WorldWideScience

Sample records for escape innate immune

  1. Avian Bornaviruses Escape Recognition by the Innate Immune System

    Directory of Open Access Journals (Sweden)

    Antje Reuter

    2010-04-01

    Full Text Available Like other pathogens that readily persist in animal hosts, members of the Bornaviridae family have evolved effective mechanisms to evade the innate immune response. The prototype of this virus family, Borna disease virus employs an unusual replication strategy that removes the triphosphates from the 5’ termini of the viral RNA genome. This strategy allows the virus to avoid activation of RIG-I and other innate immune response receptors in infected cells. Here we determined whether the newly discovered avian bornaviruses (ABV might use a similar strategy to evade the interferon response. We found that de novo infection of QM7 and CEC32 quail cells with two different ABV strains was efficiently inhibited by exogenous chicken IFN-α. IFN-α also reduced the viral load in QM7 and CEC32 cells persistently infected with both ABV strains, suggesting that ABV is highly sensitive to type I IFN. Although quail cells persistently infected with ABV contained high levels of viral RNA, the supernatants of infected cultures did not contain detectable levels of biologically active type I IFN. RNA from cells infected with ABV failed to induce IFN-β synthesis if transfected into human cells. Furthermore, genomic RNA of ABV was susceptible to 5’-monophosphate-specific RNase, suggesting that it lacks 5’-triphospates like BDV. These results indicate that bornaviruses of mammals and birds use similar strategies to evade the host immune response.

  2. Avian Bornaviruses Escape Recognition by the Innate Immune System

    Science.gov (United States)

    Reuter, Antje; Ackermann, Andreas; Kothlow, Sonja; Rinder, Monika; Kaspers, Bernd; Staeheli, Peter

    2010-01-01

    Like other pathogens that readily persist in animal hosts, members of the Bornaviridae family have evolved effective mechanisms to evade the innate immune response. The prototype of this virus family, Borna disease virus employs an unusual replication strategy that removes the triphosphates from the 5′ termini of the viral RNA genome. This strategy allows the virus to avoid activation of RIG-I and other innate immune response receptors in infected cells. Here we determined whether the newly discovered avian bornaviruses (ABV) might use a similar strategy to evade the interferon response. We found that de novo infection of QM7 and CEC32 quail cells with two different ABV strains was efficiently inhibited by exogenous chicken IFN-α. IFN-α also reduced the viral load in QM7 and CEC32 cells persistently infected with both ABV strains, suggesting that ABV is highly sensitive to type I IFN. Although quail cells persistently infected with ABV contained high levels of viral RNA, the supernatants of infected cultures did not contain detectable levels of biologically active type I IFN. RNA from cells infected with ABV failed to induce IFN-β synthesis if transfected into human cells. Furthermore, genomic RNA of ABV was susceptible to 5′-monophosphate-specific RNase, suggesting that it lacks 5′-triphospates like BDV. These results indicate that bornaviruses of mammals and birds use similar strategies to evade the host immune response. PMID:21994661

  3. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

    Directory of Open Access Journals (Sweden)

    Kerstin Hünniger

    2014-02-01

    Full Text Available Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment

  4. A Virtual Infection Model Quantifies Innate Effector Mechanisms and Candida albicans Immune Escape in Human Blood

    Science.gov (United States)

    Bieber, Kristin; Martin, Ronny; Figge, Marc Thilo; Kurzai, Oliver

    2014-01-01

    Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment–model–experiment cycles allowed

  5. Innate immunity

    African Journals Online (AJOL)

    not listed in Table 1, epithelial cells and endothelial cells, and to a lesser extent other types of structural cells such as fibroblasts and smooth-muscle cells, are critically involved in promoting both innate and adaptive immune responses. In the case of epithelial cells, this is achieved via production of pro-inflammatory.

  6. The role of endosomal escape and mitogen-activated protein kinases in adenoviral activation of the innate immune response.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Smith

    Full Text Available Adenoviral vectors (AdV activate multiple signaling pathways associated with innate immune responses, including mitogen-activated protein kinases (MAPKs. In this study, we investigated how systemically-injected AdVs activate two MAPK pathways (p38 and ERK and the contribution of these kinases to AdV-induced cytokine and chemokine responses in mice. Mice were injected intravenously either with a helper-dependent Ad2 vector that does not express viral genes or transgenes, or with the Ad2 mutant ts1, which is defective in endosomal escape. We found that AdV induced rapid phosphorylation of p38 and ERK as well as a significant cytokine response, but ts1 failed to activate p38 or ERK and induced only a limited cytokine response. These results demonstrate that endosomal escape of virions is a critical step in the induction of these innate pathways and responses. We then examined the roles of p38 and ERK pathways in the innate cytokine response by administering specific kinase inhibitors to mice prior to AdV. The cytokine and chemokine response to AdV was only modestly suppressed by a p38 inhibitor, while an ERK inhibitor has mixed effects, lowering some cytokines and elevating others. Thus, even though p38 and ERK are rapidly activated after i.v. injection of AdV, cytokine and chemokine responses are mostly independent of these kinases.

  7. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape.

    Science.gov (United States)

    Lion, Adrien; Richard, Mathilde; Esnault, Evelyne; Kut, Emmanuel; Soubieux, Denis; Guillory, Vanaïque; Germond, Mélody; Blondeau, Caroline; Guabiraba, Rodrigo; Short, Kirsty R; Marc, Daniel; Quéré, Pascale; Trapp, Sascha

    2018-01-01

    Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. [Innate immunity and transplantation].

    Science.gov (United States)

    Ponticelli, Claudio

    2015-01-01

    Innate immunity is the first barrier against pathogen infection and has also the important function of activating the adaptive immunity. The receptors of innate immunity, such as toll-like receptors and other receptors, recognize as danger signals the molecular patterns of pathogens as well as those of endogenous molecules released by dying cells. The information is transmitted to adapter proteins that, through a chain of kinases that translate the signal to transcription factors regulating inflammatory genes. In the inflammatory milieu dendritic cells become mature, intercept the antigen and migrate to lymphoid organs where they present the antigen to naïve T cells. Complement also exerts an important role of bridge between innate and adaptive immunity. In donor-deceased kidney transplantation, the innate immunity is triggered in the donor by brain death and is aggravated by the cold ischemia and even more by reperfusion. Once activated, innate immunity produces a local inflammatory environment leading to dendritic cell maturation and complement activation. Dendritic cells present the alloantigen to T cells and induce their differentiation towards effector Th1 and Th17 while inhibiting Th2 and T regulatory cells. A main goal of the current research in transplantation is to obtain an immunological tolerance. Experimental studies showed the possibility of inducing operative tolerance in murine models and even in primates with the infusion of regulatory dendritic cells. However, there are no data with this technique in clinical transplantation.

  10. Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity.

    Directory of Open Access Journals (Sweden)

    Sonja Grosskinsky

    Full Text Available Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever.

  11. Emerging Concepts in Innate Immunity.

    Science.gov (United States)

    Pelka, Karin; De Nardo, Dominic

    2018-01-01

    This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.

  12. Tick innate immunity.

    Science.gov (United States)

    Kopácek, Petr; Hajdusek, Ondrej; Buresová, Veronika; Daffre, Sirlei

    2010-01-01

    Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The vector competence of ticks is tightly linked with their immune system. Despite its importance, our knowledge of tick innate immunity is still inadequate and the limited number of sufficiently characterized immune molecules and cellular reactions are dispersed across numerous tick species. The phagocytosis of microbes by tick hemocytes seems to be coupled with a primitive complement-like system, which possibly involves self/nonself recognition by fibrinogen-related lectins and the action of thioester-containing proteins. Ticks do not seem to possess a pro-phenoloxidase system leading to melanization and also coagulation of tick hemolymph has not been experimentally proven. They are capable of defending themselves against microbial infection with a variety of antimicrobial peptides comprising lysozymes, defensins and molecules not found in other invertebrates. Virtually nothing is known about the signaling cascades involved in the regulation of tick antimicrobial immune responses. Midgut immunity is apparently the decisive factor of tick vector competence. The gut content is a hostile environment for ingested microbes, which is mainly due to the antimicrobial activity of hemoglobin fragments generated by the digestion of the host blood as well as other antimicrobial peptides. Reactive oxygen species possibly also play an important role in the tick-pathogen interaction. The recent release of the Ixodes scapularis genome and the feasibility of RNA interference in ticks promise imminent and substantial progress in tick innate immunity research.

  13. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  14. Curating the innate immunity interactome

    Science.gov (United States)

    2010-01-01

    Background The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http://www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity. Results Here, we describe the InnateDB curation project, which is manually annotating the human and mouse innate immunity interactome in rich contextual detail, and present our novel curation software system, which has been developed to ensure interactions are curated in a highly accurate and data-standards compliant manner. To date, over 13,000 interactions (protein, DNA and RNA) have been curated from the biomedical literature. Here, we present data, illustrating how InnateDB curation of the innate immunity interactome has greatly enhanced network and pathway annotation available for systems-level analysis and discuss the challenges that face such curation efforts. Significantly, we provide several lines of evidence that analysis of the innate immunity interactome has the potential to identify novel signalling, transcriptional and post-transcriptional regulators of innate immunity. Additionally, these analyses also provide insight into the cross-talk between innate immunity pathways and other biological processes, such as adaptive immunity, cancer and diabetes, and intriguingly, suggests links to other pathways, which as yet, have not been implicated in the innate immune response. Conclusions In summary, curation of the InnateDB interactome provides a wealth of information to enable systems-level analysis of innate immunity. PMID:20727158

  15. Innate Immune Recognition of EBV.

    Science.gov (United States)

    Lünemann, Anna; Rowe, Martin; Nadal, David

    2015-01-01

    The ability of Epstein-Barr virus (EBV) to establish latency despite specific immune responses and to successfully persist lifelong in the human host shows that EBV has developed powerful strategies and mechanisms to exploit, evade, abolish, or downsize otherwise effective immune responses to ensure its own survival. This chapter focuses on current knowledge on innate immune responses against EBV and its evasion strategies for own benefit and summarizes the questions that remain to be tackled. Innate immune reactions against EBV originate both from the main target cells of EBV and from nontarget cells, which are elements of the innate immune system. Thus, we structured our review accordingly but with a particular focus on the innate recognition of EBV in its two stages in its life cycle, latent state and lytic replication. Specifically, we discuss (I) innate sensing and resulting innate immune responses against EBV by its main target cells, focusing on (i) EBV transmission between epithelial cells and B cells and their life cycle stages; and (ii) elements of innate immunity in EBV's target cells. Further, we debate (II) the innate recognition and resulting innate immune responses against EBV by cells other than the main target cells, focusing on (iii) myeloid cells: dendritic cells, monocytes, macrophages, and neutrophil granulocytes; and (iv) natural killer cells. Finally, we address (III) how EBV counteracts or exploits innate immunity in its latent and lytic life cycle stages, concentrating on (v) TLRs; (vi) EBERs; and (vii) microRNAs.

  16. Innate immune memory in plants.

    Science.gov (United States)

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  18. INNATE IMMUNITY AND CKD PROGRESSION

    Directory of Open Access Journals (Sweden)

    Mallamaci F

    2012-06-01

    Conclusions: Plasma procalcitonin is a more sensitive biomarker of innate immunity than CRP in CKD patients and in part reflects excessive adiposity. High PCT in CKD patients predicts progression toward kidney failure. These results are compatible with the hypothesis that alterations in innate immunity play a role in the progression of CKD in humans.

  19. Innate immune response to Burkholderia mallei.

    Science.gov (United States)

    Saikh, Kamal U; Mott, Tiffany M

    2017-06-01

    Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.

  20. Innate immunity modulation in virus entry.

    Science.gov (United States)

    Faure, Mathias; Rabourdin-Combe, Chantal

    2011-07-01

    Entry into a cell submits viruses to detection by pattern recognition receptors (PRRs) leading to an early innate anti-viral response. Several viruses evolved strategies to avoid or subvert PRR recognition at the step of virus entry to promote infection. Whereas viruses mostly escape from soluble PRR detection, endocytic/phagocytic PRRs, such as the mannose receptor or DC-SIGN, are commonly used for virus entry. Moreover, virion-incorporated proteins may also offer viruses a way to dampen anti-viral innate immunity upon virus entry, and entering viruses might usurp autophagy to improve their own infectivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 'Towards a Conceptual Framework for Innate Immunity'

    OpenAIRE

    Twycross, Jamie; Aickelin, Uwe

    2005-01-01

    Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.

  2. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  3. Intercellular communication for innate immunity.

    Science.gov (United States)

    Nguyen, Tan A; Pang, Ken C; Masters, Seth L

    2017-06-01

    An effective innate immune response relies on the detection of pathogen associated molecular patterns (PAMPs) by various host pattern recognition receptors (PRRs) that result in the production of pro-inflammatory cytokines and chemokines. Viruses and bacteria have co-evolved with the immune system and developed multiple strategies to usurp or circumvent host machinery and blunt the innate immune response in infected cells. Recently, it has become apparent that infected or dying cells can transmit PAMPs and host PRR signalling proteins to uninfected bystander cells to thereby bypass pathogen evasion strategies, and potentiate innate immune signalling. This bystander activation of innate immunity represents an alternative method by which the host can control infections via cell-to-cell communication. In this review, we discuss what is currently known about the intercellular transfer of pathogen- or host-derived RNA, DNA and proteins from infected cells to neighbouring cells and how this impacts on host innate immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Psoriasis: dysregulation of innate immunity

    NARCIS (Netherlands)

    Bos, J. D.; de Rie, M. A.; Teunissen, M. B. M.; Piskin, G.

    2005-01-01

    The current understanding of the function of natural killer (NK) T cells in innate immunity and their potential to control acquired specific immunity, as well as the remarkable efficacy of antitumour necrosis factor-alpha biological treatments in psoriasis, forces us to refine the current T-cell

  5. Innate immune signaling in CLL.

    Science.gov (United States)

    Maus, Marcela V

    2016-01-28

    In this issue of Blood, Wagner et al describe a complex signaling model that explains the mechanism of action of a long-known prognostic marker in chronic lymphocytic leukemia (CLL) and integrates its function with the innate immune system and B-cell receptor signaling.

  6. Ambient ozone and pulmonary innate immunity

    Science.gov (United States)

    Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.

    2013-01-01

    Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467

  7. Taste Receptors in Innate Immunity

    Science.gov (United States)

    Lee, Robert J.

    2014-01-01

    Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein coupled–receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions. PMID:25323130

  8. Innate Pathways of Immune Activation in Transplantation

    OpenAIRE

    Brennan, Todd V.; Lunsford, Keri E.; Kuo, Paul C.

    2010-01-01

    Studies of the immune mechanisms of allograft rejection have predominantly focused on the adaptive immune system that includes T cells and B cells. Recent investigations into the innate immune system, which recognizes foreign antigens through more evolutionarily primitive pathways, have demonstrated a critical role of the innate immune system in the regulation of the adaptive immune system. Innate immunity has been extensively studied in its role as the host's first-line defense against micro...

  9. Innate Immunity and Breast Milk

    Science.gov (United States)

    Cacho, Nicole Theresa; Lawrence, Robert M.

    2017-01-01

    Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing

  10. Innate Immunity and Breast Milk

    Directory of Open Access Journals (Sweden)

    Nicole Theresa Cacho

    2017-05-01

    Full Text Available Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system

  11. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  12. Tumour viruses and innate immunity.

    Science.gov (United States)

    Hopcraft, Sharon E; Damania, Blossom

    2017-10-19

    Host cells sense viral infection through pattern recognition receptors (PRRs), which detect pathogen-associated molecular patterns (PAMPs) and stimulate an innate immune response. PRRs are localized to several different cellular compartments and are stimulated by viral proteins and nucleic acids. PRR activation initiates signal transduction events that ultimately result in an inflammatory response. Human tumour viruses, which include Kaposi's sarcoma-associated herpesvirus, Epstein-Barr virus, human papillomavirus, hepatitis C virus, hepatitis B virus, human T-cell lymphotropic virus type 1 and Merkel cell polyomavirus, are detected by several different PRRs. These viruses engage in a variety of mechanisms to evade the innate immune response, including downregulating PRRs, inhibiting PRR signalling, and disrupting the activation of transcription factors critical for mediating the inflammatory response, among others. This review will describe tumour virus PAMPs and the PRRs responsible for detecting viral infection, PRR signalling pathways, and the mechanisms by which tumour viruses evade the host innate immune system.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Author(s).

  13. Recall features and allorecognition in innate immunity.

    Science.gov (United States)

    Uehara, Hirofumi; Minami, Koichiro; Quante, Markus; Nian, Yeqi; Heinbokel, Timm; Azuma, Haruhito; Khal, Abdala El; Tullius, Stefan G

    2017-09-19

    Alloimmunity traditionally distinguishes short-lived, rapid and nonspecific innate immune responses from adaptive immune responses that are characterized by a highly specific response initiated in a delayed fashion. Key players of innate immunity such as natural killer (NK) cells and macrophages present the first-line defence of immunity. The concept of unspecific responses in innate immunity has recently been challenged. The discovery of pattern recognition receptors (PRRs) has demonstrated that innate immune cells respond in a semi-specific fashion through the recognition of pathogen-associated molecular patterns (PAMPs) representing conserved molecular structures shared by large groups of microorganisms. Although immunological memory has generally been considered as exclusive to adaptive immunity, recent studies have demonstrated that innate immune cells have the potential to acquire memory. Here, we discuss allospecific features of innate immunity and their relevance in transplantation. © 2017 Steunstichting ESOT.

  14. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  15. Innate Immunity against Leishmania Infections

    Science.gov (United States)

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2015-01-01

    Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite. PMID:26249747

  16. Trained innate immunity and atherosclerosis.

    Science.gov (United States)

    Bekkering, Siroon; Joosten, Leo A B; van der Meer, Jos W M; Netea, Mihai G; Riksen, Niels P

    2013-12-01

    Monocytes/macrophages play a decisive role in the development and progression of atherosclerosis. It is currently unknown what stimuli initiate and orchestrate the activation of these cells in atherogenesis. In this review, we postulate that the novel concept of 'trained immunity' modulates the development and progression of atherosclerosis. Recently, results from our laboratory challenged the current paradigm that innate immunity is static and does not have an immunological memory. Stimulation by various microbial products, including Candida albicans and bacille Calmette-Guérin, appeared to bring monocytes into a long-term enhanced functional state, showing a stronger proinflammatory response to a second stimulus. This 'trained immunity' was mediated by increased and stable histone methylation. We describe the hypothesis that this functional reprogramming of monocytes, either by microbial products or by metabolic products, contributes to atherogenesis and propose epigenetic reprogramming of monocytes as a novel pharmacological target for preventing or treating atherosclerosis in the future.

  17. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets....... However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants...... with innate immune responses in eukaryotes as well as of prodeath functions for the autophagy pathway in plants....

  18. Adiponectin: a versatile player of innate immunity.

    Science.gov (United States)

    Luo, Yan; Liu, Meilian

    2016-04-01

    Adiponectin acts as a key regulator of the innate immune system and plays a major role in the progression of inflammation and metabolic disorders. Macrophages and monocytes are representative components of the innate immune system, and their proliferation, plasticity, and polarization are a key component of metabolic adaption. Innate-like lymphocytes such as group 2 innate lymphoid cells (ILC2s), natural killer T (NKT) cells, and gamma delta T (γδ T) cells are also members of the innate immune system and play important roles in the development of obesity and its related diseases. Adiponectin senses metabolic stress and modulates metabolic adaption by targeting the innate immune system under physiological and pathological conditions. Defining the mechanisms underlying the role of adiponectin in regulating innate immunity is crucial to adiponectin-based therapeutic intervention. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  19. Roles for Innate Immunity in Combination Immunotherapies.

    Science.gov (United States)

    Moynihan, Kelly D; Irvine, Darrell J

    2017-10-01

    Immunity to infectious agents involves a coordinated response of innate and adaptive immune cells working in concert, with many feed-forward and regulatory interactions between both arms of the immune system. In contrast, many therapeutic strategies to augment immunity against tumors have focused predominantly on stimulation of adaptive immunity. However, a growing appreciation of the potential contributions of innate immune effectors to antitumor immunity, especially in the context of combination immunotherapy, is leading to novel strategies to elicit a more integrated immune response against cancer. Here we review antitumor activities of innate immune cells, mechanisms of their synergy with adaptive immune responses against tumors, and discuss recent studies highlighting the potential of combination therapies recruiting both innate and adaptive immune effectors to eradicate established tumors. Cancer Res; 77(19); 5215-21. ©2017 AACR. ©2017 American Association for Cancer Research.

  20. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  1. Blurring Borders: Innate Immunity with Adaptive Features

    Directory of Open Access Journals (Sweden)

    K. Kvell

    2007-01-01

    Full Text Available Adaptive immunity has often been considered the penultimate of immune capacities. That system is now being deconstructed to encompass less stringent rules that govern its initiation, actual effector activity, and ambivalent results. Expanding the repertoire of innate immunity found in all invertebrates has greatly facilitated the relaxation of convictions concerning what actually constitutes innate and adaptive immunity. Two animal models, incidentally not on the line of chordate evolution (C. elegans and Drosophila, have contributed enormously to defining homology. The characteristics of specificity and memory and whether the antigen is pathogenic or nonpathogenic reveal considerable information on homology, thus deconstructing the more fundamentalist view. Senescence, cancer, and immunosuppression often associated with mammals that possess both innate and adaptive immunity also exist in invertebrates that only possess innate immunity. Strict definitions become blurred casting skepticism on the utility of creating rigid definitions of what innate and adaptive immunity are without considering overlaps.

  2. The Innate Immune Database (IIDB

    Directory of Open Access Journals (Sweden)

    Zak Daniel

    2008-03-01

    Full Text Available Abstract Background As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site http://www.innateImmunity-systemsbiology.org. Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens. Description We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3 for which experimental data is available, over 50% of our predicted binding sites coincide with genome

  3. Innate immunity to Candida albicans

    Directory of Open Access Journals (Sweden)

    Yusuke Kiyoura

    2015-08-01

    Full Text Available Candida albicans is not a pathogen in healthy individuals, but can cause severe systemic candidiasis in immunocompromised patients. C. albicans has various virulence factors and activates the innate immune system. Specifically, C. albicans induces proinflammatory cytokine production in various cell types via many receptors, such as Toll-like receptors (TLRs and C-type lectin receptors (CLRs. This microorganism also promotes phagocytosis via CLRs on macrophages. In a previous study, we found that C. albicans induces the production of galectin-3, which is a known CLR that kills C. albicans. This review indicates that the use of mouthwash containing an antimicrobial peptide or protein might be a useful new oral care method for the prevention of oral candidiasis.

  4. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  5. [Role of innate immunity in tolerance induction].

    Science.gov (United States)

    Dolgikh, M S

    2015-01-01

    This review considers the role of innate immunity in mechanisms of transplant tolerance and rejection, analyse the role of innate immunity cells (dendritic cells-DC, NK, must and other cells) in these processes, and the pathes of creation of tolerogenic DC for transplant rejection therapy and tolerance.

  6. Psoriasis, innate immunity, and gene pools

    NARCIS (Netherlands)

    Bos, Jan D.

    2007-01-01

    Recently, emphasis has shifted from T cells to innate (natural) immunity as the possible major culprit in psoriasis. All known elements of innate immune responses are up-regulated in psoriasis lesions, which must have a polygenetic origin. We hypothesize that urbanized populations have been under

  7. Neonatal innate immunity - A translational perspective

    NARCIS (Netherlands)

    Belderbos, M.E.

    2012-01-01

    Human newborns are highly susceptible to infections, which appears to be due to immaturity of the neonatal innate immune system. At birth, neonatal innate immune responses are characterized by decreased Th1-polarizing responses, whereas generation of Th2-polarizing and regulatory responses is

  8. Small Heterodimer Partner and Innate Immune Regulation

    Directory of Open Access Journals (Sweden)

    Jae-Min Yuk

    2016-03-01

    Full Text Available The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues.

  9. Vitally important - does early innate immunity predict recruitment and adult innate immunity?

    Science.gov (United States)

    Vermeulen, Anke; Müller, Wendt; Eens, Marcel

    2016-03-01

    The immune system is one of the most important adaptations that has evolved to protect animals from a wide range of pathogens they encounter from early life onwards. During the early developmental period this is particularly true for the innate immunity, as other components of the immune system are, as yet, poorly developed. But innate immunity may not only be crucial for early life survival, but may also have long-lasting effects, for example if early life immunity reflects the functioning of the immune system as a whole. For this reason, we investigated the importance of four constitutive innate immune parameters (natural antibodies, complement activity, concentrations of haptoglobin, and concentrations of nitric oxide) for recruitment in free-living great tits. We compared nestling immunity of recruits with nestling immunity of their nonrecruited siblings. We also investigated within individual consistency of these innate immune parameters for those individuals that recruited, which may be taken as a measure of immune capacity. In accordance with previous studies, we found a clear effect of tarsus length and a trend for body mass on the likelihood to recruit. Nevertheless, we found no evidence that higher levels of constitutive innate immunity as a nestling facilitated local recruitment. Furthermore, individual innate immunity was not consistent across life stages, that is to say, nestling immune parameters did not determine, or respectively, reflect adult innate immune parameters. This plasticity in innate immune components may explain why we did not find long-lasting survival benefits.

  10. Evolutionary responses of innate Immunity to adaptive immunity

    Science.gov (United States)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  11. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  12. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  13. Innate immune cells in inflammation and cancer.

    Science.gov (United States)

    Nowarski, Roni; Gagliani, Nicola; Huber, Samuel; Flavell, Richard A

    2013-08-01

    The innate immune system has evolved in multicellular organisms to detect and respond to situations that compromise tissue homeostasis. It comprises a set of tissue-resident and circulating leukocytes primarily designed to sense pathogens and tissue damage through hardwired receptors and eliminate noxious sources by mediating inflammatory processes. While indispensable to immunity, the inflammatory mediators produced in situ by activated innate cells during injury or infection are also associated with increased cancer risk and tumorigenesis. Here, we outline basic principles of innate immune cell functions in inflammation and discuss how these functions converge upon cancer development. ©2013 AACR.

  14. [Innate immunity primary immunodeficiencies and infections].

    Science.gov (United States)

    Duchamp, M; Miot, C; Bustamante, J C; Picard, C

    2016-07-01

    The diagnosis of primary immunodeficiency diseases (PIDs) is important for the early and adaptive care of patients and their families. Among the various known PIDs, a number of them concern the innate immune system, which involve a set of cells and mechanisms involved in the host defense by a nonspecific and fast response. The majority of patients with innate immunity defects have a predisposition to one isolated type of infection (bacterial, viral, or fungal), dependent on the genetic defect involved. This article describes the different PIDs involving innate immunity and the immunological investigations allowing for their diagnosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Innate immune sensing of HIV-1 infection.

    Science.gov (United States)

    Jakobsen, Martin R; Olagnier, David; Hiscott, John

    2015-03-01

    The innate immune system plays a critical role in the control of viral infections. Although the mechanisms involved in sensing and response to viral pathogens has progressed tremendously in the last decade, an understanding of the innate antiviral response to human retroviruses lagged behind. Recent studies now demonstrate that human retroviruses such as human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus 1 (HTLV-1) trigger a type I interferon antiviral response through novel cytosolic sensors that detect DNA intermediates of reverse transcription; in addition, these early host-pathogen interactions may trigger cell death pathways depending on the activation state of the target cell. The purpose of this review is to summarize the recent progress in the understanding of innate immune sensing of human retroviruses. Innate immune sensing of HIV-1 and HTLV-1 is influenced by the target cell phenotype, viral replicative intermediates, and host restriction factors that limit retroviral replication. Macrophages and dendritic cells detect HIV-DNA intermediates, whereas CD4 T cells differentially sense HIV DNA depending on the level of T-cell activation. Furthermore, the structure of the viral capsid and interplay between innate DNA sensors and host restriction factors all contribute to the magnitude of the ensuing innate immune response. The interplay between HIV infection and the innate immune system has emerged as an important component of HIV pathogenesis, linked to both induction of innate immunity and stimulation of cell death mechanisms. Ultimately, an in-depth knowledge of the mechanisms of innate immune control of human retrovirus infection may facilitate the development of novel treatment strategies to control retrovirus-induced immunopathology.

  16. Neonatal innate immunity in allergy development.

    Science.gov (United States)

    Belderbos, Mirjam; Levy, Ofer; Bont, Louis

    2009-12-01

    The neonate is born with a distinct immune system that is biased against the production of T-helper cell 1 (Th1) cytokines. Birth imposes a great challenge on the neonatal immune system, which is confronted with an outside world rich in foreign antigens. Exposure to these antigens shapes the developing neonatal immune system. Inducing Th-1 or Th-2 polarized responses that may extend beyond the neonatal age and counteract or promote allergic sensitization. This review describes how engagement of the innate immune system might contribute to the development of allergy in children. The exact role of innate immune stimulation in the development of allergies is a controversial area. Epidemiological literature suggests that microbial exposure in early childhood protects against the development of allergies, whereas a large amount of experimental data demonstrates that innate immune stimulation enhances Th2 responses upon primary and secondary antigen exposure. Dose, site and timing of allergen exposure are likely to modulate the innate immune response, polarizing the maturing neonatal immune system towards Th1 or Th2-type responses, thereby protecting from or predisposing to asthma and allergies. Modulation of neonatal innate immune responses may be a novel approach to prevent asthma and allergies.

  17. Innate Immune Effectors in Mycobacterial Infection

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saiga

    2011-01-01

    Full Text Available Tuberculosis, which is caused by infection with Mycobacterium tuberculosis (Mtb, remains one of the major bacterial infections worldwide. Host defense against Mtb is mediated by a combination of innate and adaptive immune responses. In the last 15 years, the mechanisms for activation of innate immunity have been elucidated. Toll-like receptors (TLRs have been revealed to be critical for the recognition of pathogenic microorganisms including mycobacteria. Subsequent studies further revealed that NOD-like receptors and C-type lectin receptors are responsible for the TLR-independent recognition of mycobacteria. Several molecules, such as active vitamin D3, secretary leukocyte protease inhibitor, and lipocalin 2, all of which are induced by TLR stimulation, have been shown to direct innate immune responses to mycobacteria. In addition, Irgm1-dependent autophagy has recently been demonstrated to eliminate intracellular mycobacteria. Thus, our understanding of the mechanisms for the innate immune response to mycobacteria is developing.

  18. Cholangiopathy with Respect to Biliary Innate Immunity

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2012-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in cases of biliary disease. Cholangiocytes possess Toll-like receptors (TLRs which recognize pathogen-associated molecular patterns (PAMPs and play a pivotal role in the innate immune response. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. Moreover, in primary biliary cirrhosis (PBC and biliary atresia, biliary innate immunity is closely associated with the dysregulation of the periductal cytokine milieu and the induction of biliary apoptosis and epithelial-mesenchymal transition (EMT, forming in disease-specific cholangiopathy. Biliary innate immunity is associated with the pathogenesis of various cholangiopathies in biliary diseases as well as biliary defense systems.

  19. The Innate Immune System in Demyelinating Disease

    OpenAIRE

    Mayo, Lior; Quintana, Francisco J.; Weiner, Howard L

    2012-01-01

    Demyelinating diseases such as multiple sclerosis are chronic inflammatory autoimmune diseases with a heterogeneous clinical presentation and course. Both the adaptive and the innate immune systems have been suggested to contribute to their pathogenesis and recovery. In this review, we discuss the role of the innate immune system in mediating demyelinating diseases. In particular, we provide an overview of the anti-inflammatory or pro-inflammatory functions of dendritic cells, mast cells, nat...

  20. Innate immune response to Burkholderia mallei

    OpenAIRE

    Kamal U Saikh; Mott, Tiffany M.

    2017-01-01

    Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the no...

  1. Innate Immunity and BK Virus: Prospective Strategies.

    Science.gov (United States)

    Kariminik, Ashraf; Yaghobi, Ramin; Dabiri, Shahriar

    2016-03-01

    Recent information demonstrated that BK virus reactivation is a dominant complication after kidney transplantation, which occurs because of immunosuppression. BK virus reactivation is the main reason of transplanted kidney losing. Immune response against BK virus is the major inhibitor of the virus reactivation. Therefore, improving our knowledge regarding the main parameters that fight against BK viruses can shed light on to direct new treatment strategies to suppress BK infection. Innate immunity consists of numerous cell systems and also soluble molecules, which not only suppress virus replication, but also activate adaptive immunity to eradicate the infection. Additionally, it appears that immune responses against reactivated BK virus are the main reasons for induction of BK virus-associated nephropathy (BKAN). Thus, improving our knowledge regarding the parameters and detailed mechanisms of innate immunity and also the status of innate immunity of the patients with BK virus reactivation and its complications can introduce new prospective strategies to either prevent or as therapy of the complication. Therefore, this review was aimed to collate the most recent data regarding the roles played by innate immunity against BK virus and also the status of innate immunity in the patients with reactivation BK virus and BKAN.

  2. Innate immunity in lophotrochozoans: the annelids.

    Science.gov (United States)

    Salzet, Michel; Tasiemski, Aurélie; Cooper, Edwin

    2006-01-01

    Innate immunity plays a major role as a first defense against microbes. Effectors of the innate response include pattern recognition receptors (PRR), phagocytic cells, proteolytic cascades and peptides/proteins with antimicrobial properties. Each element of these events has been well studied in vertebrates and in some invertebrates such as annelids. From these different researches, it appears that mammalian innate immunity could be considered as a mosaic of invertebrate immune responses. Annelids belonging to the lophotrochozoans' group are primitive coelomates that possess specially developed cellular immunity against pathogens including phagocytosis, encapsulation and spontaneous cytotoxicity of coelomocytes against allogenic or xenogenic cells. They have also developed an important humoral immunity that is based on antimicrobial, hemolytic and clotting properties of their body fluid. In the present review, we will emphasize the different immunodefense strategies that adaptation has taken during the course of evolution of two classes of annelids i.e. oligochaetes and achaetes.

  3. Vaccine Adjuvants: Putting Innate Immunity to Work

    Science.gov (United States)

    Coffman, Robert L.; Sher, Alan; Seder, Robert A.

    2012-01-01

    Adjuvants enhance immunity to vaccines and experimental antigens by a variety of mechanisms. In the past decade, many receptors and signaling pathways in the innate immune system have been defined and these innate responses strongly influence the adaptive immune response. The focus of this review is to delineate the innate mechanisms by which adjuvants mediate their effects. We highlight how adjuvants can be used to influence the magnitude and alter the quality of the adaptive response in order to provide maximum protection against specific pathogens. Despite the impressive success of currently approved adjuvants for generating immunity to viral and bacterial infections, there remains a need for improved adjuvants that enhance protective antibody responses, especially in populations that respond poorly to current vaccines. However, the larger challenge is to develop vaccines that generate strong T cell immunity with purified or recombinant vaccine antigens. PMID:21029960

  4. Innate Immune Sensing and Response to Influenza

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  5. Improving microphage innate immunity by modulating protein ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving microphage innate immunity by modulating protein tyrosine phosphatases: The complete mouse and human PTPomes. Diseases that result from an infection are most often resolved by cells that use an immune response to clear foreign agents. These cells include macrophages, which are the predominant type of ...

  6. Innate Immune Function of Mitochondrial Metabolism.

    Science.gov (United States)

    Sancho, David; Enamorado, Michel; Garaude, Johan

    2017-01-01

    Sensing of microbe-associated molecular patterns or danger signals by innate immune receptors drives a complex exchange of information. Innate receptor signaling not only triggers transcriptional events but also induces profound changes in metabolic fluxes, redox balance, and metabolite abundance thereby influencing immune cell function. Mitochondria are at the core of metabolic adaptation to the changing environment. The close interaction between mitochondrial metabolism and immune signaling has emerged as a central regulator of innate sensing. Metabolic processes generate a constant flow of electrons that eventually end up in the mitochondrial electron transport chain (ETC). Two electron carriers and four respiratory complexes that can assemble as larger molecular supercomplexes compose the ETC in the mitochondrial inner membrane. While the meaning and biological relevance of such structural organization is a matter of passionate debates, recent data support that innate stimuli remodel the ETC. We will review the function of mitochondrial metabolism and ETC dynamics as innate rheostats that regulate signaling, transcription, and epigenetics to orchestrate innate immune responses.

  7. The innate immune system in demyelinating disease.

    Science.gov (United States)

    Mayo, Lior; Quintana, Francisco J; Weiner, Howard L

    2012-07-01

    Demyelinating diseases such as multiple sclerosis are chronic inflammatory autoimmune diseases with a heterogeneous clinical presentation and course. Both the adaptive and the innate immune systems have been suggested to contribute to their pathogenesis and recovery. In this review, we discuss the role of the innate immune system in mediating demyelinating diseases. In particular, we provide an overview of the anti-inflammatory or pro-inflammatory functions of dendritic cells, mast cells, natural killer (NK) cells, NK-T cells, γδ T cells, microglial cells, and astrocytes. We emphasize the interaction of astroctyes with the immune system and how this interaction relates to the demyelinating pathologies. Given the pivotal role of the innate immune system, it is possible that targeting these cells may provide an effective therapeutic approach for demyelinating diseases. © 2012 John Wiley & Sons A/S.

  8. Immune escape strategies of malaria parasites

    Directory of Open Access Journals (Sweden)

    Pollyanna Stephanie Gomes

    2016-10-01

    Full Text Available Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  9. Immune Escape Strategies of Malaria Parasites.

    Science.gov (United States)

    Gomes, Pollyanna S; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  10. Distinct mechanisms of the newborn innate immunity.

