WorldWideScience

Sample records for erythroid cell differentiation

  1. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-01-01

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  2. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  3. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  4. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-01-01

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation

  5. Dimethyl sulfoxide-inducible cytoplasmic factor involved in erythroid differentiation in mouse erythroleukemia (Friend) cells

    International Nuclear Information System (INIS)

    Watanabe, T.; Oishi, M.

    1987-01-01

    A previous report described an intracellular factor (differentiation-inducing factor I, or DIF-I) that seem to play a role in erythroid differentiation in mouse erythroleukemia (MEL) cells. The authors have detected another erythroid-inducing factor in cell-free extracts from dimethyl sulfoxide- or hexamethylenebis(acetamide)-treated MEL cells, which acts synergistically with DIF-I. The partially purified factor (termed DIF-II) triggered erythroid differentiation when introduced into undifferentiated MEL cells that had been potentiated by the induction of DIF-I. The activity in the extracts appeared in an inducible manner after addition of dimethyl sulfoxide or hexamethylenebis(acetamide), reached a maximum at 6 hr, and then rapidly decreased. The induction was inhibited by phorbol 12-myristate 13-acetate and also by cycloheximide. No induction was observed in a mutant MEL cell line defective in erythroid differentiation. These characteristics are consistent with the supposition that DIF-II is one of the putative dimethyl sulfoxide-inducible factors detected in previously reported cell-fusion and cytoplast-fusion experiments. The role of DIF-II in MEL-cell differentiation and in vitro differentiation in general is discussed

  6. A hanging drop culture method to study terminal erythroid differentiation.

    Science.gov (United States)

    Gutiérrez, Laura; Lindeboom, Fokke; Ferreira, Rita; Drissen, Roy; Grosveld, Frank; Whyatt, David; Philipsen, Sjaak

    2005-10-01

    To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.

  7. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    Science.gov (United States)

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  8. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  9. Selective toxicity of dihydroartemisinin on human CD34+ erythroid cell differentiation

    International Nuclear Information System (INIS)

    Finaurini, Sara; Ronzoni, Luisa; Colancecco, Alessandra; Cattaneo, Alessandra; Cappellini, Maria Domenica; Ward, Stephen A.; Taramelli, Donatella

    2010-01-01

    Artemisinins are safely used in the combination therapy for uncomplicated malaria, but their employment during pregnancy is still controversial. In fact, animal studies reported that the active metabolite, dihydroartemisinin (DHA), causes embryonic erythrocytes depletion, when the treatment is performed during a critical period of time. The present study investigates the effect of DHA on human developmental erythropoiesis in order to characterize the target erythroid stage and to predict the window of susceptibility in human pregnancy. As a model for human developmental erythropoiesis, peripheral blood purified, CD34+ cells were committed towards erythrocytes and DHA (0.5 or 2 μM) was added to different erythroid stages during 14 days culture. Erythroid differentiation was investigated by cytofluorimetric analysis of Glycophorin A expression, by morphological analysis and erythroid globin gene expression analysis with real-time PCR. It was found that the effect of DHA was dependent on the maturation stage of erythroid cells. In fact when DHA was added to the pro- and basophilic erythroblasts caused a significant dose-dependent inhibition of cell proliferation and a significant delay of erythroid differentiation, as measured by morphological analysis, expression of Glycophorin A by immunofluorescence and of erythroid globin genes by real-time PCR. In contrast, the inhibition of stem cells and of early progenitors was transient and masked by the subsequent exponential cell growth. No effect was observed on mature erythroid stages. This is the first demonstration that DHA affects human erythropoiesis in vitro, in a dose- and time-dependent manner; the target population seems to be the pro-erythroblast and basophilic erythroblast stage, suggesting that DHA toxicity is limited to primitive human erythropoiesis. These findings outline the relevance of DHA dosage and timing to prevent embryotoxicity and support current WHO recommendations of avoiding malaria treatment

  10. Studies of globin gene expression in differentiating erythroid cells

    International Nuclear Information System (INIS)

    Sullivan, T.D.

    1985-01-01

    The author has addressed questions concerning globin gene expression and the loss of protein synthesis in the terminal stages of erythroid development. (1) The hypothesis that the rate of cell division affects the relative synthesis of γ and β globin in erythroid cells was investigated. The effect of hydroxyurea, aminopterin, or low culture temperature on the in vitro growth of erythroid progenitor cells and on the relative synthesis of γ and β globin was measured. No consistent change in γ globin synthesis was detected. (2) The hypothesis that the ratio of γ and β globin synthesis decreases during erythroid maturation because of differential mRNA stability was investigated. The half-lives of γ and β globin mRNAs and γ and β globin protein synthesis were measured in cultured reticulocytes. γ and β globin mRNAs were assayed by solution hybridization and by in vitro translation. Globin synthesis was determined by 3 H-leucine incorporation into the γ and β globin chains. γ and β globin mRNAs decay with similar half-lives in cultured reticulocytes. Therefore, the change in the ratio of γ and β globin synthesis during erythroid maturation cannot be explained by differences in mRNA stability and is likely to result from asynchronous transcription of the genes. These data suggest that protein synthesis in maturing reticulocytes is not limited by the quantity of mRNA but by the availability of translation factors. (3) The hypothesis was tested that the initiation factor GEF becomes limiting for protein synthesis during reticulocyte maturation

  11. Activated Fps/Fes tyrosine kinase regulates erythroid differentiation and survival.

    Science.gov (United States)

    Sangrar, Waheed; Gao, Yan; Bates, Barbara; Zirngibl, Ralph; Greer, Peter A

    2004-10-01

    A substantial body of evidence implicates the cytoplasmic protein tyrosine kinase Fps/Fes in regulation of myeloid differentiation and survival. In this study we wished to determine if Fps/Fes also plays a role in the regulation of erythropoiesis. Mice tissue-specifically expressing a "gain-of-function" mutant fps/fes transgene (fps(MF)) encoding an activated variant of Fps/Fes (MFps), were used to explore the in vivo biological role of Fps/Fes. Erythropoiesis in these mice was assessed by hematological analysis, lineage marker analysis, bone-marrow colony assays, and biochemical approaches. fps(MF) mice displayed reductions in peripheral red cell counts. However, there was an accumulation of immature erythroid precursors, which displayed increased survival. Fps/Fes and the related Fer kinase were both detected in early erythroid progenitors/blasts and in mature red cells. Fps/Fes was also activated in response to erythropoietin (EPO) and stem cell factor (SCF), two critical factors in erythroid development. In addition, increased Stat5A/B activation and reduced Erk1/2 phosphorylation was observed in fps(MF) primary erythroid cells in response to EPO or SCF, respectively. These data support a role for Fps/Fes in regulating the survival and differentiation of erythroid cells through modulation of Stat5A/B and Erk kinase pathways induced by EPO and SCF. The increased numbers and survival of erythroid progenitors from fps(MF) mice, and their differential responsiveness to SCF and EPO, implicates Fps/Fes in the commitment of multilineage progenitors to the erythroid lineage. The anemic phenotype in fps(MF) mice suggests that downregulation of Fps/Fes activity might be required for terminal erythroid differentiation.

  12. Serum-free Erythroid Differentiation for Efficient Genetic Modification and High-Level Adult Hemoglobin Production.

    Science.gov (United States)

    Uchida, Naoya; Demirci, Selami; Haro-Mora, Juan J; Fujita, Atsushi; Raines, Lydia N; Hsieh, Matthew M; Tisdale, John F

    2018-06-15

    In vitro erythroid differentiation from primary human cells is valuable to develop genetic strategies for hemoglobin disorders. However, current erythroid differentiation methods are encumbered by modest transduction rates and high baseline fetal hemoglobin production. In this study, we sought to improve both genetic modification and hemoglobin production among human erythroid cells in vitro . To model therapeutic strategies, we transduced human CD34 + cells and peripheral blood mononuclear cells (PBMCs) with lentiviral vectors and compared erythropoietin-based erythroid differentiation using fetal-bovine-serum-containing media and serum-free media. We observed more efficient transduction (85%-93%) in serum-free media than serum-containing media (20%-69%), whereas the addition of knockout serum replacement (KSR) was required for serum-free media to promote efficient erythroid differentiation (96%). High-level adult hemoglobin production detectable by electrophoresis was achieved using serum-free media similar to serum-containing media. Importantly, low fetal hemoglobin production was observed in the optimized serum-free media. Using KSR-containing, serum-free erythroid differentiation media, therapeutic adult hemoglobin production was detected at protein levels with β-globin lentiviral transduction in both CD34 + cells and PBMCs from sickle cell disease subjects. Our in vitro erythroid differentiation system provides a practical evaluation platform for adult hemoglobin production among human erythroid cells following genetic manipulation.

  13. Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle

    International Nuclear Information System (INIS)

    Finaurini, Sara; Basilico, Nicoletta; Corbett, Yolanda; D’Alessandro, Sarah; Parapini, Silvia; Olliaro, Piero; Haynes, Richard K.; Taramelli, Donatella

    2012-01-01

    Artemisinin derivatives such as dihydroartemisinin (DHA) induce significant depletion of early embryonic erythroblasts in animal models. We have reported previously that DHA specifically targets pro-erythroblasts and basophilic erythroblasts, when human CD34+ stem cells are differentiated toward the erythroid lineage, indicating that a window of susceptibility to artemisinins may exist also in human developmental erythropoiesis during pregnancy. To better investigate the toxicity of artemisinin derivatives, the structure–activity relationship was evaluated against the K562 leukaemia cell line, used as a model for differentiating early human erythroblasts. All artemisinins derivatives, except deoxyartemisinin, inhibited both spontaneous and induced erythroid differentiation, confirming that the peroxide bridge is responsible for the erythro-toxicity. On the contrary, cell growth was markedly reduced by DHA, artemisone and artesunate but not by artemisinin, 10-deoxoartemisinin or deoxy-artemisinin. The substituent at position C-10 is responsible only for the anti-proliferative effect, since 10-deoxoartemisinin did not reduce cell growth but arrested the differentiation of K562 cells. In particular, the results showed that DHA resulted the most potent and rapidly acting compound of the drug family, causing (i) the decreased expression of GpA surface receptors and the down regulation the γ-globin gene; (ii) the alteration of S phase of cell cycle and (iii) the induction of programmed cell death of early erythroblasts in a dose dependent manner within 24 h. In conclusion, these findings confirm that the active metabolite DHA is responsible for the erythro-toxicity of most of artemisinins used in therapy. Thus, as long as no further clinical data are available, current WHO recommendations of avoiding malaria treatment with artemisinins during the first trimester of pregnancy remain valid.

  14. MiR-27a Promotes Hemin-Induced Erythroid Differentiation of K562 Cells by Targeting CDC25B

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2018-03-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs play a crucial role in erythropoiesis. MiR-23a∼27a∼24-2 clusters have been proven to take part in erythropoiesis via some proteins. CDC25B (cell division control Cdc2 phosphostase B is also the target of mir-27a; whether it regulates erythropoiesis and its mechanism are unknown. Methods: To evaluate the potential role of miR-27a during erythroid differentiation, we performed miR-27a gain- and loss-of-function experiments on hemin-induced K562 cells. We detected miR-27a expression after hemin stimulation at different time points. At the same time, the γ-globin gene also was measured via real-time PCR. According to the results of the chips, we screened the target protein of miR-27a through a dual-luciferase reporter assay and identified it via Western blot analyses. To evaluate the function of CDC25B, benzidine staining and flow cytometry were employed to detect the cell differentiation and cell cycle. Results: We found that miR-27a promotes hemin-induced erythroid differentiation of human K562 cells by targeting cell division cycle 25 B (CDC25B. Overexpression of miR-27a promotes the differentiation of hemin-induced K562 cells, as demonstrated by γ-globin overexpression. The inhibition of miR-27a expression suppresses erythroid differentiation, thus leading to a reduction in the γ-globin gene. CDC25B was identified as a new target of miR-27a during erythroid differentiation. Overexpression of miR-27a led to decreased CDC25B expression after hemin treatment, and CDC25B was up-regulated when miR-27a expression was inhibited. Moreover, the inhibition of CDC25B affected erythroid differentiation, as assessed by γ-globin expression. Conclusion: This study is the first report of the interaction between miR-27a and CDC25B, and it improves the understanding of miRNA functions during erythroid differentiation.

  15. Expression of assayable residual stem cell damage in erythroid differentiation

    International Nuclear Information System (INIS)

    Huebner, G.E.; Miller, M.E.; Cronkite, E.P.

    1985-01-01

    In rodents, residual damage is inducible in hematopoietic stem cells by exposure to ionizing radiation or alkylating agents. This damage can b e assayed in mice by transferring bone marrow into lethally irradiated syngeneic recipients and subsequently measuring the incremental increase of-( 125 I)iodo-2'-deoxyuridine incorporation in spleens. In this study, bone marrow from mice treated 3 weeks previously with Methylnitrosourea (50 mg/kg) or 450 rad was injected into recipients in order to determine possible residual effects of treatment of erythroid cell differentiation following stem cell seeding. Such effects were detected by a reduced amount of 59 Fe incorporation into spleens, thus indicatin g transfer of residual stem cell damage to differentiating cells. (orig.)

  16. Carbon monoxide induced erythroid differentiation of K562 cells mimics the central macrophage milieu in erythroblastic islands.

    Directory of Open Access Journals (Sweden)

    Shlomi Toobiak

    Full Text Available Growing evidence supports the role of erythroblastic islands (EI as microenvironmental niches within bone marrow (BM, where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule--CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage.Based on the above, the study hypothesized CO to have a role in erythroid maturation. Thus, the effect of CO gas as a potential erythroid differentiation inducer on the common model for erythroid progenitors, K562 cells, was explored. Cells were kept under oxygen lacking environment to mimic BM conditions. Nitrogen anaerobic atmosphere (N₂A served as control for CO atmosphere (COA. Under both atmospheres cells proliferation ceased: in N₂A due to cell death, while in COA as a result of erythroid differentiation. Maturation was evaluated by increased glycophorin A expression and Hb concentration. Addition of 1%CO only to N₂A, was adequate for maintaining cell viability. Yet, the average Hb concentration was low as compared to COA. This was validated to be the outcome of diversified maturation stages of the progenitor's population.In fact, the above scenario mimics the in vivo EI conditions, where at any given moment only a minute portion of the progenitors proceeds into terminal differentiation. Hence, this model might provide a basis for further molecular investigations of the EI structure/function relationship.

  17. Erythroid differentiation and commitment in rat erythroleukemia cells with hypertonic culture conditions.

    OpenAIRE

    Yamaguchi, Y; Kluge, N; Ostertag, W; Furusawa, M

    1981-01-01

    Cell cultures of 7,12-dimethylbenz[a]anthracene-induced rat erythroleukemia can be stimulated to synthesize hemoglobin when cultured in hypertonic media. During hypertonic treatment the intracellular osmotic conditions immediately readjust to those of the extracellular medium. None of the Friend virus-induced mouse erythroleukemia cell lines was inducible for differentiation with the same hypertonic culture conditions used for rat cells. Earliest commitment to erythroid terminal differentiati...

  18. Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2.

    Directory of Open Access Journals (Sweden)

    Jian-Guo Ren

    2010-09-01

    Full Text Available Malic enzyme 2 (ME2 is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel

  19. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Gloria Bua

    Full Text Available The pathogenic Parvovirus B19 (B19V is characterized by a strict adaptation to erythroid progenitor cells (EPCs, a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi and lower levels at day 18 (+1.5 Log from 2 to 48 hpi. B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18. Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6-15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage.

  20. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells

    Science.gov (United States)

    Bua, Gloria; Manaresi, Elisabetta; Bonvicini, Francesca; Gallinella, Giorgio

    2016-01-01

    The pathogenic Parvovirus B19 (B19V) is characterized by a strict adaptation to erythroid progenitor cells (EPCs), a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi) and lower levels at day 18 (+1.5 Log from 2 to 48 hpi). B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18). Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6–15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage. PMID:26845771

  1. Leukemic blast cell colony formation in semisolid culture with erythropoietin: a case report of acute poorly differentiated erythroid leukemia.

    Science.gov (United States)

    Tomonaga, M; Jinnai, I; Tagawa, M; Amenomori, T; Nishino, K; Yao, E; Nonaka, H; Kuriyama, K; Yoshida, Y; Matsuo, T

    1987-02-01

    The bone marrow of a patient with acute undifferentiated leukemia developed unique colonies after a 14-day culture in erythropoietin (EPO)-containing methylcellulose. The colonies consisted of 20 to 200 nonhemoglobinized large blast cells. Cytogenetic analysis of single colonies revealed hypotetraploid karyotypes with several marker chromosomes that were identical to those found in directly sampled bone marrow. The concurrently formed erythroid bursts showed only normal karyotypes. No leukemic colony formation was observed in other culture systems with either colony-stimulating activity (CSA) or phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). The leukemic colonies exhibited a complete EPO-dose dependency similar to that of the patient's normal BFU-E. Although cytochemical and immunologic marker studies of the bone marrow cells failed to clarify the cell lineage of the leukemic cells with extraordinarily large cell size, ultrastructural study revealed erythroid differentiation such as siderosome formation in the cytoplasm and ferritin particles in the rhophecytosis invaginations. These findings indicate that the patient had poorly differentiated erythroid leukemia and that some of the clonogenic cells might respond to EPO in vitro. Corresponding to this biological feature, the leukemic cells were markedly decreased in number in response to repeated RBC transfusions, and partial remission was obtained. These observations suggest that erythroid leukemia distinct from erythroleukemia (M6) with a myeloblastic component, can develop as a minor entity of human acute leukemia.

  2. Comparison of different methods for erythroid differentiation in the K562 cell line.

    Science.gov (United States)

    Shariati, Laleh; Modaress, Mehran; Khanahmad, Hossein; Hejazi, Zahra; Tabatabaiefar, Mohammad Amin; Salehi, Mansoor; Modarressi, Mohammad Hossein

    2016-08-01

    To compare methods for erythroid differentiation of K562 cells that will be promising in the treatment of beta-thalassemia by inducing γ-globin synthesis. Cells were treated separately with: RPMI 1640 medium without glutamine, RPMI 1640 medium without glutamine supplemented with 1 mM sodium butyrate, RPMI 1640 medium supplemented with 1 mM sodium butyrate, 25 µg cisplatin/ml, 0.1 µg cytosine arabinoside/ml. The highest differentiation (84 %) with minimum toxicity was obtained with cisplatin at 15 µg /ml. Real-time RT-PCR showed that expression of the γ-globin gene was significantly higher in the cells differentiated with cisplatin compared to undifferentiated cells (P < 0.001). Cisplatin is useful in the experimental therapy of ß-globin gene defects and can be considered for examining the basic mechanism of γ-reactivation.

  3. Erythroid differentiation of fetal, newborn and adult haemopoietic stem cells

    International Nuclear Information System (INIS)

    Rencricca, N.J.; Howard, D.; Kubanek, B.; Stohlman, F.; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron ( 59 Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments. (author)

  4. Erythroid differentiation of fetal, newborn, and adult haemopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Rencricca, N J; Howard, D; Kubanek, B; Stohlman, F [Boston Univ., Mass. (USA). School of Medicine; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron (/sup 59/Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments.

  5. Possible interaction between B1 retrotransposon-containing sequences and β(major) globin gene transcriptional activation during MEL cell erythroid differentiation.

    Science.gov (United States)

    Vizirianakis, Ioannis S; Tezias, Sotirios S; Amanatiadou, Elsa P; Tsiftsoglou, Asterios S

    2012-01-01

    Repetitive sequences consist of >50% of mammalian genomic DNAs and among these SINEs (short interspersed nuclear elements), e.g. B1 elements, account for 8% of the mouse genome. In an effort to delineate the molecular mechanism(s) involved in the blockade of the in vitro differentiation program of MEL (murine erythroleukaemia) cells by treatment with methylation inhibitors, we detected a DNA region of 559 bp in chromosome 7 located downstream of the 3'-end of the β(major) globin gene (designated B1-559) with unique characteristics. We have fully characterized this B1-559 region that includes a B1 element, several repeats of ATG initiation codons and consensus DNA-binding sites for erythroid-specific transcription factors NF-E2 (nuclear factor-erythroid-derived 2), GATA-1 and EKLF (erythroid Krüppel-like factor). Fragments derived from B1-559 incubated with nuclear extracts form protein complexes in both undifferentiated and differentiated MEL cells. Transient reporter-gene experiments in MEL and human erythroleukaemia K-562 cells with recombinant constructs containing B1-559 fragments linked to HS-2 (hypersensitive site-2) sequences of human β-globin gene LCR (locus control region) indicated potential cooperation upon erythropoiesis and globin gene expression. The possible interaction between the B1-559 region and β(major) globin gene transcriptional activation upon execution of erythroid MEL cell differentiation programme is discussed. © The Author(s) Journal compilation © 2012 Portland Press Limited

  6. Delayed Mesoderm and Erythroid Differentiation of Murine Embryonic Stem Cells in the Absence of the Transcriptional Regulator FUBP1

    Directory of Open Access Journals (Sweden)

    Josephine Wesely

    2017-01-01

    Full Text Available The transcriptional regulator far upstream binding protein 1 (FUBP1 is essential for fetal and adult hematopoietic stem cell (HSC self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs, absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice.

  7. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  8. Proteomic analysis of erythroid differentiation induced by hexamethylene bisacetamide in murine erythroleukemia cells

    Czech Academy of Sciences Publication Activity Database

    Petrák, J.; Myslivcová, D.; Man, Petr; Čmejlová, J.; Čmejla, R.; Vyoral, D.

