gel electrophoresis and comparison with the heat-shock proteins of E. coli revealed that the M/sub r/ 61,000 protein comigrated with the groEL gene product, that the M/sub r/ 73,000 protein comigrated with the dnaK gene product, and that other heat-shock proteins were also induced. The induction of groEL and dnaK by UV light and nalidixic acid is controlled by the htpR locus. The results suggest that the regulatory response of E. coli to agents such as UV light and nalidixic acid is more complex than previously thought. 35 references, 6 figures, 1 table

  6. FTIR nanobiosensors for Escherichia coli detection

    Directory of Open Access Journals (Sweden)

    Stefania Mura

    2012-07-01

    Full Text Available Infections due to enterohaemorrhagic E. coli (Escherichia coli have a low incidence but can have severe and sometimes fatal health consequences, and thus represent some of the most serious diseases due to the contamination of water and food. New, fast and simple devices that monitor these pathogens are necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyltriethoxysilane and GA (glutaraldehyde were functionalized with specific antibodies and the absorption properties monitored. The film-based biosensors showed a detection limit for E. coli of 1 × 102 CFU/mL, constituting a simple and selective method for the effective screening of water samples.

  7. Escherichia coli pyomyositis in an immunocompromised host.

    Science.gov (United States)

    Sharma, Umesh; Schwan, William R; Agger, William A

    2011-08-01

    Pyomyositis due to Escherichia coli (E. coil) is rarely reported in immunocompromised patients with hematological malignancy. We present a case report of a 34-year-old man who developed E. coli pyomyositis as a complication of acute myelogenous leukemia (AML). Magnetic resonance imaging (MRI) of the right hip suggested myofascial infection of the gluteal muscles, and a needle muscle aspiration grew E. coli phylogenetic group B2. The patient responded to intravenous piperacillin/tazobactam followed by prolonged oral levofloxacin. Pyomyositis should be suspected in all immunocompromised patients complaining of muscle pain and may exhibit signs of localized muscle infection. Appropriate antibiotic therapy targeting fluoroquinolone-resistant E. coli should be considered for initial empiric therapy of pyomyositis in immunocompromised patients.

  8. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  9. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  10. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli.

    OpenAIRE

    Atassi , Fabrice; Brassart , Dominique; Grob , Philipp; Graf , Federico; Servin , Alain ,

    2006-01-01

    The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372....

  11. Identification and Prevalence of Escherichia coli and Escherichia coli O157: H7 in Foods

    Directory of Open Access Journals (Sweden)

    Ancuta Mihaela Rotar

    2013-11-01

    Full Text Available The objective of this study is to investigate the incidence of Escherichia coli in animal and non-animal foods, and mainly the incidence of the serotype O157: H7 producing verotoxin. The presence of common Escherichia coli and Escherichia coli O157: H7 in various foods (of animal and non animal origin was performed in Transylvania area. We analyzed a total of one hundred forty-one samples of minced meat, one hundred twenty-six samples of meat , twenty six samples of meat products, five samples of alcoholic beverages, three samples of seafood, one hundred samples of cheese from pasteurized milk, seventeen samples of butter, four samples of vegetables and one sample of milk powder, using the standard cultural method and Vidas Eco method for E. coli O157: H7 strains. E. coli was identified in 50 samples of minced meat, 55 samples of meat prepared, 4 samples of meat products, 2 samples of alcoholic beverages, 25 samples of cheese from pasteurized milk, 6 samples of butter and 1 sample of vegetables. In this study were not been identified any foods contaminated with the E. coli O157: H7 serotype. The results of this reasearch have demostrated that E. coli wich represents a hygienic indicator of recent food contamination, can be destroyed with heat treatment and hygienic handling of foods. Our country over the years has been among the few countries where the incidence of the E. coli O157: H7 serotype has been minimal.

  12. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  13. DNA replication in necessary for fixing induced mutations to streptomycin-resistance in UV-irradiated Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Dubinin, N P; Filippov, V D

    1986-01-01

    A suspension of E.coli cells has been subjected to UV radiation, then it has been incubated in the growth medium for 15 min. After that one of the portions was incubated with nalidixic acid (NA), and the other one without it in the presence of an antibiotic. Frequency of mutations depending on or irrespective of photoactivation, has been determined. Dependence of Str mutation fixing, induced by low UV radiation doses, on DNA synthesis is determined. Results indicate that both photoreactivation of mutations and its senstivity to mfd system are simultaneously lost.

  14. Energetics of sodium efflux from Escherichia coli

    International Nuclear Information System (INIS)

    Borbolla, M.G.; Rosen, B.P.

    1984-01-01

    When energy-starved cells of Escherichia coli were passively loaded with 22 Na+, efflux of sodium could be initiated by addition of a source of metabolic energy. Conditions were established where the source of energy was phosphate bond energy, an electrochemical proton gradient, or both. Only an electrochemical proton gradient was required for efflux from intact cells. These results are consistent with secondary exchange of Na+ for H+ catalyzed by a sodium/proton antiporter

  15. The effect of bacterial environmental and metabolic stresses on a laser-induced breakdown spectroscopy (LIBS) based identification of Escherichia coli and Streptococcus viridans.

    Science.gov (United States)

    Mohaidat, Qassem; Palchaudhuri, Sunil; Rehse, Steven J

    2011-04-01

    In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation. © 2011 Society for Applied Spectroscopy

  16. Expression of the major outer membrane protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and Chlamydia suis in Escherichia coli using an arabinose-inducible plasmid vector.

    Science.gov (United States)

    Hoelzle, L E; Hoelzle, K; Wittenbrink, M M

    2003-10-01

    The ompA genes encoding the 40 kDa major outer membrane protein (MOMP) of Chlamydophila (Ch.) abortus, Ch. pecorum, and Chlamydia (C.) suis were cloned into the arabinose-inducible plasmid vector pBADMycHis, and recombinant MOMPs (rMOMP) from the three chlamydial species were expressed at high levels in Escherichia (E.) coli. The proteins lacking the 22 aa N-terminal signal peptide were expressed as insoluble cytoplasmic inclusion bodies which were readily purified using immobilized metal-affinity chromatography. The rMOMPs including the N-terminal signal peptide were expressed and translocated as a surface-exposed immunoaccessible protein into the outer membrane of E. coli. Transformants expressing this full-length rMOMP were significantly reduced in viability. Purified native elementary bodies (EB) and rMOMPs of the three chlamydial species purified from the E. coli cytoplasm were used for immunization of rabbits. The resulting sera were analysed for their ability to recognize homologous and heterologous rMOMP and native EB. When testing rMOMP antisera against rMOMP and EB antigens, marked cross-reactivities were detected between the three species. Using EB antisera and rMOMPs as antigens, a significant species-specific reactivity was measured.

  17. Effect of RNase E deficiency on translocon protein synthesis in an RNase E-inducible strain of enterohemorrhagic Escherichia coli O157:H7.

    Science.gov (United States)

    Lodato, Patricia B; Thuraisamy, Thujitha; Richards, Jamie; Belasco, Joel G

    2017-07-06

    Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that assembles a type III secretion system (T3SS) on its surface. The last portion of the T3SS, called the 'translocon', is composed of a filament and a pore complex that is inserted into the membrane of intestinal epithelial cells. The genes encoding the translocon (espADB) are part of the LEE4 operon. Their expression is regulated by a complex post-transcriptional mechanism that involves the processing of LEE4 mRNA by the essential endoribonuclease RNase E. Here, we report the construction of an EHEC strain (TEA028-rne) in which RNase E can be induced by adding IPTG to the culture medium. EHEC cells deficient in RNase E displayed an abnormal morphology and slower growth, in agreement with published observations in E. coli K-12. Under those conditions, EspA and EspB were produced at higher concentrations, and protein secretion still occurred. These results indicate that RNase E negatively regulates translocon protein synthesis and demonstrate the utility of E. coli strain TEA028-rne as a tool for investigating the influence of this ribonuclease on EHEC gene expression in vitro. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase {eta} from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Maria Jesus [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Alejandre-Duran, Encarna [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Ruiz-Rubio, Manuel [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain)]. E-mail: ge1rurum@uco.es

    2006-10-10

    DNA polymerase {eta} belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance against sunlight in vivo, both ameliorating survival and decreasing the level of mutagenesis. We cloned and sequenced a cDNA from Arabidopsis thaliana which encodes a protein containing several sequence motifs characteristics of Pol{eta} homologues, including a highly conserved sequence reported to be present in the active site of the Y-family DNA polymerases. The gene, named AtPOLH, contains 14 exons and 13 introns and is expressed in different plant tissues. A strain from Saccharomyces cerevisiae, deficient in Pol{eta} activity, was transformed with a yeast expression plasmid containing the AtPOLH cDNA. The rate of survival to UV irradiation in the transformed mutant increased to similar values of the wild type yeast strain, showing that AtPOLH encodes a functional protein. In addition, when AtPOLH is expressed in Escherichia coli, a change in the mutational spectra is detected when bacteria are irradiated with UV light. This observation might indicate that AtPOLH could compete with DNA polymerase V and then bypass cyclobutane pyrimidine dimers incorporating two adenylates.

  19. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity.

    Directory of Open Access Journals (Sweden)

    Chawalit Kocharunchitt

    Full Text Available The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw. Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen.

  20. Gene encoding virulence markers among Escherichia coli isolates ...

    African Journals Online (AJOL)

    River water sources and diarrhoeic stools of residents in the Venda Region, Limpopo Province of South Africa were analysed for the prevalence of Escherichia coli (E. coli) and the presence of virulence genes among the isolates. A control group of 100 nondiarrhoeic stool samples was included. Escherichia coli was ...

  1. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Chinen, Isabel; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  2. Microinjection of Escherichia coli UvrA, B, C and D proteins into fibroblasts of xeroderma pigmentosum complementation groups A and C does not result in restoration of UV-induced DNA synthesis.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; A.P. Barbeiro; W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1986-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured human fibroblasts of repair-deficient xeroderma pigmentosum complementation groups A and C was assayed after injection of identical activities of either Uvr excinuclease (UvrA, B, C and D) from Escherichia coli or endonuclease V

  3. Action of sodium deoxycholate on Escherichia coli

    International Nuclear Information System (INIS)

    D'Mello, A.; Yotis, W.W.

    1987-01-01

    Sodium deoxycholate is used in a number of bacteriological media for the isolation and classification of gram-negative bacteria from food and the environment. Initial experiments to study the effect of deoxycholate on the growth parameters of Escherichia coli showed an increase in the lag time constant and generation time and a decrease in the growth rate constant total cell yield of this microorganisms. Cell fractionation studies indicated that sodium deoxycholate at levels used in bacteriological media interferes with the incorporation of [U- 14 C]glucose into the cold-trichloroacetic acid-soluble, ethanol-soluble, and trypsin-soluble cellular fractions of E. coli. Finally, sodium deoxycholate interfered with the flagellation and motility of Proteus mirabilis and E. coli. It would appear then that further improvement of the deoxycholate medium may be in order

  4. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    Directory of Open Access Journals (Sweden)

    Tjaša Danevčič

    Full Text Available Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria.

  5. Deuterium incorporation into Escherichia-coli proteins

    DEFF Research Database (Denmark)

    Lederer, H.; May, R. P.; Kjems, Jørgen

    1986-01-01

    Neutron small-angle scattering studies of single protein subunits in a protein-DNA complex require the adjustment of the neutron scattering-length densities of protein and DNA, which is attainable by specific deuteration of the protein. The neutron scattering densities of unlabelled DNA and DNA......-dependent RNA polymerase of Escherichia coli match when RNA polymerase is isolated from cells grown in a medium containing 46% D2O and unlabelled glucose as carbon source. Their contrasts vanish simultaneously in a dialysis buffer containing 65% D2O. An expression was evaluated which allows the calculation...... of the degree of deuteration and match point of any E. coli protein from the D2O content of the growth medium, taking the 2H incorporation into RNA polymerase amino acids to be representative for all amino acids in E. coli proteins. The small-angle scattering results, on which the calculation of the degree...

  6. Action of sodium deoxycholate on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    D' Mello, A.; Yotis, W.W.

    1987-08-01

    Sodium deoxycholate is used in a number of bacteriological media for the isolation and classification of gram-negative bacteria from food and the environment. Initial experiments to study the effect of deoxycholate on the growth parameters of Escherichia coli showed an increase in the lag time constant and generation time and a decrease in the growth rate constant total cell yield of this microorganisms. Cell fractionation studies indicated that sodium deoxycholate at levels used in bacteriological media interferes with the incorporation of (U-/sup 14/C)glucose into the cold-trichloroacetic acid-soluble, ethanol-soluble, and trypsin-soluble cellular fractions of E. coli. Finally, sodium deoxycholate interfered with the flagellation and motility of Proteus mirabilis and E. coli. It would appear then that further improvement of the deoxycholate medium may be in order.

  7. N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division.

    Directory of Open Access Journals (Sweden)

    Dagmar Zweytick

    Full Text Available Two types of recently described antibacterial peptides derived from human lactoferricin, either nonacylated or N-acylated, were studied for their different interaction with membranes of Escherichia coli in vivo and in model systems. Electron microscopy revealed striking effects on the bacterial membrane as both peptide types induced formation of large membrane blebs. Electron and fluorescence microscopy, however demonstrated that only the N-acylated peptides partially induced the generation of oversized cells, which might reflect defects in cell-division. Further a different distribution of cardiolipin domains on the E. coli membrane was shown only in the presence of the N-acylated peptides. The lipid was distributed over the whole bacterial cell surface, whereas cardiolipin in untreated and nonacylated peptide-treated cells was mainly located at the septum and poles. Studies with bacterial membrane mimics, such as cardiolipin or phosphatidylethanolamine revealed that both types of peptides interacted with the negatively charged lipid cardiolipin. The nonacylated peptides however induced segregation of cardiolipin into peptide-enriched and peptide-poor lipid domains, while the N-acylated peptides promoted formation of many small heterogeneous domains. Only N-acylated peptides caused additional severe effects on the main phase transition of liposomes composed of pure phosphatidylethanolamine, while both peptide types inhibited the lamellar to hexagonal phase transition. Lipid mixtures of phosphatidylethanolamine and cardiolipin revealed anionic clustering by all peptide types. However additional strong perturbation of the neutral lipids was only seen with the N-acylated peptides. Nuclear magnetic resonance demonstrated different conformational arrangement of the N-acylated peptide in anionic and zwitterionic micelles revealing possible mechanistic differences in their action on different membrane lipids. We hypothesized that both peptides kill

  8. Escherichia coli in broiler chickens with airsacculitis

    Directory of Open Access Journals (Sweden)

    Leandro S. Machado

    2014-09-01

    Full Text Available ABSTRACT. Machado L.S., do Nascimento E.R., Pereira V.L.A., Abreu D.L.C., Gouvea R. & Santos L.M.M. 2014. [Escherichia coli in broiler chickens with airsacculitis.] Escherichia coli em frangos de corte com aerossaculite. Revista Brasileira de Medicina Veterinária, 36(3:261-265, 2014. Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Dr. Vital Brazil Filho 64, Vital Brazil, Niterói, RJ 24230-340, Brazil. E-mail: leandromachadovet@yahoo.com.br The Brazilian poultry industry grows each year and becomes increasingly representative in the production and export of products. The health care with poultry have accompanied and favored this evolution, however, respiratory agents that affect the weight and carcass quality, continue to cause great damage to the poultry industry. Airsacculitis is considered the main cause of total and partial condemnation of carcasses of broilers, and has been attributed to Mycoplasmosis mostly caused by Mycoplasma gallisepticum (MG and Mycoplasma synoviae (MS and Escherichia coli. The aim of this study was to relate the positivity of MG / MS and E. coli detected by PCR as a risk factor for airsacculitis in condemnation of broilers in Health Inspection Service. We studied 30 broiler poultry slaughtered in a slaughterhouse under Federal Sanitary Inspection, located in the State of Rio de Janeiro. 30 chickens were randomly collected from different lots and tracheas obtained in each PCR. DNA was extracted by phenol-chloroform method and amplified using pairs of “primer”specific for MG, MS and E. coli. Of the 30 chickens analyzed by PCR, 30% (9/30 had lesions in air sacs. None of the birds showed infection with MG and/or MS PCR, however 33.3% (3/9 birds were positive for airsacculitis iss gene from E.coli. E.coli found in broiler chickens that were negative for mycoplasma airsacculitis, implying the presence of such bacteria may be sufficient

  9. Endocytosis-inducer adhesins produced by enteropathogenic serogroups of Escherichia coli participate on bacterial attachment to infant enterocytes

    Directory of Open Access Journals (Sweden)

    João Ramos Costa Andrade

    1987-03-01

    Full Text Available Enteropathogenic E. coli (EPEC infection of Hep-2 cells preoceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.A infecção de células Hep-2 por E. coli enteropatogênicas (ECEP implica na aderência bacteriana e posterior interiorização dos microrganismos aderidos por um mecanismo de endocitose. A aderência das ECEP é pré-requisito para a infecção e é mediada por adesinas que reconhecem receptores inibidos por certas oses na membrana celular. Tais "adesinas indutoras da endocitose" (AIE também promovem a ligação bacteriana a enterócitos obtidos do intestino delgado de lactente, sugerindo que as AIE possam desempenhar algum papel nas diarréias causadas por ECEP.

  10. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Joergensen Louise

    2010-11-01

    Full Text Available Abstract Background The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1 antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. Methods The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. Results All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. Conclusions The baculovirus based insect cell

  11. Photoinactivation of mcr-1 positive Escherichia coli

    Science.gov (United States)

    Caires, C. S. A.; Leal, C. R. B.; Rodrigues, A. C. S.; Lima, A. R.; Silva, C. M.; Ramos, C. A. N.; Chang, M. R.; Arruda, E. J.; Oliveira, S. L.; Nascimento, V. A.; Caires, A. R. L.

    2018-01-01

    The emergence of plasmid-mediated colistin resistance in Enterobacteriaceae, mostly in Escherichia coli due to the mcr-1 gene, has revealed the need to develop alternative approaches in treating mcr-1 positive bacterial infections. This is because colistin is a broad-spectrum antibiotic and one of the ‘last-resort’ antibiotics for multidrug resistant bacteria. The present study evaluated for the first time, to the best of our knowledge, the efficacy of photoinactivation processes to kill a known mcr-1 positive E. coli strain. Eosin methylene-blue (EMB) was investigated as a photoantimicrobial agent for inhibiting the growth of a mcr-1 positive E. coli strain obtained from a patient with a diabetic foot infection. The photoantimicrobial activity of EMB was also tested in a non-multidrug resistant E. coli strain. The photoinactivation process was tested using light doses in the 30-45 J cm-2 range provided by a LED device emitting at 625 nm. Our findings demonstrate that a mcr-1 positive E. coli strain is susceptible to photoinactivation. The results show that the EMB was successfully photoactivated, regardless of the bacterial multidrug resistance; inactivating the bacterial growth by oxidizing the cells in accordance with the generation of the oxygen reactive species. Our results suggest that bacterial photoinactivation is an alternative and effective approach to kill mcr-1 positive bacteria.

  12. Profiling of Escherichia coli Chromosome database.

    Science.gov (United States)

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers.

  13. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Hebbelstrup Jensen, Betina; Olsen, Katharina E P; Struve, Carsten

    2014-01-01

    Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission...

  14. lactamases genes among0 Escherichia coli from patients with ...

    African Journals Online (AJOL)

    -lactamases (ESBLs) that mediate resistance to b-lactam drugs among Escherichia coli and other uropathogens have been reported worldwide. However, there is little information on the detection of ESBLs genes in E. coli from patients with ...

  15. Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli ...

    African Journals Online (AJOL)

    Erah

    PMQR) genes and the prevalence of extended spectrum β-lactamase (ESBL) types in Escherichia coli clinical isolates. Methods: Sixty-one ESBL-producing urinary E. coli isolates were studied. An antibiotic susceptibility test was performed ...

  16. Effect of nalidixic acid on repair of single-strand breaks in DNA induced by ionizing irradiation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Francia, I [Debreceni Orvostudomanyi Egyetem (Hungary); Okos, A; Hernadi, F J [Institute of Pharmacology, Debrecen (Hungary)

    1978-09-30

    The incidence of DNA single-strand breaks induced by /sup 60/Co irradiation and their repair in E.coli K12 (AB 1157) rec/sup +/ cells were studied by the alkaline sucrose gradient sedimentation method described by McGrath and Williams. For the quantitative analysis of sedimentation profiles we used the s 1/2 values described by Veatch and Okada. The s 1/2 value of non-irradiated controls was 22.4, and after 20 krads irradiation it was found to be 11.7. A postirradiation incubation at 37 /sup 0/C for 60 min increasedthe s 1/2 value from 11.7 to 22.1. Nalidixic acid at low concentration (20-50 ..mu..g/ml) did not block, but at 100 ..mu..g/ml extensively inhibited the above repair process, exhibiting an s 1/2 value of 14.4.

  17. Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics

    Directory of Open Access Journals (Sweden)

    Isak Demirel

    2017-06-01

    Full Text Available It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL-producing UPEC (ESBL019 during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array. All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-α from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce TNF-α release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.

  18. Escherichia coli Uropathogenesis In Vitro

    DEFF Research Database (Denmark)

    Andersen, Thomas E; Khandige, Surabhi; Madelung, Michelle

    2012-01-01

    -stage infection events have not been replicated in vitro. We have established an in vitro model of human bladder cell infection by the use of a flow chamber (FC)-based culture system, which allows investigation of steps subsequent to initial invasion. Short-term bacterial colonization on the FC-BEC layer led...... to rods that could invade other BECs. Hence, under growth conditions established to resemble those present in vivo, the elements of the proposed uropathogenic cascade were inducible in a human BEC model system. Here, we describe the model and show how these characteristics are reproduced in vitro....

  19. Comparative study of SOS response induced by hydrogen peroxide in the absence or presence of iron ions, in Escherichia coli; Estudo comparativo da resposta SOS induzida pelo peroxido de hidrogenio em presenca e ausencia de ions ferro, em Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Carlos Eduardo Bonacossa de

    1994-07-01

    The H{sub 2}O{sub 2} is an reactive oxygen specie that arises from cell respiration process. It may cause deleterious effects on cell, by reacting with transition metals like iron. In this way it yields free radicals that are able to damage organic molecules, mainly DNA. Recent works have suggested that in the absence of Fe ions H{sub 2}O{sub 2} still damages Escherichia coli DNA. This work presents a comparative analysis of cell SOS responses to DNA damage in Escherichia coli and Salmonella typhimurium mutants pretreated or not with a Fe{sup 2+} ion chelator (dipyridyl) and then treated with H{sub 2}O{sub 2}. The systems analysed were the lysogenic induction, Weigle reactivation, mutagenesis and cell inactivation curves. The cell inactivation curves were themselves distinct, in relation to both treatments. The increased sensitivity found in the lexA1 and recA13 mutants, when treated with dipyridyl and H{sub 2}O{sub 2}, suggests an important role of SOS response in repairing the lesions caused by this treatment. The profiles of the lysogenic induction and mutagenesis curves were also distinct in both treatments. The results of Weigle reactivation suggest that the products of uvrA and lexA genes have an important role in UV-damaged bacteriophage DNA repair, when dipyridyl-pretreated cells are treated with H{sub 2}O{sub 2}. All the results suggest that Fe-independent lesions produced by H{sub 2}O{sub 2} are different from the ones produced in the presence of this ion. (author)

  20. Translational coupling in Escherichia coli of a heterologous Bacillus subtilis-Escherichia coli gene fusion.

    OpenAIRE

    Zaghloul, T I; Doi, R H

    1986-01-01

    The efficient expression in Escherichia coli of the Tn9-derived chloramphenicol acetyltransferase (EC 2.3.1.28) gene fused distal to the promoter and N terminus of the Bacillus subtilis aprA gene was dependent on the initiation of translation from the ribosome-binding site in the aprA gene.

  1. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    Science.gov (United States)

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  2. Effect of stress induced by suboptimal growth factors on survival of Escherichia coli O157:H7.

    Science.gov (United States)

    Uyttendaele, M; Taverniers, I; Debevere, J

    2001-05-21

    This study investigated the growth and survival of E. coli O157:H7 exposed to a combination of suboptimal factors (22 degrees C, 7 degrees C, -18 degrees C/0.5% NaCl, 5.0% NaCl/pH 7.0, pH 5.4, pH 4.5/addition of lactic acid) in a simulation medium for red meat (beef gravy). Prolonged survival was noted as the imposed stress was more severe, and as multiple growth factors became suboptimal. At a defined temperature (7 degrees C or -18 degrees C), survival was prolonged at the more acid, more suboptimal pH (pH 4.5 > pH 5.4 > pH 7.0) while at a defined pH (pH 4.5), better survival was observed at 7 degrees C than at 22 degrees C. This suggests that application of the hurdle concept for preservation of food may inhibit outgrowth but induce prolonged survival of E. coli O157:H7 in minimal processed foods. At both 22 degrees C and 7 degrees C, the addition of lactic acid instead of HCl to reduce pH (to pH 4.5) resulted in a more rapid decrease of E. coli O157:H7. High survival was observed in beef gravy, pH 5.4 at -18 degrees C (simulation of frozen meat)-reduction of log 3.0 to log 1.9 after 43 days--and in beef gravy, pH 4.5 and 5% NaCl at 7 degrees C (simulation of a fermented dried meat product kept in refrigeration)--less than 1 log reduction in 43 days. In these circumstances, however, a high degree of sublethal damage of the bacterial cells was noted. The degree of sublethal damage can be estimated from the difference in recovery of the pathogen on the non-selective TSA medium and the selective SMAC medium.

  3. Saccharomyces boulardii Preserves the Barrier Function and Modulates the Signal Transduction Pathway Induced in Enteropathogenic Escherichia coli-Infected T84 Cells

    Science.gov (United States)

    Czerucka, Dorota; Dahan, Stephanie; Mograbi, Baharia; Rossi, Bernard; Rampal, Patrick

    2000-01-01

    Use of the nonpathogenic yeast Saccharomyces boulardii in the treatment of infectious diarrhea has attracted growing interest. The present study designed to investigate the effect of this yeast on enteropathogenic Escherichia coli (EPEC)-associated disease demonstrates that S. boulardii abrogated the alterations induced by an EPEC strain on transepithelial resistance, [3H]inulin flux, and ZO-1 distribution in T84 cells. Moreover, EPEC-mediated apoptosis of epithelial cells was delayed in the presence of S. boulardii. The yeast did not modify the number of adherent bacteria but lowered by 50% the number of intracellular bacteria. Infection by EPEC induced tyrosine phosphorylation of several proteins in T84 cells, including p46 and p52 SHC isoforms, that was attenuated in the presence of S. boulardii. Similarly, EPEC-induced activation of the ERK1/2 mitogen-activated protein (MAP) kinase pathway was diminished in the presence of the yeast. Interestingly, inhibition of the ERK1/2 pathway with the specific inhibitor PD 98059 decreased EPEC internalization, suggesting that modulation of the ERK1/2 MAP pathway might account for the lowering of the number of intracellular bacteria observed in the presence of S. boulardii. Altogether, this study demonstrated that S. boulardii exerts a protective effect on epithelial cells after EPEC adhesion by modulating the signaling pathway induced by bacterial infection. PMID:10992512

  4. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli

    DEFF Research Database (Denmark)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production econo...