    Science.gov (United States)

    Kumar, S Kingsley Manoj; Bhat, B Vishnu

    2016-05-01

    The ontogeny of immunity during early life is of high importance as it shapes the immune system for the entire course of life. The microbiome and the environment contribute to the development of immunity in newborns. As immune responses in newborns are predominantly less experienced they are increasingly susceptible to infections. Though the immune cells in newborns are in 'naïve' state, they have been shown to mount adult-like responses in several circumstances. The innate immunity plays a vital role in providing protection during the neonatal period. Various stimulants have been shown to enhance the potential and functioning of the innate immune cells in newborns. They are biased against the production of pro-inflammatory cytokines and this makes them susceptible to wide variety of intracellular pathogens. The adaptive immunity requires prior antigenic experience which is very limited in newborns. This review discusses in detail the characteristics of innate immunity in newborns and the underlying developmental and functional mechanisms involved in the immune response. A better understanding of the immunological milieu in newborns could help the medical fraternity to find novel methods for prevention and treatment of infection in newborns. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  12. Innate Immune Activation in Intestinal Homeostasis

    OpenAIRE

    Harrison, Oliver J.; Maloy, Kevin J.

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host prot...

  13. Kawasaki disease: a matter of innate immunity.

    Science.gov (United States)

    Hara, T; Nakashima, Y; Sakai, Y; Nishio, H; Motomura, Y; Yamasaki, S

    2016-11-01

    Kawasaki disease (KD) is an acute systemic vasculitis of childhood that does not have a known cause or aetiology. The epidemiological features (existence of epidemics, community outbreaks and seasonality), unique age distribution and clinical symptoms and signs of KD suggest that the disease is caused by one or more infectious environmental triggers. However, KD is not transmitted person-to-person and does not occur in clusters within households, schools or nurseries. KD is a self-limited illness that is not associated with the production of autoantibodies or the deposition of immune complexes, and it rarely recurs. Regarding the underlying pathophysiology of KD, innate immune activity (the inflammasome) is believed to play a role in the development of KD vasculitis, based on the results of studies with animal models and the clinical and laboratory findings of KD patients. Animal studies have demonstrated that innate immune pathogen-associated molecular patterns (PAMPs) can cause vasculitis independently of acquired immunity and have provided valuable insights regarding the underlying mechanisms of this phenomenon. To validate this concept, we recently searched for KD-specific PAMPs and identified such molecules with high specificity and sensitivity. These molecules have structures similar to those of microbe-associated molecular patterns (MAMPs), as shown by liquid chromatography-tandem mass spectrometry. We propose herein that KD is an innate immune disorder resulting from the exposure of a genetically predisposed individual to microbe-derived innate immune stimulants and that it is not a typical infectious disease. © 2016 British Society for Immunology.

  14. Optimal Control Strategy for Abnormal Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Jinying Tan

    2015-01-01

    Full Text Available Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t or enhancing interferon activity (u2(t, has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t and (u2(t simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases.

  15. Neutrophils: Cinderella of innate immune system.

    Science.gov (United States)

    Kumar, V; Sharma, A

    2010-11-01

    Neutrophils are the first line of innate immune defense against infectious diseases. However, since their discovery by Elie Metchnikoff, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during acute infections. Now, extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Along with releasing various antimicrobial molecules, neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophils in the regulation of both innate and adaptive immunity during acute infectious or inflammatory conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Plant innate immunity – sunny side up?

    Science.gov (United States)

    Stael, Simon; Kmiecik, Przemyslaw; Willems, Patrick; Van Der Kelen, Katrien; Coll, Nuria S.; Teige, Markus; Van Breusegem, Frank

    2016-01-01

    Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelle’s importance in immunity has been somehow overlooked. Recent findings suggest that the chloroplast also has an unanticipated function as a hub for ROS- and calcium-signaling that affects immunity responses at an early stage after pathogen attack. In this opinion article, we discuss a chloroplastic calcium-ROS signaling branch of plant innate immunity. We propose that this chloroplastic branch acts as a light-dependent rheostat that, through the production of ROS, influences the severity of the immune response. PMID:25457110

  17. Trained immunity: A smart way to enhance innate immune defence.

    Science.gov (United States)

    van der Meer, Jos W M; Joosten, Leo A B; Riksen, Niels; Netea, Mihai G

    2015-11-01

    The innate arm of the immune system is generally viewed as primitive and non-specific and - in contrast to the adaptive immune arm - not to possess memory. However in plants and invertebrate animals that lack adaptive immunity, innate immunity will exhibit a prolonged enhanced functional state after adequate priming. A similar enhancement of function of the innate immunity has occasionally been described in vertebrates, including humans. Over the past few years we have studied this phenomenon in greater detail and we have coined the term 'Trained (innate) immunity' (TI). TI can be induced by a variety of stimuli, of which we have studied BCG and β-glucan in greater detail. The non-specific protective effects of BCG that have been observed in vaccination studies in the literature are probably due to TI. Monocytes and macrophages are among the main cells of the innate immune arm that can be trained. We have discovered that both BCG (via NOD2 signalling) and β-glucan (via dectin-1) induce epigenetic reprogramming, in particular stable changes in histone trimethylation at H3K4. These epigenetic changes lead to cellular activation, enhanced cytokine production and a change in the metabolic state of the cell with a shift from oxidative phosphorylation to aerobic glycolysis. TI is not only important for host defence and vaccine responses, but most probably also for diseases like atherosclerosis. Modulation of TI is a promising area for new treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Innate Immunity and the 2011 Nobel Prize

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 10. Innate Immunity and the 2011 Nobel Prize. Mukta Deobagkar Lele Chetana Bhaskarla Rajkumar Dhanaraju Manikandan Ponnusamy Dipankar Nandi. General Article Volume 17 Issue 10 October 2012 pp 974-995 ...

  20. Innate immune functions in kidney transplantation

    NARCIS (Netherlands)

    Berger, Stefan Philip

    2009-01-01

    The innate immune system plays an important role in solid organ transplantation. This thesis focuses on the role of the lectin pathway of complement activation in kidney and simultaneous pancreas-kidney transplantation (SPKT) and describes the role of properdin in tubular complement activation and

  1. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  2. The Role of Innate Immunity in Autoimmunity

    Science.gov (United States)

    Bach, Jean-François; Bendelac, Albert; Brenner, Michael B.; Cantor, Harvey; De Libero, Gennaro; Kronenberg, Mitchell; Lanier, Lewis L.; Raulet, David H.; Shlomchik, Mark J.; von Herrath, Matthias G.

    2004-01-01

    During the 2004 International Congress of Immunology in Montreal, a panel of experts gathered for an “Ideashop” discussion on the potential role of innate immunity in autoimmunity and the ways in which this might be targeted in future therapies. PMID:15611284

  3. Innate immune signalling of the zebrafish embryo

    NARCIS (Netherlands)

    Stockhammer, Oliver W.

    2010-01-01

    In the last decade the study of the innate immune system has gained renewed scientific momentum as a result of the discovery of essential receptor families, such as the Toll-like receptor (TLR) family, that are required for pathogen recognition. These receptors detect specific molecular structures

  4. Innate immunity and the new forward genetics.

    Science.gov (United States)

    Beutler, Bruce

    2016-12-01

    As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many "new" proteins needed for innate immune function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Metabolic signals and innate immune activation in obesity and exercise

    National Research Council Canada - National Science Library

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    ... being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs...

  6. Trained innate immunity and atherosclerosis

    NARCIS (Netherlands)

    Bekkering, S.; Joosten, L.A.B.; Meer, J.W.M. van der; Netea, M.G.; Riksen, N.P.

    2013-01-01

    PURPOSE OF REVIEW: Monocytes/macrophages play a decisive role in the development and progression of atherosclerosis. It is currently unknown what stimuli initiate and orchestrate the activation of these cells in atherogenesis. In this review, we postulate that the novel concept of 'trained immunity'

  7. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  8. DMPD: Antiviral innate immunity pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16474426 Antiviral innate immunity pathways. Seth RB, Sun L, Chen ZJ. Cell Res. 200...6 Feb;16(2):141-7. (.png) (.svg) (.html) (.csml) Show Antiviral innate immunity pathways. PubmedID 16474426 ...Title Antiviral innate immunity pathways. Authors Seth RB, Sun L, Chen ZJ. Publication Cell Res. 2006 Feb;16

  9. Innate immunity in alcoholic liver disease

    Science.gov (United States)

    Seki, Ekihiro; Brenner, David A.; Friedman, Scott; Cohen, Jessica I.; Nagy, Laura; Szabo, Gyongyi; Zakhari, Samir

    2011-01-01

    Excessive alcohol consumption is a leading cause of chronic liver disease in the Western world. Alcohol-induced hepatotoxicity and oxidative stress are important mechanisms contributing to the pathogenesis of alcoholic liver disease. However, emerging evidence suggests that activation of innate immunity involving TLR4 and complement also plays an important role in initiating alcoholic steatohepatitis and fibrosis, but the role of adaptive immunity in the pathogenesis of alcoholic liver disease remains obscure. Activation of a TLR4-mediated MyD88-independent (TRIF/IRF-3) signaling pathway in Kupffer cells contributes to alcoholic steatohepatitis, whereas activation of TLR4 signaling in hepatic stellate cells promotes liver fibrosis. Alcohol consumption activates the complement system in the liver by yet unidentified mechanisms, leading to alcoholic steatohepatitis. In contrast to activation of TLR4 and complement, alcohol consumption can inhibit natural killer cells, another important innate immunity component, contributing to alcohol-mediated acceleration of viral infection and liver fibrosis in patients with chronic viral hepatitis. Understanding of the role of innate immunity in the pathogenesis of alcoholic liver disease may help us identify novel therapeutic targets to treat this disease. PMID:21252049

  10. Dead cell phagocytosis and innate immune checkpoint

    Science.gov (United States)

    Yoon, Kyoung Wan

    2017-01-01

    The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations. PMID:28768566

  11. Hepatitis C and Innate Immunity – Recent Advances

    OpenAIRE

    Szabo, Gyongyi; Dolganiuc, Angela

    2008-01-01

    Eradication of HCV infection requires a complex and coordinated interplay between innate and adaptive immune responses that, when it fails, leads to chronic infection. Increasing evidence suggest that defects in innate immune recognition and in innate immunity-induced activation of adaptive immune responses play a critical role in failure of HCV clearance. The evolutionarily preserved receptors of viral recognition in immune cells and in hepatocytes sense invading pathogens that results in in...

  12. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    Science.gov (United States)

    2015-12-01

    formed by Toll-like receptor and the histone demethylase JMJD3 in the bone marrow hematopoietic stem/ progenitor cells (HSPCs) of MDS. The objective...U c. THIS PAGE U UU 10 19b. TELEPHONE NUMBER (include area code ) 2 [SF298] Note: An abstract is required to be provided in Block 14 Abstract...We recently identified the deregulation of an innate immune signaling axis formed by Toll-like receptor and the histone demethylase JMJD3 in the bone

  13. Heme on innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Fabianno Ferreira Dutra

    2014-05-01

    Full Text Available Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prostetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion and hemorrhage. The plasma scavanger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavange heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce ROS generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review we will discuss the mechanisms behind heme-induced citotoxicity and inflammation and the consequences of these events on different tissues and diseases.

  14. Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy : Activation and Functions of the Innate Immune Receptors.

    Science.gov (United States)

    De Nardo, Dominic

    2017-01-01

    The families of innate immune receptors are the frontline responders to danger. These superheroes of the host immune systems populate innate immune cells, surveying the extracellular environment and the intracellular endolysosomal compartments and cytosol for exogenous and endogenous danger signals. As a collective the innate immune receptors recognise a wide array of stimuli, and in response they initiate specific signalling pathways leading to activation of transcriptional or proteolytic pathways and the production of inflammatory molecules to destroy foreign pathogens and/or resolve tissue injury. In this review, I will give an overview of the innate immune system and the activation and effector functions of the families of receptors it comprises. Current key concepts will be described throughout, including innate immune memory, formation of innate immune receptor signalosomes, inflammasome formation and pyroptosis, methods of extrinsic cell communication and examples of receptor cooperation. Finally, several open questions and future directions in the field of innate immunity will be presented and discussed.

  15. Innate Lymphoid Cells in Tumor Immunity.

    Science.gov (United States)

    van Beek, Jasper J P; Martens, Anne W J; Bakdash, Ghaith; de Vries, I Jolanda M

    2016-02-25

    Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring.

  16. The innate and adaptive immune response to avian influenza virus

    Science.gov (United States)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  17. Mechanisms of tumour escape from immune surveillance

    Directory of Open Access Journals (Sweden)

    Lisiecka Urszula

    2016-12-01

    Full Text Available The progressive growth and spread of tumour cells in the form of metastases requires an interaction of healthy host cells, such as endothelial cells, fibroblasts, and other cells of mesenchymal origin with immune cells taking part in innate and adaptive responses within the tumour lesion and entire body. The host cells interact with tumour cells to create a dynamic tumour microenvironment, in which healthy cells can both positively and negatively influence the growth and spread of the tumour. The balance of cellular homeostasis and the effect of substances they secrete on the tumour microenvironment determine whether the tumour has a tendency to grow or disappear, and whether the cells remain within the lesion or are capable of metastasis to other regions of the body. Intercellular interactions also determine the tumour’s susceptibility to radiation or other types of cancer treatment. They may also be a rational explanation for differences in treatment outcomes, in which some metastases regress and others progress in response to the same treatment method.

  18. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    It is well-known that the innate immune mechanisms in fish serve as the first line of defence against wide variety of pathogens. In most of the situations, innate responses get induced and enhanced after the pathogen invasion. It would be interesting to look into the inducibility of various innate immune mechanisms and the ...

  19. Innate immune sensing 2.0 - from linear activation pathways to fine tuned and regulated innate immune networks.

    Science.gov (United States)

    Volz, Thomas; Kaesler, Susanne; Biedermann, Tilo

    2012-01-01

    The innate immune system is based on pathogen recognition receptors that bind conserved microbial molecular structures, so called pathogen-associated molecular patterns (PAMPs). The characterization of the innate immune system was long based on a linear step-wise concept of recognition, activation pathways and effector defense mechanisms. Only more recently it was recognized that the innate immune system needs regulatory elements, sideways and crosstalks that allows it to fine tune and adapt its response. Thus, it is an emerging field within innate immunity research to try to understand how the immune outcome of innate immune sensing is regulated and why immune responses can be substantially different, even though the same PAMPs may have been 'sensed' at the surface organs such as the skin. Only the expansion of the innate immune system from 'pure' linear activation pathways to fine tuned and regulated innate immune networks allows us to integrate the generation of gradually accentuated and qualitatively different effector and tolerogenic immune responses. This article provides a review of the basic concepts and players of the innate immune system and will present some of the newer data defining the innate immune networks effectively regulating the immune homoeostasis and immune effector mechanisms with special focus on the skin as one of the organs involved in regulating the immune interface between the environment and the organism. © 2011 John Wiley & Sons A/S.

  20. Innate immunity in Sjögren's syndrome.

    Science.gov (United States)

    Kiripolsky, Jeremy; McCabe, Liam G; Kramer, Jill M

    2017-09-01

    Sjögren's syndrome (SS) is an autoimmune disease of exocrine tissue that primarily affects women. Although patients typically experience xerostomia and xerophthalmia, numerous systemic disease manifestations are seen. Innate immune hyperactivity is integral to many autoimmune diseases, including SS. Results from SS mouse models suggest that innate immune dysregulation drives disease and this is a seminal event in SS pathogenesis. Findings in SS patients corroborate those in mouse models, as innate immune cells and pathways are dysregulated both in exocrine tissue and in peripheral blood. We will review the role of the innate immune system in SS pathogenesis. We will discuss the etiology of SS with an emphasis on innate immune dysfunction. Moreover, we will review the innate cells that mediate inflammation in SS, the pathways implicated in disease, and the potential mechanisms governing their dysregulation. Finally, we will discuss emerging therapeutic approaches to target dysregulated innate immune signaling in SS. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fish innate immunity against intestinal helminths.

    Science.gov (United States)

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The rate of immune escape vanishes when multiple immune responses control an HIV infection.

    Science.gov (United States)

    van Deutekom, Hanneke W M; Wijnker, Gilles; de Boer, Rob J

    2013-09-15

    During the first months of HIV infection, the virus typically evolves several immune escape mutations. These mutations are found in epitopes in viral proteins and reduce the impact of the CD8⁺ T cells specific for these epitopes. Recent data show that only a subset of the epitopes escapes, that most of these escapes evolve early, and that the rate of immune escape slows down considerably. To investigate why the evolution of immune escape slows down over the time of infection, we have extended a consensus mathematical model to allow several immune responses to control the virus together. In the extended model, most escapes also occur early, and the immune escape rate becomes small later, and typically only a minority of the epitopes escape. We show that escaping one of the many immune responses provides little advantage after viral setpoint has been approached because the total killing rate hardly depends on the breadth of the immune response. If the breadth of the immune response slowly wanes during disease progression, the model predicts an increase in the rate of immune escape at late stages of infection. Overall, the most striking prediction of the model is that HIV evolves a small number of immune escapes, in both relative and absolute terms, when the CTL immune response is broad.

  3. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate...... immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate, and salicylate. In a few cases, cascade components have been directly linked...... to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity. This mini...

  4. Interactions between Innate Immunity, Microbiota, and Probiotics.

    Science.gov (United States)

    Giorgetti, GianMarco; Brandimarte, Giovanni; Fabiocchi, Federica; Ricci, Salvatore; Flamini, Paolo; Sandri, Giancarlo; Trotta, Maria Cristina; Elisei, Walter; Penna, Antonio; Lecca, Piera Giuseppina; Picchio, Marcello; Tursi, Antonio

    2015-01-01

    The term "microbiota" means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as α/β defensins, cathelicidin, 14 β-glycosidases, C-type lectins, and ribonuclease, in response to various stimuli. Recent studies found probiotics able to preserve intestinal homeostasis by downmodulating the immune response and inducing the development of T regulatory cells. Specific probiotic strain, as well as probiotic-driven metabolic products called "postbiotics," has been recently recognized and it is able to influence innate immunity. New therapeutic approaches based on probiotics are now available, and further treatments based on postbiotics will come in the future.

  5. Interactions between Innate Immunity, Microbiota, and Probiotics

    Directory of Open Access Journals (Sweden)

    GianMarco Giorgetti

    2015-01-01

    Full Text Available The term “microbiota” means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as α/β defensins, cathelicidin, 14 β-glycosidases, C-type lectins, and ribonuclease, in response to various stimuli. Recent studies found probiotics able to preserve intestinal homeostasis by downmodulating the immune response and inducing the development of T regulatory cells. Specific probiotic strain, as well as probiotic-driven metabolic products called “postbiotics,” has been recently recognized and it is able to influence innate immunity. New therapeutic approaches based on probiotics are now available, and further treatments based on postbiotics will come in the future.

  6. Innate Immune Responses to Bladder Infection.

    Science.gov (United States)

    Hayes, Byron W; Abraham, Soman N

    2016-12-01

    Urinary tract infections are one of the most frequent bacterial infections of mankind. In spite of this frequency, the study of the immune system in the urinary tract has not attracted much attention. This could, in part, be attributable to the widespread use of antibiotics and similar antimicrobial agents, which for many decades have been both highly effective and relatively inexpensive to administer. In light of the emergence of multidrug-resistant bacteria among urinary tract infection isolates, interest in understanding the immune system in the urinary tract has grown. Several recent studies have revealed the existence of a powerful and highly coordinated innate immune system in the urinary tract designed to rapidly clear infecting pathogens; however, it also evokes harmful side effects.

  7. A prime time for trained immunity: innate immune memory in newborns and infants.

    Science.gov (United States)

    Levy, Ofer; Wynn, James L

    2014-01-01

    The newborn and infant periods of early life are associated with heightened vulnerability to infection. Limited antigen exposure and distinct adaptive immune function compared to the adult places a greater burden on innate immunity for host defense to microbial challenge during this time. Trained immunity describes the phenomenon of augmented innate immune function following a stimulus that is not specific to the original stimulus. We review the concept of trained immunity in the context of the newborn's unique innate immune system function, the preclinical and clinical evidence that supports the tenet of innate immune memory in early life, and potential consequences of altered innate immune host responses. © 2013 S. Karger AG, Basel.

  8. A Prime Time for Trained Immunity: Innate Immune Memory in Newborns & Infants

    Science.gov (United States)

    Levy, Ofer; Wynn, James L.

    2014-01-01

    The newborn and infant periods of early life are associated with heightened vulnerability to infection. Limited antigen exposure and distinct adaptive immune function compared to the adult places a greater burden on innate immunity for host defense to microbial challenge during this time. Trained immunity describes the phenomenon of augmented innate immune function following a stimulus that is not specific to the original stimulus. We review the concept of trained immunity in the context of the newborn’s unique innate immune system function, the preclinical and clinical evidence that support the tenet of innate immune memory in early life, and potential consequences of altered innate immune host responses. PMID:24356292

  9. An Evolutionarily Conserved Innate Immunity Protein Interaction Network*

    Science.gov (United States)

    De Arras, Lesly; Seng, Amara; Lackford, Brad; Keikhaee, Mohammad R.; Bowerman, Bruce; Freedman, Jonathan H.; Schwartz, David A.; Alper, Scott

    2013-01-01

    The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice. PMID:23209288

  10. Taste Receptors: Regulators of Sinonasal Innate Immunity

    Science.gov (United States)

    Carey, Ryan M.; Adappa, Nithin D.; Palmer, James N.; Lee, Robert J.

    2016-01-01

    Taste receptors in the oral cavity guide our preferences for foods, preventing toxic ingestions and encouraging proper nutrient consumption. More recently, expression of taste receptors has been demonstrated in other locations throughout the body, including the airway, gastrointestinal tract, pancreas, and brain. The extent and specific roles of extraoral taste receptors are largely unknown, but a growing body of evidence suggests that taste receptors in the airway serve a critical role in sensing bacteria and regulating innate immunity. This review will focus on the function of bitter and sweet taste receptors in the human airway, with particular emphasis on T2R38, a bitter taste receptor found in sinonasal ciliated cells, and the bitter and sweet receptors found on specialized sinonasal solitary chemosensory cells. The importance of these novel taste receptor‐immune circuits in the human airway and their clinical relevance in airway disease will also be reviewed. PMID:27819057

  11. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity

    National Research Council Canada - National Science Library

    Irwin, Michael R; Opp, Mark R

    2017-01-01

    ...://www.neuropsychopharmacologyreviews.org Web End =www.neuropsychopharmacologyreviews.org 129 Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity [notdef][notdef][notdef][notdef][notdef...

  12. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  13. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  14. Oral innate immunity in HIV infection in HAART era.

    Science.gov (United States)

    Nittayananta, Wipawee; Tao, Renchuan; Jiang, Lanlan; Peng, Yuanyuan; Huang, Yuxiao

    2016-01-01

    Oral innate immunity, an important component in host defense and immune surveillance in the oral cavity, plays a crucial role in the regulation of oral health. As part of the innate immune system, epithelial cells lining oral mucosal surfaces not only provide a physical barrier but also produce different antimicrobial peptides, including human β-defensins (hBDs), secretory leukocyte protease inhibitor (SLPI), and various cytokines. These innate immune mediators help in maintaining oral homeostasis. When they are impaired either by local or systemic causes, various oral infections and malignancies may be developed. Human immunodeficiency virus (HIV) infection and other co-infections appear to have both direct and indirect effects on systemic and local innate immunity leading to the development of oral opportunistic infections and malignancies. Highly active antiretroviral therapy (HAART), the standard treatment of HIV infection, contributed to a global reduction of HIV-associated oral lesions. However, prolonged use of HAART may lead to adverse effects on the oral innate immunity resulting in the relapse of oral lesions. This review article focused on the roles of oral innate immunity in HIV infection in HAART era. The following five key questions were addressed: (i) What are the roles of oral innate immunity in health and disease?, (ii) What are the effects of HIV infection on oral innate immunity?, (iii) What are the roles of oral innate immunity against other co-infections?, (iv) What are the effects of HAART on oral innate immunity?, and (v) Is oral innate immunity enhanced by HAART? © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  16. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation

    Science.gov (United States)

    Breuer, Karin; Foroushani, Amir K.; Laird, Matthew R.; Chen, Carol; Sribnaia, Anastasia; Lo, Raymond; Winsor, Geoffrey L.; Hancock, Robert E. W.; Brinkman, Fiona S. L.; Lynn, David J.

    2013-01-01

    InnateDB (http://www.innatedb.com) is an integrated analysis platform that has been specifically designed to facilitate systems-level analyses of mammalian innate immunity networks, pathways and genes. In this article, we provide details of recent updates and improvements to the database. InnateDB now contains >196 000 human, mouse and bovine experimentally validated molecular interactions and 3000 pathway annotations of relevance to all mammalian cellular systems (i.e. not just immune relevant pathways and interactions). In addition, the InnateDB team has, to date, manually curated in excess of 18 000 molecular interactions of relevance to innate immunity, providing unprecedented insight into innate immunity networks, pathways and their component molecules. More recently, InnateDB has also initiated the curation of allergy- and asthma-related interactions. Furthermore, we report a range of improvements to our integrated bioinformatics solutions including web service access to InnateDB interaction data using Proteomics Standards Initiative Common Query Interface, enhanced Gene Ontology analysis for innate immunity, and the availability of new network visualizations tools. Finally, the recent integration of bovine data makes InnateDB the first integrated network analysis platform for this agriculturally important model organism. PMID:23180781

  17. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation.

    Science.gov (United States)

    Breuer, Karin; Foroushani, Amir K; Laird, Matthew R; Chen, Carol; Sribnaia, Anastasia; Lo, Raymond; Winsor, Geoffrey L; Hancock, Robert E W; Brinkman, Fiona S L; Lynn, David J

    2013-01-01

    InnateDB (http://www.innatedb.com) is an integrated analysis platform that has been specifically designed to facilitate systems-level analyses of mammalian innate immunity networks, pathways and genes. In this article, we provide details of recent updates and improvements to the database. InnateDB now contains >196 000 human, mouse and bovine experimentally validated molecular interactions and 3000 pathway annotations of relevance to all mammalian cellular systems (i.e. not just immune relevant pathways and interactions). In addition, the InnateDB team has, to date, manually curated in excess of 18 000 molecular interactions of relevance to innate immunity, providing unprecedented insight into innate immunity networks, pathways and their component molecules. More recently, InnateDB has also initiated the curation of allergy- and asthma-related interactions. Furthermore, we report a range of improvements to our integrated bioinformatics solutions including web service access to InnateDB interaction data using Proteomics Standards Initiative Common Query Interface, enhanced Gene Ontology analysis for innate immunity, and the availability of new network visualizations tools. Finally, the recent integration of bovine data makes InnateDB the first integrated network analysis platform for this agriculturally important model organism.

  18. Manipulation of Innate and Adaptive Immunity through Cancer Vaccines.

    Science.gov (United States)

    Sayour, Elias J; Mitchell, Duane A

    2017-01-01

    Although cancer immunotherapy has shown significant promise in mediating efficacious responses, it remains encumbered by tumor heterogeneity, loss of tumor-specific antigen targets, and the regulatory milieu both regionally and systemically. Cross talk between the innate and adaptive immune response may be requisite to polarize sustained antigen specific immunity. Cancer vaccines can serve as an essential fulcrum in initiating innate immunity while molding and sustaining adaptive immunity. Although peptide vaccines have shown tepid responses in a therapeutic setting with poor correlates for immune activity, RNA vaccines activate innate immune responses and have shown promising effects in preclinical and clinical studies based on enhanced DC migration. While the mechanistic insights behind the interplay between innate and adaptive immunity may be unique to the immunotherapeutic being investigated, understanding this dynamic is important to coordinate the different arms of the immune response in a focused response against cancer antigens.

  19. Trained immunity: a memory for innate host defense

    NARCIS (Netherlands)

    Netea, M.G.; Quintin, J.; Meer, J.W.M. van der

    2011-01-01

    Immune responses in vertebrates are classically divided into innate and adaptive, with only the latter being able to build up immunological memory. However, although lacking adaptive immune responses, plants and invertebrates are protected against reinfection with pathogens, and invertebrates even

  20. Modulation of the Innate Immune Response through the Vagus Nerve

    NARCIS (Netherlands)

    Kox, M.; Pickkers, P.

    2015-01-01

    The innate immune system is a defense mechanism that is of vital importance to our survival. However, excessive or unwanted activation of the innate immune system, which can occur in major surgery, sepsis, trauma, ischemia-reperfusion injury and autoimmune diseases, can lead to damage of the kidneys

  1. Trained immunity: A program of innate immune memory in health and disease

    NARCIS (Netherlands)

    Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.; Natoli, G.; Stunnenberg, H.G.; O'Neill, L.A.; Xavier, R.J.

    2016-01-01

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory."

  2. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  3. The innate immune system in human systemic lupus erythematosus.

    Science.gov (United States)

    Weidenbusch, Marc; Kulkarni, Onkar P; Anders, Hans-Joachim

    2017-04-25

    Although the role of adaptive immune mechanisms, e.g. autoantibody formation and abnormal T-cell activation, has been long noted in the pathogenesis of human systemic lupus erythematosus (SLE), the role of innate immunity has been less well characterized. An intricate interplay between both innate and adaptive immune elements exists in protective anti-infective immunity as well as in detrimental autoimmunity. More recently, it has become clear that the innate immune system in this regard not only starts inflammation cascades in SLE leading to disease flares, but also continues to fuel adaptive immune responses throughout the course of the disease. This is why targeting the innate immune system offers an additional means of treating SLE. First trials assessing the efficacy of anti-type I interferon (IFN) therapy or modulators of pattern recognition receptor (PRR) signalling have been attempted. In this review, we summarize the available evidence on the role of several distinct innate immune elements, especially neutrophils and dendritic cells as well as the IFN system, as well as specific innate PRRs along with their signalling pathways. Finally, we highlight recent clinical trials in SLE addressing one or more of the aforementioned components of the innate immune system. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  4. Post-Translational Modification Control of Innate Immunity.

    Science.gov (United States)

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cellular Innate Immunity: An Old Game with New Players.

    Science.gov (United States)

    Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik

    2017-01-01

    Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.

  6. Regulation of Intestinal Homeostasis by Innate Immune Cells

    OpenAIRE

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-01-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple...

  7. Innate Immune Proteins in a Crustacean Pacifastacus leniusculus

    OpenAIRE

    Wu, Chenglin

    2011-01-01

    Hemocytes (blood cells) are important in the immune defense against pathogens in invertebrates. In crusteacean, the hemocytes and plasma components mount a strong innate immune response against different pathogens including bacteria and virus. This thesis is aimed to identify marker proteins associated with development of different hemocyte types, and to find a protein involved in the phenoloxidase-induced melanization and other innate immune reactions in freshwater crayfish Pacifastacus leni...

  8. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  9. Insights into innate immune signalling in controlling cardiac remodelling.

    Science.gov (United States)

    Zhang, Yaxing; Huang, Zan; Li, Hongliang

    2017-11-01

    Canonical innate immune signalling involves complex cascades: multiple germline-encoded pattern recognition receptors rapidly recognize pathogen-associated or damage-associated molecular patterns to induce the production of cytokines, which bind to their corresponding receptors to orchestrate subsequent host defense phases. Inflammation is a healthy response to pathogenic signals, which are typically rapid and specific, and they terminate once the threat has passed. However, excessive activation or suppression of innate immune or inflammatory responses can lead to considerable human suffering, such as cardiac remodelling. Interestingly, recent studies have revealed that innate immune molecules in the parenchymal cells of the heart influence cardiac homeostasis not only by directly regulating innate immune responses but also through reprogrammed signalling pathways, which are independent of conventional innate immune signalling. Elucidating 'innate immune signalling reprogramming' events will help us better understand the functions of innate immune molecules and, moreover, the pathogenesis of cardiac diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  10. Modelling the evolution and spread of HIV immune escape mutants.

    Science.gov (United States)

    Fryer, Helen R; Frater, John; Duda, Anna; Roberts, Mick G; Phillips, Rodney E; McLean, Angela R

    2010-11-18

    During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.

  11. RNA-virus proteases counteracting host innate immunity.

    Science.gov (United States)

    Lei, Jian; Hilgenfeld, Rolf

    2017-10-01

    Virus invasion triggers host immune responses, in particular, innate immune responses. Pathogen-associated molecular patterns of viruses (such as dsRNA, ssRNA, or viral proteins) released during virus replication are detected by the corresponding pattern-recognition receptors of the host, and innate immune responses are induced. Through production of type-I and type-III interferons as well as various other cytokines, the host innate immune system forms the frontline to protect host cells and inhibit virus infection. Not surprisingly, viruses have evolved diverse strategies to counter this antiviral system. In this review, we discuss the multiple strategies used by proteases of positive-sense single-stranded RNA viruses of the families Picornaviridae, Coronaviridae, and Flaviviridae, when counteracting host innate immune responses. © 2017 Federation of European Biochemical Societies.

  12. Hypothalamic innate immune reaction in obesity.

    Science.gov (United States)

    Kälin, Stefanie; Heppner, Frank L; Bechmann, Ingo; Prinz, Marco; Tschöp, Matthias H; Yi, Chun-Xia

    2015-06-01

    Findings from rodent and human studies show that the presence of inflammatory factors is positively correlated with obesity and the metabolic syndrome. Obesity-associated inflammatory responses take place not only in the periphery but also in the brain. The hypothalamus contains a range of resident glial cells including microglia, macrophages and astrocytes, which are embedded in highly heterogenic groups of neurons that control metabolic homeostasis. This complex neural-glia network can receive information directly from blood-borne factors, positioning it as a metabolic sensor. Following hypercaloric challenge, mediobasal hypothalamic microglia and astrocytes enter a reactive state, which persists during diet-induced obesity. In established mouse models of diet-induced obesity, the hypothalamic vasculature displays angiogenic alterations. Moreover, proopiomelanocortin neurons, which regulate food intake and energy expenditure, are impaired in the arcuate nucleus, where there is an increase in local inflammatory signals. The sum total of these events is a hypothalamic innate immune reactivity, which includes temporal and spatial changes to each cell population. Although the exact role of each participant of the neural-glial-vascular network is still under exploration, therapeutic targets for treating obesity should probably be linked to individual cell types and their specific signalling pathways to address each dysfunction with cell-selective compounds.

  13. Innate cell communication kick-starts pathogen-specific immunity

    Science.gov (United States)

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  14. Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission?

    Science.gov (United States)

    Sumner, Rebecca P.; Thorne, Lucy G.; Fink, Doug L.; Khan, Hataf; Milne, Richard S.; Towers, Greg J.

    2017-01-01

    HIV-1 is the single most important sexually transmitted disease in humans from a global health perspective. Among human lentiviruses, HIV-1 M group has uniquely achieved pandemic levels of human-to-human transmission. The requirement to transmit between hosts likely provides the strongest selective forces on a virus, as without transmission, there can be no new infections within a host population. Our perspective is that evolution of all of the virus–host interactions, which are inherited and perpetuated from host-to-host, must be consistent with transmission. For example, CXCR4 use, which often evolves late in infection, does not favor transmission and is therefore lost when a virus transmits to a new host. Thus, transmission inevitably influences all aspects of virus biology, including interactions with the innate immune system, and dictates the biological niche in which the virus exists in the host. A viable viral niche typically does not select features that disfavor transmission. The innate immune response represents a significant selective pressure during the transmission process. In fact, all viruses must antagonize and/or evade the mechanisms of the host innate and adaptive immune systems that they encounter. We believe that viewing host–virus interactions from a transmission perspective helps us understand the mechanistic details of antiviral immunity and viral escape. This is particularly true for the innate immune system, which typically acts from the very earliest stages of the host–virus interaction, and must be bypassed to achieve successful infection. With this in mind, here we review the innate sensing of HIV, the consequent downstream signaling cascades and the viral restriction that results. The centrality of these mechanisms to host defense is illustrated by the array of countermeasures that HIV deploys to escape them, despite the coding constraint of a 10 kb genome. We consider evasion strategies in detail, in particular the role of the

  15. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  16. Trained immunity: a program of innate immune memory in health and disease

    OpenAIRE

    Netea, Mihai G.; Joosten, Leo A. B.; Latz, Eicke; Mills, Kingston H. G.; Natoli, Gioacchino; Stunnenberg, Hendrik G.; O'Neill, Luke A. J.; Xavier, Ramnik J.

    2016-01-01

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed trained immunity or innate immune memory. Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and...

  17. Memorizing innate instructions requires a sufficiently specific adaptive immune system

    NARCIS (Netherlands)

    Borghans, J.A.M.; Boer, R.J. de

    2002-01-01

    During its primary encounter with a pathogen, the immune system has to decide which type of immune response is most appropriate. Based on signals from the innate immune system and the immunological context in which the pathogen is presented, responding lymphocytes will adopt a particular phenotype,

  18. Training innate immunity: the changing concept of immunological memory in innate host defence.

    Science.gov (United States)

    Netea, Mihai G

    2013-08-01

    The inability of innate immunity to build an immunological memory is considered a main difference with adaptive immunity. This concept has been challenged by studies in plants, invertebrates and mammals. Recently, a paradigm shift in our understanding host defence has been triggered by the mounting evidence for innate immune memory, leading to increased responses to secondary infections. Important differences between the cell populations and the molecular mechanisms exist between the adaptive traits of innate host defence on the one hand and immunological memory of adaptive immunity on the other hand. The lasting state of enhanced innate immunity termed 'trained immunity' is mediated by prototypical innate immune cells such as natural killer cells and monocytes/macrophages. It provides protection against reinfection in a T/B-cell-independent manner, with both specific mechanisms and nonspecific epigenetic reprogramming mediating these effects. This concept represents a paradigm change in immunity, and its putative role in resistance to reinfection may represent the next step in the design of future vaccines. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  19. Intestinal dysbiosis and innate immune responses in axial spondyloarthritis.