    2007-01-01

    Roč. 35, - (2007), s. 193-202 ISSN 0301-472X R&D Projects: GA MŠk LC545 Grant - others:CZ(CZ) 023736; GA ČR(CZ) GA303/04/0003; GA MŠk(CZ) LC06044 Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : murine erythroleukemia cells * erythroid differentiation * hexamethylene bisacetamide Subject RIV: EE - Microbiology, Virology Impact factor: 3.147, year: 2007

  9. Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis

    KAUST Repository

    Barbarani, Gloria; Ronchi, Antonella; Ruoppolo, Margherita; Santorelli, Lucia; Steinfelder, Robert; Elangovan, Sudharshan; Fugazza, Cristina; Caterino, Marianna

    2017-01-01

    are accompanied with a reduced survival of Sox6-/- red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark

  10. Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    2015-06-01

    Full Text Available During the maturation phase of mammalian erythroid differentiation, highly proliferative cells committed to the erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation (early versus late targets and the consequences in cell physiology (e.g., distinctive categories of genes regulated at progressive stages of differentiation. The data are deposited in the Gene Expression Omnibus, series GSE36029, GSE40522, GSE49847, and GSE51338.

  11. Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis

    KAUST Repository

    Barbarani, Gloria

    2017-10-20

    The Sox6 transcription factor is crucial for terminal maturation of definitive red blood cells. Sox6-null mouse fetuses present misshapen and nucleated erythrocytes, due to impaired actin assembly and cytoskeleton stability. These defects are accompanied with a reduced survival of Sox6-/- red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark of erythroid maturation. To obtain an overview on processes downstream to Sox6 expression, we performed a differential proteomic analysis on human erythroid K562 cells overexpressing Sox6. Sox6-overexpression induces dysregulation of 64 proteins, involved in cytoskeleton remodeling and in protein synthesis, folding and trafficking, key processes for erythroid maturation. Moreover, 43 out of 64 genes encoding for differentially expressed proteins contain within their proximal regulatory regions sites that are bound by SOX6 according to ENCODE ChIP-seq datasets and are possible direct SOX6 targets. SAR1B, one of the most induced proteins upon Sox6 overexpression, shares a conserved regulatory module, composed by a double SOX6 binding site and a GATA1 consensus, with the adjacent SEC24 A gene. Since both genes encode for COPII components, this element could concur to the coordinated expression of these proteins during erythropoiesis.

  12. Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions.

    Science.gov (United States)

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-08-01

    Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  13. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  14. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  15. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  16. Nuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation.

    Science.gov (United States)

    Di Tullio, Alessandro; Passaro, Diana; Rouault-Pierre, Kevin; Purewal, Sukhveer; Bonnet, Dominique

    2017-07-11

    Nuclear factor erythroid-derived 2 (NF-E2) has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs) not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG) mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated) and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Nuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation

    Directory of Open Access Journals (Sweden)

    Alessandro Di Tullio

    2017-07-01

    Full Text Available Nuclear factor erythroid-derived 2 (NF-E2 has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation.

  18. Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling

    International Nuclear Information System (INIS)

    Machherndl-Spandl, S; Suessner, S; Danzer, M; Proell, J; Gabriel, C; Lauf, J; Sylie, R; Klein, H-U; Béné, M C; Weltermann, A; Bettelheim, P

    2013-01-01

    Special attention has recently been drawn to the molecular network of different genes that are responsible for the development of erythroid cells. The aim of the present study was to establish in detail the immunophenotype of early erythroid cells and to compare the gene expression profile of freshly isolated early erythroid precursors with that of the CD34-positive (CD34 + ) compartment. Multiparameter flow cytometric analyses of human bone marrow mononuclear cell fractions (n=20) defined three distinct early erythroid stages. The gene expression profile of sorted early erythroid cells was analyzed by Affymetrix array technology. For 4524 genes, a differential regulation was found in CD105-positive erythroid cells as compared with the CD34 + progenitor compartment (2362 upregulated genes). A highly significant difference was observed in the expression level of genes involved in transcription, heme synthesis, iron and mitochondrial metabolism and transforming growth factor-β signaling. A comparison with recently published data showed over 1000 genes that as yet have not been reported to be upregulated in the early erythroid lineage. The gene expression level within distinct pathways could be illustrated directly by applying the Ingenuity software program. The results of gene expression analyses can be seen at the Gene Expression Omnibus repository

  19. Genetic manipulation of RPS5 gene expression modulates the initiation of commitment of MEL cells to erythroid maturation: Implications in understanding ribosomopathies.

    Science.gov (United States)

    Vizirianakis, Ioannis S; Papachristou, Eleni T; Andreadis, Panagiotis; Zopounidou, Elena; Matragkou, Christina N; Tsiftsoglou, Asterios S

    2015-07-01

    Impairment of ribosome biogenesis contributes to the molecular pathophysiology of ribosomopathies by deregulating cell-lineage specific proliferation, differentiation and apoptosis decisions of haematopoietic progenitor cells. Here, using pro-erythroblast-like murine erythroleukemia (MEL) cells, a model system of erythroid maturation, we aimed to investigate whether genetic manipulation of RPS5 expression affects the capacity of cells to grow and differentiate in culture. Parental MEL cells stably transfected with full length RPS5 cDNA in sense (MEL-C14 culture) or antisense (MEL-antisenseRPS5 culture) orientation, as well as MEL cells transiently transfected with siRNAs specific for RPS5 gene silencing (MEL-RPS5siRNA culture) were assessed for their ability to fully execute their erythroid maturation program in culture. The data obtained thus far indicate that: a) MEL-antisenseRPS5 exhibit a pronounced delay in the initiation of differentiation, as well as an impairment of commitment, since the continuous presence of the inducer in culture is required for the cells to fully execute their erythroid maturation program. b) RNAi-mediating silencing of RPS5 gene expression resulted in the inability of MEL cells to differentiate; however, when these cells were allowed to recapitulate normal RPS5 gene expression levels they regained their differentiation capacity by accumulating high proportion of erythroid mature cells. c) Interestingly the latter, is accompanied by morphological changes of cells and an impairment of their proliferation and apoptosis potential. Such data for the first time correlate the RPS5 gene expression levels with the differentiation capacity of MEL cells in vitro, a fact that might also have implications in understanding ribosomopathies.

  20. Role of the mitochondrial amino acid pool in the differential sensitivity of erythroid and myeloid cells to chloramphenicol

    International Nuclear Information System (INIS)

    Abou-Khalil, S.; Abou-Khalil, W.H.; Whitney, P.L.; Yunis, A.A.

    1986-01-01

    Previous studies in the authors laboratory have suggested that mitochondrial amino acid (AA) pool is involved in the differential sensitivity of erythroid and myeloid cells to chloramphenicol (CAP). The present study examines the role of AA pool by analysis of its composition and testing the effects of its major components. The endogenous AA composition of isolated mitochondria protein was determined using a JEOL 5AH AA analyzer. L-( 14 C) leucine incorporation into mitochondrial protein was used to measure the rate of protein synthesis. Analysis of the endogenous pool in erythroleukemia (EM) and chloroleukemia (CM) mitochrondria showed similar total amount of AAs. However, some AAs were present in significantly higher or lower quantity within EM and CM (i.e. EM had about 2-fold higher glycine content). When compensating for each low AA addition of that particular acid to the reaction medium, only glycine and serine had significant effect. Thus, the addition of increasing concentrations of glycine or serine enhanced the sensitivity to CAP from 14% to 49-51% in CM but not in EM. Other AAs gave little or no effect. Since glycine is one of the first reactants in heme biosynthesis within mitochondria and is interconvertible with serine, it would appear that erythroid cells sensitivity to CAP is determined by the mitochondrial glycine-serine pool and may be somehow related of the pathway to heme biosynthesis in these cells

  1. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Lefèvre, Carine; Granger, Marine; Kadri, Zahra; Fucharoen, Suthat; Maouche-Chrétien, Leila; Leboulch, Philippe; Chrétien, Stany

    2012-01-01

    Highlights: ► UT7 erythroleukemia cells are known to be refractory to differentiate. ► Brief JQ1 treatment initiates the first steps of erythroid differentiation program. ► Engaged UT7 cells then maturate in the presence of erythropoietin. ► Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  2. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Lefevre, Carine; Granger, Marine; Kadri, Zahra [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Fucharoen, Suthat [Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Maouche-Chretien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Genetics Division, Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chretien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer UT7 erythroleukemia cells are known to be refractory to differentiate. Black-Right-Pointing-Pointer Brief JQ1 treatment initiates the first steps of erythroid differentiation program. Black-Right-Pointing-Pointer Engaged UT7 cells then maturate in the presence of erythropoietin. Black-Right-Pointing-Pointer Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  3. Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies

    Directory of Open Access Journals (Sweden)

    Pascariello Caterina

    2008-05-01

    Full Text Available Abstract Background Aldehyde dehydrogenase (ALDH is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007. The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients. Results In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively. As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a. Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA. Conclusion Our study, comparing surface antigen expression of

  4. TMEM14C is required for erythroid mitochondrial heme metabolism.

    Science.gov (United States)

    Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J; Cooney, Jeffrey D; Pierce, Eric L; Mohler, Kyla; Dailey, Tamara A; Miyata, Non; Kingsley, Paul D; Garone, Caterina; Hattangadi, Shilpa M; Huang, Hui; Chen, Wen; Keenan, Ellen M; Shah, Dhvanit I; Schlaeger, Thorsten M; DiMauro, Salvatore; Orkin, Stuart H; Cantor, Alan B; Palis, James; Koehler, Carla M; Lodish, Harvey F; Kaplan, Jerry; Ward, Diane M; Dailey, Harry A; Phillips, John D; Peters, Luanne L; Paw, Barry H

    2014-10-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.

  5. Erythroblastic Sarcoma Presenting as Bilateral Ovarian Masses in an Infant with Pure Erythroid Leukemia

    Science.gov (United States)

    Wang, Huan-You; Huang, Lily Jun-shen; Garcia, Rolando; Li, Shiyong; Galliani, Carlos A.

    2010-01-01

    Pure erythroid leukemia is a rare subtype of acute erythroid leukemia that is characterized by a predominant erythroid population, and erythroblastic sarcoma has not yet been described in the English literature. Here we report a first case of erythroblastic sarcoma which presented as bilateral ovarian masses in a three and half month old baby girl with pure erythroid leukemia. Bone marrow aspirate and biopsy showed the marrow was completely replaced by large-sized blasts consistent with erythroblasts. Immunophenotypically, both the tumor cells from the ovarian mass and bone marrow blasts were positive for CD117, glycophorin A, and hemoglobin A, demonstrating erythroid differentiation. Reverse transcriptase polymerase chain reaction showed the tumor cells from ovarian mass expressed hemoglobin F and α1 spectrin, confirming their erythroid lineage. Conventional karyotype of the bone marrow aspirates revealed del(6) (q23q25) and trisomy 7 in all 21 cells examined. Fluorescence in situ hybridization of the ovarian mass demonstrated loss of C-MYB at 6q23 locus in 41% of the cells, and deletion of chromosome 7 and 7q in 37% and 66% of cells, respectively. Taken together, we showed, for the first time, that pure erythroid leukemia presented as a myeloid sarcoma in the form of ovarian masses. PMID:21237494

  6. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse.

    Directory of Open Access Journals (Sweden)

    Sreoshi Chatterjee

    Full Text Available Repeated weekly injections of rat erythrocytes produced autoimmune hemolytic anemia (AIHA in C57BL/6 mice after 5-6 weeks. Using the double in vivo biotinylation (DIB technique, recently developed in our laboratory, turnover of erythrocyte cohorts of different age groups during AIHA was monitored. Results indicate a significant decline in the proportion of reticulocytes, young and intermediate age groups of erythrocytes, but a significant increase in the proportion of old erythrocytes in blood circulation. Binding of the autoantibody was relatively higher to the young erythrocytes and higher levels of intracellular reactive oxygen species (ROS were also seen in these cells. Erythropoietic activity in the bone marrows and the spleen of AIHA induced mice was examined by monitoring the relative proportion of erythroid cells at various stages of differentiation in these organs. Cells at different stages of differentiation were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71 monoclonal antibodies. Erythroid cells in bone marrow declined significantly in AIHA induced mice, erythroblast C being most affected (50% decline. Erythroblast C also recorded high intracellular ROS level along with increased levels of membrane-bound autoantibody. No such decline was observed in spleen. A model of AIHA has been proposed indicating that binding of autoantibodies may not be a sufficient condition for destruction of erythroid cells in bone marrow and in blood circulation. Last stage of erythropoietic differentiation in bone marrow and early stages of erythrocytes in blood circulation are specifically susceptible to removal in AIHA.

  7. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.

    Science.gov (United States)

    Ryu, Moon-Suhn; Zhang, Deliang; Protchenko, Olga; Shakoury-Elizeh, Minoo; Philpott, Caroline C

    2017-05-01

    Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.

  8. Let-7 microRNAs are developmentally regulated in circulating human erythroid cells

    Directory of Open Access Journals (Sweden)

    Reed Christopher

    2009-11-01

    Full Text Available Abstract Background MicroRNAs are ~22nt-long small non-coding RNAs that negatively regulate protein expression through mRNA degradation or translational repression in eukaryotic cells. Based upon their importance in regulating development and terminal differentiation in model systems, erythrocyte microRNA profiles were examined at birth and in adults to determine if changes in their abundance coincide with the developmental phenomenon of hemoglobin switching. Methods Expression profiling of microRNA was performed using total RNA from four adult peripheral blood samples compared to four cord blood samples after depletion of plasma, platelets, and nucleated cells. Labeled RNAs were hybridized to custom spotted arrays containing 474 human microRNA species (miRBase release 9.1. Total RNA from Epstein-Barr virus (EBV-transformed lymphoblastoid cell lines provided a hybridization reference for all samples to generate microRNA abundance profile for each sample. Results Among 206 detected miRNAs, 79% of the microRNAs were present at equivalent levels in both cord and adult cells. By comparison, 37 microRNAs were up-regulated and 4 microRNAs were down-regulated in adult erythroid cells (fold change > 2; p let-7 miRNA family consistently demonstrated increased abundance in the adult samples by array-based analyses that were confirmed by quantitative PCR (4.5 to 18.4 fold increases in 6 of 8 let-7 miRNA. Profiling studies of messenger RNA (mRNA in these cells additionally demonstrated down-regulation of ten let-7 target genes in the adult cells. Conclusion These data suggest that a consistent pattern of up-regulation among let-7 miRNA in circulating erythroid cells occurs in association with hemoglobin switching during the fetal-to-adult developmental transition in humans.

  9. Thrombopoietin has a differentiative effect on late-stage human erythropoiesis.

    Science.gov (United States)

    Liu, W; Wang, M; Tang, D C; Ding, I; Rodgers, G P

    1999-05-01

    To further explore the mechanism of the effect of thrombopoietin (TPO) on erythropoiesis, we used a two-phase culture system to investigate the effect of TPO on late-stage human erythroid lineage differentiation. In serum-free suspension and semisolid cultures of human peripheral blood derived erythroid progenitors, TPO alone did not produce benzidine-positive cells. However, in serum-containing culture, TPO alone stimulated erythroid cell proliferation and differentiation, demonstrated by erythroid colony formation, production of benzidine-positive cells and haemoglobin (Hb) synthesis. Monoclonal anti-human erythropoietin antibody and anti-human erythropoietin receptor antibody completely abrogated the erythroid differentiative ability of TPO in the serum-containing systems. This implied that binding of EPO and EPO-R was essential for erythropoiesis and the resultant signal transduction may be augmented by the signals emanating from TPO-c-Mpl interaction. Experiment of withdrawal of TPO further demonstrated the involvement of TPO in late-stage erythropoiesis. RT-PCR results showed that there was EPO-R but not c-Mpl expression on developing erythroblasts induced by TPO in serum-containing system. Our results establish that TPO affects not only the proliferation of erythroid progenitors but also the differentiation of erythroid progenitors to mature erythroid cells.

  10. The potential role of ribosomal protein S5 on cell cycle arrest and initiation of murine erythroleukemia cell differentiation.

    Science.gov (United States)

    Matragkou, Christina N; Papachristou, Eleni T; Tezias, Sotirios S; Tsiftsoglou, Asterios S; Choli-Papadopoulou, Theodora; Vizirianakis, Ioannis S

    2008-07-01

    Evidence now exists to indicate that some ribosomal proteins besides being structural components of the ribosomal subunits are involved in the regulation of cell differentiation and apoptosis. As we have shown earlier, initiation of erythroid differentiation of murine erythroleukemia (MEL) cells is associated with transcriptional inactivation of genes encoding ribosomal RNAs and ribosomal proteins S5 (RPS5) and L35a. In this study, we extended these observations and investigated whether transfection of MEL cells with RPS5 cDNA affects the onset of initiation of erythroid maturation and their entrance in cell cycle arrest. Stably transfected MEL cloned cells (MEL-C14 and MEL-C56) were established and assessed for their capacity to produce RPS5 RNA transcript and its translated product. The impact of RPS5 cDNA transfection on the RPS5 gene expression patterns and the accumulation of RPS5 protein in inducible transfected MEL cells were correlated with their ability to: (a) initiate differentiation, (b) enter cell cycle arrest at G(1)/G(0) phase, and (c) modulate the level of cyclin-dependent kinases CDK2, CDK4, and CDK6. The data presented indicate that deregulation of RPS5 gene expression (constitutive expression) affects RPS5 protein level and delays both the onset of initiation of erythroid maturation and entrance in cell cycle arrest in inducer-treated MEL cells. 2008 Wiley-Liss, Inc.

  11. Bmi-1 Regulates Extensive Erythroid Self-Renewal

    Directory of Open Access Journals (Sweden)

    Ah Ram Kim

    2015-06-01

    Full Text Available Red blood cells (RBCs, responsible for oxygen delivery and carbon dioxide exchange, are essential for our well-being. Alternative RBC sources are needed to meet the increased demand for RBC transfusions projected to occur as our population ages. We previously have discovered that erythroblasts derived from the early mouse embryo can self-renew extensively ex vivo for many months. To better understand the mechanisms regulating extensive erythroid self-renewal, global gene expression data sets from self-renewing and differentiating erythroblasts were analyzed and revealed the differential expression of Bmi-1. Bmi-1 overexpression conferred extensive self-renewal capacity upon adult bone-marrow-derived self-renewing erythroblasts, which normally have limited proliferative potential. Importantly, Bmi-1 transduction did not interfere with the ability of extensively self-renewing erythroblasts (ESREs to terminally mature either in vitro or in vivo. Bmi-1-induced ESREs can serve to generate in vitro models of erythroid-intrinsic disorders and ultimately may serve as a source of cultured RBCs for transfusion therapy.

  12. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  13. Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Zita Garate

    2015-12-01

    Full Text Available Pyruvate kinase deficiency (PKD is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs from peripheral blood mononuclear cells (PB-MNCs of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR. Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.

  14. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply.

    Science.gov (United States)

    Yang, Zhigang; Yao, Hong; Fei, Fei; Li, Yuwei; Qu, Jie; Li, Chunyuan; Zhang, Shiwu

    2018-04-01

    During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.

  15. Human primary erythroid cells as a more sensitive alternative in vitro hematological model for nanotoxicity studies: Toxicological effects of silver nanoparticles.

    Science.gov (United States)

    Rujanapun, Narawadee; Aueviriyavit, Sasitorn; Boonrungsiman, Suwimon; Rosena, Apiwan; Phummiratch, Duangkamol; Riolueang, Suchada; Chalaow, Nipon; Viprakasit, Vip; Maniratanachote, Rawiwan

    2015-12-01

    Although immortalized cells established from cancerous cells have been widely used for studies in nanotoxicology studies, the reliability of the results derived from immortalized cells has been questioned because of their different characteristics from normal cells. In the present study, human primary erythroid cells in liquid culture were used as an in vitro hematological cell model for investigation of the nanotoxicity of silver nanoparticles (AgNPs) and comparing the results to the immortalized hematological cell lines HL60 and K562. The AgNPs caused significant cytotoxic effects in the primary erythroid cells, as shown by the decreased cell viability and induction of intracellular ROS generation and apoptosis, whereas they showed much lower cytotoxic and apoptotic effects in HL60 and K562 cells and did not induced ROS generation in these cell lines. Scanning electron microcopy revealed an interaction of AgNPs to the cell membrane in both primary erythroid and immortalized cells. In addition, AgNPs induced hemolysis in the primary erythroid cells in a dose-dependent manner, and transmission electron microcopy analysis revealed that AgNPs damaged the erythroid cell membrane. Taken together, these results suggest that human primary erythroid cells in liquid culture are a more sensitive alternative in vitro hematological model for nanotoxicology studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Erythroid cells in vitro: from developmental biology to blood transfusion products.

    Science.gov (United States)

    Migliaccio, Anna Rita; Whitsett, Carolyn; Migliaccio, Giovanni

    2009-07-01

    Red blood cells (RBCs) transfusion plays a critical role in numerous therapies. Disruption of blood collection by political unrest, natural disasters and emerging infections and implementation of restrictions on the use of erythropoiesis-stimulating agents in cancer may impact blood availability in the near future. These considerations highlight the importance of developing alternative blood products. Knowledge about the processes that control RBC production has been applied to the establishment of culture conditions allowing ex-vivo generation of RBCs in numbers close to those (2.5 x 10 cells/ml) present in a transfusion, from cord blood, donated blood units or embryonic stem cells. In addition, experimental studies demonstrate that such cells protect mice from lethal bleeding. Therefore, erythroid cells generated ex vivo may be suitable for transfusion provided they can be produced safely in adequate numbers. However, much remains to be done to translate a theoretical production of approximately 2.5 x 10 RBCs in the laboratory into a 'clinical grade production process'. This review summarizes the state-of-the-art in establishing ex-vivo culture conditions for erythroid cells and discusses the most compelling issues to be addressed to translate this progress into a clinical grade transfusion product.

  17. Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes.

    Science.gov (United States)

    Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong

    2017-01-10

    Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision.

  18. In Vitro Large Scale Production of Human Mature Red Blood Cells from Hematopoietic Stem Cells by Coculturing with Human Fetal Liver Stromal Cells

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-01-01

    Full Text Available In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs. HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 109-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitive β-globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.