  5. Enteropathogenic Escherichia coli: foe or innocent bystander?

    Science.gov (United States)

    Hu, Jia; Torres, Alfredo G.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) remain one the most important pathogens infecting children and they are one of the main causes of persistent diarrhea worldwide. Historically, typical EPEC (tEPEC), defined as those isolates with the attaching and effacement (A/E) genotype (eae+), which possess bfpA+ and lack the stx- genes are found strongly associated with diarrheal cases. However, occurrence of atypical EPEC (aEPEC; eae+ bfpA- stx-) in diarrheal and asymptomatic hosts has made investigators question the role of these pathogens in human disease. Current epidemiological data is helping answering the question whether EPEC is mainly a foe or an innocent bystander during infection. PMID:25726041

  6. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... this incredibly big molecule and separate the two daughter chromosomes and how it makes sure that the daughter cells receives one copy each. The fully extended chromosome is two orders of magnitude larger than the cell in which it is contained. Hence the chromosome is heavily compacted in the cell...

  7. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  8. Multiplex Genome Editing in Escherichia coli

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Nielsen, Alex Toftgaard

    2018-01-01

    Lambda Red recombineering is an easy and efficient method for generating genetic modifications in Escherichia coli. For gene deletions, lambda Red recombineering is combined with the use of selectable markers, which are removed through the action of, e.g., flippase (Flp) recombinase. This PCR......-based engineering method has also been applied to a number of other bacteria. In this chapter, we describe a recently developed one plasmid-based method as well as the use of a strain with genomically integrated recombineering genes, which significantly speeds up the engineering of strains with multiple genomic...

  9. Expression of maize prolamins in Escherichia Coli

    International Nuclear Information System (INIS)

    Wang, Szu-zhen; Esen, Asim

    1985-01-01

    We have constructed a cDNA expression library of developing corn (Zea manys L.) endosperm using plasmid pUC8 as vector and Escherichia coli strain DH1 as host. The expression library was screened with non-radioactive immunological probes to detect the expression of gamma-zein and alpha-zein. When anti-gamma-zein antibody was used as the probe, 23 colonies gave positive reactions. The lengths of cDNA inserts of the 23 colonies were found to be 250-900 base pairs. When anti-alpha zein antibody was used, however, fewer colonies gave positive reactions. The library was also screened by colony-hybridization with 32 P-labeled DNA probes. Based on immunological and hybridization screening of the library and other evidence, we conclude that alpha-zein was either toxic to E. coli cells or rapidly degraded whereas gamma-zein and its fragments were readily expressed. (author)

  10. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, Jonathan P; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome......, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals...... that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence...

  11. Different efficiency of UmuDC and MucAB proteins in UV light induced mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Blanco, M.; Herrera, G.; Aleixandre, V.

    1986-01-01

    Two multicopy plasmids carrying either the umuDC or the mucAB operon were used to compare the efficiency of UmuDC and MucAB proteins in UV mutagenesis of Escherichia coli K12. It was found that in recA + uvr + bacteria, plasmid pIC80, mucAB + mediated UV mutagenesis more efficiently than did plasmid pSE 117, umuDC + . A similar result was obtained in lex A51(Def) cells, excluding the possibility that this was due to a differential regulation by LexA of the umuDC and mucAB operons. We conclude that some structural characteristic of the UmuDC and MucAB proteins determines their different efficiency in UV mutagenesis. This characteristic could be also responsible for the observation that in the recA430 mutant, pIC80 but no pSE117 can mediate UV mutagenesis. In the recAS142 mutant pIC80 also promoted UV mutagenesis more efficiently than pSE117. In this mutant, the recombination proficiency, the protease activity toward LexA and the mutation frequency were increased by the presence of adenine in the medium. In recA + uvrB5 bacteria, plasmid pSE117, umuDC caused both an increase in UV sensitivity as well as a reduction in the mutation frequency. These negative effects resulting from the overproduction of UmuDC proteins were higher in recA142 uvrB5 than in recA + uvrB5 cells. In contrast, overproduction of MucAB proteins in excision-deficient bacteria containing pIC80 led to a large increase in the mutation frequency. We suggest that the functional differences between UmuDC and MucAB proteins might be due to their different dependence on the direct role of RecA protease in UV mutagenesis. (orig.)

  12. Identifying New Small Proteins in Escherichia coli.

    Science.gov (United States)

    VanOrsdel, Caitlin E; Kelly, John P; Burke, Brittany N; Lein, Christina D; Oufiero, Christopher E; Sanchez, Joseph F; Wimmers, Larry E; Hearn, David J; Abuikhdair, Fatimeh J; Barnhart, Kathryn R; Duley, Michelle L; Ernst, Sarah E G; Kenerson, Briana A; Serafin, Aubrey J; Hemm, Matthew R

    2018-04-12

    The number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3' end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E. coli small proteins, tagging 80 sORFs in the E. coli genome, and assayed for protein synthesis. The selected sORFs represent diverse sequence characteristics, including degrees of sORF conservation, predicted transmembrane domains, sORF direction with respect to flanking genes, ribosome binding site (RBS) prediction, and ribosome profiling results. Of 80 sORFs, 36 resulted in encoded synthesized proteins-a 45% success rate. Modeling of detected versus non-detected small proteins analysis showed predictions based on RBS prediction, transcription data, and ribosome profiling had statistically-significant correlation with protein synthesis; however, there was no correlation between current sORF annotation and protein synthesis. These results suggest substantial numbers of small proteins remain undiscovered in E. coli, and existing bioinformatics techniques must continue to improve to facilitate identification. © 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Towson University.

  13. Engineering Escherichia coli for methanol conversion.

    Science.gov (United States)

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Transport proteins promoting Escherichia coli pathogenesis

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  15. Transport proteins promoting Escherichia coli pathogenesis.

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Antibiotic resistant Salmonella and Escherichia coli isolated from ...

    African Journals Online (AJOL)

    Results: A hundred and four indigenous chicken rectal swabs were analysed, of which 67.3% were contaminated with Escherichia coli and 12.5% with Salmonella typhimurium. Seventy Escherichia coli isolates showed resistance phenotypes to one, two or more antibiotics. The most common antimicrobial resistance pattern ...

  17. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  18. Escherichia coli clearance after splenic autotransplants

    International Nuclear Information System (INIS)

    Marques, R.G.; Petroianu, A.; Oliveira, M.B.N.; Bernardo-Filho, M.; Portela, M.C.

    2002-01-01

    Background: Splenic autotransplantation seems to be the only alternative for preservation of splenic tissue, after total splenectomy. The present study was carried out to analyze Escherichia coli depuration by mononuclear phagocyte system organs after total splenectomy and splenic autotransplantation. Methods: We utilized an experimental model including young and adult Wistar rats, of both sexes, submitted to total splenectomy and splenic autotransplantation. The evaluation method was intravenous inoculation of a suspension of Escherichia coli labeled with technetium-99m. We analyzed bacteria uptake by mononuclear phagocyte system organs and bacteria remnant in the bloodstream. Results: There was no difference between young and adult animals in bacteria uptake by mononuclear phagocyte system organs. In the comparison of groups, it was found out that the mean percent uptake by spleen and liver of animals in the control group was higher than that observed for animals with splenic implants. However, bacteria uptake in the lung was higher in the splenic implant group than in the control group. Although spleen bacteria uptake in the control group animals has been higher than that of animals in the splenic implant group, the remnant bacteria in the bloodstream was similar. Animals submitted to isolated total splenectomy showed higher bacteria remnant in the bloodstream than animals of the control group or the group submitted to total splenectomy combined with splenic autotransplantation. Conclusion: Our results indicate that autogenous splenic implant is efficacious in bacteria depuration in rats, by means of their macrophages phagocytosis. In addition, it does not modify bacteria removal function of liver and lung

  19. Synthesis of avenanthramides using engineered Escherichia coli.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun Young; Kang, Hyunook; Yeo, Won Seok; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2018-03-22

    Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns

  20. Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis

    NARCIS (Netherlands)

    Dosogne, H.; Meyer, E.; Sturk, A.; van Loon, J.; Massart-Leën, A. M.; Burvenich, C.

    2002-01-01

    OBJECTIVE AND DESIGN: To investigate the effect of enrofloxacin on endotoxin resorption during bovine Escherichia coli mastitis. ANIMALS: 12 healthy early post partum Holstein cows. TREATMENT: Mastitis was induced by intramammary infusion of 10(4) cfu E. coli P4:032. Six cows were treated twice

  1. The thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3' thymine-to-cytosine transitions in Escherichia coli

    International Nuclear Information System (INIS)

    LeClerc, J.E.; Borden, A.; Lawrence, C.W.

    1991-01-01

    The authors have constructed single-stranded, M13-based vectors that contain a specifically located thymine-thymine pyrimidine-pyrimidone(6-4) UV photoproduct and have used these to estimate the frequency and accuracy of DNA replication past this adduct in uvrA6 cells of Escherichia coli. Both the normal and the Dewar valence photoisomer of the (6-4) adduct were studied. In the absence of SOS induction, vectors carrying the photoproducts were rarely replicated; relative to the lesion-free control, 1.9% of vectors carrying the normal (6-4) isomer produced plaques, and with the Dewar valence isomer the proportion was 0.4%. In SOS-induced cells, these frequencies rose to 22.1% and 12.3%, respectively. The error frequency of replication past the normal isomer in SOS-induced cells was high. They speculate that the high error frequency and specificity arise from the formation of a stable T·G base pair, involving hydrogen bonds at O-2 and N-3 in the pyrimidone ring. Potential hydrogen bonds at these sites are coplanar in the normal but not in the Dewar isomer, perhaps explaining the reduced specificity of mutagenesis with the latter adduct

  2. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Science.gov (United States)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  3. Increased multi-drug resistant Escherichia coli from hospitals in ...

    African Journals Online (AJOL)

    Background: Multidrug-resistant Escherichia coli (MDR E. coli) has become a major public health concern in Sudan and many countries, causing failure in treatment with consequent huge health burden. Objectives: To determine the prevalence and susceptibility of MDR E. coli isolated from patients in hospitals at Khartoum ...

  4. Isolation and genomic characterization of Escherichia coli O157:NM ...

    African Journals Online (AJOL)

    Human diseases caused by Escherichia coli O157:NM and E. coli O157:H7 strains have been reported throughout the world. In developed countries, serotype O157:H7 represents the major cause of human diseases; however, there have been increasing reports of non-O157 Shiga toxin (Stx)-producing E. coli strains ...

  5. Neonatal infections caused by Escherichia coli at the National ...

    African Journals Online (AJOL)

    Background: Escherichia coli (E.coli) has been implicated as a common cause of both early and late onset neonatal infections. The emergence of different strains of E.coli that are multiply resistant to commonly used antibiotics has made continuous antibiotics surveillance relevant. Knowledge about common infections ...

  6. neonatal infections caused by escherichia coli at the national

    African Journals Online (AJOL)

    boaz

    Background: Escherichia coli (E.coli) has been implicated as a common cause of both early and late onset neonatal infections. The emergence of different strains of E.coli that are multiply resistant to commonly used antibiotics has made continuous antibiotics surveillance relevant. Knowledge about common infections ...

  7. Diarrheagenic Escherichia coli Markers and Phenotypes among Fecal E. coli Isolates Collected from Nicaraguan Infants ▿

    OpenAIRE

    Reyes, Daniel; Vilchez, Samuel; Paniagua, Margarita; Colque-Navarro, Patricia; Weintraub, Andrej; Möllby, Roland; Kühn, Inger

    2010-01-01

    We analyzed the prevalence of diarrheagenic Escherichia coli (DEC) markers and common phenotypes in 2,164 E. coli isolates from 282 DEC-positive samples. Enteropathogenic E. coli (EPEC) and enteroaggregative E. coli (EAEC) were very diverse and were not correlated with diarrhea. Enterotoxigenic E. coli (ETEC) estA and enterohemorrhagic E. coli (EHEC) belonged to a few phenotypes and were significantly correlated with diarrhea.

  8. Chloroacetaldehyde-induced mutagenesis in Escherichia coli: The role of AlkB protein in repair of 3,N4-ethenocytosine and 3,N4-α-hydroxyethanocytosine

    International Nuclear Information System (INIS)

    Maciejewska, Agnieszka M.; Ruszel, Karol P.; Nieminuszczy, Jadwiga; Lewicka, Joanna; Sokolowska, Beata; Grzesiuk, Elzbieta; Kusmierek, Jaroslaw T.

    2010-01-01

    Etheno (ε) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate ε-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of ε-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) ) which allowed to monitor Lac + revertants, the latter arose by GC → AT or GC → TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of εC proceeds via a relatively stable intermediate, 3,N 4 -α-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and mug, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA + , alkB + , and mug + controls. Considering the levels of CAA-induced Lac + revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of εC and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs εC and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and εC is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of AlkB protein.

  9. iTRAQ-Based Proteomic Analysis of Sublethally Injured Escherichia coli O157:H7 Cells Induced by High Pressure Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiufang Bi

    2017-12-01

    Full Text Available High pressure carbon dioxide (HPCD could cause sublethally injured cells (SICs, which may cause food poisoning and spoilage during food storage and limit its application. Therefore, the formation of SICs of Escherichia coli O157:H7 was investigated by isobaric tag for relative and absolute quantification (iTRAQ proteomic methods in this study for better controlling the SICs induced by HPCD. A total of 2,446 proteins was identified by iTRAQ, of which 93 and 29 were significantly differentially expressed in the SICs compared with live control cells (CKL and dead control cells (CKD, respectively. Among the 93 differentially expressed proteins (DEP in the SICs compared with CKL, 65 proteins showed down-regulation and 28 showed up-regulation. According to the comprehensive proteome coverage analysis, the SICs survived under HPCD by reducing carbohydrate decomposing, lipid transport and metabolism, amino acid transport and metabolism, transcription and translation, DNA replication and repair. Besides, the SICs showed stress response, DNA damage response and an increased carbohydrate transport, peptidoglycan synthesis and disulfide bond formation to HPCD. Among the 29 DEP in the SICs compared with CKD, 12 proteins showed down-regulation and 17 showed up-regulation. According to the comprehensive proteome coverage analysis, the SICs survived under HPCD by accumulation of cell protective agents like carbohydrates and amino acids, and decreasing transcription and translation activities. Results showed that the formation of the SICs with low metabolic activity and high survival ability was a survival strategy for E. coli O157:H7 against HPCD.

  10. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  11. Control of Ribosome Synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Molin, Søren; Meyenburg, K. von; Måløe, O.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue {alpha...... and to estimate the transcription time for the rRNA operon under different conditions. In steady states of growth with growth rates ranging from 0.75 to 2.3 doublings/h, as well as during the transition after a shift-down, the transcription time of the rRNA operon was constant. The rate of synthesis of r......RNA correlated during this transition – in contrast to the rate of accumulation (M. T. Hansen et al., J. Bacteriol. 122: 585-591, 1975) – with the ppGpp pool in the same way as has been observed during partial amino acid starvation....

  12. Repair replication in permeabilized Escherichia coli

    International Nuclear Information System (INIS)

    Masker, W.E.; Simon, T.J.; Hanawalt, P.C.

    1975-01-01

    We have examined the modes of DNA synthesis in Escherichia coli strains made permeable to nucleoside triphosphates by treatment with toluene. In this quasi in vitro system, polymerase-I-deficient mutants exhibit a nonconservative mode of synthesis with properties expected for the resynthesis step of excision-repair. This uv-stimulated DNA synthesis can be performed by either DNA polymerase II or III and it also requires the uvrA gene product. It requires the four deoxynucleoside triphosphates; but, in contrast to the semiconservative mode, the ATP requirement can be partially satisfied by other nucleoside triphosphates. The ATP-dependent recBC nuclease is not involved. The observed uv-stimulated mode of DNA synthesis may be part of an alternate excision-repair mechanism which supplements or complements DNA-polymerase-I-dependent repair in vivo

  13. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...... temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus......, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie...

  14. Multiepitope Fusion Antigen Induces Broadly Protective Antibodies That Prevent Adherence of Escherichia coli Strains Expressing Colonization Factor Antigen I (CFA/I), CFA/II, and CFA/IV

    OpenAIRE

    Ruan, Xiaosai; Knudsen, David E.; Wollenberg, Katie M.; Sack, David A.; Zhang, Weiping

    2014-01-01

    Diarrhea is the second leading cause of death in children younger than 5 years and continues to be a major threat to global health. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacteria causing diarrhea in developing countries. ETEC strains are able to attach to host small intestinal epithelial cells by using bacterial colonization factor antigen (CFA) adhesins. This attachment helps to initiate the diarrheal disease. Vaccines that induce antiadhesin immunity to block a...

  15. Influence of some exo nucleases in response to the induced genetic damage in Escherichia coli by alpha radiation

    International Nuclear Information System (INIS)

    Aguilar M, M.

    2005-01-01

    Within the strategies with those that E. coli counts to overcome to the genetic damage there is the SOS response, a group of genes that participate in repair and/or tolerance that it confers to the bacteria major opportunities of surviving. These genes are repressed and its only are expressed when it happens genetic damage. So that this system is activated it is necessary that DNA of a band exists and in this sense the double ruptures (RDB) its are not able to induce this response unless there is a previous processing. In stumps with defects in certain genes that have to do with repair of RDB (as recO, recJ and xonA) the activity of SOS is smaller than in a wild stump what suggests that these participate in the previous processes to the activation of the response. The ionizing radiation produce among other many lesions, RDB in greater or smaller proportion, depending on the ionization capacity. A parameter to evaluate this capacity is the lineal energy transfer (LET), defined as the average energy given by unit of distance travelled. In general the LET of the corpuscular radiations is a lot but high that of the electromagnetic one, for what produces bigger quantity of ionizations inside a restricted zone and it increases by this way the probability that RDB has been generated. This work has for object to infer the participation of xonA and recJ in this response and to evaluate the damage produced by ionizing radiation of different LET (alpha particles of different energies) in a stump with all the functional repair mechanisms. Its were considered two parameters: the survival and the activity of SOS evaluated by means of the chromo test. The results indicate that the activity of these exo nucleases is necessary for the repair of RDB as well as for the processing of lesions foresaw to the activation of SOS. As for the treatment with alphas of different energies is observed that so much the survival like the activity of SOS vary as the LET of the radiation changes

  16. Lon gene and photoprotection in Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Waksman, G.; Thomas, G.; Favre, A. (Institut de Recherche en Biologie Moleculaire, Group de Photobiologie Moleculaire, Paris (France))

    1984-03-01

    Photoprotection, i.e. the increased resistance of the cells preilluminated with near ultraviolet light (300-380 nm) to the lethal action of 254nm radiations requires either an integrated prophage or a recA mutation in Escherichia coli K12 strains. Significant photoprotection occurs in an Escherichia coli K12 recA/sup +/ cell containing the lon allele responsible for filamentous growth after 254nm irradiation. The Fil phenotype can be suppressed by the sfiA or sfiB suppressor genes. Since the E. coli K12 recA/sup +/ lon sfiB strain exhibits no more photoprotection, it is concluded that in lon strains photoprotection is due to the abolition of the 254nm induced filamentation by the near ultraviolet treatment. In addition, near ultraviolet illumination of the cells leads to a severe restriction of the bulk protein synthesis. This effect is observed only in nuv/sup +/ cells that contain 4-thiouridine the chromophore responsible for photoprotection. It is proposed that in lon (lysogenic strains) photoprotection is due to prevention of the SOS response. During the growth lag, the low residual level of protein synthesis does not allow the induction of the SOS response and accordingly prevents filamentation (the lytic cycle).

  17. The lon gene and photoprotection in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Waksman, G.; Thomas, G.; Favre, A.

    1984-01-01

    Photoprotection, i.e. the increased resistance of the cells preilluminated with near ultraviolet light (300-380 nm) to the lethal action of 254nm radiations requires either an integrated prophage or a recA mutation in Escherichia coli K12 strains. Significant photoprotection occurs in an Escherichia coli K12 recA + cell containing the lon allele responsible for filamentous growth after 254nm irradiation. The Fil phenotype can be suppressed by the sfiA or sfiB suppressor genes. Since the E. coli K12 recA + lon sfiB strain exhibits no more photoprotection, it is concluded that in lon strains photoprotection is due to the abolition of the 254nm induced filamentation by the near ultraviolet treatment. In addition, near ultraviolet illumination of the cells leads to a severe restriction of the bulk protein synthesis. This effect is observed only in nuv + cells that contain 4-thiouridine the chromophore responsible for photoprotection. It is proposed that in lon (lysogenic strains) photoprotection is due to prevention of the SOS response. During the growth lag, the low residual level of protein synthesis does not allow the induction of the SOS response and accordingly prevents filamentation (the lytic cycle). (author)

  18. Effect of the uvr D3 mutation on ultraviolet radiation-induced DNA-repair replication in Escherichia coli K12

    International Nuclear Information System (INIS)

    Carlson, K.M.; Smith, K.C.

    1981-01-01

    Ultraviolet-radiation-induced DNA-repair replication was measured in wild-type, polA1, uvrD3, and polA1 uvrD3 strains of Escherichia coli K 12. A large stimulation of repair replication was observed in the uvrD3 strain, compared to the wild-type and polA1 strains. This enhanced repair replication was reduced in the polA1 uvrD3 strain. Therefore, a uvrD3 mutation appears to affect the amount of repair replication performed by DNA polymerase I. In the polA1 strain, there also appears to be an effect of the uvrD3 mutation on the amount of repair replication performed by DNA polymerase III (and/or II). The enhanced repair replication observed for the uvrD3 strains appears to be in response to the enhanced DNA degradation observed for these strains. (orig.)

  19. Autoregulation of transcription of the hupA gene in Escherichia coli: evidence for steric hindrance of the functional promoter domains induced by HU.

    Science.gov (United States)

    Kohno, K; Yasuzawa, K; Hirose, M; Kano, Y; Goshima, N; Tanaka, H; Imamoto, F

    1994-06-01

    The molecular mechanism of autoregulation of expression of the hupA gene in Escherichia coli was examined. The promoter of the gene contains a palindromic sequence with the potential to form a cruciform DNA structure in which the -35 sequence lies at the base of the stem and the -10 sequence forms a single-stranded loop. An artificial promoter lacking the palindrome, which was constructed by replacing a 10 nucleotide repeat for the predicted cruciform arm by a sequence in the opposite orientation, was not subject to HU-repression. DNA relaxation induced by deleting HU proteins and/or inhibiting DNA gyrase in cells results in increased expression from the hupA promoter. We propose that initiation of transcription of the hupA gene is negatively regulated by steric hindrance of the functional promoter domains for formation of the cruciform configuration, which is facilitated at least in part by negative supercoiling of the hupA promoter DNA region. The promoter region of the hupB gene also contains a palindromic sequence that can assume a cruciform configuration. Negative regulation of this gene by HU proteins may occur by a mechanism similar to that operating for the hupA gene.

  20. Efficacy of thiolated eudragit microspheres as an oral vaccine delivery system to induce mucosal immunity against enterotoxigenic Escherichia coli in mice.

    Science.gov (United States)

    Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Jung, Myunghwan; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang

    2012-05-01

    A vaccine delivery system based on thiolated eudragit microsphere (TEMS) was studied in vivo for its ability to elicit mucosal immunity against enterotoxigenic Escherichia coli (ETEC). Groups of mice were orally immunized with F4 or F18 fimbriae of ETEC and F4 or F18 loaded in TEMS. Mice that were orally administered with F4 or F18 loaded TEMS showed higher antigen-specific IgG antibody responses in serum and antigen-specific IgA in saliva and feces than mice that were immunized with antigens only. In addition, oral vaccination of F4 or F18 loaded TEMS resulted in higher numbers of IgG and IgA antigen-specific antibody secreting cells in the spleen, lamina propria, and Peyer's patches of immunized mice than other groups. Moreover, TEMS administration loaded with F4 or F18 induced mixed Th1 and Th2 type responses based on similarly increased levels of IgG1 and IgG2a. These results suggest that F4 or F18 loaded TEMS may be a promising candidate for an oral vaccine delivery system to elicit systemic and mucosal immunity against ETEC. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Two proline porters in Escherichia coli K-12.

    Science.gov (United States)

    Stalmach, M E; Grothe, S; Wood, J M

    1983-11-01

    Escherichia coli mutants defective at putP and putA lack proline transport via proline porter I and proline dehydrogenase activity, respectively. They retain a proline uptake system (proline porter II) that is induced during tryptophan-limited growth and are sensitive to the toxic L-proline analog, 3,4-dehydroproline. 3,4-Dehydroproline-resistant mutants derived from a putP putA mutant lack proline porter II. Auxotrophic derivatives derived from putP+ or putP bacteria can grow if provided with proline at low concentration (25 microM); those derived from the 3,4-dehydroproline-resistant mutants require high proline for growth (2.5 mM). We conclude that E. coli, like Salmonella typhimurium, possesses a second proline porter that is inactivated by mutations at the proP locus.

  2. Sedimentation and gravitational instability of Escherichia coli Suspension

    Science.gov (United States)

    Salin, Dominique; Douarche, Carine

    2017-11-01

    The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.

  3. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle

    Science.gov (United States)

    Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaug...

  4. Distribution of Diverse Escherichia coli between Cattle and Pasture

    OpenAIRE

    NandaKafle, Gitanjali; Seale, Tarren; Flint, Toby; Nepal, Madhav; Venter, Stephanus N.; Brözel, Volker S.

    2017-01-01

    Escherichia coli is widely considered to not survive for extended periods outside the intestines of warm-blooded animals; however, recent studies demonstrated that E. coli strains maintain populations in soil and water without any known fecal contamination. The objective of this study was to investigate whether the niche partitioning of E. coli occurs between cattle and their pasture. We attempted to clarify whether E. coli from bovine feces differs phenotypically and genotypically from isola...

  5. Genetic Transfer of Salmonella typhimurium and Escherichia coli Lipopolysaccharide Antigens to Escherichia coli K-12

    Science.gov (United States)

    Jones, Randall T.; Koeltzow, Donald E.; Stocker, B. A. D.

    1972-01-01

    Escherichia coli K-12 ϰ971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv+ hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his+ (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F′ factor (FS400) carrying the rfb–his region of S. typhimurium to the same two ilv+ hybrids gave similar results. LPS extracted from two ilv+,his+, factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his+ hybrids obtained from ϰ971 itself by similar HfrK9 and F′FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli ϰ971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli ϰ971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli ϰ971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his+ recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Ω8. This suggests that, although the parental E. coli K-12 strain ϰ971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units. PMID:4559827

  6. Complete Genome Sequence of Escherichia coli Strain WG5

    DEFF Research Database (Denmark)

    Imamovic, Lejla; Misiakou, Maria-Anna; van der Helm, Eric

    2018-01-01

    Escherichia coli strain WG5 is a widely used host for phage detection, including somatic coliphages employed as standard ISO method 10705-1 (2000). Here, we present the complete genome sequence of a commercial E. coli WG5 strain.......Escherichia coli strain WG5 is a widely used host for phage detection, including somatic coliphages employed as standard ISO method 10705-1 (2000). Here, we present the complete genome sequence of a commercial E. coli WG5 strain....

  7. Bowman-Birk inhibitor-like protein is secreted by sprouted pea seeds in response to induced colonization by enteropathogenic Escherichia coli.