    Science.gov (United States)

    Ciccia, Francesco; Ferrante, Angelo; Triolo, Giovanni

    2016-07-01

    Inflammatory innate and adaptive immune cell responses to commensal bacteria underlie the pathogenesis of human chronic inflammatory diseases. Intestinal dysbiosis has been described in patients with spondyloarthritis (SpA) and seems to be correlated with histologic and immunologic alterations. Purpose of this review is to discuss the relationship occurring between intestinal dysbiosis and innate immune responses in patients with axial SpA. Intestinal dysbiosis and differential activation of intestinal immune responses in patients with SpA have been demonstrated. Furthermore, innate cells that appear to be involved in the pathogenesis of SpA may control intestinal homeostasis through induction of apoptotic cell death and deletion of activated commensal bacteria-specific T cells. Although the evidence shows that dysbiosis occurs in SpA, it is not clear the role of dysbiosis in regulating innate immune responses in SpA. Relationships between cause and effect remain to be answered. http://links.lww.com/COR/A34.

  20. Neural regulation of innate and adaptive immunity in the gut

    NARCIS (Netherlands)

    Dhawan, S.

    2017-01-01

    This thesis investigates the role of neurotransmitters acetylcholine (ACh) and norepinephrine (NE), in modulating the innate and adaptive immune function in the intestine, during physiological and pathophysiological conditions. Furthermore, this thesis attempts to advance our current understanding

  1. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulo Czarnewski

    2017-01-01

    Full Text Available Vitamin A (VA is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs and innate lymphoid cells (ILCs. Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  2. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity.

    Science.gov (United States)

    Czarnewski, Paulo; Das, Srustidhar; Parigi, Sara M; Villablanca, Eduardo J

    2017-01-13

    Vitamin A (VA) is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA) has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs) and innate lymphoid cells (ILCs). Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  3. Trained immunity: a memory for innate host defense.

    Science.gov (United States)

    Netea, Mihai G; Quintin, Jessica; van der Meer, Jos W M

    2011-05-19

    Immune responses in vertebrates are classically divided into innate and adaptive, with only the latter being able to build up immunological memory. However, although lacking adaptive immune responses, plants and invertebrates are protected against reinfection with pathogens, and invertebrates even display transplant rejection. In mammals, past "forgotten" studies demonstrate cross-protection between infections independently of T and B cells, and more recently memory properties for NK cells and macrophages, prototypical cells of innate immunity, have been described. We now posit that mammalian innate immunity also exhibits an immunological memory of past insults, for which we propose the term "trained immunity." Understanding trained immunity will revolutionize our view of host defense and immunological memory, and could lead to defining a new class of vaccines and immunotherapies. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. DMPD: Role of phosphoinositide 3-kinase in innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17827709 Role of phosphoinositide 3-kinase in innate immunity. Hazeki K, Nigorikawa...sitide 3-kinase in innate immunity. PubmedID 17827709 Title Role of phosphoinositide 3-kinase in innate immuni

  5. Hepatocytes: a key cell type for innate immunity.

    Science.gov (United States)

    Zhou, Zhou; Xu, Ming-Jiang; Gao, Bin

    2016-05-01

    Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.

  6. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    Science.gov (United States)

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  7. Targeting Innate Immunity for Type 1 Diabetes Prevention.

    Science.gov (United States)

    Needell, James C; Zipris, Danny

    2017-09-27

    Despite immense research efforts, type 1 diabetes (T1D) remains an autoimmune disease without a known trigger or approved intervention. Over the last three decades, studies have primarily focused on delineating the role of the adaptive immune system in the mechanism of T1D. The discovery of Toll-like receptors in the 1990s has advanced the knowledge on the role of the innate immune system in host defense as well as mechanisms that regulate adaptive immunity including the function of autoreactive T cells. Recent investigations suggest that inflammation plays a key role in promoting a large number of autoimmune disorders including T1D. Data from the LEW1.WR1 rat model of virus-induced disease and the RIP-B7.1 mouse model of diabetes suggest that innate immune signaling plays a key role in triggering disease progression. There is also evidence that innate immunity may be involved in the course of T1D in humans; however, a small number of clinical trials have shown that interfering with the function of the innate immune system following disease onset exerts only a modest effect on β-cell function. The data implying that innate immune pathways are linked with mechanisms of islet autoimmunity hold great promise for the identification of novel disease pathways that may be harnessed for clinical intervention. Nevertheless, more work needs to be done to better understand mechanisms by which innate immunity triggers β-cell destruction and assess the therapeutic value in blocking innate immunity for diabetes prevention.

  8. The rate of immune escape vanishes when multiple immune responses control an HIV infection

    NARCIS (Netherlands)

    van Deutekom, Hanneke W. M.; Wijnker, Gilles; de Boer, Rob J.

    2013-01-01

    During the first months of HIV infection, the virus typically evolves several immune escape mutations. These mutations are found in epitopes in viral proteins and reduce the impact of the CD8⁺ T cells specific for these epitopes. Recent data show that only a subset of the epitopes escapes, that most

  9. A Prime Time for Trained Immunity: Innate Immune Memory in Newborns & Infants

    OpenAIRE

    Levy, Ofer; Wynn, James L.

    2013-01-01

    The newborn and infant periods of early life are associated with heightened vulnerability to infection. Limited antigen exposure and distinct adaptive immune function compared to the adult places a greater burden on innate immunity for host defense to microbial challenge during this time. Trained immunity describes the phenomenon of augmented innate immune function following a stimulus that is not specific to the original stimulus. We review the concept of trained immunity in the context of t...

  10. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    Science.gov (United States)

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  11. Cheetahs have a stronger constitutive innate immunity than leopards.

    Science.gov (United States)

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  12. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  13. Regulatory mechanisms of innate immune signaling in zebrafish embryos

    NARCIS (Netherlands)

    Kanwal, Zakia

    2012-01-01

    The work presented in this thesis has provided new insights into the mechanisms involved in the regulation of innate immune responses in zebrafish embryos. Furthermore, cell-specific transcriptome profiling studies identified novel marker genes for distinguishing immune cell types, which is highly

  14. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    Science.gov (United States)

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  15. Activation of the innate immune response by endogenous retroviruses.

    Science.gov (United States)

    Hurst, Tara P; Magiorkinis, Gkikas

    2015-06-01

    The human genome comprises 8 % endogenous retroviruses (ERVs), the majority of which are defective due to deleterious mutations. Nonetheless, transcripts of ERVs are found in most tissues, and these transcripts could either be reverse transcribed to generate ssDNA or expressed to generate proteins. Thus, the expression of ERVs could produce nucleic acids or proteins with viral signatures, much like the pathogen-associated molecular patterns of exogenous viruses, which would enable them to be detected by the innate immune system. The activation of some pattern recognition receptors (PRRs) in response to ERVs has been described in mice and in the context of human autoimmune diseases. Here, we review the evidence for detection of ERVs by PRRs and the resultant activation of innate immune signalling. This is an emerging area of research within the field of innate antiviral immunity, showing how ERVs could initiate immune signalling pathways and might have implications for numerous inflammatory diseases. © 2015 The Authors.

  16. Innate immune mechanisms in vitiligo: Danger from within

    Science.gov (United States)

    Richmond, Jillian M.; Frisoli, Michael L.; Harris, John E.

    2013-01-01

    Vitiligo is an autoimmune disease of the skin in which melanocytes are destroyed by antigen-specific T cells, resulting in patchy depigmentation. While adaptive immunity plays a clear role in disease progression, initiating factors are largely unknown. Many studies report that cellular stress pathways are dysregulated in melanocytes from vitiligo patients, suggesting that melanocyte-intrinsic defects participate in disease pathogenesis. Recent studies reveal that melanocyte stress generates damage-associated molecular patterns that activate innate immunity, thus connecting stress to organ-specific inflammation. Genetic studies in vitiligo support a role for stress, innate immunity, and adaptive mechanisms. Here, we discuss advances in the field that highlight how cellular stress, endogenous danger signals, and innate immune activation promote the onset of vitiligo. PMID:24238922

  17. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic acidsensors...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense of nucleic acidsensors...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  18. Innate immune responses to environmental allergens

    NARCIS (Netherlands)

    Kauffman, HF

    Aero-allergens, including plant pollens, house dust mite particles, fungal spores, and mycelium fragments, are continuously inhaled and deposited on the airway mucosa. These particles and their soluble components actively interact with innate recognition systems present in the mucosal layer (e.g.,

  19. Innate lymphoid cells in inflammation and immunity

    NARCIS (Netherlands)

    McKenzie, Andrew N. J.; Spits, Hergen; Eberl, Gerard

    2014-01-01

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles

  20. Innate Immunity and the 2011 Nobel Prize

    Indian Academy of Sciences (India)

    IAS Admin

    It may be important to point out that the innate response is useful to the host to initiate responses that protect it from microbes, microbial constituents, dead host cells, endogenous cholesterol, uric acid, etc.; however, an unregulated response may be harmful due to the excessive production of free radicals and cytokines.

  1. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection

    Directory of Open Access Journals (Sweden)

    Arnold Isabelle C

    2011-11-01

    Full Text Available Abstract Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.

  2. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  3. Is inflammaging an auto[innate]immunity subclinical syndrome?

    Directory of Open Access Journals (Sweden)

    Giunta Sergio

    2006-12-01

    Full Text Available Abstract The low-grade, chronic, systemic inflammatory state that characterizes the aging process (inflammaging results from late evolutive-based expression of the innate immune system. Inflammaging is characterized by the complex set of five conditions which can be described as 1. low-grade, 2. controlled, 3. asymptomatic, 4. chronic, 5. systemic, inflammatory state, and fits with the antagonistic pleiotropy theory on the evolution of aging postulating that senescence is the late deleterious effect of genes (pro-inflammatory versus anti-inflammatorythat are beneficial in early life. Evolutionary programming of the innate immune system may act via selection on these genetic traits. Here I propose that the already acquired knowledge in this field may pave the way to a new chapter in the pathophysiology of autoimmunity: the auto-innate-immunity syndromes. Indeed, differently from the well known chapter of conventional autoimmune diseases and syndromes where the main actor is the adaptive immunity, inflammaging may constitute the subclinical paradigm of a new chapter of autoimmunity, namely that arising from an autoimmune inflammatory response of the innate-immune-system, an old actor of immunity and yet a new actor of autoimmunity, also acting as a major determinant of elderly frailty and age-associated diseases.

  4. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  5. Postnatal Innate Immune Development: From Birth to Adulthood

    Directory of Open Access Journals (Sweden)

    Anastasia Georgountzou

    2017-08-01

    Full Text Available It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.

  6. Tweaking Innate Immunity: The Promise of Innate Immunologicals as Anti-Infectives

    Directory of Open Access Journals (Sweden)

    Kenneth L Rosenthal

    2006-01-01

    Full Text Available New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals' can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.

  7. The multilayered innate immune defense of the gut.

    Science.gov (United States)

    El Chamy, Laure; Matt, Nicolas; Ntwasa, Monde; Reichhart, Jean-Marc

    2015-01-01

    In the wild, the fruit fly Drosophila melanogaster thrives on rotten fruit. The digestive tract maintains a powerful gut immune barrier to regulate the ingested microbiota, including entomopathogenic bacteria. This gut immune barrier includes a chitinous peritrophic matrix that isolates the gut contents from the epithelial cells. In addition, the epithelial cells are tightly sealed by septate junctions and can mount an inducible immune response. This local response can be activated by invasive bacteria, or triggered by commensal bacteria in the gut lumen. As with chronic inflammation in mammals, constitutive activation of the gut innate immune response is detrimental to the health of flies. Accordingly, the Drosophila gut innate immune response is tightly regulated to maintain the endogenous microbiota, while preventing infections by pathogenic microorganisms.

  8. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  9. Review: Gp-340/DMBT1 in mucosal innate immunity

    DEFF Research Database (Denmark)

    Madsen, Jens; Mollenhauer, Jan; Holmskov, Uffe

    2010-01-01

    Deleted in Malignant Brain Tumour 1 (DMBT1) is a gene that encodes alternatively spliced proteins involved in mucosal innate immunity. It also encodes a glycoprotein with a molecular mass of 340 kDa, and is referred to as gp-340 (DMBT1(gp340)) and salivary agglutinin (DMBT1(SAG)). DMBT1(gp340...... proteins, including serum and secretory IgA, C1q, lactoferrin, MUC5B and trefoil factor 2 (TFF2), all molecules with involvement in innate immunity and/or wound-healing processes. Recent generation of Dmbt1-deficient mice has provided the research field of DMBT1 with a model that allows research...

  10. The Influence of Innate and Adaptive Immune Responses on Atherosclerosis

    Science.gov (United States)

    Witztum, Joseph L.; Lichtman, Andrew H.

    2014-01-01

    Both the chronic development of atherosclerotic lesions and the acute changes in lesion phenotype that lead to clinical cardiovascular events are significantly influenced by the innate and adaptive immune responses to lipoprotein deposition and oxidation in the arterial wall. The rapid pace of discovery of mechanisms of immunologic recognition, effector functions, and regulation has significantly influenced the study of atherosclerosis, and our new knowledge is beginning to affect how we treat this ubiquitous disease. In this review, we discuss recent advances in our understanding of how innate and adaptive immunity contribute to atherosclerosis, as well as therapeutic opportunities that arise from this knowledge. PMID:23937439

  11. Generalized immune activation and innate immune responses in simian immunodeficiency virus infection.

    Science.gov (United States)

    Bosinger, Steven E; Sodora, Donald L; Silvestri, Guido

    2011-09-01

    Chronic immune activation is a key factor driving the immunopathogenesis of AIDS. During pathogenic HIV/simian immunodeficiency virus (SIV) infections, innate and adaptive antiviral immune responses contribute to chronic immune activation. In contrast, nonpathogenic SIV infections of natural hosts such as sooty mangabeys and African green monkeys (AGMs) are characterized by low immune activation despite similarly high viremia. This review focuses on the role of innate immune responses in SIV infection. Several studies have examined the role of innate immune responses to SIV as potential drivers of immune activation. The key result of these studies is that both pathogenic SIV infection of macaques and nonpathogenic SIV infections of natural hosts are associated with strong innate immune responses to the virus, high production of type I interferons by plasmacytoid dendritic cells, and upregulation of interferon-stimulated genes (ISGs). However, SIV-infected sooty mangabeys and AGMs (but not SIV-infected macaques) rapidly downmodulate the interferon response within 4-6 weeks of infection, thus resulting in a state of limited immune activation during chronic infection. Studies in nonhuman primates suggest that chronic innate/interferon responses may contribute to AIDS pathogenesis. Further, the ability of natural host species to resolve innate immune responses after infection provides a novel avenue for potential immunotherapy.

  12. Insect Innate Immunity Database (IIID): An Annotation Tool for Identifying Immune Genes in Insect Genomes

    OpenAIRE

    Brucker, Robert M; Lisa J Funkhouser; Shefali Setia; Rini Pauly; Bordenstein, Seth R.

    2012-01-01

    The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify homologous genes in newly sequenced genomes of non-model organisms. With the initiation of the "i5k" project, which aims to sequence 5,000 insect genomes by 2016, many novel insect genomes will soon become publicly available, yet few annotation resources are currently available for insec...

  13. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  14. E. fischeriana Root Compound Dpo Activates Antiviral Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jingxuan Chen

    2017-10-01

    Full Text Available E. fischeriana has long been used as a traditional Chinese medicine. Recent studies reported that some compounds of E. fischeriana exhibited antimicrobial and immune enhance activity. Innate immune system is essential for the immune surveillance of inner and outer threats, initial host defense responses and immune modulation. The role of natural drug compounds, including E. fischeriana, in innate immune regulation is largely unknown. Here we demonstrated that E. fischeriana compound Dpo is involved in antiviral signaling. The genome wide RNA-seq analysis revealed that the induction of ISGs by viral infection could be synergized by Dpo. Consistently, Dpo enhanced the antiviral immune responses and protected the mice from death during viral infection. Dpo however was not able to rescue STING deficient mice lethality caused by HSV-1 infection. The enhancement of ISG15 by Dpo was also impaired in STING, IRF3, IRF7, or ELF4 deficient cells, demonstrating that Dpo activates innate immune responses in a STING/IRFs/ELF4 dependent way. The STING/IRFs/ELF4 axis is therefore important for Dpo induced ISGs expression, and can be used by host to counteract infection.

  15. Role of the innate immunity in female reproductive tract

    Directory of Open Access Journals (Sweden)

    Fatemehsadat Amjadi

    2014-01-01

    Full Text Available The mucosal immune system in the female reproductive tract (FRT is well equipped to meet the sexually transmitted pathogens, allogeneic sperm, and the immunologically distinct fetus. Analysis of the FRT indicates that epithelial cells provide a physical barrier against pathogens and microbial infections as well as secretions containing anti-microbial peptides, cytokines, and chemokines which recruit and activate immune cells. Epithelial and immune cells confer protection in part through Toll-like receptors. The aim of this literature is to review the diverse components of the innate immune system, contributing to an exclusive protection system throughout the FRT.

  16. Osteopontin Bridging Innate and Adaptive Immunity in Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Nausicaa Clemente

    2016-01-01

    Full Text Available Osteopontin (OPN regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections by driving T helper (Th polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described, but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble cytokine or an intracytoplasmic molecule by binding to a wide variety of molecules including crystals of calcium phosphate, several cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases.

  17. The Interface between Fungal Biofilms and Innate Immunity

    Science.gov (United States)

    Kernien, John F.; Snarr, Brendan D.; Sheppard, Donald C.; Nett, Jeniel E.

    2018-01-01

    Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific. PMID:29375581

  18. Manipulation of Innate Immunity for Cancer Therapy in Dogs

    Directory of Open Access Journals (Sweden)

    Daniel Regan

    2015-12-01

    Full Text Available Over the last one to two decades, the field of cancer immunotherapy has rapidly progressed from early preclinical studies to a successful clinical reality and fourth major pillar of human cancer therapy. While current excitement in the field of immunotherapy is being driven by several major breakthroughs including immune checkpoint inhibitors and adoptive cell therapies, these advances stem from a foundation of pivotal studies demonstrating the immune systems role in tumor control and eradication. The following will be a succinct review on veterinary cancer immunotherapy as it pertains to manipulation of the innate immune system to control tumor growth and metastasis. In addition, we will provide an update on recent progress in our understanding of the innate immune system in veterinary tumor immunology, and how these gains may lead to novel therapies for the treatment of cancer in companion animals.

  19. Manipulation of Innate Immunity for Cancer Therapy in Dogs.

    Science.gov (United States)

    Regan, Daniel; Dow, Steven

    2015-12-01

    Over the last one to two decades, the field of cancer immunotherapy has rapidly progressed from early preclinical studies to a successful clinical reality and fourth major pillar of human cancer therapy. While current excitement in the field of immunotherapy is being driven by several major breakthroughs including immune checkpoint inhibitors and adoptive cell therapies, these advances stem from a foundation of pivotal studies demonstrating the immune systems role in tumor control and eradication. The following will be a succinct review on veterinary cancer immunotherapy as it pertains to manipulation of the innate immune system to control tumor growth and metastasis. In addition, we will provide an update on recent progress in our understanding of the innate immune system in veterinary tumor immunology, and how these gains may lead to novel therapies for the treatment of cancer in companion animals.

  20. Induction of innate immunity and its perturbation by influenza viruses.

    Science.gov (United States)

    Goraya, Mohsan Ullah; Wang, Song; Munir, Muhammad; Chen, Ji-Long

    2015-10-01

    Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5'-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.

  1. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  2. Osteopontin Bridging Innate and Adaptive Immunity in Autoimmune Diseases

    Science.gov (United States)

    Raineri, Davide; Boggio, Elena; Favero, Francesco; Soluri, Maria Felicia

    2016-01-01

    Osteopontin (OPN) regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections by driving T helper (Th) polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described, but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble cytokine or an intracytoplasmic molecule by binding to a wide variety of molecules including crystals of calcium phosphate, several cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases. PMID:28097158

  3. HIV-1 evades innate immune recognition through specific cofactor recruitment

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  4. Activation of innate immunity during systemic Candida infections

    OpenAIRE

    Ifrim, D.C.

    2015-01-01

    Despite the increased knowledge on the mechanisms of Candida recognition and the networks of innate and adaptive host defense activated during infection, much remains to be learned regarding the distinctive modulatory effects of Candida spp on host immune responses. We showed that the chronic exposure of primary human immune cells to C. albicans primes them for subsequent stimulation with different microorganisms, mechanism that could explain the potential stimulatory effects of the fungus in...

  5. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  6. Candesartan Ameliorates Impaired Fear Extinction Induced by Innate Immune Activation

    OpenAIRE

    Quiñones, María M.; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T.

    2015-01-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of l...

  7. Innate immune signaling in defense against intestinal microbes

    Science.gov (United States)

    Kinnebrew, Melissa A.; Pamer, Eric G.

    2015-01-01

    Summary The gastrointestinal system is a common entry point for pathogenic microbes to access the inner environment of the body. Antimicrobial factors produced by the intestinal mucosa limit the translocation of both commensal and pathogenic microbes across the intestinal epithelial cell barrier. The regulation of these host defense mechanisms largely depends on the activation of innate immune receptors by microbial molecules. Under steady-state conditions, the microbiota provides constitutive signals to the innate immune system, which helps to maintain a healthy inflammatory tone within the intestinal mucosa and, thus, enhances resistance to infection with enteric pathogens. During an acute infection, the intestinal epithelial cell barrier is breached, and the detection of microbial molecules in the intestinal lamina propria rapidly stimulates innate immune signaling pathways that coordinate early defense mechanisms. Herein, we review how microbial molecules shed by both commensal and pathogenic microbes direct host defenses at the intestinal mucosa. We highlight the signaling pathways, effector molecules, and cell populations that are activated by microbial molecule recognition and, thereby, are involved in the maintenance of homeostatic levels of host defense and in the early response to acute enteric infection. Finally, we discuss how manipulation of these host defense pathways by stimulating innate immune receptors is a potential therapeutic strategy to prevent or alleviate intestinal disease. PMID:22168416

  8. Activation of innate immunity during systemic Candida infections

    NARCIS (Netherlands)

    Ifrim, D.C.

    2015-01-01

    Despite the increased knowledge on the mechanisms of Candida recognition and the networks of innate and adaptive host defense activated during infection, much remains to be learned regarding the distinctive modulatory effects of Candida spp on host immune responses. We showed that the chronic

  9. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  10. Innate immune factors associated with HIV-1 transmission

    NARCIS (Netherlands)

    Pollakis, Georgios; Stax, Martijn J.; Paxton, William A.

    2011-01-01

    Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response

  11. Collectins in innate immune defense of pigs and chickens

    NARCIS (Netherlands)

    Hogenkamp, A.

    2007-01-01

    In the Netherlands, the number of chickens and pigs exceeds the number of human inhabitants by far. Therefore, combating infections in livestock is not only of economical importance, but also of great importance to public health. The innate immune system provides a first line defense against

  12. HIV infection: focus on the innate immune cells.

    Science.gov (United States)

    Espíndola, Milena S; Soares, Luana S; Galvão-Lima, Leonardo J; Zambuzi, Fabiana A; Cacemiro, Maira C; Brauer, Verônica S; Frantz, Fabiani G

    2016-12-01

    Innate immune cells play a critical role during the onset of HIV infection and remain active until the final events that characterize AIDS. The viral impact on innate immune cell response may be a result of direct infection or indirect modulation, and each cell type responds in a specific manner to HIV. During HIV infection, the immune system works in a dynamic way, where innate and adaptive cells contribute with each other stimulating their function and modulating phenotypes and consequently infection resolution. Understanding the alterations in the cell populations induced by the virus is pivotal and can help to combat HIV at the time of infection and above all, to prevent the establishment of viral reservoirs. In this review, we will describe the frequency and the subtypes of infected cells such as of monocytes, DCs, neutrophils, eosinophils, mast cells/basophils, NK cells, NKT cells and γδ T cells, and we discuss the possibility of cell-targeting strategies. Our aim is to consolidate the existing knowledge of the interaction between HIV and cells that constitute the innate immune response.

  13. Role of innate immunity in the pathogenesis of otitis media.

    Science.gov (United States)

    Mittal, Rahul; Kodiyan, Joyson; Gerring, Robert; Mathee, Kalai; Li, Jian-Dong; Grati, M'hamed; Liu, Xue Zhong

    2014-12-01

    Otitis media (OM) is a public health problem in both developed and developing countries. It is the leading cause of hearing loss and represents a significant healthcare burden. In some cases, acute OM progresses to chronic suppurative OM (CSOM), characterized by effusion and discharge, despite antimicrobial therapy. The emergence of antibiotic resistance and potential ototoxicity of antibiotics has created an urgent need to design non-conventional therapeutic strategies against OM based on modern insights into its pathophysiology. In this article, we review the role of innate immunity as it pertains to OM and discuss recent advances in understanding the role of innate immune cells in protecting the middle ear. We also discuss the mechanisms utilized by pathogens to subvert innate immunity and thereby overcome defensive responses. A better knowledge about bacterial virulence and host resistance promises to reveal novel targets to design effective treatment strategies against OM. The identification and characterization of small natural compounds that can boost innate immunity may provide new avenues for the treatment of OM. There is also a need to design novel methods for targeted delivery of these compounds into the middle ear, allowing higher therapeutic doses and minimizing systemic side effects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Innate immunity networks during infection with Borrelia burgdorferi

    NARCIS (Netherlands)

    Oosting, M.; Buffen, K.; Meer, J.W. van der; Netea, M.G.; Joosten, L.A.

    2016-01-01

    The recognition of Borrelia species represents a complex process in which multiple components of the immune system are involved. In this review, we summarize the interplay between the host innate system and Borrelia spp., from the recognition by pattern recognition receptors (PRRs) to the induction

  15. Innate immunity networks during infection with Borrelia burgdorferi

    NARCIS (Netherlands)

    Oosting, M.; Buffen, K.; Meer, J.W.M. van der; Netea, M.G.; Joosten, L.A.B.

    2014-01-01

    Abstract The recognition of Borrelia species represents a complex process in which multiple components of the immune system are involved. In this review, we summarize the interplay between the host innate system and Borrelia spp., from the recognition by pattern recognition receptors (PRRs) to the

  16. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  17. Biotechnological concepts for improving plant innate immunity.

    Science.gov (United States)

    Gust, Andrea A; Brunner, Frédéric; Nürnberger, Thorsten

    2010-04-01

    Saving the world's food supply constitutes one of the major challenges of the future. As a complement to classical and molecular breeding technologies, novel strategies for biotechnological improvement of plant immunity aim at enhancing host recognition capacities for potential pathogens, at boosting the executive arsenal of plant immunity, and at interfering with virulence strategies employed by microbial pathogens. In addition, chemical and biological priming provides means for triggering plant defenses in a non-transgenic manner. Major advances in our understanding of the molecular basis of plant immunity and of microbial infection strategies have opened new ways for engineering durable disease resistance in crop plants that are highlighted in this review. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15576198 Innate immune responses during infection. Ulevitch RJ, Mathison JC, da Sil...ses during infection. PubmedID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ, Math

  19. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling media

  20. Cross-species Virus-host Protein-Protein Interactions Inhibiting Innate Immunity

    Science.gov (United States)

    2016-07-01

    protein- protein interactions inhibiting innate immunity Distribution Statement A. Approved for public release; distribution is unlimited. July 2016...protein interactions inhibiting innate immunity Sb. GRANT NUMBER HDTRA1-13-1-0017 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Timothy...first-line innate immunity response against viral infection. The inhibition or avoidance of this initial innate immune response is a commonly occurring

  1. Innate immune recognition and activation during HIV infection

    Science.gov (United States)

    2010-01-01

    The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis. PMID:20569472

  2. Is CD47 an innate immune checkpoint for tumor evasion?

    Science.gov (United States)

    Liu, Xiaojuan; Kwon, Hyunwoo; Li, Zihai; Fu, Yang-Xin

    2017-01-11

    Cluster of differentiation 47 (CD47) (also known as integrin-associated protein) is a ubiquitously expressed glycoprotein of the immunoglobulin superfamily that plays a critical role in self-recognition. Various solid and hematologic cancers exploit CD47 expression in order to evade immunological eradication, and its overexpression is clinically correlated with poor prognoses. One essential mechanism behind CD47-mediated immune evasion is that it can interact with signal regulatory protein-alpha (SIRPα) expressed on myeloid cells, causing phosphorylation of the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and recruitment of Src homology 2 domain-containing tyrosine phosphatases to ultimately result in delivering an anti-phagocytic-"don't eat me"-signal. Given its essential role as a negative checkpoint for innate immunity and subsequent adaptive immunity, CD47-SIRPα axis has been explored as a new target for cancer immunotherapy and its disruption has demonstrated great therapeutic promise. Indeed, CD47 blocking antibodies have been found to decrease primary tumor size and/or metastasis in various pre-clinical models. In this review, we highlight the various functions of CD47, discuss anti-tumor responses generated by both the innate and adaptive immune systems as a consequence of administering anti-CD47 blocking antibody, and finally elaborate on the clinical potential of CD47 blockade. We argue that CD47 is a checkpoint molecule for both innate and adaptive immunity for tumor evasion and is thus a promising target for cancer immunotherapy.

  3. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  4. Innate Immune Memory: The Latest Frontier of Adjuvanticity

    Directory of Open Access Journals (Sweden)

    Elfi Töpfer

    2015-01-01

    Full Text Available Recent findings in the field of immune memory have demonstrated that B and T cell mediated immunity following infections are enhanced by the so-called trained immunity. This effect has been most extensively investigated for the tuberculosis vaccine strain Bacillus Calmette-Guérin (BCG. Epidemiological studies suggest that this vaccine is associated with a substantial reduction in overall child mortality that cannot be solely explained by prevention of the target disease but that it seems to rely on inducing resistance to other infections. Upon infection or vaccination, monocytes/macrophages can be functionally reprogrammed so as to display an enhanced defensive response against unrelated infections. Epigenetic modifications seem to play a key role in the induction of this “innate memory.” These findings are revolutionising our knowledge of the immune system, introducing the concept of memory also for mammalian innate immunity. Thus, vaccines are likely to nonspecifically affect the overall immunological status of individuals in a clinically relevant manner. As a consequence, future vaccine strategies ought to take into account the contribution of innate memory through appropriate design of formulations and administration scheduling.

  5. Innate Immune Memory: The Latest Frontier of Adjuvanticity.

    Science.gov (United States)

    Töpfer, Elfi; Boraschi, Diana; Italiani, Paola

    2015-01-01

    Recent findings in the field of immune memory have demonstrated that B and T cell mediated immunity following infections are enhanced by the so-called trained immunity. This effect has been most extensively investigated for the tuberculosis vaccine strain Bacillus Calmette-Guérin (BCG). Epidemiological studies suggest that this vaccine is associated with a substantial reduction in overall child mortality that cannot be solely explained by prevention of the target disease but that it seems to rely on inducing resistance to other infections. Upon infection or vaccination, monocytes/macrophages can be functionally reprogrammed so as to display an enhanced defensive response against unrelated infections. Epigenetic modifications seem to play a key role in the induction of this "innate memory." These findings are revolutionising our knowledge of the immune system, introducing the concept of memory also for mammalian innate immunity. Thus, vaccines are likely to nonspecifically affect the overall immunological status of individuals in a clinically relevant manner. As a consequence, future vaccine strategies ought to take into account the contribution of innate memory through appropriate design of formulations and administration scheduling.

  6. Innate immune recognition of DNA: A recent history.

    Science.gov (United States)

    Dempsey, Alan; Bowie, Andrew G

    2015-05-01

    Innate immune DNA sensing underpins many physiological and pathological responses to DNA, including anti-viral immunity to DNA viruses. Although it has been appreciated for many years that cytosolic DNA can evoke a type I interferon response, it is only within the past decade that the cellular mechanisms responsible for such a response have been defined. Here we review the discoveries that led to an appreciation of the existence of cytosolic DNA sensor proteins, and discuss two key such sensors, cGAS and IFI16, in detail. DNA sensors operate via STING, a protein shown to have a central role in controlling altered gene induction in response to DNA in vivo, and as such to be central to a rapidly expanding list of both protective and harmful responses to DNA. We also discuss recent insights into how and when DNA stimulates innate immunity, and highlight current outstanding questions in the DNA sensing field. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...... elicitors have, in recent years, been identified. Here, the current knowledge regarding bacterial elicitors of innate immunity in plants is presented...... (SodM) are known to act as MAMPs and induce immune responses in plants or plant cells (Gómez-Gómez and Boller, 2000; Erbs and Newman, 2003; Felix and Boller, 2003; Kunze et al., 2004; Watt et al., 2006, Gust et al., 2007; Erbs et al., unpublished). The corresponding PRRs for some of these bacterial...

  8. Crosstalk between microbiota, pathogens and the innate immune responses.

    Science.gov (United States)

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. [Regulation of innate immunity during xenogenic changes in blood circulation].

    Science.gov (United States)

    Shevchenko, V S

    2001-01-01

    Calcium-dependent innate immune response with participation of the superfamily of immunoglobulins to several intra- and extracorporal xenobiotics were studied at 216 recipients during synthetic cardiac valves implantation or veins transplantation in coronary arteries. It was shown that immediate immune response to xenobiotics was manifested by generation of the antitissue anodical autoprecipitin with specificity to the surface cell membrane component. This reaction initiated and regulated the subsequent dynamics of the two different fibrinogen autoimmune complexes formation, resulting in development of the immunogenic damages of blood circulation. Correction of these rapid innate immune responses is important for prevention and normalisation of the xenogenic damages of blood circulation during trans- and implantation on the heart impaired with endocarditis or aterosclerosis.

  10. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Paramyxovirus activation and inhibition of innate immune responses.

    Science.gov (United States)

    Parks, Griffith D; Alexander-Miller, Martha A

    2013-12-13

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. © 2013.

  12. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Long noncoding RNAs in Innate and Adaptive Immunity

    Science.gov (United States)

    Fitzgerald, Katherine A.; Caffrey, Daniel R.

    2014-01-01

    The differentiation and activation of both innate and adaptive immune cells is highly dependent on a coordinated set of transcriptional and post-transcriptional events. Chromatin-modifiers and transcription factors regulate the accessibility and transcription of immune genes, respectively. Immune cells also express miRNA and RNA-binding proteins that provide an additional layer of regulation at the mRNA level. However, long noncoding RNA (lncRNA), which have been primarily studied in the context of genomic imprinting, cancer, and cell differentiation, are now emerging as important regulators of immune cell differentiation and activation. In this review, we provide a brief overview of lncRNA, their known functions in immunity, and discuss their potential to be more broadly involved in other aspects of the immune response. PMID:24556411

  14. Innate immune cell response upon Candida albicans infection

    Science.gov (United States)

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-ying; Cao, Yongbing; Yan, Tianhua

    2016-01-01

    abstract Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  15. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    Science.gov (United States)

    Ng, Wy Ching; Tate, Michelle D.; Brooks, Andrew G.; Reading, Patrick C.

    2012-01-01

    Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease. PMID:22665991

  16. Enhancing crop innate immunity: new promising trends

    Directory of Open Access Journals (Sweden)

    Pin-Yao eHuang

    2014-11-01

    Full Text Available Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs, plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signalling.

  17. Interactions between Innate Immunity, Microbiota, and Probiotics

    OpenAIRE

    GianMarco Giorgetti; Giovanni Brandimarte; Federica Fabiocchi; Salvatore Ricci; Paolo Flamini; Giancarlo Sandri; Maria Cristina Trotta; Walter Elisei; Antonio Penna; Piera Giuseppina Lecca; Marcello Picchio; Antonio Tursi

    2015-01-01

    The term ?microbiota? means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as ?/? defensins, cathelicidin, 14 ?-glycosidases, C-type lectins, and ribonuclease, in response to ...

  18. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetranscript...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation of genetranscript

  19. DMPD: Innate immune recognition of, and regulation by, DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979939 Innate immune recognition of, and regulation by, DNA. Ishii KJ, Akira S. T...rends Immunol. 2006 Nov;27(11):525-32. Epub 2006 Sep 18. (.png) (.svg) (.html) (.csml) Show Innate immune reco...gnition of, and regulation by, DNA. PubmedID 16979939 Title Innate immune recognition of, and regulation b

  20. DMPD: Innate immune response to viral infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18694646 Innate immune response to viral infection. Koyama S, Ishii KJ, Coban C, Ak...ira S. Cytokine. 2008 Sep;43(3):336-41. Epub 2008 Aug 9. (.png) (.svg) (.html) (.csml) Show Innate immune resp...onse to viral infection. PubmedID 18694646 Title Innate immune response to viral infection. Authors Koyama

  1. Trained immunity: A program of innate immune memory in health and disease.

    Science.gov (United States)

    Netea, Mihai G; Joosten, Leo A B; Latz, Eicke; Mills, Kingston H G; Natoli, Gioacchino; Stunnenberg, Hendrik G; O'Neill, Luke A J; Xavier, Ramnik J

    2016-04-22

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.

  2. Interplay Between Innate Immunity and the Plant Microbiota.

    Science.gov (United States)

    Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul

    2017-08-04

    The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.

  3. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague.