  19. Expression of P190 and P210 BCR/ABL1 in normal human CD34(+) cells induces similar gene expression profiles and results in a STAT5-dependent expansion of the erythroid lineage

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Agerstam, Helena

    2009-01-01

    OBJECTIVE: The P190 and P210 BCR/ABL1 fusion genes are mainly associated with different types of hematologic malignancies, but it is presently unclear whether they are functionally different following expression in primitive human hematopoietic cells. MATERIALS AND METHODS: We investigated...... and systematically compared the effects of retroviral P190 BCR/ABL1 and P210 BCR/ABL1 expression on cell proliferation, differentiation, and global gene expression in human CD34(+) cells from cord blood. RESULTS: Expression of either P190 BCR/ABL1 or P210 BCR/ABL1 resulted in expansion of erythroid cells...... and stimulated erythropoietin-independent burst-forming unit-erythroid colony formation. By using a lentiviral anti-signal transducer and activator of transcription 5 (STAT5) short-hairpin RNA, we found that both P190 BCR/ABL1- and P210 BCR/ABL1-induced erythroid cell expansion were STAT5-dependent. Under...

  20. Erythroid precursors from patients with low-risk myelodysplasia demonstrate ultrastructural features of enhanced autophagy of mitochondria

    NARCIS (Netherlands)

    Houwerzijl, E. J.; Pol, H-W D.; Blom, N. R.; van der Want, J. J. L.; de Wolf, J. Thm; Vellenga, E.

    Recent studies in erythroid cells have shown that autophagy is an important process for the physiological clearance of mitochondria during terminal differentiation. However, autophagy also plays an important role in removing damaged and dysfunctional mitochondria. Defective mitochondria and impaired

  1. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.

    Directory of Open Access Journals (Sweden)

    Laurie A Steiner

    Full Text Available CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human hematopoietic stem and progenitor cells (HSPC and primary human erythroid cells from single donors.Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone H3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner.These genome wide data, changes in sites of protein occupancy, chromatin architecture, and related gene expression, support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. These data from primary human erythroid cells provide a resource for studies of normal and perturbed erythropoiesis.

  2. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin

    International Nuclear Information System (INIS)

    Laskey, J.D.; Ponka, P.; Schulman, H.M.

    1986-01-01

    In many types of cells the synthesis of σ-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from this laboratory with reticulocytes suggest that the rate of iron uptake from 125 I-transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels or 59 Fe-Tf (20 μM). Furthermore, in induced Friend cells 100 μM Fe-SIH stimulated 2- 14 C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells

  3. A common signaling pathway is activated in erythroid cells expressing high levels of fetal hemoglobin: a potential role for cAMP-elevating agents in β-globin disorders

    Directory of Open Access Journals (Sweden)

    Ikuta T

    2013-12-01

    Full Text Available Tohru Ikuta,1 Yuichi Kuroyanagi,1 Nadine Odo,1 Siyang Liu21Department of Anesthesiology and Perioperative Medicine, 2Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USABackground: Although erythroid cells prepared from fetal liver, cord blood, or blood from β-thalassemia patients are known to express fetal hemoglobin at high levels, the underlying mechanisms remain elusive. We previously showed that cyclic nucleotides such as cAMP and cGMP induce fetal hemoglobin expression in primary erythroid cells. Here we report that cAMP signaling contributes to high-level fetal hemoglobin expression in erythroid cells prepared from cord blood and β-thalassemia.Methods: The status of the cAMP signaling pathway was investigated using primary erythroid cells prepared from cord blood and the mononuclear cells of patients with β-thalassemia; erythroid cells from adult bone marrow mononuclear cells served as the control.Results: We found that intracellular cAMP levels were higher in erythroid cells from cord blood and β-thalassemia than from adult bone marrow. Protein kinase A activity levels and cAMP-response element binding protein phosphorylation were higher in erythroid cells from cord blood or β-thalassemia than in adult bone marrow progenitors. Mitogen-activated protein kinase pathways, which play a role in fetal hemoglobin expression, were not consistently activated in cord blood or β-thalassemia erythroid cells. When cAMP signaling was activated in adult erythroid cells, fetal hemoglobin was induced at high levels and associated with reduced expression of BCL11A, a silencer of the β-globin gene.Conclusion: These results suggest that activated cAMP signaling may be a common mechanism among erythroid cells with high fetal hemoglobin levels, in part because of downregulation of BCL11A. Activation of the cAMP signaling pathway with cAMP-elevating agents may prove to be an important signaling mechanism to

  4. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ruth Merkle

    2016-08-01

    Full Text Available Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC, is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO. However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR. The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in

  5. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    International Nuclear Information System (INIS)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-01-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes

  6. Hemozoin (malarial pigment directly promotes apoptosis of erythroid precursors.

    Directory of Open Access Journals (Sweden)

    Abigail A Lamikanra

    2009-12-01

    Full Text Available Severe malarial anemia is the most common syndrome of severe malaria in endemic areas. The pathophysiology of chronic malaria is characterised by a striking degree of abnormal development of erythroid precursors (dyserythropoiesis and an inadequate erythropoietic response in spite of elevated levels of erythropoietin. The cause of dyserythropoiesis is unclear although it has been suggested that bone-marrow macrophages release cytokines, chemokines or lipo-peroxides after exposure to hemozoin, a crystalloid form of undigested heme moieties from malarial infected erythrocytes, and so inhibit erythropoiesis. However, we have previously shown that hemozoin may directly inhibit erythroid development in vitro and the levels of hemozoin in plasma from patients with malarial anemia and hemozoin within the bone marrow was associated with reduced reticulocyte response. We hypothesized that macrophages may reduce, not enhance, the inhibitory effect of hemozoin on erythropoiesis. In an in vitro model of erythropoiesis, we now show that inhibition of erythroid cell development by hemozoin isolated from P. falciparum is characterised by delayed expression of the erythroid markers and increased apoptosis of progenitor cells. Crucially, macrophages appear to protect erythroid cells from hemozoin, consistent with a direct contribution of hemozoin to the depression of reticulocyte output from the bone marrow in children with malarial anemia. Moreover, hemozoin isolated from P. falciparum in vitro inhibits erythroid development independently of inflammatory mediators by inducing apoptotic pathways that not only involve activation of caspase 8 and cleavage of caspase 3 but also loss of mitochondrial potential. Taken together these data are consistent with a direct effect of hemozoin in inducing apoptosis in developing erythroid cells in malarial anemia. Accumulation of hemozoin in the bone marrow could therefore result in inadequate reticulocytosis in children that

  7. Effects of trichostatins on differentiation of murine erythroleukemia cells

    International Nuclear Information System (INIS)

    Yoshida, M.; Nomura, S.; Beppu, T.

    1987-01-01

    The fungistatic antibiotics trichostatins (TS) A and C were isolated from culture broth of Streptomyces platensis No. 145 and were found to be potent inducers of differentiation in murine erythroleukemia (Friend and RV133) cells at concentrations of 1.5 X 10(-8) M for TSA and 5 X 10(-7) M for TSC. Differentiation induced by TS was cooperatively enhanced by UV irradiation but not by treatment with dimethyl sulfoxide. This enhanced activity was completely inhibited by adding cycloheximide to the culture medium 2 h after exposure to TS, suggesting that TS are dimethyl sulfoxide-type inducers of erythroid differentiation. No inhibitory effect of TS was observed on macromolecular synthesis in cultured cells

  8. Parvovirus B19 integration into human CD36+ erythroid progenitor cells.

    Science.gov (United States)

    Janovitz, Tyler; Wong, Susan; Young, Neal S; Oliveira, Thiago; Falck-Pedersen, Erik

    2017-11-01

    The pathogenic autonomous human parvovirus B19 (B19V) productively infects erythroid progenitor cells (EPCs). Functional similarities between B19V nonstructural protein (NS1), a DNA binding endonuclease, and the Rep proteins of Adeno-Associated Virus (AAV) led us to hypothesize that NS1 may facilitate targeted nicking of the human genome and B19 vDNA integration. We adapted an integration capture sequencing protocol (IC-Seq) to screen B19V infected human CD36+ EPCs for viral integrants, and discovered 40,000 unique B19V integration events distributed throughout the human genome. Computational analysis of integration patterns revealed strong correlations with gene intronic regions, H3K9me3 sites, and the identification of 41 base pair consensus sequence with an octanucleotide core motif. The octanucleotide core has homology to a single region of B19V, adjacent to the P6 promoter TATA box. We present the first direct evidence that B19V infection of erythroid progenitor cells disrupts the human genome and facilitates viral DNA integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI.

    Science.gov (United States)

    Jin, Hao; Sood, Raman; Xu, Jin; Zhen, Fenghua; English, Milton A; Liu, P Paul; Wen, Zilong

    2009-02-01

    One unique feature of vertebrate definitive hematopoiesis is the ontogenic switching of hematopoietic stem cells from one anatomical compartment or niche to another. In mice, hematopoietic stem cells are believed to originate in the aorta-gonad-mesonephros (AGM), subsequently migrate to the fetal liver (FL) and finally colonize the bone marrow (BM). Yet, the differentiation potential of hematopoietic stem cells within early niches such as the AGM and FL remains incompletely defined. Here, we present in vivo analysis to delineate the differentiation potential of definitive hematopoietic stem/progenitor cells (HSPCs) in the zebrafish AGM and FL analogies, namely the ventral wall of dorsal aorta (VDA) and the posterior blood island (PBI), respectively. Cell fate mapping and analysis of zebrafish runx1(w84x) and vlad tepes (vlt(m651)) mutants revealed that HSPCs in the PBI gave rise to both erythroid and myeloid lineages. However, we surprisingly found that HSPCs in the VDA were not quiescent but were uniquely adapted to generate myeloid but not erythroid lineage cells. We further showed that such distinct differentiation output of HSPCs was, at least in part, ascribed to the different micro-environments present in these two niches. Our results highlight the importance of niche in shaping the differentiation output of developing HSPCs.

  10. Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron

    International Nuclear Information System (INIS)

    Gardner, L.C.; Cox, T.M.

    1988-01-01

    Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular free heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation

  11. Hydroxymethylation at Gene Regulatory Regions Directs Stem/Early Progenitor Cell Commitment during Erythropoiesis

    Directory of Open Access Journals (Sweden)

    Jozef Madzo

    2014-01-01

    Full Text Available Hematopoietic stem cell differentiation involves the silencing of self-renewal genes and induction of a specific transcriptional program. Identification of multiple covalent cytosine modifications raises the question of how these derivatized bases influence stem cell commitment. Using a replicative primary human hematopoietic stem/progenitor cell differentiation system, we demonstrate dynamic changes of 5-hydroxymethylcytosine (5-hmC during stem cell commitment and differentiation to the erythroid lineage. Genomic loci that maintain or gain 5-hmC density throughout erythroid differentiation contain binding sites for erythroid transcription factors and several factors not previously recognized as erythroid-specific factors. The functional importance of 5-hmC was demonstrated by impaired erythroid differentiation, with augmentation of myeloid potential, and disrupted 5-hmC patterning in leukemia patient-derived CD34+ stem/early progenitor cells with TET methylcytosine dioxygenase 2 (TET2 mutations. Thus, chemical conjugation and affinity purification of 5-hmC-enriched sequences followed by sequencing serve as resources for deciphering functional implications for gene expression during stem cell commitment and differentiation along a particular lineage.

  12. Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha

    International Nuclear Information System (INIS)

    Valtieri, M.; Venturelli, D.; Care, A.; Fossati, C.; Pelosi, E.; Labbaye, C.; Mattia, G.; Gewirtz, A.M.; Calabretta, B.; Peschle, C.

    1991-01-01

    These studies aimed to determine the expression and functional role of c-myb in erythroid progenitors with different cycling activities. In the first series of experiments the erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E) populations from adult peripheral blood (PB), bone marrow (BM), and embryonic-fetal liver (FL) were treated with either c-myb antisense oligomers or 3H-thymidine (3H-TdR). A direct correlation was always observed between the inhibitory effect of anti-myb oligomers and the level of cycling activity. Thus, the inhibitory effect of antisense c-myb on the number of BFU-E colonies was 28.3% +/- 15.8% in PB, 53.4% +/- 9.3% in BM, and 68.2% +/- 24.5% in FL. Both adult and embryonic CFU-E were markedly inhibited. Using purified PB progenitors, we observed a similar pattern, although with slightly lower inhibitory effects. In the 3H-TdR suicide assay the killing index of BFU-E was 8.9% +/- 4.2% in PB, 29.4% +/- 6.5% in BM, and 40.1% +/- 9.6% in FL. The values for adult and embryonic CFU-E were 55.7% +/- 7.9% and 60.98% +/- 6.6%, respectively. We then investigated the kinetics of c-myb mRNA level during the erythroid differentiation of purified adult PB and FL BFU-E, as evaluated in liquid-phase culture by reverse transcription-polymerase chain reaction. Adult erythroid precursors showed a gradual increase of c-myb mRNA from day 4 through day 8 of culture and a sharp decrease at later times, whereas the expression of c-myb mRNA and protein in differentiation embryonic precursors peaked 2 days earlier. In both cases, c-myb mRNA level peaked at the CFU-E stage of differentiation. Finally, highly purified adult PB BFU-E were stimulated into cycling by a 3-day treatment with interleukin-3 in liquid phase: both the sensitivity to c-myb antisense oligomers and the 3H-TdR suicide index showed a gradual, strictly parallel increase

  13. RECOMBINANT HUMAN MAST-CELL GROWTH-FACTOR SUPPORTS ERYTHROID COLONY FORMATION IN POLYCYTHEMIA-VERA IN THE PRESENCE AND ABSENCE OF ERYTHROPOIETIN AND SERUM

    NARCIS (Netherlands)

    MULLER, EW; DEWOLF, JTM; HENDRIKS, DW; ESSELINK, MT; HALIE, MR; VELLENGA, E

    The effect of mast cell growth factor (MGF) was studied on erythropoietin (Epo)-dependent and Epo-independent (''spontaneous'') erythroid colony formation in patients with polycythemia vera (PV). MGF stimulated both Epo-dependent and Epo-independent erythroid colony formation from PV peripheral

  14. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro

    NARCIS (Netherlands)

    von Lindern, M.; Zauner, W.; Mellitzer, G.; Steinlein, P.; Fritsch, G.; Huber, K.; Löwenberg, B.; Beug, H.

    1999-01-01

    Although erythropoietin (Epo) is essential for the production of mature red blood cells, the cooperation with other factors is required for a proper balance between progenitor proliferation and differentiation. In avian erythroid progenitors, steroid hormones cooperate with tyrosine kinase receptors

  15. Identification of a human erythroid progenitor cell population which expresses the CD34 antigen and binds the plant lectin Ulex europaeus I.

    Science.gov (United States)

    Unverzagt, K L; Martinson, J; Lee, W; Stiff, P J; Williams, S; Bender, J G

    1996-01-01

    Two and three color flow cytometry of normal human bone marrow was used to identify CD34+ progenitor cells and examine their binding to the plant lectin Ulex europaeus I (Ulex). In normal bone marrow, 48.48 +/- 17.4% of the CD34+ cells bind to Ulex. Two color flow cytometry was used to sort CD34 + cells, and subsets of CD34+ cells, CD34+ Ulex+ and CD34+ Ulex-. These populations were sorted into colony assays to assess myeloid (CFU-GM) and erythroid (BFU-E) progenitors. The CD34+ Ulex+ subset was 84 +/- 14% BFU-E colonies (mean +/- S.D.) and had the highest cloning efficiency of 28 +/- 13%. Three color analysis of CD34+ Ulex+ cells showed staining with other erythroid (CD71, GlyA) antibodies and lack of stain. ing with myeloid (CD13, CD45RA) antibodies. These studies confirmed the erythroid characteristics of this subpopulation.

  16. Two different in vitro growth patterns for erythroid precursors in 18 patients with pure erythrocytosis

    International Nuclear Information System (INIS)

    Clement, S.; Eberlin, A.; Najean, Y.; Chedeville, A.

    1982-01-01

    Growth patterns of marrow and blood erythroid progenitors were studied in 18 cases of pure erythrocytosis using different doses of erythropoietin. 8 cases demonstrated ''spontaneous'' growth of CFU-E and blood BFU-E as observed in myeloproliferative disorders, but without an excess of circulating CFU-GM. 3 of these patients also had other symptoms of a pan-myelopathy. All these cases showed good sensitivity to 32 P myelo-suppression. 10 cases demonstrated growth patterns of erythroid progenitors similar to those observed in normal subjects, except for an excess of blood BFU-E, which suggests an abnormality of homeostatic regulation. In 5 of these cases, myelo-suppression was not effective. It is suggested that a stem cell study could differentiate patients with pure erythrocytosis due to ''autonomous'' abnormal stem cell growth from cases due to abnormal regulation factors, and that such a discrimination might be usefull for the choice of theraphy. (authors)

  17. Natural killer cells recognize friend retrovirus-infected erythroid progenitor cells through NKG2D-RAE-1 interactions In Vivo.

    Science.gov (United States)

    Ogawa, Tatsuya; Tsuji-Kawahara, Sachiyo; Yuasa, Takae; Kinoshita, Saori; Chikaishi, Tomomi; Takamura, Shiki; Matsumura, Haruo; Seya, Tsukasa; Saga, Toshihiko; Miyazawa, Masaaki

    2011-06-01

    Natural killer (NK) cells function as early effector cells in the innate immune defense against viral infections and also participate in the regulation of normal and malignant hematopoiesis. NK cell activities have been associated with early clearance of viremia in experimental simian immunodeficiency virus and clinical human immunodeficiency virus type 1 (HIV-1) infections. We have previously shown that NK cells function as major cytotoxic effector cells in vaccine-induced immune protection against Friend virus (FV)-induced leukemia, and NK cell depletion totally abrogates the above protective immunity. However, how NK cells recognize retrovirus-infected cells remains largely unclear. The present study demonstrates a correlation between the expression of the products of retinoic acid early transcript-1 (RAE-1) genes in target cells and their susceptibility to killing by NK cells isolated from FV-infected animals. This killing was abrogated by antibodies blocking the NKG2D receptor in vitro. Further, the expression of RAE-1 proteins on erythroblast surfaces increased early after FV inoculation, and administration of an RAE-1-blocking antibody resulted in increased spleen infectious centers and exaggerated pathology, indicating that FV-infected erythroid cells are recognized by NK cells mainly through the NKG2D-RAE-1 interactions in vivo. Enhanced retroviral replication due to host gene-targeting resulted in markedly increased RAE-1 expression in the absence of massive erythroid cell proliferation, indicating a direct role of retroviral replication in RAE-1 upregulation.

  18. Erythroid Differentiation Regulator 1 as a Novel Biomarker for Hair Loss Disorders.

    Science.gov (United States)

    Woo, Yu Ri; Hwang, Sewon; Jeong, Seo Won; Cho, Dae Ho; Park, Hyun Jeong

    2017-02-03

    Erythroid differentiation regulator 1 (Erdr1) is known to be involved in the inflammatory process via regulating the immune system in many cutaneous disorders, such as psoriasis and rosacea. However, the role of Erdr1 in various hair loss disorders remains unclear. The aim of this study was to investigate the putative role of Erdr1 in alopecias. Skin samples from 21 patients with hair loss disorders and five control subjects were retrieved, in order to assess their expression levels of Erdr1. Results revealed that expression of Erdr1 was significantly downregulated in the epidermis and hair follicles of patients with hair loss disorders, when compared to that in the control group. In particular, the expression of Erdr1 was significantly decreased in patients with alopecia areata. We propose that Erdr1 downregulation might be involved in the pathogenesis of hair loss, and could be considered as a novel biomarker for hair loss disorders.

  19. Massive splenomegaly in acute erythroid leukaemia (FAB Class-M6): an unusual presentation.

    Science.gov (United States)

    Sherazi, Syed Furqan Haider; Butt, Zeeshan

    2012-09-01

    AML-M6 has a peak incidence in the seventh decade with slight male preponderance, and can also present at a younger age. The usual features are anaemia, thrombocytopenia, malaise, fatigue, easy bruising, epistaxis and petechiae. Splenomegaly may occur in 20-40 % of the cases but massive splenomegaly is rare presentation and have been only reported once in humans and once in animals. A 22 year Asian female, presented with fatigue, pallor, mild jaundice, exertional dyspnoea, epigastric pain, tender right hypochondrium and massive splenomegaly. Investigations revealed anaemia and thrombocytopenia, tear drop cells, basophilic stippling, piokilocytosis and anisochromia; increased uric acid and LDH. Abdominal ultrasound showed enlarged liver (22cm) and spleen (20cm). Bone marrow aspiration revealed 51% erythroid and 24% non-erythroid precursors, depressed leukopoeisis and megakarypoeisis. Erythroblasts were PAS and CD71 positive and also reacted to Antihaemoglobin-Antibody. This report highlights characteristic features and diagnostic criteria of erythroleukaemia, differential diagnosis of massive splenomegaly and their rare association.

  20. The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Prasuna Paluru

    2014-03-01

    Full Text Available The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41 + CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP. Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.

  1. Regulator of differentiation 1 (ROD1) binds to the amphipathic C-terminal peptide of thrombospondin-4 and is involved in its mitogenic activity.

    Science.gov (United States)

    Sadvakassova, Gulzhakhan; Dobocan, Monica C; Difalco, Marcos R; Congote, Luis F

    2009-09-01

    The matrix protein thrombospondin-4 has an acidic amphipathic C-terminal peptide (C21) which stimulates erythroid cell proliferation. Here we show that C21 stimulates red cell formation in anemic mice in vivo. In vitro experiments indicated that the peptide-mediated increase of erythroid colony formation in cultures of human CD34+ hematopoietic progenitor cells was possible only under continuous presence of erythropoietin. In the absence of this cytokine, C21 stimulated exclusively myeloid colony formation. Therefore, the peptide is not a specific erythroid differentiation factor. In fact, it is mitogenic in non-erythroid cells, such as skin fibroblasts and kidney epithelial cells. In erythroleukemic TF-1 cells, it actually decreased the production of the erythroid differentiation marker glycophorin A. C21-affinity chromatography revealed regulator of differentiation 1 (ROD1) as a major C21-binding protein. ROD1 is the hematopoietic cell paralog of polypyrimidine tract binding proteins (PTBs), RNA splice regulators which regulate differentiation by repressing tissue-specific exons. ROD1 binding to C21 was strongly inhibited by synthetic RNAs in the order poly A > poly U > poly G = poly C and was weakly inhibited by a synthetic phosphorylated peptide mimicking the C-terminal domain of RNA polymerase II. Cellular overexpression or knockdown experiments of ROD1 suggest a role for this protein in the mitogenic activity of C21. Since the nuclear proteins ROD1 and PTBs regulate differentiation at a posttranscriptional level and there is a fast nuclear uptake of C21, we put forward the idea that the peptide is internalized, goes to the nucleus and maintains cells in a proliferative state by supporting ROD1-mediated inhibition of differentiation.