    Science.gov (United States)

    Anuradha, Ravi; Raveendran, Muthuraj; Babu, Subramanian

    2013-11-01

    The interaction between the clinical isolate of enteropathogenic Escherichia coli (EPEC) SBANU8 and pea sprouts was compared with avirulent K 12. E. coli. This was carried out by repeated co-incubation with pea sprouts for 5 days, and the protein profile of the culture supernatant was analyzed by single and two-dimensional electrophoresis. Mass spectrometry analysis led to the identification of two serine protease inhibitors including a Bowman-Birk-type protein secreted by pea sprouts in response to clinical isolate. Expression of the E. coli intimin gene involved in animal host colonization and virulence was studied by reverse transcription polymerase chain reaction. Expression of this gene was high in SBANU8 when co-incubated with pea sprouts. The present study gives baseline data on the molecular level interactions of EPEC and pea sprouts, which are needed to design the outbreak control strategies.

  8. Ultraviolet radiation-induced mutability of uvrD3 strains of Escherichia coli B/r and K-12: a problem in analyzing mutagenesis data

    International Nuclear Information System (INIS)

    Smith, K.C.

    1976-01-01

    The involvement of the uvrD gene product in UV-induced mutagenesis in Escherichia coli was studied by comparing wild-type and uvrA or uvrB strains with their uvrD derivatives in B/r and K-12(W3110) backgrounds. Mutations per survivor (reversions to prototrophy) were compared as a function of surviving fraction and of UV fluence. While recognizing that both methods are not without problems, arguments are presented for favoring the former rather than the latter method of presenting the data when survival is less than 100%. When UV-induced mutation frequencies were plotted as a function of surviving fraction, the uvrD derivatives were less mutable than the corresponding parent strains. The B/r strains exhibited higher mutation frequencies than did the K-12(W3110) strains. A uvrB mutation increased the mutation frequency of its parental K-12 strain, but a uvrA mutation only increased the mutation frequency of its parental B/r strain at UV survivals greater than approximately 80%. Both the uvrA and uvrB mutations increased the mutation frequencies of the uvrD strains in the B/r and K-12 backgrounds, respectively. Rather different conclusions would be drawn if mutagenesis were considered as a function of UV fluence rather than of survival, a situation that calls for further work and discussion. Ideally mutation efficiencies should be compared as a function of the number of repair events per survivor, a number that is currently unobtainable. (author)

  9. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis.

    Science.gov (United States)

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2016-06-01

    Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  10. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    Science.gov (United States)

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  11. The Prevalence of Enterhaemorrhagic Escherichia Coli in children ...

    African Journals Online (AJOL)

    EHEC), the pathogenicity of other strains of Escherichia coli and other organisms in children presenting with and without diarrhoea in the hospital. Subjects and Methods: A total of 247 stool samples collected from children aged 1 month to 7 ...

  12. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  13. Nanotextile membranes for bacteria Escherichia coli capturing

    Directory of Open Access Journals (Sweden)

    Jaroslav Lev

    2010-01-01

    Full Text Available The article describes an experimental study dealing with the possibility of nanotextile materials usa­ge for microbiologically contaminated water filtration. The aim of the study is to verify filtration ability of different nanotextile materials and evaluate the possibilities of practical usage. Good detention ability of these materials in the air filtration is the presumption for nanotextile to be used for bacteria filtration from a liquid. High nanotextile porosity with the nanotextile pores dimensions smaller than a bacteria size predicates the possibility of a successful usage of these materials. For the experiment were used materials made from electrospinning nanofibres under the label PA612, PUR1, PUR2 s PUR3 on the supporting unwoven textiles (viscose and PP. As a model simulation of the microbial contamination, bacteria Escherichia coli was chosen. Contaminated water was filtered during the overpressure activity of 105Pa on the input side of the filter from the mentioned material. After three-day incubation on the nutrient medium, cultures found in the samples before and after filtration were compared. In the filtrated water, bacteria E. coli were indicated, which did not verify the theoretical presumptions about an absolut bacteria detention. However, used materials caught at least 94% of bacteria in case of material PUR1 and up to 99,996% in case of material PUR2. These results predict the possibility of producing effective nanotextile filters for microbiologically contaminated water filtration.Recommendation: For the production of materials with better filtrating qualities, experiments need to be done, enabling better understanding of the bacteria detention mechanisms on the nanotextile material, and parameters of the used materials that influence the filtrating abilities need to be verified.

  14. The enhanced UV-sensitivity of Escherichia coli uvr A crp strain

    International Nuclear Information System (INIS)

    Skavronskaya, A.G.; Aleshkin, G.I.

    1979-01-01

    Mutations in genes cya and crp do not affect the UV cell sensitivity of Escherichia coli of wild type in relation to repairs of UV-injuries and UV induced mutations yield. Mutations in gene crp (protein defect of catabolitic activator - cap) result in UV sensitivity decrease of E. coli uvrA strain, imperfect as to the first stage of excision repairs not decreasing the quantity of revertants, induced by the UV-light

  15. Accessibility of. gamma. -ray induced primer toward DNA polymerase I of Escherichia coli during soaking of barley seed

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H; Tatara, A; Naito, T [Tokyo Univ. (Japan). Faculty of Agriculture

    1976-09-01

    After dry barley seeds were irradiated with ..gamma..-rays and soaked for various times, the squashed preparations were made of the first leaf meristems and incubated with E.coli DNA polymerase I with appropriate substrates. The incorporation of nucleotides with DNA polymerase occurred in the cells fixed at late G/sub 1/ after 15 kR and at middle and late G/sub 1/ after 30 kR, respectively. There was an interrelation between the incorporation of nucleotides by DNA polymerase and the chromatin diffusion throughout a nucleus. The observations were interpreted in terms of the accessibility of 3'-0H groups of DNA breaks which accompanies the change of the conformation of chromatin fibres.

  16. Hemolytic porcine intestinal Escherichia coli without virulence-associated genes typical of intestinal pathogenic E. coli.

    Science.gov (United States)

    Schierack, Peter; Weinreich, Joerg; Ewers, Christa; Tachu, Babila; Nicholson, Bryon; Barth, Stefanie

    2011-12-01

    Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli.

  17. Tiamulin resistance mutations in Escherichia coli.

    Science.gov (United States)

    Böck, A; Turnowsky, F; Högenauer, G

    1982-01-01

    Forty "two-step" and 13 "three-step" tiamulin-resistant mutants of Escherichia coli PR11 were isolated and tested for alteration of ribosomal proteins. Mutants with altered ribosomal proteins S10, S19, L3, and L4 were detected. The S19, L3, and L4 mutants were studied in detail. The L3 and L4 mutations did not segregate from the resistance character in transductional crosses and therefore seem to be responsible for the resistance. Extracts of these mutants also exhibited an increased in vitro resistance to tiamulin in the polyuridylic acid and phage R17 RNA-dependent polypeptide synthesis systems, and it was demonstrated that this was a property of the 50S subunit. In the case of the S19 mutant, genetic analysis showed segregation between resistance and the S19 alteration and therefore indicated that mutation of a protein other than S19 was responsible for the resistance phenotype. The isolated ribosomes of the S19, L3, and L4 mutants bound radioactive tiamulin with a considerably reduced strength when compared with those of wild-type cells. The association constants were lower by factors ranging from approximately 20 to 200. When heated in the presence of ammonium chloride, these ribosomes partially regained their avidity for tiamulin. Images PMID:7050084

  18. Division-induced DNA double strand breaks in the chromosome terminus region of Escherichia coli lacking RecBCD DNA repair enzyme.

    Directory of Open Access Journals (Sweden)

    Anurag Kumar Sinha

    2017-10-01

    Full Text Available Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant.

  19. Changes in Escherichia coli resistance to co-trimoxazole in ...

    African Journals Online (AJOL)

    In Thyolo district, Malawi, an operational research study is being conducted on the efficacy and feasibility of co-trimoxazole prophylaxis in preventing deaths in HIV-positive patients with tuberculosis (TB). A series of cross-sectional studies were carried out to determine i) whether faecal Escherichia coli (E.coli) resistance to ...

  20. Escherichia coli growth modeling using neural network | Shamsudin ...

    African Journals Online (AJOL)

    technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.

  1. Growth modeling of uropathogenic Escherichia coli in ground chicken meat

    Science.gov (United States)

    Extraintestinal Pathogenic Escherichia coli (ExPEC), including Uropathogenic E. coli (UPEC), are common contaminants in poultry meat, and are a major pathogen associated with inflammatory bowel disease, ulcerative colitis, sepsis, and urinary tract infections. The purpose of this study was to determ...

  2. Antimicrobial susceptibilities of avian Escherichia coli isolates in ...

    African Journals Online (AJOL)

    Colibacillosis is a poultry disease of economic importance in Iran and all around the world. The aim of this study is to test the antibiotic sensitivity of Escherichia coli strains which were isolated in Tabriz. A total of 100 E. coli strains isolated from avian colibacillosis of 50 farms from 2008 to 2009 in Tabriz, were investigated for ...

  3. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  4. Prevalence of Aeromonas species and Escherichia coli in stool ...

    African Journals Online (AJOL)

    Background: Diarrhoea is one of the main causes of mortality and morbidity in childhood. Bacterial diarrhoea is a common disorder. Aeromonas species and Escherichia coli (E. coli) are some of the aetiological agents associated with diarrhoea in children. Objective: To determine the prevalence of Aeromonas species and ...

  5. Adsorption of Escherichia coli Using Bone Char | Rezaee | Journal ...

    African Journals Online (AJOL)

    The aim of study was providing a novel adsorbent for the removal of Escherichia coli (E.coli) as a microbial model from contaminated air especially in hospital units using bone char (BC). The BC was prepared from cattle animal bone by pyrolysis in a furnace at 450°C for 2 h. The characteristics of BC have been determined ...

  6. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798)

    OpenAIRE

    Dimitrova, Daniela; Engelbrecht, Kathleen C.; Putonti, Catherine; Koenig, David W.; Wolfe, Alan J.

    2017-01-01

    ABSTRACT Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E.?coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496?bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid.

  7. Expression of green fluorescent protein (GFPuv) in Escherichia coli ...

    African Journals Online (AJOL)

    Administrator

    The recombinant green fluorescent protein (GFPuv) was expressed by transformed cells of Escherichia coli DH5-α grown in LB/amp broth at 37oC, for 8 h and 24 h. To evaluate the effectiveness of different parameters to improve the expression of GFPuv by E. coli, four variable culturing conditions were set up for assays by ...

  8. In vitro and in vivo assay of radio-induced damage in Escherichia Coli, DNA labelled on thymidilic fragment

    International Nuclear Information System (INIS)

    Bonicel, A.

    1977-01-01

    A technique of rapid assay for a particular and very important damage, N-formamido (DNA), is described. Using this technique, the importance of radio-induced DNA damage can be evaluated before the repair enzymatic system takes place [fr

  9. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Slominska-Wojewodzka, Monika; Hansen, Flemming G.

    2008-01-01

    Background: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. Methodology/Principal Findings: DNA microarrays were used to measure mRNA steady-state levels in initiatio......C genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non......-permissive temperature had completed the early stages of chromosome replication initiation. Conclusion/Significance: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart....

  10. Rotavirus 2/6 Viruslike Particles Administered Intranasally with Cholera Toxin, Escherichia coli Heat-Labile Toxin (LT), and LT-R192G Induce Protection from Rotavirus Challenge

    OpenAIRE

    O’Neal, Christine M.; Clements, John D.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    We have shown that rotavirus 2/6 viruslike particles composed of proteins VP2 and VP6 (2/6-VLPs) administered to mice intranasally with cholera toxin (CT) induced protection from rotavirus challenge, as measured by virus shedding. Since it is unclear if CT will be approved for human use, we evaluated the adjuvanticity of Escherichia coli heat-labile toxin (LT) and LT-R192G. Mice were inoculated intranasally with 10 μg of 2/6-VLPs combined with CT, LT, or LT-R192G. All three adjuvants induced ...

  11. Sickness behavior in dairy cows during Escherichia coli mastitis

    DEFF Research Database (Denmark)

    Fogsgaard, Katrine Kop; Røntved, Christine Maria; Sørensen, Peter

    2012-01-01

    The consequences of mastitis in terms of dairy cow behavior are relatively unknown. Future assessment of dairy cow welfare during mastitis will be facilitated by knowledge about the potential of mastitis to induce sickness behavior. Our aim was to examine behavior of dairy cows in the period from 2...... d before (d −2 and −1) to 3 d (d 0, 1, and 2) after experimental intramammary challenge with Escherichia coli. Effects of experimentally induced mastitis on behavior were examined in 20 primiparous Danish Holstein-Friesian cows, all 3 to 6 wk after calving and kept in tie stalls. After evening....... This knowledge can be useful for the development of welfare assessment protocols, early disease detection, and for future work aimed at understanding the behavioral needs of dairy cows suffering from mastitis....

  12. Findings of Escherichia coli and Enterococcus spp. in homemade cheese

    Directory of Open Access Journals (Sweden)

    Tambur Zoran

    2007-01-01

    Full Text Available During the period from February until March 2004, 108 samples of soft cheese originating from markets of Pancevo, Subotica and Belgrade were examined. Microbiological analyses of the cheese samples to the presence of Escherichia coli was performed using methods described in the Regulations on methods for performing microbiological analyses and super analyses of consumer articles, while the presence of bacteria Enteroccocus spp. was performed on the dexter agar. From 108 samples of soft cheese from the territories of Pancevo, Belgrade and Subotica were isolated: Enterococcus spp. from 96% and Escherichia coli from 69%, cheese samples. Verocytotoxic E.coli was not isolated from any of the taken cheese samples.

  13. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  14. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    International Nuclear Information System (INIS)

    Gillies, N.E.; Obioha, F.I.

    1982-01-01

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality

  15. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    Science.gov (United States)

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  16. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Nhung, Hoang Ngoc; Carrique-Mas, Juan J.; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James; Nhung, Nguyen Thi; van Minh, Pham; Wagenaar, Jaap A.; Mai, Nguyen Thi Nhu; Hieu, Thai Quoc; Schultsz, Constance; Hoa, Ngo Thi

    2016-01-01

    Enteroaggregative (EAEC) and Shiga-toxin producing Escherichia coli (STEC) are a major cause of diarrhea worldwide. E. coli carrying both virulence factors characteristic for EAEC and STEC and producing extended-spectrum beta-lactamase caused severe and protracted disease during an outbreak of E.

  17. Annual Surveillance Summary: Escherichia coli (E. coli) Infections in the Military Health System (MHS), 2015

    Science.gov (United States)

    2017-03-01

    Annual Surveillance Summary: Escherichia coli ( E . coli ) Infections in the Military Health System (MHS...or position of the Department of the Navy, Department of Defense, nor the U.S. Government. i i E . coli in the MHS: Annual Summary 2015 Prepared...March 2017 EpiData Center Department NMCPHC-EDC-TR-187-2017 ii ii E . coli in the MHS: Annual Summary 2015 Prepared March 2017 EpiData

  18. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  19. Mutagenic DNA repair in Escherichia coli. VII

    International Nuclear Information System (INIS)

    Bridges, B.A.; Mottershead, R.P.

    1978-01-01

    Incubation of E. coli WP2 in the presence of chloramphenicol (CAP) for 90 min before and 60 min after γ-irradiation had no effect on the induction of Trp + mutations. Bacteria that had been treated with CAP for 90 min prior to UV irradiation showed normal or near normal yields of induced mutations to streptomycin or colicin E2 resistance. Most of these mutations lost their photoreversibility (indicating 'fixation') during continued incubation with CAP for a further 60 min after irradiation, during which time neither protein nor DNA synthesis was detectable. It is suggested that CAP-sensitive protein synthesis is not required for mutagenic (error-prone) repair of lesions in pre-existing DNA, arguing against an inducible component in this repair. In contrast the frequency of UV-induced mutations to Trp + (largely at suppressor loci) was drastically reduced by CAP pretreatment, confirming the need for an active replication fork for UV-mutagenesis at these loci. It is known from the work of others that CAP given after UV abolishes mutagenesis at these loci. It is concluded that CAP-sensitive protein synthesis (consistent with a requirement for an inducible function) is necessary for mutagenic repair only in newly-replicated DNA (presumably at daughter strand gaps) and not in pre-existing DNA. The data are consistent with but do not prove the hypothesis that CAP-sensitive and insensitive modes of mutagenesis reflect minor differences in the operation of a single basic mutagenic repair system. (Auth.)

  20. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in uvr strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions

    International Nuclear Information System (INIS)

    Sedgwick, S.G.

    1976-01-01

    It has been previously reported that an inducible form of post-replication repair appeared to be required for UV induced mutagenesis in an uvrA strain of Escherichia coli. It is shown here that the numbers of daughter strand gaps requiring inducible repair were similar to the numbers calculated to be overlapping one another in opposite daughter chromosomes. An estimation of survival with no repair of these gaps resembled the survival predicted with mutagenesis. It is thus proposed that inducible post-replication repair causes mutagenesis by the repair of overlapping daughter strand gaps. A general model for induced mutagenesis is presented. It is proposed that (a) some DNA lesions introduced by any DNA damaging agent may be close enough to interfere with constitutive repair replication of each other, (b) these lesions induce a repair system (SOS repair) which involves the recA + . lexA + and polC + genes (c) repair, and noncomitant mutagenesis occurs during repair replication by the insertion of mismatched bases oppposite the noncoding DNA lesions

  1. Environmental Escherichia coli: Ecology and public health implications - A review

    Science.gov (United States)

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  2. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development.

    Science.gov (United States)

    Yang, Shih-Chun; Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2017-08-01

    Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.

  3. Adherence of Enterohemorrhagic Escherichia coli to Human Epithelial Cells: The Role of Intimin

    Science.gov (United States)

    1995-04-28

    mucosa (e.g., enterotoxigenic E. coli, Vibrio cholerae , and Boroetella pertussis); ii) damage to the epithelial cell microvilli induced by the...diarrhea in Mayan childm in Mexico . J. Infect. Dis. 163, 507-513. G6mez-Ouarte, O.G. and Kaper, J.B. (1995). A plasmid-encoded regulartory region...de la Cabaca, F., and Garibay, E.V. (1987). Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico . J . Clin. Microbiol. 25

  4. Co-Expression of ORFCma with PHB Depolymerase (PhaZCma ) in Escherichia coli Induces Efficient Whole-Cell Biodegradation of Polyesters.

    Science.gov (United States)

    Lee, Ming-Chieh; Liu, En-Jung; Yang, Cheng-Han; Hsiao, Li-Jung; Wu, Tzong-Ming; Li, Si-Yu

    2018-04-01

    Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZ Cma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORF Cma (a putative periplasmic substrate binding protein that is within the same operon of phaZ Cma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZ Cma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORF Cma can potentially be a universal element for enhancing the secretion of recombinant protein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of some exo nucleases in response to the induced genetic damage in Escherichia coli by alpha radiation; Influencia de algunas exonucleasas en respuesta al dano genetico inducido en Escherichia coli por radiacion alfa

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, M

    2005-07-01

    Within the strategies with those that E. coli counts to overcome to the genetic damage there is the SOS response, a group of genes that participate in repair and/or tolerance that it confers to the bacteria major opportunities of surviving. These genes are repressed and its only are expressed when it happens genetic damage. So that this system is activated it is necessary that DNA of a band exists and in this sense the double ruptures (RDB) its are not able to induce this response unless there is a previous processing. In stumps with defects in certain genes that have to do with repair of RDB (as recO, recJ and xonA) the activity of SOS is smaller than in a wild stump what suggests that these participate in the previous processes to the activation of the response. The ionizing radiation produce among other many lesions, RDB in greater or smaller proportion, depending on the ionization capacity. A parameter to evaluate this capacity is the lineal energy transfer (LET), defined as the average energy given by unit of distance travelled. In general the LET of the corpuscular radiations is a lot but high that of the electromagnetic one, for what produces bigger quantity of ionizations inside a restricted zone and it increases by this way the probability that RDB has been generated. This work has for object to infer the participation of xonA and recJ in this response and to evaluate the damage produced by ionizing radiation of different LET (alpha particles of different energies) in a stump with all the functional repair mechanisms. Its were considered two parameters: the survival and the activity of SOS evaluated by means of the chromo test. The results indicate that the activity of these exo nucleases is necessary for the repair of RDB as well as for the processing of lesions foresaw to the activation of SOS. As for the treatment with alphas of different energies is observed that so much the survival like the activity of SOS vary as the LET of the radiation changes

  6. Human Meningitis-Associated Escherichia coli

    Science.gov (United States)

    KIM, KWANG SIK

    2016-01-01

    E. coli is the most common Gram-negative bacillary organism causing meningitis and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high-degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essentials step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high-degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high-degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis. PMID:27223820

  7. Ultraviolet radiation-induced mutability of isogenic uvrA and uvrB strains of Escherichia coli K-12 W3110

    International Nuclear Information System (INIS)

    Barfknecht, T.R.; Smith, K.C.

    1977-01-01

    E. coli K-12 W3110 uvrB5 strain has been shown to have a higher UV induced reversion frequency than its wild-type parent when plotted on the basis of mutation frequency versus survival. However for the E. coli B/r WP2s uvrA strain this higher mutability has been observed only at survival levels of 80-100%. A study was undertaken to determine if these differences in UV mutability were due primarily to the uvrA and uvrB mutations, or to other genetic background differences. Isogenic strains of E. coli K-12 W3110 carrying uvrA6, uvrB5, uvrA6 and uvrB5, and the uvrA allele from E.coli B/r WP2s were used. Results indicate that the enrichment of minimal medium with a small amount of nutrient broth is sufficient to inhibit minimal medium recovery (MMR) and to enhance leu + reversion of the leu B missense mutation in these uvr - strains. This suggests that there may be a relationship between MMR and error-free postreplication repair. Further research is in progress to clarify the relationship between MMR and broth enhancement of UV-induced mutagenesis in uvr - strains of E. Coli K-12 W3110. (author)

  8. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  9. Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12.

    OpenAIRE

    Stewart, V; Yanofsky, C

    1986-01-01

    We used site-directed mutagenesis to replace the Escherichia coli tryptophanase (tna) operon leader peptide start codon with AUC. This change greatly decreased the uninduced rate of tna operon expression, and it also lowered the response to inducer. We conclude that leader peptide synthesis plays an essential role in tna operon expression.

  10. Ciprofloxacin and probiotic Escherichia coli Nissle add-on treatment in active ulcerative colitis

    DEFF Research Database (Denmark)

    Petersen, Andreas Munk; Mirsepasi, Hengameh; Halkjær, Sofie Ingdam

    2014-01-01

    BACKGROUND AND AIM: Ulcerative colitis (UC) is a chronic inflammatory bowel disease. The probiotic bacterium Escherichia coli Nissle 1917 (EcN) has been used to maintain and induce clinical remission in UC. Our aim was to test the effect of Ciprofloxacin and/or orally administered EcN as add...

  11. Antibiofilm Effects of Lactobacilli against Ciprofloxacin-Resistant Uropathogenic Escherichia coli strains in Pasteurized Milk

    Directory of Open Access Journals (Sweden)

    Mahsa Yeganeh

    2017-11-01

    Full Text Available  Background and Objective: Uropathogenic Escherichia coli-induced urinary tract infections are the most common uropathogenic Escherichia coli etiological agent. In addition, most of biofilms created by these bacteria can be regarded as a serious problem in the food industry. Foodborne diseases have always been considered an emerging public health concern throughout the world. Many outbreaks have been found to be associated with biofilms. Thus, the aim of the present study is to investigate the anti-adhesive effects of lactic acid bacteria against strains of Ciprofloxacin-Resistant Uropathogenic Escherichia coli using microbial techniques in pasteurized milk.Material and Methods: In this study, strains of Lactobacillus plantarum, Lactobacillus casei and Lactobacillus acidophilus were provided from Pasteur Institute of Iran. Twenty strains of Uropathogenic Escherichia coli-Induced Urinary Tract Infections were isolated from patients with urinary tract infection in Shahid Labbafinejad hospital of Iran. Eight strains with ability of biofilm formation were selected for microbial tests. All of these eight strains were resistant to ciprofloxacin. Disk diffusion method was used to assess the susceptibility of all isolates to the ten common antibiotics. Eight samples of Uropathogenic Escherichia coli were inoculated in pasteurized milk. The microtitre plate 100 method was used to detect anti-adhesive activity of lactobacilli supernatant.Results and Conclusion: Results showed that the eight human isolates were resistant to antibiotics. Isolate of number 4 was the most susceptible strains to antibiofilm effects of lactobacilli in the pasteurized milk. The anti-adhesive effects of lactobacilli on Uropathogenic were confirmed in all microbial tests. In this study, Lactobacillus plantarum revealed the highest inhibitory activity against Uropathogenic Escherichia coli 4 strain with inhibition zones of 42 mm. This strain was reported as a proper probiotic

  12. Escherichia coli O157:H7 - An Emerging Pathogen in foods of Animal Origin

    Directory of Open Access Journals (Sweden)

    Ch. Bindu Kiranmayi

    Full Text Available Escherichia coli O157:H7 is an emerging public health concern in most countries of the world. E. coli O157:H7 was known to be a human pathogen for nearly 24 years. EHEC O157 infection is estimated to be the fourth most costly food borne disease in Canada and USA, not counting the cost of possible litigation. E. coli O157:H7 and Salmonella are the leading causes of produce related outbreaks, accounting for 20 and 30% respectively. The authority of the Federal Meat Inspection Act, FSIS (Food Safety and Inspection Service declared Escherichia coli O157:H7, an adulterant in raw ground beef and enforced “zero tolerance” (USDA-FSIS, 17 December 1998. Because of the severity of these illnesses and the apparent low infective dose (less than 10 cells, Escherichia coli O157:H7 is considered one of the most serious of known food borne pathogens. Escherichia coli O157:H7 is mainly pathogenic to human but in cattle and other animals, it did not induce any clinical disease except diarrhea. So, these animals act as carriers to Escherichia coli O157:H7. The majority transmission is through eating of undercooked contaminated ground meat and consumption of raw milk, raw vegetables, fruits contaminated by water, cheese, curd and also through consumption of sprouts, lettuce and juice. The conventional isolation procedure includes growth in enrichment broth like modified EC (E. coli broth or modified tryptic soy broth (mTSB Since the infection primarily occurs via faeco-oral route, the preventive measures include food hygiene measures like proper cooking of meat, consumption of pasteurized milk, washing fruits and vegetables especially those to be eaten raw and drinking chlorine treated water and personnel hygiene measures like washing hands after toilet visits. [Veterinary World 2010; 3(8.000: 382-389

  13. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference. Keywords: Transcriptome, Growth fitness, Escherichia coli, Microarray

  14. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    Science.gov (United States)

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  15. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798).

    Science.gov (United States)

    Dimitrova, Daniela; Engelbrecht, Kathleen C; Putonti, Catherine; Koenig, David W; Wolfe, Alan J

    2017-07-06

    Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E. coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496 bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid. Copyright © 2017 Dimitrova et al.

  16. Genes and proteins of Escherichia coli K-12.

    Science.gov (United States)

    Riley, M

    1998-01-01

    GenProtEC is a database of Escherichia coli genes and their gene products, classified by type of function and physiological role and with citations to the literature for each. Also present are data on sequence similarities among E.coli proteins, representing groups of paralogous genes, with PAM values, percent identity of amino acids, length of alignment and percent aligned. GenProtEC can be accessed at the URL http://www.mbl.edu/html/ecoli.html

  17. Predictors Of Non-Escherichia Coli Urinary Tract Infection.

    Science.gov (United States)

    Shaikh, Nader; Wald, Ellen R; Keren, Ron; Gotman, Nathan; Ivanova, Anastasia; Carpenter, Myra A; Moxey-Mims, Marva; Hoberman, Alejandro

    2016-11-01

    We aimed to determine which children are prone to non-Escherichia coli urinary tract infection (UTIs). We included 769 children with UTI. We found that circumcised males, Hispanic children, children without fever and children with grades 3 and 4 vesicoureteral reflux were more likely to have a UTI caused by organisms other than E. coli. This information may guide clinicians in their choice of antimicrobial therapy.