    Science.gov (United States)

    Sebbane, Florent; Lemaître, Nadine; Sturdevant, Daniel E; Rebeil, Roberto; Virtaneva, Kimmo; Porcella, Stephen F; Hinnebusch, B Joseph

    2006-08-01

    Yersinia pestis causes bubonic plague, characterized by an enlarged, painful lymph node, termed a bubo, that develops after bacterial dissemination from a fleabite site. In susceptible animals, the bacteria rapidly escape containment in the lymph node, spread systemically through the blood, and produce fatal sepsis. The fulminant progression of disease has been largely ascribed to the ability of Y. pestis to avoid phagocytosis and exposure to antimicrobial effectors of innate immunity. In vivo microarray analysis of Y. pestis gene expression, however, revealed an adaptive response to nitric oxide (NO)-derived reactive nitrogen species and to iron limitation in the extracellular environment of the bubo. Polymorphonuclear neutrophils recruited to the infected lymph node expressed abundant inducible NO synthase, and several Y. pestis homologs of genes involved in the protective response to reactive nitrogen species were up-regulated in the bubo. Mutation of one of these genes, which encodes the Hmp flavohemoglobin that detoxifies NO, attenuated virulence. Thus, the ability of Y. pestis to destroy immune cells and remain extracellular in the bubo appears to limit exposure to some but not all innate immune effectors. High NO levels induced during plague may also influence the developing adaptive immune response and contribute to septic shock.

  4. The interplay between the innate immune system and the microbiota.

    Science.gov (United States)

    Thaiss, Christoph A; Levy, Maayan; Suez, Jotham; Elinav, Eran

    2014-02-01

    The human gastrointestinal tract harbors one of the highest densities of microorganisms on earth, called the microbiota. In fact, the number of microbial cells in the intestine outnumbers the amount of human cells of the entire organism by a factor of 10. As such, a human being is more and more perceived as a super-organism consisting of a eukaryotic and a prokaryotic part. The compartment mediating the communication between both parts is the innate immune system and its various microbe-sensing pattern-recognition receptors. Co-evolution of the microbiota with the innate immune system has resulted in elaborate interdependency and feedback mechanisms by which both systems control mutual homeostasis. Here, we review the most important innate immune-microbiota interdependencies known to date. While microbial sensing by pattern-recognition receptors is required for stable microbial composition, the presence of the microbiota, in turn, is necessary for proper development and function of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Innate immunity in CKD-associated vascular diseases.

    Science.gov (United States)

    Zewinger, Stephen; Schumann, Timo; Fliser, Danilo; Speer, Thimoteus

    2016-11-01

    Chronic kidney disease (CKD) is associated with an increased risk for cardiovascular events. Therefore, the activation of the innate immune system plays an important role. In contrast to the adaptive immunity, unspecific recognition of conserved endogenous and exogenous structures by pattern recognition receptors (PRRs) represents a key feature of the innate immunity. Of these PRRs, Toll-like receptors (TLRs) as well as the inflammasome complex have been documented to be involved in the pathogenesis of cardiovascular diseases (CVDs). They are not only expressed in leukocytes but also in a variety of cell types such as endothelial cells or fibroblasts. While activation of TLRs on the cell surface leads to nuclear factor κB-dependent expression of pro-inflammatory mediators, the inflammasome is a cytosolic multimeric protein complex, which cleaves cytokines such as interleukin-1β into their biologically active forms. Several endogenous ligands for these PRRs have been identified as contributing to the development of a CKD-specific pro-inflammatory microenvironment. Notably, activation of TLRs as well as the inflammasome is associated with arterial hypertension, formation of atherosclerotic vascular lesions and vascular calcification. However, detailed molecular mechanisms on how the innate immune system contributes to CKD-associated CVDs are as yet poorly understood. Currently, several agents modulating the activation of the innate immune system are the focus of cardiovascular research. Large clinical studies will provide further information on the therapeutic applicability of these substances to reduce cardiovascular morbidity and mortality in the general population. Further trials including patients with CKD will be necessary to assess their effects on CKD-associated CVD. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  6. Cytosolic nucleic acid sensors and innate immune regulation.

    Science.gov (United States)

    Ori, Daisuke; Murase, Motoya; Kawai, Taro

    2017-03-04

    During viral and bacterial infections, pathogen-derived cytosolic nucleic acids are recognized by the intracellular RNA sensors retinoic acid-inducible gene I and melanoma-differentiated gene 5 and intracellular DNA sensors, including cyclic-di-GMP-AMP synthase, absent in melanoma 2, interferon (IFN)-gamma inducible protein 16, polymerase III, and so on. Binding of intracellular nucleic acids to these sensors activates downstream signaling cascades, resulting in the production of type I IFNs and pro-inflammatory cytokines to induce appropriate systematic immune responses. While these sensors also recognize endogenous nucleic acids and activate immune responses, they can discriminate between self- and non-self-nucleic acids. However, dysfunction of these sensors or failure of regulatory mechanisms causes aberrant activation of immune response and autoimmune disorders. In this review, we focus on how intracellular immune sensors recognize exogenous nucleic acids and activate the innate immune system, and furthermore, how autoimmune diseases result from dysfunction of these sensors.

  7. Innate immunity at the forefront of psychoneuroimmunology.

    Science.gov (United States)

    Dantzer, Robert

    2004-01-01

    The last 15 years of research in psychoneuroimmunology have been marked by a renewed interest in the mechanisms of inflammation and participation of the brain in these mechanisms. Peripheral proinflammatory cytokines produced by activated accessory immune cells act in the brain to trigger sickness, in the form of fever, pituitary-adrenal axis activation, and sickness behavior. Communication between the periphery and brain takes place via both neural and humoral pathways. Recognition of the role of local production of cytokines and their downstream messengers in the central nervous system opens important new vistas for understanding and treating non-specific neurovegetative and psychiatric symptoms of diseases. In this presidential address, I present the main methodological and conceptual developments that have allowed such progress.

  8. Innate Immune Sensors and Gastrointestinal Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Georgina L. Hold

    2011-01-01

    Full Text Available The gastrointestinal microbiota is a major source of immune stimulation. The interaction between host pattern-recognition receptors and conserved microbial ligands profoundly influences infection dynamics. Identifying and understanding the nature of these interactions is a key step towards obtaining a clearer picture of microbial pathogenesis. These interactions underpin a complex interplay between microbe and host that has far reaching consequences for both. Here, we review the role of pattern recognition receptors in three prototype diseases affecting the stomach, the small intestine, and large intestine, respectively (Helicobacter pylori infection, Salmonella infection, and inflammatory bowel disease. Specifically, we review the nature and impact of pathogen:receptor interactions, their impact upon pathogenesis, and address the relevance of pattern recognition receptors in the development of therapies for gastrointestinal diseases.

  9. PIMS Modulates Immune Tolerance by Negatively Regulating Drosophila Innate Immune Signaling

    OpenAIRE

    Lhocine, Nouara; Paulo S. Ribeiro; Buchon, Nicolas; Wepf, Alexander; Wilson, Rebecca; Tenev, Tencho; Lemaitre, Bruno; Gstaiger, Matthias; Meier, Pascal; Leulier, François

    2008-01-01

    Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this threshold. We report that a recently identified Drosophila immune regulator, which we call PGRP-LC-interacting inhibitor of Imd signaling (PIMS), is required to suppress the Imd innate immune signaling pathway in response to commensal bacteria. p...

  10. MAP Kinase 4 Substrates and Plant Innate Immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt

    recognition, which also induce its localization to cytoplasmic processing bodies. All three proteins; PAT1, AOC3 and eIF4E also interacts with MPK4 in vivo although the functional outcome of these interactions are still elusive. The thesis comprise a general introduction to plant innate immunity followed...... by two review articles “MAP kinase cascades in Arabidopsis innate immunity” published in Frontiers in Plant Science and “mRNA decay in plant immunity” under revision for Cellular and Molecular Life Science. Together these sections gives a comprehensive overview of Arabidopsis defense signaling......Multi-layered defense responses are activated in plants upon recognition of invading pathogens. Transmembrane receptors recognize conserved pathogen-associated molecular patterns and activate MAP kinase cascades, which regulate changes in gene expression to produce appropriate immune responses...

  11. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  12. Innate immune control of West Nile virus infection.

    Science.gov (United States)

    Arjona, Alvaro; Wang, Penghua; Montgomery, Ruth R; Fikrig, Erol

    2011-11-01

    West Nile virus (WNV), from the Flaviviridae family, is a re-emerging zoonotic pathogen of medical importance. In humans, WNV infection may cause life-threatening meningoencephalitis or long-term neurologic sequelae. WNV is transmitted by Culex spp. mosquitoes and both the arthropod vector and the mammalian host are equipped with antiviral innate immune mechanisms sharing a common phylogeny. As far as the current evidence is able to demonstrate, mosquitoes primarily rely on RNA interference, Toll, Imd and JAK-STAT signalling pathways for limiting viral infection, while mammals are provided with these and other more complex antiviral mechanisms involving antiviral effectors, inflammatory mediators, and cellular responses triggered by highly specialized pathogen detection mechanisms that often resemble their invertebrate ancestry. This mini-review summarizes our current understanding of how the innate immune systems of the vector and the mammalian host react to WNV infection and shape its pathogenesis. © 2011 Blackwell Publishing Ltd.

  13. Vitamin D, innate immunity and upper respiratory tract infection.

    Science.gov (United States)

    Bartley, J

    2010-05-01

    At the turn of the twentieth century, ultraviolet light was successfully used to treat tuberculosis of the skin. Upper respiratory tract infections had been inversely associated with sun exposure. During the last decade, basic scientific research demonstrated that vitamin D has an important anti-infective role. Review of the relevant literature on the influence of vitamin D on innate immunity and respiratory tract infection. Vitamin D is involved in the production of defensins and cathelicidin - antimicrobial peptides that provide a natural defence against potential microbiological pathogens. Vitamin D supplementation increases cathelicidin production. Low vitamin D levels are associated with an increased incidence of upper respiratory tract infections. Vitamin D appears to play an important role in the regulation of innate immunity in the upper respiratory tract. Optimal vitamin D levels and appropriate dosing schedules have yet to be determined.

  14. TRIM25 in the Regulation of the Antiviral Innate Immunity

    Directory of Open Access Journals (Sweden)

    María Martín-Vicente

    2017-09-01

    Full Text Available TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.

  15. Interactions between bile salts, gut microbiota, and hepatic innate immunity.

    Science.gov (United States)

    Schubert, Kristin; Olde Damink, Steven W M; von Bergen, Martin; Schaap, Frank G

    2017-09-01

    Bile salts are the water-soluble end products of hepatic cholesterol catabolism that are released into the duodenum and solubilize lipids due to their amphipathic structure. Bile salts also act as endogenous ligands for dedicated nuclear receptors that exert a plethora of biological processes, mostly related to metabolism. Bile salts are actively reclaimed in the distal part of the small intestine, released into the portal system, and subsequently extracted by the liver. This enterohepatic cycle is critically dependent on dedicated bile salt transporters. In the intestinal lumen, bile salts exert direct antimicrobial activity based on their detergent property and shape the gut microbiota. Bile salt metabolism by gut microbiota serves as a mechanism to counteract this toxicity and generates bile salt species that are distinct from those of the host. Innate immune cells of the liver play an important role in the early recognition and effector response to invading microbes. Bile salts signal primarily via the membrane receptor TGR5 and the intracellular farnesoid-x receptor, both present in innate immune cells. In this review, the interactions between bile salts, gut microbiota, and hepatic innate immunity are discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Insights on adaptive and innate immunity in canine leishmaniosis.

    Science.gov (United States)

    Hosein, Shazia; Blake, Damer P; Solano-Gallego, Laia

    2017-01-01

    Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite.

  17. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines.

    Science.gov (United States)

    Levy, Ofer; Netea, Mihai G

    2014-01-01

    Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named "trained immunity." Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases.

  18. BCG-induced protection: effects on innate immune memory.

    Science.gov (United States)

    Netea, Mihai G; van Crevel, Reinout

    2014-12-01

    The Bacille Calmette-Guerin (BCG) vaccine is the only vaccine proved to be effective against tuberculosis and it remains the most commonly used vaccine worldwide. In addition to its effects on mycobacterial diseases, an increasing body of epidemiological evidence accumulated since its introduction in 1921 shows that BCG also exerts beneficial non-specific effects ranging from protection against non-mycobacterial diseases, decreased incidence of allergic diseases, and treatment of certain malignancies. The biological substrate of these effects is mediated partly by heterologous effects on adaptive immunity, but also on the potentiation of innate immune responses through epigenetic mechanisms, a process termed 'trained immunity'. The process of trained immunity may also play a role in the beneficial effects of BCG against tuberculosis and Mycobacterium tuberculosis infection, and this could have important consequences for our quest for improving vaccination strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape.

    Science.gov (United States)

    Eichmüller, Stefan B; Osen, Wolfram; Mandelboim, Ofer; Seliger, Barbara

    2017-10-01

    Current therapies against cancer utilize the patient's immune system for tumor eradication. However, tumor cells can evade immune surveillance of CD8+ T and/or natural killer (NK) cells by various strategies. These include the aberrant expression of human leukocyte antigen (HLA) class I antigens, co-inhibitory or costimulatory molecules, and components of the interferon (IFN) signal transduction pathway. In addition, alterations of the tumor microenvironment could interfere with efficient antitumor immune responses by downregulating or inhibiting the frequency and/or functional activity of immune effector cells and professional antigen-presenting cells. Recently, microRNAs (miRNAs) have been identified as major players in the post-transcriptional regulation of gene expression, thereby controlling many physiological and also pathophysiological processes including neoplastic transformation. Indeed, the cellular miRNA expression pattern is frequently altered in many tumors of distinct origin, demonstrating the tumor suppressive or oncogenic potential of miRNAs. Furthermore, there is increasing evidence that miRNAs could also influence antitumor immune responses by affecting the expression of immune modulatory molecules in tumor and immune cells. Apart from their important role in tumor immune escape and altered tumor-host interaction, immune modulatory miRNAs often exert neoplastic properties, thus representing promising targets for future combined immunotherapy approaches. This review focuses on the characterization of miRNAs involved in the regulation of immune surveillance or immune escape of tumors and their potential use as diagnostic and prognostic biomarkers or as therapeutic targets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages.

    Science.gov (United States)

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2017-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  1. Is CD47 an innate immune checkpoint for tumor evasion?

    Directory of Open Access Journals (Sweden)

    Xiaojuan Liu

    2017-01-01

    Full Text Available Abstract Cluster of differentiation 47 (CD47 (also known as integrin-associated protein is a ubiquitously expressed glycoprotein of the immunoglobulin superfamily that plays a critical role in self-recognition. Various solid and hematologic cancers exploit CD47 expression in order to evade immunological eradication, and its overexpression is clinically correlated with poor prognoses. One essential mechanism behind CD47-mediated immune evasion is that it can interact with signal regulatory protein-alpha (SIRPα expressed on myeloid cells, causing phosphorylation of the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and recruitment of Src homology 2 domain-containing tyrosine phosphatases to ultimately result in delivering an anti-phagocytic—“don’t eat me”—signal. Given its essential role as a negative checkpoint for innate immunity and subsequent adaptive immunity, CD47-SIRPα axis has been explored as a new target for cancer immunotherapy and its disruption has demonstrated great therapeutic promise. Indeed, CD47 blocking antibodies have been found to decrease primary tumor size and/or metastasis in various pre-clinical models. In this review, we highlight the various functions of CD47, discuss anti-tumor responses generated by both the innate and adaptive immune systems as a consequence of administering anti-CD47 blocking antibody, and finally elaborate on the clinical potential of CD47 blockade. We argue that CD47 is a checkpoint molecule for both innate and adaptive immunity for tumor evasion and is thus a promising target for cancer immunotherapy.

  2. Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm.

    Science.gov (United States)

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-05-15

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond TCR engagement, costimulation, and priming cytokine production but are critical for the generation of protective T cell immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Memorizing innate instructions requires a sufficiently specific adaptive immune system.

    Science.gov (United States)

    Borghans, José A M; De Boer, Rob J

    2002-05-01

    During its primary encounter with a pathogen, the immune system has to decide which type of immune response is most appropriate. Based on signals from the innate immune system and the immunological context in which the pathogen is presented, responding lymphocytes will adopt a particular phenotype, e.g. secrete a particular profile of cytokines. Once stimulated, lymphocytes store the appropriate type of response by differentiating from a naive to a memory phenotype. This allows the appropriate type of immune reaction to be regenerated upon re-stimulation of those memory clones. We developed a computer simulation model in which cross-reacting effector/memory clones contribute to the immunological context of pathogens. If a pathogen is recognized by both naive clones and pre-existing effector/memory clones, the naive lymphocytes adopt the effector mechanism of the memory clone. The adaptive immune system thereby stores immunological decisions and somatically learns to induce the right type of immune response to pathogens sharing epitopes. The influence of effector/memory lymphocytes may be detrimental when they cross-react to new pathogens that require a different kind of immune response. Here, we show that the immune system needs to be sufficiently specific to avoid such mistakes and to profit from the information that is stored in effector/memory lymphocytes. Repertoire diversity is required to reconcile this specificity with reactivity against many pathogens.

  4. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  5. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines

    Science.gov (United States)

    Levy, Ofer; Netea, Mihai G.

    2014-01-01

    Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named “trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases. PMID:24352476

  6. Innate immune receptors and autophagy: implications for autoimmune kidney injury.

    Science.gov (United States)

    Anders, Hans-Joachim; Schlondorff, Detlef O

    2010-07-01

    Inflammation is the immune system's response to infectious or noninfectious sources of danger. Danger recognition is facilitated by various innate immune receptor families including the Toll-like receptors (TLRs), which detect danger signals in extracellular and intracellular compartments. It is an evolving concept that renal damage triggers intrarenal inflammation by immune recognition of molecules that are being released by dying cells. Such danger-associated molecules act as immunostimulatory agonists to TLRs and other innate immune receptors and induce cytokine and chemokine secretion, leukocyte recruitment, and tissue remodeling. As a new entry to this concept, autophagy allows stressed cells to reduce intracellular microorganisms, protein aggregates, and cellular organelles by moving and subsequently digesting them in autophagolysosomes. Within the autophagolysosome, endogenous molecules and danger-associated molecules may be presented to TLRs or loaded onto the major histocompatibility complex and presented as autoantigens. Here we discuss the current evidence for the danger signaling concept in autoimmune kidney injury and propose that autophagy-related processing of self-proteins provides a source of immunostimulatory molecules and autoantigens. A better understanding of danger signaling should enable us to unravel yet unknown triggers for renal immunopathology and progressive kidney disease.

  7. Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6

    OpenAIRE

    Machado, Fabiana S.; Esper, L?sia; Dias, Alexandra; Madan, Rajat; Gu, YuanYuan; Hildeman, David; Serhan, Charles N.; Karp, Christopher L.; Aliberti, J?lio

    2008-01-01

    Innate immune signaling is critical for the development of protective immunity. Such signaling is, perforce, tightly controlled. Lipoxins (LXs) are eicosanoid mediators that play key counterregulatory roles during infection. The molecular mechanisms underlying LX-mediated control of innate immune signaling are of interest. In this study, we show that LX and aspirin (ASA)-triggered LX (ATL) inhibit innate immune signaling by inducing suppressor of cytokine signaling (SOCS) 2–dependent ubiquiti...

  8. Studies of innate immune systems against human cells.

    Science.gov (United States)

    Sakai, Rieko; Kitano, Etsuko; Maeda, Akira; Lo, Pei-Chi; Eguchi, Hiroshi; Watanabe, Masahito; Nagashima, Hiroshi; Okuyama, Hiroomi; Miyagawa, Shuji

    2017-02-01

    Pigs are frequently used as animal models for experiments in the surgical field, including allo- and xeno-transplantation. Regeneration studies, including studies dealing with human- and monkey-induced pluripotent stem cells (iPSC), have gradually progressed, with pigs sometimes being used as the scaffold. However, the immunological response of pigs against humans, especially innate immunities, remain unclear. This study reports on a comprehensive study of pig innate immunity against humans. Hemolytic complement activity of pig serum was measured using a microtitration technique. The pig natural anti-human antibody (Ab) was examined using human peripheral blood mononuclear cells (PBMC). The reaction of pig natural killer (NK) cells and monocytes/macrophages against human cells was also assessed. Most of the pig complement titers were measured based on methods used in human complement assays. The alternative pathway for pig complement reacts with human cells, indicating that pig complement can react with human cells. Pig serum contains relatively high levels of natural antibodies, IgM and IgG, to human PBMC. Furthermore, the killing of NK cells- and monocyte/macrophage-mediated human cells was clearly confirmed. The collective findings indicate that the pig innate immunological systems, not only serum but also cellular factors, are able to recognize and injure human cells. Copyright © 2016. Published by Elsevier B.V.

  9. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Insect Innate Immunity Database (IIID: an annotation tool for identifying immune genes in insect genomes.

    Directory of Open Access Journals (Sweden)

    Robert M Brucker

    Full Text Available The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify homologous genes in newly sequenced genomes of non-model organisms. With the initiation of the "i5k" project, which aims to sequence 5,000 insect genomes by 2016, many novel insect genomes will soon become publicly available, yet few annotation resources are currently available for insects. Thus, we developed an online tool called the Insect Innate Immunity Database (IIID to provide an open access resource for insect immunity and comparative biology research (http://www.vanderbilt.edu/IIID. The database provides users with simple exploratory tools to search the immune repertoires of five insect models (including Nasonia, spanning three orders, for specific immunity genes or genes within a particular immunity pathway. As a proof of principle, we used an initial database with only four insect models to annotate potential immune genes in the parasitoid wasp genus Nasonia. Results specify 306 putative immune genes in the genomes of N. vitripennis and its two sister species N. giraulti and N. longicornis. Of these genes, 146 were not found in previous annotations of Nasonia immunity genes. Combining these newly identified immune genes with those in previous annotations, Nasonia possess 489 putative immunity genes, the largest immune repertoire found in insects to date. While these computational predictions need to be complemented with functional studies, the IIID database can help initiate and augment annotations of the immune system in the plethora of insect genomes that will soon become available.

  11. Insect Innate Immunity Database (IIID): an annotation tool for identifying immune genes in insect genomes.

    Science.gov (United States)

    Brucker, Robert M; Funkhouser, Lisa J; Setia, Shefali; Pauly, Rini; Bordenstein, Seth R

    2012-01-01

    The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify homologous genes in newly sequenced genomes of non-model organisms. With the initiation of the "i5k" project, which aims to sequence 5,000 insect genomes by 2016, many novel insect genomes will soon become publicly available, yet few annotation resources are currently available for insects. Thus, we developed an online tool called the Insect Innate Immunity Database (IIID) to provide an open access resource for insect immunity and comparative biology research (http://www.vanderbilt.edu/IIID). The database provides users with simple exploratory tools to search the immune repertoires of five insect models (including Nasonia), spanning three orders, for specific immunity genes or genes within a particular immunity pathway. As a proof of principle, we used an initial database with only four insect models to annotate potential immune genes in the parasitoid wasp genus Nasonia. Results specify 306 putative immune genes in the genomes of N. vitripennis and its two sister species N. giraulti and N. longicornis. Of these genes, 146 were not found in previous annotations of Nasonia immunity genes. Combining these newly identified immune genes with those in previous annotations, Nasonia possess 489 putative immunity genes, the largest immune repertoire found in insects to date. While these computational predictions need to be complemented with functional studies, the IIID database can help initiate and augment annotations of the immune system in the plethora of insect genomes that will soon become available.

  12. Dynamics of innate immunity are key to chronic immune activation in AIDS.

    Science.gov (United States)

    Benecke, Arndt; Gale, Michael; Katze, Michael G

    2012-01-01

    We propose here that the dynamics rather than the structure of cellular and viral networks play a determining role in chronic immune activation of HIV-infected individuals. A number of novel avenues of experimental analysis and modeling strategies are discussed to conclusively address these network dynamics in the future. Recent insights into the molecular dynamics of immune activation and its control following simian immunodeficiency virus (SIV) infection in natural host primates has provided possible alternate interpretations of SIV and HIV pathogenesis. Concomitant with insights gained in other host-pathogen systems, as well as an increased understanding of innate immune activation mechanisms, these observations lead to a new model for the timing of innate HIV immune responses and a possible primordial role of this timing in programming chronic immune activation. Chronic immune activation is today considered the leading cause of AIDS in HIV-infected individuals. Systems biology has recently lent arguments for considering chronic immune activation a result of untimely innate immune responses by the host to the infection. Future strategies for the analysis, comprehension, and incorporation of the dynamic component of immune activation into HIV vaccination strategies are discussed.

  13. Immune regulation by pericytes: modulating innate and adaptive immunity

    DEFF Research Database (Denmark)

    Navarro, Rocio; Compte, Marta; Álvarez-Vallina, Luis

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells (EC) in small blood vessels. PC have traditionally been endowed with structural functions, being essential for vessel maturation and stabilization. However, accumulating evidence suggest that PC also display immune properties. They ca...

  14. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    Directory of Open Access Journals (Sweden)

    Wy Ching Ng

    2012-01-01

    Full Text Available Host defenses against viral infections depend on a complex interplay of innate (nonspecific and adaptive (specific components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV. Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease.

  15. New insights into innate immune control of systemic candidiasis.

    Science.gov (United States)

    Lionakis, Michail S

    2014-08-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology 2014. This work is written by US Government employees and is in the public domain in the US.

  16. New insights into innate immune control of systemic candidiasis

    Science.gov (United States)

    Lionakis, Michail S.

    2014-01-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted. PMID:25023483

  17. Ubiquitin in Influenza Virus Entry and Innate Immunity.

    Science.gov (United States)

    Rudnicka, Alina; Yamauchi, Yohei

    2016-10-24

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle.

  18. Regulators of innate immunity as novel targets for panviral therapeutics.

    Science.gov (United States)

    Es-Saad, Salwa; Tremblay, Nicolas; Baril, Martin; Lamarre, Daniel

    2012-10-01

    Interferons (IFNs) have long been used as an immunomodulatory therapy for a large array of acute and chronic viral infections. However, IFN therapies have been plagued by severe side effects. The discovery of pathogen recognition receptors (PRR) rejuvenated the interest for immunomodulatory therapies. The successes obtained with Toll-like receptor (TLR) agonists in activating immune cells and as adjuvant for prophylactic vaccines against different viruses paved the way to targeted immunomodulatory therapy. Better characterization of pathogen-induced immune disorders and newly discovered regulators of innate immunity have now the potential to specifically withdraw prevailing subversion mechanisms and to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. When less means more: dehydration improves innate immunity in rattlesnakes.

    Science.gov (United States)

    Brusch, George A; DeNardo, Dale F

    2017-06-15

    Immune function can vary based on availability of resources, and most studies of such influences have focused on the co-investment of energy into immune and other physiological functions. When energy resources are limited, trade-offs exist, which can compromise immunity for other functions. As with energy, water limitation can also alter various physiological processes, yet water has received little consideration for its possible role in modulating immune functions. We examined the relationship between immunocompetence and hydration state using the western diamond-backed rattlesnake ( Crotalus atrox ). This species is known to undergo substantial seasonal fluctuations in water availability with extreme limitations during the hot-dry season. We collected blood samples from free-ranging C. atrox to compare osmolality and innate immune function (lysis, agglutination and bacterial growth inhibition) during the milder and relatively moister early spring season, the hot-dry season and the hot-wet season. To isolate effects of dehydration from other possible seasonal influences, we complemented this field study with a laboratory study in which we withheld food and water from individually housed adult C. atrox for up to 16 weeks. We collected blood samples from each snake as it dehydrated and collected a final sample after the snake was given water ad libitum at the end of the experiment. Our results demonstrate that C. atrox experience significant dehydration during the hot-dry season, and that, in general, innate immune function is highly correlated with osmolality, whether natural or artificially manipulated. © 2017. Published by The Company of Biologists Ltd.

  20. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Generalized selection to overcome innate immunity selects for host breadth in an RNA virus.

    Science.gov (United States)

    Wasik, Brian R; Muñoz-Rojas, Andrés R; Okamoto, Kenichi W; Miller-Jensen, Kathryn; Turner, Paul E

    2016-02-01

    Virus-host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell-surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune-deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa-adapted populations were specialized for innate immune-deficient hosts, whereas MDCK-adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa-evolved populations maintained fitness in immune-deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host-cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host-evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host-breadth. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. Insect antiviral innate immunity: pathways, effectors, and connections.

    Science.gov (United States)

    Kingsolver, Megan B; Huang, Zhijing; Hardy, Richard W

    2013-12-13

    Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses. © 2013.

  3. Hantaan virus triggers TLR4-dependent innate immune responses.

    Science.gov (United States)

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  4. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  5. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  6. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Kumutha Malar Vellasamy

    2016-07-01

    Full Text Available Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood.We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS and its secreted proteins (CCMS.We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms or to escape potential sensing by macrophages.Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.

  7. Assessment of the innate immune response in the periparturient cow.

    Science.gov (United States)

    Trevisi, Erminio; Minuti, Andrea

    2017-12-05

    The transition period is the most critical phase in the life of high yielding dairy cows. Within a few weeks, cows are submitted to many challenges (physiological, nutritional, psychological, management) that require prompt and effective adaptive responses. The immune system is involved in this process, and many changes of the cow's immune system components have been observed around calving. Cows are considered to be immunosuppressed in late lactation, and available data suggest that the immune system is dysregulated around parturition. Significant attention has been focused on modification of cellular functions (e.g. the reduction of phagocytosis and diapedesis), but growing interest concerns the components of the innate immune system, which often exhibits increased responses such as susceptibility to inflammatory events and the related acute phase response (APR). Systemic inflammation plays a significant role in early lactation, affects many liver functions and has been associated with the impairment of cow performance (i.e. reduced feed intake, milk yield, fertility, welfare). The assessment of variations in immune-metabolic indices offers opportunities to predict the onset of the health troubles and to anticipate the proper therapies needed to guarantee health, good welfare and fertility in the following lactation. The frequency of diseases (metabolic and infectious) before calving is rare, but several clues suggest that various metabolic and immune variations can begin during the dry period. Interesting preliminary results encourage this perspective and possible candidates are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

    Science.gov (United States)

    Iriarte, Maite; Manček-Keber, Mateja; Barquero-Calvo, Elías; Palacios-Chaves, Leyre; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Martirosyan, Anna; von Bargen, Kristine; Grilló, María-Jesús; Jerala, Roman; Brandenburg, Klaus; Llobet, Enrique; Bengoechea, José A.; Moreno, Edgardo

    2012-01-01

    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines. PMID:22589715

  9. Encephalitis due to emerging viruses: CNS innate immunity and potential therapeutic targets.

    Science.gov (United States)

    Denizot, M; Neal, J W; Gasque, P

    2012-07-01

    The emerging viruses represent a group of pathogens that are intimately connected to a diverse range of animal vectors. The recent escalation of air travel climate change and urbanization has meant humans will have increased risk of contacting these pathogens resulting in serious CNS infections. Many RNA viruses enter the CNS by evading the BBB due to axonal transport from the periphery. The systemic adaptive and CNS innate immune systems express pattern recognition receptors PRR (TLRs, RiG-1 and MDA-5) that detect viral nucleic acids and initiate host antiviral response. However, several emerging viruses (West Nile Fever, Influenza A, Enterovirus 71 Ebola) are recognized and internalized by host cell receptors (TLR, MMR, DC-SIGN, CD162 and Scavenger receptor B) and escape immuno surveillance by the host systemic and innate immune systems. Many RNA viruses express viral proteins WNF (E protein), Influenza A (NS1), EV71 (protein 3C), Rabies (Glycoprotein), Ebola proteins (VP24 and VP 35) that inhibit the host cell anti-virus Interferon type I response promoting virus replication and encephalitis. The therapeutic use of RNA interference methodologies to silence gene expression of viral peptides and treat emerging virus infection of the CNS is discussed. Copyright © 2012. Published by Elsevier Ltd.

  10. Mitochondria-Endoplasmic Reticulum Contact Sites Mediate Innate Immune Responses.

    Science.gov (United States)

    Misawa, Takuma; Takahama, Michihiro; Saitoh, Tatsuya

    2017-01-01

    Mitochondria and the endoplasmic reticulum (ER) are fundamental organelles that coordinate high-order cell functions. Mitochondria are centers of energy production, whereas the ER is responsible for folding, transport, and degradation of proteins. In addition to their specific functions, mitochondria and ER actively communicate with each other to promote a variety of cellular events, such as material transfer and signal transduction. Recent studies have shown the critical involvement of these organelles in regulation of the innate immune system, which functions in host defense. The innate immune system utilizes a wide range of germ-line-encoded pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and induces inflammatory and antiviral responses. Contact sites between mitochondria and the ER function in assembly of the NLR family pyrin domain containing 3 (NLRP3)-inflammasome to promote the inflammatory response. The NLRP3-inflammasome is a protein complex composed of the receptor NLRP3 on the ER side and the adaptor apoptosis-associated speck-like protein containing a CARD on the mitochondrial side; it induces caspase-1-dependent maturation of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Furthermore, ER-mitochondria contact sites function in initiation and mediation of signal transduction pathways downstream of intracellular PRRs, such as retinoic acid-inducible gene I-like receptor and cyclic GMP-AMP synthase, to promote the antiviral response. Therefore, ER-mitochondria contact sites, also known as mitochondria-associated membranes, play key roles in regulation of innate immune responses.

  11. Innate immunity, hemostasis and matrix remodeling: PTX3 as a link.

    Science.gov (United States)

    Doni, Andrea; Garlanda, Cecilia; Mantovani, Alberto

    2016-12-01

    Innate immunity is evolutionarily connected with hemostasis. PTX3 is an essential fluid-phase pattern recognition molecule of the innate immune system that acts as a functional ancestor of antibodies. PTX3 by interacting with defense collagens and fibrinogens amplifies effector functions of the innate immune system. At wound sites, PTX3 regulates the injury-induced thrombotic response and promotes wound healing by favoring timely fibrinolysis. Therefore, PTX3 interacts with ancestral domains conserved in innate immunity, hemostasis and extracellular matrix and exerts functions related to both antimicrobial resistance and tissue repair. These findings strengthen the connection between innate immune system and hemostasis, and suggest that recognition of microbes and extracellular matrix are evolutionarily conserved and integrated functions of the innate immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Role of innate immunity in the pathogenesis of type 1 and type 2 diabetes.

    Science.gov (United States)

    Lee, Myung-Shik

    2014-08-01

    The importance of innate immunity in host defense is becoming clear after discovery of innate immune receptors such as Toll-like receptor or Nod-like receptor. Innate immune system plays an important role in diverse pathological situations such as autoimmune diseases. Role of innate immunity in the pathogenesis of metabolic disorders such as type 2 diabetes, metabolic syndrome or atherosclerosis that has not been previously considered as inflammatory disorders, is also being appreciated. Here, the role of innate immunity in the development of type 1 diabetes, a classical organ-specific autoimmune disease, and type 2 diabetes will be discussed, focusing on the role of specific innate immune receptors involved in these disease processes.

  13. Comparative genomics RNAi screen identifies Eftud2 as a novel regulator of innate immunity.

    Science.gov (United States)

    De Arras, Lesly; Laws, Rebecca; Leach, Sonia M; Pontis, Kyle; Freedman, Jonathan H; Schwartz, David A; Alper, Scott

    2014-06-01

    The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis. To identify novel innate immune regulators that could affect infectious or inflammatory disease, we have taken a comparative genomics RNAi screening approach in which we inhibit orthologous genes in the nematode Caenorhabditis elegans and murine macrophages, expecting that genes with evolutionarily conserved function also will regulate innate immunity in humans. Here we report the results of an RNAi screen of approximately half of the C. elegans genome, which led to the identification of many candidate genes that regulate innate immunity in C. elegans and mouse macrophages. One of these novel conserved regulators of innate immunity is the mRNA splicing regulator Eftud2, which we show controls the alternate splicing of the MyD88 innate immunity signaling adaptor to modulate the extent of the innate immune response. Copyright © 2014 by the Genetics Society of America.

  14. Innate immune memory: towards a better understanding of host defense mechanisms

    NARCIS (Netherlands)

    Quintin, J.; Cheng, S.C.; Meer, J.W. van der; Netea, M.G.

    2014-01-01

    Innate immunity is classically defined as unable to build up immunological memory. Recently however, the assumption of the lack of immunological memory within innate immune responses has been reconsidered. Plants and invertebrates lacking adaptive immune system can be protected against secondary

  15. In Vitro Experimental Model of Trained Innate Immunity in Human Primary Monocytes

    NARCIS (Netherlands)

    Bekkering, S.; Blok, B.A.; Joosten, L.A.; Riksen, N.P.; Crevel, R. van; Netea, M.G.

    2016-01-01

    Innate immune memory, or trained immunity, has recently been described to be an important property of cells of the innate immune system. Due to the increased interest in this important new field of immunological investigation, we sought to determine the optimal conditions for an in vitro

  16. Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory

    NARCIS (Netherlands)

    Kindrachuk, J.; Jenssen, H.; Elliott, M.; Breukink, E.J.|info:eu-repo/dai/nl/120305100; Hancock, R.E.W.; et al., [No Value

    2013-01-01

    Innate immunity is triggered by a variety of bacterial molecules, resulting in both protective and potentially harmful proinflammatory responses. Further, innate immunity also provides a mechanism for the maintenance of homeostasis between the host immune system and symbiotic or non-pathogenic

  17. Condition, innate immunity and disease mortality of inbred crows.

    Science.gov (United States)

    Townsend, Andrea K; Clark, Anne B; McGowan, Kevin J; Miller, Andrew D; Buckles, Elizabeth L

    2010-09-22

    Cooperatively breeding American crows (Corvus brachyrhynchos) suffer a severe disease-mediated survival cost from inbreeding, but the proximate mechanisms linking inbreeding to disease are unknown. Here, we examine indices of nestling body condition and innate immunocompetence in relationship to inbreeding and disease mortality. Using an estimate of microsatellite heterozygosity that predicts inbreeding in this population, we show that inbred crows were in relatively poor condition as nestlings, and that body condition index measured in the first 2-33 days after hatching, in addition to inbreeding index, predicted disease probability in the first 34 months of life. Inbred nestlings also mounted a weaker response along one axis of innate immunity: the proportion of bacteria killed in a microbiocidal assay increased as heterozygosity index increased. Relatively poor body condition and low innate immunocompetence are two mechanisms that might predispose inbred crows to ultimate disease mortality. A better understanding of condition-mediated inbreeding depression can guide efforts to minimize disease costs of inbreeding in small populations.