  2. Acute erythroid neoplastic proliferations. A biological study based on 62 patients.

    Science.gov (United States)

    Domingo-Claros, Alicia; Larriba, Itziar; Rozman, Maruja; Irriguible, Dolors; Vallespí, Teresa; Aventin, Anna; Ayats, Ramon; Millá, Fuensanta; Solé, Francesc; Florensa, Lourdes; Gallart, Miquel; Tuset, Esperanza; Lopez, Carmen; Woessner, Soledad

    2002-02-01

    The terms acute erythroleukemia and AML-M6 are defined in the FAB classification as proliferations of dysplastic erythroid elements mixed with blasts of myeloid origin, but pure erythroid leukemias are not included. The recent WHO classification has a category of acute myeloid leukemia not otherwise categorized, which includes acute erythroid leukemia (M6) of two subtypes: M6a-erythroleukemia (erythroid/myeloid) and M6b-pure erythroid leukemia. The aims of this co-operative study were to discover the incidences of these different subtypes, and pay special attention to the morphology of these entities. We reviewed a series of 62 patients with erythroid neoplastic proliferations. Previous medical history, age, sex, peripheral blood and bone marrow cell counts, cytochemical stains, immunophenotype, and cytogenetics were evaluated at presentation. We analyzed the incidence of erythrocyte, leukocyte and platelet abnormalities in the peripheral blood. In bone marrow we analyzed dysplastic features of erythroblasts, granulocytic elements and the megakaryocytic lineage. Fifty-three patients met the criteria of M6a subtype of the WHO classification, and 2 were classified as having pure erythremia (M6b); 7 cases could not be classified according to the WHO criteria. Fifty-five patients presented with de novo acute leukemia, and seven patients had secondary acute leukemia. The most frequent dysplastic features in blood smears were: schistocytes, tear-drop and pincered cells in erythrocytes; hypogranulation and hyposegmentation in leukocytes; gigantism and hypogranulation in platelets. In bone marrow, megaloblastic changes, multinuclearity, karyorrhexis and basophilic stippling in erythroblasts; hypogranulation and gigantism in granulocytic series, and micromegakaryocytes and unconnected nuclei in megakarocytes were the most dysplastic features. A positive PAS reaction and increase of bone marrow iron with ring sideroblasts were common features. Trilineage dysplasia was

  3. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation.

    Science.gov (United States)

    Fan, Cuiqing; Xiong, Yuan; Zhu, Ning; Lu, Yabin; Zhang, Jiewen; Wang, Song; Liang, Zicai; Shen, Yan; Chen, Meihong

    2011-03-01

    Cancers are characterized by poor differentiation. Differentiation therapy is a strategy to alleviate malignant phenotypes by inducing cancer cell differentiation. Here we carried out a combinatorial high-throughput screen with a random siRNA library on human erythroleukemia K-562 cell differentiation. Two siRNAs screened from the library were validated to be able to induce erythroid differentiation to varying degrees, determined by CD235 and globin up-regulation, GATA-2 down-regulation, and cell growth inhibition. The screen we performed here is the first trial of screening cancer differentiation-inducing agents from a random siRNA library, demonstrating that a random siRNA library can be considered as a new resource in efforts to seek new therapeutic agents for cancers. As a random siRNA library has a broad coverage for the entire genome, including known/unknown genes and protein coding/non-coding sequences, screening using a random siRNA library can be expected to greatly augment the repertoire of therapeutic siRNAs for cancers.

  4. Generation and Characterization of Erythroid Cells from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2011-01-01

    Full Text Available Because of the imbalance in the supply and demand of red blood cells (RBCs, especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

  5. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome.

    Science.gov (United States)

    Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang

    2017-07-01

    Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Update on the biology of heme synthesis in erythroid cells].

    Science.gov (United States)

    Fujiwara, Tohru; Harigae, Hideo

    2015-02-01

    Heme is a prosthetic group of hemoproteins playing important roles in oxygen transport, detoxification, circadian rhythm, microRNA processing, regulation of transcription, and translation. The majority of heme (-85%) is synthesized in red blood cells mainly for hemoglobin production, whereas hepatocytes account for most of the rest, functioning primarily in the synthesis of cytochrome P450 enzymes and mitochondrial respiratory enzymes. Thus, failure of heme biosynthesis causes severe inherited or acquired disorders in humans, including porphyria and sideroblastic anemia. The heme biosynthetic pathway is composed of eight enzymes that work in either mitochondria or the cytoplasm, which have been extensively researched and frequently reviewed. On the other hand, the mechanisms governing transport and intracellular trafficking of heme intermediates, as well as their potential links to human diseases, are poorly understood. Herein, we focus on recent understanding of the heme biosynthetic pathway and on human disorders due to defective heme synthesis in erythroid cells, such as X-linked sideroblastic anemia and erythropoietic protoporphyria.

  7. EPO Receptor Gain-of-Function Causes Hereditary Polycythemia, Alters CD34+ Cell Differentiation and Increases Circulating Endothelial Precursors

    Science.gov (United States)

    Perrotta, Silverio; Cucciolla, Valeria; Ferraro, Marcella; Ronzoni, Luisa; Tramontano, Annunziata; Rossi, Francesca; Scudieri, Anna Chiara; Borriello, Adriana; Roberti, Domenico; Nobili, Bruno; Cappellini, Maria Domenica; Oliva, Adriana; Amendola, Giovanni; Migliaccio, Anna Rita; Mancuso, Patrizia; Martin-Padura, Ines; Bertolini, Francesco; Yoon, Donghoon; Prchal, Josef T.; Della Ragione, Fulvio

    2010-01-01

    Background Gain-of-function of erythropoietin receptor (EPOR) mutations represent the major cause of primary hereditary polycythemia. EPOR is also found in non-erythroid tissues, although its physiological role is still undefined. Methodology/Principal Findings We describe a family with polycythemia due to a heterozygous mutation of the EPOR gene that causes a G→T change at nucleotide 1251 of exon 8. The novel EPOR G1251T mutation results in the replacement of a glutamate residue by a stop codon at amino acid 393. Differently from polycythemia vera, EPOR G1251T CD34+ cells proliferate and differentiate towards the erythroid phenotype in the presence of minimal amounts of EPO. Moreover, the affected individuals show a 20-fold increase of circulating endothelial precursors. The analysis of erythroid precursor membranes demonstrates a heretofore undescribed accumulation of the truncated EPOR, probably due to the absence of residues involved in the EPO-dependent receptor internalization and degradation. Mutated receptor expression in EPOR-negative cells results in EPOR and Stat5 phosphorylation. Moreover, patient erythroid precursors present an increased activation of EPOR and its effectors, including Stat5 and Erk1/2 pathway. Conclusions/Significance Our data provide an unanticipated mechanism for autosomal dominant inherited polycythemia due to a heterozygous EPOR mutation and suggest a regulatory role of EPO/EPOR pathway in human circulating endothelial precursors homeostasis. PMID:20700488

  8. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133 + Cells

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: The use of drugs with the ability to induce production of fetal hemoglobin as a novel therapeutic approach in treating β-Hemoglobinopathies is considered. γ-globin gene expression inducer drugs including sodium butyrate and thalidomide can reduce additional α-globin chains accumulation in erythroid precursors. Materials and Methods: In this experimental study, MACS kit was used to isolate CD133+ cells of umbilical cord blood. Further, the effect of two drugs of thalidomide and sodium butyrate were separately and combined studied on the induction of quantitative expression of β-globin and γ-globin genes in erythroid precursor cells derived from CD133+ stem cells in-vitro. For this purpose, the technique SYBR green Real-time PCR was used.Results: Flow cytometry results showed that approximately 95% of purified cells were CD133+. Real-time PCR results also showed the increased levels of γ-globin mRNA in the cell groups treated with thalidomide, sodium butyrate and combination of drugs as 2.6 and 1.2 and 3.5 times respectively, and for β-globin gene, it is respectively 1.4 and 1.3 and 1.6 times compared with the control group (p<0.05.Conclusion: The study results showed that the mentioned drug combination can act as a pharmaceutical composition affecting the induction of fetal hemoglobin expression in erythroid precursor cells derived from CD133 + cells.

  9. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    Science.gov (United States)

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem

    2016-12-01

    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe 2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59 Fe by reticulocytes and diminishes 59 Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    Science.gov (United States)

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. © 2016 by The American Society of Hematology.

  11. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Ying; Xu, Zhixiong; Xie, Jingping [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Ham, Amy-Joan L. [Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Koury, Mark J. [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Tennessee Valley VA Healthcare System, Nashville, TN 37212 (United States); Hiebert, Scott W. [Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Brandt, Stephen J., E-mail: stephen.brandt@vanderbilt.edu [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Tennessee Valley VA Healthcare System, Nashville, TN 37212 (United States)

    2009-12-11

    The TAL1 (or SCL) gene, originally discovered through its involvement by a chromosomal translocation in T-cell acute lymphoblastic leukemia, encodes a basic helix-loop-helix (bHLH) transcription factor essential for hematopoietic and vascular development. To identify its interaction partners, we expressed a tandem epitope-tagged protein in murine erythroleukemia (MEL) cells and characterized affinity-purified Tal1-containing complexes by liquid chromatography-tandem mass spectrometry analysis. In addition to known interacting proteins, two proteins related to the Eight-Twenty-One (ETO) corepressor, Eto2/Mtg16 and Mtgr1, were identified from the peptide fragments analyzed. Tal1 interaction with Eto2 and Mtgr1 was verified by coimmunoprecipitation analysis in Tal1, Eto2-, and Mtgr1-transfected COS-7 cells, MEL cells expressing V5 epitope-tagged Tal1 protein, and non-transfected MEL cells. Mapping analysis with Gal4 fusion proteins demonstrated a requirement for the bHLH domain of Tal1 and TAF110 domain of Eto2 for their interaction, and transient transfection and glutathione S-transferase pull-down analysis showed that Mtgr1 and Eto2 enhanced the other's association with Tal1. Enforced expression of Eto2 in differentiating MEL cells inhibited the promoter of the Protein 4.2 (P4.2) gene, a direct target of TAL1 in erythroid progenitors, and transduction of Eto2 and Mtgr1 augmented Tal1-mediated gene repression. Finally, chromatin immunoprecipitation analysis revealed that Eto2 occupancy of the P4.2 promoter in MEL cells decreased with differentiation, in parallel with a decline in Eto2 protein abundance. These results identify Eto2 and Mtgr1 as authentic interaction partners of Tal1 and suggest they act as heteromeric corepressors of this bHLH transcription factor during erythroid differentiation.

  12. Eto2/MTG16 and MTGR1 are heteromeric corepressors of the TAL1/SCL transcription factor in murine erythroid progenitors

    International Nuclear Information System (INIS)

    Cai, Ying; Xu, Zhixiong; Xie, Jingping; Ham, Amy-Joan L.; Koury, Mark J.; Hiebert, Scott W.; Brandt, Stephen J.

    2009-01-01

    The TAL1 (or SCL) gene, originally discovered through its involvement by a chromosomal translocation in T-cell acute lymphoblastic leukemia, encodes a basic helix-loop-helix (bHLH) transcription factor essential for hematopoietic and vascular development. To identify its interaction partners, we expressed a tandem epitope-tagged protein in murine erythroleukemia (MEL) cells and characterized affinity-purified Tal1-containing complexes by liquid chromatography-tandem mass spectrometry analysis. In addition to known interacting proteins, two proteins related to the Eight-Twenty-One (ETO) corepressor, Eto2/Mtg16 and Mtgr1, were identified from the peptide fragments analyzed. Tal1 interaction with Eto2 and Mtgr1 was verified by coimmunoprecipitation analysis in Tal1, Eto2-, and Mtgr1-transfected COS-7 cells, MEL cells expressing V5 epitope-tagged Tal1 protein, and non-transfected MEL cells. Mapping analysis with Gal4 fusion proteins demonstrated a requirement for the bHLH domain of Tal1 and TAF110 domain of Eto2 for their interaction, and transient transfection and glutathione S-transferase pull-down analysis showed that Mtgr1 and Eto2 enhanced the other's association with Tal1. Enforced expression of Eto2 in differentiating MEL cells inhibited the promoter of the Protein 4.2 (P4.2) gene, a direct target of TAL1 in erythroid progenitors, and transduction of Eto2 and Mtgr1 augmented Tal1-mediated gene repression. Finally, chromatin immunoprecipitation analysis revealed that Eto2 occupancy of the P4.2 promoter in MEL cells decreased with differentiation, in parallel with a decline in Eto2 protein abundance. These results identify Eto2 and Mtgr1 as authentic interaction partners of Tal1 and suggest they act as heteromeric corepressors of this bHLH transcription factor during erythroid differentiation.

  13. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages...... in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions...... with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...

  14. Hemopoietic regeneration in murine spleen following transfusion of normal and irradiated marrow: different response of granulocyte/macrophage and erythroid precursors

    International Nuclear Information System (INIS)

    Wangenheim, K.-H. von; Peterson, H.-P.; Huebner, G.E.; Feinendegen, L.E.

    1987-01-01

    To investigate cell proliferation in regenerating spleen, bone marrow of normal and gamma-irradiated donor mice (3 weeks after 5 Gy) was transfused into lethally irradiated recipients. In the donors and in the recipient spleens numbers of CFU-S and progenitor cells were determined. In the irradiated donors the progenitors were at control level after 3 weeks of recovery although CFU-S were still at 50% of control. Recipients of the irradiated marrow received therefore an increased proportion of progenitors. CFU-C appeared to be self-renewing and/or increased in number due to enhanced CFU-S differentiation, but not the erythroid progenitors. CFU-S self-renewal was reduced after 5 Gy. The data suggest that cell differentiation and maturation proceed during early splenic regeneration. The quantity of CFU-C does not necessarily mirror the situation in the stem cell compartment. (author)

  15. Production of erythrocytes from directly isolated or Delta1 Notch ligand expanded CD34+ hematopoietic progenitor cells: process characterization, monitoring and implications for manufacture.

    Science.gov (United States)

    Glen, Katie E; Workman, Victoria L; Ahmed, Forhad; Ratcliffe, Elizabeth; Stacey, Adrian J; Thomas, Robert J

    2013-09-01

    Economic ex vivo manufacture of erythrocytes at 10(12) cell doses requires an efficiently controlled bio-process capable of extensive proliferation and high terminal density. High-resolution characterization of the process would identify production strategies for increased efficiency, monitoring and control. CD34(+) cord blood cells or equivalent cells that had been pre-expanded for 7 days with Delta1 Notch ligand were placed in erythroid expansion and differentiation conditions in a micro-scale ambr suspension bioreactor. Multiple culture parameters were varied, and phenotype markers and metabolites measured to identify conserved trends and robust monitoring markers. The cells exhibited a bi-modal erythroid differentiation pattern with an erythroid marker peak after 2 weeks and 3 weeks of culture; differentiation was comparatively weighted toward the second peak in Delta1 pre-expanded cells. Both differentiation events were strengthened by omission of stem cell factor and dexamethasone. The cumulative cell proliferation and death, or directly measured CD45 expression, enabled monitoring of proliferative rate of the cells. The metabolic activities of the cultures (glucose, glutamine and ammonia consumption or production) were highly variable but exhibited systematic change synchronized with the change in differentiation state. Erythroid differentiation chronology is partly determined by the heterogeneous CD34(+) progenitor compartment with implications for input control; Delta1 ligand-mediated progenitor culture can alter differentiation profile with control benefits for engineering production strategy. Differentiation correlated changes in cytokine response, markers and metabolic state will enable scientifically designed monitoring and timing of manufacturing process steps. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  17. Enhanced inhibition of parvovirus B19 replication by cidofovir in extendedly exposed erythroid progenitor cells.

    Science.gov (United States)

    Bonvicini, Francesca; Bua, Gloria; Manaresi, Elisabetta; Gallinella, Giorgio

    2016-07-15

    Human parvovirus B19 (B19V) commonly induces self-limiting infections but can also cause severe clinical manifestations in patients with underlying haematological disorders or with immune system deficits. Currently, therapeutic options for B19V entirely rely on symptomatic and supportive treatments since a specific antiviral therapy is not yet available. Recently a first step in the research for active compounds inhibiting B19V replication has allowed identifying the acyclic nucleoside phosphonate cidofovir (CDV). Herein, the effect of CDV against B19V replication was characterized in human erythroid progenitor cells (EPCs) cultured and infected following different experimental approaches to replicate in vitro the infection of an expanding erythroid cell population in the bone marrow. B19V replication was selectively inhibited both in infected EPCs extendedly exposed to CDV 500μM (viral inhibition 82%) and in serially infected EPCs cultures with passage of the virus progeny, constantly under drug exposure (viral inhibition 99%). In addition, a potent inhibitory effect against B19V (viral inhibition 92%) was assessed in a short-term infection of EPCs treated with CDV 500μM 1day before viral infection. In the evaluated experimental conditions, the enhanced effect of CDV against B19V might be ascribed both to the increased intracellular drug concentration achieved by extended exposure, and to a progressive reduction in efficiency of the replicative process within treated EPCs population. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  19. Variation of radiation sensitivity of Friend Erythroleukemia cells cultured in the presence of the differentiation inducer DMSO

    International Nuclear Information System (INIS)

    Einspenner, M.; Boulton, J.E.; Borsa, J.

    1984-01-01

    Differentiation of Friend erythroleukemia cells (FELC) was induced with 1.5% dimethyl sulfoxide (DMSO) in the culture medium. Cell growth, erythroid differentiation, and radiosensitivity of the proliferative capacity of the cells were measured and compared to a noninduced control culture of identical age. Induced cells first appeared on Day 2 after DMSO addition, and increased to a maximum of 80 to 90% of the cell population on Day 5, whereas in the control culture, induction was less than 2% of the cells. Radiosensitivity of the cells in the induced culture relative to that of cells in the control culture, showed an age-dependent variation. On days 1 and 2 after DMSO addition, the cells in the induced culture were less radiosensitive than those in the control culture. At later times, this relationship was reversed, and between days 3 and 5 the clonable cells in the induced culture were less radiosensitive than those in the control culture. These results suggest that the metabolic events associated with commitment of FELC to differentiate affect their ability to cope with the radiation-induced lesions underlying the loss of division capacity

  20. Expression of the transcription factor Evi-1 in human erythroleukemia cell lines and in leukemias.

    Science.gov (United States)

    Fontenay-Roupie, M; Bouscary, D; Melle, J; Viguié, F; Picard, F; Guesnu, M; Dreyfus, F

    1997-02-01

    The Evi-1 proto-oncogene is a zinc finger DNA binding protein. Although activation of the Evi-1 gene has been associated with chromosomal rearrangements of the 3q25-q28 region, ectopic expression of Evi-1 could also be observed in acute myelogenous leukemias and myelodysplastic syndromes without cytogenetic abnormalities of the 3q26 locus. In this study, human erythroleukemic cell lines were screened for the expression of Evi-1 mRNA by northern blotting. Evi-1 was expressed in all the erythroid cell lines, whether undifferentiated (K 562, HEL, LAMA 84) or exhibiting spontaneous terminal erythroid differentiation (KU 812, JK-1). Evi-1 mRNA levels were constant or elevated in hemoglobin-synthesizing KU 812 or K 562 cells in response to erythropoietin or hemin treatment, respectively. In human acute myeloblastic leukemias (AML), 11/30 expressed Evi-1 by RT-PCR. Among these cases, 4/6 erythroleukemias without abnormalities of the 3q25-q28 region were found positive. The presence of acidophilic erythroblasts (15-47% of bone marrow cells) accounted for the existence of a terminal erythroid differentiation in all Evi-1-positive AML M6, whereas one negative case was poorly differentiated and referred to as AML M6 variant. These results suggest that Evi-1 mRNA expression can coexist with erythroid differentiation.

  1. Tapak liman (Elephantopus scaber L) extract-induced CD4+ and CD8+ differentiation from hematopoietic stem cells and progenitor cell proliferation in mice (Mus musculus L)

    Science.gov (United States)

    Djati, Muhammad Sasmito; Habibu, Hindun; Jatiatmaja, Nabilah A.; Rifa'i, Muhaimin

    2017-11-01

    Tapak Liman (Elephantopus scaber L) is a traditional medicinal plant containing several active compounds that potentially affecting hematopoietic stem cells, such as epifrieelinol, lupeol, stigmasterol, triacontane-1-ol, dotriacontane-1-ol, lupeol acetate, deoxyelephan-topin, isodeoxyelephantopin, polyphenol luteolin-7, as well as various flavonoids and glucosides. The aim of this study was to elucidate the effect of leaf extract of Tapak Liman on hematopoietic stem cells in mice BALB/c, by observation of the relative number of cells expressing CD4/CD8, CD4/CD62L, and TER119/B220 in the spleen, and TER119/B220, TER119/VLA-4 and TER119/CD34 in bone marrow, after being administered leaf extract for 2 weeks. This experiment used 12 female mice, which were divided into three treatment groups, P1= 0.5 g.g bw-1.day-1, P2= 1.0 g.g bw-1.day-1 and P3=2.0 g.g bw-1.day-1 Tapak Liman leaf extract as well as a control. The relative numbers of cells expressing surface molecules were analyzed by flowcytometry and quantitative data were tested using one-way ANOVA. The results showed that the leaf extract of Tapak Liman has no significant effect on erythrocyte proliferation; on the other hand, it had a significant effect on both proliferation and differentiation of B lymphocytes (B220+) in bone marrow (p=0.044) and increased the expression of CD4+, CD8+ molecule in B cells (p=0.026) and erythroid cells in spleen and bone marrow, based on the estimation of cells that expressed TER119+VLA-4+, identified as important in the development pathway of erythrocytes. An increased cell percentage of TER11+VLA-4+ occurred for treatment P2, 12% higher than the control. The increased expression of TER119+VLA-4+ was assumed to be due to the iron content in Tapak Liman, which functioned to stimulate the progenitor hematopoietic cells to proliferate and differentiate into a precursor of erythroid cells (TER119+VLA-4+). There was an increasing number of cells expressing the surface molecules TER119

  2. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  3. Co-ordinate expression of activin A and its type I receptor mRNAs during phorbol ester-induced differentiation of human K562 erythroleukemia cells.