  18. Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed; Blank, L.M.; Oldiges, M.

    2010-01-01

    Metabolic cofactors such as NADH and ATP play important roles in a large number of cellular reactions, and it is of great interest to dissect the role of these cofactors in different aspects of metabolism. Toward this goal, we overexpressed NADH oxidase and the soluble F1-ATPase in Escherichia coli...... of redox and energy metabolism and should help in developing metabolic engineering strategies in E. coli....

  19. Modification of UV-induced mutation frequency and cell survival of Escherichia coli B/r WP2 trpE65 by treatment before irradiation

    International Nuclear Information System (INIS)

    Doudney, C.O.; Rinaldi, C.N.

    1984-01-01

    The UV radiation survival curve of exponentially growing cultures of Escherichia coli B/r WP2 trpE65 was modified by pretreatment for short incubation periods (up to 20 min) with chloramphenicol such that an extended exponential section of intermediate slope appeared between the shoulder and the final exponential slope. Surges of mutation to tryptophan independence occurred with each increase in slope of the survival curve. These surges were separated by extended sections of little mutation. Nalidixic acid prevented both the changes in survival and mutation. Mutation curves obtained with overnight cultures had three extended sections of little mutation alternating with section of high mutation. Reincubation for 60 min in fresh medium reduced or eliminated the low-response sections. These reappeared after 80 to 90 min, when DNA had doubled in the culture and before the initial synchronous cell divisions had occurred. Nalidixic acid prevented this reappearance

  20. Antimicrobial activity of Bacillus amyloliquefaciens LBM 5006 is enhanced in the presence of Escherichia coli.

    Science.gov (United States)

    Benitez, Lisianne; Correa, AnaPaula; Daroit, Daniel; Brandelli, Adriano

    2011-03-01

    Increased antimicrobial activity was observed when Bacillus amyloliquefaciens LBM 5006 strain was cultivated in the presence of thermally inactivated cells of Escherichia coli, but not with Staphylococcus aureus, Listeria monocytogenes, or Bacillus cereus. E. coli also enhanced the antimicrobial activity when it was added to the medium in the form of living cells or as cell debris after cellular fractionation. No inducing activity was observed with addition of cell-free supernatant of E. coli cultures, suggesting that inducing factor is associated to the cells. Polyacrylamide gel electrophoresis revealed that additional peptide bands are secreted when B. amyloliquefaciens was cultivated in the presence of cell debris of E. coli. These results suggest that the presence of intact or inactivated E. coli enhanced the synthesis of antimicrobial peptides by B. amyloliquefaciens LBM 5006.

  1. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Escherichia Coli Removal from Water Using Electrophotocatalytic ...

    African Journals Online (AJOL)

    Michael Horsfall

    inactivation of bacterial microorganisms in areas with low ... disinfection of water contaminated with fecal indicators such as E. coli ... media, brain heart infusion, sodium chloride, sodium hydroxide ... furnace at temperature 105 and 320°C f0r 60 min. For 2- and .... charge of E. coli logarithmic growth phase might affect the ...

  3. Biochemical and serological characterization of Escherichia coli ...

    African Journals Online (AJOL)

    This study was designed to determine the isolation rate, serotypes and biochemical profiles of E. coli from colibacillosis and dead-in-shell embryos in Zaria, Northern-Nigeria. The isolation rate of E. coli from hatcheries studied were 4.67% and 7.50% from farms of Simtu Agricultural Company and National Animal Production ...

  4. Antibiotic resistance of Verotoxigenic Escherichia coli isolated from vegetables

    Directory of Open Access Journals (Sweden)

    mojtaba boniadian

    2017-01-01

    Full Text Available Introduction: Human gastrointestinal disease caused by verotoxigenic Escherichia coli has been diagnosed for recent decades. Escherichia coli O157:H7 is the most important serotype of verotoxigenic Escherichia coli that cause hemolytic uremic syndrome and hemorrhagic colitis in humans. This study was conducted to determine the occurrence of verotoxigenic E. coli and antibiotic resistance of the isolates from vegetables. Materials and methods: A total of 500 fresh vegetable samples were collected randomly from retail shops in Shahrekord, Iran. E. coli was isolated and identified using bacteriological and biochemical tests. PCR method was used to identify the rbfE, stx1, stx2 and eae genes. Also, antibiotic resistance of the isolates was determined by disk diffusion method. Results: The results represented that among 25 isolates possess virulence genes, 40, 12 and 4% of the isolates contained eaeA, STx2, and both genes, respectively. But none of them contained H7, STx1, and rfbE genes. The antibiotic resistance pattern demonstrated that the isolates were highly resistant to Gentamycin and cefotoxime. Discussion and conclusion: The results of this study showed that the presence of verotoxigenic E.coli in vegetables; and high resistance of the isolates to antibiotics could be hazardous for public health.

  5. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli

    DEFF Research Database (Denmark)

    Koehler, JF; Birkelund, Svend; Stephens, RS

    1992-01-01

    The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis....... The induction of MOMP expression had a rapidly lethal effect on the L2rMOMP E. coli clone. Although no genetic system exists for Chlamydia, development of a stable, inducible E. coli clone which overexpresses the chlamydial MOMP permits a study of the biological properties of the MOMP, including...

  6. Calcium-phosphate biomineralization induced by alkaline phosphatase activity in Escherichia coli: localization, kinetics and potential signatures in the fossil record

    Science.gov (United States)

    Cosmidis, Julie; Benzerara, Karim; Guyot, François; Skouri-Panet, Fériel; Duprat, Elodie; Férard, Céline; Guigner, Jean-Michel; Babonneau, Florence; Coelho, Cristina

    2015-12-01

    Bacteria are thought to play an important role in the formation of calcium-phosphate minerals composing marine phosphorites, as supported by the common occurrence of fossil microbes in these rocks. Phosphatase enzymes may play a key role in this process. Indeed, they may increase the supersaturation with respect to Ca-phosphates by releasing orthophosphate ions following hydrolysis of organic phosphorus. However, several questions remain unanswered about the cellular-level mechanisms involved in this model, and its potential signatures in the mineral products. We studied Ca-phosphate precipitation by different strains of Escherichia coli which were genetically modified to differ in the abundance and cellular localization of the alkaline phosphatase (PHO A) produced. The mineral precipitated by either E. coli or purified PHO A was invariably identified as a carbonate-free non-stoichiometric hydroxyapatite. However, the bacterial precipitates could be discriminated from the ones formed by purified PHO A at the nano-scale. PHO A localization was shown to influence the pattern of Ca-phosphate nucleation and growth. Finally, the rate of calcification was proved to be consistent with the PHO A enzyme kinetics. Overall, this study provides mechanistic keys to better understand phosphogenesis in the environment, and experimental references to better interpret the microbial fossil record in phosphorites.

  7. Characterization of RAD4 gene required for ultraviolet-induced excision repair of Saccharomyces cerevisiae propagated in Escherichia coli without inactivation

    International Nuclear Information System (INIS)

    Choi, I.S.; Kim, J.B.; Lee, K.N.; Park, S.D.

    1990-01-01

    The previously isolated RAD4 gene designated as pPC1 from the genomic library of Saccharomyces cerevisiae appeared to propagate in Escherichia coli and yet retained its complementing activity of rad4 mutants without inactivation. The subcloned RAD4 gene was found to be localized within a 2.5 kb DNA fragment flanking Bg/II and BamHI sites in the insert DNA, and was shown to have the same restriction map as a yeast chromosomal DNA, as determined by Southern hybridization. Tetrad analysis and pulse-field chromosome mapping have revealed that the cloned RAD4 gene can be mapped and integrated into the yeast chromosome V, the actual site of this gene. DNA-tRNA hybridization has shown that the isolated RAD4 gene did not contain a suppressor tRNA gene. These results have indicated that the pPC1 is a functional RAD4 gene playing a unique role involved in the nucleotide excision repair of yeast without any genetic change during amplification in E. coli. (author)

  8. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS.

    Science.gov (United States)

    Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan

    2008-04-01

    Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.

  9. The effect of essential oil of basil (Ocimum basilicum L.) on UV-induced mutagenesis in Escherichia coli and Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Stanojević, Jasna; Berić, Tanja; Opačić, Biljana; Vuković-Gačić, Branka; Simić, Draga; Knežević-Vukčević, Jelena [Institute of Botany, Faculty of Biology, University of Belgrade, 11000 Belgrade (Serbia)

    2008-07-01

    The antimutagenic potential of essential oil (EO) of basil (Ocimum basilicum L.) and its major constituent linalool were studied with the E. coli K12 and S. cerevisiae D7 assays. In the E. coli assay, EO and linalool inhibited UV-induced mutagenesis in a repair-proficient strain, but had no effect on spontaneous mutagenesis in repair-proficient, nucleotide excision repair-deficient, and mismatch-deficient strains. By testing participation of different mechanisms involved in antimutagenesis, it was concluded that the antimutagenic effect against UV-induced mutagenesis involved decrease of protein synthesis and cell proliferation which led to increased efficiency of nucleotide excision repair. An antimutagenic effect of basil derivatives in S. cerevisiae was not detected. (author)

  10. The effect of essential oil of basil (Ocimum basilicum L.) on UV-induced mutagenesis in Escherichia coli and Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stanojević, Jasna; Berić, Tanja; Opačić, Biljana; Vuković-Gačić, Branka; Simić, Draga; Knežević-Vukčević, Jelena

    2008-01-01

    The antimutagenic potential of essential oil (EO) of basil (Ocimum basilicum L.) and its major constituent linalool were studied with the E. coli K12 and S. cerevisiae D7 assays. In the E. coli assay, EO and linalool inhibited UV-induced mutagenesis in a repair-proficient strain, but had no effect on spontaneous mutagenesis in repair-proficient, nucleotide excision repair-deficient, and mismatch-deficient strains. By testing participation of different mechanisms involved in antimutagenesis, it was concluded that the antimutagenic effect against UV-induced mutagenesis involved decrease of protein synthesis and cell proliferation which led to increased efficiency of nucleotide excision repair. An antimutagenic effect of basil derivatives in S. cerevisiae was not detected. (author)

  11. Escherichia coli O26 IN RAW BUFFALO MILK: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    A. Rella

    2013-02-01

    Full Text Available Escherichia coli O26 is considered to be one of the most important food-borne pathogen. In this study, 120 buffalo milk samples collected in Lazio and in Apulia regions were tested for the presence of E. coli O26. One buffalo milk sample (0,8% tested positive for E. coli O26; the isolate was positive at the verocytotoxicity test and it showed resistance properties to different antimicrobial classes. These preliminary results highlight the need to monitor the foods of animal origin used for production and eaten by a wide range of persons, respect VTEC organism.

  12. Spontaneous Escherichia coli Meningitis Associated with Hemophagocytic Lymphohistiocytosis

    Directory of Open Access Journals (Sweden)

    Kuo-Hsuan Chang

    2006-01-01

    Full Text Available Spontaneous Escherichia coli meningitis has not been previously reported in association with hemophago-cytic lymphohistiocytosis (HLH. A previously healthy 72-year-old woman was admitted due to fever, nuchal rigidity, disturbed consciousness and splenomegaly. Anemia, thrombocytopenia and hyperfer-ritinemia developed on the 8th day of hospitalization. Cultures of cerebrospinal fluid and blood grew E. coli. Abundant macrophages overwhelmed erythrocytes in the bone marrow aspirate, confirming the presence of hemophagocytosis. E. coli meningitis was managed with a 40-day course of antibiotic treatment. However, the severity of anemia and thrombocytopenia progressed despite intensive transfusion therapy. The patient died of HLH on the 60th day of hospitalization.

  13. Antimutagenic effect of isocyanates and related compounds in escherichia coli

    International Nuclear Information System (INIS)

    Kawazoe, Yutaka; Kato, Masanari

    1982-01-01

    Isocyanates and isothiocyanates have been suggested to inactivate enzymes involved in the metabolic activation of chemical carcinogens and the repair of DNA damage. These compounds decrease the mutability of a tester strain of Escherichia coli B under UV irradiation. This paper deals with the antimutagenicity of acylating agents, including isocyanates and isothiocyanates, and some anti-oxidants which are suspected to be anticarcinogenic. The results can be summarized as follows. (1) The antimutagenic effect observed in the present study operates on UV-induced mutagenesis but not on X-ray-induced mutagenesis. (2) This effect operates only on the wild-type strain, H/r30R, but not on Hs30R deficient in the excision repair system. (3) This effect may function through giving the irradiated cells a greater chance to carry out excision repair by prolonging the lag-period before entry into the S-phase. (4) The carbamoylating ability of isocyanates and isothiocyanates may be responsible for the antimutagenicity, but other type of reactivities may also be involved. These antimutagens also participate in inactivating enzymes relevant to the metabolic activation of mutagens, resulting in a decrease in the frequency of chemically induced mutagenesis. (author)

  14. Differential expression of the Escherichia coli autoaggregation factor antigen 43

    DEFF Research Database (Denmark)

    Schembri, Mark; Hjerrild, Louise; Gjermansen, Morten

    2003-01-01

    Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Due to its excellent cell-to-cell aggregation characteristics, Ag43 expression confers clumping and fluffing of cells and promotes biofilm formation. Ag43 expression is repressed by the cellular redox...

  15. Escherichia coli bacteraemia in patients with and without haematological malignancies

    DEFF Research Database (Denmark)

    Olesen, B; Kolmos, H J; Orskov, F

    1998-01-01

    We compared serotypes, virulence factors and susceptibility to antibiotics of Escherichia coli strains isolated from 282 patients with bacteraemia. Thirty-five of these were neutropenic patients with haematological malignancy and 247 were patients with a normal or raised total white blood cell co...

  16. Effects of recombinant human collagen VI from Escherichia coli on ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... In this study, we reported the cloning and over expression of a gene coding for human collagen peptide. (CP6) in Escherichia coli and investigated the protective effects of CP6 on UVA-irradiated human skin fibroblasts cells. The collagen peptide (CP6) was highly soluble and the expression level was.

  17. DNA supercoiling depends on the phosphorylation potential in Escherichia coli

    DEFF Research Database (Denmark)

    Van Workum, M.; van Dooren, S.J.M; Oldenburg, N

    1996-01-01

    ATP/ADP ratios were varied in different ways and the degree of negative supercoiling was determined in Escherichia coli. Independent of whether the ATP/ADP ratio was reduced by a shift to anaerobic conditions, by addition of protonophore (dinitrophenol) or by potassium cyanide addition, DNA super...

  18. Effect of visible range electromagnetic radiations on Escherichia coli ...

    African Journals Online (AJOL)

    Background: Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of ...

  19. Properties of in situ Escherichia coli -D-glucuronidase (GUS ...

    African Journals Online (AJOL)

    A study of the activity of Escherichia coli -D-glucuronidase (GUS) in polluted stagnant and running water samples was performed with an objective of assessing the viability of a direct marker enzyme assay as a suitable alternative to membrane filtration for the indication of faecal pollution in water intended for drinking ...

  20. Multiple-Resistant Commensal Escherichia Coli from Nigerian ...

    African Journals Online (AJOL)

    Purpose: The antimicrobial susceptibility and virulence traits of 150 strains of Escherichia coli ... and ethical approval was obtained from the Health .... persist in the guts by virtue of the ability of such ... cases of diarrhoea in Ile-Ife and environs.

  1. Cytokine response to Escherichia coli in gnotobiotic pigs

    Czech Academy of Sciences Publication Activity Database

    Šplíchal, Igor; Šplíchalová, Alla; Trebichavský, Ilja

    2008-01-01

    Roč. 53, č. 2 (2008), s. 161-164 ISSN 0015-5632 R&D Projects: GA ČR GA523/05/0249 Institutional research plan: CEZ:AV0Z50200510 Keywords : germ-free pigs * escherichia coli * cytokine response Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  2. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects

    Science.gov (United States)

    The family Enterobactericeae consists of rod-shaped, Gram-negative, facultatively anaerobic, non-spore forming bacteria and also includes the food-borne pathogens, Cronobacter spp., Escherichia coli, Salmonella enterica, Shigella spp., and Yersinia spp. Illness caused by these pathogens is acquired...

  3. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a...

  4. Kwantitatief gevoeligheidsonderzoek met intra- en extramurale isolaten van Escherichia coli

    NARCIS (Netherlands)

    de Neeling AJ; de Jong J; Overbeek BP; de Bruin RW; Dessens-Kroon M; van Klingeren B

    1990-01-01

    Three Dutch laboratories for medical microbiology collected a total number of 1432 strains of Escherichia coli. Of these 995 were obtained from routine samples taken in clinic and policlinic, 290 had been sent spontaneously by general practitioners for microbiological examination and 147 had been

  5. in Escherichia coli with native cholesterol oxidase expressed

    African Journals Online (AJOL)

    The structure and bio-activity of an endogenous cholesterol oxidase from Brevibacterium sp. was compared to the same enzyme exogenously expressed in Escherichia coli BL21 (DE3) with and without N- or C-terminal his-tags. The different proteins were purified with affinity and subtractive protocols. The specific activity of ...

  6. Sequencing of Escherichia coli that cause persistent and transient Mastitis

    Science.gov (United States)

    The genomes of two strains of Escherichia coli that cause bovine mastitis were sequenced. These strains are known to be associated with persistent and transient mastitis: strain ECA-B causes a transient infection, and ECC-M leads to a persistent infection....

  7. Escherichia coli. A sanitary methodology for faecal water pollution tests

    International Nuclear Information System (INIS)

    Bonadonna, L.

    2001-01-01

    Among the traditional indictors of faecal water pollution, Escherichia coli has shown to fit better with the definition of indicator organism. Till now its recovery has been time-consuming and needs confirmation tests. In this report more rapid and direct methods, based on enzymatic reactions, are presented [it

  8. Antibiotic resistance profile of Escherichia coli isolated from five ...

    African Journals Online (AJOL)

    Information on the resistance profiles of clinical and non clinical human bacteria isolates in the developing countries can serve as important means of understanding the human pathogens drug resistance interactions in the zone. Escherichia coli isolated from five geopolitical zones of Nigeria were screened for anti-microbial ...

  9. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  10. Occurrence of Escherichia coli in Brassica rapa L. chinensis ...

    African Journals Online (AJOL)

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106 samples including Chinese ...

  11. Physiological responses of Escherichia coli to far-ultraviolet radiation

    International Nuclear Information System (INIS)

    Swenson, P.A.

    1976-01-01

    The following topics are reviewed: photochemical damage to DNA; measurement of cell survival; DNA repair processes and genetics of radiation sensitivity; degradation of DNA and RNA; biochemical and physiological consequences; reactivation of bacteriophage in Escherichia coli cells; filament formation; influence of growth phase on survival after uv irradiation; and post-uv-irradiation treatment

  12. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli

    DEFF Research Database (Denmark)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    2017-01-01

    ). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate...

  13. The incidence and antibiotics susceptibility of Escherichia coli O157 ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... The incidence of Escherichia coli 0157: H7 was assessed in meat samples from slaughtered cattle in. Ibadan metropolis by culturing ... high quality farm to fork wholesome and safe meat for public consumption in Nigeria. Key words: EHEC .... Prevalence and in vitro antimicrobial susceptibility. Trop. Vet. 26.

  14. Prevalence of Escherichia coli virulence genes in patients with ...

    African Journals Online (AJOL)

    In this study, we investigated the prevalence of the virulence genes specific for five major pathogroups of diarrheagenic Escherichia coli (DEC) in primary cultures from diarrhoeagenic patients in Burkina Faso. Methodology: From September 2016 to Mars 2017, a total of 211 faecal samples from diarrhoeagenic patients from ...

  15. Comparative Genomics of Escherichia coli Strains Causing Urinary Tract Infections

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Hancock, Viktoria; Schembri, Mark A.

    2011-01-01

    The virulence determinants of uropathogenic Escherichia coli have been studied extensively over the years, but relatively little is known about what differentiates isolates causing various types of urinary tract infections. In this study, we compared the genomic profiles of 45 strains from a range...

  16. Effect of phytoplankton on Escherichia coli survival in laboratory microcosms

    Science.gov (United States)

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. Nuisance algae commonly grow in low- or no-flow irrigation water source The objecti...

  17. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...

  18. Search for Enterohaemorrhagic Escherichia coli O157:H7 and ...

    African Journals Online (AJOL)

    Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 and Salmonella enterica are important zoonotic bacteria responsible for enteric infections in humans. The present study investigated the possible role of kittens in the zoonotic transmission of antimicrobial resistant EHEC O157 and Salmonella enterica to human using ...

  19. Antibiotic Sensitivity Profile of Escherichia coli Isolated from Poultry ...

    African Journals Online (AJOL)

    A cross sectional study involving 300 cloaca swabs from apparently healthy birds from 8 small-medium scale poultry farms in Ibadan Oyo State was carried out. A total of 201 (67%) Escherichia coli isolates were recovered from the birds and they were subjected to in-vitro antibiotic sensitivity test by agar gel diffusion method.

  20. Increasing the permeability of Escherichia coli using MAC13243

    DEFF Research Database (Denmark)

    Muheim, Claudio; Götzke, Hansjörg; Eriksson, Anna U.

    2017-01-01

    molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N...

  1. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  2. Complete Genome Sequence of Enterotoxigenic Escherichia coli Siphophage Seurat.

    Science.gov (United States)

    Doan, Dung P; Lessor, Lauren E; Hernandez, Adriana C; Kuty Everett, Gabriel F

    2015-02-26

    Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in developing countries. Bacteriophage therapy has the potential to aid in the prevention and treatment of ETEC-related illness. To that end, we present here the complete genome of ETEC siphophage Seurat and describe its major features. Copyright © 2015 Doan et al.

  3. Protein export in bacillus subtilis and escherichia coli

    NARCIS (Netherlands)

    Dijl, Jan Maarten van

    1990-01-01

    The export of heterologous proteins in Bacillus subtilis and Escherichia coli is often inefficient. Frequently observed problems are: 1) accumulation of the precursor form of the exported protein in the cytoplasm or in the membrane; 2), inefficient or incorrect processing of the precursor; 3),

  4. Escherichia coli and virus isolated from ''sticky kits''

    DEFF Research Database (Denmark)

    Jørgensen, M.; Scheutz, F.; Strandbygaard, Bertel

    1996-01-01

    A total of 121 Escherichia coli strains isolated from 3-week-old mink kits were serotyped and examined for virulence factors. 56 strains were isolated from healthy kits while 65 were from ''sticky kits''. Among these, 34 different serotypes were detected. No difference in serotypes or the presenc...

  5. ESBL-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius

    Urinary tract infection (UTI) is one the most common bacterial infections and is regularly treated in primary health care. The most common cause of UTI is extraintestinal pathogenic Escherichia coli (ExPEC) already present in the intestinal microflora, often as the dominating strain. Resistance...... in E.coli is increasing and especially isolates producing Extended-Spectrum Beta-Lactamases (ESBL) have been reported worldwide. Treatment of UTI is usually initiated by the general practitioners and a significant proportion of clinical isolates are now resistant to first line antibiotics. The global...... to investigate (i) antibiotics involved in selection of ESBL-producing E.coli, in an experimental mouse model in vivo, (ii) risk factors for UTI with ESBL-producing E.coli and (iii) to describe the phylogenetic composition of E.coli populations with different resistance patterns. We found that different...

  6. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli.

    Science.gov (United States)

    Hazen, Tracy H; Michalski, Jane; Luo, Qingwei; Shetty, Amol C; Daugherty, Sean C; Fleckenstein, James M; Rasko, David A

    2017-06-14

    Escherichia coli that are capable of causing human disease are often classified into pathogenic variants (pathovars) based on their virulence gene content. However, disease-associated hybrid E. coli, containing unique combinations of multiple canonical virulence factors have also been described. Such was the case of the E. coli O104:H4 outbreak in 2011, which caused significant morbidity and mortality. Among the pathovars of diarrheagenic E. coli that cause significant human disease are the enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). In the current study we use comparative genomics, transcriptomics, and functional studies to characterize isolates that contain virulence factors of both EPEC and ETEC. Based on phylogenomic analysis, these hybrid isolates are more genomically-related to EPEC, but appear to have acquired ETEC virulence genes. Global transcriptional analysis using RNA sequencing, demonstrated that the EPEC and ETEC virulence genes of these hybrid isolates were differentially-expressed under virulence-inducing laboratory conditions, similar to reference isolates. Immunoblot assays further verified that the virulence gene products were produced and that the T3SS effector EspB of EPEC, and heat-labile toxin of ETEC were secreted. These findings document the existence and virulence potential of an E. coli pathovar hybrid that blurs the distinction between E. coli pathovars.

  7. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    Science.gov (United States)

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics.

  8. Identification of Genes Important for Growth of Asymptomatic Bacteriuria Escherichia coli in Urine

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; de Evgrafov, Mari Cristina Rodriguez; Phan, Minh Duy

    2012-01-01

    Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence...

  9. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: An overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA

    Science.gov (United States)

    Kim, Su-Ryang; Maenhaut-Michel, Geneviéve; Yamada, Masami; Yamamoto, Yoshihiro; Matsui, Keiko; Sofuni, Toshio; Nohmi, Takehiko; Ohmori, Haruo

    1997-01-01

    dinP is an Escherichia coli gene recently identified at 5.5 min of the genetic map, whose product shows a similarity in amino acid sequence to the E. coli UmuC protein involved in DNA damage-induced mutagenesis. In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated λ phage infecting UV-preirradiated bacterial cells (termed λUTM for λ untargeted mutagenesis). A newly constructed dinP null mutant exhibited the same defect for λUTM as observed previously with a dinB::Mu mutant, and the defect was complemented by plasmids carrying dinP as the only intact bacterial gene. Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F′lac plasmids; at most, 800-fold increase in the G6-to-G5 change. The enhanced mutagenesis did not depend on recA, uvrA, or umuDC. Thus, our results establish that E. coli has at least two distinct pathways for SOS-induced mutagenesis: one dependent on umuDC and the other on dinB/P. PMID:9391106

  10. Characterization of diarrhoeagenic Escherichia coli isolates in Jordanian children.

    Science.gov (United States)

    Shehabi, Asem A; Bulos, Najawa-Kuri; Hajjaj, Kamal G

    2003-01-01

    In a prospective study carried out among Jordanian children in Amman, a total of 73/250 (29.2%) stool specimens were positive for 1 or more diarrhoeagenic Escherichia coli strains using a multiplex polymerase chain reaction method. This study indicated that diarrhoeagenic E. coli isolates were found frequently more in stools of children with diarrhoea (34%) than without diarrhoea (23.1%), but without any significant difference (p > 0.05). The predominant diarrhoeagenic E. coli strains associated with diarrhoea were enteropathogenic E. coli (11.3%), followed by enterotoxigenic E. coli (9.8%) and enteroaggrative E. coli (9%), whereas in the control group these were 4.3%, 11.1% and 6%, respectively. Enteroinvasive E. coli strains (2.9%) were found only in stools of children with diarrhoea. This study revealed the absence of enterohaemorrhagic E. coli in both diarrhoeal and control stools, and found that diarrhoeagenic E. coli isolates were highly resistance to tetracycline (55%), co-trimoxazole (60%) and ampicillin (89%), which are commonly used antibiotics in Jordan.