  18. The maternal microbiota drives early postnatal innate immune development.

    Science.gov (United States)

    Gomez de Agüero, Mercedes; Ganal-Vonarburg, Stephanie C; Fuhrer, Tobias; Rupp, Sandra; Uchimura, Yasuhiro; Li, Hai; Steinert, Anna; Heikenwalder, Mathias; Hapfelmeier, Siegfried; Sauer, Uwe; McCoy, Kathy D; Macpherson, Andrew J

    2016-03-18

    Postnatal colonization of the body with microbes is assumed to be the main stimulus to postnatal immune development. By transiently colonizing pregnant female mice, we show that the maternal microbiota shapes the immune system of the offspring. Gestational colonization increases intestinal group 3 innate lymphoid cells and F4/80(+)CD11c(+) mononuclear cells in the pups. Maternal colonization reprograms intestinal transcriptional profiles of the offspring, including increased expression of genes encoding epithelial antibacterial peptides and metabolism of microbial molecules. Some of these effects are dependent on maternal antibodies that potentially retain microbial molecules and transmit them to the offspring during pregnancy and in milk. Pups born to mothers transiently colonized in pregnancy are better able to avoid inflammatory responses to microbial molecules and penetration of intestinal microbes. Copyright © 2016, American Association for the Advancement of Science.

  19. Digging for innate immunity since Darwin and Metchnikoff.

    Science.gov (United States)

    Cooper, Edwin L; Kauschke, Ellen; Cossarizza, Andrea

    2002-04-01

    Immune systems are, increasingly, being studied from comparative perspectives. The analysis of the immune-defense systems of invertebrates, such as fruit flies and earthworms, is an important part of this effort. These systems are innate, natural non-specific, non-anticipatory and non-clonal. This is in contrast to the macrophage T and B systems that characterize vertebrate adaptive immunity whose properties can be categorized as adaptive, induced, specific, anticipatory, and clonal. In this review, we will focus on the earthworm system. Earthworms, like other complex invertebrates, possess several leukocyte types and synthesize and secrete a variety of immunoprotective molecules. The system as a whole effects phagocytosis, encapsulation, agglutination, opsonization, clotting and lysis of foreign components. At least two major leukocytes, small coelomocytes, and large coelomocytes mediate lytic reactions against several targets. Destruction of tumor cells in vitro shows that phagocytosis and natural killer cell responses are distinct properties of coelomocytes. A third type, the chlorogogen cell, synthesizes and sheds effector lytic molecules. Among the lytic molecules, three have been identified and sequenced (fetidins, CCF-1, lysenin) and another has been discovered (eiseniapore), while three other molecules, H(1) H(2) H(3), share agglutinating and lysing functions. In contrast to these, Lumbricin I is the only known molecule of the earthworm system that is antimicrobial but non-lytic. Altogether the cellular and humoral components of the earthworm system function to distinguish between self and not self, dispose of internal (cancer?), damaged components and external antigens (microbes). The evolutionary context of the earthworm innate immune system is discussed at the end of this article. Copyright 2002 Wiley Periodicals, Inc.

  20. Innate immunity in solid organ transplantation: an update and therapeutic opportunities.

    Science.gov (United States)

    Béland, Stéphanie; Désy, Olivier; Vallin, Patrice; Basoni, Caroline; De Serres, Sacha A

    2015-03-01

    Innate immunity is increasingly recognized as a major player in transplantation. In addition to its role in inflammation in the early post-transplant period, innate immunity shapes the differentiation of cells of adaptive immunity, with a capacity to promote either rejection or tolerance. Emerging data indicate that innate allorecognition, a characteristic previously limited to lymphocytes, is involved in allograft rejection. This review briefly summarizes the physiology of each component of the innate immune system in the context of transplantation and presents the current or promising therapeutic applications, such as cellular, anticomplement and anticytokine therapies.

  1. Innate immune responses of temperamental and calm cattle after transportation.

    Science.gov (United States)

    Hulbert, Lindsey E; Carroll, Jeff A; Burdick, Nicole C; Randel, Ronald D; Brown, Mike S; Ballou, Michael A

    2011-09-15

    The objective was to investigate measures of cellular innate immune responses among calm and temperamental Brahman bulls in response to handling and transportation. Sixteen Brahman bulls (344 ± 37 d of age; 271.6 ± 45.5 kg BW) classified as either calm (n=8) or temperamental (n=8) were loaded onto a trailer, transported for 4h to a novel facility, rested 16 h overnight, and then were returned to their original facility after a 4h transport. Blood samples were collected immediately prior to (time 0) and at 24, 48, and 96 h after initial loading for analyses of innate immune and blood parameters. Leukocyte counts did not differ (P>0.05) due to temperament before or after transportation, but neutrophil:mononuclear cell ratios were greater in temperamental bulls compared to calm bulls at 24h. At 24h, expression of peripheral neutrophil β(2)-integrin decreased among all bulls compared with 0 h (Pcalm bulls (Pcalm bulls had elevated neutrophil L-selectin expression, and phagocytic and oxidative burst activity compared with temperamental bulls (P0.05). In contrast, 96 h after initial loading the supernatant TNF-α concentrations were lower (Pcalm bulls. These data suggest that neutrophils from calm bulls are more likely to resist microbial invasion at 96 h after transportation than neutrophils from temperamental bulls. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Microbiota activation and regulation of innate and adaptive immunity.

    Science.gov (United States)

    Alexander, Katie L; Targan, Stephan R; Elson, Charles O

    2014-07-01

    The human host has coevolved with the collective of bacteria species, termed microbiota, in a complex fashion that affects both innate and adaptive immunity. Differential regulation of regulatory T-cell and effector T-cell responses are a direct result of specific microbial species present within the gut, and this relationship is subject to dysregulation during inflammation and disease. The microbiota varies widely between individuals and has a profound effect on how one reacts to various environmental stimuli, particularly if a person is genetically predisposed to an immune-mediated inflammatory disorder such as inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Approximately, half of all CD patients have elevated antibodies to CBir1, a microbiota flagellin common to mice and humans, demonstrating flagellins as immunodominant antigens in the intestines. This review focuses on the use of flagellins as probes to study microbiota-specific responses in the context of health and disease as well as probes of innate and adaptive responses employed by the host to deal with the overwhelming bacterial presence of the microbiota. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Nipah and hendra virus interactions with the innate immune system.

    Science.gov (United States)

    Basler, Christopher F

    2012-01-01

    Nipah virus and Hendra virus are related, highly pathogenic paramyxoviruses with unusually broad host ranges. Henipaviruses encode several proteins that block innate immune responses, and these are likely to serve as virulence factors. Specfically, four virus-encoded proteins, the phosphoprotein (P), the V protein, the W protein, and the C protein have each been demonstrated to counteract aspects of the interferon (IFN)-α/β response, a key component of the innate immune response to virus infection. The available data indicate that V and W can inhibit the production of IFNα/β in response to various stimuli, while the P, V, and W proteins also block the ability of IFNs to signal and induce an antiviral state in cells. The C protein also inhibits the antiviral effects of IFNα/β by a poorly characterized mechanism. Reverse genetics systems, which allow the generation of recombinant viruses bearing specific mutations, have demonstrated the importance of the viral IFN-antagonists for replication. With these systems in hand, the field is now poised to define how specific viral IFN-antagonist functions influence viral pathogenesis.

  4. House dust mite allergy: Its innate immune response and immunotherapy.

    Science.gov (United States)

    Huang, Fang-Liang; Liao, En-Chih; Yu, Sheng-Jie

    2017-10-16

    Over the past few decades, allergic diseases have become increasingly prevalent worldwide. House dust mite (HDM) is the most important domestic source for allergic diseases such as allergic rhinitis, asthma and atopic dermatitis. Dermatophagoides pteronyssinus (Der p) is the major environmental allergen in southeast Asia because of the humid and warm environment is suitable for its growth. In the recent year, role of HDM allergen in allergic inflammation through innate immune system has been well studied. Toll-like receptors (TLRs), protease-activated receptors (PARs) and DC-SIGN could be activated by different HDM major allergens and proinflammatory cytokines also be upregulated. Treatment efficacy for HDM allergy is unsatisfied to the patients and the medication is limited. Immunotherapy provided an alternative option for treating HDM allergy through targeted to the mechanisms of allergic reaction and represented a long-term symptoms relief. Gene specific immunotherapy was currently being developed and it could decrease allergic inflammation and improve the efficacy of treatment. In this report, we reviewed recent studies about the role of HDM allergy in innate immune system and its immunotherapy. Understanding the HDM allergen induced signal transduction pathway and developed allergen specific immunotherapy could help physicians to create precise diagnosis and solve unmet need in HDM allergy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. GATA-3 function in innate and adaptive immunity.

    Science.gov (United States)

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Nickel allergies: paying the Toll for innate immunity.

    Science.gov (United States)

    Schmidt, Marc; Goebeler, Matthias

    2011-10-01

    Allergic contact hypersensitivity responses to the transition metal nickel (Ni(2+)) affect millions of people worldwide despite extensive legislatory efforts to ban the use of Ni(2+) in products coming into direct contact with the skin. Like other contact allergens, Ni(2+) triggers a T lymphocyte-driven delayed-type hypersensitivity reaction that is characterized by leukocyte infiltration at sites of allergen exposure. The last years have revealed that besides a hapten-specific T cell response, Ni(2+) can also directly trigger an innate immune response in resident skin cells that is necessary for mounting an allergic hypersensitivity reaction to Ni(2+). Recently, the receptor for the bacterial membrane component lipopolysaccharide, Toll-like receptor 4, has been identified as the crucial mediator of the innate immune response to Ni(2+), demonstrating that Ni(2+) employs signaling components of the bacterial defense system to elicit its allergic reactions. Here, we provide an overview of Ni(2+)-induced signaling events that have been implicated in contributing to the hypersensitivity response to this transition metal. We briefly review the causes and genetic predisposition fostering allergic responses to Ni(2+) and discuss potential therapeutic and prophylactic strategies and chances evolving from the novel insights into the molecular basis of this disease.

  7. Review: Gp-340/DMBT1 in mucosal innate immunity.

    Science.gov (United States)

    Madsen, Jens; Mollenhauer, Jan; Holmskov, Uffe

    2010-06-01

    Deleted in Malignant Brain Tumour 1 (DMBT1) is a gene that encodes alternatively spliced proteins involved in mucosal innate immunity. It also encodes a glycoprotein with a molecular mass of 340 kDa, and is referred to as gp-340 (DMBT1(gp340)) and salivary agglutinin (DMBT1(SAG)). DMBT1(gp340) is secreted into broncho-alveolar surface lining fluid whereas DMBT(SAG) is present in the saliva. The two molecules were shown to be identical and both interact with and agglutinate several Gram-negative and Gram-positive bacteria including Streptococcus mutans, a bacterium responsible for caries in the oral cavity. DMBT1(gp340) interacts with surfactant proteins A and D (SP-D). DMBT1(gp340) and SP-D can individually and together interact and agglutinate influenza A virus. DMBT1(gp340) also binds to HIV-1 and facilitates transcytosis of the virus into epithelial cells. DMBT1 binds to a variety of other host proteins, including serum and secretory IgA, C1q, lactoferrin, MUC5B and trefoil factor 2 (TFF2), all molecules with involvement in innate immunity and/or wound-healing processes. Recent generation of Dmbt1-deficient mice has provided the research field of DMBT1 with a model that allows research to progress from in vitro studies to in vivo functional studies of the multifunctional proteins encoded by the DMBT1 gene.

  8. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout

    2015-01-01

    provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible...... for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  9. Innate immune memory: towards a better understanding of host defense mechanisms.

    Science.gov (United States)

    Quintin, Jessica; Cheng, Shih-Chin; van der Meer, Jos W M; Netea, Mihai G

    2014-08-01

    Innate immunity is classically defined as unable to build up immunological memory. Recently however, the assumption of the lack of immunological memory within innate immune responses has been reconsidered. Plants and invertebrates lacking adaptive immune system can be protected against secondary infections. It has been shown that mammals can build cross-protection to secondary infections independently of T-lymphocytes and B-lymphocytes. Moreover, recent studies have demonstrated that innate immune cells such as NK cells and monocytes can display adaptive characteristics, a novel concept for which the term trained immunity has been proposed. Several mechanisms are involved in mediating innate immune memory, among which epigenetic histone modifications and modulation of recognition receptors on the surface of innate immune cells are likely to play a central role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Immune modulatory microRNAs as a novel mechanism to revert immune escape of tumors.

    Science.gov (United States)

    Seliger, Barbara

    2017-08-01

    Tumors have developed different strategies to escape immune recognition. This could be due to altered expression of classical and non-classical human leukocyte antigens (HLA), co-inhibitory or co-stimulatory molecules as well as components of the interferon signaling pathway. Furthermore, changes in the tumor microenvironment negatively interfere with anti-tumor immune responses and the frequency and activity of immune effector cells and professional antigen presenting cells (APC), while the number of immune suppressive cells is increased. Recently, microRNAs (miRNA) identified known as important players in the posttranscriptional regulation of gene expression have been demonstrated to be differentially expressed in tumors of distinct origin and present in nanovesicles secreted by tumors. They not only exhibit tumor suppressive and oncogenic potential, but also immune modulatory functions. This review focusses on the role of miRNA in posttranscriptional control of immune modulatory molecules in tumors and in exosomes, which might represent prognostic biomarkers and novel therapeutic targets. Copyright © 2017. Published by Elsevier Ltd.

  11. INTERACTIONS OF PATHOGENIC BACTERIA WITH INNATE IMMUNE REACTIONS OF HOST

    Directory of Open Access Journals (Sweden)

    F. Yu. Garib

    2012-01-01

    Full Text Available Abstract. «Efficacy» of pathogens interaction with the immunity system is manifested by broad spreading of many bacterial infections including tuberculosis first of all and in activation of known and emergent pathogens. The refined mechanisms of avoiding of bacteria from recognizing by immune system as creation of obstacles for phagocytosis and intracellular killing, using of secretory systems like “syringe” for inoculation into host cells deregulated substances, suppression or enhancing of inflammatory response, activation of inhibitory receptors to suppress respiratory explosion in phagosome, decreasing of synthesis of proinflammatory cytokines by influences to inflammasomes, stimulation of cytokines production suppres sed of innate response, damage of key molecules on intracellular signal routes, manipulation with apoptosis and auto phagia with the aim of surviving and replication inside the host cells, blocking of processing and presentation of bacterial antigens have been evolutionary developed. The study of interaction between host and parasite allows to understand new facts characterized “logic of live being” on the pathogen level and to use their mechanisms of evasion for resolving of actual problems raised in human society, for example, development of original vaccines and principally new drugs for immune system correction in case of diseases such as oncogenic tumors, autoimmune and allergic diseases as well as infectious diseases which are difficult to prevent and treat. Moreover, it was proved that permanent interaction with microorganisms including pathogenic ones is useful for human being because bacterial substances “train” immune system of people and assist its evolutionary improvement.

  12. Arthropod Innate Immune Systems and Vector-Borne Diseases.

    Science.gov (United States)

    Baxter, Richard H G; Contet, Alicia; Krueger, Kathryn

    2017-02-21

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

  13. Innate Immune Response to Rift Valley Fever Virus in Goats

    Science.gov (United States)

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  14. Promising Targets for Cancer Immunotherapy: TLRs, RLRs, and STING-Mediated Innate Immune Pathways.

    Science.gov (United States)

    Li, Kai; Qu, Shuai; Chen, Xi; Wu, Qiong; Shi, Ming

    2017-02-14

    Malignant cancers employ diverse and intricate immune evasion strategies, which lead to inadequately effective responses of many clinical cancer therapies. However, emerging data suggest that activation of the tolerant innate immune system in cancer patients is able, at least partially, to counteract tumor-induced immunosuppression, which indicates triggering of the innate immune response as a novel immunotherapeutic strategy may result in improved therapeutic outcomes for cancer patients. The promising innate immune targets include Toll-like Receptors (TLRs), RIG-I-like Receptors (RLRs), and Stimulator of Interferon Genes (STING). This review discusses the antitumor properties of TLRs, RLRs, and STING-mediated innate immune pathways, as well as the promising innate immune targets for potential application in cancer immunotherapy.

  15. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling.

    Science.gov (United States)

    Lhocine, Nouara; Ribeiro, Paulo S; Buchon, Nicolas; Wepf, Alexander; Wilson, Rebecca; Tenev, Tencho; Lemaitre, Bruno; Gstaiger, Matthias; Meier, Pascal; Leulier, François

    2008-08-14

    Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this threshold. We report that a recently identified Drosophila immune regulator, which we call PGRP-LC-interacting inhibitor of Imd signaling (PIMS), is required to suppress the Imd innate immune signaling pathway in response to commensal bacteria. pims expression is Imd (immune deficiency) dependent, and its basal expression relies on the presence of commensal flora. In the absence of PIMS, resident bacteria trigger constitutive expression of antimicrobial peptide genes (AMPs). Moreover, pims mutants hyperactivate AMPs upon infection with Gram-negative bacteria. PIMS interacts with the peptidoglycan recognition protein (PGRP-LC), causing its depletion from the plasma membrane and shutdown of Imd signaling. Therefore, PIMS is required to establish immune tolerance to commensal bacteria and to maintain a balanced Imd response following exposure to bacterial infections.

  16. Implication of PMLIV in both intrinsic and innate immunity.

    Directory of Open Access Journals (Sweden)

    Faten El Asmi

    2014-02-01

    Full Text Available PML/TRIM19, the organizer of nuclear bodies (NBs, has been implicated in the antiviral response to diverse RNA and DNA viruses. Several PML isoforms generated from a single PML gene by alternative splicing, share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. The knockout of PML renders mice more sensitive to vesicular stomatitis virus (VSV. Here we report that among PML isoforms (PMLI to PMLVIIb, only PMLIII and PMLIV confer resistance to VSV. Unlike PMLIII, whose anti-VSV activity is IFN-independent, PMLIV can act at two stages: it confers viral resistance directly in an IFN-independent manner and also specifically enhances IFN-β production via a higher activation of IRF3, thus protecting yet uninfected cells from oncoming infection. PMLIV SUMOylation is required for both activities. This demonstrates for the first time that PMLIV is implicated in innate immune response through enhanced IFN-β synthesis. Depletion of IRF3 further demonstrates the dual activity of PMLIV, since it abrogated PMLIV-induced IFN synthesis but not PMLIV-induced inhibition of viral proteins. Mechanistically, PMLIV enhances IFN-β synthesis by regulating the cellular distribution of Pin1 (peptidyl-prolyl cis/trans isomerase, inducing its recruitment to PML NBs where both proteins colocalize. The interaction of SUMOylated PMLIV with endogenous Pin1 and its recruitment within PML NBs prevents the degradation of activated IRF3, and thus potentiates IRF3-dependent production of IFN-β. Whereas the intrinsic antiviral activity of PMLIV is specific to VSV, its effect on IFN-β synthesis is much broader, since it affects a key actor of innate immune pathways. Our results show that, in addition to its intrinsic anti-VSV activity, PMLIV positively regulates IFN-β synthesis in response to different inducers, thus adding PML/TRIM19 to the

  17. Oxidative stress, innate immunity, and age-related macular degeneration

    Science.gov (United States)

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  18. Oxidative stress, innate immunity, and age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-05-01

    Full Text Available Age-related macular degeneration (AMD is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE. These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD or choroidal neovascularization (CNV, or wet AMD. Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory

  19. Innate immune memory: Implications for host responses to damage-associated molecular patterns

    NARCIS (Netherlands)

    Crisan, T.O.; Netea, M.G.; Joosten, L.A.B.

    2016-01-01

    Cells of the innate immune system build immunological memory via epigenetic reprogramming after stimulations with microbial ligands. This functional readjustment allows for enhanced nonspecific inflammatory responses upon secondary challenges, a process termed "trained immunity." The epigenomic

  20. Vaccination and timing influence SIV immune escape viral dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Liyen Loh

    2008-01-01

    Full Text Available CD8+ cytotoxic T lymphocytes (CTL can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods for following CTL escape and reversion are, however, insensitive to minor viral quasispecies. We developed sensitive quantitative real-time PCR assays to track the viral load of SIV Gag164-172 KP9 wild-type (WT and escape mutant (EM variants in pigtail macaques. Rapid outgrowth of EM virus occurs during the first few weeks of infection. However, the rate of escape plateaued soon after, revealing a prolonged persistence of WT viremia not detectable by standard cloning and sequencing methods. The rate of escape of KP9 correlated with levels of vaccine-primed KP9-specific CD8+ T cells present at that time. Similarly, when non-KP9 responder (lacking the restricting Mane-A*10 allele macaques were infected with SHIVmn229 stock containing a mixture of EM and WT virus, rapid reversion to WT was observed over the first 2 weeks following infection. However, the rate of reversion to WT slowed dramatically over the first month of infection. The serial quantitation of escape mutant viruses evolving during SIV infection shows that rapid dynamics of immune escape and reversion can be observed in early infection, particularly when CD8 T cells are primed by vaccination. However, these early rapid rates of escape and reversion are transient and followed by a significant slowing in these rates later during infection, highlighting that the rate of escape is significantly influenced by the timing of its occurrence.

  1. Dissecting Phaseolus vulgaris Innate Immune System against Colletotrichum lindemuthianum Infection

    Science.gov (United States)

    Chowdhury, Bablu; Caldas, Danielle Gregório Gomes; Tsai, Siu Mui; Camargo, Luis Eduardo Aranha; Melotto, Maeli

    2012-01-01

    the molecular components of the bean innate immune system regulated upon pathogen attack. PMID:22912818

  2. Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection.

    Directory of Open Access Journals (Sweden)

    Paula Rodrigues Oblessuc

    develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.

  3. Modulation of innate immunity in the tumor microenvironment.

    Science.gov (United States)

    Gonzalez-Gugel, Elena; Saxena, Mansi; Bhardwaj, Nina

    2016-10-01

    A recent report from the Center for Disease Control identified melanoma as being among the highest causes of cancer-related mortalities in the USA. While interventions such as checkpoint blockade have made substantial impact in terms of improving response rates and overall survival, a significant number of patients fail to respond to treatment or become resistant to therapy. A better understanding of the tumor microenvironment in these patients becomes imperative for identifying immune suppressive mechanisms that impact the development of effective anti-tumor immune responses. We have investigated innate immune cells (dendritic cells, NK cells) in the tumor microenvironment (TME) in order to devise effective targeted anticancer immune therapies. We find that matrix metalloproteinase-2 (MMP-2), secreted from melanoma cells and stromal cells, cleaves IFNAR1 and stimulates TLR-2 on dendritic cells (DC) within the TME. Both these events independently culminate in programing the DCs to promote pro-tumorigenic TH2 T cell differentiation. In addition, we have shown that NK cells become functionally exhausted in melanoma patients. We identified the expression of Tim-3 as one of the factors responsible for NK cell exhaustion and showed that anti-Tim3 antibodies partially reversed this exhaustion. We have initiated local intervention strategies such as intra-tumoral administration of DC activating Poly-ICLC and compared the efficacy of different TLR agonists and melanoma antigens for use as combination tumor vaccine in clinical trials. Such approaches will provide a unique insight into tumor biology and will facilitate in development of highly effective and cell type-specific immune therapies.

  4. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Directory of Open Access Journals (Sweden)

    Anastas Pashov

    2010-01-01

    Full Text Available Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies.

  5. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response*

    Science.gov (United States)

    Clay, Nicole K.; Adio, Adewale M.; Denoux, Carine; Jander, Georg; Ausubel, Frederick M.

    2008-01-01

    Summary The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity, and is defined in part by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens. PMID:19095898

  6. Glucosinolate metabolites required for an Arabidopsis innate immune response.

    Science.gov (United States)

    Clay, Nicole K; Adio, Adewale M; Denoux, Carine; Jander, Georg; Ausubel, Frederick M

    2009-01-02

    The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.

  7. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosolic DNA reco...gnition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic DNA reco

  8. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  9. Evasion of influenza A viruses from innate and adaptive immune responses

    NARCIS (Netherlands)

    C.E. van de Sandt (Carolien); J.H.C.M. Kreijtz (Joost); G.F. Rimmelzwaan (Guus)

    2012-01-01

    textabstractThe influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses

  10. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    S. I. Suskov

    2012-01-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  11. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    Science.gov (United States)

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  12. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    NARCIS (Netherlands)

    Blok, B.A.; Arts, R.J.W.; Crevel, R. van; Benn, C.S.; Netea, M.G.

    2015-01-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can provide

  13. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...ald C, Inohara N, Nunez G. J Biol Chem. 2005 May 27;280(21):20177-80. Epub 2005 Mar 31. (.png) (.svg) (.html) (.csml) Show Peptidog...lycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title Peptidog

  14. Novel model of innate immunity in corneal infection.

    Science.gov (United States)

    Rajaiya, Jaya; Zhou, Xiaohong; Barequet, Irina; Gilmore, Michael S; Chodosh, James

    2015-09-01

    The cornea functions as the major refractive interface for vision and protects the internal eye from insult. Current understanding of innate immune responses to corneal infection derives from a synthesis of in vitro and in vivo analyses. However, monolayer cell cultures and mouse models do not accurately duplicate all aspects of innate immunity in human patients. Here, we describe a three-dimensional culture system that incorporates human cells and extracellular matrix to more completely simulate the human cornea for studies of infection. Human corneal stromal fibroblasts were mixed with type I collagen in 3-μm pore size transwell inserts, and overlayed with Matrigel to simulate a human corneal stroma and epithelial basement membrane. These were then infected with a cornea-tropic adenovirus, and exposed on their inferior side to leukocytes derived from human peripheral blood. Subsequent analyses were performed with histology, confocal microscopy, ELISA, and fluorescence-activated cell sorting (FACS). CXCL8, a neutrophil chemokine shown previously as the first cytokine induced in infection of human corneal cells, increased upon adenovirus infection of facsimiles in a dose-responsive fashion. Myeloperoxidase-positive cells infiltrated infected corneal facsimiles in a sub-Matrigel location, possibly due to CXCL8 colocalization with heparan sulfate, a Matrigel constituent. Cellular infiltration was significantly inhibited by treatment with chemical inhibitors of p38 MAPK and Src kinase, both constituents of a signaling cascade previously suggested to regulate inflammation after adenovirus infection. FACS analysis determined that both virus and corneal fibroblasts were necessary for the induction of leukocyte migration into the facsimiles. The corneal facsimile, literally a cornea in a test tube, permits mechanistic studies on human tissue in a highly tractable system.

  15. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  16. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  17. The role of rare innate immune cells in Type 2 immune activation against parasitic helminths.

    Science.gov (United States)

    Webb, Lauren M; Tait Wojno, Elia D

    2017-09-01

    The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.

  18. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines.

    Science.gov (United States)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout; Benn, Christine Stabell; Netea, Mihai G

    2015-09-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system. © Society for Leukocyte Biology.

  19. Epithelial NEMO links innate immunity to chronic intestinal inflammation.

    Science.gov (United States)

    Nenci, Arianna; Becker, Christoph; Wullaert, Andy; Gareus, Ralph; van Loo, Geert; Danese, Silvio; Huth, Marion; Nikolaev, Alexei; Neufert, Clemens; Madison, Blair; Gumucio, Deborah; Neurath, Markus F; Pasparakis, Manolis

    2007-03-29

    Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract

  20. Tim-3: an activation marker and activation limiter of innate immune cells.

    Science.gov (United States)

    Han, Gencheng; Chen, Guojiang; Shen, Beifen; Li, Yan

    2013-12-10

    Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss (1) how Tim-3 is expressed and regulated on different innate immune cells; (2) how it affects the activity of different innate immune cells; and (3) how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  1. Identification and validation of Ifit1 as an important innate immune bottleneck.

    Directory of Open Access Journals (Sweden)

    Jason E McDermott

    Full Text Available The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs. Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2 as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a. We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.

  2. Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Vartanian, Keri B.; Mitchell, Hugh D.; Stevens, S.L.; Sanfilippo, Antonio P.; Stenzel-Poore, Mary

    2012-06-20

    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.

  3. Tim-3: An activation marker and activation limiter of innate immune cells

    Directory of Open Access Journals (Sweden)

    Gencheng eHan

    2013-12-01

    Full Text Available Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss 1 how Tim-3 is expressed and regulated on different innate immune cells; 2 how it affects the activity of different innate immune cells; and 3 how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  4. Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages

    Directory of Open Access Journals (Sweden)

    Elisa Araldi

    2017-06-01

    Full Text Available Macrophages perform critical functions in both innate immunity and cholesterol metabolism. Here, we report that activation of Toll-like receptor 4 (TLR4 in macrophages causes lanosterol, the first sterol intermediate in the cholesterol biosynthetic pathway, to accumulate. This effect is due to type I interferon (IFN-dependent histone deacetylase 1 (HDAC1 transcriptional repression of lanosterol-14α-demethylase, the gene product of Cyp51A1. Lanosterol accumulation in macrophages, because of either treatment with ketoconazole or induced conditional disruption of Cyp51A1 in mouse macrophages in vitro, decreases IFNβ-mediated signal transducer and activator of transcription (STAT1-STAT2 activation and IFNβ-stimulated gene expression. These effects translate into increased survival to endotoxemic shock by reducing cytokine secretion. In addition, lanosterol accumulation increases membrane fluidity and ROS production, thus potentiating phagocytosis and the ability to kill bacteria. This improves resistance of mice to Listeria monocytogenes infection by increasing bacterial clearance in the spleen and liver. Overall, our data indicate that lanosterol is an endogenous selective regulator of macrophage immunity.

  5. The role of innate immunity in occupational allergy: recent findings.

    Science.gov (United States)

    Sigsgaard, Torben; Hoffmann, Hans Jürgen; Thorne, Peter S

    2008-04-01

    Discovery of a system of pattern recognition receptors has opened an entirely new field in inflammation research. This paper reviews studies from the last 18 months focusing on mechanisms of immune stimulation after exposure to microbial components and other exposures that induce or modulate innate immune responses. Perhaps the most studied pattern recognition receptor response pathway is endotoxin upregulation of cytokine production via lipopolysaccharide binding protein (LBP), soluble and membrane bound CD14, v-myb-dependent gene 2 (MD-2) and toll-like receptor (TLR) 4. This interaction, and that of synthetic TLR2-agonist (Pam3Cys4) with toll-like receptors TLR1 and TLR2, has recently been characterized at the structural level, and has been confirmed by a blunted response in knockout mice. Dectin-1 recognizes the hyphal form, but not the spores of Aspergillus fumigatus, giving the first known function of the dectin receptor. Martinez has hypothesized that inconsistencies relating to the protective effect of lipopolysaccharide exposure on allergy might be explained by a gene-environment interaction. We are on the brink of understanding the complex nature and interaction of the pattern recognition receptors and the cellular events following their binding of ligands. Further elucidation of gene-environment interactions will probably lead to important discoveries in the near future.

  6. Innate Immune Interactions between Bacillus anthracis and Host Neutrophils

    Directory of Open Access Journals (Sweden)

    Janet Z. Liu

    2018-01-01

    Full Text Available Bacillus anthracis, the causative agent of anthrax, has been a focus of study in host-pathogen dynamics since the nineteenth century. While the interaction between anthrax and host macrophages has been extensively modeled, comparatively little is known about the effect of anthrax on the immune function of neutrophils, a key frontline effector of innate immune defense. Here we showed that depletion of neutrophils significantly enhanced mortality in a systemic model of anthrax infection in mice. Ex vivo, we found that freshly isolated human neutrophils can rapidly kill anthrax, with specific inhibitor studies showing that phagocytosis and reactive oxygen species (ROS generation contribute to this efficient bacterial clearance. Anthrax toxins, comprising lethal toxin (LT and edema toxin (ET, are known to have major roles in B. anthracis macrophage resistance and systemic toxicity. Employing isogenic wild-type and mutant toxin-deficient B. anthracis strains, we show that despite previous studies that reported inhibition of neutrophil function by purified LT or ET, endogenous production of these toxins by live vegetative B. anthracis failed to alter key neutrophil functions. The lack of alteration in neutrophil function is accompanied by rapid killing of B. anthracis by neutrophils, regardless of the bacteria's expression of anthrax toxins. Lastly, our study demonstrates for the first time that anthrax induced neutrophil extracellular trap (NET formation.

  7. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines

    NARCIS (Netherlands)

    Levy, O.; Netea, M.G.

    2014-01-01

    Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now

  8. Innate immunity and the sensing of infection, damage and danger in the female genital tract.

    Science.gov (United States)

    Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd

    2017-02-01

    Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma.

    Science.gov (United States)

    Thiriou, Despoina; Morianos, Ioannis; Xanthou, Georgina; Samitas, Konstantinos

    2017-07-01

    The respiratory system is constantly in direct contact with the environment and, has therefore, developed strong innate and adaptive immune responses to combat pathogens. Unlike adaptive immunity which is mounted later in the course of the immune response and is naive at the outset, innate immunity provides the first line of defense against microbial agents, while also promoting resolution of inflammation. In the airways, innate immune effector cells mainly consist of eosinophils, neutrophils, mast cells, basophils, macrophages/monocytes, dendritic cells and innate lymphoid cells, which attack pathogens directly or indirectly through the release of inflammatory cytokines and antimicrobial peptides, and coordinate T and B cell-mediated adaptive immunity. Airway epithelial cells are also critically involved in shaping both the innate and adaptive arms of the immune response. Chronic allergic airway inflammation and linked asthmatic disease is often considered a result of aberrant activation of type 2 T helper cells (Th2) towards innocuous environmental allergens; however, innate immune cells are increasingly recognized as key players responsible for the initiation and the perpetuation of allergic responses. Moreover, innate cells participate in immune response regulation through the release of anti-inflammatory mediators, and guide tissue repair and the maintenance of airway homeostasis. The scope of this review is to outline existing knowledge on innate immune responses involved in allergic airway inflammation, highlight current gaps in our understanding of the underlying molecular and cellular mechanisms and discuss the potential use of innate effector cells in new therapeutic avenues. Copyright © 2017. Published by Elsevier B.V.

  10. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism.

    OpenAIRE

    Slack Emma; Hapfelmeier Siegfried; Stecher Bärbel; Velykoredko Yuliya; Stoel Maaike; Lawson Melissa A E; Geuking Markus B; Beutler Bruce; Tedder Thomas F; Hardt Wolf-Dietrich; Bercik Premysl; Verdu Elena F; McCoy Kathy D; Macpherson Andrew J

    2009-01-01

    Commensal bacteria in the lower intestine of mammals are 10 times as numerous as the body's cells. We investigated the relative importance of different immune mechanisms in limiting the spread of the intestinal microbiota. Here we reveal a flexible continuum between innate and adaptive immune function in containing commensal microbes. Mice deficient in critical innate immune functions such as Toll like receptor signaling or oxidative burst production spontaneously produce high titer serum ant...

  11. In Vitro Experimental Model of Trained Innate Immunity in Human Primary Monocytes

    OpenAIRE

    Bekkering, Siroon; Blok, Bastiaan A.; Joosten, Leo A. B.; Riksen, Niels P.; van Crevel, Reinout; Netea, Mihai G.

    2016-01-01

    Innate immune memory, or trained immunity, has recently been described to be an important property of cells of the innate immune system. Due to the increased interest in this important new field of immunological investigation, we sought to determine the optimal conditions for an in vitro experimental protocol of monocyte training using three of the most commonly used training stimuli from the literature: β-glucan, the bacillus Calmette-Guérin (BCG) vaccine, and oxidized low-density lipoprotei...

  12. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 in innate immunity and hum...an inflammatory disorders. Authors Le Bourhis L, Benko S

  13. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  14. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Science.gov (United States)

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. HIV-1 infection of macrophages is dependent on evasion of innate immune cellular activation.

    Science.gov (United States)

    Tsang, Jhen; Chain, Benjamin M; Miller, Robert F; Webb, Benjamin L J; Barclay, Wendy; Towers, Greg J; Katz, David R; Noursadeghi, Mahdad

    2009-11-13

    The cellular innate immune response to HIV-1 is poorly characterized. In view of HIV-1 tropism for macrophages, which can be activated via pattern recognition receptors to trigger antimicrobial defences, we investigated innate immune responses to HIV-1 by monocyte-derived macrophages. In a model of productive HIV-1 infection, cellular innate immune responses to HIV-1 were investigated, at the level of transcription factor activation, specific gene expression and genome-wide transcriptional profiling. In addition, the viral determinants of macrophage responses and the physiological effect of innate immune cellular activation on HIV-1 replication were assessed. Productive HIV-1 infection did not activate nuclear factor-kappaB and interferon regulatory factor 3 transcription factors or interferon gene expression (IFN) and caused remarkably small changes to the host-cell transcriptome, with no evidence of inflammatory or IFN signatures. Evasion of IFN induction was not dependent on HIV-1 envelope-mediated cellular entry, inhibition by accessory proteins or reverse transcription of ssRNA that may reduce innate immune cellular activation by viral RNA. Furthermore, IFNbeta priming did not sensitize responses to HIV-1. Importantly, exogenous IFNbeta or stimulation with the RNA analogue poly I:C to simulate innate immune activation invoked HIV-1 restriction. We conclude that macrophages lack functional pattern recognition receptors for this virus and that HIV-1 tropism for macrophages helps to establish a foothold in the host without triggering innate immune cellular activation, which would otherwise block viral infection effectively.

  16. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species.

    Science.gov (United States)

    Halldórsdóttir, Katrín; Árnason, Einar

    2015-01-01

    Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host's apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of

  17. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages.