    Science.gov (United States)

    Hildén, K; Tuuri, T; Erämaa, M; Ritvos, O

    1999-07-20

    Activins were originally isolated based on their ability to stimulate follicle-stimulating hormone secretion but later they have been shown to regulate a number of different cellular functions such as nerve cell survival, mesoderm induction during early embryogenesis as well as hematopoiesis. We studied the regulation of activin A, a homodimer of betaA-subunits, mRNA and protein in K562 erythroleukemia cells, which are known to be induced toward the erythroid lineage in response to activin or TGF-beta or toward the megakaryocytic lineage by the phorbol ester protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). Here we show by Northern blot analysis as well as by Western and ligand blotting that TPA strongly promotes activin betaA-subunit mRNA and activin A protein expression in K562 cells in time- and concentration dependent manner. In contrast, neither activin A nor TGF-beta induced betaA-subunit mRNA expression during erythroid differentiation in K562 cells. Interestingly, whereas activin type II receptors are not regulated during K562 cell differentiation (Hilden et al. (1994) Blood 83, 2163-2170), we now show that the activin type I and IB receptor mRNAs are clearly induced by TPA but not by activin or TGF-beta. We also show that the inducing effect of TPA on expression of activin betaA-subunit mRNA is potentiated by the protein kinase A activator 8-bromo-cAMP. We conclude that activin A and its type I receptors appear to be co-ordinately up-regulated during megakaryocytic differentiation of K562 cells.

  4. Hydroxyurea inhibits parvovirus B19 replication in erythroid progenitor cells.

    Science.gov (United States)

    Bonvicini, Francesca; Bua, Gloria; Conti, Ilaria; Manaresi, Elisabetta; Gallinella, Giorgio

    2017-07-15

    Parvovirus B19 (B19V) infection is restricted to erythroid progenitor cells (EPCs) of the human bone marrow, leading to transient arrest of erythropoiesis and severe complications mainly in subjects with underlying hematological disorders or with immune system deficits. Currently, there are no specific antiviral drugs for B19V treatment, but identification of compounds inhibiting B19V replication can be pursued by a drug repositioning strategy. In this frame, the present study investigates the activity of hydroxyurea (HU), the only disease-modifying therapy approved for sickle cell disease (SCD), towards B19V replication in the two relevant cellular systems, the UT7/EpoS1 cell line and EPCs. Results demonstrate that HU inhibits B19V replication with EC 50 values of 96.2µM and 147.1µM in UT7/EpoS1 and EPCs, respectively, providing experimental evidence of the antiviral activity of HU towards B19V replication, and confirming the efficacy of a drug discovery process by drug repositioning strategy. The antiviral activity occurs in vitro at concentrations lower than those affecting cellular DNA replication and viability, and at levels measured in plasma samples of SCD patients undergoing HU therapy. HU might determine a dual beneficial effect on SCD patients, not only for the treatment of the disease but also towards a virus responsible for severe complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Monomethylfumarate induces γ-globin expression and fetal hemoglobin production in cultured human retinal pigment epithelial (RPE) and erythroid cells, and in intact retina.

    Science.gov (United States)

    Promsote, Wanwisa; Makala, Levi; Li, Biaoru; Smith, Sylvia B; Singh, Nagendra; Ganapathy, Vadivel; Pace, Betty S; Martin, Pamela M

    2014-05-13

    Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. Human globin gene expression was evaluated by RT-quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase-qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous β(s) mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  6. Polyherbal EMSA ERITIN Promotes Erythroid Lineages and Lymphocyte Migration in Irradiated Mice

    Directory of Open Access Journals (Sweden)

    Ibrahim Mansur

    2016-01-01

    Full Text Available Radiotherapy is commonly used to kill malignant cells, but it can significantly deplete hematopoietic and splenic erythroblasts. Radioprotective agents are therefore very important in clinical radiotherapy. We examined the effect of poly-herbal EMSA ERITIN on immunological responses when administered to sublethally irradiated mice with the aim of highlighting promotes erythroid lineages and lymphocytes migration in irradiated mice with the parameter are TER119+CD123+in bone marrow and SDF-1 in bone marrow and spleen organ. Normal BALB/c mice were sublethally irradiated with 600 rad. EMSA ERITIN was administered orally at different doses:(1.04, 3.125 and 9.375 mg/g body weight for 15 days. On day 16 erythroid lineages (TER-119+CD123+ were observed in bone marrow and lymphocytes migration by the production of SDF-1 in spleen and bone marrow. Lymphocytes migration was indicated by the production of SDF-1 in spleen and bone marrow using flow cytometry analysis. EMSA ERITIN increased the generation of erythroid lineage cells marked by TER119+CD123+ and promoted lymphocyte migration by increasing SDF-1 production in bone marrow and spleen. EMSA ERITIN appears to be a powerful medicinal herb with potential as a food supplement to normalize homeostasis and erythropoiesis after radiation.

  7. Myelo-erythroid commitment after burn injury is under β-adrenergic control via MafB regulation.

    Science.gov (United States)

    Hasan, Shirin; Johnson, Nicholas B; Mosier, Michael J; Shankar, Ravi; Conrad, Peggie; Szilagyi, Andrea; Gamelli, Richard L; Muthumalaiappan, Kuzhali

    2017-03-01

    Severely injured burn patients receive multiple blood transfusions for anemia of critical illness despite the adverse consequences. One limiting factor to consider alternate treatment strategies is the lack of a reliable test platform to study molecular mechanisms of impaired erythropoiesis. This study illustrates how conditions resulting in a high catecholamine microenvironment such as burns can instigate myelo-erythroid reprioritization influenced by β-adrenergic stimulation leading to anemia. In a mouse model of scald burn injury, we observed, along with a threefold increase in bone marrow LSK cells (lin neg Sca1 + cKit + ), that the myeloid shift is accompanied with a significant reduction in megakaryocyte erythrocyte progenitors (MEPs). β-Blocker administration (propranolol) for 6 days after burn, not only reduced the number of LSKs and MafB + cells in multipotent progenitors, but also influenced myelo-erythroid bifurcation by increasing the MEPs and reducing the granulocyte monocyte progenitors in the bone marrow of burn mice. Furthermore, similar results were observed in burn patients' peripheral blood mononuclear cell-derived ex vivo culture system, demonstrating that commitment stage of erythropoiesis is impaired in burn patients and intervention with propranolol (nonselective β1,2-adrenergic blocker) increases MEPs. Also, MafB + cells that were significantly increased following standard burn care could be mitigated when propranolol was administered to burn patients, establishing the mechanistic regulation of erythroid commitment by myeloid regulatory transcription factor MafB. Overall, results demonstrate that β-adrenergic blockers following burn injury can redirect the hematopoietic commitment toward erythroid lineage by lowering MafB expression in multipotent progenitors and be of potential therapeutic value to increase erythropoietin responsiveness in burn patients. Copyright © 2017 the American Physiological Society.

  8. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing

    Directory of Open Access Journals (Sweden)

    Jianguo Wen

    2017-06-01

    Full Text Available Abstract Background Sickle cell disease (SCD is a disorder of red blood cells (RBCs expressing abnormal hemoglobin-S (HbS due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs.

  9. The effect of ceruloplasmin on erythroid precursor cells in the marrow of irradiated mice

    International Nuclear Information System (INIS)

    Suda, Toshio; Miura, Yasusada; Ozawa, Keiya; Yamada, Masaaki.

    1981-01-01

    The effect of ceruloplasmine on erythroid colony forming unit (CFU-e) of irradiated mice was investigated. Whole body #betta# ray irradiation of 100rad decreased the number of CFU-e from 154 to 40 per 4 * 10 4 myeloid nucleated cells. When human #betta#-globulin of 1 mg/kg or ceruloplasmin of 1 mg/kg was administrated immediately after irradiation, the number of CFU-e increased to that of more than normal and normal value in 2 days, respectively. In the case where ceruloplasmin was begun to administrated 7 days before irradiation, though the CFU-e number decreased from 144 to 44, the number increased to 317 after 2 days, and gradually decreased to the normal value by 16 days after irradiation. (Nakanishi, T)

  10. Reduction of erythroid progenitors in protein-energy malnutrition.

    Science.gov (United States)

    Borelli, Primavera; Blatt, Solange; Pereira, Juliana; de Maurino, Beatriz Beutler; Tsujita, Maristela; de Souza, Ana Cristina; Xavier, José Guilherme; Fock, Ricardo Ambrósio

    2007-02-01

    Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20 g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20 % loss of their original body weight, the animals from both groups received, intravenously, 20 IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis.

  11. Differential effect of L3T4+ cells on recovery from total-body irradiation

    International Nuclear Information System (INIS)

    Pantel, K.; Nakeff, A.

    1990-01-01

    We have examined the importance of L3T4+ (murine equivalent to CD4+) cells for hematopoietic regulation in vivo in unperturbed mice and mice recovering from total-body irradiation (TBI) using a cytotoxic monoclonal antibody (MoAb) raised with the GK 1.5 hybridoma. Ablating L3T4+ cells in normal (unperturbed) B6D2F1 mice substantially decreased the S-phase fraction (determined by in vivo hydroxyurea suicide) of erythroid progenitor cells (erythroid colony-forming units, CFU-E) as compared to the pretreatment level (10% +/- 14.1% [day 3 following depletion] vs 79.8% +/- 15.9%, respectively) with a corresponding decrease in the marrow content of CFU-E at this time to approximately 1% of the pretreatment value. Although the S-phase fraction of CFU-GM was decreased to 2.2% +/- 3.1% 3 days after L3T4+ cell ablation from the 21.3% +/- 8.3% pretreatment value, CFU-GM cellularity showed little change over the 3 days following anti-L3T4 treatment. Anti-L3T4 MoAb treatment had little or no effect on either the S-phase fraction or the marrow content of hematopoietic stem cells (spleen colony-forming units, CFU-S) committed to myeloerythroid differentiation. Ablating L3T4+ cells prior to a single dose of 2 Gy TBI resulted in significantly reduced marrow contents of CFU-S on day 3 and granulocyte-macrophage colony-forming units (CFU-GM) on day 6 following TBI, with little or no effect on the corresponding recovery of CFU-E. The present findings provide the first in vivo evidence that L3T4+ cells are involved in: (1) maintaining the proliferative activity of CFU-E and CFU-GM in unperturbed mice and (2) supporting the restoration of CFU-S and CFU-GM following TBI-induced myelosuppression

  12. Fusion of ZMYND8 and RELA genes in acute erythroid leukemia

    DEFF Research Database (Denmark)

    Panagopoulos, Ioannis; Micci, Francesca; Thorsen, Jim

    2013-01-01

    Acute erythroid leukemia was diagnosed in a 4-month-old boy. Cytogenetic analysis of bone marrow (BM) cells showed a t(11;20)(p11;q11) translocation. RNA extracted from the BM was sequenced and analyzed for fusion transcripts using the software FusionMap. A ZMYND8-RELA fusion was ranked first. RT...

  13. Increased Levels of Erythropoietin in Nipple Aspirate Fluid and in Ductal Cells from Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ferdinando Mannello

    2008-01-01

    Full Text Available Background: Erythropoietin (Epo is an important regulator of erythropoiesis, and controls proliferation and differentiation of both erythroid and non-erythroid tissues. Epo is actively synthesized by breast cells during lactation, and also plays a role in breast tissues promoting hypoxia-induced cancer initiation. Our aims are to perform an exploratory investigation on the Epo accumulation in breast secretions from healthy and cancer patients and its localization in breast cancer cells.

  14. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    Science.gov (United States)

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  15. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Cristina Pina

    2015-06-01

    Full Text Available We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

  16. MLL-ENL cooperates with SCF to transform primary avian multipotent cells.

    Science.gov (United States)

    Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M

    2002-08-15

    The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.

  17. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    Science.gov (United States)

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  18. Forced differentiation of CFU-S by iron-55 erythrocytocide

    International Nuclear Information System (INIS)

    Reincke, U.; Brookoff, D.; Burlington, H.; Cronkite, E.P.; Mount Sinai School of Medicine, New York

    1979-01-01

    Cascades of Auger electrons are emitted in the decay of 55 Fe and absorbed in tissue within a 1μm radius. Cytocidal amounts of 55 Fe can therefore eliminate erythroid precursors with minimal damage to adjacent cells. A single intravenous injection leads to continued erythrocytocide in mice because the isotope is reutilized and has a 2.7 year half-life. The cytocide evokes an early compensatory response from morphologically unrecognizable precursors which differentiate into pronormoblasts. These early events leave the granuloid series undisturbed but they are accompanied by a precipitous fall in pluripotent stem cell (CFU-S) numbers in bone marrow, spleen, and blood. The pretreatment levels of CFU-S are not restored. Gradual decline of CFU-S is associated with intermittently increased turnover rates and reduced settings of cell production, yet the capacity for quick restoration of blood loss is unimpaired. The precipitous initial stem cell decrease is not caused by irradiation damage, as shown in a separate experimental series that used the frozen-storage cytocide technique. Only over several weeks could 55 Fe radiation accumulate to lethal levels in nondividing stem cells. This irradiation is attributed to incorporation of small amounts of 55 Fe into CFU-S, from where it is slowly cleared. The stem cell loss immediately following 55 Fe injection is in our interpretation caused by rapid differentiation along the erythroid pathway in a response that involves all progenitor populations. Data are consistent with the hypothesis of limited cell renewal capacity which thereby gains further support. (orig.) [de

  19. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure.

    Science.gov (United States)

    Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V

    2017-07-11

    In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing

  20. Inhibition of erythroid cell growth by allogeneic murine lymphocytes. Evidence for a synergism between lymph node cells and thymocytes

    International Nuclear Information System (INIS)

    Blomgren, H.; Jacobsson, H.

    1974-01-01

    Murine lymphoid cells from thymus and lymph nodes were tested for synergistic response in a graft-vs-host test. The test is based on the principle that allogeneic lymphocytes inhibit erythroid cell proliferation in the spleens of irradiated mice infused with syngeneic bone marrow cells. Mixtures of thymocytes and lymph node cells from the same parental strain yielded graft-vs-host responses in irradiated F 1 -hybrids higher than expected by summing the responses of the two cell populations tested separately. A similar synergistic response was obtained using mixtures of thymocytes and lymph node cells obtained from the two parental strains of the hybrid, whereas such an effect was not detected using mixtures of lymph node cells or mixtures of thymocytes from the two parental strains. Nor could synergy be demonstrated between parental strain lymph node cells and thymocytes syngeneic with the bone marrow target cells. Thymocytes obtained from one parental strain which was injected into its irradiated F 1 -hybrid transformed into a population of sensitized cells in the spleens of the recipients. This transformation was suppressed by the simultaneous injection of lymph node cells from the second parental strain. Since there is a synergistic immune response by such cell mixtures it is concluded that thymocytes may enhance the graft-vs-host response of lymph node cells. Parental strain thymocytes and lymph node cells, the latter being specifically immunologically tolerant to the bone marrow target cells, failed to give a synergistic response indicating that thymocytes do not transform unresponsive lymphocytes into responsive, but rather enhance the reactivity of existing, specifically responsive cells. The results thus show that thymocytes may enhance the response of lymph node cells in this specific graft-vs-host assay

  1. Forced differentiation of CFU-s by iron-55 erythrocytocide

    International Nuclear Information System (INIS)

    Reincke, U.; Brookoff, D.; Burlington, H.; Cronkite, E.P.

    1978-01-01

    Cascades of Auger electrons are emitted in the decay of 55 Fe and absorbed in tissue within a 1 μm radius. Cytocidal amounts of 55 Fe can therefore eliminate erythroid precursors with minimal damage to adjacent cells. Early events leave the granuloid series undisturbed but they are accompanied by a precipitous fall of pluripotent stem cells levels (CFU-s) in bone marrow, spleen, and blood. The pretreatment levels of CFU-s are not restored. Gradual decline of CFU-s is associated with intermittently increased turnover rate and reduced settings of cell production, yet unimpaired capacity for quick restoration of blood loss. The precipitous initial stem cell decrease is not caused by irradiation damage as shown in a separate experimental series which uses the frozen-storage cytocide technique. Only over several weeks could 55 Fe radiation accumulate to lethal levels in nondividing stem cells. This irradiation is attributed to incorporation of small amounts of 55 Fe into CFU-s from where it is slowly cleared. The stem cell loss immediately following 55 Fe injection is in our interpretation caused by rapid differentiation along the erythroid pathway in a response that involves all progenitor populations. Data are consistent with the hypothesis of limited cell renewal capacity which thereby gains further support

  2. The biologic properties of recombinant human thrombopoietin in the proliferation and megakaryocytic differentiation of acute myeloblastic leukemia cells.

    Science.gov (United States)

    Matsumura, I; Kanakura, Y; Kato, T; Ikeda, H; Horikawa, Y; Ishikawa, J; Kitayama, H; Nishiura, T; Tomiyama, Y; Miyazaki, H; Matsuzawa, Y

    1996-10-15

    Thrombopoietin (TPO) is implicated as a primary regulator of megakaryopoiesis and thrombopoiesis. However, the biologic effects of TPO on human acute myeloblastic leukemia (AML) cells are largely unknown. To determine if recombinant human (rh) TPO has proliferation-supporting and differentiation-inducing activities in AML cells, 15 cases of AML cells that were exclusively composed of undifferentiated leukemia cells and showed growth response to rhTPO in a short-term culture (72 hours) were subjected to long-term suspension culture with or without rhTPO. Of 15 cases, rhTPO supported proliferation of AML cells for 2 to 4 weeks in 4 cases whose French-American-British subtypes were M0, M2, M4, and M7, respectively. In addition to the proliferation-supporting activity, rhTPO was found to induce AML cells to progress to some degree of megakaryocytic differentiation at both morphologic and surface-phenotypic level in 2 AML cases with M0 and M7 subtypes. The treatment of AML cells with rhTPO resulted in rapid tyrosine phosphorylation of the TPO-receptor, c-mpl, and STAT3 in all of cases tested. By contrast, the expression of erythroid/megakaryocyte-specific transcription factors (GATA-1, GATA-2, and NF-E2) was markedly induced or enhanced in only 2 AML cases that showed megakaryocytic differentiation in response to rhTPO. These results suggested that, at least in a fraction of AML cases, TPO could not only support the proliferation of AML cells irrespective of AML subtypes, but could also induce megakaryocytic differentiation, possibly through activation of GATA-1, GATA-2, and NF-E2.

  3. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    International Nuclear Information System (INIS)

    Uziel, Orit; Kanfer, Gil; Beery, Einat; Yelin, Dana; Shepshelovich, Daniel; Bakhanashvili, Mary; Nordenberg, Jardena; Lahav, Meir

    2014-01-01

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway

  4. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, Orit, E-mail: Oritu@clalit.org.il [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Kanfer, Gil [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Beery, Einat [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Yelin, Dana; Shepshelovich, Daniel [Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Bakhanashvili, Mary [Unit of Infectious Diseases, Sheba Medical Center, Tel-Hashomer (Israel); Nordenberg, Jardena [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Endocrinology Laboratory, Beilinson Medical Center, Petah-Tikva (Israel); Lahav, Meir [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel)

    2014-07-18

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.

  5. Erythropoiesis in the aged mouse. I. Response to stimulation in vivo

    International Nuclear Information System (INIS)

    Udupa, K.B.; Lipschitz, D.A.

    1984-01-01

    Changes in erythropoiesis with age were studied by examining the hematocrit increase in response to hypoxia in aged mice and by assessing the change in erythropoiesis following the injection of erythropoietin in young and old polycythemic mice. The increase in hematocrit after exposure to hypoxia was more variable and generally lower in old mice than in young mice. When erythropoietin was injected into polycythemic animals, the increase in differentiated erythroid cells and 59 Fe incorporation into erythroid marrow and peripheral blood cells was significantly lower in old mice than in young mice. In contrast to differentiated erythroid cells, there was less evidence of a reduced response to simulation of the more primitive erythroid progenitor cells of aged animals. The early undifferentiated erythroid progenitor, burst-forming units, did not decrease when either young or aged mice were made polycythemic, and no change following erythropoietin injection was noted. Polycythemia suppressed the late-differentiated erythroid progenitor, erythroid colony-forming units, to a greater extent in aged animals, but when erythropoietin was injected, the percent increase over the subsequent 24 hours was identical to that in young mice. These observations indicate a reduced erythropoietic capacity with age, the abnormality being most obvious in the more mature erythroid precursors

  6. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    Science.gov (United States)

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  7. No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.

    Science.gov (United States)

    Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte

    2017-07-20

    Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of human erythroid burst-promoting activity derived from bone marrow conditioned media

    International Nuclear Information System (INIS)

    Porter, P.N.; Ogawa, M.