  11. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12

    Science.gov (United States)

    including Escherichia coli, Salmonella spp. and Shigellaspp. Here, we found that rac excision is induced during biofilm formation, and the isogenic...stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E.coli K-12. Additionally, the presence of rac...genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase

  12. [Virulence markers of Escherichia coli O1 strains].

    Science.gov (United States)

    Makarova, M A; Kaftyreva, L A; Grigor'eva, N S; Kicha, E V; Lipatova, L A

    2011-01-01

    To detect virulence genes in clinical isolates of Escherichia coli O1 using polymerase chain reaction (PCR). One hundred and twenty strains of E.coli O1 strains isolated from faeces of patients with acute diarrhea (n = 45) and healthy persons (n = 75) were studied. PCR with primers for rfb and fliC genes, which control synthesis of O- and H- antigens respectively, was used. Fourteen virulence genes (pap, aaf, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, st, and aer) were detected by PCR primers. K1-antigen was determined by Pastorex Meningo B/E. coli O1 kit (Bio-Rad). rfb gene controlling O-antigen synthesis in serogroup O1 as well as fliC gene controlling synthesis of H7 and K1 antigens were detected in all strains. Thus all E. coli strains had antigenic structure O1:K1 :H-:F7. Virulence genes aafl, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, and st were not detected. All strains owned pap and aer genes regardless of the presence of acute diarrhea symptoms. It was shown that E. coli O1:KI:H-:F7 strains do not have virulence genes which are characteristic for diarrhea-causing Escherichia. In accordance with the presence of pap and aer genes they could be attributed to uropathogenic Escherichia (UPEC) or avian-pathogenic Escherichia (APEC). It is necessary to detect virulence factors in order to determine E. coli as a cause of intestinal infection.

  13. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katarzyna Licznerska

    2016-01-01

    Full Text Available Virulence of enterohemorrhagic Escherichia coli (EHEC strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages, present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.

  14. Mutagenic DNA repair in Escherichia coli. Pt. 2

    International Nuclear Information System (INIS)

    Doubleday, O.P.; Bridges, B.A.; Green, M.H.L.

    1975-01-01

    The photoreversibility of UV-induced mutations to Trp + in strain Escherichia coli WP2 uvr A trp (unable to excise pyrimidine dimers) was lost at different rates during incubation in different media. In Casamino acids medium after a short initial lag, photoreversibility was lost over about one generation time; in minimal medium with tryptophan, photoreversibility persisted for more than two generations; in Casamino acids medium with pantoyl lactone photoreversibility was lost extremely slowly. The rate of loss of photoreversibility was unaffected by UV dose in either Casamino acids medium or in minimal medium. The same eventual number of induced mutants was obtained when cells were incubated for two generations in any of the three media before being transferred to selective plates supplemented with Casamino acids. Thus in each the proportion of cells capable of giving rise to a mutant was the same and only the rate at which these cells did so during post-irradiation growth varied, suggesting that there might be a specific fraction of pyrimidine dimers at a given site capable of initiating a mutagenic repair event, and that the size of this fraction is dose dependent. Segregation experiments have shown that error-prone repair appears to occur once only and is not repeated in subsequent replication cycles, in contrast to (presumed error-free) recombination repair. The results are discussed in the light of current models of UV mutagenesis. (orig.) [de

  15. Influence of bromouracil density labelling on viability of UV irradiated Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Brozmanova, J [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    Influence of 5-bromouracil cultivation on cell viability and DNA synthesis in the Escherichia coli B/r thy/sup -/ trp/sup -/ Hcr/sup +/ and Escherichia coli C thy-321 strains was followed. It was found that a 120 min cultivation in the bromouracil medium (unirradiated cells) does not essentially influence the viability of the two investigated strains but has an inhibitory effect on DNA synthesis in cells of the E. coli B/r Hcr/sup +/ strain. However, cultivation with bromouracil after ultraviolet irradiation leads to a decreased surviving ability of the irradiated cells of both investigated strains. Repair of damage induced by ultraviolet radiation probably exhausts a considerable proportion of repair activity, so that additional injury produced by bromouracil cultivation cannot be liquidated immediately.

  16. Effect of Pressure-Induced Changes in the Ionization Equilibria of Buffers on Inactivation of Escherichia coli and Staphylococcus aureus by High Hydrostatic Pressure

    Science.gov (United States)

    Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria

    2013-01-01

    Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm3 mol−1, than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about −25 cm3 mol−1. However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471

  17. Emergence of Quinolone Resistance amongst Escherichia coli ...

    African Journals Online (AJOL)

    Rate of resistance was 22.3% showing an increase in quinolone resistance when ... FQR E. coli was more common in patients with urinary tract infection (22.9%). ... in the faeces of healthy adults was 22.9%, 6.7% in children and 22.2% in avian. ... thereby aiding the spread of antibiotic resistant strains from avians to human ...

  18. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    ; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  19. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    Science.gov (United States)

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  20. Incidence of Escherichia coli  - Glucuronidase Positive on Goat Milk

    Directory of Open Access Journals (Sweden)

    Zorica Voşgan

    2016-11-01

    Full Text Available Papers on beta- glucuronidase sensitivity and specificity for identifying Escherichia coli in sources of environment, food, water, etc. have been published since 1976. In this study we conducted a review of the incidence of E. coli β- glucuronidase -positive in goat milk, obtained by hand milking throughout the lactation: spring, summer, autumn. The presence of E. coli in milk is considered both as a health indicator and a pathogenic factor capable of causing food poisoning. The determination of the E. coli β-glucuronidase-positive was carried using TBX medium by cultivating colonies typical blue at 440C. The absence of E. coli in milk yielded during the spring, when the animal milking is done three times a day, was found in the performed analyses; the same was observed during fall, when the milk production is lower and the milking is done once a day. The load of E. coli β-glucuronidase-positive was averaging 66.67 CFU/ml of goat milk, during the middle lactation period (July-August, in conditions of higher temperature. During this period, milking is done in the mountain zone, where the transhumance of animals takes place in summer. The presence of the species E. coli was also confirmed by microscopic examination. Attention should be paid to hygiene and milk should be immediately cooled, during hot weather, as E. coli can be a source of food poisoning.

  1. Interaction of Escherichia coli with growing salad spinach plants.

    Science.gov (United States)

    Warriner, Keith; Ibrahim, Faozia; Dickinson, Matthew; Wright, Charles; Waites, William M

    2003-10-01

    In this study, the interaction of a bioluminescence-labeled Escherichia coli strain with growing spinach plants was assessed. Through bioluminescence profiles, the direct visualization of E. coli growing around the roots of developing seedlings was accomplished. Subsequent in situ glucuronidase (GUS) staining of seedlings confirmed that E. coli had become internalized within root tissue and, to a limited extent, within hypocotyls. When inoculated seeds were sown in soil microcosms and cultivated for 42 days, E. coli was recovered from the external surfaces of spinach roots and leaves as well as from surface-sterilized roots. When 20-day-old spinach seedlings (from uninoculated seeds) were transferred to soil inoculated with E. coli, the bacterium became established on the plant surface, but internalization into the inner root tissue was restricted. However, for seedlings transferred to a hydroponic system containing 10(2) or 10(3) CFU of E. coli per ml of the circulating nutrient solution, the bacterium was recovered from surface-sterilized roots, indicating that it had been internalized. Differences between E. coli interactions in the soil and those in the hydroponic system may be attributed to greater accessibility of the roots in the latter model. Alternatively, the presence of a competitive microflora in soil may have restricted root colonization by E. coli. The implications of this study's findings with regard to the microbiological safety of minimally processed vegetables are discussed.

  2. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    Science.gov (United States)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  3. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...... and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible...... to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake...

  4. Role of deoxyribonucleic acid polymerases and deoxyribonucleic acid ligase in x-ray-induced repair synthesis in toluene-treated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1976-01-01

    Toluene-treated Escherichia coli mutants have been used to study the roles of deoxyribonucleic acid (DNA) polymerases I, II, and III, and of DNA ligase in repair synthesis and strand rejoining following X-irradiation. In cells possessing all three DNA polymerases, both a greater amount of repair synthesis (''exaggerated'' repair synthesis) and failure of ligation are observed when DNA ligase activity is inhibited. In a mutant lacking the polymerizing activity of DNA polymerase I, exaggerated repair synthesis is not observed, and strand rejoining does not occur even if DNA ligase is fully activated. In a mutant possessing the polymerizing activity of DNA polymerase I but lacking its 5' → 3' exonuclease activity, exaggerated repair synthesis is minimal. After irradiation, DNA polymerases II and III are capable of carrying out an adenosine 5'-triphosphate-dependent repair synthesis, but rejoining of strand breaks does not occur and exaggerated synthesis is not seen whether DNA ligase is active or not. These results suggest that DNA polymerase I and DNA ligase act together to limit repair synthesis after X irradiation and that both are necessary in toluene-treated cells for strand rejoining. DNA polymerases II and III apparently cannot complete chain elongation and gap filling, and therefore repair carried out by these enzymes does not respond to ligase action

  5. Copper Homeostasis in Escherichia coli and Other Enterobacteriaceae.

    Science.gov (United States)

    Rensing, Christopher; Franke, Sylvia

    2007-04-01

    An interesting model for studying environmental influences shaping microbial evolution is provided by a multitude of copper resistance and copper homeostasis determinants in enteric bacteria. This review describes these determinants and tries to relate their presence to the habitat of the respective organism, as a current hypothesis predicts that the environment should determine an organism's genetic makeup. In Escherichia coli there are four regulons that are induced in the presence of copper. Two, the CueR and the CusR regulons, are described in detail. A central component regulating intracellular copper levels, present in all free-living enteric bacteria whose genomes have so far been sequenced, is a Cu(I)translocating P-type ATPase. The P-type ATPase superfamily is a ubiquitous group of proteins involved in the transport of charged substrates across biological membranes. Whereas some components involved in copper homeostasis can be found in both anaerobes and aerobes, multi-copper oxidases (MCOs) implicated in copper tolerance in E. coli, such as CueO and the plasmid-based PcoA, can be found only in aerobic organisms. Several features indicate that CueO, PcoA, and other related MCOs are specifically adapted to combat copper-mediated oxidative damage. In addition to these well-characterized resistance operons, there are numerous other genes that appear to be involved in copper binding and trafficking that have not been studied in great detail. SilE and its homologue PcoE, for example, are thought to effect the periplasmic binding and sequestration of silver and copper, respectively.

  6. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli:

    DEFF Research Database (Denmark)

    Sherlock, Orla; Schembri, Mark; Reisner, A.

    2004-01-01

    Diarrhea-causing Escherichia coli strains are responsible for numerous cases of gastrointestinal disease and constitute a serious health problem throughout the world. The ability to recognize and attach to host intestinal surfaces is an essential step in the pathogenesis of such strains. AIDA...... binds to mammalian cells. Here, we show that AIDA possesses self-association characteristics and can mediate autoaggregation of E. coli cells. We demonstrate that intercellular AIDA-AIDA interaction is responsible for bacterial autoaggregation. Interestingly, AIDA-expressing cells can interact...

  7. DNA microarray analysis of fim mutations in Escherichia coli

    DEFF Research Database (Denmark)

    Schembri, Mark; Ussery, David; Workman, Christopher

    2002-01-01

    Bacterial adhesion is often mediated by complex polymeric surface structures referred to as fimbriae. Type I fimbriae of Escherichia coli represent the archetypical and best characterised fimbrial system. These adhesive organelles mediate binding to D-mannose and are directly associated...... we have used DNA microarray analysis to examine the molecular events involved in response to fimbrial gene expression in E. coli K-12. Observed differential expression levels of the fim genes were in good agreement with our current knowledge of the stoichiometry of type I fimbriae. Changes in fim...

  8. UV irradiation alters deoxynucleoside triphosphate pools in Escherichia coli

    International Nuclear Information System (INIS)

    Das, S.K.; Loeb, L.A.

    1984-01-01

    UV irradiation of exponentially growing Escherichia coli increased intracellular concentration of dATP and dTTP without significantly changing the concentrations of dGTP and dCTP. These selective increases in dATP and dTTP pools are seen in wild-type E. coli K12 and AB1157, as well as in recA and umuC strains, and are proportional to UV dose. The possible significance of these findings with respect to induction of the SOS response and nontargeted mutagenesis are discussed. (orig.)

  9. A stochastic killing system for biological containment of Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, P.; Jensen, Lars Bogø; Molin, Søren

    1995-01-01

    Bacteria with a stochastic conditional lethal containment system have been constructed. The invertible switch promoter located upstream of the fimA gene from Escherichia coli was inserted as expression cassette in front of the Lethal gef gene deleted of its own natural promoter. The resulting...... fusion was placed on a plasmid and transformed to E. coli. The phenotype connected with the presence of such a plasmid was to reduce the population growth rate with increasing significance as the cell growth rate was reduced. In very fast growing cells, there was no measurable effect on growth rate. When...

  10. Genes and proteins of Escherichia coli (GenProtEc).

    Science.gov (United States)

    Riley, M; Space, D B

    1996-01-01

    GenProtEc is a database of Escherichia coli genes and their gene products, classified by type of function and physiological role and with citations to the literature for each. Also present are data on sequence similarities among E.coli proteins with PAM values, percent identity of amino acids, length of alignment and percent aligned. The database is available as a PKZip file by ftp from mbl.edu/pub/ecoli.exe. The program runs under MS-DOS on IMB-compatible machines. GenProtEc can also be accessed through the World Wide Web at URL http://mbl.edu/html/ecoli.html.

  11. FimH-mediated autoaggregation of Escherichia coli

    DEFF Research Database (Denmark)

    Schembri, Mark; Christiansen, G.; Klemm, Per

    2001-01-01

    Autoaggregation is a phenomenon thought to contribute to colonization of mammalian hosts by pathogenic bacteria. Type 1 fimbriae are surface organelles of Escherichia coli that mediate D-mannose-sensitive binding to various host surfaces. This binding is conferred by the minor fimbrial component...... FimH. In this study, we have used random mutagenesis to identify variants of the FimH adhesin that confer the ability of E. coli to autoaggregate and settle from liquid cultures. Three separate autoaggregating clones were identified, all of which contained multiple amino acid changes located within...

  12. Escherichia coli : host interactions in the pathogenesis of canine pyometra

    OpenAIRE

    Henriques, Sofia Correia Rosa de Barros

    2016-01-01

    Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas Canine pyometra develops as a result of a complex interaction of etiological and physiopathological factors, such as the virulence and type of the bacteria and the individual host defence mechanisms. Since Escherichia coli is the most common bacterium isolated from uterus of bitches with pyometra, one main objective of this work was to characterize E. coli virulence potential, and...

  13. Serum Antibodies Protect against Intraperitoneal Challenge with Enterotoxigenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xinghong Yang

    2011-01-01

    Full Text Available To assess whether anticolonization factor antigen I (CFA/I fimbriae antibodies (Abs from enterotoxigenic Escherichia coli (ETEC can protect against various routes of challenge, BALB/c mice were immunized with a live attenuated Salmonella vaccine vector expressing CFA/I fimbriae. Vaccinated mice elicited elevated systemic IgG and mucosal IgA Abs, unlike mice immunized with the empty Salmonella vector. Mice were challenged with wild-type ETEC by the oral, intranasal (i.n., and intraperitoneal (i.p. routes. Naïve mice did not succumb to oral challenge, but did to i.n. challenge, as did immunized mice; however, vaccinated mice were protected against i.p. ETEC challenge. Two intramuscular (i.m. immunizations with CFA/I fimbriae without adjuvant conferred 100% protection against i.p. ETEC challenge, while a single 30 μg dose conferred 88% protection. Bactericidal assays showed that ETEC is highly sensitive to anti-CFA/I sera. These results suggest that parenteral immunization with purified CFA/I fimbriae can induce protective Abs and may represent an alternative method to elicit protective Abs for passive immunity to ETEC.

  14. Molecular prophage typing of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Kwon, Hyuk-Joon; Seong, Won-Jin; Kim, Jae-Hong

    2013-03-23

    Escherichia coli prophages confer virulence and resistance to physico-chemical, nutritional, and antibiotic stresses on their hosts, and they enhance the evolution of E. coli. Thus, studies on profiles of E. coli prophages are valuable to understand the population structure and evolution of E. coli pathogenicity. Large terminase genes participate in phage genome packaging and are one of the cornerstones for the identification of prophages. Thus, we designed primers to detect 16 types of large terminase genes and analyzed the genomes of 48 E. coli and Shigella reference strains for the prophage markers. We also investigated the distribution of the 16 prophage markers among 92 avian pathogenic E. coli (APEC) strains. APEC strains were classified into 61 prophage types (PPTs). Each strain was different from the reference strains as measured by the PPTs and from the frequency of each prophage marker. Investigation of the distribution of prophage-related serum resistance (bor), toxin (stx1 and cdtI), and T3SS effector (lom, espK, sopE, nleB, and ospG) genes revealed the presence of bor (44.1%), lom (95.5%) and cdtI (9.1%) in APEC strains with related prophages. Therefore, the molecular prophage typing method may be useful to understand population structure and evolution of E. coli pathogenicity, and further studies on the mobility of the prophages and the roles of virulence genes in APEC pathogenicity may be valuable. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. No evidence for a bovine mastitis Escherichia coli pathotype.

    Science.gov (United States)

    Leimbach, Andreas; Poehlein, Anja; Vollmers, John; Görlich, Dennis; Daniel, Rolf; Dobrindt, Ulrich

    2017-05-08

    Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function

  16. Tranformasi Fragmen Dna Kromosom Xanthomonas Campestris ke dalam Escherichia Coli

    Directory of Open Access Journals (Sweden)

    Wibowo Mangunwardoyo

    2002-04-01

    Full Text Available Research on DNA transformation of Xanthomonas campestris into Escherichia coli DH5αα using plasmid vector Escherichia coli (pUC19. was carried out. DNA chromosome was isolated using CTAB method, alkali lysis method was used to isolate DNA plasmid. Both of DNA plasmid and chromosome were digested using restriction enzyme EcoRI. Competent cell was prepared with CaCl2 and heat shock method for transformation procedure. The result revealed transformation obtain 5 white colonies, with transformation frequency was 1,22 x 10-8 colony/competent cell. Electrophoresis analysis showed the DNA fragment (insert in range 0.5 – 7,5 kb. Further research should be carried out to prepare the genomic library to obtain better result of transformant.

  17. Induced immune response of Escherichia coli BL21 expressing recombinant MSP1a and MSP1b proteins of Anaplasma marginale

    Directory of Open Access Journals (Sweden)

    Katia Tamekuni

    2009-11-01

    Full Text Available This work aims to evaluate the potential of immunization with E. coli BL21 expressing the recombinant rMSP1a and rMSP1b proteins of Anaplasma marginale. E. coli BL21 was transformed with recombinant plasmids pET102/msp1α and pET101/msp1β, and rMSP1a and rMSP1b were expressed after induction by IPTG. BALB/c mice were vaccinated with formolized BL21/rMSP1a and BL21/rMSP1b, and the production in mice sera of whole IgG was determined by ELISA. The mice immunized with BL21/rMSP1a showed a better humoral response for whole IgG when compared to the mice immunized with BL21/rMSP1b; these mice exhibited a small response after the second vaccination. Sera of mice immunized with BL21/rMSP1a reacted via western blot with BL21 and rMSP1a, with molecular masses varying from 70 to 105 kDa. Sera of mice immunized with BL21/rMSP1b reacted with BL21 and rMSP1b with a molecular mass of 100 kDa. These results demonstrate that BL21 containing rMSP1a and rMSP1b in the outer membrane were able to produce an immune response in mice, reinforcing its use in vaccine models against bovine anaplasmosis.Esse trabalho avaliou o potencial de imunização de Escherichia coli BL21 expressando as proteínas recombinantes rMSP1a e rMSP1b de Anaplasma marginale. A E. coli BL21 foi transformada com os plasmídios recombinantes pET102/msp1α e pET101/msp1β e as proteínas rMSP1a e rMSP1b foram expressas após indução com IPTG. Camundongos BALB/c foram vacinados com BL21/rMSP1a e BL21/rMSP1b formolisadas, e a produção de IgG total foi determinada pelo teste de ELISA nos soros dos camundongos imunizados. Os camundongos imunizados com a BL21/rMSP1a mostraram uma melhor resposta humoral para IgG total, comparada à resposta apresentada pelos camundongos imunizados com BL21/rMSP1b; estes camundongos exibiram uma menor resposta após a segunda vacinação. Soros de camundongos imunizados BL21/rMSP1a reagiram pelo western blot com BL21 e rMSP1a, com massa molecular variando de 70 a

  18. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya.

    Science.gov (United States)

    Onyango, Abel O; Kenya, Eucharia U; Mbithi, John J N; Ng'ayo, Musa O

    2009-11-01

    The epidemiology and virulence properties of pathogenic Escherichia coli among food handlers in tourist destination hotels in Kenya are largely uncharacterized. This cross-sectional study among consenting 885 food handlers working in nine luxurious tourist hotels in Nairobi, Kenya determined the epidemiology, virulence properties, antibiotics susceptibility profiles and conjugation abilities of pathogenic Escherichia coli. Pathogenic Escherichia coli was detected among 39 (4.4%) subjects, including 1.8% enteroaggregative Escherichia coli (EAEC) harboring aggR genes, 1.2% enterotoxigenic Escherichia coli (ETEC) expressing both LT and STp toxins, 1.1% enteropathogenic Escherichia coli (EPEC) and 0.2% Shiga-like Escherichia coli (EHEC) both harboring eaeA and stx2 genes respectively. All the pathotypes had increased surface hydrophobicity. Using multivariate analyses, food handlers with loose stools were more likely to be infected with pathogenic Escherichia coli. Majority 53.8% of the pathotypes were resistant to tetracycline with 40.2% being multi-drug resistant. About 85.7% pathotypes trans-conjugated with Escherichia coli K12 F(-) NA(r) LA. The carriage of multi-drug resistant, toxin expressing pathogenic Escherichia coli by this population is of public health concern because exposure to low doses can result in infection. Screening food handlers and implementing public awareness programs is recommended as an intervention to control transmission of enteric pathogens.

  19. Respiration shutoff in Escherichia coli after far-uv irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.; Norton, I.L.

    1984-01-01

    Damage to DNA of Escherichia coli by uv, ionizing radiation and chemicals causes a number of responses that require the recA + and lexA + gene products. The responses include error prone repair (as indicated by mutagenesis), filamentation and induction of prophage lambda. Another important rec/lex response, shutoff of respiration, which occurs 60 min after exposure to uv, is studied. Objective is to understand the genetic and biochemical bases of the shutoff process and its control

  20. flu, a metastable gene controlling surface properties of Escherichia coli.

    OpenAIRE

    Diderichsen, B

    1980-01-01

    flu, a gene of Escherichia coli K-12, was discovered and mapped between his and shiA. It is shown that flu is a metastable gene that changes frequently between the flu+ and flu states. flu+ variants give stable homogeneous suspensions, are piliated, and form glossy colonies. flu variants aggregate, fluff and sediment from suspensions, are nonpiliated, and form frizzy colonies. flu+ and flu variants can be isolated from most strains. Implications of these observations are discussed, and it is ...

  1. Two Tales of Prokaryotic Genomic Diversity: Escherichia coli and Halophiles

    Directory of Open Access Journals (Sweden)

    Lejla Pašić

    2014-01-01

    Full Text Available Prokaryotes are generally characterized by vast genomic diversity that has been shaped by mutations, horizontal gene transfer, bacteriocins and phage predation. Enormous genetic diversity has developed as a result of stresses imposed in harsh environments and the ability of microorganisms to adapt. Two examples of prokaryotic diversity are presented: on intraspecies level, exemplified by Escherichia coli, and the diversity of the hypersaline environment, with the discussion of food-related health issues and biotechnological potential.

  2. SENSITIVITY TEST OF Escherichia coli AGAINST EXTRACT Tinospora crispa

    OpenAIRE

    Lucia Ratna Winata Muslimin; abdul wahid jamaluddin

    2017-01-01

    In general, a bacterium such as Escherichia coli produces a kind of toxic protein which can disrupt intestinal wall. Livestock reacts to these toxins by pumping lots of water into the intestine in order to rinse or flush these toxins. As a result, the livestocks have diarrhea as a body response to remove the toxin in the digestive system. In the presence of these problems, breeders take a measure such as using antibiotics freely. Among breeders, antibiotics are often used freely ...

  3. Nosocomial acquisition of Escherichia coli by infants delivered in hospitals.

    Science.gov (United States)

    Fujita, K; Murono, K

    1996-04-01

    The delivery of infants in hospitals is desirable for obstetric reasons, but exposes the neonates to the microbiological hazards of a maternity unit. When neonates are born and cared for in hospital, the Escherichia coli strains that colonize the intestine tend to be acquired from the environment or from other babies, and are potentially pathogenic. The colonization of the infant with maternal flora should be promoted by strict rooming-in of mother and baby, or by delivery at home.

  4. Removal of Escherichia coli from biological effluents using natural ...

    African Journals Online (AJOL)

    Ability for disinfecting sterile biological effluents inoculated with Escherichia coli ATCC 25922 at concentrations of 105 CFU/m., using a natural mineral aggregate (NMA) and artificial mineral aggregates (AMAfs) consisting of individual oxides as Fe2O3, Cu2O y Ag2O and combined oxides as Fe2O3-Cu2O, Fe2O3-Ag2O, ...

  5. Optimizing the feeding operation of recombinant Escherichia coli ...

    African Journals Online (AJOL)

    Recombinant Escherichia coli BL21 was used to produce human-like collagen in fed-batch culture. After building and analyzing the kinetic models of fed-batch cultures, the maximum specific growth rate, Yx/s and Yp/s were 0.411 h-1 , 0.428 g·g-1 and 0.0716 g/g, respectively. The square error of cell growth models, glucose ...

  6. Prevalence of Antibiotic-Resistant Strains of Escherichia coli in ...

    African Journals Online (AJOL)

    A total of six bacteria species Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumonia, Staphylococcus aureus, Enterobacter aerogenes were ... Énumération de nombre de plaque standard a été effectuée par la méthode de la plaque de propagation sur des échantillons d'eau dilués en série.

  7. Ribosome slowed by mutation to streptomycin resistance. [Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Galas, D J; Branscomb, E W

    1976-08-12

    The effect of mutation to streptomycin resistance on the speed of polypeptide elongation in Escherichia coli was investigated. Translation speed was determined by measuring the time required for the first newly synthesized ..beta..-galactosidase molecules to appear after induction of the lactose operon. The results showed that ribosome speed is not a fixed parameter inherent to the protein synthetic apparatus, but a variable determined by the kinetics of translation and ultimately by the structure of the ribosome. (HLW)

  8. Compilation and analysis of Escherichia coli promoter DNA sequences.

    OpenAIRE

    Hawley, D K; McClure, W R

    1983-01-01

    The DNA sequence of 168 promoter regions (-50 to +10) for Escherichia coli RNA polymerase were compiled. The complete listing was divided into two groups depending upon whether or not the promoter had been defined by genetic (promoter mutations) or biochemical (5' end determination) criteria. A consensus promoter sequence based on homologies among 112 well-defined promoters was determined that was in substantial agreement with previous compilations. In addition, we have tabulated 98 promoter ...