  18. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Itoh A

    2017-05-01

    Full Text Available Arata Itoh, William M Ridgway Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA Abstract: Type 1 diabetes (T1D is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs. Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase, the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody have shown partial successes (e.g., prolonged C peptide preservation but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR 4-stimulating lipopolysaccharide [LPS] dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic

  19. Recent Mumps Outbreaks in Vaccinated Populations: No Evidence of Immune Escape

    Science.gov (United States)

    Link, Malen A.; Sauder, Christian J.; Zhang, Cheryl; Ngo, Laurie; Rima, Bert K.; Duprex, W. Paul

    2012-01-01

    Recently, numerous large-scale mumps outbreaks have occurred in vaccinated populations. Clinical isolates sequenced from these outbreaks have invariably been of genotypes distinct from those of vaccine viruses, raising concern that certain mumps virus strains may escape vaccine-induced immunity. To investigate this concern, sera obtained from children 6 weeks after receipt of measles, mumps, and rubella (MMR) vaccine were tested for the ability to neutralize a carefully selected group of genetically diverse mumps virus strains. Although the geometric mean neutralizing antibody titer of the sera was lower against some virus strains than others, all viruses were readily neutralized, arguing against immune escape. PMID:22072778

  20. Does baseline innate immunity change with age? A multi-year study in great tits.

    Science.gov (United States)

    Vermeulen, Anke; Eens, Marcel; Van Dongen, Stefan; Müller, Wendt

    2017-06-01

    Throughout their life animals progressively accumulate mostly detrimental changes in cells, tissues and their functions, causing a decrease in individual performance and ultimately an increased risk of death. The latter may be amplified if it also leads to a deterioration of the immune system which forms the most important protection against the permanent threat of pathogens and infectious diseases. Here, we investigated how four baseline innate immune parameters (natural antibodies, complement activity, concentrations of haptoglobin and concentrations of nitric oxide) changed with age in free-living great tits (Parus major). We applied both cross-sectional and longitudinal approaches as birds were sampled for up to three years of their lives. Three out of the four selected innate immune parameters were affected by age. However, the shape of the response curves differed strongly among the innate immune parameters. Natural antibody levels increased during early life until mid-age to decrease thereafter when birds aged. Complement activity was highest in young birds, while levels slightly decreased with increasing age. Haptoglobin levels on the other hand, showed a linear, but highly variable increase with age, while nitric oxide concentrations were unaffected by age. The observed differences among the four studied innate immune traits not only indicate the importance of considering several immune traits at the same time, but also highlight the complexity of innate immunity. Unraveling the functional significance of the observed changes in innate immunity is thus a challenging next step. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Role of innate immune system in systemic sclerosis.

    Science.gov (United States)

    Fullard, Nicola; O'Reilly, Steven

    2015-09-01

    Recognition of microbial or viral compounds is crucial to elicit an immune response and pattern recognition receptors (PRRs) form the first line of defence. An important family of PRRs are the Toll-like receptors (TLRs) with numerous evidences indicating their crucial role in identifying microbial or viral compounds. However, the danger theory, where the innate immune system responds to danger signals such as proteins released during damage or necrosis rather than only non-self is gaining ground. Indeed, TLRs are able to recognise endogenous molecules and have been implicated as key players in numerous autoimmune diseases including systemic sclerosis (SSc). TLR2 is known to be upregulated in SSc and has been shown to respond to the endogenous ligand amyloid A resulting in increased IL-6 secretion. TLR4 is now known to respond to a variety of endogenous ligands including fibronectin, containing alternatively spliced exons encoding type III repeat extra domain (EDA). EDA is only expressed upon tissue damage, and elevated levels can be found in SSc patients, idiopathic pulmonary fibrosis and cardiac allograft fibrosis, while deletion of EDA or TLR4 in mice reduces their fibrotic response. Further, stimulation of TLR8 with single-stranded RNA leads to increased expression of TIMP-1. This has been shown to require both IRAK4 and NF-κB with evidence suggesting autoantibodies bind to RNA to stimulate TIMP-1 production in monocytes. Therefore, TLR-mediated signalling provides numerous potential therapeutic targets for development of therapies for the treatment of multi-systemic autoimmune diseases.

  2. Mechanisms by which Porphyromonas gingivalis evades innate immunity.

    Science.gov (United States)

    Abdi, Kaveh; Chen, Tsute; Klein, Brian A; Tai, Albert K; Coursen, Jill; Liu, Xiangdong; Skinner, Jeff; Periasamy, Saravanan; Choi, Youngnim; Kessler, Benedikt M; Palmer, Robert J; Gittis, Apostolos; Matzinger, Polly; Duncan, Margaret J; Singh, Nevil J

    2017-01-01

    The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum), on Dendritic Cell (DC) activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli). Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50) that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s) that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1) and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.

  3. Initial Immunopathogenesis of Multiple Sclerosis: Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Norma Y. Hernández-Pedro

    2013-01-01

    Full Text Available Multiple sclerosis (MS is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.

  4. The suppression of innate immune response by human rhinovirus C.

    Science.gov (United States)

    Pang, Li-Li; Yuan, Xin-Hui; Shao, Chang-Sheng; Li, Mao-Zhong; Wang, Ying; Wang, Hui-Min; Xie, Guang-Cheng; Xie, Zhi-Ping; Yuan, Yue; Zhou, Dong-Mei; Sun, Xiao-Man; Zhang, Qing; Xin, Yan; Li, Dan-di; Duan, Zhao-Jun

    2017-08-12

    Rhinovirus C (RV-C), a newly identified group of human rhinoviruses (RVs), is associated with exacerbation of severe asthma. The type I interferon (IFN) response induced by this virus and the mechanisms of evasion of IFN-mediated innate immunity for RV-C remain unclear. In this study, we constructed a full-length cDNA clone of RV-C (LZ651) from a clinical sample. IFN-β mRNA and protein levels were not elevated in differentiated Human bronchial epithelial (HBE) cells at the air-liquid interface infected with RV-C, except in the early stage of infection. The ability to attenuate IFN-β activation was ascribed to 3C(pro) of RV-C, and the 40-His site of 3C(pro) played an important role. Furthermore, RIG-I was degraded by 3C(pro) in a caspase-dependent manner and 3C(pro) cleaved MAVS at 148 Q/A, which inhibited IFN signaling. Taken together, our results demonstrate the mechanism by which RV-C circumvents the production of type I IFN in infected cells. Copyright © 2017. Published by Elsevier Inc.

  5. Infectious Disease: Connecting Innate Immunity to Biocidal Polymers.

    Science.gov (United States)

    Gabriel, Gregory J; Som, Abhigyan; Madkour, Ahmad E; Eren, Tarik; Tew, Gregory N

    2007-08-01

    Infectious disease is a critically important global healthcare issue. In the U.S. alone there are 2 million new cases of hospital-acquired infections annually leading to 90,000 deaths and 5 billion dollars of added healthcare costs. Couple these numbers with the appearance of new antibiotic resistant bacterial strains and the increasing occurrences of community-type outbreaks, and clearly this is an important problem. Our review attempts to bridge the research areas of natural host defense peptides (HDPs), a component of the innate immune system, and biocidal cationic polymers. Recently discovered peptidomimetics and other synthetic mimics of HDPs, that can be short oligomers as well as polymeric macromolecules, provide a unique link between these two areas. An emerging class of these mimics are the facially amphiphilic polymers that aim to emulate the physicochemical properties of HDPs but take advantage of the synthetic ease of polymers. These mimics have been designed with antimicrobial activity and, importantly, selectivity that rivals natural HDPs. In addition to providing some perspective on HDPs, selective mimics, and biocidal polymers, focus is given to the arsenal of biophysical techniques available to study their mode of action and interactions with phospholipid membranes. The issue of lipid type is highlighted and the important role of negative curvature lipids is illustrated. Finally, materials applications (for instance, in the development of permanently antibacterial surfaces) are discussed as this is an important part of controlling the spread of infectious disease.

  6. Initial immunopathogenesis of multiple sclerosis: innate immune response.

    Science.gov (United States)

    Hernández-Pedro, Norma Y; Espinosa-Ramirez, Guillermo; de la Cruz, Verónica Pérez; Pineda, Benjamín; Sotelo, Julio

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.

  7. Coronavirus infection, ER stress, apoptosis and innate immunity

    Science.gov (United States)

    Fung, To S.; Liu, Ding X.

    2014-01-01

    The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling. PMID:24987391

  8. Adaptation of macrophages to exercise training improves innate immunity.

    Science.gov (United States)

    Kizaki, Takako; Takemasa, Tohru; Sakurai, Takuya; Izawa, Tetsuya; Hanawa, Tomoko; Kamiya, Shigeru; Haga, Shukoh; Imaizumi, Kazuhiko; Ohno, Hideki

    2008-07-18

    The effects of 3-week exercise training on the functions of peritoneal macrophages from BALB/c mice were investigated. Lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and proinflammatory cytokine production in macrophages from trained mice was markedly higher than those from control mice. Meanwhile, exercise training decreased the steady state level of beta(2)-adrenergic receptor (beta(2)AR) mRNA in macrophages. Overexpression of beta(2)AR in the macrophage cell line RAW264 by transfecting with beta(2)AR cDNA suppressed NO synthase (NOS) II expression but dose not influenced proinflammatory cytokine expression. When expression of transfected beta(2)AR in RAWar cells was downregulated by a tetracycline repressor-regulated mammalian expression system, NOS II mRNA expression was significantly increased; this suggested that the changes in the beta(2)AR expression level in macrophages associated with exercise training play a role in the regulation of NO production following LPS stimulation. These findings indicate that exercise training improves macrophage innate immune function in a beta(2)AR-dependent and -independent manner.

  9. Long-term activation of the innate immune system in atherosclerosis.

    Science.gov (United States)

    Christ, Anette; Bekkering, Siroon; Latz, Eicke; Riksen, Niels P

    2016-08-01

    Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Transgenerational epigenetic effects on innate immunity in broilers: an underestimated field to be explored?

    Science.gov (United States)

    Berghof, T V L; Parmentier, H K; Lammers, A

    2013-11-01

    Transgenerational epigenetics is becoming more and more important for understanding the variation of physiological responses of individuals to the environment and the inheritance of these responses based on all mechanisms other than the actual DNA nucleotide sequence. Transgenerational epigenetics is the phenomenon that the information of the environment of (usually) a female animal is translated into memory-like responses preparing the offspring. As a consequence, individuals of the next generation may show different phenotypic traits depending whether their mothers were kept under different environmental conditions. This may result in either positive or negative effects on the next-generation individuals, which is different from individuals from mothers that have been kept in a different environment. Transgenerational epigenetic effects have been proposed and indicated for specific immune (T cell and antibody) responses (especially in mammals, but also in birds) and innate immunity (nonvertebrates), but surprisingly very little is known of transgenerational effects on innate immunity in chickens. Given the short lifespan of the chicken and therefore the likely dependence of chicken on innate immune mechanisms, more attention should be given to this arm of immunity and mechanisms of inheritance including transgenerational effects that can be initiated in the breeder generation. In addition, it is becoming evident that innate immunity also underlies metabolic disorders in broilers. In the current paper, we will argue that although very little is known of transgenerational effects of innate immunity in poultry, more attention should be given to this type of study. We will illustrate examples of transgenerational epigenetics, and finally propose strategies that should reveal the presence of transgenerational epigenetic effects on innate immunity in chickens and strategies to modulate breeder birds such that these effects positively affect innate immunity of broilers

  11. c-di-GMP enhances protective innate immunity in a murine model of pertussis.

    Directory of Open Access Journals (Sweden)

    Shokrollah Elahi

    Full Text Available Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.

  12. Mechanisms for eco-immunity in a changing enviroment: how does the coral innate immune system contend with climate change?

    Science.gov (United States)

    Traylor-Knowles, N. G.

    2016-02-01

    Innate immunity plays a central role in maintaining homeostasis, and within the context of impending climate change scenarios, understanding how this system works is critical. However, the actual mechanisms involved in the evolution of the innate immune system are largely unknown. Cnidaria (including corals, sea anemones and jellyfish) are well suited for studying the fundamental functions of innate immunity because they share a common ancestor with bilaterians. This study will highlight the transcriptomic changes during a heat shock in the coral Acropora hyacinthus of American Samoa, examining the temporal changes, every half an hour for 5 hours. We hypothesize that genes involved in innate immunity, and extracellular matrix maintenance will be key components to the heat stress response. This presentation will highlight the novel role of the tumor necrosis factor receptor gene family as a responder to heat stress and present future directions for this developing field in coral reef research.

  13. Innate Immunity and the Etiology of Late-Onset Alzheimer's Disease

    NARCIS (Netherlands)

    Eikelenboom, P.; van Exel, E.; Veerhuis, R.; Rozemuller, J.M.; van Gool, W.A.; Hoozemans, J.J.M.

    2012-01-01

    Background: Neuropathological studies supported by experimental animal studies show that the constituents of the innate immunity are intimately involved in the early steps of the pathological cascade of Alzheimer's disease (AD). Objectives: To show the evidence that constituents of the innate

  14. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING

    NARCIS (Netherlands)

    Holm, C.K.; Jensen, S.B.; Jakobsen, M.R.; Cheshenko, N.; Horan, K.A.; Moeller, H.B.; Gonzalez-Dosal, R.; Rasmussen, S.B.; Christensen, M.H.; Yarovinsky, T.O.; Rixon, F.J.; Herold, B.C.; Fitzgerald, K.A.; Paludan, S.R.

    2012-01-01

    The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral

  15. Another Armament in Gut Immunity: Lymphotoxin-Mediated Crosstalk between Innate Lymphoid and Dendritic Cells

    NARCIS (Netherlands)

    Spits, H.

    2011-01-01

    Innate lymphoid cells (ILCs) are novel players in innate immunity. Tumanov et al. (Tumanov et al., 2011) demonstrate that crosstalk between ILCs and dendritic cells involving membrane-bound lymphotoxin in ILCs and its receptor is critical for protection against colitogenic bacteria

  16. Innate immune response of channel catfish (Ictalurus punctatus) mannose-binding lectin to channel catfish virus

    Science.gov (United States)

    The channel catfish virus (CCV) is a pathogenic herpesvirus that infects channel catfish (Ictalurus punctatus) in pond aquaculture in the Southeast USA. The innate immune protein mannose-binding lectin (MBL) could play an important role in the innate response of channel catfish by binding to the CC...

  17. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  18. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone; Nitti, Donato

    2008-05-01

    Despite the evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells evade immune surveillance in most cases. Considering that anticancer vaccination has reached a plateau of results and currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed at reverting the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted. In addition, the latest therapeutic strategies devised to overcome tumor immune escape are described, with special regard to those entering clinical phase investigation. Copyright (c) 2007 Wiley-Periodicals, Inc.

  19. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex.

    Science.gov (United States)

    Nakashima, Ayako; Chen, Letian; Thao, Nguyen Phuong; Fujiwara, Masayuki; Wong, Hann Ling; Kuwano, Masayoshi; Umemura, Kenji; Shirasu, Ken; Kawasaki, Tsutomu; Shimamoto, Ko

    2008-08-01

    A small GTPase, Rac1, plays a key role in rice (Oryza sativa) innate immunity as part of a complex of regulatory proteins. Here, we used affinity column chromatography to identify rice RACK1 (for Receptor for Activated C-Kinase 1) as an interactor with Rac1. RACK1 functions in various mammalian signaling pathways and is involved in hormone signaling and development in plants. Rice contains two RACK1 genes, RACK1A and RACK1B, and the RACK1A protein interacts with the GTP form of Rac1. Rac1 positively regulates RACK1A at both the transcriptional and posttranscriptional levels. RACK1A transcription was also induced by a fungal elicitor and by abscisic acid, jasmonate, and auxin. Analysis of transgenic rice plants and cell cultures indicates that RACK1A plays a role in the production of reactive oxygen species (ROS) and in resistance against rice blast infection. Overexpression of RACK1A enhances ROS production in rice seedlings. RACK1A was shown to interact with the N terminus of NADPH oxidase, RAR1, and SGT1, key regulators of plant disease resistance. These results suggest that RACK1A functions in rice innate immunity by interacting with multiple proteins in the Rac1 immune complex.

  20. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin

    National Research Council Canada - National Science Library

    Coban, Cevayir; Ishii, Ken J; Kawai, Taro; Hemmi, Hiroaki; Sato, Shintaro; Uematsu, Satoshi; Yamamoto, Masahiro; Takeuchi, Osamu; Itagaki, Sawako; Kumar, Nirbhay; Horii, Toshihiro; Akira, Shizuo

    2005-01-01

    ...(s) through which HZ modulates the innate immune system has not been elucidated. This work demonstrates that HZ purified from Plasmodium falciparum is a novel non-DNA ligand for Toll-like receptor (TLR)9...

  1. Biomarkers of Necrotising Soft Tissue Infections Aspects of the Innate Immune Response

    DEFF Research Database (Denmark)

    Hansen, Marco Bo

    2017-01-01

    of the innate immune response, which included the investigation of acute-phase proteins, pattern recognition molecules of the lectin complement pathway, and inflammatory cytokines. The objective was to investigate aspects of the innate immune response in patients with NSTI, focusing on biomarkers as prognostic...... markers of disease severity and mortality. The overall hypothesis was that plasma biomarkers, representing the early innate immune response, can be used as prognostic markers of disease severity and mortality assessed by ICU scoring systems (SAPS II and SOFA score), the Laboratory Risk Indicator......-haemolytic streptococcal infection had higher levels of interleukin-6 and tumor necrosis factor-α compared with each subgroup stratified by microbial aetiology. This thesis provides new knowledge on the aspects of the innate immune response in patients with NSTI. The results prove that NSTI is characterised...

  2. Emerging roles of orphan nuclear receptors in regulation of innate immunity.

    Science.gov (United States)

    Jin, Hyo Sun; Kim, Tae Sung; Jo, Eun-Kyeong

    2016-11-01

    Innate immunity constitutes the first line of defense against pathogenic and dangerous insults. However, it is a double-edged sword, as it functions in both clearance of infection and inflammatory damage. It is therefore important that innate immune responses are tightly controlled to prevent harmful excessive inflammation. Nuclear receptors (NRs) are a family of transcription factors that play critical roles in various physiological responses. Orphan NRs are a subset of NRs for which the ligands and functions are unclear. Accumulating evidence has revealed that orphan NRs play essential roles in innate immune responses to prevent pathogenic inflammatory responses and to enhance antimicrobial host defenses. In this review, we describe current knowledge on the roles and mechanisms of orphan NRs in the regulation of innate immune responses. Discovery of new functions of orphan NRs would facilitate development of novel preventive and therapeutic strategies against human inflammatory diseases.

  3. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines

    National Research Council Canada - National Science Library

    Levy, O; Netea, M.G

    2014-01-01

    .... To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been...

  4. Activation and pathogenic manipulation of the sensors of the innate immune system.

    Science.gov (United States)

    Odendall, Charlotte; Kagan, Jonathan C

    The innate immune system detects the presence of microbes through different families of pattern-recognition receptors (PRRs). PRRs detect pathogens of all origins and trigger signaling events that activate innate and adaptive immunity. These events need to be tightly regulated in order to ensure optimal activation when required, and minimal signaling in the absence of microbial encounters. This regulation is achieved, at least in part, through the precise subcellular positioning of receptors and downstream signaling proteins. Consequently, mislocalization of these proteins inhibits innate immune pathways, and pathogens have evolved to alter host protein localization as a strategy to evade immune detection. This review describes the importance of subcellular localization of various PRR families and their adaptors, and highlights pathogenic immune evasion strategies that operate by altering immune protein localization. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Insights into antiviral innate immunity revealed by studying hepatitis C virus.

    Science.gov (United States)

    Horner, Stacy M

    2015-08-01

    Experimental studies on the interactions of the positive strand RNA virus hepatitis C virus (HCV) with the host have contributed to several discoveries in the field of antiviral innate immunity. These include revealing the antiviral sensing pathways that lead to the induction of type I interferon (IFN) during HCV infection and also the importance of type III IFNs in the antiviral immune response to HCV. These studies on HCV/host interactions have contributed to our overall understanding of viral sensing and viral evasion of the antiviral intracellular innate immune response. In this review, I will highlight how these studies of HCV/host interactions have led to new insights into antiviral innate immunity. Overall, I hope to emphasize that studying antiviral immunity in the context of virus infection is necessary to fully understand antiviral immunity and how it controls the outcome of viral infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...... of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy....

  7. The Basic Immune Simulator: An agent-based model to study the interactions between innate and adaptive immunity

    Directory of Open Access Journals (Sweden)

    Orosz Charles G

    2007-09-01

    Full Text Available Abstract Background We introduce the Basic Immune Simulator (BIS, an agent-based model created to study the interactions between the cells of the innate and adaptive immune system. Innate immunity, the initial host response to a pathogen, generally precedes adaptive immunity, which generates immune memory for an antigen. The BIS simulates basic cell types, mediators and antibodies, and consists of three virtual spaces representing parenchymal tissue, secondary lymphoid tissue and the lymphatic/humoral circulation. The BIS includes a Graphical User Interface (GUI to facilitate its use as an educational and research tool. Results The BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection. Conclusion The behavior of the BIS matches both normal and pathological behavior patterns in a generic viral infection scenario. Thus, the BIS effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns. The BIS can be used both as an educational tool to demonstrate the emergence of these patterns and as a research tool to systematically identify potential targets for more effective treatment strategies for diseases processes including hypersensitivity reactions (allergies, asthma, autoimmunity and cancer. We believe that the BIS can be a useful addition to

  8. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    Science.gov (United States)

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  9. Innate immune deficiency of extremely premature neonates can be reversed by interferon-γ.

    Directory of Open Access Journals (Sweden)

    Pierre Tissières

    Full Text Available Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants.We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2 for Gram-positive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-γ. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-γ.Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressively matures in the last three months in utero. Ex vivo treatment of leukocytes from premature neonates with interferon-γ reversed their innate immune responses deficiency to bacteria. These data represent a promising proof-of-concept to treat premature newborns at the time of delivery with pharmacological agents aimed at maturing innate immune responses in order to prevent neonatal sepsis.

  10. A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance

    NARCIS (Netherlands)

    van Kooyk, Yvette; Appelmelk, Ben; Geijtenbeek, Teunis B. H.

    2003-01-01

    Dendritic cells (DCs) are vital in the defense against pathogens. However, it is becoming increasingly clear that some pathogens subvert DC functions to escape immune surveillance. For example, HIV-1 targets the DC-specific C-type lectin DC-SIGN (DC-specific

  11. Human Respiratory Syncytial Virus: Role of Innate Immunity in Clearance and Disease Progression.

    Science.gov (United States)

    Farrag, Mohamed A; Almajhdi, Fahad N

    2016-01-01

    Human respiratory syncytial virus (HRSV) infections have worldwide records. The virus is responsible for bronchiolitis, pneumonia, and asthma in humans of different age groups. Premature infants, young children, and immunocompromised individuals are prone to severe HRSV infection that may lead to death. Based on worldwide estimations, millions of cases were reported in both developed and developing countries. In fact, HRSV symptoms develop mainly as a result of host immune response. Due to inability to establish long lasting adaptive immunity, HRSV infection is recurrent and hence impairs vaccine development. Once HRSV attached to the airway epithelia, interaction with the host innate immune components starts. HRSV interaction with pulmonary innate defenses is crucial in determining the disease outcome. Infection of alveolar epithelial cells triggers a cascade of events that lead to recruitment and activation of leukocyte populations. HRSV clearance is mediated by a number of innate leukocytes, including macrophages, natural killer cells, eosinophils, dendritic cells, and neutrophils. Regulation of these cells is mediated by cytokines, chemokines, and other immune mediators. Although the innate immune system helps to clear HRSV infection, it participates in disease progression such as bronchiolitis and asthma. Resolving the mechanisms by which HRSV induces pathogenesis, different possible interactions between the virus and immune components, and immune cells interplay are essential for developing new effective vaccines. Therefore, the current review focuses on how the pulmonary innate defenses mediate HRSV clearance and to what extent they participate in disease progression. In addition, immune responses associated with HRSV vaccines will be discussed.

  12. Trained innate immunity: a salient factor in the pathogenesis of neuroimmune psychiatric disorders.

    Science.gov (United States)

    Salam, A P; Borsini, A; Zunszain, P A

    2017-12-12

    Historically, only cells of the adaptive immune system have been considered capable of retaining memory for infectious challenges. Recently, however, cells of the innate immune system have been shown to be capable of displaying long-term functional memory following a single immunostimulatory challenge, leading to enhanced production of proinflammatory molecules upon other subsequent, and temporally distant, immunostimulatory challenges. This effect has been termed 'trained innate immunity', and is underwritten by stable epigenetic changes in immune and metabolic pathways. Importantly, the long-term training of innate immune cells can occur as a result of infectious as well as and non-infectious challenges, including stress. Given the role that both stress and an activated immune system have in neuropathology, innate immune training has important implications for our understanding and treatment of neuropsychiatric disorders. This review focuses on the evidence for trained innate immunity and highlights some insights into its relevance for psychiatric diseases.Molecular Psychiatry advance online publication, 12 December 2017; doi:10.1038/mp.2017.186.

  13. DMPD: IRAK-4--a shared NF-kappaB activator in innate and acquired immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17046325 IRAK-4--a shared NF-kappaB activator in innate and acquired immunity. Suzu...F-kappaB activator in innate and acquired immunity. PubmedID 17046325 Title IRAK-4--a shared NF-kappaB activator in innate and acqui

  14. Dimethyl fumarate influences innate and adaptive immunity in multiple sclerosis.

    Science.gov (United States)

    Diebold, Martin; Sievers, Claudia; Bantug, Glenn; Sanderson, Nicholas; Kappos, Ludwig; Kuhle, Jens; Lindberg, Raija L P; Derfuss, Tobias

    2018-01-01

    clinical setting. Our data suggest that DMF not only alters lymphocyte composition, but also has profound effects on proliferation and induces oxidative stress in T cells. It also acts on innate immunity by reducing the activation status of antigen presenting cells (APCs) via NFkB and MAPK inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses

    Science.gov (United States)

    van de Sandt, Carolien E.; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.

    2012-01-01

    The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies. PMID:23170167

  16. Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity

    DEFF Research Database (Denmark)

    Damgaard, Rune B; Gyrd-Hansen, Mads

    2011-01-01

    Inflammatory and innate immune signaling in response to recognition of pathogens is essential for immunity and host survival. However, deregulation may lead to detrimental pathologies including immunodeficiency, inflammatory diseases, and cancer. Inhibitor of apoptosis (IAP) proteins have emerged...... as promising targets for anti-inflammatory therapies in PRR-dependent inflammatory diseases including Crohn's disease, Blau syndrome, and septic shock.......Inflammatory and innate immune signaling in response to recognition of pathogens is essential for immunity and host survival. However, deregulation may lead to detrimental pathologies including immunodeficiency, inflammatory diseases, and cancer. Inhibitor of apoptosis (IAP) proteins have emerged...

  17. Role of hepatitis B virus genetic barrier in drug-resistance and immune-escape development.

    Science.gov (United States)

    Svicher, Valentina; Cento, Valeria; Salpini, Romina; Mercurio, Fabio; Fraune, Maria; Beggel, Bastian; Han, Yue; Gori, Caterina; Wittkop, Linda; Bertoli, Ada; Micheli, Valeria; Gubertini, Guido; Longo, Roberta; Romano, Sara; Visca, Michela; Gallinaro, Valentina; Marino, Nicoletta; Mazzotta, Francesco; De Sanctis, Giuseppe Maria; Fleury, Hervè; Trimoulet, Pascale; Angelico, Mario; Cappiello, Giuseppina; Zhang, Xin Xin; Verheyen, Jens; Ceccherini-Silberstein, Francesca; Perno, Carlo Federico

    2011-12-01

    Impact of hepatitis B virus genetic barrier, defined as the number and type of nucleotide substitutions required to overcome drug/immune selective pressure, on drug-resistance/immune-escape development is unknown. Genetic barrier was calculated according to Van de Vijver (2006) in 3482 hepatitis B virus-reverse transcriptase/HBV surface antigen sequences from 555 drug-naïve patients and 2927 antiviral-treated patients infected with hepatitis B virus genotypes A-G. Despite high natural variability, genetic barrier for drug-resistance development is identical amongst hepatitis B virus genotypes, but varies according to drug-resistance mutation type. Highest genetic barrier is found for secondary/compensatory mutations (e.g. rtL80I/V-rtL180M-rtV173L), whilst most primary mutations (including rtM204V-rtA181T/V-rtI169T-rtA194T) are associated with low genetic barrier. An exception is rtM204I, which can derive from a transition or a transversion. Genotypes A and G are more prone to develop immune/diagnostic-escape mutations sT114R and sG130N. Vaccine-escape associated sT131N-mutation is a natural polymorphism in both A and G genotypes. Genetic barrier and reverse transcriptase/HBV surface antigen overlapping can synergistically influence hepatitis B virus drug-resistance/immune-escape development. The different immune-escape potential of specific hepatitis B virus genotypes could have important clinical consequences in terms of disease progression, vaccine strategies and correct HBV surface antigen detection. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes.

    Science.gov (United States)

    Itoh, Arata; Ridgway, William M

    2017-01-01

    Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the "hygiene hypothesis", which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate immunity

  19. Induction of Innate Immune Memory by Engineered Nanoparticles: A Hypothesis That May Become True.

    Science.gov (United States)

    Italiani, Paola; Boraschi, Diana

    2017-01-01

    Innate immune memory is the capacity of cells of the innate immune system, such as monocytes and macrophages, to react differently to an inflammatory or infectious challenge if previously exposed to the same or to another agent. Innate immune memory is a protective mechanism, based on epigenetic reprogramming, that ensures effective protection while limiting side effects of tissue damage, by controlling innate/inflammatory responses to repeated stimulations. Engineered nanoparticles (NPs) are novel challenges for our innate immune system, and their ability to induce inflammatory activation, thereby posing health risks, is currently being investigated with controversial results. Besides their putative direct inflammation-inducing effects, we hypothesize that engineered NPs may induce innate memory based on their capacity to induce epigenetic modulation of gene expression. Preliminary results using non-toxic non-inflammatory gold NPs show that in fact NPs can induce memory by modulating in either positive or negative fashion the inflammatory activation of human monocytes to a subsequent bacterial challenge. The possibility of shaping innate/inflammatory reactivity with NPs could open the way to future novel approaches of preventive and therapeutic immunomodulation.

  20. Induction of Innate Immune Memory by Engineered Nanoparticles: A Hypothesis That May Become True

    Directory of Open Access Journals (Sweden)

    Paola Italiani

    2017-06-01

    Full Text Available Innate immune memory is the capacity of cells of the innate immune system, such as monocytes and macrophages, to react differently to an inflammatory or infectious challenge if previously exposed to the same or to another agent. Innate immune memory is a protective mechanism, based on epigenetic reprogramming, that ensures effective protection while limiting side effects of tissue damage, by controlling innate/inflammatory responses to repeated stimulations. Engineered nanoparticles (NPs are novel challenges for our innate immune system, and their ability to induce inflammatory activation, thereby posing health risks, is currently being investigated with controversial results. Besides their putative direct inflammation-inducing effects, we hypothesize that engineered NPs may induce innate memory based on their capacity to induce epigenetic modulation of gene expression. Preliminary results using non-toxic non-inflammatory gold NPs show that in fact NPs can induce memory by modulating in either positive or negative fashion the inflammatory activation of human monocytes to a subsequent bacterial challenge. The possibility of shaping innate/inflammatory reactivity with NPs could open the way to future novel approaches of preventive and therapeutic immunomodulation.

  1. Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5.

    Science.gov (United States)

    Ye, Chengjin; Jia, Lu; Sun, Yanting; Hu, Boli; Wang, Lun; Lu, Xingmeng; Zhou, Jiyong

    2014-10-01

    Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway

  2. Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs.

    Science.gov (United States)

    Gorman, M J; Kankanala, P; Kanost, M R

    2004-02-01

    Innate immunity protects juvenile and adult vertebrates and invertebrates against potential pathogens; however, it is unknown when developing embryos become immune competent and just how they are guarded from infection. To address these questions, we studied the effect of immune challenge on early stage eggs of the tobacco hornworm, Manduca sexta. We detected many immune-related proteins and mRNAs in naive eggs. Upon immune challenge, antimicrobial protein genes were up-regulated, and antibacterial activity increased. Antimicrobial protein mRNAs and lysozyme were present in the extra-embryonic tissues of immune-challenged eggs; in addition, melanization in response to bacteria occurred in the yolk but not embryonic tissues. We conclude that the extra-embryonic tissues of early stage M. sexta eggs are immune competent and likely protect the developing embryo from infection. We suggest that innate immune responses of extra-embryonic tissues may be a common mechanism for protecting early embryos.

  3. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    Science.gov (United States)

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  4. Assessment of immune organ dysfunction in critical illness: utility of innate immune response markers.

    Science.gov (United States)

    Pfortmueller, Carmen Andrea; Meisel, Christian; Fux, Michaela; Schefold, Joerg C

    2017-10-23

    In critically ill patients, organ dysfunctions are routinely assessed, monitored, and treated. Mounting data show that substantial critical illness-induced changes in the immune system can be observed in most ICU patients and that not only "hyper-inflammation" but also persistence of an anti-inflammatory phenotype (as in sepsis-associated immunosuppression) is associated with increased morbidity and mortality. Despite common perception, changes in functional immunity cannot be adequately assessed by routine inflammatory biomarkers such as C-reactive protein, procalcitonin, or numerical analysis of leukocyte (sub)-counts. Cytokines appear also not suited due to their short half-life and pleiotropy, their unexclusive origin from immune cells, and their potential to undergo antagonization by circulating inactivating molecules. Thus, beyond leukocyte quantification and use of routine biomarkers, direct assessment of immune cell function seems required to characterize the immune systems' status. This may include determination of, e.g., ex vivo cellular cytokine release, phagocytosis activity, and/or antigen-presenting capacity. In this regard, standardized flow-cytometric assessment of the major histocompatibility-II complex human leukocyte antigen (-D related) (HLA-DR) has gained particular interest. Monocytic HLA-DR (mHLA-DR) controls the interplay between innate and adaptive immunity and may serve as a "global" biomarker of injury-associated immunosuppression, and its decreased expression is associated with adverse clinical outcomes (e.g., secondary infection risk, mortality). Importantly, recent data demonstrate that injury-associated immunosuppression can be reversed-opening up new therapeutic avenues in affected patients. Here we discuss the potential scientific and clinical value of assessment of functional immunity with a focus on monocytes/macrophages and review the current state of knowledge and potential perspectives for affected critically ill patients.

  5. Innate immunity and testosterone rapidly respond to acute stress, but is corticosterone at the helm?

    Science.gov (United States)

    Davies, S; Noor, S; Carpentier, E; Deviche, P

    2016-10-01

    When faced with a stressor, vertebrates can rapidly increase the secretion of glucocorticoids, which is thought to improve the chances of survival. Concurrent changes in other physiological systems, such as the reproductive endocrine or innate immune systems, have received less attention, particularly in wild vertebrates. It is often thought that glucocorticoids directly modulate immune performance during a stress response, but, in many species, androgens also rapidly respond to stress. However, to our knowledge, no study has simultaneously examined the interactions between the glucocorticoid, androgen, and innate immune responses to stress in a wild vertebrate. To address this issue, we tested the hypothesis that the change in plasma corticosterone (CORT) in response to the acute stress of capture and restraint is correlated with the concurrent changes in plasma testosterone (T) and innate immune performance (estimated by the capacity of plasma to agglutinate and lyse foreign cells) in the Abert's Towhee (Melozone aberti). Furthermore, to broaden the generality of the findings, we compared male and female towhees, as well as males from urban and non-urban populations. Acute stress increased plasma CORT, decreased plasma T in males, and decreased innate immune performance, but the increase in CORT during stress was not correlated with the corresponding decreases in either plasma T or innate immunity. By contrast, the plasma T stress response was positively correlated with the innate immune stress response. Collectively, our results challenge the proposition that the glucocorticoid stress response is correlated with the concurrent changes in plasma T, a key reproductive hormone, and innate immunity, as estimated by agglutination and lysis.

  6. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  7. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function

    NARCIS (Netherlands)

    D.S. Shouval (Dror); R.S. Biswas (Rajat); J.A. Goettel (Jeremy); K. McCann (Katelyn); E. Conaway (Evan); N.S. Redhu (Naresh); I.D. Mascanfroni (Ivan); Z. AlAdham (Ziad); S. Lavoie (Sydney); M. Ibourk (Mouna); D.D. Nguyen (Deanna); J.N. Samsom (Janneke); J.C. Escher (Johanna); R. Somech (Raz); B. Weiss (Batia); R. Beier (Rita); L.S. Conklin (Laurie); C.L. Ebens (Christen); F.G.M.S. Santos (Fernanda); A.R. Ferreira (Alexandre); J.K. Sherlock (Jon); A.K. Bhan (Atul); W. Müller (Werner); J.R. Mora (J. Rodrigo); F.J. Quintana (Francisco); C. Klein (Christoph); A.M. Muise (Aleixo); R.I. Horwitz (Ralph); S.B. Snapper (Scott)

    2014-01-01

    textabstractIntact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on Tcells, was critical for regulating mucosal

  8. The role of innate immune signaling in the pathogenesis of atopic dermatitis and consequences for treatments.

    Science.gov (United States)

    Skabytska, Yuliya; Kaesler, Susanne; Volz, Thomas; Biedermann, Tilo

    2016-01-01

    The skin is the largest organ at the interface between the environment and the host. Consequently, the skin plays a central role in mounting effective host defense. In addition to pathogens, the microbiota and the host immune system are in permanent contact and communication via the skin. Consequences of this permanent interaction are a unique and partly symbiotic relationship, a tight interdependence between these partners, and also a functional "setting the clock," in which, in the healthy steady state, an induction of protective responses to pathogens is guaranteed. At the same time, commensal microbes contribute to the alertness of the immune system and to the maintenance of immune tolerance. Atopic dermatitis (AD) is a chronic inflammatory skin disease based on a complex genetic trait with defects in cutaneous barrier, in stabilizing skin integrity. Most of AD patients develop deviated innate and adaptive immune responses. As a result, increased susceptibility to cutaneous infection is found in AD patients, and the interactions between these microbes and the skin participate in the development of chronic cutaneous inflammation. The role of the adaptive immune system was characterized in much detail, less though the contribution of innate immunity to AD pathogenesis. It is rather recent evidence that demonstrates a dominant role of components of the innate immune system not only for protecting from microbial invasion but also by orchestrating chronic skin inflammation. In this review we discuss the role of innate immune signaling and consecutive immune networks important for the pathogenesis and management of AD.