    1982-01-01

    Bone marrow conditioned media (BMCM) increases burst number and the incorporation of 59 Fe into heme by bursts when peripheral blood or bone marrow cells are cultured at limiting serum concentrations. Burst-promoting activity (BPA) has now been purified approximately 300-fold from this source by ion-exchange chromatography on DEAE-Sephadex and absorption chromatography on hydroxyapatite agarose gel. Marrow BPA increased burst number and hemoglobin (Hb) synthesis in a dose-dependent manner. A larger increase in Hb synthesis than in burst number was consistently observed, which was probably a consequence of the increase in the number of cells per burst that occurs in the presence of BPA. The role of BPA in culture could be distinguished from erythropoietin (Ep), since no bursts grew in the absence of Ep, whether or not BPA was present, and since it had no effect on the growth of erythroid colonies scored at day 5 of culture. Our purified fraction did not support the growth of CFU-C in culture. Activity was stable at temperatures of 70 degrees C or lower for 10 min; exposure to 80 degrees C resulted in approximately 50% loss of activity. BPA was completely inactivated by treatment at 100 degrees C for 10 min. Thus, human bone marrow cells produce a heat-sensitive factor that specifically promotes the growth of early erythroid progenitors in culture

  9. Prospective identification of erythroid elements in cultured peripheral blood.

    Science.gov (United States)

    Miller, J L; Njoroge, J M; Gubin, A N; Rodgers, G P

    1999-04-01

    We have developed a prospective approach to identify the generation of erythroid cells derived from cultured peripheral blood mononuclear cells (PBMC) by monitoring the expression of the cell surface protein CD48. Unpurified populations of PBMC obtained from the buffy coats of normal volunteers were grown in suspension culture in the absence or presence of erythropoietin. A profile of surface CD48 expression permitted a flow cytometric identification of erythropoietin responsive populations at various stages of their maturation. In the absence of erythropoietin (EPO) supplemented media, the CD48- cells represented <5% of the total population of PBMC remaining in culture. In cultures supplemented with 1 U/mL EPO, the mean percentage of CD48- cells increased to 34.7 + 14.9% (p < 0.01) after 14 days in culture. Coordinated CD34 and CD71 (transferrin receptor) expression, morphology, gamma-globin transcription, and colony formation in methylcellulose were observed during the 14-day culture period. Flow cytometric monitoring of bulk cultured PBMC provides a simple and reliable means for the prospective or real-time study of human erythropoiesis.

  10. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    Full Text Available The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN. A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of

  11. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.

    Science.gov (United States)

    Choi, Jin Woo; Ku, Yunseo; Yoo, Byeong Wook; Kim, Jung-Ah; Lee, Dong Soon; Chai, Young Jun; Kong, Hyoun-Joong; Kim, Hee Chan

    2017-01-01

    The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN). A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of the proposed method

  12. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks

    Science.gov (United States)

    Choi, Jin Woo; Ku, Yunseo; Yoo, Byeong Wook; Kim, Jung-Ah; Lee, Dong Soon; Chai, Young Jun; Kong, Hyoun-Joong

    2017-01-01

    The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN). A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of the proposed method

  13. Enhancement of erythroid colony growth in culture by hemin

    International Nuclear Information System (INIS)

    Porter, P.N.; Meints, R.H.; Mesner, K.

    1979-01-01

    Hemin was found to enhance the growth of murine erythroid colonies in culture. In the presence of 100 mU/ml erythropoietin (EPO), the addition of hemin (0.05-0.2 mM) resulted in the growth of twice as many colonies as were obtained with EPO alone. Hemin also significantly increased erythroid colony formation in culture in the absence of added EPO. Hemoblobin synthesis as measured by the incorporation of 59 Fe into cyclohexanone extractable heme was augmented in culture by hemin. Neither Δ-aminolevulinic acid, a hemin precursor, nor FeCl 3 increased colony number. (author)

  14. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells.

    Science.gov (United States)

    Van Handel, Ben; Prashad, Sacha L; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I; Mikkola, Hanna K A

    2010-10-28

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in first trimester placental villi. Extravascular ζ-globin(+) primitive erythroid cells were found in placental villi between 5-7 weeks of development, at which time the frequency of enucleated RBCs was higher in the villous stroma than in circulation. RBC enucleation was further evidenced by the presence of primitive reticulocytes and pyrenocytes (ejected RBC nuclei) in the placenta. Extravascular RBCs were found to associate with placental macrophages, which contained ingested nuclei. Clonogenic macrophage progenitors of fetal origin were present in the chorionic plate of the placenta before the onset of fetoplacental circulation, after which macrophages had migrated to the villi. These findings indicate that placental macrophages may assist the enucleation process of primitive RBCs in placental villi, implying an unexpectedly broad role for the placenta in embryonic hematopoiesis.

  15. Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells.

    Science.gov (United States)

    Pettazzoni, Piergiorgio; Ciamporcero, Eric; Medana, Claudio; Pizzimenti, Stefania; Dal Bello, Federica; Minero, Valerio Giacomo; Toaldo, Cristina; Minelli, Rosalba; Uchida, Koji; Dianzani, Mario Umberto; Pili, Roberto; Barrera, Giuseppina

    2011-10-15

    4-Hydroxynonenal (HNE) is an end product of lipoperoxidation with antiproliferative and proapoptotic properties in various tumors. Here we report a greater sensitivity to HNE in PC3 and LNCaP cells compared to DU145 cells. In contrast to PC3 and LNCaP cells, HNE-treated DU145 cells showed a smaller reduction in growth and did not undergo apoptosis. In DU145 cells, HNE did not induce ROS production and DNA damage and generated a lower amount of HNE-protein adducts. DU145 cells had a greater GSH and GST A4 content and GSH/GST-mediated HNE detoxification. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a regulator of the antioxidant response. Nrf2 protein content and nuclear accumulation were higher in DU145 cells compared to PC3 and LNCaP cells, whereas the expression of KEAP1, the main negative regulator of Nrf2 activity, was lower. Inhibition of Nrf2 expression with specific siRNA resulted in a reduction in GST A4 expression and GS-HNE formation, indicating that Nrf2 controls HNE metabolism. In addition, Nrf2 knockdown sensitized DU145 cells to HNE-mediated antiproliferative and proapoptotic activity. In conclusion, we demonstrated that increased Nrf2 activity resulted in a reduction in HNE sensitivity in prostate cancer cells, suggesting a potential mechanism of resistance to pro-oxidant therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    International Nuclear Information System (INIS)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-01-01

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive

  17. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Simon, Felipe; Riedel, Claudia [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile); Ferrick, David [Seahorse Bioscience, Billerica, MA (United States); Elorza, Alvaro A., E-mail: aelorza@unab.cl [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile)

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  18. In vitro expression of erythropoietin by transfected human mesenchymal stromal cells.

    Science.gov (United States)

    Mok, P-L; Cheong, S-K; Leong, C-F; Othman, A

    2008-01-01

    Mesenchymal stromal cells (MSC) are pluripotent progenitor cells that can be found in human bone marrow (BM). These cells have low immunogenicity and could suppress alloreactive T-cell responses. In the current study, MSC were tested for their capacity to carry and deliver the erythropoietin (EPO) gene in vitro. Expanded BM MSC was transfected with EPO-encoded plasmid pMCV1.2 and EPO-encoded MIDGE (minimalistic immunologically defined gene expression) vector by electroporation. The expressed EPO was used to induce hematopoietic stem cells (HSC) into erythroid colonies. The results showed that the MIDGE vector was more effective and stable than the plasmid (pMCV1.2) in delivering EPO gene into MSC. The supernatants containing EPO obtained from the transfected cell culture were able to induce the differentiation of HSC into erythroid colonies. MSC hold promise as a cell factory for the production of biologic molecules, and MIDGE vector is more effective and stable than the plasmid in nucleofection involving the EPO gene.

  19. Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage

    OpenAIRE

    Zhang, Pan; Herbig, Utz; Coffman, Frederick; Lambert, Muriel W.

    2013-01-01

    Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid ?-spectrin (?IISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that ?IISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recrui...

  20. Characterization of transcription factor networks involved in umbilical cord blood CD34+ stem cells-derived erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Biaoru Li

    Full Text Available Fetal stem cells isolated from umbilical cord blood (UCB possess a great capacity for proliferation and differentiation and serve as a valuable model system to study gene regulation. Expanded knowledge of the molecular control of hemoglobin synthesis will provide a basis for rational design of therapies for β-hemoglobinopathies. Transcriptome data are available for erythroid progenitors derived from adult stem cells, however studies to define molecular mechanisms controlling globin gene regulation during fetal erythropoiesis are limited. Here, we utilize UCB-CD34+ stem cells induced to undergo erythroid differentiation to characterize the transcriptome and transcription factor networks (TFNs associated with the γ/β-globin switch during fetal erythropoiesis. UCB-CD34+ stem cells grown in the one-phase liquid culture system displayed a higher proliferative capacity than adult CD34+ stem cells. The γ/β-globin switch was observed after day 42 during fetal erythropoiesis in contrast to adult progenitors where the switch occurred around day 21. To gain insights into transcription factors involved in globin gene regulation, microarray analysis was performed on RNA isolated from UCB-CD34+ cell-derived erythroid progenitors harvested on day 21, 42, 49 and 56 using the HumanHT-12 Expression BeadChip. After data normalization, Gene Set Enrichment Analysis identified transcription factors (TFs with significant changes in expression during the γ/β-globin switch. Forty-five TFs were silenced by day 56 (Profile-1 and 30 TFs were activated by day 56 (Profile-2. Both GSEA datasets were analyzed using the MIMI Cytoscape platform, which discovered TFNs centered on KLF4 and GATA2 (Profile-1 and KLF1 and GATA1 for Profile-2 genes. Subsequent shRNA studies in KU812 leukemia cells and human erythroid progenitors generated from UCB-CD34+ cells supported a negative role of MAFB in γ-globin regulation. The characteristics of erythroblasts derived from UCB-CD34

  1. The role of tumor suppressor p15Ink4b in the regulation of hematopoietic progenitor cell fate

    International Nuclear Information System (INIS)

    Humeniuk, R; Rosu-Myles, M; Fares, J; Koller, R; Bies, J; Wolff, L

    2013-01-01

    Epigenetic silencing of the tumor suppressor gene p15Ink4b (CDKN2B) is a frequent event in blood disorders like acute myeloid leukemia and myelodysplastic syndromes. The molecular function of p15Ink4b in hematopoietic differentiation still remains to be elucidated. Our previous study demonstrated that loss of p15Ink4b in mice results in skewing of the differentiation pattern of the common myeloid progenitor towards the myeloid lineage. Here, we investigated a function of p15Ink4b tumor suppressor gene in driving erythroid lineage commitment in hematopoietic progenitors. It was found that p15Ink4b is expressed more highly in committed megakaryocyte–erythroid progenitors than granulocyte–macrophage progenitors. More importantly, mice lacking p15Ink4b have lower numbers of primitive red cell progenitors and a severely impaired response to 5-fluorouracil- and phenylhydrazine-induced hematopoietic stress. Introduction of p15Ink4b into multipotential progenitors produced changes at the molecular level, including activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling, increase GATA-1, erythropoietin receptor (EpoR) and decrease Pu1, GATA-2 expression. These changes rendered cells more permissive to erythroid commitment and less permissive to myeloid commitment, as demonstrated by an increase in early burst-forming unit-erythroid formation with concomitant decrease in myeloid colonies. Our results indicate that p15Ink4b functions in hematopoiesis, by maintaining proper lineage commitment of progenitors and assisting in rapid red blood cells replenishment following stress

  2. Role of Nuclear Factor (Erythroid-Derived 2-Like 2 Signaling for Effects of Fumaric Acid Esters on Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Anna Hammer

    2017-12-01

    Full Text Available To date, the intracellular signaling pathways involved in dendritic cell (DC function are poorly understood. The antioxidative transcription factor nuclear factor (erythroid-derived 2-like 2 (Nrf2 has been shown to affect maturation, function, and subsequent DC-mediated T cell responses of murine and human DCs. In experimental autoimmune encephalomyelitis (EAE, as prototype animal model for a T helper cell-mediated autoimmune disease, antigen presentation, cytokine production, and costimulation by DCs play a major role. We explore the role of Nrf2 in DC function, and DC-mediated T cell responses during T cell-mediated autoimmunity of the central nervous system using genetic ablation and pharmacological activation in mice and men to corroborate our data in a translational setting. In murine and human DCs, monomethyl fumarate induced Nrf2 signaling inhibits DC maturation and DC-mediated T cell proliferation by reducing inflammatory cytokine production and expression of costimulatory molecules. In contrast, Nrf2-deficient DCs generate more activated T helper cells (Th1/Th17 but fewer regulatory T cells and foster T cell proliferation. Transfer of DCs with Nrf2 activation during active EAE reduces disease severity and T cell infiltration. Our data demonstrate that Nrf2 signaling modulates autoimmunity in murine and human systems via inhibiting DC maturation and function thus shedding further light on the mechanism of action of antioxidative stress pathways in antigen-presenting cells.

  3. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    Science.gov (United States)

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  4. PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors

    Directory of Open Access Journals (Sweden)

    Schmidt Enrico K

    2004-05-01

    Full Text Available Abstract Background Erythropoietin is a multifunctional cytokine which regulates the number of erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs with erythropoietin (Epo leads to the activation of the mitogenic kinases (MEKs and Erks. How this is accomplished mechanistically remained unclear. Results Biochemical studies with human cord blood-derived PEPs now show that Ras and the class Ib enzyme of the phosphatidylinositol-3 kinase (PI3K family, PI3K gamma, are activated in response to minimal Epo concentrations. Surprisingly, three structurally different PI3K inhibitors block Ras, MEK and Erk activation in PEPs by Epo. Furthermore, Erk activation in PEPs is insensitive to the inhibition of Raf kinases but suppressed upon PKC inhibition. In contrast, Erk activation induced by stem cell factor, which activates c-Kit in the same cells, is sensitive to Raf inhibition and insensitive to PI3K and PKC inhibitors. Conclusions These unexpected findings contrast with previous results in human primary cells using Epo at supraphysiological concentrations and open new doors to eventually understanding how low Epo concentrations mediate the moderate proliferation of erythroid progenitors under homeostatic blood oxygen levels. They indicate that the basal activation of MEKs and Erks in PEPs by minimal concentrations of Epo does not occur through the classical cascade Shc/Grb2/Sos/Ras/Raf/MEK/Erk. Instead, MEKs and Erks are signal mediators of PI3K, probably the recently described PI3K gamma, through a Raf-independent signaling pathway which requires PKC activity. It is likely that higher concentrations of Epo that are induced by hypoxia, for example, following blood loss, lead to additional mitogenic signals which greatly accelerate erythroid progenitor proliferation.

  5. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Science.gov (United States)

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  6. Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton's tyrosine kinase

    NARCIS (Netherlands)

    von Lindern, Marieke; Schmidt, Uwe; Beug, Hartmut

    2004-01-01

    Erythropoietin (Epo) and stem cell factor (SCF) are essential factors in the control of survival, expansion and differentiation of erythroid progenitors. Upon activation, their receptors, the EpoR and c-Kit, initiate multiple signalling pathways that control many cellular processes. To control

  7. ABO alleles are linked with haplotypes of an erythroid cell-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination.

    Science.gov (United States)

    Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y

    2016-01-01

    Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles. © 2015 International Society of Blood Transfusion.

  8. Disruption of Spectrin-Like Cytoskeleton in Differentiating Keratinocytes by PKCδ Activation Is Associated with Phosphorylated Adducin

    Science.gov (United States)

    Zhao, Kong-Nan; Masci, Paul P.; Lavin, Martin F.

    2011-01-01

    Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex. PMID:22163289

  9. Heme and erythropoieis: more than a structural role.

    Science.gov (United States)

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-06-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency. Copyright© Ferrata Storti Foundation.

  10. Measurement of the capability of DNA synthesis of human fetal liver cells by the assay of 3H-TdR incorporation

    International Nuclear Information System (INIS)

    Wang Tao; Ma Xiangrui; Wang Hongyun; Cao Xia

    1987-01-01

    The fetal liver is one of the major sites of hematopoiesis during gestation. Under erythropoietin (EPO) stimulation, in erythroid precusor cells of fetal liver, proliferation and differentiation occurred and function of metabolism was enhanced. The technique of 3 H-TdR incorporation was used to measure the function of fetal liver cellular DNA synthesis. As EPO concentration at the range of approximately 20 ∼ 100 mU/ml, the counts of 3 H-TdR incorporation into fetal liver cells increased. As the concentration of EPO increased, however, its incorporation counts are lower than that in bone marrow of either the fetal or the adult. It suggested that precusors of erythrocyte of fetal liver has differentiated to later phases with the progressive accumulation of mature cells, therefore, both proliferation and function of metabolism are more or less decreased respectively. Under EPO stimulation, however, precusor of erythroid of fetal liver can greatly increase potential effects on DNA synthesis

  11. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  12. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Lo, Raymond; Matthews, Jason

    2013-01-01

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  13. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Evgenya Y.; Krauss, Sharon Wald; Short, Sarah A.; Lee, Gloria; Villalobos, Jonathan; Etzell, Joan; Koury, Mark J.; Ney, Paul A.; Chasis, Joel Anne; Grigoryev, Sergei A.

    2008-08-21

    Terminal erythroid differentiation in vertebrates is characterized by progressive heterochromatin formation, chromatin condensation and, in mammals, culminates in nuclear extrusion. To date, although mechanisms regulating avian erythroid chromatin condensation have been identified, little is known regarding this process during mammalian erythropoiesis. To elucidate the molecular basis for mammalian erythroblast chromatin condensation, we used Friend virus-infected murine spleen erythroblasts that undergo terminal differentiation in vitro. Chromatin isolated from early and late stage erythroblasts had similar levels of linker and core histones, only a slight difference in nucleosome repeats, and no significant accumulation of known developmentally-regulated architectural chromatin proteins. However, histone H3(K9) dimethylation markedly increased while histone H4(K12) acetylation dramatically decreased and became segregated from the histone methylation as chromatin condensed. One histone deacetylase, HDAC5, was significantly upregulated during the terminal stages of Friend virus-infected erythroblast differentiation. Treatment with histone deacetylase inhibitor, trichostatin A, blocked both chromatin condensation and nuclear extrusion. Based on our data, we propose a model for a unique mechanism in which extensive histone deacetylation at pericentromeric heterochromatin mediates heterochromatin condensation in vertebrate erythroblasts that would otherwise be mediated by developmentally-regulated architectural proteins in nucleated blood cells.

  14. Hemolytic disease of the fetus and newborn due to anti-Ge3: combined antibody-dependent hemolysis and erythroid precursor cell growth inhibition.

    Science.gov (United States)

    Blackall, Douglas P; Pesek, Gina D; Montgomery, Matthew M; Oza, Krishna K; Arndt, Patricia A; Garratty, George; Shahcheraghi, Ali; Denomme, Gregory A

    2008-10-01

    The Gerbich (Ge) antigens are a collection of high-incidence antigens carried on the red blood cell membrane glycoproteins, glycophorins C and D. Antibodies against these antigens are uncommon, and there have been only rare case reports of hemolytic disease of the fetus and newborn due to anti-Ge. In this case report, we present a neonate with severe anemia and hyperbilirubinemia due to anti-Ge3. Routine and special laboratory studies undertaken in this case suggested two mechanisms for the patient's hemolysis and persistent anemia. Antibody-dependent hemolysis was associated with early-onset hyperbilirubinemia, anemia, and a mild reticulocytosis, and inhibition of erythroid progenitor cell growth was associated with late anemia and normal bilirubin and reticulocyte values. Though rare, anti-Ge3 can be a dangerous antibody in pregnancy. Affected neonates may require intensive initial therapy and close follow-up for at least several weeks after delivery.

  15. Survey and evaluation of mutations in the human KLF1 transcription unit.

    Science.gov (United States)

    Gnanapragasam, Merlin Nithya; Crispino, John D; Ali, Abdullah M; Weinberg, Rona; Hoffman, Ronald; Raza, Azra; Bieker, James J

    2018-04-26

    Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, we queried published databases from a number of varied sources. In all cases we only found changes in commonly notated SNPs. Our results suggest that if there are mutations in KLF1 associated with erythroid malignancies, they are exceedingly rare.

  16. Evaluation of effects of various drugs on platelet functions using phorbol 12-myristate 13-acetate-induced megakaryocytic human erythroid leukemia cells

    Directory of Open Access Journals (Sweden)

    Tada T

    2016-09-01

    Full Text Available Tomoki Tada,1 Kensaku Aki,2 Wataru Oboshi,1,3 Kazuyoshi Kawazoe,4 Toshiyuki Yasui,5 Eiji Hosoi2 1Subdivision of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Tokushima University, 2Department of Cells and Immunity Analytics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 3Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, 4Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, 5Department of Reproductive and Menopausal Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan Background: The hyperfunction and activation of platelets have been strongly implicated in the development and recurrence of arterial occlusive disease, and various antiplatelet drugs are used to treat and prevent such diseases. New antiplatelet drugs and many other drugs have been developed, but some drugs may have adverse effects on platelet functions. Objective: The aim of this study was to establish an evaluation method for evaluating the effect and adverse effect of various drugs on platelet functions. Materials and methods: Human erythroid leukemia (HEL cells were used after megakaryocytic differentiation with phorbol 12-myristate 13-acetate as an alternative to platelets. Drugs were evaluated by changes in intracellular Ca2+ concentration ([Ca2+]i mobilization in Fura2-loaded phorbol 12-myristate 13-acetate-induced HEL cells. Aspirin and cilostazol were selected as antiplatelet drugs and ibuprofen and sodium valproate as other drugs. Results: There was a positive correlation between [Ca2+]i and platelet aggregation induced by thrombin. Aspirin (5.6–560 µM and cilostazol (5–10 µM significantly inhibited thrombin-induced increases in [Ca2+]i in a concentration-dependent manner. On the other hand, ibuprofen (8–200 µM and sodium valproate (50–1,000 µg/mL also significantly inhibited

  17. Osteoblastic cells: differentiation and trans-differentiation

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem; Saeed, Hamid

    2008-01-01

    The osteoblast is the bone forming cell and is derived from mesenchymal stem cells (MSC) present among the bone marrow stroma. MSC are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts and adipocytes. Understanding the mechanisms underlying osteoblast different...

  18. THE EFFECTS OF IL-1 AND IL-4 ON THE EPO-INDEPENDENT ERYTHROID PROGENITOR IN POLYCYTHEMIA-VERA

    NARCIS (Netherlands)

    DEWOLF, JTM; HENDRIKS, DW; ESSELINK, MT; HALIE, MR; VELLENGA, E

    1994-01-01

    Human recombinant interleukin-1 (IL-1) was studied for its effects on the erythroid progenitors from normal subjects and from patients with polycythaemia vera (PV). No supportive effect of IL-1 was noticed on the normal, erythropoietin (Epo) dependent, erythroid burst-forming unit (BFU-E) using

  19. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    Science.gov (United States)

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.