  9. Inhibition of X-ray-induced protection of Escherichia coli K-12 cells against the lethal effects of ultra-violet light by nitrofurantoin

    Energy Technology Data Exchange (ETDEWEB)

    Martignoni, K D [Muenchen Univ. (Germany, F.R.). Strahlenbiologisches Inst.

    1978-06-01

    Wild-type cells of E.coli K-12 showed increasing U.V. resistance if they were X-irradiated and incubated at 37/sup 0/C in growth medium before the U.V. exposure. Development of higher U.V. resistance could be inhibited by incubating the X-irradiated cells either at temperatures below 15/sup 0/C, or in the presence of 0.01 M KCN. Nitrofurantoin (NF), which was recently found specifically to inhibit inducible enzyme synthesis, had only a transient inhibitory effect on X-ray-induced U.V. resistance. Cells grown in glucose medium showed less inhibition by NF of X-radiation-induced resistance to U.V.-radiation than did cells grown in glycerol, or in glucose medium with added cyclic AMP. It is suggested that X-ray-induced U.V. resistance requires active cellular metabolism, but it is not subject to catabolite repression. The following hypothesis is offered to explain the action of NF : Under de-repressed conditions (without catabolite repression by glucose) nitrofurantoin could counteract the radiation-induced inhibition of a repair inhibitor (such as post-irradiation DNA degradation).

  10. Induction of double-strand breaks in DNA of prokaryotes and eukaryotes and their repair. 1. Application of elastoviscosimetry for studying double-strand breaks in DNA of Escherichia coli induced by. gamma. -irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bresler, S E; Noskin, L A; Suslov, A V [AN SSSR, Leningrad. Inst. Yadernoj Fiziki

    1980-11-01

    It is shown that the method of elastoviscosimetry gives a possibility to record the formation of DNA double-strand breaks in Escherichia coli cells induced by ..gamma.. irradiation at doses close to D/sub 37/. The dependence of changes of elastoviscosity parameter on the dose (tau/sub 0/) passes through the maximum. It is shown that the ascending section of this curve (at minimum ..gamma.. irradiation doses) characterizes the relaxation process of the superspiralised chromosome in nucleotide of the E. coli. This relaxation is observed due to ..gamma.. induced damages which are not double-strand breaks. By the maximum position one can judge on a dose yield of the first DNA double-strand break, the descending part of the dose curve describes the kinetics of accumulation of breaks with the dose increase. The analysis of the data obtained gives the possibility to come to the conclusion that when applying a usual technique of irradiation and lysis of cells not providing for special measures on inhibition of endo-and exonuclease activity in ..gamma.. irradiated cells, the dose yield of double-strand breaks noticeably increases (by 4.2 times). In the case of an essential, though incomplete, inhibition of nuclease activities in ..gamma.. irradiated cells the dose yield of breaks approximately corresponds to the dose curve of inactivation of these cells (D/sub 37/12.5+-3.0 krad, the first double-strand break -at 14.5+-2.4 krad).

  11. Induction of double-strand breaks in DNA of prokaryotes and eukaryotes and their repair. 1. Application of elastoviscosimetry for studying double-strand breaks in DNA of Escherichia coli induced by γ-irradiation

    International Nuclear Information System (INIS)

    Bresler, S.E.; Noskin, L.A.; Suslov, A.V.

    1980-01-01

    It is shown that the method of elastoviscosimetry gives a possibility to record the formation of DNA double-strand breaks in Escherichia coli cells induced by γ irradiation at doses close to D 37 . The dependence of changes of elastoviscosity parameter on the dose (tau 0 ) passes through the maximum. It is shown that the ascending section of this curve (at minimum γ irradiation doses) characterizes the relaxation process of the superspiralised chromosome in nucleotide of the E. coli. This relaxation is observed due to γ induced damages which are not double-strand breaks. By the maximum position one can judge on a dose yield of the first DNA double-strand break, the descending part of the dose curve describes the kinetics of accumulation of breaks with the dose increase. The analysis of the data obtained gives the possibility to come to the conclusion that when applying a usual technique of irradiation and lysis of cells not providing for special measures on inhibition of endo-and exonuclease activity in γ irradiated cells, the dose yield of double-strand breaks noticeably increases (by 4.2 times). In the case of an essential, though incomplete, inhibition of nuclease activities in γ irradiated cells the dose yield of breaks approximately corresponds to the dose curve of inactivation of these cells (D 37 12.5+-3.0 krad, the first double-strand break -at 14.5+-2.4 krad)

  12. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  13. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  14. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    Science.gov (United States)

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  15. the occurrence of escherichia coli o157:h7 in market and abattoir

    African Journals Online (AJOL)

    user

    Escherichia coli O157:H7 is a newly emerging pathogen frequently associated with the consumption of foods of ... KEY WORDS: E. coli O157:H7, Pathogen, Abattoir, Market, and Infections ..... pathogen. Escherichia coli O157:H7 as a model of.

  16. Inactivation of shiga toxin-producing Escherichia coli in lean ground beef by gamma irradiation

    Science.gov (United States)

    Non-O157 serovars of Shiga Toxin-producing Escherichia coli (STEC) are now responsible for over 60% of STEC induced illnesses. The majority of illnesses caused by non-O157:H7 STEC have been due to serogroups O26, O121, O103, O45, O111, and O145, “the big/top six”, which are now considered adulterant...

  17. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ulett, G.C.; Schembri, M.A.

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract....... The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory...... to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human...

  18. Escherichia coli. A sanitary methodology for faecal water pollution tests; Escherichia coli nelle acque. Significato sanitario e metodologie di analisi

    Energy Technology Data Exchange (ETDEWEB)

    Bonadonna, L. [Istituto Superiore di Sanita' , Rome (Italy)

    2001-02-01

    Among the traditional indictors of faecal water pollution, Escherichia coli has shown to fit better with the definition of indicator organism. Till now its recovery has been time-consuming and needs confirmation tests. In this report more rapid and direct methods, based on enzymatic reactions, are presented. [Italian] Per talune peculiari caratteristiche, Escherichia coli sembra meglio soddisfare i requisiti insiti nella definizione di organismo indicatore, rispetto ai tradizionali indicatori di contaminazione fecale dell'acqua. Finora, i substrati disponibili per il suo rilevamento necessitano tutti di almeno una prova di conferma. Di qui l'esigenza di indicare metodi di rilevamento a riposta piu' rapida, anche in relazione all'inserimento, nelle piu' recenti normative nazionali ed europee, del microrganismo tra i parametri microbiologici da ricercare.

  19. Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Sidra Younis

    Full Text Available Bovine mastitis is a widespread disease in dairy cows, and is often caused by bacterial mammary gland infection. Mastitis causes reduced milk production and leads to excessive use of antibiotics. We present meta-analysis of transcriptional profiles of bovine mastitis from 10 studies and 307 microarrays, allowing identification of much larger sets of affected genes than any individual study. Combining multiple studies provides insight into the molecular effects of Escherichia coli infection in vivo and uncovers differences between the consequences of E. coli vs. Staphylococcus aureus infection of primary mammary epithelial cells (PMECs. In udders, live E. coli elicits inflammatory and immune defenses through numerous cytokines and chemokines. Importantly, E. coli infection causes downregulation of genes encoding lipid biosynthesis enzymes that are involved in milk production. Additionally, host metabolism is generally suppressed. Finally, defensins and bacteria-recognition genes are upregulated, while the expression of the extracellular matrix protein transcripts is silenced. In PMECs, heat-inactivated E. coli elicits expression of ribosomal, cytoskeletal and angiogenic signaling genes, and causes suppression of the cell cycle and energy production genes. We hypothesize that heat-inactivated E. coli may have prophylactic effects against mastitis. Heat-inactivated S. aureus promotes stronger inflammatory and immune defenses than E. coli. Lipopolysaccharide by itself induces MHC antigen presentation components, an effect not seen in response to E. coli bacteria. These results provide the basis for strategies to prevent and treat mastitis and may lead to the reduction in the use of antibiotics.

  20. Incidence of Escherichia coli O157:H7 in Thailand

    International Nuclear Information System (INIS)

    Sukhumungoon, P.

    2015-01-01

    Entero hemorrhagic Escherichia coli (EHEC) especially serotype O157:H7 is one of the important food-borne pathogens because it is able to produce crucial toxins Shiga. However, the outbreak of this organism in Thailand has not been reported. Antibody to O157 antigen was detected in some Thai populations and Shiga toxin-producing E. coli were detected in low numbers of clinical specimens. Interestingly, some E. coli that showed positive to O157 fimbriae probe and lack of virulence gene were isolated from certain patients and one isolate of E. coli O157:H7 which possessed stx1, stx2v was detected in a normal child. In addition, the incidence of E. coli O157:H7 strains were monitored by the samples from cattle and retail beef in Thailand although their inability to produce toxins or produce in a low concentration was demonstrated. This review discusses the incidences of E. coli O157 in clinical and environmental samples of Thailand including the transmission possibility of this bacterium across the Thai border through food trade. (author)

  1. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    Science.gov (United States)

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Distribution of Diverse Escherichia coli between Cattle and Pasture.

    Science.gov (United States)

    NandaKafle, Gitanjali; Seale, Tarren; Flint, Toby; Nepal, Madhav; Venter, Stephanus N; Brözel, Volker S

    2017-09-27

    Escherichia coli is widely considered to not survive for extended periods outside the intestines of warm-blooded animals; however, recent studies demonstrated that E. coli strains maintain populations in soil and water without any known fecal contamination. The objective of this study was to investigate whether the niche partitioning of E. coli occurs between cattle and their pasture. We attempted to clarify whether E. coli from bovine feces differs phenotypically and genotypically from isolates maintaining a population in pasture soil over winter. Soil, bovine fecal, and run-off samples were collected before and after the introduction of cattle to the pasture. Isolates (363) were genotyped by uidA and mutS sequences and phylogrouping, and evaluated for curli formation (Rough, Dry, And Red, or RDAR). Three types of clusters emerged, viz. bovine-associated, clusters devoid of cattle isolates and representing isolates endemic to the pasture environment, and clusters with both. All isolates clustered with strains of E. coli sensu stricto, distinct from the cryptic species Clades I, III, IV, and V. Pasture soil endemic and bovine fecal populations had very different phylogroup distributions, indicating niche partitioning. The soil endemic population was largely comprised of phylogroup B1 and had a higher average RDAR score than other isolates. These results indicate the existence of environmental E. coli strains that are phylogenetically distinct from bovine fecal isolates, and that have the ability to maintain populations in the soil environment.

  3. Mechanisms of the radioprotective effect of cysteamine in Escherichia coli

    International Nuclear Information System (INIS)

    Korystov, Yu.N.; Vexler, F.B.

    1988-01-01

    The values of the oxygen effect (m) and the maximal protective effect of cysteamine (DMF*) were estimated for four Escherichia coli strains: AB1157 (wild type), AB1886 (uvrA), AB2463 (recA), and p3478 (polA). A correlation made between DMF* and m as well as the kinetics of the increase of DMF with oxygen depletion showed that the protective effect of cysteamine is realized by three mechanisms: (i) anoxia achieved by oxygen reduction, with the DMF varying from 2.2 to 4.2 for different E. coli strains (this protection is the major contribution to the entire mechanism); (ii) lowering of the indirect radiation effect; i.e., for 50 mM cysteamine DMF does not exceed 1.1; and (iii) increase of the efficiency of enzymatic repair. The latter effect of cysteamine is registered only with the wild-type E. coli, the DMF being not less than 1.4

  4. ROS mediated selection for increased NADPH availability in Escherichia coli.

    Science.gov (United States)

    Reynolds, Thomas S; Courtney, Colleen M; Erickson, Keesha E; Wolfe, Lisa M; Chatterjee, Anushree; Nagpal, Prashant; Gill, Ryan T

    2017-11-01

    The economical production of chemicals and fuels by microbial processes remains an intense area of interest in biotechnology. A key limitation in such efforts concerns the availability of key co-factors, in this case NADPH, required for target pathways. Many of the strategies pursued for increasing NADPH availability in Escherichia coli involve manipulations to the central metabolism, which can create redox imbalances and overall growth defects. In this study we used a reactive oxygen species based selection to search for novel methods of increasing NADPH availability. We report a loss of function mutation in the gene hdfR appears to increase NADPH availability in E. coli. Additionally, we show this excess NADPH can be used to improve the production of 3HP in E. coli. © 2017 Wiley Periodicals, Inc.

  5. Bactericidal activity of ciprofloxacin upon Escherichia coli and Acinetobacter baumanni.

    Science.gov (United States)

    Zemelman, R; Vejar, C; Bello, H; Domínguez, M; González, G

    1992-01-01

    The mechanisms of bactericidal activity of ciprofloxacin (mechanisms A and B) upon cells of a strain of Escherichia coli and one strain of Acinetobacter baumannii were investigated under different conditions. The killing of E. coli cells by ciprofloxacin was significantly reduced by chloramphenicol, but this antibiotic showed almost no activity upon killing of A. baumannii cells by this quinolone. Similar results were obtained when rifampicin was added to ciprofloxacin. Bactericidal activity of ciprofloxacin upon nondividing cells of E. coli was lower and that upon non-dividing cells of A. baumannii was not affected when compared with activity of ciprofloxacin upon dividing cells of both microorganisms. These results demonstrate that the antibacterial activity of ciprofloxacin upon A. baumannii is independent of protein and ARN synthesis, a fact which suggests that this quinolone exerts only bactericidal mechanism B upon A. baumannii. This finding might explain, at least in part, the lower susceptibility of this microorganism to ciprofloxacin.

  6. Incidence of Escherichia coli in black walnut meats.

    Science.gov (United States)

    Meyer, M T; Vaughn, R H

    1969-11-01

    Examination of commercially shelled black walnut meats showed inconsistent numbers of total aerobic bacteria, coliforms, and Escherichia coli; variation occurred among different meat sizes and within each meat size. The incidence of E. coli on meats of commercially hulled black walnuts depended on the physical condition of the nuts. Apparently tightly sealed ones contained only a few or none, whereas those with visibly separated sutures and spoiled meats yielded the most. This contamination was in part correlated to a hulling operation. Large numbers of E. coli on the husk of the walnuts contaminated the hulling water, subsequently also contaminating the meats by way of separated sutures. Chlorination of the hulling wash water was ineffective. Attempts were made to decontaminate the walnut meats without subsequent deleterious changes in flavor or texture. A treatment in coconut oil at 100 C followed by removal of excess surface oil by centrifugation was best.

  7. Is Escherichia coli urinary tract infection a zoonosis?

    DEFF Research Database (Denmark)

    Jacobsen, L.; Garneau, P.; Bruant, G.

    2012-01-01

    Recently, it has been suggested that the Escherichia coli causing urinary tract infection (UTI) may come from meat and animals. The purpose was to investigate if a clonal link existed between E. coli from animals, meat and UTI patients. Twenty-two geographically and temporally matched B2 E. coli...... from UTI patients, community-dwelling humans, broiler chicken meat, pork, and broiler chicken, previously identified to exhibit eight virulence genotypes by microarraydetection of approximately 300 genes, were investigated for clonal relatedness by PFGE. Nine isolates were selected and tested...... for in vivo virulence in the mouse model of ascending UTI. UTI and community-dwelling human strains were closely clonally related to meat strains. Several human derived strains were also clonally interrelated. All nine isolates regardless of origin were virulent in the UTI model with positive urine, bladder...

  8. Multiepitope fusion antigen induces broadly protective antibodies that prevent adherence of Escherichia coli strains expressing colonization factor antigen I (CFA/I), CFA/II, and CFA/IV.

    Science.gov (United States)

    Ruan, Xiaosai; Knudsen, David E; Wollenberg, Katie M; Sack, David A; Zhang, Weiping

    2014-02-01

    Diarrhea is the second leading cause of death in children younger than 5 years and continues to be a major threat to global health. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacteria causing diarrhea in developing countries. ETEC strains are able to attach to host small intestinal epithelial cells by using bacterial colonization factor antigen (CFA) adhesins. This attachment helps to initiate the diarrheal disease. Vaccines that induce antiadhesin immunity to block adherence of ETEC strains that express immunologically heterogeneous CFA adhesins are expected to protect against ETEC diarrhea. In this study, we created a CFA multiepitope fusion antigen (MEFA) carrying representative epitopes of CFA/I, CFA/II (CS1, CS2, and CS3), and CFA/IV (CS4, CS5, and CS6), examined its immunogenicity in mice, and assessed the potential of this MEFA as an antiadhesin vaccine against ETEC. Mice intraperitoneally immunized with this CFA MEFA exhibited no adverse effects and developed immune responses to CFA/I, CFA/II, and CFA/IV adhesins. Moreover, after incubation with serum of the immunized mice, ETEC or E. coli strains expressing CFA/I, CFA/II, or CFA/IV adhesins were significantly inhibited in adherence to Caco-2 cells. Our results indicated this CFA MEFA elicited antibodies that not only cross-reacted to CFA/I, CFA/II and CFA/IV adhesins but also broadly inhibited adherence of E. coli strains expressing these seven adhesins and suggested that this CFA MEFA could be a candidate to induce broad-spectrum antiadhesin protection against ETEC diarrhea. Additionally, this antigen construction approach (creating an MEFA) may be generally used in vaccine development against heterogenic pathogens.

  9. The Capsule Supports Survival but Not Traversal of Escherichia coli K1 across the Blood-Brain Barrier

    OpenAIRE

    Hoffman, Jill A.; Wass, Carol; Stins, Monique F.; Kim, Kwang Sik

    1999-01-01

    The vast majority of cases of gram-negative meningitis in neonates are caused by K1-encapsulated Escherichia coli. The role of the K1 capsule in the pathogenesis of E. coli meningitis was examined with an in vivo model of experimental hematogenous E. coli K1 meningitis and an in vitro model of the blood-brain barrier. Bacteremia was induced in neonatal rats with the E. coli K1 strain C5 (O18:K1) or its K1− derivative, C5ME. Subsequently, blood and cerebrospinal fluid (CSF) were obtained for c...

  10. FREQUENCY AND DISTRIBUTION OF DIARRHOEAGENIC ESCHERICHIA COLI STRAINS ISOLATED FROM PEDIATRIC PATIENTS WITH DIARRHOEA IN BOSNIA AND HERZEGOVINA

    OpenAIRE

    Dedeić-Ljubović, AmeLa; Hukić, Mirsada; Bekić, DaRia; Zvizdić, AmrA

    2009-01-01

    Diarrhoeal disease is a major cause of illness and death among infants and young children worldwide. Among the Escherichia coli (E. coli) causing intestinal diseases, there are six well-described categories: enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), enteroinvasive E. coli (EIEC), entero-pathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC) and enterotoxigenic E. coli (ETEC).

  11. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    Science.gov (United States)

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-13

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  12. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  13. Cancerous patients and outbreak of Escherichia coli: an important issue in oncology

    OpenAIRE

    Joob, Beuy; Wiwanitkit, Viroj

    2014-01-01

    The widespread of the Escherichia coli outbreak in Europe becomes an important public concern at global level. The infection can be serious and might result in death. The retrospective literature review on this specific topic is performed. In this specific brief article, the author presented and discussed on the problem of Escherichia coli infection in the cancerous patients. This is an actual important issue in medical oncology for the scenario of Escherichia coli epidemic.

  14. Sex-related effects of nutritional supplementation of Escherichia coli: relevance to eating disorders.

    Science.gov (United States)

    Tennoune, Naouel; Legrand, Romain; Ouelaa, Wassila; Breton, Jonathan; Lucas, Nicolas; Bole-Feysot, Christine; do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-03-01

    The biological background of sex-related differences in the development of eating disorders (EDs) is unknown. Recent data showed that gut bacteria Escherichia coli induce autoantibodies against anorexigenic α-melanocyte-stimulating hormone (α-MSH) associated with psychopathology in ED. The aim of this study was to compare the effects of E. coli on feeding and autoantibodies against α-MSH and adrenocorticotropic hormone (ACTH), between female and male rats. Commensal E. coli K12 were given in a culture medium daily to adult Wistar rats by intragastric gavage over a 3-wk period; control rats received culture medium only. Before gavage, E. coli K12 DNA was detected in feces of female but not male rats. E. coli provision was accompanied by an increase in body weight gain in females, but a decrease in body weight gain and food intake in males. Independent of E. coli treatment, plasma levels of anti-α-MSH and ACTH immunoglobulin (Ig)G were higher in female than male rats. Females responded to E. coli by increasing α-MSH IgG levels and affinity, but males by increasing α-MSH IgM levels. Affinity of IgG for ACTH was increased in both E. coli-treated females and males, although with different kinetics. IgG from females stimulated more efficiently α-MSH-induced cyclic adenosine monophosphate production by melanocortin 4 receptor-expressing cells compared with IgG from males. Sex-related response to how E. coli affects feeding and anti-melanocortin hormone antibody production may depend on the presence of these bacteria in the gut before E. coli supplementation. These data suggest that sex-related presence of certain gut bacteria may represent a risk factor for ED development. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Recombinant protein production data after expression in the bacterium Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Enrique Cantu-Bustos

    2016-06-01

    Full Text Available Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]. Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP tagged with CusF, using Ag(I metal affinity chromatography.

  16. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J. P. [NIH, Bethesda, MD. (United States); Levine, A. S.; Woodgate, R.

    1997-12-15

    Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5. (author)

  17. Attachment of Escherichia coli and enterococci to particles in runoff.

    Science.gov (United States)

    Soupir, Michelle L; Mostaghimi, Saied; Dillaha, Theo

    2010-01-01

    Association of Escherichia coli and enterococci with particulates present in runoff from erodible soils has important implications for modeling the fate and transport of bacteria from agricultural sources and in the selection of management practices to reduce bacterial movement to surface waters. Three soils with different textures were collected from the Ap horizon (silty loam, silty clay loam, and loamy fine sand), placed in portable box plots, treated with standard cowpats, and placed under a rainfall simulator. Rainfall was applied to the plots until saturation-excess flow occurred for 30 min, and samples were collected 10, 20, and 30 min after initiation of the runoff event. The attachment of E. coli and enterococci to particles present in runoff was determined by a screen filtration and centrifugation procedure. Percentage of E. coli and enterococci attached to particulates in runoff ranged from 28 to 49%, with few statistically significant differences in attachment among the three soils. Similar partitioning release patterns were observed between E. coli and enterococci from the silty loam (r = 0.57) and silty clay loam soils (r = 0.60). At least 60% of all attached E. coli and enterococci were associated particles within an 8- to 62-microm particle size category. The results indicate that the majority of fecal bacteria attach to and are transported with manure colloids in sediment-laden flow regardless of the soil texture.

  18. Escherichia coli ST131, an Intriguing Clonal Group

    Science.gov (United States)

    Bertrand, Xavier; Madec, Jean-Yves

    2014-01-01

    SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321

  19. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    Science.gov (United States)

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  20. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    Science.gov (United States)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  1. THE WIDESPREAD OCCURRENCE OF THE ENTEROHEMOLYSIN GENE EHLYA AMONG ENVIRONMENTAL STRAINS OF ESCHERICHIA COLI

    Science.gov (United States)

    The putative virulence factor enterohemolysin, encoded for by the ehlyA gene, has been closely associated with the pathogenic enterohemorrhagic Escherichia coli (EHEC) group. E. coli isolates from effluents from seven geographically dispersed municipal ...

  2. Hemolytic Porcine Intestinal Escherichia coli without Virulence-Associated Genes Typical of Intestinal Pathogenic E. coli ▿ †

    Science.gov (United States)

    Schierack, Peter; Weinreich, Joerg; Ewers, Christa; Tachu, Babila; Nicholson, Bryon; Barth, Stefanie

    2011-01-01

    Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli. PMID:21965399

  3. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    Science.gov (United States)

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  4. Induction of protein X in Escherichia coli

    International Nuclear Information System (INIS)

    Little, J.W.; Hanawalt, P.C.

    1977-01-01

    The authors have examined some of the treatments that might induce protein X and they have, in particular, tested the hypothesis that DNA degradation products play an essential role in the induction process. UV irradiation, nalidixic acid treatment, or thymine starvation result in protein X synthesis in wild type strains. However, UV irradiation, unlike nalidixic acid, also induced protein X in recB strains, in which little DNA degradation occurs. The presence of DNA fragments resulting from hostcontrolled restriction of phage lambda DNA did not affect protein X synthesis. It was concluded that no causal relationship exists bewteen the production of DNA fragments and induction of protein X. The presence of the plasmid R 46, which confers enhanced mutagenesis and UV resistance on its host, did not affect protein X synthesis. Growth in the presence of 5-bromouracil, which does not result in production of degradation fragments, resulted eventually in a low rate of protein X synthesis. In dnaA mutants, deficient in the initiation of new rounds of replication, UV irradiation induced protein X, again unlike nalidixic acid. Thus, the inhibition of active replication forks is not an essential requirement for protein X induction. (orig./MG) [de

  5. Inactivation of Escherichia coli in soil by solarization

    International Nuclear Information System (INIS)

    Wu, S.; Nishihara, M.; Kawasaki, Y.; Yokoyama, A.; Matsuura, K.; Koga, T.; Ueno, D.; Inoue, K.; Someya, T.

    2009-01-01

    Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g −1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces. (author)

  6. Viabilidad de Escherichia coli en presencia de diferentes contaminantes

    Directory of Open Access Journals (Sweden)

    Antonio Rivera T

    2006-04-01

    Full Text Available La contaminación en ríos condiciona la presencia de microorganismos adaptados al ecosistema entre ellos a patógenos de importancia en salud pública. Objetivo: Determinar la viabilidad de Escherichia coli en presencia de nitrato de plata, carbonato de amonio, fenol y formaldehído. Materiales y métodos: Se tomaron muestras de agua del río Alseseca, que luego se sembró en medios de cultivo selectivos para enterobacterias, seleccionándose las colonias del género Escherichia, las cuales fueron sembradas en el medio de orientación CHROMagar ECC. Las muestras de E. coli se evaluaron en presencia de nitrato de plata, carbonato de amonio, fenol y formaldehído. Resultados: El grupo experimental presentó viabilidad en presencia de los cuatro compuestos, el grupo control positivo presentó nula viabilidad, la comparación entre los grupos mostró diferencia significativa (p< 0,05. Conclusión: Los aislamientos de E. coli mostraron viabilidad, implicando riesgos para el ecosistemas y la salud, ya que el río Alseseca atraviesa por el municipio de Puebla donde existen núcleos poblacionales importantes.

  7. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    Science.gov (United States)

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Toxicity mechanism of carbon nanotubes on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Young, Yu-Fu [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lee, Hui-Ju [Department of Life Science, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Shen, Yi-Shan; Tseng, Shih-Hao; Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Tai, Nyan-Hwa, E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chang, Hwan-You, E-mail: hychang@mx.nthu.edu.tw [Department of Life Science, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer F-MWCNTs possess higher antibiotic performance than that of the F-SWCNTs. Black-Right-Pointing-Pointer E. coli cells were pierced when incubated with F-MWCNTs and trapped when incubated with F-SWCNTs. Black-Right-Pointing-Pointer The rigidity and moment of CNTs play important role on the antibiotic effect. - Abstract: The influences of carbon nanomaterials on bacteria were investigated using three types of dispersed and functionalized carbon nanomaterials (F-CNMs), viz. functionalized carbon nanopowder (F-CNP), functionalized single-walled carbon nanotubes (F-SWCNTs), and functionalized multi-walled carbon nanotubes (F-MWCNTs). F-CNMs with different aspect ratios were used to study the influence of material configuration on the viability of Escherichia coli (E. coli). Although these materials were functionalized to improve their dispersibility, the original morphologies and chemical properties of the materials were maintained. Traditional bacteria quantitative plating analysis was conducted, and the results of which revealed that the F-CNP and the F-SWCNTs showed a less significant effect on the viability of E. coli, while the F-MWCNTs obviously inhibited cell viability. A Fourier transform infrared spectroscopy and a scanning electron microscopy were used to verify the functionalization of the F-CNMs and to examine the interaction of F-CNMs with E. coli, respectively; in addition, we adopted chemiluminescence assays to measure the concentration of adenosine triphosphate (ATP) released from the damaged cells. The results showed that the ATP of the F-MWCNTs sample is two-fold higher than that of the control, indicating direct piercing of E. coli by F-MWCNTs leads to bacteria death. Furthermore, F-SWCNTs were concluded to have less influence on the viability of E. coli because ultra-long F-SWCNTs used in this study performed less rigidity to pierce the cells.