  9. Homeostatic migration and distribution of innate immune cells in primary and secondary lymphoid organs with ageing.

    Science.gov (United States)

    Nikolich-Žugich, J; Davies, J S

    2017-03-01

    Ageing of the innate and adaptive immune system, collectively termed immune senescence, is a complex process. One method to understand the components of ageing involves dissociating the effects of ageing on the cells of the immune system, on the microenvironment in lymphoid organs and tissues where immune cells reside and on the circulating factors that interact with both immune cells and their microenvironment. Heterochronic parabiosis, a surgical union of two organisms of disparate ages, is ideal for this type of study, as it has the power to dissociate the age of the cell and the age of the microenvironment into which the cell resides or is migrating. So far, however, it has been used sparingly to study immune ageing. Here we review the limited literature on homeostatic innate immune cell trafficking in ageing in the absence of chronic inflammation. We also review our own recent data on trafficking of innate immune subsets between primary and secondary lymphoid organs in heterochronic parabiosis. We found no systemic bias in retention or acceptance of neutrophils, macrophages, dendritic cells or natural killer cells with ageing in primary and secondary lymphoid organs. We conclude that these four innate immune cell types migrate to and populate lymphoid organs (peripheral lymph nodes, spleen and bone marrow), regardless of their own age and of the age of lymphoid organs. © 2017 British Society for Immunology.

  10. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    Science.gov (United States)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  11. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera).

    Science.gov (United States)

    Wilson-Rich, Noah; Dres, Stephanie T; Starks, Philip T

    2008-01-01

    Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.

  12. Innate immune system and tissue regeneration in planarians: an area ripe for exploration.

    Science.gov (United States)

    Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J

    2014-08-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ambivalent role of the innate immune response in rabies virus pathogenesis.

    Science.gov (United States)

    Chopy, Damien; Pothlichet, Julien; Lafage, Mireille; Mégret, Françoise; Fiette, Laurence; Si-Tahar, Mustapha; Lafon, Monique

    2011-07-01

    The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.

  14. Impact of cigarette smoke exposure on innate immunity: a Caenorhabditis elegans model.

    Directory of Open Access Journals (Sweden)

    Rebecca M Green

    Full Text Available BACKGROUND: Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD and lung cancer. Respiratory bacterial infections have been shown to be involved in the development of COPD along with impaired airway innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: To address the in vivo impact of cigarette smoke (CS exclusively on host innate defense mechanisms, we took advantage of Caenorhabditis elegans (C. elegans, which has an innate immune system but lacks adaptive immune function. Pseudomonas aeruginosa (PA clearance from intestines of C. elegans was dampened by CS. Microarray analysis identified 6 candidate genes with a 2-fold or greater reduction after CS exposure, that have a human orthologue, and that may participate in innate immunity. To confirm a role of CS-down-regulated genes in the innate immune response to PA, RNA interference (RNAi by feeding was carried out in C. elegans to inhibit the gene of interest, followed by PA infection to determine if the gene affected innate immunity. Inhibition of lbp-7, which encodes a lipid binding protein, resulted in increased levels of intestinal PA. Primary human bronchial epithelial cells were shown to express mRNA of human Fatty Acid Binding Protein 5 (FABP-5, the human orthologue of lpb-7. Interestingly, FABP-5 mRNA levels from human smokers with COPD were significantly lower (p = 0.036 than those from smokers without COPD. Furthermore, FABP-5 mRNA levels were up-regulated (7-fold after bacterial (i.e., Mycoplasma pneumoniae infection in primary human bronchial epithelial cell culture (air-liquid interface culture. CONCLUSIONS: Our results suggest that the C. elegans model offers a novel in vivo approach to specifically study innate immune deficiencies resulting from exposure to cigarette smoke, and that results from the nematode may provide insight into human airway epithelial cell biology and cigarette smoke exposure.

  15. Impact of cigarette smoke exposure on innate immunity: a Caenorhabditis elegans model.

    Science.gov (United States)

    Green, Rebecca M; Gally, Fabienne; Keeney, Jonathon G; Alper, Scott; Gao, Bifeng; Han, Min; Martin, Richard J; Weinberger, Andrew R; Case, Stephanie R; Minor, Maisha N; Chu, Hong Wei

    2009-08-31

    Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and lung cancer. Respiratory bacterial infections have been shown to be involved in the development of COPD along with impaired airway innate immunity. To address the in vivo impact of cigarette smoke (CS) exclusively on host innate defense mechanisms, we took advantage of Caenorhabditis elegans (C. elegans), which has an innate immune system but lacks adaptive immune function. Pseudomonas aeruginosa (PA) clearance from intestines of C. elegans was dampened by CS. Microarray analysis identified 6 candidate genes with a 2-fold or greater reduction after CS exposure, that have a human orthologue, and that may participate in innate immunity. To confirm a role of CS-down-regulated genes in the innate immune response to PA, RNA interference (RNAi) by feeding was carried out in C. elegans to inhibit the gene of interest, followed by PA infection to determine if the gene affected innate immunity. Inhibition of lbp-7, which encodes a lipid binding protein, resulted in increased levels of intestinal PA. Primary human bronchial epithelial cells were shown to express mRNA of human Fatty Acid Binding Protein 5 (FABP-5), the human orthologue of lpb-7. Interestingly, FABP-5 mRNA levels from human smokers with COPD were significantly lower (p = 0.036) than those from smokers without COPD. Furthermore, FABP-5 mRNA levels were up-regulated (7-fold) after bacterial (i.e., Mycoplasma pneumoniae) infection in primary human bronchial epithelial cell culture (air-liquid interface culture). Our results suggest that the C. elegans model offers a novel in vivo approach to specifically study innate immune deficiencies resulting from exposure to cigarette smoke, and that results from the nematode may provide insight into human airway epithelial cell biology and cigarette smoke exposure.

  16. Physiological roles of ASK family members in innate immunity and their involvement in pathogenesis of immune diseases.

    Science.gov (United States)

    Matsuzawa, Atsushi

    2017-10-19

    Cells are always exposed to various types of stress, including physical, chemical, and biological stresses, and are required to sense immediately and respond appropriately to these stresses. The apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases, which are activated by not only physicochemical stresses, such as oxidative stress, osmotic pressure, calcium overload, and anti-cancer drugs, but also biological stresses, such as inflammatory cytokines and pathogen infection. Recently, we found that ASK1, a member of ASK family, is activated by bacterial components, such as lipopolysaccharide, in a reactive oxygen species (ROS)-dependent manner, demonstrating that ASK1 is required for the innate immune response and plays a critical role in the regulation of innate immune signaling. Moreover, our findings indicate that ROS are common mediators in physicochemical stress signaling, including redox signaling, and biological stress signaling, including innate immune signaling. This review especially focuses on the roles of ASK family in innate immunity and provides recent progress in our knowledge on activation mechanisms and physiological functions of ASK family kinases in innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. TLR4 links podocytes with the innate immune system to mediate glomerular injury

    DEFF Research Database (Denmark)

    Banas, Miriam C; Banas, Bernhard; Hudkins, Kelly L

    2008-01-01

    profile of chemokines. In conclusion, it was demonstrated that TLR4 is constitutively expressed by podocytes and is upregulated in MPGN, where it may mediate glomerular injury by modulating expression of chemokines; therefore, TLR4 may link podocytes with the innate immune system to mediate MPGN triggered...... by the deposition of immune complexes....

  18. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  19. The effects of age and social interactions on innate immunity in a leaf-cutting ant

    DEFF Research Database (Denmark)

    Armitage, S.A.O.; Boomsma, J.J.

    2010-01-01

    Both developmental and environmental factors shape investment in costly immune defences. Social insect workers have different selection pressures on their innate immune system compared to non-social insects because workers do not reproduce and their longevity affects the fitness of relatives. Fur...

  20. Variation in the innate and acquired arms of the immune system among five shorebird species

    NARCIS (Netherlands)

    Mendes, L.; Piersma, T.; Hasselquist, D.; Matson, K.D.; Ricklefs, R.E.

    2006-01-01

    To contribute to an understanding of the evolutionary processes that shape variation in immune responses, we compared several components of the innate and acquired arms of the immune system in five related, but ecologically diverse, migratory shorebirds (ruff Philomachus pugnax L., ruddy turnstone

  1. Variation in the innate and acquired arms of the immune system among five shorebird species

    NARCIS (Netherlands)

    Mendes, L; Piersma, T; Hasselquist, D; Matson, KD; Ricklefs, RE; Ricklefs, Robert E.

    To contribute to an understanding of the evolutionary processes that shape variation in immune responses, we compared several components of the innate and acquired arms of the immune system in five related, but ecologically diverse, migratory shorebirds (ruff Philomachus pugnax L., ruddy turnstone

  2. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  3. Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean

    Science.gov (United States)

    Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we re...

  4. Innate, adaptive and regulatory immune responses in human schistosomiasis in Gabon

    NARCIS (Netherlands)

    Łabuda, Łucja

    2014-01-01

    The work presented in this thesis is an investigation of the immune responses induced by chronic schistosomiasis in Gabonese schoolchildren. By investigating concurrently various aspects of the immune response, including innate, adaptive and regulatory responses, we are able to gain a more in-depth

  5. The innate immune response against mycobacterial infection : analysis by a combination of light and electron microscopy

    NARCIS (Netherlands)

    Hosseini, Rohola

    2015-01-01

    In this thesis the zebrafish tail fin infection model is presented, which enables the study of a complex immune response towards (myco)bacterial infection using a combination of light and electron microscopy. The induction of autophagy upon a mycobacterial infection as an important innate immune

  6. Basal inflammation and innate immune response in chronic multisite musculoskeletal pain

    NARCIS (Netherlands)

    Generaal, E.; Vogelzangs, N.; MacFarlane, G.J.; Geenen, R.; Smit, J.H.; Dekker, J.; Penninx, B.W.J.H.

    2014-01-01

    Dysregulation of the immune system may play a role in chronic pain, although study findings are inconsistent. This cross-sectional study examined whether basal inflammatory markers and the innate immune response are associated with the presence and severity of chronic multisite musculoskeletal pain.

  7. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Brock A Harpur

    Full Text Available Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  8. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harpur, Brock A; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  9. MicroRNA in innate immunity and autophagy during mycobacterial infection.

    Science.gov (United States)

    Kim, Jin Kyung; Kim, Tae Sung; Basu, Joyoti; Jo, Eun-Kyeong

    2017-01-01

    The fine-tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non-coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host-directed anti-mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections. © 2016 John Wiley & Sons Ltd.

  10. Gut-liver axis: gut microbiota in shaping hepatic innate immunity.

    Science.gov (United States)

    Wu, Xunyao; Tian, Zhigang

    2017-11-01

    Gut microbiota play an essential role in shaping immune cell responses. The liver was continuously exposed to metabolic products of intestinal commensal bacterial through portal vein and alteration of gut commensal bateria was always associated with increased risk of liver inflammation and autoimmune disease. Considered as a unique immunological organ, the liver is enriched with a large number of innate immune cells. Herein, we summarize the available literature of gut microbiota in shaping the response of hepatic innate immune cells including NKT cells, NK cells, γδ T cells and Kupffer cells during health and disease. Such knowledge might help to develop novel and innovative strategies for the prevention and therapy of innate immune cell-related liver disease.

  11. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases

    Science.gov (United States)

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927

  12. Effect of the innate immune response on development of Theiler's murine encephalomyelitis virus-induced demyelinating disease.

    Science.gov (United States)

    Olson, Julie K

    2014-10-01

    Theiler's murine encephalomyelitis virus (TMEV) infection of susceptible mice leads to the development of demyelinating disease in the central nervous system (CNS) associated with an inflammatory immune response. The demyelinating disease in mice has similarities to multiple sclerosis in humans and is used as an experimental model for the human disease. The innate immune response initiates the immune response to TMEV through innate immune receptors on cells that recognize components of the virus and activate intracellular signaling that leads to the expression of innate immune cytokines, chemokines, and effector molecules. The innate immune response directly affects the development of the adaptive immune response, especially the T cell response, which mediates viral clearance. However, infection of Swiss Jim Laboratory (SJL) mice with TMEV leads to a persistent virus infection of the microglia/macrophage in the CNS which contributes to the development of demyelinating disease. Susceptibility to demyelinating disease has been linked to the T cell response against the virus. However, the current studies will examine the role of the innate immune response to TMEV and the affect it has on the adaptive immune response and development of demyelinating disease following TMEV infection. The innate immune cytokines, chemokines, and effector molecules as well as the innate immune cells, both CNS resident and infiltrating peripheral cells, all contribute to the innate immune response following TMEV and may affect susceptibility to demyelinating disease.

  13. DMPD: Innate immunity and toll-like receptors: clinical implications of basic scienceresearch. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15069387 Innate immunity and toll-like receptors: clinical implications of basic science...te immunity and toll-like receptors: clinical implications of basic scienceresearch. PubmedID 15069387 Title... Innate immunity and toll-like receptors: clinical implications of basic sciencer

  14. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Meghan M Painter

    2015-12-01

    Full Text Available For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP, in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3 established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.

  15. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.

    Science.gov (United States)

    Painter, Meghan M; Morrison, James H; Zoecklein, Laurie J; Rinkoski, Tommy A; Watzlawik, Jens O; Papke, Louisa M; Warrington, Arthur E; Bieber, Allan J; Matchett, William E; Turkowski, Kari L; Poeschla, Eric M; Rodriguez, Moses

    2015-12-01

    For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.

  16. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species

    Directory of Open Access Journals (Sweden)

    Katrín Halldórsdóttir

    2015-05-01

    Full Text Available Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host’s apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that

  17. Highly Human Immunodeficiency Virus-Exposed Seronegative Men Have Lower Mucosal Innate Immune Reactivity.

    Science.gov (United States)

    Fulcher, Jennifer A; Romas, Laura; Hoffman, Jennifer C; Elliott, Julie; Saunders, Terry; Burgener, Adam D; Anton, Peter A; Yang, Otto O

    2017-08-01

    Risk of HIV acquisition varies, and some individuals are highly HIV-1-exposed, yet, persistently seronegative (HESN). The immunologic mechanisms contributing to this phenomenon are an area of intense interest. As immune activation and inflammation facilitate disease progression in HIV-1-infected persons and gastrointestinal-associated lymphoid tissue is a highly susceptible site for transmission, we hypothesized that reduced gut mucosal immune reactivity may contribute to reduced HIV-1 susceptibility in HESN men with a history of numerous rectal sexual exposures. To test this, we used ex vivo mucosal explants from freshly acquired colorectal biopsies from healthy control and HESN subjects who were stimulated with specific innate immune ligands and inactivated whole pathogens. Immune reactivity was then assessed via cytokine arrays and proteomic analysis. Mucosal immune cell compositions were quantified via immunohistochemistry. We found that explants from HESN subjects produced less proinflammatory cytokines compared with controls following innate immune stimulation; while noninflammatory cytokines were similar between groups. Proteomic analysis identified several immune response proteins to be differentially expressed between HIV-1-stimulated HESN and control explants. Immunohistochemical examination of colorectal mucosa showed similar amounts of T cells, macrophages, and dendritic cells between groups. The results of this pilot study suggest that mucosal innate immune reactivity is dampened in HESN versus control groups, despite presence of similar densities of immune cells in the colorectal mucosa. This observed modulation of the rectal mucosal immune response may contribute to lower risk of mucosal HIV-1 transmission in these individuals.

  18. DMPD: Glucocorticoids and the innate immune system: crosstalk with the toll-likereceptor signaling network. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17576036 Glucocorticoids and the innate immune system: crosstalk with the toll-like...07 May 13. (.png) (.svg) (.html) (.csml) Show Glucocorticoids and the innate immune system: crosstalk with t...he toll-likereceptor signaling network. PubmedID 17576036 Title Glucocorticoids and the innate immune syst...em: crosstalk with the toll-likereceptor signaling network. Authors Chinenov Y, Rog

  19. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells.

    Science.gov (United States)

    Wu, Han; Shi, Lili; Wang, Qing; Cheng, Lijing; Zhao, Xiang; Chen, Qiaoyuan; Jiang, Qian; Feng, Min; Li, Qihan; Han, Daishu

    2016-01-18

    Mumps virus (MuV) infection frequently causes orchitis and impairs male fertility. However, the mechanisms underlying the innate immune responses to MuV infection in the testis have yet to be investigated. This study showed that MuV induced innate immune responses in mouse Sertoli and Leydig cells through TLR2 and retinoic acid-inducible gene I (RIG-I) signaling, which result in the production of proinflammatory cytokines and chemokines, including TNF-α, IL-6, MCP-1, CXCL10, and type 1 interferons (IFN-α and IFN-β). By contrast, MuV did not induce the cytokine production in male germ cells. In response to MuV infection, Sertoli cells produced higher levels of proinflammatory cytokines and chemokines but lower levels of type 1 IFNs than Leydig cells did. The MuV-induced cytokine production by Sertoli and Leydig cells was significantly reduced by the knockout of TLR2 or the knockdown of RIG-I signaling. The local injection of MuV into the testis triggered the testicular innate immune responses in vivo. Moreover, MuV infection suppressed testosterone synthesis by Leydig cells. This is the first study examining the innate immune responses to MuV infection in testicular cells. The results provide novel insights into the mechanisms underlying the MuV-induced innate immune responses in the testis.

  20. Persistent Activation of the Innate Immune Response in Adult Drosophila Following Radiation Exposure During Larval Development.

    Science.gov (United States)

    Sudmeier, Lisa J; Samudrala, Sai-Suma; Howard, Steven P; Ganetzky, Barry

    2015-09-01

    Cranial radiation therapy (CRT) is an effective treatment for pediatric central nervous system malignancies, but survivors often suffer from neurological and neurocognitive side effects that occur many years after radiation exposure. Although the biological mechanisms underlying these deleterious side effects are incompletely understood, radiation exposure triggers an acute inflammatory response that may evolve into chronic inflammation, offering one avenue of investigation. Recently, we developed a Drosophila model of the neurotoxic side effects of radiation exposure. Here we use this model to investigate the role of the innate immune system in response to radiation exposure. We show that the innate immune response and NF-ĸB target gene expression is activated in the adult Drosophila brain following radiation exposure during larval development, and that this response is sustained in adult flies weeks after radiation exposure. We also present preliminary data suggesting that innate immunity is radioprotective during Drosophila development. Together our data suggest that activation of the innate immune response may be beneficial initially for survival following radiation exposure but result in long-term deleterious consequences, with chronic inflammation leading to impaired neuronal function and viability at later stages. This work lays the foundation for future studies of how the innate immune response is triggered by radiation exposure and its role in mediating the biological responses to radiation. These studies may facilitate the development of strategies to reduce the deleterious side effects of CRT. Copyright © 2015 Sudmeier et al.

  1. Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages.

    Science.gov (United States)

    Cheng, Xiaoming; Xia, Yuchen; Serti, Elisavet; Block, Peter Daniel; Chung, Michelle; Chayama, Kazuaki; Rehermann, Barbara; Liang, T Jake

    2017-12-01

    Hepatitis B virus (HBV) infects hepatocytes specifically and causes immune-mediated liver damage. How HBV interacts with the innate immunity at the early phase of infection, either with hepatocytes or other cells in the liver, remains controversial. To address this question, we utilized various human cell-culture models and humanized Alb-uPA/SCID mice. All these models were unable to mount an interferon (IFN) response despite robust HBV replication. To elucidate the mechanisms involved in the lack of IFN response, we examined whether HBV actively inhibits innate immune functions of hepatocytes. By treating HBV-infected cells with known inducers of the IFN signaling pathway, we observed no alteration of either sensing or downstream IFN response by HBV. We showed that the DNA innate sensing pathways are poorly active in hepatocytes, consistent with muted innate immune recognition of HBV. Upon exposure to high-level HBV, human macrophages could be activated with increased inflammatory cytokine expressions. HBV behaves like a "stealth" virus and is not sensed by, nor actively interferes with, the intrinsic innate immunity of infected hepatocytes. Macrophages are capable of sensing HBV, but require exposure to high HBV titers, potentially explaining the long "window period" during acute infection and HBV's propensity to chronic infection. (Hepatology 2017;66:1779-1793). © 2017 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

  2. Histomorphology and innate immunity during the progression of osteoarthritis: Does synovitis affect cartilage degradation?

    Science.gov (United States)

    Wang, Huan; Wang, Qingguo; Yang, Meijuan; Yang, Lili; Wang, Weili; Ding, Haobin; Zhang, Dong; Xu, Jing; Tang, Xuezhang; Ding, Haitao; Wang, Qingfu

    2018-02-01

    Osteoarthritis (OA) is a common chronic degenerative disease that affects all joints. At present, the pathological processes and mechanisms of OA are still unclear. Innate immunity, a key player in damage to the structure of the joint and the mechanism by which the host attempts to repair OA, affects all pathological stages of the disease. In the present study, our aim was to assess changes in innate immunity during the pathological processes of OA in articular cartilage (AC) and the synovial membrane (SM), which are the major structures in joints, and to systematically examine the histological changes in AC and SM in mild, moderate and severe cases of OA, in order to further speculate about the manner in which the interactions of AC and SM are facilitated by innate immunity. Histological methods (including HE and Safranin O-fast green staining), immunofluorescent double staining, TUNEL stain, and Western blots were used to assess the morphological changes within AC and SM tissues in healthy and mild, moderate, or severe OA rats. Our results showed that the damage to AC and SM within the joints progressively worsened in different degrees during the course of the disease, and that the innate immune system was closely involved in the AC and SM during each stage of OA. These findings also confirmed that SM may affect the pathological changes in AC through the innate immune system, and therefore affect the progress of OA. © 2017 Wiley Periodicals, Inc.

  3. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    Science.gov (United States)

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Lgt processing is an essential step in Streptococcus suis lipoprotein mediated innate immune activation.

    Directory of Open Access Journals (Sweden)

    Paul J Wichgers Schreur

    Full Text Available BACKGROUND: Streptococcus suis causes invasive infections in pigs and occasionally in humans. The host innate immune system plays a major role in counteracting S. suis infections. The main components of S. suis able to activate the innate immune system likely include cell wall constituents that may be released during growth or after cell wall integrity loss, however characterization of these components is still limited. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] A concentrated very potent innate immunity activating supernatant of penicillin-treated S. suis was SDS-PAGE fractionated and tested for porcine peripheral blood mononucleated cell (PBMC stimulating activity using cytokine gene transcript analysis. More than half of the 24 tested fractions increased IL-1β and IL-8 cytokine gene transcript levels in porcine PBMCs. Mass spectrometry of the active fractions indicated 24 proteins including 9 lipoproteins. Genetic inactivation of a putative prolipoprotein diacylglyceryl transferase (Lgt gene resulted in deficient lipoprotein synthesis as evidenced by palmitate labeling. The Lgt mutant showed strongly reduced activation of porcine PBMCs, indicating that lipoproteins are dominant porcine PBMC activating molecules of S. suis. CONCLUSION/SIGNIFICANCE: This study for the first time identifies and characterizes lipoproteins of S. suis as major activators of the innate immune system of the pig. In addition, we provide evidence that Lgt processing of lipoproteins is required for lipoprotein mediated innate immune activation.

  5. The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations.

    Science.gov (United States)

    Batorsky, Rebecca; Sergeev, Rinat A; Rouzine, Igor M

    2014-10-01

    Cytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, [Formula: see text], as well as cost to viral replication, [Formula: see text]. The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of [Formula: see text] from published experimental studies to be in the range (0.01-0.86) and show that the assumption of complete recognition loss ([Formula: see text]) leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be

  6. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity.

    Science.gov (United States)

    Arthur, Connie M; Patel, Seema R; Mener, Amanda; Kamili, Nourine A; Fasano, Ross M; Meyer, Erin; Winkler, Annie M; Sola-Visner, Martha; Josephson, Cassandra D; Stowell, Sean R

    2015-12-01

    Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry. © 2015 WILEY Periodicals, Inc.

  7. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR.

    Science.gov (United States)

    Styer, Katie L; Singh, Varsha; Macosko, Evan; Steele, Sarah E; Bargmann, Cornelia I; Aballay, Alejandro

    2008-10-17

    A large body of evidence indicates that metazoan innate immunity is regulated by the nervous system, but the mechanisms involved in the process and the biological importance of such control remain unclear. We show that a neural circuit involving npr-1, which encodes a G protein-coupled receptor (GPCR) related to mammalian neuropeptide Y receptors, functions to suppress innate immune responses. The immune inhibitory function requires a guanosine 3',5'-monophosphate-gated ion channel encoded by tax-2 and tax-4 as well as the soluble guanylate cyclase GCY-35. Furthermore, we show that npr-1- and gcy-35-expressing sensory neurons actively suppress immune responses of nonneuronal tissues. A full-genome microarray analysis on animals with altered neural function due to mutation in npr-1 shows an enrichment in genes that are markers of innate immune responses, including those regulated by a conserved PMK-1/p38 mitogen-activated protein kinase signaling pathway. These results present evidence that neurons directly control innate immunity in C. elegans, suggesting that GPCRs may participate in neural circuits that receive inputs from either pathogens or infected sites and integrate them to coordinate appropriate immune responses.

  8. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    Science.gov (United States)

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  9. Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6.

    Science.gov (United States)

    Machado, Fabiana S; Esper, Lísia; Dias, Alexandra; Madan, Rajat; Gu, YuanYuan; Hildeman, David; Serhan, Charles N; Karp, Christopher L; Aliberti, Júlio

    2008-05-12

    Innate immune signaling is critical for the development of protective immunity. Such signaling is, perforce, tightly controlled. Lipoxins (LXs) are eicosanoid mediators that play key counterregulatory roles during infection. The molecular mechanisms underlying LX-mediated control of innate immune signaling are of interest. In this study, we show that LX and aspirin (ASA)-triggered LX (ATL) inhibit innate immune signaling by inducing suppressor of cytokine signaling (SOCS) 2-dependent ubiquitinylation and proteasome-mediated degradation of TNF receptor-associated factor (TRAF) 2 and TRAF6, which are adaptor molecules that couple TNF and interleukin-1 receptor/Toll-like receptor family members to intracellular signaling events. LX-mediated degradation of TRAF6 inhibits proinflammatory cytokine production by dendritic cells. This restraint of innate immune signaling can be ablated by inhibition of proteasome function. In vivo, this leads to dysregulated immune responses, accompanied by increased mortality during infection. Proteasomal degradation of TRAF6 is a central mechanism underlying LX-driven immune counterregulation, and a hitherto unappreciated mechanism of action of ASA. These findings suggest a new molecular target for drug development for diseases marked by dysregulated inflammatory responses.

  10. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    Directory of Open Access Journals (Sweden)

    Barbara Lukasch

    2017-08-01

    Full Text Available Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  11. Plant innate immunity: An updated insight into defense mechanism

    Indian Academy of Sciences (India)

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and ...

  12. Involvement of HLA class I molecules in the immune escape of urologic tumors.

    Science.gov (United States)

    Carretero, R; Gil-Julio, H; Vázquez-Alonso, F; Garrido, F; Castiñeiras, J; Cózar, J M

    2014-04-01

    To analyze the influence of different alterations in human leukocyte antigen class I molecules (HLA I) in renal cell carcinoma, as well as in bladder and prostate cancer. We also study the correlation between HLA I expression and the progression of the disease and the response after immunotherapy protocols. It has been shown, experimentally, that the immune system can recognize and kill neoplastic cells. By analyzing the expression of HLA I molecules on the surface of cancer cells, we were able to study the tumor escape mechanisms against the immune system. Alteration or irreversible damage in HLA I molecules is used by the neoplastic cells to escape the immune system. The function of these molecules is to recognize endogenous peptides and present them to T cells of the immune system. There is a clear relationship between HLA I reversible alterations and success of therapy. Irreversible lesions also imply a lack of response to treatment. The immune system activation can reverse HLA I molecules expression in tumors with reversible lesions, whereas tumors with irreversible ones do not respond to such activation. Determine the type of altered HLA I molecules in tumors is of paramount importance when choosing the type of treatment to keep looking for therapeutic success. Those tumors with reversible lesions can be treated with traditional immunotherapy; however, tumour with irreversible alterations should follow alternative protocols, such as the use of viral vectors carrying the HLA genes to achieve damaged re-expression of the protein. From studies in urologic tumors, we can conclude that the HLA I molecules play a key role in these tumors escape to the immune system. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  13. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations.

    Science.gov (United States)

    Milligan-Myhre, Kathryn; Small, Clayton M; Mittge, Erika K; Agarwal, Meghna; Currey, Mark; Cresko, William A; Guillemin, Karen

    2016-02-01

    Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD). The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish. The gnotobiotic

  14. Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster.

    Science.gov (United States)

    Pragya, P; Shukla, A K; Murthy, R C; Abdin, M Z; Kar Chowdhuri, D

    2015-11-01

    With the advancement of human race, different anthropogenic activities have heaped the environment with chemicals that can cause alteration in the immune system of exposed organism. As a first line of barrier, the evolutionary conserved innate immunity is crucial for the health of an organism. However, there is paucity of information regarding in vivo assessment of the effect of environmental chemicals on innate immunity. Therefore, we examined the effect of a widely used environmental chemical, Cr(VI), on humoral innate immune response using Drosophila melanogaster. The adverse effect of Cr(VI) on host humoral response was characterized by decreased gene expression of antimicrobial peptides (AMPs) in the exposed organism. Concurrently, a significantly decreased transcription of humoral pathway receptors (Toll and PGRP) and triglyceride level along with inhibition of antioxidant enzyme activities were observed in exposed organism. This in turn weakened the immune response of exposed organism that was manifested by their reduced resistance against bacterial infection. In addition, overexpression of the components of humoral immunity particularly Diptericin benefits Drosophila from Cr(VI)-induced humoral immune-suppressive effect. To our knowledge, this is the first report regarding negative impact of an environmental chemical on humoral innate immune response of Drosophila along with subsequent protection by AMPs, which may provide novel insight into host-chemical interactions. Also, our data validate the utility and sensitivity of Drosophila as a model that could be used for screening the possible risk of environmental chemicals on innate immunity with minimum ethical concern that can be further extrapolated to higher organisms. © 2014 Wiley Periodicals, Inc.

  15. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    Science.gov (United States)

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  16. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Kathryn Milligan-Myhre

    2016-02-01

    Full Text Available Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD. The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish

  17. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.

    Science.gov (United States)

    Pyenson, Nora C; Gayvert, Kaitlyn; Varble, Andrew; Elemento, Olivier; Marraffini, Luciano A

    2017-09-13

    CRISPR loci are a cluster of repeats separated by short "spacer" sequences derived from prokaryotic viruses and plasmids that determine the targets of the host's CRISPR-Cas immune response against its invaders. For type I and II CRISPR-Cas systems, single-nucleotide mutations in the seed or protospacer adjacent motif (PAM) of the target sequence cause immune failure and allow viral escape. This is overcome by the acquisition of multiple spacers that target the same invader. Here we show that targeting by the Staphylococcus epidermidis type III-A CRISPR-Cas system does not require PAM or seed sequences, and thus prevents viral escape via single-nucleotide substitutions. Instead, viral escapers can only arise through complete target deletion. Our work shows that, as opposed to type I and II systems, the relaxed specificity of type III CRISPR-Cas targeting provides robust immune responses that can lead to viral extinction with a single spacer targeting an essential phage sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Restoration of innate immune activation accelerates Th1-cell priming and protection following pulmonary mycobacterial infection.

    Science.gov (United States)

    Lai, Rocky; Jeyanathan, Mangalakumari; Shaler, Christopher R; Damjanovic, Daniela; Khera, Amandeep; Horvath, Carly; Ashkar, Ali A; Xing, Zhou

    2014-05-01

    The immune mechanisms underlying delayed induction of Th1-type immunity in the lungs following pulmonary mycobacterial infection remain poorly understood. We have herein investigated the underlying immune mechanisms for such delayed responses and whether a selected innate immune-modulating strategy can accelerate Th1-type responses. We have found that, in the early stage of pulmonary infection with attenuated Mycobacterium tuberculosis (M.tb H37Ra), the levels of infection in the lung continue to increase logarithmically until days 14 and 21 postinfection in C57BL/6 mice. The activation of innate immune responses, particularly DCs, in the lung is delayed. This results in a delay in the subsequent downstream immune responses including the migration of antigen-bearing DCs to the draining lymph node (dLN), the Th1-cell priming in dLN, and the recruitment of Th1 cells to the lung. However, single lung mucosal exposure to the TLR agonist FimH postinfection is able to accelerate protective Th1-type immunity via facilitating DC migration to the lung and draining lymph nodes, enhancing DC antigen presentation and Th1-cell priming. These findings hold implications for the development of immunotherapeutic and vaccination strategies and suggest that enhancement of early innate immune activation is a viable option for improving Th1-type immunity against pulmonary mycobacterial diseases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Differential proteomics reveals age-dependent liver oxidative costs of innate immune activation in mice.

    Science.gov (United States)

    Plumel, Marine I; Benhaim-Delarbre, Margaux; Rompais, Magali; Thiersé, Danièle; Sorci, Gabriele; van Dorsselaer, Alain; Criscuolo, François; Bertile, Fabrice

    2016-03-01

    Individual response to an immune challenge results from the optimization of a trade-off between benefits and costs of immune cell activation. Age-related immune disorders may have several mechanistic bases, from immune cell defects to chronic pro-inflammatory status and oxidative imbalance, but we are still lacking experimental data showing the relative importance of each of these mechanisms. Using a proteomic approach and subsequent biochemical validations of proteomics-derived hypotheses, we found age-dependent regulations in the liver of 3-months and 1-year old-mice in response to an acute innate immune activation. Old mice presented a chronic up-regulation of several proteins involved in pathways related to oxidative stress control. Interestingly, these pathways were weakly affected by the innate immune activation in old compared to young individuals. In addition, old mice suffered from lower glutathione-S-transferase activity and from higher oxidative damage at the end of the experiment, thus suggesting that they paid a higher immune-related cost than young individuals. On the whole, our data showed that a substantial fraction of the liver costs elicited by an activation of the innate immune response is effectively related to oxidative stress, and that ageing impairs the capacity of old individuals to control it. Our paper tackles the open question of the cost of mounting an innate immune response. Evolutionary biologists are familiar since a long time with the concept of trade-offs among key traits of an organism, trade-offs that shape life history trajectories of species and individuals, ultimately in terms of reproduction and survival. On the other hand, medicine and molecular biologists study the intimate mechanisms of immune senescence and underline that oxidative imbalance is probably playing a key role in the progressive loss of immune function with age. This paper merges the two fields by exploring the nature of the cellular pathways that are mainly

  20. Interplay between the Hepatitis B Virus and Innate Immunity: From an Understanding to the Development of Therapeutic Concepts

    Science.gov (United States)

    Faure-Dupuy, Suzanne; Lucifora, Julie; Durantel, David

    2017-01-01

    The hepatitis B virus (HBV) infects hepatocytes, which are the main cell type composing a human liver. However, the liver is enriched with immune cells, particularly innate cells (e.g., myeloid cells, natural killer and natural killer T-cells (NK/NKT), dendritic cells (DCs)), in resting condition. Hence, the study of the interaction between HBV and innate immune cells is instrumental to: (1) better understand the conditions of establishment and maintenance of HBV infections in this secondary lymphoid organ; (2) define the role of these innate immune cells in treatment failure and pathogenesis; and (3) design novel immune-therapeutic concepts based on the activation/restoration of innate cell functions and/or innate effectors. This review will summarize and discuss the current knowledge we have on this interplay between HBV and liver innate immunity. PMID:28452930

  1. Interplay between the Hepatitis B Virus and Innate Immunity: From an Understanding to the Development of Therapeutic Concepts.

    Science.gov (United States)

    Faure-Dupuy, Suzanne; Lucifora, Julie; Durantel, David

    2017-04-28

    The hepatitis B virus (HBV) infects hepatocytes, which are the main cell type composing a human liver. However, the liver is enriched with immune cells, particularly innate cells (e.g., myeloid cells, natural killer and natural killer T-cells (NK/NKT), dendritic cells (DCs)), in resting condition. Hence, the study of the interaction between HBV and innate immune cells is instrumental to: (1) better understand the conditions of establishment and maintenance of HBV infections in this secondary lymphoid organ; (2) define the role of these innate immune cells in treatment failure and pathogenesis; and (3) design novel immune-therapeutic concepts based on the activation/restoration of innate cell functions and/or innate effectors. This review will summarize and discuss the current knowledge we have on this interplay between HBV and liver innate immunity.

  2. Supramolecular organizing centers (SMOCs) as signaling machines in innate immune activation.

    Science.gov (United States)

    Qiao, Qi; Wu, Hao

    2015-11-01

    Innate immunity offers the first line of defense against infections and other types of danger such as tumorigenesis. Its discovery provides tremendous therapeutic opportunities for numerous human diseases. Delving into the structural basis of signal transduction by innate immune receptors, our lab has recently helped to establish the new paradigm in which innate immune receptors transduce ligand-binding signals through formation of higher-order assemblies containing intracellular adapters, signaling enzymes and their substrates. These large signalosome assemblies may be visible under light microscopy as punctate structures in the µm scale, connecting to the underlying molecular structures in the nm scale. They drive proximity-induced enzyme activation, and provide a mechanism for signaling amplification by nucleated polymerization. These supramolecular signaling complexes also open new questions on their cellular organization and mode of regulation, pose challenges to our methodology, and afford valuable implications in drug discovery against these medically important pathways.