  20. Unexpected macrophage-independent dyserythropoiesis in Gaucher disease.

    Science.gov (United States)

    Reihani, Nelly; Arlet, Jean-Benoit; Dussiot, Michael; de Villemeur, Thierry Billette; Belmatoug, Nadia; Rose, Christian; Colin-Aronovicz, Yves; Hermine, Olivier; Le Van Kim, Caroline; Franco, Melanie

    2016-12-01

    Gaucher disease is a rare inherited disease caused by a deficiency in glucocerebrosidase leading to lipid accumulation in cells of mononuclear-macrophage lineage known as Gaucher cells. Visceral enlargement, bone involvement, mild anemia and thrombocytopenia are the major manifestations of Gaucher disease. We have previously demonstrated that the red blood cells from patients exhibit abnormal properties, which indicates a new role in Gaucher disease pathophysiology. To investigate whether erythroid progenitors are affected, we examined the in vitro erythropoiesis from the peripheral CD34 + cells of patients and controls. CD34- cells were differentiated into macrophages and co-cultivated with erythroblasts. We showed an accelerated differentiation of erythroid progenitors without maturation arrest from patients compared to controls. This abnormal differentiation persisted in the patients when the same experiments were performed without macrophages, which strongly suggested that dyserythropoiesis in Gaucher disease is secondary to an inherent defect in the erythroid progenitors. The accelerated differentiation was associated with reduced cell proliferation. As a result, less mature erythroid cells were generated in vitro in the Gaucher disease cultures compared to the control. We then compared the biological characteristics of untreated patients according to their anemic status. Compared to the non-anemic group, the anemic patients exhibit higher plasma levels of growth differentiation factor-15, a marker of ineffective erythropoiesis, but they had no indicators of hemolysis and similar reticulocyte counts. Taken together, these results demonstrated an unsuspected dyserythropoiesis that was independent of the macrophages and could participate, at least in part, to the basis of anemia in Gaucher disease. Copyright© Ferrata Storti Foundation.

  1. Sustained enhancement of OCTN1 transporter expression in association with hydroxyurea induced gamma-globin expression in erythroid progenitors

    OpenAIRE

    Walker, Aisha L.; Ofori-Acquah, Solomon

    2016-01-01

    The clinical benefits of hydroxyurea treatment in patients with sickle cell disease (SCD) are due largely to increased gamma-globin expression. However, mechanisms that control gamma-globin expression by hydroxyurea in erythroid progenitors are incompletely understood. Here, we investigated the role of two hydroxyurea transporters, urea transporter B (UTB) and organic cation/carnitine transporter 1 (OCTN1), in this process. Endogenous expression of both transporters peaked towards the end of ...

  2. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kaori Yamauchi

    Full Text Available BACKGROUND: Mouse embryonic stem (ES cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. METHODS AND FINDINGS: To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis. VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. CONCLUSION: VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the

  3. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    Science.gov (United States)

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  4. Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states

    Directory of Open Access Journals (Sweden)

    Rossi Simona

    2010-06-01

    Full Text Available Abstract Background The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario. Results We developed serum-free liquid suspension unilineage cultures of cord blood (CB CD34+ hematopoietic progenitor cells through erythroid (E, megakaryocytic (MK, granulocytic (G and monocytic (Mo pathways. These cultures recapitulate physiological hematopoiesis, allowing the analysis of almost pure unilineage precursors starting from initial differentiation of HPCs until terminal maturation. By analyzing the expression profile of protein coding genes and microRNAs in unilineage CB E, MK, G and Mo cultures, at sequential stages of differentiation and maturation, we observed a coordinated, fully interconnected and scalable character of cell population behaviour in both transcriptome and miRNome spaces reminiscent of an attractor-like dynamics. MiRNome and transcriptome space differed for a still not terminally committed behaviour of microRNAs. Conclusions Consistent with their roles, the transcriptome system can be considered as the state space of a cell population, while the continuously evolving miRNA space corresponds to the tuning system necessary to reach the attractor. The behaviour of miRNA machinery could be of great relevance not only for the promise of reversing the differentiated state but even for tumor biology.

  5. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  6. DJ-1 Modulates Nuclear Erythroid 2-Related Factor-2-Mediated Protection in Human Primary Alveolar Type II Cells in Smokers.

    Science.gov (United States)

    Bahmed, Karim; Messier, Elise M; Zhou, Wenbo; Tuder, Rubin M; Freed, Curt R; Chu, Hong Wei; Kelsen, Steven G; Bowler, Russell P; Mason, Robert J; Kosmider, Beata

    2016-09-01

    Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2-related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases.

  7. Heme-dependent up-regulation of the α-globin gene expression by transcriptional repressor Bach1 in erythroid cells

    International Nuclear Information System (INIS)

    Tahara, Tsuyoshi; Sun Jiying; Igarashi, Kazuhiko; Taketani, Shigeru

    2004-01-01

    The transcriptional factor Bach1 forms a heterodimer with small Maf family, and functions as a repressor of the Maf recognition element (MARE) in vivo. To investigate the involvement of Bach1 in the heme-dependent regulation of the expression of the α-globin gene, human erythroleukemia K562 cells were cultured with succinylacetone (SA), a heme biosynthetic inhibitor, and the level of α-globin mRNA was examined. A decrease of α-globin mRNA was observed in SA-treated cells, which was restored by the addition of hemin. The heme-dependent expression of α-globin occurred at the transcriptional level since the expression of human α-globin gene promoter-reporter gene containing hypersensitive site-40 (HS-40) was decreased when K562 cells were cultured with SA. Hemin treatment restored the decrease of the promoter activity by SA. The regulation of the HS-40 activity by heme was dependent on the NF-E2/AP-1 (NA) site, which is similar to MARE. The NA site-binding activity of Bach1 in K562 increased upon SA-treatment, and the increase was diminished by the addition of hemin. The transient expression of Bach1 and mutated Bach1 lacking CP motifs suppressed the HS-40 activity, and cancellation of the repressor activity by hemin was observed when wild-type Bach1 was expressed. The expression of NF-E2 strengthened the restoration of the Bach1-effect by hemin. Interestingly, nuclear localization of Bach1 increased when cells were treated with SA, while hemin induced the nuclear export of Bach1. These results indicated that heme plays an important role in the induction of α-globin gene expression through disrupting the interaction of Bach1 and the NA site in HS-40 enhancer in erythroid cells

  8. Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients

    Science.gov (United States)

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011

  9. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  10. Probing Conformational Stability and Dynamics of Erythroid and Nonerythroid Spectrin: Effects of Urea and Guanidine Hydrochloride

    Science.gov (United States)

    Patra, Malay; Mukhopadhyay, Chaitali; Chakrabarti, Abhijit

    2015-01-01

    We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGu H 2 0) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from. PMID:25617632

  11. The antigen presenting cells instruct plasma cell differentiation.

    Science.gov (United States)

    Xu, Wei; Banchereau, Jacques

    2014-01-06

    The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only "signal 1" (the antigen), but also "signal 2" to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  12. Cancer stem cells and differentiation therapy.

    Science.gov (United States)

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  13. Putative tyrosine kinases expressed in K-562 human leukemia cells

    International Nuclear Information System (INIS)

    Partanen, J.; Maekelae, T.P.; Lehvaeslaiho, H.; Alitalo, K.; Alitalo, R.

    1990-01-01

    Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. The authors analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets

  14. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Juan Antonio Guadix

    2017-12-01

    Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRα, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using in vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RA + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their in vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed in vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation

  15. Leukemic transformation of normal murine erythroid progenitors: v- and c-ErbB act through signaling pathways activated by the EpoR and c-Kit in stress erythropoiesis

    NARCIS (Netherlands)

    von Lindern, M.; Deiner, E. M.; Dolznig, H.; Parren-van Amelsvoort, M.; Hayman, M. J.; Mullner, E. W.; Beug, H.

    2001-01-01

    Primary erythroid progenitors can be expanded by the synergistic action of erythropoietin (Epo), stem cell factor (SCF) and glucocorticoids. While Epo is required for erythropoiesis in general, glucocorticoids and SCF mainly contribute to stress erythropoiesis in hypoxic mice. This ability of normal

  16. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Tichy, Elisia D.; Stambrook, Peter J.

    2008-01-01

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  17. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  18. Non-genetic heterogeneity, criticality and cell differentiation.

    Science.gov (United States)

    Pal, Mainak; Ghosh, Sayantari; Bose, Indrani

    2014-11-27

    The different cell types in a living organism acquire their identity through the process of cell differentiation in which multipotent progenitor cells differentiate into distinct cell types. Experimental evidence and analysis of large-scale microarray data establish the key role played by a two-gene motif in cell differentiation in a number of cell systems. The two genes express transcription factors which repress each other's expression and autoactivate their own production. A number of theoretical models have recently been proposed based on the two-gene motif to provide a physical understanding of how cell differentiation occurs. In this paper, we study a simple model of cell differentiation which assumes no cooperativity in the regulation of gene expression by the transcription factors. The latter repress each other's activity directly through DNA binding and indirectly through the formation of heterodimers. We specifically investigate how deterministic processes combined with stochasticity contribute in bringing about cell differentiation. The deterministic dynamics of our model give rise to a supercritical pitchfork bifurcation from an undifferentiated stable steady state to two differentiated stable steady states. The stochastic dynamics of our model are studied using the approaches based on the Langevin equations and the linear noise approximation. The simulation results provide a new physical understanding of recent experimental observations. We further propose experimental measurements of quantities like the variance and the lag-1 autocorrelation function in protein fluctuations as the early signatures of an approaching bifurcation point in the cell differentiation process.

  19. Probing stem cell differentiation using atomic force microscopy

    International Nuclear Information System (INIS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  20. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  1. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the transc......The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change...... cells by performing reverse transcriptase-polymerase chain reaction on RNA extracted from laser dissected intestinal crypt and villi. In a screen of eight transcripts one - SART3 - was identified as a marker for human colonic crypts....

  2. Efficient Differentiation of Mouse Embryonic Stem Cells into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Szu-Hsiu Liu

    2012-01-01

    Full Text Available Embryonic stem (ES cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs by a two-step differentiation protocol comprising of (i the formation of definitive endoderm in monolayer culture by activin A, and (ii this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.

  3. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Generation of a Nrf2 homozygous knockout human embryonic stem cell line using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    So-Jung Kim

    2017-03-01

    Full Text Available Nuclear factor erythroid 2-related factor 2 (NFE2L2 or Nrf2 is a well-known transcription factor that regulates the expression of a large number of anti-oxidant genes in mammalian cells (J.H. Kim et al., 2014. Here, we generated a homozygous Nrf2 knockout human embryonic stem cell (hESC line, H9Nrf2KO-A13, using the CRISPR/Cas9 genome editing method. The Nrf2 homozygous knockout H9 cell line maintains pluripotency, differentiation potential into three germ layers, and a normal karyotype.

  5. Id2 reinforces TH1 cell differentiation and inhibits E2A to repress TFH cell differentiation

    Science.gov (United States)

    Shaw, Laura A.; Bélanger, Simon; Omilusik, Kyla D.; Cho, Sunglim; Scott-Browne, James P.; Nance, J. Philip; Goulding, John; Lasorella, Anna; Lu, Li-Fan; Crotty, Shane; Goldrath, Ananda W.

    2016-01-01

    Differentiation of T helper (TH) effector subsets is critical for host protection. E protein transcription factors and Id proteins are important arbiters of T cell development, but their role in differentiation of TH1 and TFH cells is not well understood. TH1 cells showed robust Id2 expression compared to TFH cells, and RNAi depletion of Id2 increased TFH cell frequencies. Further, TH1 cell differentiation was blocked by Id2 deficiency, leading to E protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired generation of TH1 cells following Toxoplasma gondii infection. The TFH-defining transcriptional repressor Bcl6 bound the Id2 locus, providing a mechanism for the bimodal Id2 expression and reciprocal development of TH1 and TFH cell fates. PMID:27213691

  6. A Rare Case of Pure Erythroid Sarcoma in a Pediatric Patient: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Pablo Manresa

    2017-12-01

    Full Text Available We describe an exceptional case of erythroid sarcoma in a pediatric patient as a growing orbital mass with no evidence of morphologic bone marrow involvement, who was finally diagnosed of pure erythroid sarcoma based on histopathology and flow cytometry criteria. We discuss the contribution of standardized eight-color flow cytometry as a rapid and reliable diagnostic method. The use of normal bone marrow databases allowed us to identify small aberrant populations in bone marrow and later confirm the diagnosis in the neoplastic tissue.

  7. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  8. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-01-01

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  9. Transcriptional control of megakaryocyte development.

    Science.gov (United States)

    Goldfarb, A N

    2007-10-15

    Megakaryocytes are highly specialized cells that arise from a bipotent megakaryocytic-erythroid progenitor (MEP). This developmental leap requires coordinated activation of megakaryocyte-specific genes, radical changes in cell cycle properties, and active prevention of erythroid differentiation. These programs result from upregulation of megakaryocyte-selective transcription factors, downregulation of erythroid-selective transcription factors and ongoing mediation of common erythro-megakaryocytic transcription factors. Unlike most developmental programs, no single lineage-unique family of master regulators exerts executive control over the megakaryocytic plan. Rather, an assemblage of non-unique factors and signals converge to determine lineage and differentiation. In human megakaryopoiesis, hereditary disorders of platelet production have confirmed contributions from three distinct transcription factor families. Murine models have extended this repertoire to include multiple additional factors. At a mechanistic level, the means by which these non-unique factors collaborate in the establishment of a perfectly unique cell type remains a central question.

  10. Levels of 2,3-diphosphoglycerate in Friend leukaemic cells.

    Science.gov (United States)

    Yeoh, G C

    1980-05-08

    Most cells are thought to contain trace amounts of 2,3-diphosphoglycerate (DPG), as it acts as a cofactor in the interconversion of 2-phosphoglycerate and 3-phosphoglycerate by the glycolytic enzyme phosphoglyceromutase. DPG is synthesized from 1,3-diphosphoglycerate by the action of diphosphoglycerate mutase. Lowry et al. reported levels of 29 mumol DPG per kg wet weight brain tissue which is approximately 3 pmol per 10(8) cells, assuming that 1 g of brain tissue contains 10(9) cells. In contrast, erythroid cells contain 50-100 nmol DPG per 10(8) cells, depending on the species and the stage of development. This is of the order of a 1,000-fold more DPG compared with non-erythroid cells. In red cells DPG concentration modulates the binding of oxygen to haemoglobin. I show here that erythroid precurser cells also contain markedly raised levels of DPG.

  11. DJ-1 Modulates Nuclear Erythroid 2–Related Factor-2–Mediated Protection in Human Primary Alveolar Type II Cells in Smokers

    Science.gov (United States)

    Bahmed, Karim; Messier, Elise M.; Zhou, Wenbo; Tuder, Rubin M.; Freed, Curt R.; Chu, Hong Wei; Kelsen, Steven G.; Bowler, Russell P.; Mason, Robert J.

    2016-01-01

    Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2–related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases. PMID:27093578

  12. Differentiation of a bipotential glial progenitor cell in a single cell microculture.

    Science.gov (United States)

    Temple, S; Raff, M C

    Although it is known that most cells of the vertebrate central nervous system (CNS) are derived from the neuroepithelial cells of the neural tube, the factors determining whether an individual neuroepithelial cell develops into a particular type of neurone or glial cell remain unknown. A promising model for studying this problem is the bipotential glial progenitor cell in the developing rat optic nerve; this cell differentiates into a particular type of astrocyte (a type-2 astrocyte) if cultured in 10% fetal calf serum (FCS) and into an oligodendrocyte if cultured in serum-free medium. As the oligodendrocyte-type-2 astrocyte (0-2A) progenitor cell can differentiate along either glial pathway in neurone-free cultures, living axons clearly are not required for its differentiation, at least in vitro. However, the studies on 0-2A progenitor cells were carried out in bulk cultures of optic nerve, and so it was possible that other cell-cell interactions were required for differentiation in culture. We show here that 0-2A progenitor cells can differentiate into type-2 astrocytes or oligodendrocytes when grown as isolated cells in microculture, indicating that differentiation along either glial pathway in vitro does not require signals from other CNS cells, apart from the signals provided by components of the culture medium. We also show that single 0-2A progenitor cells can differentiate along either pathway without dividing, supporting our previous studies using 3H-thymidine and suggesting that DNA replication is not required for these cells to choose between the two differentiation programmes.

  13. In vitro study on chromosomal abnormality, proliferation and differentiation of hemopoietic stem cells from atomic bomb exposures and patients with acute leukemia and related disorders

    Energy Technology Data Exchange (ETDEWEB)

    Amenomori, Tatsuhiko

    1988-12-01

    By using in vitro cloning method and cytogenetic analysis from single hemopoietic colonies, the kinetics of differentiation and proliferation, and chromosomal abnormalities of hemopoietic stem cells (CFU-GM, BFU-E) from atomic bomb exposures and patients with acute leukemia and myelodysplastic syndrome (MDS) were investigated. High incidence (24 colonies/ 206 total colonies; 11.7%) of irradiation-induced chromosomal abnormalities was observed in circulating hemopoietic stem cells from 21 high dose exposures. In two individuals, karyotypic abnormalities closely resembling those observed in the peripheral T lymphocytes were also seen in the myeloid stem cells (BFU-E). This finding suggests that totipotential stem cells common to myeloid and lymphoid lineages exist in healthy human adults and atomic bomb irradiation produced chromosomal aberrations in them. In each of 5 MDS cases with both GM colony and erythroid burst formation, identical marker chromosomes were seen in CFU-GM and BFU-E. This finding demonstrates that MDS is a clonal hemopathy that originates in a pluripotential stem cell. Whether acute leukemia is also a clonal hemopathy originating in a pluripotential stem cell remains to be determined. But there was a considerable heterogeneity in kinetics of proliferation and in responsiveness to colony stimulating factors among these cases. (author) 54 refs.

  14. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhe-Hao Zhang

    Full Text Available Nicotinic acid adenine dinucleotide phosphate (NAADP is an endogenous Ca(2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+ from acidic organelles through two pore channel 2 (TPC2 in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.

  15. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    NARCIS (Netherlands)

    Guadix, Juan Antonio; Orlova, Valeria V.; Giacomelli, Elisa; Bellin, Milena; Ribeiro, Marcelo C.; Mummery, Christine L.; Pérez-Pomares, José M.; Passier, Robert

    2017-01-01

    Human pluripotent stem cells (hPSCs) are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced) to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA)

  16. The Silencing of Pokemon Attenuates the Proliferation of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Inhibiting the PI3K/Akt Pathway

    OpenAIRE

    Lin, Chan-Chan; Zhou, Jing-Ping; Liu, Yun-Peng; Liu, Jing-Jing; Yang, Xiao-Ning; Jazag, Amarsanaa; Zhang, Zhi-Ping; Guleng, Bayasi; Ren, Jian-Lin

    2012-01-01

    Pokemon (POK erythroid myeloid ontogenic factor), which belongs to the POK protein family, is also called LRF, OCZF and FBI-1. As a transcriptional repressor, Pokemon assumes a critical function in cellular differentiation and oncogenesis. Our study identified an oncogenic role for Pokemon in human hepatocellular carcinoma (HCC). We successfully established human HepG2 and Huh-7 cell lines in which Pokemon was stably knocked down. We demonstrated that Pokemon silencing inhibited cell prolifer...

  17. Control of differentiation of melanoma cells

    International Nuclear Information System (INIS)

    Eguchi, Goro

    1980-01-01

    To develop the method to induce the appearance of differentiation in amelanotic melanoma, experimental control of differentiation in B-16 melanoma cells of mice was discussed. Human melanoma cells and yellow melanin pigment cells useful for a fundamental study of radiotherapy for cancer were cultured and were differentiated into some lines. Melanotic B-16 cells and amelanotic B-16 cells were irradiated with thermal neutron (neutron: 2.7 x 10 12 , γ-dose: 32.3 rad) after they were cultured in culture solution containing 10 γ/ml of 10 B-dopa for 13 hours. A fine structure 5 hours after the irradiation in one of 5 experimental cases showed aggregated disintegration of melanin pigment particles, markedly deformed and fragmentized nucleus, and structural changes in cell membrane. (Tsunoda, M.)

  18. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  19. Can bone marrow differentiate into renal cells?

    Science.gov (United States)

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  20. v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII

    DEFF Research Database (Denmark)

    Disela, C; Glineur, C; Bugge, T

    1991-01-01

    The v-erbA oncoprotein represents a retrovirus-transduced oncogenic version of the thyroid hormone (T3/T4) receptor c-erbA (type alpha). It contributes to virus-induced erythroleukemia by efficiently arresting differentiation of red cell progenitors and by suppressing transcription of erythrocyte...... of this CAII reporter construct could only be suppressed by very high amounts of v-erbA. Our results suggest that overexpression of v-erbA is required for its function as an oncoprotein....

  1. Regulated expression of genes inserted at the human chromosomal β-globin locus by homologous recombination

    International Nuclear Information System (INIS)

    Nandi, A.K.; Roginski, R.S.; Gregg, R.G.; Smithies, O.; Skoultchi, A.I.