  9. Toxicity mechanism of carbon nanotubes on Escherichia coli

    International Nuclear Information System (INIS)

    Young, Yu-Fu; Lee, Hui-Ju; Shen, Yi-Shan; Tseng, Shih-Hao; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2012-01-01

    Highlights: ► F-MWCNTs possess higher antibiotic performance than that of the F-SWCNTs. ► E. coli cells were pierced when incubated with F-MWCNTs and trapped when incubated with F-SWCNTs. ► The rigidity and moment of CNTs play important role on the antibiotic effect. - Abstract: The influences of carbon nanomaterials on bacteria were investigated using three types of dispersed and functionalized carbon nanomaterials (F-CNMs), viz. functionalized carbon nanopowder (F-CNP), functionalized single-walled carbon nanotubes (F-SWCNTs), and functionalized multi-walled carbon nanotubes (F-MWCNTs). F-CNMs with different aspect ratios were used to study the influence of material configuration on the viability of Escherichia coli (E. coli). Although these materials were functionalized to improve their dispersibility, the original morphologies and chemical properties of the materials were maintained. Traditional bacteria quantitative plating analysis was conducted, and the results of which revealed that the F-CNP and the F-SWCNTs showed a less significant effect on the viability of E. coli, while the F-MWCNTs obviously inhibited cell viability. A Fourier transform infrared spectroscopy and a scanning electron microscopy were used to verify the functionalization of the F-CNMs and to examine the interaction of F-CNMs with E. coli, respectively; in addition, we adopted chemiluminescence assays to measure the concentration of adenosine triphosphate (ATP) released from the damaged cells. The results showed that the ATP of the F-MWCNTs sample is two-fold higher than that of the control, indicating direct piercing of E. coli by F-MWCNTs leads to bacteria death. Furthermore, F-SWCNTs were concluded to have less influence on the viability of E. coli because ultra-long F-SWCNTs used in this study performed less rigidity to pierce the cells.

  10. Adaptation mechanisms of Escherichia Coli to the ultraviolet light I. Isolation of mutants resistant to ultraviolet light; Mecanismos de adaptacion de Escherichia Coli a la luz ultravioleta I. Aislamiento de mutantes resistentes a luz ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1995-09-15

    The objective of this work is to study the adaptation mechanisms of Escherichia coli to the ultraviolet light of 254 nm (W), a component of the solar light that induces a variety of damages in the DNA of the cells exposed, which should be eliminated in order to avoid its lethal and mutagenic effects. Inside this first report, the results obtained about the resistance to UV radiation of 5 independent populations of Escherichia coli, which were subjected in parallel form to 80 successive exposures of UV light with inserted periods of growth are reported. (Author)

  11. Effect of bile on growth, peritoneal absorption, and blood clearance of Escherichia coli in E coli peritonitis

    International Nuclear Information System (INIS)

    Andersson, R.; Schalen, C.; Tranberg, K.G.

    1991-01-01

    The effect of intraperitoneal bile on growth, peritoneal absorption, and clearance of Escherichia coli was determined in E coli peritonitis in the rat. In E coli peritonitis, intraperitoneal bacterial counts gradually decreased, whereas they increased (after 2 hours) with subsequent development of bacteremia in E coli plus bile peritonitis. After an intraperitoneal injection of labeled bacteria, blood radioactivity was only initially lower in E coli plus bile peritonitis compared with E coli peritonitis. Clearance from blood was lower in E coli plus bile peritonitis than in E coli peritonitis. Organ localization was similar in E coli peritonitis and E coli plus bile peritonitis with decreased splenic, increased pulmonary, and unchanged hepatic uptakes compared with controls. Impaired peritoneal absorption of bacteria, together with impaired local host defense, is likely to enhance the noxious effect of bile in E coli peritonitis

  12. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  13. Adaptation mechanisms of Escherichia Coli to the ultraviolet light I. Isolation of mutants resistant to ultraviolet light

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1995-09-01

    The objective of this work is to study the adaptation mechanisms of Escherichia coli to the ultraviolet light of 254 nm (W), a component of the solar light that induces a variety of damages in the DNA of the cells exposed, which should be eliminated in order to avoid its lethal and mutagenic effects. Inside this first report, the results obtained about the resistance to UV radiation of 5 independent populations of Escherichia coli, which were subjected in parallel form to 80 successive exposures of UV light with inserted periods of growth are reported. (Author)

  14. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance to antimicr......It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered...... in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces....

  15. Cellular localization of the Escherichia coli SpoT protein.

    OpenAIRE

    Gentry, D R; Cashel, M

    1995-01-01

    The SpoT protein of Escherichia coli serves as a source of degradation as well as an apparent source of synthesis of (p)ppGpp. Since the subcellular localization of SpoT might be a clue to its function, we have used SpoT-specific antisera to analyze cell extracts fractionated on sucrose gradients. We find that the SpoT protein is not bound to ribosomes or to either inner or outer membrane fractions. Although the SpoT protein is found in large aggregates, its localization is probably cytosolic.

  16. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI...... approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  17. 4-thiouridine and photoprotection in Escherichia coli K12

    International Nuclear Information System (INIS)

    Thomas, Gilles; Favre, Alain

    1977-01-01

    A high level of protection is observed in the Escherichia coli K 12 strain AB 1157 rec A 1 nuv + whose transfer RNA contains 4-thiouridine. In contrast, the photoprotection level is low and observed at higher doses in a strain which differs from the former by a single mutation nuv - , (lack of 4-thiouridine). This nucleoside is therefore an important chromophore leading to photoprotection. This conclusion is corroborated by the similarity of the action spectra for 8-13 link formation in tRNA and for photoprotection [fr

  18. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome....... The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact...

  19. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Kruse, Thomas; Møller-Jensen, Jakob; Løbner-Olesen, Anders

    2003-01-01

    The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow...... cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell...... that MreB filaments participate in directional chromosome movement and segregation....

  20. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level....... Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter...

  1. Stabilization of Escherichia coli uridine phosphorylase by evolution and immobilization

    CSIR Research Space (South Africa)

    Visser, Daniel F

    2010-08-01

    Full Text Available nucleoside phosphorylase (BHPNP1) from the thermotolerant alkalophile Bacillus halodurans with the Escherichia coli uridine phosphorylase (EcUP) (EC 2.4.2.3) in a one-pot cascade reaction can produce 5-MU in high yield [2, 3]. The optimal operating... reaction temperature of 60?C is within the thermostability range of BHPNP, but the stability of the UP is only 40?C. This requires higher enzyme loading to offset the rate of thermal deactivation. Moreover, due to the low solubility of the reaction...

  2. Causes, prevention and treatment of Escherichia coli infections.

    Science.gov (United States)

    Gould, Dinah

    Escherichia coli is a normal inhabitant of the human gastrointestinal tract and can cause healthcare-associated infections. The organism is most frequently responsible for urinary tract infections and it is the bacterium most often implicated in the cause of diarrhoea in people travelling overseas. In recent years, a strain called Ecoli O157 has gained notoriety for causing foodborne infection, which can have severe health consequences, especially in young children. This article describes the range of different infections caused by Ecoli in healthcare settings and the community and discusses the characteristics of the different strains of the bacteria that explain variations in their pathogenicity.

  3. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    Science.gov (United States)

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-11

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.

  4. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    OpenAIRE

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-01

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to ...

  5. Expression of maize prolamins in Escherichia Coli. [Zea mays L

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Szu-zhen; Esen, Asim

    1985-12-02

    A cDNA expression library of developing corn (Zea mays L.) endosperm has been constructed using plasmid pUC8 as vector and Escherichia coli strain DH1 as host. The expression library was screened with non-radioactive immunological probes to detect the expression of gamma-zein and alpha-zein. When anti-gamma-zein antibody was used as the probe, 23 colonies gave positive reactions. The lengths of cDNA inserts of the 23 colonies were found to be 250-900 base pairs. When anti-alpha zein antibody was used, however, fewer colonies gave positive reactions. The library was also screened by colony-hybridization with /sup 32/P-labeled DNA probes. Based on immunological and hybridization screening of the library and other evidence, it was conclude that alpha-zein was either toxic to E. coli cells or rapidly degraded whereas gamma-zein and its fragments were readily expressed. 21 references.

  6. Impact of cranberry on Escherichia coli cellular surface characteristics

    International Nuclear Information System (INIS)

    Johnson, Brandy J.; Lin Baochuan; Dinderman, Michael A.; Rubin, Robert A.; Malanoski, Anthony P.; Ligler, Frances S.

    2008-01-01

    The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.

  7. Purification and characterization of Escherichia coli MreB protein.

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J

    2013-02-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.

  8. Purification and Characterization of Escherichia coli MreB Protein*

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J.

    2013-01-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm. PMID:23235161

  9. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  10. DNA turnover and strand breaks in Escherichia coli

    International Nuclear Information System (INIS)

    Hanawalt, P.; Grivell, A.; Nakayama, H.

    1975-01-01

    The extent of DNA turnover has been measured in a dnaB mutant of Escherichia coli, temperature sensitive for semiconservative DNA replication. At the nonpermissive temperature about 0.02 percent of the deoxynucleotides in DNA are exchanged per generation period. This turnover rate is markedly depressed in the presence of rifampicin. During thymine starvation strand breaks accumulate in the DNA of E. coli strains that are susceptible to thymineless death. Rifampicin suppresses the appearance of these breaks, consistent with our hypothesis that transcription may be accompanied by repairable single-strand breaks in DNA. DNA turnover is enhanced severalfold in strands containing 5-bromodeoxyuridine in place of thymidine, possibly because the analog (or the deoxyuridine, following debromination) is sometimes recognized and excised

  11. The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.

    Science.gov (United States)

    Winkler, James D; Halweg-Edwards, Andrea L; Erickson, Keesha E; Choudhury, Alaksh; Pines, Gur; Gill, Ryan T

    2016-12-16

    The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of information. To address this issue, we introduce the Resistome database: a literature-curated collection of Escherichia coli genotypes-phenotypes containing over 5,000 mutants that resist hundreds of compounds and environmental conditions. We use the Resistome to understand our current state of knowledge regarding resistance and to detect potential synergy or antagonism between resistance phenotypes. Our data set represents one of the most comprehensive collections of genomic data related to resistance currently available. Future development will focus on the construction of a combined genomic-transcriptomic-proteomic framework for understanding E. coli's resistance biology. The Resistome can be downloaded at https://bitbucket.org/jdwinkler/resistome_release/overview .

  12. Impact of antibiotic restriction on resistance levels of Escherichia coli

    DEFF Research Database (Denmark)

    Boel, Jonas; Andreasen, Viggo; Jarløv, Jens Otto

    2016-01-01

    as a retrospective controlled interrupted time series (ITS) at two university teaching hospitals, intervention and control, with 736 and 552 beds, respectively. The study period was between January 2008 and September 2014. We used ITS analysis to determine significant changes in antibiotic use and resistance levels......% CI -177, -126)] and fluoroquinolones [-44.5 DDDs/1000 bed-days (95% CI -58.9, -30.1)]. Resistance of E. coli showed a significant change in slope for cefuroxime [-0.13 percentage points/month (95% CI -0.21, -0.057)] and ciprofloxacin [-0.15 percentage points/month (95% CI -0.26, -0.038)]. CONCLUSIONS......OBJECTIVES: We evaluated the effect of an antibiotic stewardship programme (ASP) on the use of antibiotics and resistance levels of Escherichia coli using a method that allowed direct comparison between an intervention hospital and a control hospital. METHODS: The study was conducted...

  13. Biocatalytically active silCoat-composites entrapping viable Escherichia coli.

    Science.gov (United States)

    Findeisen, A; Thum, O; Ansorge-Schumacher, M B

    2014-02-01

    Application of whole cells in industrial processes requires high catalytic activity, manageability, and viability under technical conditions, which can in principle be accomplished by appropriate immobilization. Here, we report the identification of carrier material allowing exceptionally efficient adsorptive binding of Escherichia coli whole cells hosting catalytically active carbonyl reductase from Candida parapsilosis (CPCR2). With the immobilizates, composite formation with both hydrophobic and hydrophilized silicone was achieved, yielding advanced silCoat-material and HYsilCoat-material, respectively. HYsilCoat-whole cells were viable preparations with a cell loading up to 400 mg(E. coli) · g(-1)(carrier) and considerably lower leaching than native immobilizates. SilCoat-whole cells performed particularly well in neat substrate exhibiting distinctly increased catalytic activity.

  14. Radiochemical method for evaluating the effect of antibiotics on Escherichia coli biofilms

    International Nuclear Information System (INIS)

    Dix, B.A.; Cohen, P.S.; Laux, D.C.; Cleeland, R.

    1988-01-01

    A simple radiochemical method for evaluating the action of antibiotics on Escherichia coli cells in biofilms is reported. After growth, biofilms of E. coli ATCC 25922 on disks of urinary catheter material were suspended in fresh medium containing or lacking an antibiotic, incubated for 4 h at 37 degrees C, and pulse-labeled with [ 3 H]leucine for 5 min. Radioactivity in trichloracetic acid-precipitable material in the biofilm and in the surrounding medium (planktonic E. coli) was then measured. Antibiotic-induced inhibition of incorporation of [ 3 H]leucine into the cells in the biofilm was far less pronounced than incorporation into planktonic cells and, furthermore, correlated well with loss in viable counts. The method is simple, inexpensive, and extremely timesaving

  15. Longitudinal characterization of Escherichia coli in healthy captive nonhuman primates

    Directory of Open Access Journals (Sweden)

    Jonathan B Clayton

    2014-11-01

    Full Text Available The gastrointestinal (GI tracts of nonhuman primates are well known to harbor Escherichia coli, a known commensal of humans and animals. While E. coli is a normal inhabitant of the mammalian gut, it also exists in a number of pathogenic forms or pathotypes, including those with predisposition for the GI tract, as well the urogenital tract. Diarrhea in captive nonhuman primates (NHPs has long been a problem in both zoo settings and research colonies, including the Como Zoo. It is an animal welfare concern, as well as a public health concern. E. coli has not been extensively studied in correlation with diarrhea in captive primates; therefore, a study was performed during the summer of 2009 in collaboration with a zoo in Saint Paul, MN, which was experiencing an increased incidence and severity of diarrhea among their NHP collection. Fresh fecal samples were collected weekly from each member of the primate collection, between June and August of 2009, and E. coli were isolated. A total of 33 individuals were included in the study, representing eight species. E. coli isolates were examined for their genetic relatedness, phylogenetic relationships, plasmid replicon types, virulence gene profiles, and antimicrobial susceptibility profiles. A number of isolates were identified containing virulence genes commonly found in several different E. coli pathotypes, and there was evidence of clonal transmission of isolates between animals and over time. Overall, the manifestation of chronic diarrhea in the Como Zoo primate collection is a complex problem whose solution will require regular screening for microbial agents and consideration of environmental causes. This study provides some insight towards the sharing of enteric bacteria between such animals.

  16. Deactivation of Escherichia coli by the plasma needle

    International Nuclear Information System (INIS)

    Sladek, R E J; Stoffels, E

    2005-01-01

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10 4 -10 5 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively

  17. Deactivation of Escherichia coli by the plasma needle

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, R E J; Stoffels, E [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2005-06-07

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10{sup 4}-10{sup 5} colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  18. Probiotic Mixture Golden Bifido Prevents Neonatal Escherichia coli K1 Translocation via Enhancing Intestinal Defense

    Directory of Open Access Journals (Sweden)

    Qing Zeng

    2017-09-01

    Full Text Available Escherichia coli (E. coli K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium, and Streptococcus thermophilus, LBS has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E

  19. Adsorption kinetics of Escherichia Coli on different Carbon Nanoforms

    Directory of Open Access Journals (Sweden)

    Md. Shamimul Haque Choudhury

    2012-03-01

    Full Text Available Adsorption of Escherichia coli (E. Coli bacterial cells on different carbon nanoforms (i.e. Single walled carbon nanotube (SWCNT, Multiwalled Carbon nanotube (MWCNT, graphite and mixedFullerene aggregates is studied. The diffusivities of pure cultures of E. Coli cells in SWCNT aggregates, MWCN aggregates, Graphite aggregates and Mixed Fullerenes was observed to be 1.5×10-9 cm2/s, 0.55×10-9 cm2/s, 0.8×10-9 cm2/s, and 1.016×10-9 cm2/s, respectively. In addition to batch adsorption studies, optical microscopy studies were also performed. The results suggest that diffusion kinetics ofbacterial cells depends on the concentration and average diameter of the nano-carbon aggregates and also on the type of material used. Diffusivity of E. Coli. in SWCNT was observed to be highest and isabout three times greater than for MWCNT, about two times greater than for graphite and about 1.5 times greater than for Fullerene aggregates. SWCNT seems to be best candidates (amongst the othermaterials studied for adsorption of microorganisms – paying their way for application towards microorganisms filters and for biosensors (where it is desired to simultaneously detect and capture bio-threat agents.

  20. Asymptomatic bacteriuria Escherichia coli are live biotherapeutics for UTI.

    Science.gov (United States)

    Rudick, Charles N; Taylor, Aisha K; Yaggie, Ryan E; Schaeffer, Anthony J; Klumpp, David J

    2014-01-01

    Urinary tract infections (UTI) account for approximately 8 million clinic visits annually with symptoms that include acute pelvic pain, dysuria, and irritative voiding. Empiric UTI management with antimicrobials is complicated by increasing antimicrobial resistance among uropathogens, but live biotherapeutics products (LBPs), such as asymptomatic bacteriuria (ASB) strains of E. coli, offer the potential to circumvent antimicrobial resistance. Here we evaluated ASB E. coli as LBPs, relative to ciprofloxacin, for efficacy against infection and visceral pain in a murine UTI model. Visceral pain was quantified as tactile allodynia of the pelvic region in response to mechanical stimulation with von Frey filaments. Whereas ciprofloxacin promoted clearance of uropathogenic E. coli (UPEC), it did not reduce pelvic tactile allodynia, a measure of visceral pain. In contrast, ASB E. coli administered intravesically or intravaginally provided comparable reduction of allodynia similar to intravesical lidocaine. Moreover, ASB E. coli were similarly effective against UTI allodynia induced by Proteus mirabilis, Enterococccus faecalis and Klebsiella pneumoniae. Therefore, ASB E. coli have anti-infective activity comparable to the current standard of care yet also provide superior analgesia. These studies suggest that ASB E. coli represent novel LBPs for UTI symptoms.

  1. Pathological And Immunological Study On Infection With Escherichia Coli In ale BALB/c mice

    Science.gov (United States)

    Ali, Intisar H.; Jabir, Majid S.; Al-Shmgani, Hanady S. A.; Sulaiman, Ghassan M.; Sadoon, Ali H.

    2018-05-01

    Escherichia coli bacteria is considered as one of the common responsible for the frequency and severity of infections that it hospitalized patients. E. coli simultaneously carries a harmful side in which only a slight genetic recombination can bring about a highly pathogenic strain that most frequently causes the scourge of bacterial infections worldwide including sepsis, neonatal meningitis, pneumonia, bacteremia and traveler’s diarrhea. This study was carried out to assess Escherichia coli infection induced pathologically and immunologically. Following Escherichia coli isolation, identification and counting, the lethal dose (LD-50) was determined before infection. Twenty-two mice were used in this study for 21 days infection, the animals were sacrificed at 3, 6, 9, 12, 15, 18 and 21 days, and tissues of different tissue were collected, examined for bacterial infection. Bacteria and mice immunization and ELISA were used to detect immunoglobulin G level in serum as well. For histological study, different infected organs were used. The results indicated that the LH50 was 1×109 cell; and all organs were infected after 3 days followed by decreased in infection level shown in brain at day 12, lung, kidney and intestine at day 15 and in liver, spleen and heart at day 21. Moreover, ELISA results revealed that concentration 1:200 of serum in positive and negative state and optimum concentration of Ag 1:40 dilution and compact dilution is 1:1000. In addition, diversity of histopathological alteration occurs in tissue on time-depended manner. This study concluded that the ability of activated E.coli to stimulate the intestinal secretory immune system of germ might result from a retardation of immunological maturity.

  2. Rotavirus 2/6 Viruslike Particles Administered Intranasally with Cholera Toxin, Escherichia coli Heat-Labile Toxin (LT), and LT-R192G Induce Protection from Rotavirus Challenge

    Science.gov (United States)

    O’Neal, Christine M.; Clements, John D.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    We have shown that rotavirus 2/6 viruslike particles composed of proteins VP2 and VP6 (2/6-VLPs) administered to mice intranasally with cholera toxin (CT) induced protection from rotavirus challenge, as measured by virus shedding. Since it is unclear if CT will be approved for human use, we evaluated the adjuvanticity of Escherichia coli heat-labile toxin (LT) and LT-R192G. Mice were inoculated intranasally with 10 μg of 2/6-VLPs combined with CT, LT, or LT-R192G. All three adjuvants induced equivalent geometric mean titers of rotavirus-specific serum antibody and intestinal immunoglobulin G (IgG). Mice inoculated with 2/6-VLPs with LT produced significantly higher titers of intestinal IgA than mice given CT as the adjuvant. All mice inoculated with 2/6-VLPs mixed with LT and LT-R192G were totally protected (100%) from rotavirus challenge, while mice inoculated with 2/6-VLPs mixed with CT showed a mean 91% protection from challenge. The availability of a safe, effective mucosal adjuvant such as LT-R192G will increase the practicality of administering recombinant vaccines mucosally. PMID:9525668

  3. Prevalence of Antibiotic Resistance in Escherichia coli Isolated from Poultry Meat Supply in Isfahan

    Directory of Open Access Journals (Sweden)

    Farhad Safarpordehkordi

    2014-08-01

    Conclusions: Despite the high contamination rate of chicken meat with Escherichia coli, majority of isolates had high resistance to common antibiotics. Complete cooking of meat and avoid indiscriminate prescribing of antibiotics, preventing the occurrence of food poisoning due to resistant Escherichia coli.

  4. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chro......Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division......, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple......-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive...

  5. MUTATIONAL SYNERGISM BETWEEN RADIATIONS AND METHYLATED PURINES IN ESCHERICHIA COLI

    Science.gov (United States)

    Doneson, Ira N.; Shankel, Delbert M.

    1964-01-01

    Doneson, Ira N. (University of Kansas, Lawrence), and Delbert M. Shankel. Mutational synergism between radiations and methylalted purines in Escherichia coli. J. Bacteriol. 87:61–67. 1964.—A synergistic mutational effect was demonstrated between low doses of ultraviolet light and the methylated purines caffeine, theophylline, and theobromine. Caffeine produced the greatest effect and theobromine the least effect. The magnitude of the synergism was inversely related to the ultraviolet dosage. A large percentage of the synergistic effect could be “photoprevented” by exposure of the ultraviolet-treated cells to white light prior to exposure to the analogues. The consequence of the combined treatment occurred only when the chemical treatment followed the ultraviolet treatment. Furthermore, it was necessary to administer the chemical treatment soon after the ultraviolet treatment or the mutants were “lost.” When cells were treated with low dosages of ultraviolet light and of X irradiation (X ray), the result was merely additive, and combinations of X ray and chemical treatment yielded no synergism. Synchronous growth studies indicated that a particular growth stage of the organisms was most susceptible to the synergistic effect. The mutation studied was that of Escherichia coli B/r to high-level streptomycin resistance. PMID:14102875

  6. Growth of the modeling of Escherichia coli in milk

    International Nuclear Information System (INIS)

    Mbangu, N.; Malakasa, M.; Ekalakala, T.; N'dendje, B.; Abedi, M.; Muzembe, K.; Bandejile, M.

    2010-01-01

    Escherichia coli is a contaminant potential of milk. Collective toxinfections implying the bacterium and milk were announced of share the world. However, no identified work proposed a mathematical expression of the growth of the bacterium in milk. The interest of such a step is however undeniable. Under specified conditions, the mathematical formulation of the growth provides the means of considering the population bacterial when the analyses cannot be carried out. It also makes it possible to test the negatiable instruments of the unfavourable circumstances supposed suchas chain breakage of cold on the development of the microbial charge. This work established mathematical expressions of the growth of Escherichia coli in milk for part of its range of temperature of growth suboptimale i.e. between 25 and 35 Deg C. It was not possible to generalize these expressions for predictions on all the range of temperature suboptimal. This work also made it possible to highlight a deviation of the behavoir of the bacterium compared to the model of Ratkowsky without however that it is not possible to provide a univocal explanantion of it. Varoius assumptions were put forth referring to either a singularity of the behavior of the bacterium or a skew of the value of its minimal temperature of growth

  7. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  8. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    Science.gov (United States)

    Militello, Kevin T; Lazatin, Justine C

    2017-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Genetic determinants of heat resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ryan eMercer

    2015-09-01

    Full Text Available Escherichia coli AW1.7 is a heat resistant food isolate and the occurrence of pathogenic strains with comparable heat resistance may pose a risk to food safety. To identify the genetic determinants of heat resistance, 29 strains of E. coli that differed in their of heat resistance were analyzed by comparative genomics. Strains were classified as highly heat resistant strains, exhibiting a D60-value of more than 6 min; moderately heat resistant strains, exhibiting a D60-value of more than 1 min; or as heat sensitive. A ~14 kb genomic island containing 16 predicted open reading frames encoding putative heat shock proteins and proteases was identified only in highly heat resistant strains. The genomic island was termed the locus of heat resistance (LHR. This putative operon is flanked by mobile elements and possesses >99% sequence identity to genomic islands contributing to heat resistance in Cronobacter sakazakii and Klebsiella pneumoniae. An additional 41 LHR sequences with >87% sequence identity were identified in 11 different species of β- and γ-proteobacteria. Cloning of the full length LHR conferred high heat resistance to the heat sensitive E. coli AW1.7ΔpHR1 and DH5α. The presence of the LHR correlates perfectly to heat resistance in several species of Enterobacteriaceae and occurs at a frequency of 2% of all E. coli genomes, including pathogenic strains. This study suggests the LHR has been laterally exchanged among the β- and γ-proteobacteria and is a reliable indicator of high heat resistance in E. coli.