  3. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    Directory of Open Access Journals (Sweden)

    Dominique M. A. Bullens

    2013-01-01

    Full Text Available Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A, called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.

  4. Innate immune responses to obesity in cloned and wild-type domestic pig

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Skovgaard, Kerstin; Stagsted, Jan

    months of age. mRNA expression levels were determined for 39 innate immune factors on a high-throughput qPCR system in samples from liver, abdominal fat, mesenteric fat and subcutaneous fat. Previous findings have suggested that cloning may affect certain phenotypic traits of pigs including basic...... concentrations and responsiveness of components of the innate immune system. Terminal body weights at 7½ - 9½ months of age were significantly higher for both (WT and cloned) obese groups compared to the lean groups. However, obese WT pigs weighed significantly more than obese cloned pigs (P... significant differences between WT and cloned pigs in the gene response to obesity. Thus, significant phenotypic differences were established for central innate immune factors between cloned and WT pigs, including differences in the response of these factors to an obesity-promoting diet. This should be taken...

  5. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon.

    Science.gov (United States)

    Totura, Allison L; Baric, Ralph S

    2012-06-01

    SARS-CoV is a pathogenic coronavirus that emerged from a zoonotic reservoir, leading to global dissemination of the virus. The association SARS-CoV with aberrant cytokine, chemokine, and Interferon Stimulated Gene (ISG) responses in patients provided evidence that SARS-CoV pathogenesis is at least partially controlled by innate immune signaling. Utilizing models for SARS-CoV infection, key components of innate immune signaling pathways have been identified as protective factors against SARS-CoV disease, including STAT1 and MyD88. Gene transcription signatures unique to SARS-CoV disease states have been identified, but host factors that regulate exacerbated disease phenotypes still remain largely undetermined. SARS-CoV encodes several proteins that modulate innate immune signaling through the antagonism of the induction of Interferon and by avoidance of ISG effector functions. Copyright © 2012. Published by Elsevier B.V.

  6. The innate immune system and diabetes mellitus: the relevance of periodontitis? A hypothesis.

    Science.gov (United States)

    Lazenby, Martin G; Crook, Martin A

    2010-08-05

    About a decade ago, a hypothesis was proposed suggesting that the innate immune system, including acute-phase reactants, contribute to the development of T2DM [Type 2 DM (diabetes mellitus)] and the metabolic syndrome. In this model, it was hypothesized that the innate immune system modulates the effects of many factors, including genes, fetal programming, nutrition and aging, upon the later development of metabolic problems associated with insulin resistance. In this present article, we expand this hypothesis by looking at the involvement of periodontitis in DM and its complications. Periodontitis is a common inflammatory process involving the innate immune system and is associated with DM. We will also illustrate how dental disease is important in patients with DM and could be implicated in various diabetic complications.

  7. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review

    Directory of Open Access Journals (Sweden)

    Antonio Ieni

    2016-01-01

    Full Text Available Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK, which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.

  8. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review.

    Science.gov (United States)

    Ieni, Antonio; Barresi, Valeria; Rigoli, Luciana; Fedele, Francesco; Tuccari, Giovanni; Caruso, Rosario Alberto

    2016-01-15

    Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori) infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV) has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.

  9. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids.

    Science.gov (United States)

    Blanc, Landry; Gilleron, Martine; Prandi, Jacques; Song, Ok-Ryul; Jang, Mi-Seon; Gicquel, Brigitte; Drocourt, Daniel; Neyrolles, Olivier; Brodin, Priscille; Tiraby, Gérard; Vercellone, Alain; Nigou, Jérôme

    2017-10-17

    Mycobacterium tuberculosis is a major human pathogen that is able to survive inside host cells and resist immune clearance. Most particularly, it inhibits several arms of the innate immune response, including phagosome maturation or cytokine production. To better understand the molecular mechanisms by which M. tuberculosis circumvents host immune defenses, we used a transposon mutant library generated in a virulent clinical isolate of M. tuberculosis of the W/Beijing family to infect human macrophages, utilizing a cell line derivative of THP-1 cells expressing a reporter system for activation of the transcription factor NF-κB, a key regulator of innate immunity. We identified several M. tuberculosis mutants inducing a NF-κB activation stronger than that of the wild-type strain. One of these mutants was found to be deficient for the synthesis of cell envelope glycolipids, namely sulfoglycolipids, suggesting that the latter can interfere with innate immune responses. Using natural and synthetic molecular variants, we determined that sulfoglycolipids inhibit NF-κB activation and subsequent cytokine production or costimulatory molecule expression by acting as competitive antagonists of Toll-like receptor 2, thereby inhibiting the recognition of M. tuberculosis by this receptor. Our study reveals that producing glycolipid antagonists of pattern recognition receptors is a strategy used by M. tuberculosis to undermine innate immune defense. Sulfoglycolipids are major and specific lipids of M. tuberculosis, considered for decades as virulence factors of the bacilli. Our study uncovers a mechanism by which they may contribute to M. tuberculosis virulence.

  10. Are the innate and adaptive immune systems setting hypertension on fire?

    Science.gov (United States)

    Bomfim, Gisele F; Rodrigues, Fernanda Luciano; Carneiro, Fernando S

    2017-03-01

    Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    Science.gov (United States)

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Melanie McFarlane

    2014-07-01

    Full Text Available Replication of arboviruses in their arthropod vectors is controlled by innate immune responses. The RNA sequence-specific break down mechanism, RNA interference (RNAi, has been shown to be an important innate antiviral response in mosquitoes. In addition, immune signaling pathways have been reported to mediate arbovirus infections in mosquitoes; namely the JAK/STAT, immune deficiency (IMD and Toll pathways. Very little is known about these pathways in response to chikungunya virus (CHIKV infection, a mosquito-borne alphavirus (Togaviridae transmitted by aedine species to humans resulting in a febrile and arthralgic disease. In this study, the contribution of several innate immune responses to control CHIKV replication was investigated. In vitro experiments identified the RNAi pathway as a key antiviral pathway. CHIKV was shown to repress the activity of the Toll signaling pathway in vitro but neither JAK/STAT, IMD nor Toll pathways were found to mediate antiviral activities. In vivo data further confirmed our in vitro identification of the vital role of RNAi in antiviral defence. Taken together these results indicate a complex interaction between CHIKV replication and mosquito innate immune responses and demonstrate similarities as well as differences in the control of alphaviruses and other arboviruses by mosquito immune pathways.

  13. Innate immunity is not related to the sex of adult Tree Swallows during the nestling period

    Science.gov (United States)

    Houdek, Bradley J.; Lombardo, Michael P.; Thorpe, Patrick A.; Hahn, D. Caldwell

    2011-01-01

    Evolutionary theory predicts that exposure to more diverse pathogens will result in the evolution of a more robust immune response. We predicted that during the breeding season the innate immune function of female Tree Swallows (Tachycineta bicolor) should be more effective than that of males because (1) the transmission of sexually transmitted microbes during copulation puts females at greater risk because ejaculates move from males to females, (2) females copulate with multiple males, exposing them to the potentially pathogenic microbes in semen, and (3) females spend more time in the nest than do males so may be more exposed to nest microbes and ectoparasites that can be vectors of bacterial and viral pathogens. In addition, elevated testosterone in males may suppress immune function. We tested our prediction during the 2009 breeding season with microbicidal assays in vitro to assess the ability of the innate immune system to kill Escherichia coli. The sexes did not differ in the ability of their whole blood to kill E. coli. We also found no significant relationships between the ability of whole blood to kill E. coli and the reproductive performance or the physical condition of males or females. These results indicate that during the nestling period there are no sexual differences in this component of the innate immune system. In addition, they suggest that there is little association between this component of innate immunity and the reproductive performance and physical condition during the nestling period of adult Tree Swallows.

  14. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila

    Science.gov (United States)

    Xiong, Xiao-Peng; Chang, Kung-Yen; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M.; Zhou, Rui

    2016-01-01

    microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity. PMID:27893816

  15. Double Plant Homeodomain Fingers 2 (DPF2) Promotes the Immune Escape of Influenza Virus by Suppressing Beta Interferon Production.

    Science.gov (United States)

    Shin, Dongjo; Lee, Jihye; Park, Ji Hoon; Min, Ji-Young

    2017-06-15

    role in the replication and propagation of influenza virus. DPF2 functions in the noncanonical NF-κB pathway, which negatively regulates type I IFN induction. Thus, we investigated the relationship between the IFN response and DPF2 in influenza virus infection. Upon influenza virus infection, DPF2 dysregulated IFN-β induction and expression of cytokines/chemokines and antiviral proteins. This study provides evidence that influenza virus utilizes DPF2 to escape host innate immunity. Copyright © 2017 American Society for Microbiology.

  16. Toll-like receptor 11-initiated innate immune response in male mouse germ cells.

    Science.gov (United States)

    Chen, Qiaoyuan; Zhu, Weiwei; Liu, Zhenghui; Yan, Keqin; Zhao, Shutao; Han, Daishu

    2014-02-01

    Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.

  17. Asunaprevir Evokes Hepatocytes Innate Immunity to Restrict the Replication of Hepatitis C and Dengue Virus

    Directory of Open Access Journals (Sweden)

    Wei-Lun Tsai

    2017-04-01

    Full Text Available Type I Interferon-mediated innate immunity against Flaviviridae, such as Hepatitis C virus (HCV and Dengue virus (DENV, involves TLR3, RIG-I-like receptor (RLR and JAK-STAT signal pathways. Asunaprevir is a newly developed HCV protease inhibitor for HCV treatment. Whether, asunaprevir activates innate immunity to restrict viral infection is unclear. Thus, this study investigates the effect of asunaprevir on innate immunity and its influence on HCV and DENV infection. Huh 7.5.1, Hep-G2 cells, JFH-1 infection model, and DENV-2 infection were used for the analysis. The activity of asunaprevir-regulated innate immunity signal pathway was assessed with IFN-β promoter or IFN-stimulated responsive element (ISRE reporter assays and immunoblotting of key signal proteins. siRNA-mediated MAVS and TRIF knockdown of cells was performed to assess the effect of asunaprevir-regulated innate immunity against HCV and DENV. Asunaprevir treatment activated ISRE and IFN-β promoter-luciferase activities and signaling proteins in the JAK-STAT, MAVS, and TRIF pathways in Huh 7.5.1 cells. Asunaprevir-mediated signaling activation was decreased in MAVS-knockdown cells. Importantly, both RNA and protein levels of DENV-2 NS3 were decreased in asunaprevir-treated Huh 7.5.1 and HepG2 cells. In MAVS-knockdown cells, the restrictive effect of asunaprevir on HCV and DENV was attenuated. Our findings reveal an unexpected activity of asunaprevir, the activation of MAVS dependent innate immunity to restrict HCV and DENV infection.

  18. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  19. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes.

    Science.gov (United States)

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-07

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000-13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change-containing variation acquired from archaic hominins or adaptive variants in specific populations-improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Asunaprevir Evokes Hepatocytes Innate Immunity to Restrict the Replication of Hepatitis C and Dengue Virus.

    Science.gov (United States)

    Tsai, Wei-Lun; Cheng, Jin-Shiung; Shu, Chih-Wen; Lai, Kwok-Hung; Chan, Hoi-Hung; Wu, Chun-Ching; Wu, Jing-Mei; Hsu, Ping-I; Chung, Raymond T; Chang, Tsung-Hsien

    2017-01-01

    Type I Interferon-mediated innate immunity against Flaviviridae, such as Hepatitis C virus (HCV) and Dengue virus (DENV), involves TLR3, RIG-I-like receptor (RLR) and JAK-STAT signal pathways. Asunaprevir is a newly developed HCV protease inhibitor for HCV treatment. Whether, asunaprevir activates innate immunity to restrict viral infection is unclear. Thus, this study investigates the effect of asunaprevir on innate immunity and its influence on HCV and DENV infection. Huh 7.5.1, Hep-G2 cells, JFH-1 infection model, and DENV-2 infection were used for the analysis. The activity of asunaprevir-regulated innate immunity signal pathway was assessed with IFN-β promoter or IFN-stimulated responsive element (ISRE) reporter assays and immunoblotting of key signal proteins. siRNA-mediated MAVS and TRIF knockdown of cells was performed to assess the effect of asunaprevir-regulated innate immunity against HCV and DENV. Asunaprevir treatment activated ISRE and IFN-β promoter-luciferase activities and signaling proteins in the JAK-STAT, MAVS, and TRIF pathways in Huh 7.5.1 cells. Asunaprevir-mediated signaling activation was decreased in MAVS-knockdown cells. Importantly, both RNA and protein levels of DENV-2 NS3 were decreased in asunaprevir-treated Huh 7.5.1 and HepG2 cells. In MAVS-knockdown cells, the restrictive effect of asunaprevir on HCV and DENV was attenuated. Our findings reveal an unexpected activity of asunaprevir, the activation of MAVS dependent innate immunity to restrict HCV and DENV infection.

  1. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes

    Science.gov (United States)

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-01

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000–13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change—containing variation acquired from archaic hominins or adaptive variants in specific populations—improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. PMID:26748513

  2. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Daniele Corridoni

    2018-02-01

    Full Text Available Activation of the innate immune system through pattern-recognition receptor (PRR signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD. The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.

  3. Innate immunity related pathogen recognition receptors and chronic hepatitis B infection.

    Science.gov (United States)

    Nosratabadi, Reza; Alavian, Seyed Moayed; Zare-Bidaki, Mohammad; Shahrokhi, Vahid Mohammadi; Arababadi, Mohammad Kazemi

    2017-10-01

    Innate immunity consists of several kinds of pathogen recognition receptors (PRRs), which participate in the recognition of pathogens and consequently activation of innate immune system against pathogens. Recently, several investigations reported that PRRs may also play key roles in the induction/stimulation of immune system related complications in microbial infections. Hepatitis B virus (HBV), as the main cause of viral hepatitis in human, can induce several clinical forms of hepatitis B and also might be associated with hepatic complications such as cirrhosis and hepatocellular carcinoma (HCC). Based on the important roles of PRRs in the eradication of microbial infections including viral infections and their related complications, it appears that the molecules may be a main part of immune responses against viral infections including HBV and participate in the HBV related complications. Thus, this review article has brought together information regarding the roles of PRRs in immunity against HBV and its complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Targeting the innate immune system as immunotherapy for Acute Myeloid Leukemia (AML

    Directory of Open Access Journals (Sweden)

    Emily Kathleen Curran

    2015-04-01

    Full Text Available Because of its disseminated nature and lack of tumor-draining lymph nodes, acute myeloid leukemia (AML likely employs unique immune evasion strategies as compared to solid malignancies. Targeting these unique mechanisms may result in improved immunotherapeutic approaches. Emerging data suggests that a specific dendritic cell (DC subset, CD8α DCs, may be responsible for mediating tolerance in AML and thus targeting the innate immune system may be of benefit in this disease. Promising immune targets include the Toll-like receptors (TLRs, calreticulin/CD47, the stimulator of interferon genes (STING pathway and signal transducer and activator of transcription 3 (STAT3. However, it is becoming clear that compensatory mechanisms may limit the efficacy of these agents alone and thus rationale combinations of immunotherapies are warranted. This review discusses the potential immune evasion strategies in AML, as well as discussion of the promising innate immune targets, both alone and in combination, for this disease.

  5. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation

    Science.gov (United States)

    Muralidharan, Sujatha; Mandrekar, Pranoti

    2013-01-01

    Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders. PMID:23990626

  6. The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus

    Directory of Open Access Journals (Sweden)

    Abhishek N. Prasad

    2013-12-01

    Full Text Available Arthropod-borne viruses (arboviruses represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.

  7. The role of innate immunity in conditioning mosquito susceptibility to West Nile virus.

    Science.gov (United States)

    Prasad, Abhishek N; Brackney, Doug E; Ebel, Gregory D

    2013-12-13

    Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.

  8. Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila

    Science.gov (United States)

    Regan, Jennifer C.; Brandão, Ana S.; Leitão, Alexandre B.; Mantas Dias, Ângela Raquel; Sucena, Élio; Jacinto, António; Zaidman-Rémy, Anna

    2013-01-01

    Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in

  9. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jennifer C Regan

    2013-10-01

    Full Text Available Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of

  10. An evolving new paradigm: endothelial cells--conditional innate immune cells.

    Science.gov (United States)

    Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng

    2013-08-22

    Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.

  11. An evolving new paradigm: endothelial cells – conditional innate immune cells

    Science.gov (United States)

    2013-01-01

    Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies. PMID:23965413

  12. Personality and innate immune defenses in a wild bird

    NARCIS (Netherlands)

    Jacques-Hamilton, Rowan; Hall, Michelle L.; Buttemer, William A.; Matson, Kevin D.; Gonçalves da Silva, Anders; Mulder, Raoul A.; Peters, Anne

    2017-01-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In

  13. Receptor-like kinase complexes in plant innate immunity

    DEFF Research Database (Denmark)

    Greeff, Michael Christiaan; Roux, Milena Edna; Mundy, John

    2012-01-01

    , the aforementioned RLKs activate generic immune responses termed pattern-triggered immunity (PTI). RLKs can form complexes with other family members and engage a variety of intracellular signaling components and regulatory pathways upon stimulation. This review focuses on interesting new data about how...

  14. Plant innate immunity: An updated insight into defense mechanism

    Indian Academy of Sciences (India)

    2013-02-09

    Feb 9, 2013 ... Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent ...

  15. Innate immune receptors in carp: recognition of protozoan parasites

    NARCIS (Netherlands)

    Ribeiro, C.M.S.

    2010-01-01

    This PhD thesis reports on pattern recognition receptors involved in the immune responses of common carp (Cyprinus carpio) to two protozoan parasites Trypanoplasma borreli and Trypanosoma carassii. The immune responses of carp are fundamentally different when comparing these two extracellular blood

  16. Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections.

    Directory of Open Access Journals (Sweden)

    Sine K Kratholm

    Full Text Available Interleukin (IL -21 is produced by Natural Killer T (NKT cells and CD4(+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT and IL-21R knock out (KO mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2 infection model to show that IL-21 - IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i. and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21 had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.

  17. Additive effects of HLA alleles and innate immune genes determine viral outcome in HCV infection.

    Science.gov (United States)

    Fitzmaurice, Karen; Hurst, Jacob; Dring, Megan; Rauch, Andri; McLaren, Paul J; Günthard, Huldrych F; Gardiner, Clair; Klenerman, Paul

    2015-05-01

    Chronic HCV infection is a leading cause of liver-related morbidity globally. The innate and adaptive immune responses are thought to be important in determining viral outcomes. Polymorphisms associated with the IFNL3 (IL28B) gene are strongly associated with spontaneous clearance and treatment outcomes. This study investigates the importance of HLA genes in the context of genetic variation associated with the innate immune genes IFNL3 and KIR2DS3. We assess the collective influence of HLA and innate immune genes on viral outcomes in an Irish cohort of women (n=319) who had been infected from a single source as well as a more heterogeneous cohort (Swiss Cohort, n=461). In the Irish cohort, a number of HLA alleles are associated with different outcomes, and the impact of IFNL3-linked polymorphisms is profound. Logistic regression was performed on data from the Irish cohort, and indicates that the HLA-A*03 (OR 0.36 (0.15 to 0.89), p=0.027) -B*27 (OR 0.12 (0.03 to 0.45), p=HLA Class I, II and IFNL3 genes in their prediction of viral outcome. This data supports a critical role for the adaptive immune response in the control of HCV in concert with the innate immune response. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection

    Science.gov (United States)

    O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.

    2015-01-01

    Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222

  19. Evaluation of Innate Immunity Biomarkers on Admission and at Discharge From an Acute Heart Failure Episode.

    Science.gov (United States)

    Silva, Nuno; Patrício, Emília; Bettencourt, Paulo; Guimarães, João Tiago

    2016-11-01

    The involvement of the immune system in heart failure (HF) has been demonstrated. Evidence shows that innate immunity can have a role in the remodeling process and progression of HF. With previous studies showing the prognostic value of some innate immunity markers and their relevance in this condition, we aim to evaluate how these markers vary on hospitalization due to an acute episode of HF and at discharge. About 154 patients admitted with acute HF were prospectively recruited. Patients were evaluated on admission and at discharge from the hospital. Patients with infection were separately analyzed. Innate immunity, inflammatory, and cardiac biomarkers were measured and were compared between groups and between admission and discharge and with reference values of biological variation. Median patients' age was 78 years, and half of the patients were men. The median duration of hospitalization was 6 days. C3 and C4 protein levels significantly increased (P innate immunity markers such as C3 and C4 increase after treatment for acute HF, supporting the hypothesis that they can be involved in the resolution of the acute episode. © 2016 Wiley Periodicals, Inc.

  20. Innate and Adaptive Immune Cell Metabolism in Tumor Microenvironment.

    Science.gov (United States)

    Wu, Duojiao

    2017-01-01

    During an immune response, leukocytes undergo major changes in growth and function that are tightly coupled to dynamic shifts in metabolic processes. Immunometabolism is an emerging field that investigates the interplay between immunological and metabolic processes. The immune system has a key role to play in controlling cancer initiation and progression. Increasing evidence indicates the immunosuppressive nature of the local environment in tumor. In tumor microenvironment, immune cells collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus prompting tumorigenesis and resistance to treatments. Here, we summarize the latest insights into the metabolic reprogramming of immune cells in tumor microenvironment and their potential roles in tumor progression and metastasis. Manipulating metabolic remodeling and immune responses may provide an exciting new option for cancer immunotherapy.

  1. New insights into the role of EMT in tumor immune escape.

    Science.gov (United States)

    Terry, Stéphane; Savagner, Pierre; Ortiz-Cuaran, Sandra; Mahjoubi, Linda; Saintigny, Pierre; Thiery, Jean-Paul; Chouaib, Salem

    2017-07-01

    Novel immunotherapy approaches have provided durable remission in a significant number of cancer patients with cancers previously considered rapidly lethal. Nonetheless, the high degree of nonresponders, and in some cases the emergence of resistance in patients who do initially respond, represents a significant challenge in the field of cancer immunotherapy. These issues prompt much more extensive studies to better understand how cancer cells escape immune surveillance and resist immune attacks. Here, we review the current knowledge of how cellular heterogeneity and plasticity could be involved in shaping the tumor microenvironment (TME) and in controlling antitumor immunity. Indeed, recent findings have led to increased interest in the mechanisms by which cancer cells undergoing epithelial-mesenchymal transition (EMT), or oscillating within the EMT spectrum, might contribute to immune escape through multiple routes. This includes shaping of the TME and decreased susceptibility to immune effector cells. Although much remains to be learned on the mechanisms at play, cancer cell clones with mesenchymal features emerging from the TME seem to be primed to face immune attacks by specialized killer cells of the immune system, the natural killer cells, and the cytotoxic T lymphocytes. Recent studies investigating patient tumors have suggested EMT as a candidate predictive marker to be explored for immunotherapy outcome. Promising data also exist on the potential utility of targeting these cancer cell populations to at least partly overcome such resistance. Research is now underway which may lead to considerable progress in optimization of treatments. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  2. Innate Immune Detection of Flagellin Positively and Negatively Regulates Salmonella Infection

    Science.gov (United States)

    Lai, Marvin A.; Quarles, Ellen K.; López-Yglesias, Américo H.; Zhao, Xiaodan; Hajjar, Adeline M.; Smith, Kelly D.

    2013-01-01

    Salmonella enterica serovar Typhimurium is a flagellated bacterium and one of the leading causes of gastroenteritis in humans. Bacterial flagellin is required for motility and also a prime target of the innate immune system. Innate immune recognition of flagellin is mediated by at least two independent pathways, TLR5 and Naip5-Naip6/NlrC4/Caspase-1. The functional significance of each of the two independent flagellin recognition systems for host defense against wild type Salmonella infection is complex, and innate immune detection of flagellin contributes to both protection and susceptibility. We hypothesized that efficient modulation of flagellin expression in vivo permits Salmonella to evade innate immune detection and limit the functional role of flagellin-specific host innate defenses. To test this hypothesis, we used Salmonella deficient in the anti-sigma factor flgM, which overproduce flagella and are attenuated in vivo. In this study we demonstrate that flagellin recognition by the innate immune system is responsible for the attenuation of flgM− S. Typhimurium, and dissect the contribution of each flagellin recognition pathway to bacterial clearance and inflammation. We demonstrate that caspase-1 controls mucosal and systemic infection of flgM− S. Typhimurium, and also limits intestinal inflammation and injury. In contrast, TLR5 paradoxically promotes bacterial colonization in the cecum and systemic infection, but attenuates intestinal inflammation. Our results indicate that Salmonella evasion of caspase-1 dependent flagellin recognition is critical for establishing infection and that evasion of TLR5 and caspase-1 dependent flagellin recognition helps Salmonella induce intestinal inflammation and establish a niche in the inflamed gut. PMID:23977202

  3. Dysregulation of innate immunity in ulcerative colitis patients who fail anti-tumor necrosis factor therapy.

    Science.gov (United States)

    Baird, Angela C; Mallon, Dominic; Radford-Smith, Graham; Boyer, Julien; Piche, Thierry; Prescott, Susan L; Lawrance, Ian C; Tulic, Meri K

    2016-11-07

    To study the innate immune function in ulcerative colitis (UC) patients who fail to respond to anti-tumor necrosis factor (TNF) therapy. Effects of anti-TNF therapy, inflammation and medications on innate immune function were assessed by measuring peripheral blood mononuclear cell (PBMC) cytokine expression from 18 inflammatory bowel disease patients pre- and 3 mo post-anti-TNF therapy. Toll-like receptor (TLR) expression and cytokine production post TLR stimulation was assessed in UC "responders" (n = 12) and "non-responders" (n = 12) and compared to healthy controls (n = 12). Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were measured in blood to assess disease severity/activity and inflammation. Pro-inflammatory (TNF, IL-1β, IL-6), immuno-regulatory (IL-10), Th1 (IL-12, IFNγ) and Th2 (IL-9, IL-13, IL-17A) cytokine expression was measured with enzyme-linked immunosorbent assay while TLR cellular composition and intracellular signalling was assessed with FACS. Prior to anti-TNF therapy, responders and non-responders had similar level of disease severity and activity. PBMC's ability to respond to TLR stimulation was not affected by TNF therapy, patient's severity of the disease and inflammation or their medication use. At baseline, non-responders had elevated innate but not adaptive immune responses compared to responders (P innate cytokine responses to all TLRs compared to healthy controls (P innate immune dysfunction was associated with reduced number of circulating plasmacytoid dendritic cells (pDCs) (P innate immunity in non-responders may explain reduced efficacy to anti-TNF therapy. These serological markers may prove useful in predicting the outcome of costly anti-TNF therapy.

  4. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  5. Modulation of innate immune mechanisms to enhance vaccine induced immunity: Role of co-inhibitory molecules

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2016-05-01

    Full Text Available No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several anti-leishmanial vaccine formulations have been tested in various animal models including genetically modified live attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells i.e., dendritic cells (DC and macrophages (M. Further, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs, and to condition the infected M towards anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of anti-microbial reactive oxygen, nitrogen molecules and pro-inflammatory cytokines such as IFN-, IL-12 and TNF-α. These early events limit the activation of TH1 effector cells and set the stage for pathogenesis. Further, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells, and TH2 biased immunity that results in production of anti-inflammatory cytokines such as TGF-, and IL-10. More recent studies have also documented the induction of co-inhibitory ligands such as CTLA-4, PD-L1, CD200 and Tim-3 that induce exhaustion and/or non-proliferation in antigen experienced T cells. Most of these studies focus on viral infections in chronic phase thus limiting the direct application of these results from these studies to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine induced protective immunity can be modulated using strategies that enhance the co-stimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules such as PD-L1 and CD200. In this

  6. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules.

    Science.gov (United States)

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4(+) and CD8(+) T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on

  7. Dynamic regulation of innate immune responses in Drosophila by Senju-mediated glycosylation.

    Science.gov (United States)

    Yamamoto-Hino, Miki; Muraoka, Masatoshi; Kondo, Shu; Ueda, Ryu; Okano, Hideyuki; Goto, Satoshi

    2015-05-05

    The innate immune system is the first line of defense encountered by invading pathogens. Delayed and/or inadequate innate immune responses can result in failure to combat pathogens, whereas excessive and/or inappropriate responses cause runaway inflammation. Therefore, immune responses are tightly regulated from initiation to resolution and are repressed during the steady state. It is well known that glycans presented on pathogens play important roles in pathogen recognition and the interactions between host molecules and microbes; however, the function of glycans of host organisms in innate immune responses is less well known. Here, we show that innate immune quiescence and strength of the immune response are controlled by host glycosylation involving a novel UDP-galactose transporter called Senju. In senju mutants, reduced expression of galactose-containing glycans resulted in hyperactivation of the Toll signaling pathway in the absence of immune challenges. Genetic epistasis and biochemical analyses revealed that Senju regulates the Toll signaling pathway at a step that converts Toll ligand Spatzle to its active form. Interestingly, Toll activation in immune-challenged wild type (WT) flies reduced the expression of galactose-containing glycans. Suppression of the degalactosylation by senju overexpression resulted in reduced induction of Toll-dependent expression of an antimicrobial peptide, Drosomycin, and increased susceptibility to infection with Gram-positive bacteria. These data suggest that Senju-mediated galactosylation suppresses undesirable Toll signaling activation during the steady state; however, Toll activation in response to infection leads to degalactosylation, which raises the immune response to an adequate level and contributes to the prompt elimination of pathogens.

  8. Paying for the Tolls: The High Cost of the Innate Immune System for the Cardiac Myocyte.

    Science.gov (United States)

    Knowlton, Anne A

    2017-01-01

    The cardiac myocyte differs strikingly from the specialized cells of the immune system, which has two different responses to invading organisms and tissue damage. Adaptive or acquired immunity generates highly specific antibodies in response to threats and is an essential component of immunity; however, adaptive immunity can take 4-7 days to mobilize, and a more primitive response, innate immunity, fills the gap. Innate immunity is expressed in complex and in primitive life forms. Specialized receptors, Toll-like receptors (TLRs), which are widely distributed throughout different tissues recognize danger signals and rapidly respond with the release of noxious substances, such as TNFα. The problem is that many endogenous molecules have been found to act as ligands for specific TLRs, and when these molecules are released into the extracellular environment, they can cause problems by activating innate immunity and an inflammatory response. In cardiac myocytes heat shock protein (HSP)60 can activate TLR4, as can HMGB1, and this type of response can amplify the response to ischemia/reperfusion leading to increased cell and tissue injury. Activation of TLRs can potentially amplify chronic, inflammatory diseases, such as ischemic heart failure. Thus, it is important to understand the regulation of the TLRs and their downstream effects. This chapter will focus on the TLRs and cardiac myocytes.

  9. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths

    Science.gov (United States)

    Boudinot, Pierre; Zou, Jun; Ota, Tatsuya; Buonocore, Francesco; Scapigliati, Giuseppe; Canapa, Adriana; Cannon, John; Litman, Gary; Hansen, John D.

    2014-01-01

    The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.

  10. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    Science.gov (United States)

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens.

  11. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  12. Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma.

    Science.gov (United States)

    Eckert, Alexander W; Wickenhauser, Claudia; Salins, Paul C; Kappler, Matthias; Bukur, Juergen; Seliger, Barbara

    2016-04-05

    Changes in the tumor microenvironment and immune surveillance represent crucial hallmarks of various kinds of cancer, including oral squamous cell carcinoma (OSCC), and a close crosstalk of hypoxia regulating genes, an activation of chemokines and immune cells has been described. A review about the pivotal role of HIF-1, its crosstalk to various cornerstones in OSCC tumorigenesis is presented. Hypoxia is a frequent event in OSCC and leads to a reprogramming of the cellular metabolism in order to prevent cell death. Hypoxic OSCC cells induce different adaptive changes such as anaerobic glycolysis, pH stabilisation and alterations of the gene and protein expression profile. This complex metabolic program is orchestrated by the hypoxia inducible factor (HIF)-1, the master regulator of early tumor progression. Hypoxia-dependent and -independent alterations in immune surveillance lead to different immune evasion strategies, which are partially mediated by alterations of the tumor cells, changes in the frequency, activity and repertoire of immune cell infiltrates and of soluble and environmental factors of the tumor micromilieu with consecutive generation of an immune escape phenotype, progression of disease and poor clinical outcome of OSCC patients. This review focusses on the importance of HIF-1 in the adaption and reprogramming of the metabolic system to reduced oxygen values as well as on the role of the tumor microenvironment for evasion of OSCC from immune recognition and destruction.

  13. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast

    NARCIS (Netherlands)

    Lowman, D.W.; Greene, R.R.; Bearden, D.W.; Kruppa, M.D.; Pottier, M.; Monteiro, M.A.; Soldatov, D.V.; Ensley, H.E.; Cheng, S.C.; Netea, M.G.; Williams, D.L.

    2014-01-01

    The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated

  14. DMPD: Toll-like receptors are key participants in innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18064347 Toll-like receptors are key participants in innate immune responses. Aranc...Epub 2007 Nov 21. (.png) (.svg) (.html) (.csml) Show Toll-like receptors are key participants in innate immu...ne responses. PubmedID 18064347 Title Toll-like receptors are key participants in

  15. Innate immune evasion by hepatitis C virus and West Nile virus

    Science.gov (United States)

    Keller, Brian C; Johnson, Cynthia L.; Erickson, Andrea Kaup; Gale, Michael

    2009-01-01

    Antiviral immunity in mammals involves several levels of surveillance and effector actions by host factors to detect viral pathogens, trigger α/β interferon production, and to mediate innate defenses within infected cells. Our studies have focused on understanding how these processes are regulated during infection by hepatitis C virus (HCV) and West Nile virus (WNV). Both viruses are members of the Flaviviridae and are human pathogens but they each mediate a very different disease and course of infection. Our results demonstrate common and unique innate immune interactions of each virus that govern antiviral immunity, and demonstrate the central role of α/β interferon immune defenses in controlling the outcome of infection. PMID:17702639

  16. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    Science.gov (United States)

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  17. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

    Directory of Open Access Journals (Sweden)

    Xiaobo Lei

    2016-01-01

    Full Text Available Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  18. Mycotoxin Patulin Suppresses Innate Immune Responses by Mitochondrial Dysfunction and p62/Sequestosome-1-dependent Mitophagy.

    Science.gov (United States)

    Tsai, Wan-Ting; Lo, Yin-Chiu; Wu, Ming-Sian; Li, Chia-Yang; Kuo, Yi-Ping; Lai, Yi-Hui; Tsai, Yu; Chen, Kai-Chieh; Chuang, Tsung-Hsien; Yao, Chun-Hsu; Lee, Jinq-Chyi; Hsu, Li-Chung; Hsu, John T-A; Yu, Guann-Yi

    2016-09-09

    Innate immune responses are important for pathogen elimination and adaptive immune response activation. However, excess inflammation may contribute to immunopathology and disease progression (e.g. inflammation-associated hepatocellular carcinoma). Immune modulation resulting from pattern recognition receptor-induced responses is a potential strategy for controlling immunopathology and related diseases. This study demonstrates that the mycotoxin patulin suppresses Toll-like receptor- and RIG-I/MAVS-dependent cytokine production through GSH depletion, mitochondrial dysfunction, the activation of p62-associated mitophagy, and p62-TRAF6 interaction. Blockade of autophagy restored the immunosuppressive activity of patulin, and pharmacological activation of p62-dependent mitophagy directly reduced RIG-I-like receptor-dependent inflammatory cytokine production. These results demonstrated that p62-dependent mitophagy has an immunosuppressive role to innate immune response and might serve as a potential immunomodulatory target for inflammation-associated diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Mycotoxin Patulin Suppresses Innate Immune Responses by Mitochondrial Dysfunction and p62/Sequestosome-1-dependent Mitophagy *

    Science.gov (United States)

    Tsai, Wan-Ting; Lo, Yin-Chiu; Wu, Ming-Sian; Li, Chia-Yang; Kuo, Yi-Ping; Lai, Yi-Hui; Tsai, Yu; Chen, Kai-Chieh; Chuang, Tsung-Hsien; Yao, Chun-Hsu; Lee, Jinq-Chyi; Hsu, Li-Chung; Hsu, John T.-A.; Yu, Guann-Yi

    2016-01-01

    Innate immune responses are important for pathogen elimination and adaptive immune response activation. However, excess inflammation may contribute to immunopathology and disease progression (e.g. inflammation-associated hepatocellular carcinoma). Immune modulation resulting from pattern recognition receptor-induced responses is a potential strategy for controlling immunopathology and related diseases. This study demonstrates that the mycotoxin patulin suppresses Toll-like receptor- and RIG-I/MAVS-dependent cytokine production through GSH depletion, mitochondrial dysfunction, the activation of p62-associated mitophagy, and p62-TRAF6 interaction. Blockade of autophagy restored the immunosuppressive activity of patulin, and pharmacological activation of p62-dependent mitophagy directly reduced RIG-I-like receptor-dependent inflammatory cytokine production. These results demonstrated that p62-dependent mitophagy has an immunosuppressive role to innate immune response and might serve as a potential immunomodulatory target for inflammation-associated diseases. PMID:27458013

  20. Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors

    Directory of Open Access Journals (Sweden)

    Chenjie Fei

    2016-03-01

    Full Text Available Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s, and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus leukocyte immune-type receptors (IpLITRs, which appear to be important regulators of several innate cellular responses via classical as well