  10. Brote causado por Escherichia coli en Chalco, México

    Directory of Open Access Journals (Sweden)

    Cortés-Ortiz Iliana Alejandra

    2002-01-01

    Full Text Available Objetivo. Identificar el agente causal del brote de diarrea asociado con el desbordamiento del canal de aguas negras en Chalco. Material y métodos. Estudio retrospectivo y transversal, efectuado en el Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE, de la Secretaría de Salud, con 1 550 hisopos rectales para el aislamiento e identificación bioquímica de V. cholerae y enterobacterias, obtenidos de la población del Valle de Chalco, que presentó diarrea y vómito durante el desastre natural acontecido el 31 de mayo de 2000. El análisis de los resultados se efectuó por la diferencia entre las proporciones de dos poblaciones (prueba de Ji cuadrada. Las cepas de E. coli se hibridaron por "colony blot" para los grupos ETEC, EIEC, EPEC y EHEC. Resultados. El 0.45% correspondió a Salmonella: S. agona, S. infantis, S. enteritidis, S. muenchen, S. typhimurium; 0.06% a Shigella flexneri 3a, y 76.6% a E. coli: 62.2% a ETEC (44.6 % con LT, 11.2% con ST, y 44.1% con ambas sondas, 0.84% a EIEC (sonda ial, 0.84% a EPEC (sonda bundle-forming pilus BFP, 0.08% a E. coli enterohemorrágica no-O157:H7 (sonda pCVD419, y 36.02% no hibridó. No se encontró asociación entre E. coli patógena con la edad y género. Conclusiones. Escherichia coli podría ser responsable del brote de diarrea. Es importante conocer el agente etiológico del brote para encaminar las estrategias en el estudio y control sanitario del mismo.

  11. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  12. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  13. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog.

    Science.gov (United States)

    Piras, Cristian; Soggiu, Alessio; Greco, Viviana; Martino, Piera Anna; Del Chierico, Federica; Putignani, Lorenza; Urbani, Andrea; Nally, Jarlath E; Bonizzi, Luigi; Roncada, Paola

    2015-09-08

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  15. Analysis of early-onset bloodstream infection due to Escherichia coli infection in premature babies

    OpenAIRE

    Chen, I-Lun; Huang, Hsin-Chun; Wu, Chih-Te; Ou-Yang, Mei-Chen; Chung, Mei-Yung; Chen, Chih-Cheng; Suen, Jau-Ling; Hung, Chih-Hsing

    2017-01-01

    Abstract In early-onset bacteremia among preterm neonates, Escherichia coli (E. coli) is the main pathogen and can cause a high mortality rate. Thus, the predictive factors of mortality and extended-spectrum ?-lactamase (ESBL)-producing E. coli in preterm babies with E. coli early-onset bacteremia were reported. We retrospectively reviewed preterm neonates who had E. coli bacteremia occurring within 3 days after birth between 2004 and 2015. Maternal and perinatal information were collected fr...

  16. Immobilizing live Escherichia coli for AFM studies of surface dynamics

    International Nuclear Information System (INIS)

    Lonergan, N.E.; Britt, L.D.; Sullivan, C.J.

    2014-01-01

    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-L-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-L-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-L-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-L-lysine surfaces in a lower ionic strength buffer supplemented with Mg 2+ and Ca 2+ was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-L-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane stabilization while

  17. Enzyme organization in the proline biosynthetic pathway of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Gamper, H; Moses, V

    1974-01-01

    The conversion of glutamic acid to proline by an Escherichia coli extract was studied. The activity was dependent upon the presence of ATP and NADPH and was largely unaffected by the presence of NH/sub 3/ or imidazole. The first two pathway enzymes appear to exist as a complex which stabilizes a labile intermediate postulated as ..gamma..-glutamyl phosphate. Attempted synthesis of this compound was unsuccessful due to its spontaneous cyclization to 2-pyrrolidone 5-carboxylate. Dissociation of the enzyme complex upon dilution of the extract is presumed responsible for an experimentally observed dilution effect. E. coli pro/sub A//sup -/ and pro/sub B//sup -/ auxotroph extracts failed to complement one another in the biosynthesis of proline. This is attributed to the lack of a dynamic equilibrium between the complex and its constituent enzymes. In vivo studies with E. coli showed no evidence for metabolic channeling in the final reaction of proline synthesis, the reduction of ..delta../sup 1/-pyrroline 5-carboxylate.

  18. CHARACTERIZATION AND ANTIBIOGRAM OF ENTEROPATHOGENIC ESCHERICHIA COLI ISOLATED FROM POULTRY

    Directory of Open Access Journals (Sweden)

    M. Sarkar

    2013-12-01

    Full Text Available One hundred sixty two samples from different poultry farms of West Bengal, India were screened for the presence of pathogenic Escherichia coli and 109 (67.3% were found positive. Out of forty six faecal samples from ailing birds suffering from acute colibacillosis, thirty one i.e. 67.2% were positive whereas postmortem sample of intestines (62 and liver tissues (54 revealed approx 72.6% and 61.1% positivity for E. coli. Biochemical characteristic of the isolates were positive to indole, MR, nitrate and non-reactive to VP, citrate & urease test. In serotyping of the E. coli isolates mostly revealed O2, O8, O9, O19, O37, O47, O55, O69, O86, O101, O103, O109, O133, O151 and O173. The serotypes viz. O2, O8, O9, O55, O101 and O133 showed acute pathogenicity in swiss mice followed by O19, O37, O47, O69, O86, O103, O109, O151 and O173 as moderately pathogenic serotypes. Among the antimicrobial drugs tested, the sensitive drugs were cefixime (93.6%, enrofloxacin (91.8%, nitrofurantoin (88.1% and azithromycin (85.3%. The resistant drugs were tetracycline (100%, nalidixic acid (97.2%, metronidazole (92.6%, penicillin G (88.9%, gatifloxacin (77.9% and bacitracin (76.2% .

  19. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  20. Characterization of the YdeO regulon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yuki Yamanaka

    Full Text Available Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.

  1. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2009-04-01

    Full Text Available One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans. Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  2. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Science.gov (United States)

    Hu, Pingzhao; Janga, Sarath Chandra; Babu, Mohan; Díaz-Mejía, J Javier; Butland, Gareth; Yang, Wenhong; Pogoutse, Oxana; Guo, Xinghua; Phanse, Sadhna; Wong, Peter; Chandran, Shamanta; Christopoulos, Constantine; Nazarians-Armavil, Anaies; Nasseri, Negin Karimi; Musso, Gabriel; Ali, Mehrab; Nazemof, Nazila; Eroukova, Veronika; Golshani, Ashkan; Paccanaro, Alberto; Greenblatt, Jack F; Moreno-Hagelsieb, Gabriel; Emili, Andrew

    2009-04-28

    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  3. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  4. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    Science.gov (United States)

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  5. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    Directory of Open Access Journals (Sweden)

    Tammy eGonzalez

    2015-10-01

    Full Text Available Escherichia coli lipoprotein (Lpp is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysines in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen, a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to plasminogen, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-plasminogen interactions were examined. Additionally, the ability of Lpp-bound plasminogen to be converted to active plasmin was analyzed. We determined that Lpp binds plasminogen via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that plasminogen bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding plasminogen are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.

  6. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    Science.gov (United States)

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  7. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran

    Science.gov (United States)

    Jafari, A; Aslani, MM; Bouzari, S

    2012-01-01

    Diarrheagenic Escherichia coli have developed different strategies for establishment of infection in their host. Understanding these pathogenic mechanisms has led to the development of specific diagnostic tools for identification and categorization of E. coli strains into different pathotypes. This review aims to provide an overview of the various categories of diarrheagenic Escherichia coli and the data obtained in Iran pertaining to these pathotypes. PMID:23066484

  8. Influence of RNase E deficiency on the production of stx2-bearing phages and Shiga toxin in an RNase E-inducible strain of enterohaemorrhagic Escherichia coli (EHEC) O157:H7.

    Science.gov (United States)

    Thuraisamy, Thujitha; Lodato, Patricia B

    2018-05-01

    In enterohaemorrhagic Escherichia coli (EHEC), stx1 or stx2 genes encode Shiga toxin (Stx1 or Stx2, respectively) and are carried by prophages. The production and release of both stx phages and toxin occur upon initiation of the phage lytic cycle. Phages can further disseminate stx genes by infecting naïve bacteria in the intestine. Here, the effect of RNase E deficiency on these two virulence traits was investigated. Cultures of the EHEC strains TEA028-rne containing low versus normal RNase E levels or the parental strain (TEA028) were treated with mitomycin C (MMC) to induce the phage lytic cycle. Phages and Stx2 titres were quantified by the double-agar assay and the receptor ELISA technique, respectively. RNase E deficiency in MMC-treated cells significantly reduced the yield of infectious stx2 phages. Delayed cell lysis and the appearance of encapsidated phage DNA copies suggest a slow onset of the lytic cycle. However, these observations do not entirely explain the decrease of phage yields. stx1 phages were not detected under normal or deficient RNase E levels. After an initial delay, high levels of toxin were finally produced in MMC-treated cultures. RNase E scarcity reduces stx2 phage production but not toxin. Normal concentrations of RNase E are likely required for correct phage morphogenesis. Our future work will address the mechanism of RNase E action on phage morphogenesis.

  9. Starved Escherichia coli preserve reducing power under nitric oxide stress

    Energy Technology Data Exchange (ETDEWEB)

    Gowers, Glen-Oliver F. [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Robinson, Jonathan L. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States); Brynildsen, Mark P., E-mail: mbrynild@princeton.edu [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States)

    2016-07-15

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availability in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.

  10. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Maricarmen Rojas-Lopez

    2018-03-01

    Full Text Available Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America. Intestinal pathotypes such as enteropathogenic E. coli (EPEC and enterotoxigenic E. coli (ETEC are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS. Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.

  11. Diarrheagenic Escherichia coli and acute and persistent diarrhea in returned travelers

    NARCIS (Netherlands)

    Schultsz, C.; van den Ende, J.; Cobelens, F.; Vervoort, T.; van Gompel, A.; Wetsteyn, J. C.; Dankert, J.

    2000-01-01

    To determine the role of diarrheagenic Escherichia coli in acute and persistent diarrhea in returned travelers, a case control study was performed. Enterotoxigenic E. coli (ETEC) was detected in stool samples from 18 (10.7%) of 169 patients and 4 (3.7%) of 108 controls. Enteroaggregative E. coli

  12. Diarrhea, Urosepsis and Hemolytic Uremic Syndrome Caused by the Same Heteropathogenic Escherichia coli Strain

    NARCIS (Netherlands)

    Ang, C. Wim; Bouts, Antonia H. M.; Rossen, John W. A.; van der Kuip, Martijn; van Heerde, Marc; Bökenkamp, Arend

    2016-01-01

    We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E.

  13. Detection of Escherichia Coli O157:H7 in Fecal Samples in Meat Goats

    Science.gov (United States)

    Mobley, Ray; Madden, Uford; Brooks-Walter, Alexis

    2004-01-01

    Studies have reported the isolation of Escherichia coli (E. coli)O157:H7 from pork, lamb and poultry products, and from other animals including deer, horses, dogs, birds and humans. There is limited or no information on the presence of the organism in goats. The objectives of this study were to determine if E. coli O157:H7 was naturally occurring…

  14. Control analysis of the dependence of Escherichia coli physiology on the H+ -ATPase

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole; Westerhoff, Hans V.

    1993-01-01

    The H+-ATPase plays a central role in Escherichia coli free-energy transduction and hence in E. coli physiology. We here investigate the extent to which this enzyme also controls the growth rate, growth yield, and respiratory rate of E. coli. We modulate the expression of the atp operon and deter...

  15. Attaching and effacing Escherichia coli isolates from Danish children: clinical significance and microbiological characteristics

    DEFF Research Database (Denmark)

    Jensen, C; Ethelberg, S; Olesen, B

    2007-01-01

    This study describes the prevalence, clinical manifestations and microbiological characteristics of attaching and effacing Escherichia coli isolates, i.e., enteropathogenic E. coli (EPEC) belonging to the classical EPEC serotypes, non-EPEC attaching and effacing E. coli (A/EEC) and verocytotoxin...

  16. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog

    Science.gov (United States)

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. Canine E. coli represents a good experimental model useful to study this pathology. Moreover, as des...

  17. Complete genome sequences of Escherichia coli strains 1303 and ECC-1470 isolated from bovine mastitis

    NARCIS (Netherlands)

    Leimbach, Andreas; Poehlein, Anja; Witten, Anika; Scheutz, Flemming; Schukken, Ynte|info:eu-repo/dai/nl/075051907; Daniel, Rolf; Dobrindt, Ulrich

    2016-01-01

    Escherichia coli is the leading causative agent of acute bovine mastitis. Here, we report the complete genome sequence of E. coli O70:H32 strain 1303, isolated from an acute case of bovine mastitis, and E. coli Ont:Hnt strain ECC-1470, isolated from a persistent infection.

  18. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli.

    Science.gov (United States)

    Hill, Joshua; Beriwal, Shilpa; Chandra, Ishwad; Paul, Vinod K; Kapil, Aarti; Singh, Tripti; Wadowsky, Robert M; Singh, Vinita; Goyal, Ankur; Jahnukainen, Timo; Johnson, James R; Tarr, Phillip I; Vats, Abhay

    2008-08-01

    We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform.

  19. prevalence of escherichia coli 0157:h7 in fresh and roasted beef

    African Journals Online (AJOL)

    DR. AMINU

    The prevalence of Enterohemorrhagic Escherichia coli 0157:H7 in 300 fresh beef and 150 roasted beef samples from ... likely cause of E. coli O157:H7 infection is undercooked ground beef. ..... coli O157:H7 in a sheep model. Appl. Environ.

  20. Amelioration of cadmium- and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid.

    Science.gov (United States)

    Raghuvanshi, Ruma; Chaudhari, Archana; Kumar, G Naresh

    2016-01-01

    Antioxidants, chelating agents, and probiotics are used to manage the toxic effects of cadmium (Cd) and mercury (Hg). The aim of this study was to investigate the combined effects of antioxidants, chelating agents, and probiotics against heavy metal toxicity. Genetically modified probiotic Escherichia coli Nissle 1917 (EcN-20) producing a potent water soluble antioxidant pyrroloquinoline quinone (PQQ) was supplemented with oral citric acid and compared with another genetically modified probiotic EcN-21 producing PQQ and citric acid against oxidative stress induced by Cd and Hg. Rats were independently given 100 ppm Cd and 80 ppm Hg in drinking water for 4 wk. EcN-20 was found to be more effective than EcN-2 (EcN strain with genomic integration of vgb and gfp genes) with orally given PQQ against oxidative stress induced by Cd and Hg. EcN-20 supplemented with oral citric acid was more effective against Cd and Hg toxicity compared with EcN-2+citric acid (oral), EcN-2+PQQ (oral), EcN-2+PQQ (oral)+citric acid (oral), EcN-20, and EcN-21. However, protection shown by EcN-21 was similar to EcN-20. The combination therapy involving probiotic EcN-20 producing PQQ with citric acid given orally was found to be a moderately effective strategy against toxicity induced by Cd and Hg, whereas the protective effect of EcN-21 was the same as EcN-20. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The relationship between survival and mutagenesis in Escherichia coli after fractionated ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dzidic, S.; Salaj-Smic, E.; Trgovcevic, Z.

    1986-01-01

    The relationship between survival and mutagenesis in Escherichia coli after fractionated ultraviolet (UV) irradiation was studied. The cells were incubated either in buffer or nutrient media. Regardless of incubation conditions, greater survival is observed after fractionated irradiation than after acute irradiation. When the cells are incubated in buffer, UV mutagenesis decreases with an increase in the number of dose fractions. However, when the cells are cultivated in nutrient media, the increased survival is coupled with the enhanced capacity for UV mutagenesis. The authors, therefore, assume that during incubation in nutrient media, fractionated irradiation leads to full and prolonged expression of all UV inducible (SOS) genes, including those required for mutagenesis. (Auth.)

  2. Ultraviolet mutagenesis and the SOS response in Escherichia coli: A personal perspective

    International Nuclear Information System (INIS)

    Witkin, E.M.

    1989-01-01

    The study of ultraviolet (UV) mutagenesis in Escherichia coli began with the assumption that genes were likely to be changed at the instant of photon absorption. Over many decades, it became clear that postirradiation cellular activities, including enzymatic DNA repair of UV photo products and error-prone modes of tolerating unrepaired DNA lesions can exert profound influences on the mutagenic outcome of irradiation. Current study focusses on the molecular details of radiation-induced translesion DNA replication as the final event in UV mutagenesis

  3. D-Allose catabolism of Escherichia coli

    DEFF Research Database (Denmark)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase...... gene) were Als-. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired....

  4. DNA excision repair as a component of adaptation to low doses of ionizing radiation Escherichia coli

    International Nuclear Information System (INIS)

    Huang, H.; Claycamp, H.G.

    1993-01-01

    In this study the authors examined whether or not DNA excision repair is a component of adaptation induced by very low-dose ionizing radiation in Escherichia coli, a well-characterized prokaryote, and investigated the relationship between enhanced excision repair and the SOS response. Their data suggest that there seems to be narrow 'windows' of dose-effect for the induction of SOS-independent DNA excision repair. Being similar to mammalian cell studies, the dose range for this effect was about 200-fold less than D 37 for radiation survival. (author)

  5. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ken Noguchi

    Full Text Available BACKGROUND: Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2 production involves consumption of 2H(+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5 that are three pH units lower than the pH limit of growth (pH 5-6. Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. METHODS AND PRINCIPAL FINDINGS: We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2 to 2H(+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3 decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2 did not significantly affect acid survival. The pH-dependence of H(2 production and consumption was tested using a H(2-specific Clark-type electrode. Hyd-3-dependent H(2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2 consumption was maximal at alkaline pH. H(2 production, was unaffected by a shift in external or internal pH. H(2 production was associated with hycE expression levels as a function of external pH. CONCLUSIONS: Anaerobic growing

  6. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Science.gov (United States)

    Noguchi, Ken; Riggins, Daniel P; Eldahan, Khalid C; Kitko, Ryan D; Slonczewski, Joan L

    2010-04-12

    Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2) production involves consumption of 2H(+), hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5) that are three pH units lower than the pH limit of growth (pH 5-6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2) to 2H(+). Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H(2) production and consumption was tested using a H(2)-specific Clark-type electrode. Hyd-3-dependent H(2) production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2) consumption was maximal at alkaline pH. H(2) production, was unaffected by a shift in external or internal pH. H(2) production was associated with hycE expression levels as a function of external pH. Anaerobic growing cultures of E. coli generate H(2) via Hyd-3 at low external pH, and

  7. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun-Young; Lee, Youngshim; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2017-11-01

    Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.

  8. DNA polymerase I-mediated repair of 365 nm-induced single-strand breaks in the DNA of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R D; Sedita, B A; Boye, E [Argonne National Lab., Ill. (USA)

    1978-03-01

    Irradiation of closed circular phage lambda DNA in vivo at 365 nm results in the induction of single-strand breaks and alkali-labile lesions at rates of 1.1 x 10/sup -14/ and 0.2 x 10/sup -14//dalton/J/m/sup 2/, respectively. The sum of the induction rates is similar to the rate of induction of single-strand breaks plus alkali-labile lesions (1 x 10/sup -14//dalton/J/m/sup 2/) observed in the E. coli genome. Postirradiation incubation of wild-type cells in buffer results in rapid repair of the breaks (up to 80% repaired in 10 min). No repair was observed in a DNA polymerase I-deficient mutant of E.coli.

  9. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  10. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA

    DEFF Research Database (Denmark)

    Link, Todd M; Valentin-Hansen, Poul; Brennan, Richard G

    2009-01-01

    (A) RNA, A(15). The structure reveals a unique RNA binding mechanism. Unlike uridine-containing sequences, which bind to the "proximal" face, the poly(A) tract binds to the "distal" face of Hfq using 6 tripartite binding motifs. Each motif consists of an adenosine specificity site (A site), which......Hfq is a small, highly abundant hexameric protein that is found in many bacteria and plays a critical role in mRNA expression and RNA stability. As an "RNA chaperone," Hfq binds AU-rich sequences and facilitates the trans annealing of small RNAs (sRNAs) to their target mRNAs, typically resulting...... in the down-regulation of gene expression. Hfq also plays a key role in bacterial RNA decay by binding tightly to polyadenylate [poly(A)] tracts. The structural mechanism by which Hfq recognizes and binds poly(A) is unknown. Here, we report the crystal structure of Escherichia coli Hfq bound to the poly...

  11. Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection

    DEFF Research Database (Denmark)

    Agger, Morten; Scheutz, Flemming; Villumsen, Steen

    2015-01-01

    OBJECTIVES: A consensus has existed on not to treat verocytotoxin-producing Escherichia coli (VTEC)-infected individuals with antibiotics because of possible subsequent increased risk of developing haemolytic uraemic syndrome (HUS). The aim of this systematic review is to clarify the risk...... associated with antibiotic treatment during acute VTEC infection and in chronic VTEC carrier states. METHODS: A systematic search in PubMed identified 1 meta-analysis, 10 clinical studies and 22 in vitro/in vivo studies. RESULTS: Four clinical studies found an increased risk of HUS, four studies found...... no altered risk of HUS and two studies found a protective effect of antibiotics. In vitro and clinical studies suggest that DNA synthesis inhibitors should be avoided, whereas evidence from in vitro studies indicates that certain protein and cell wall synthesis inhibitors reduce the release of toxins from...

  12. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming......The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...... rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion...

  13. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  14. Analysis of genes involved in glycogen degradation in Escherichia coli.

    Science.gov (United States)

    Strydom, Lindi; Jewell, Jonathan; Meier, Michael A; George, Gavin M; Pfister, Barbara; Zeeman, Samuel; Kossmann, Jens; Lloyd, James R

    2017-02-01

    Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Radiosynthesis and Biodistribution of 99mTc-Metronidazole as an Escherichia coli Infection Imaging Radiopharmaceutical.

    Science.gov (United States)

    Iqbal, Anam; Naqvi, Syed Ali Raza; Rasheed, Rashid; Mansha, Asim; Ahmad, Matloob; Zahoor, Ameer Fawad

    2018-05-01

    Bacterial infection poses life-threatening challenge to humanity and stimulates to the researchers for developing better diagnostic and therapeutic agents complying with existing theranostic techniques. Nuclear medicine technique helps to visualize hard-to-diagnose deep-seated bacterial infections using radionuclide-labeled tracer agents. Metronidazole is an antiprotozoal antibiotic that serves as a preeminent anaerobic chemotherapeutic agent. The aim of this study was to develop technetium-99m-labeled metronidazole radiotracer for the detection of deep-seated bacterial infections. Radiosynthesis of 99m Tc-metronidazole was carried by reacting reduced technetium-99m and metronidazole at neutral pH for 30 min. The stannous chloride dihydrate was used as the reducing agent. At optimum radiolabeling conditions, ~ 94% radiochemical was obtained. Quality control analysis was carried out with a chromatographic paper and instant thin-layer chromatographic analysis. The biodistribution study of radiochemical was performed using Escherichia coli bacterial infection-induced rat model. The scintigraphic study was performed using E. coli bacterial infection-induced rabbit model. The results showed promising accumulation at the site of infection and its rapid clearance from the body. The tracer showed target-to-non-target ratio 5.57 ± 0.04 at 1 h post-injection. The results showed that 99m Tc-MNZ has promising potential to accumulate at E. coli bacterial infection that can be used for E. coli infection imaging.

  16. Transport of Escherichia coli phage through saturated porous media considering managed aquifer recharge.

    Science.gov (United States)

    Zhang, Wenjing; Li, Shuo; Wang, Shuang; Lei, Liancheng; Yu, Xipeng; Ma, Tianyi

    2018-03-01

    Virus is one of the most potentially harmful microorganisms in groundwater. In this paper, the effects of hydrodynamic and hydrogeochemical conditions on the transportation of the colloidal virus considering managed aquifer recharge were systematically investigated. Escherichia coli phage, vB_EcoM-ep3, has a broad host range and was able to lyse pathogenic Escherichia coli. Bacteriophage with low risk to infect human has been found extensively in the groundwater environment, so it is considered as a representative model of groundwater viruses. Laboratory studies were carried out to analyze the transport of the Escherichia coli phage under varying conditions of pH, ionic strength, cation valence, flow rate, porous media, and phosphate buffer concentration. The results indicated that decreasing the pH will increase the adsorption of Escherichia coli phage. Increasing the ionic strength, either Na + or Ca 2+ , will form negative condition for the migration of Escherichia coli phage. A comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca 2+ than monovalent Na + . As the flow rate increases, the release of Escherichia coli phage increases and the retention of Escherichia coli phage in the aquifer medium reduces. Changes in porous media had a significant effect on Escherichia coli phage migration. With increase of phosphate buffer concentration, the suspension stability and migration ability of Escherichia coli phage are both increased. Based on laboratory-scale column experiments, a one-dimensional transport model was established to quantitatively describe the virus transport in saturated porous medium.

  17. Evaluation of Petrifilm™ Select E. coli Count Plate medium to discriminate antimicrobial resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jensen Lars

    2008-09-01

    Full Text Available Abstract Background Screening and enumeration of antimicrobial resistant Escherichia coli directly from samples is needed to identify emerging resistant clones and obtain quantitative data for risk assessment. Aim of this study was to evaluate the performance of 3M™ Petrifilm™ Select E. coli Count Plate (SEC plate supplemented with antimicrobials to discriminate antimicrobial-resistant and non-resistant E. coli. Method A range of E. coli isolates were tested by agar dilution method comparing the Minimal Inhibitory Concentration (MIC for eight antimicrobials obtained by Mueller-Hinton II agar, MacConkey agar and SEC plates. Kappa statistics was used to assess the levels of agreement when classifying strains as resistant, intermediate or susceptible. Results SEC plate showed that 74% of all strains agreed within ± 1 log2 dilution when comparing MICs with Mueller-Hinton II media. High agreement levels were found for gentamicin, ampicillin, chloramphenicol and cefotaxime, resulting in a kappa value of 0.9 and 100% agreement within ± 1 log2 dilution. Significant variances were observed for oxytetracycline and sulphamethoxazole. Further tests showed that the observed discrepancy in classification of susceptibility to oxytetracycline by the two media could be overcome when a plate-dependent breakpoint of 64 mg/L was used for SEC plates. For sulphamethoxazole, SEC plates provided unacceptably high MICs. Conclusion SEC plates showed good agreement with Mueller-Hinton II agar in MIC studies and can be used to screen and discriminate resistant E. coli for ampicillin, cephalothin, streptomycin, chloramphenicol, cefotaxime and gentamicin using CLSI standardized breakpoints, but not for sulphamethoxazole. SEC plates can also be used to discriminate oxytetracycline-resistant E. coli if a plate-dependent breakpoint value of 64 mg/L is used.

  18. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    Science.gov (United States)

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. O6-methylguanine-DNA methyltransferase in wild-type and ada mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Mitra, S.; Pal, B.C.; Foote, R.S.

    1982-01-01

    O 6 -Methylguanine-DNA methyltransferase is induced in Escherichia coli during growth in low levels of N-methyl-N'-nitro-N-nitrosoguanidine. We have developed a sensitive assay for quantitating low levels of this activity with a synthetic DNA substrate containing 3 H-labeled O 6 -methylguanine as the only modified base. Although both wild-type and adaptation-deficient (ada) mutants of E. coli contained low but comparable numbers (from 13 to 60) of the enzyme molecules per cell, adaptation treatment caused a significant increase of the enzyme in the wild type but not in the ada mutants, suggesting that the ada mutation is in a regulatory locus and not in the structural gene for the methyltransferase

  20. High mutation rates limit evolutionary adaptation in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kathleen Sprouffske

    2018-04-01

    Full Text Available Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.