    1988-01-01

    The authors have examined the effect of the site of integration on the expression of cloned genes introduced into cultured erythroid cells. Smithies et al. reported the targeted integration of DNA into the human β-globin locus on chromosome 11 in a mouse erythroleukemia-human cell hybrid. These hybrid cells can undergo erythroid differentiation leading to greatly increased mouse and human β-globin synthesis. By transfection of these hybrid cells with a plasmid carrying a modified human β-globin gene and a foreign gene composed of the coding sequence of the bacterial neomycin-resistance gene linked to simian virus 40 transcription signals (SVneo), cells were obtained in which the two genes are integrated at the β-globin locus on human chromosome 11 or at random sites. When they examined the response of the integrated genes to cell differentation, they found that the genes inserted at the β-globin locus were induced during differentiation, whereas randomly positioned copies were not induced. Even the foreign SVneo gene was inducible when it had been integrated at the β-globin locus. The results show that genes introduced at the β-globin locus acquire some of the regulatory properties of globin genes during erythroid differentiation

  2. Comparative Analysis of the Hematopoietic Progenitor Cells from Placenta, Cord Blood, and Fetal Liver, Based on Their Immunophenotype

    Directory of Open Access Journals (Sweden)

    Maria D. Kuchma

    2015-01-01

    Full Text Available We have investigated the characteristics of human hematopoietic progenitor cells (HPCs with the CD34+CD45lowSSClow phenotype from full-term placental tissue (FTPT as compared to cord blood (CB and fetal liver (FL cells. We demonstrated the presence of cell subpopulations at various stages of the differentiation with such immunophenotypes as CD34+/lowCD45low/-, CD34++CD45low/-, CD34+++CD45low/-, CD34+/lowCD45hi, and CD34++CD45hi in both first trimester placental tissue (FiTPT and FTPT which implies their higher phenotypic heterogeneity compared to CB. HPCs of the FTPT origin expressed the CD90 antigen at a higher level compared to its expression by the CB HPCs and the CD133 antigen expression being at the same level in both cases. The HPCs compartment of FTPT versus CB contained higher number of myeloid and erythroid committed cells but lower number of myeloid and lymphoid ones compared to FL HPCs. HPCs of the FTPT and CB origin possess similar potentials for the multilineage differentiation in vitro and similar ratios of myeloid and erythroid progenitors among the committed cells. This observation suggests that the active hematopoiesis occurs in the FTPT. We obtained viable HPCs from cryopreserved placental tissue fragments allowing us to develop procedures for banking and testing of placenta-derived HPCs for clinical use.

  3. Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic Cells

    Directory of Open Access Journals (Sweden)

    Charles A. Easley, IV

    2012-09-01

    Full Text Available Human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been shown to differentiate into primordial germ cells (PGCs but not into spermatogonia, haploid spermatocytes, or spermatids. Here, we show that hESCs and hiPSCs differentiate directly into advanced male germ cell lineages, including postmeiotic, spermatid-like cells, in vitro without genetic manipulation. Furthermore, our procedure mirrors spermatogenesis in vivo by differentiating PSCs into UTF1-, PLZF-, and CDH1-positive spermatogonia-like cells; HIWI- and HILI-positive spermatocyte-like cells; and haploid cells expressing acrosin, transition protein 1, and protamine 1 (proteins that are uniquely found in spermatids and/or sperm. These spermatids show uniparental genomic imprints similar to those of human sperm on two loci: H19 and IGF2. These results demonstrate that male PSCs have the ability to differentiate directly into advanced germ cell lineages and may represent a novel strategy for studying spermatogenesis in vitro.

  4. Effect of cell density on adipogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lu, Hongxu; Guo, Likun; Wozniak, Michal J.; Kawazoe, Naoki; Tateishi, Tetsuya; Zhang, Xingdong; Chen, Guoping

    2009-01-01

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10 3 to 3 x 10 4 cells/cm 2 was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed that adipogenesis marker genes encoding peroxisome proliferator-activated receptor γ2 (PPARγ2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.

  5. Differentiation of Dental Pulp Stem Cells into Neuron-Like Cells in Serum-Free Medium

    Directory of Open Access Journals (Sweden)

    Shahrul Hisham Zainal Ariffin

    2013-01-01

    Full Text Available Dental pulp tissue contains dental pulp stem cells (DPSCs. Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146+, Cd166+, and Cd31− in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.

  6. Mathematical Model for Post-Irradiation Haemopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Okunewick, J. P.; Kretchmar, A. L. [Rand Corporation, Santa Monica, CA (United States); Medical Division, Oak Ridge Associated Universities, Oak Ridge, TN (United States)

    1968-08-15

    A model for haemopoiesis has been constructed based on the following hypothesis: (a) Haemopoietic stem cells have the capability of either reproducing as stem cells or differentiating into specialized blood cells of at least two different types; (b) The size of the stem-cell compartment is in part regulated by the rate of increase due to stem-cell reproduction and in part by the rate of loss of stem cells through differentiation; (c) In addition, the size of the stem-cell compartment is in part regulated by a competitive cell-to-cell interaction between the stem-cells themselves and between the differentiating cells and the stem-cells, such that the presence of an exceptionally large number of either cell type would have a repressive effect on the rate of increase of the stem-cell population. This model has been applied to the post-irradiation erythropoietic behaviour of the rat. In the computer studies with the model, an X-ray dose sufficient to inhibit reproduction in 50% of the erythroid stem cells was assumed. It was also assumed that reproduction and differentiation are genetically separately controlled processes and that, therefore, some part of the reproductively injured cells were still capable of differentiation. Under these conditions the model predicted an abortive rise in reticulocyte number, peaking at about 6 days. True recovery was predicted to occur at about 16 days. Both the abortive rise and the true recovery were also present in those segments of the model representing earlier erythroid cells, occurring at progressively earlier times in progressively more primitive cells. Comparison of the model's predictions with experimentally obtained data for post-irradiation erythroid recovery showed a good agreement both with respect to the time of the abortive peak and the time of true recovery. (author)

  7. Mathematical Model for Post-Irradiation Haemopoiesis

    International Nuclear Information System (INIS)

    Okunewick, J.P.; Kretchmar, A.L.

    1968-01-01

    A model for haemopoiesis has been constructed based on the following hypothesis: (a) Haemopoietic stem cells have the capability of either reproducing as stem cells or differentiating into specialized blood cells of at least two different types; (b) The size of the stem-cell compartment is in part regulated by the rate of increase due to stem-cell reproduction and in part by the rate of loss of stem cells through differentiation; (c) In addition, the size of the stem-cell compartment is in part regulated by a competitive cell-to-cell interaction between the stem-cells themselves and between the differentiating cells and the stem-cells, such that the presence of an exceptionally large number of either cell type would have a repressive effect on the rate of increase of the stem-cell population. This model has been applied to the post-irradiation erythropoietic behaviour of the rat. In the computer studies with the model, an X-ray dose sufficient to inhibit reproduction in 50% of the erythroid stem cells was assumed. It was also assumed that reproduction and differentiation are genetically separately controlled processes and that, therefore, some part of the reproductively injured cells were still capable of differentiation. Under these conditions the model predicted an abortive rise in reticulocyte number, peaking at about 6 days. True recovery was predicted to occur at about 16 days. Both the abortive rise and the true recovery were also present in those segments of the model representing earlier erythroid cells, occurring at progressively earlier times in progressively more primitive cells. Comparison of the model's predictions with experimentally obtained data for post-irradiation erythroid recovery showed a good agreement both with respect to the time of the abortive peak and the time of true recovery. (author)

  8. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the transc...

  9. ROLE OF STEM CELL FACTOR IN THE REACTIVATION OF HUMAN FETAL HEMOGLOBIN

    Directory of Open Access Journals (Sweden)

    Marco Gabbianelli

    2009-11-01

    In vitro and in vivo models have led to the identification of several chemical compounds able to reactivate HbF synthesis in adult erythroid cells. Although the impact of these HbF inducers, including hypomethylating agents, histone deacetylase inhibitors and hydroxyurea, was clear on the natural history of sickle cell anemia, the benefit on the clinical course of -thalassemia was only limited: particularly, the toxicity and the modest increase in γ-globin reactivation indicated the need for improved agents able to induce higher levels of HbF. In the present review we describe the biologic properties of Stem Cell Factor (SCF, a cytokine sustaining the survival and proliferation of erythroid cells, that at pharmacological doses acts as a potent stimulator of HbF synthesis in adult erythroid cells.

  10. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    Energy Technology Data Exchange (ETDEWEB)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin; Seker, Sukran; Durkut, Serap; Dalva, Klara; Elçin, Yaşar Murat, E-mail: elcinmurat@gmail.com

    2017-03-15

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety of inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and interpretation

  11. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    International Nuclear Information System (INIS)

    Fujiwara, Tohru; Okamoto, Koji; Niikuni, Ryoyu; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-01-01

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly

  12. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Tohru [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan); Okamoto, Koji; Niikuni, Ryoyu [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Takahashi, Kiwamu [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Ishizawa, Kenichi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai (Japan); Ichinohasama, Ryo [Department of Hematopathology, Tohoku University Graduate School, Sendai (Japan); Nakamura, Yukio [Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki (Japan); Nakajima, Motowo; Tanaka, Tohru [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Harigae, Hideo, E-mail: harigae@med.tohoku.ac.jp [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan)

    2014-11-07

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly

  13. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel

    2012-01-01

    glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal.......5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased...

  14. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    Science.gov (United States)

    Loucari, Constantinos C.; Patsali, Petros; van Dijk, Thamar B.; Stephanou, Coralea; Papasavva, Panayiota; Zanti, Maria; Kurita, Ryo; Nakamura, Yukio; Christou, Soteroulla; Sitarou, Maria; Philipsen, Sjaak; Lederer, Carsten W.; Kleanthous, Marina

    2018-01-01

    The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood–derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies. PMID:29325430

  15. Identification of transcript regulatory patterns in cell differentiation.

    Science.gov (United States)

    Gusnanto, Arief; Gosling, John Paul; Pope, Christopher

    2017-10-15

    Studying transcript regulatory patterns in cell differentiation is critical in understanding its complex nature of the formation and function of different cell types. This is done usually by measuring gene expression at different stages of the cell differentiation. However, if the gene expression data available are only from the mature cells, we have some challenges in identifying transcript regulatory patterns that govern the cell differentiation. We propose to exploit the information of the lineage of cell differentiation in terms of correlation structure between cell types. We assume that two different cell types that are close in the lineage will exhibit many common genes that are co-expressed relative to those that are far in the lineage. Current analysis methods tend to ignore this correlation by testing for differential expression assuming some sort of independence between cell types. We employ a Bayesian approach to estimate the posterior distribution of the mean of expression in each cell type, by taking into account the cell formation path in the lineage. This enables us to infer genes that are specific in each cell type, indicating the genes are involved in directing the cell differentiation to that particular cell type. We illustrate the method using gene expression data from a study of haematopoiesis. R codes to perform the analysis are available in http://www1.maths.leeds.ac.uk/∼arief/R/CellDiff/. a.gusnanto@leeds.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  17. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  18. Diclofenac and triamcinolone acetonide impair tenocytic differentiation and promote adipocytic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Fredriksson, Maritha; Li, Yan; Stålman, Anders; Haldosén, Lars-Arne; Felländer-Tsai, Li

    2013-09-02

    Tendinopathies are often empirically treated with oral/topical nonsteroidal anti-inflammatory medications and corticosteroid injections despite their unclear effects on tendon regeneration. Recent studies indicate that tendon progenitors exhibit stem cell-like properties, i.e., differentiation to osteoblasts, adipocytes, and chondrocytes, in addition to tenocytes. Our present study aims at understanding the effects of triamcinolone acetonide and diclofenac on tenocytic differentiation of mesenchymal stem cells. The murine fibroblast C3H10T1/2 cell line was induced to tenocytic differentiation by growth differentiation factor-7. Cell proliferation and differentiation with the exposure of different concentrations of triamcinolone acetonide and diclofenac were measured by WST-1 assay and real-time polymerase chain reaction analysis, respectively. Cell proliferation was decreased in a concentration-dependent manner when exposed to triamcinolone acetonide and diclofenac. In addition to tenocytic differentiation, adipocyte formation was observed, both at gene expression and microscopic level, when the cells were exposed to triamcinolone acetonide or high concentrations of diclofenac. Our results indicate that triamcinolone acetonide and diclofenac might alter mesenchymal stem cell differentiation in a nonfavorable way regarding tendon regeneration; therefore, these medications should be used with more caution clinically.

  19. Hemopoietic cell precursor responses to erythropoietin in plasma clot cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.L.

    1979-01-01

    The time dependence of the response of mouse bone marrow cells to erythropoietin (Ep) in vitro was studied. Experiments include studies on the Ep response of marrow cells from normal, plethoric, or bled mice. Results with normal marrow reveal: (1) Not all erythroid precursors (CFU-E) are alike in their response to Ep. A significant number of the precursors develop to a mature erythroid colony after very short Ep exposures, but they account for only approx. 13% of the total colonies generated when Ep is active for 48 hrs. If Ep is active more than 6 hrs, a second population of erythroid colonies emerges at a nearly constant rate until the end of the culture. Full erythroid colony production requires prolonged exposure to erythropoietin. (2) The longer erythropoietin is actively present, the larger the number of erythroid colonies that reach 17 cells or more. Two distinct populations of immediate erythroid precursors are also present in marrow from plethoric mice. In these mice, total colony numbers are equal to or below those obtained from normal mice. However, the population of fast-responding CFU-E is consistently decreased to 10 to 20% of that found in normal marrow. The remaining colonies are formed from plethoric marrow at a rate equal to normal marrow. With increasing Ep exposures, the number of large colonies produced increases. From the marrow of bled mice, total erythroid colony production is equal to or above that of normal marrow. Two populations of colony-forming cells are again evident, with the fast-responding CFU-E being below normal levels. The lack of colonies from this group was compensated in bled mice by rapid colony production in the second population. A real increase in numbers of precursors present in this pool increased the rate of colony production in culture to twice that of normal marrow. The number of large colonies obtained from bled mice was again increased as the Ep exposure was lengthened. (ERB)

  20. Nanotopographical Control of Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Laura E. McNamara

    2010-01-01

    Full Text Available Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated and direct (force-mediated mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.

  1. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  2. Immunohistochemical demonstration of a hitherto undescribed localization of hemoglobin A and F in endodermal cells of normal human yolk sac and endodermal sinus tumor

    DEFF Research Database (Denmark)

    Albrechtsen, R; Wewer, U; Wimberley, P D

    1980-01-01

    In this study of 4 human yolk sacs, the presence of hemoglobin A and F (HbA and HbF) is demonstrated for the first time in epithelial cells (type 1) and erythroid-like cells (type 2) in the endodermal layer by immunoperoxidase technique. Our findings strongly support the hypothesis previously...... proposed that the red blood cells formed in the yolk sac are of endodermal origin. Tumor with yolk sac differentiation (8 endodermal sinus tumors and 1 embryonal carcinoma with vitelline areas) similarly showed HbA and HbF localisation in endodermal cells. None of 59 germ cell tumors of other types...

  3. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Chung, Chong-Pyoung [Department of Periodontology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  4. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    International Nuclear Information System (INIS)

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2011-01-01

    Highlights: ► Doxazocin directly up-regulated bone metabolism at a low dose. ► Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. ► This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor γ, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and according to our data doxazosin might be useful for application in the field of bone

  5. Cancer stem cell markers in patterning differentiation and in prognosis of oral squamous cell carcinoma.

    Science.gov (United States)

    Mohanta, Simple; Siddappa, Gangotri; Valiyaveedan, Sindhu Govindan; Dodda Thimmasandra Ramanjanappa, Ravindra; Das, Debashish; Pandian, Ramanan; Khora, Samanta Sekhar; Kuriakose, Moni Abraham; Suresh, Amritha

    2017-06-01

    Differentiation is a major histological parameter determining tumor aggressiveness and prognosis of the patient; cancer stem cells with their slow dividing and undifferentiated nature might be one of the factors determining the same. This study aims to correlate cancer stem cell markers (CD44 and CD147) with tumor differentiation and evaluate their subsequent effect on prognosis. Immunohistochemical analysis in treatment naïve oral cancer patients (n = 53) indicated that the expression of CD147 was associated with poorly differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma (p squamous cell carcinoma and poorly differentiated squamous cell carcinoma patients were CD44 high /CD147 high as compared to only 10% of patients with well-differentiated squamous cell carcinoma. A three-way analysis indicated that differentiation correlated with recurrence and survival (p oral squamous cell carcinoma cell lines originating from different grades of oral cancer. Flowcytometry-based analysis indicated an increase in CD44 + /CD147 + cells in cell lines of poorly differentiated squamous cell carcinoma (94.35 ± 1.14%, p squamous cell carcinoma origin (93.49 ± 0.47%, p squamous cell carcinoma origin (23.12% ± 0.49%). Expression profiling indicated higher expression of cancer stem cell and epithelial-mesenchymal transition markers in SCC029B (poorly differentiated squamous cell carcinoma originated; p ≤ 0.001), which was further translated into increased spheroid formation, migration, and invasion (p squamous cell carcinoma origin. This study suggests that CD44 and CD147 together improve the prognostic efficacy of tumor differentiation; in vitro results further point out that these markers might be determinant of differentiation characteristics, imparting properties of increased self-renewal, migration, and invasion.

  6. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    Science.gov (United States)

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2017-09-01

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  7. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... Bone marrow stromal cells (BMSCs), a type of multipotent stem cell, can differentiate into various types ... induced to differentiate into neuron-like cells when they are ... axonal regeneration and functional reconstruction do not.

  8. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Cedric Cortijo

    2012-12-01

    Full Text Available Planar cell polarity (PCP refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal that tridimensional organization and collective communication of cells are needed in the pancreatic epithelium in order to generate appropriate numbers of endocrine cells.

  9. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates.

    Directory of Open Access Journals (Sweden)

    Jumpei F Yamagishi

    2016-10-01

    Full Text Available As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of

  10. The onset of hemoglobin synthesis in spleens of irradiated mice after bone marrow transplantation

    International Nuclear Information System (INIS)

    Ponka, P.; Fuchs, O.; Borova, J.; Necas, E.

    1977-01-01

    Messenger RNA (mRNA) for globin was isolated from spleens of irradiated mice in which erythroid differentiation was induced by a bone marrow graft. The globin mRNA was isolated either by means of sucrose gradients of reticulocyte polysomal RNA or by affinity chromatography of total spleen RNA on poly (U)-sepharose. The globin mRNA was tested in a wheat embryo cell-free system. The appearance of mRNA in the spleen erythroid colonies was correlated with other parameters of erythroid differentiation such as globin synthesis, activity of delta-aminolevulinic acid synthetase and iron uptake. Poly(A) containing mRNA did appear already on the 3rd day after grafting. However, significant translational activity of globin mRNA could be demonstrated only one day later together with increase in globin synthesis and delta-aminolevulinic acid synthetase and enhanced iron uptake. In the second part of this study mouse spleen cells rich in erythroid elements were incubated with a specific heme synthesis inhibitor (isonicotinic acid hydrazide, INH) and the synthesis of 9 S RNA was estimated. It was found that a 40-minute incubation with INH reduced uridine incorporation into 9 S RNA fraction by about 40%. (author)

  11. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.

    Science.gov (United States)

    Marrelli, M; Paduano, F; Tatullo, M

    2015-06-01

    It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell

  12. Primitive and definitive erythropoiesis in mammals

    Directory of Open Access Journals (Sweden)

    James ePalis

    2014-01-01

    Full Text Available Red blood cells (RBCs, which constitute the most abundant cell type in the body, come in two distinct flavors- primitive and definitive. Definitive RBCs in mammals circulate as smaller, anucleate cells during fetal and postnatal life, while primitive RBCs circulate transiently in the early embryo as large, nucleated cells before ultimately enucleating. Both cell types are formed from lineage-committed progenitors that generate a series of morphologically identifiable precursors that enucleate to form mature RBCs. While definitive erythroid precursors mature extravascularly in the fetal liver and postnatal marrow in association with macrophage cells, primitive erythroid precursors mature as a semi-synchronous cohort in the embryonic bloodstream. While the cytoskeletal network is critical for the maintenance of cell shape and the deformability of definitive RBCs, little is known about the components and function of the cytoskeleton in primitive erythroblasts. Erythropoietin (EPO is a critical regulator of late-stage definitive, but not primitive, erythroid progenitor survival. However, recent studies indicate that EPO regulates multiple aspects of terminal maturation of primitive murine and human erythroid precursors, including cell survival, proliferation, and the rate of terminal maturation. Primitive and definitive erythropoiesis share central transcriptional regulators, including Gata1 and Klf1, but are also characterized by the differential expression and function of other regulators, including myb, Sox6, and Bcl11A. Flow cytometry-based methodologies, developed to purify murine and human stage-specific erythroid precursors, have enabled comparative global gene expression studies and are providing new insights into the biology of erythroid maturation.

  13. Chromatin in embryonic stem cell neuronal differentiation.

    Science.gov (United States)

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  14. The genetic network controlling plasma cell differentiation.

    Science.gov (United States)

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  15. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    Science.gov (United States)

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  16. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    Directory of Open Access Journals (Sweden)

    Song Chen

    2016-01-01

    Full Text Available AIM: To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC was able to differentiate into neural stem cell and neuron in vitro. METHODS: The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS, then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR and immunofluorescence (IF analyzes. RESULTS: A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2, CD73 (SH3 and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2 and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION: Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases.

  17. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    Science.gov (United States)

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  18. A 3.0-kb deletion including an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene in an individual with the Bm phenotype.

    Science.gov (United States)

    Sano, R; Kuboya, E; Nakajima, T; Takahashi, Y; Takahashi, K; Kubo, R; Kominato, Y; Takeshita, H; Yamao, H; Kishida, T; Isa, K; Ogasawara, K; Uchikawa, M

    2015-04-01

    We developed a sequence-specific primer PCR (SSP-PCR) for detection of a 5.8-kb deletion (B(m) 5.8) involving an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene. Using this SSP-PCR, we performed genetic analysis of 382 individuals with Bm or ABm. The 5.8-kb deletion was found in 380 individuals, and disruption of the GATA motif in the regulatory element was found in one individual. Furthermore, a novel 3.0-kb deletion involving the element (B(m) 3.0) was demonstrated in the remaining individual. Comparisons of single-nucleotide polymorphisms and microsatellites in intron 1 between B(m) 5.8 and B(m) 3.0 suggested that these deletions occurred independently. © 2014 International Society of Blood Transfusion.

  19. Is Melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells

    Directory of Open Access Journals (Sweden)

    Chan Linda S

    2005-03-01

    Full Text Available Abstract Background Although several genes and proteins have been implicated in the development of melanomas, the molecular mechanisms involved in the development of these tumors are not well understood. To gain a better understanding of the relationship between the cell growth, tumorigenesis and differentiation, we have studied a highly malignant cat melanoma cell line that trans-differentiates into neuronal cells after exposure to a feline endogenous retrovirus RD114. Methods To define the repertoire of proteins responsible for the phenotypic differences between melanoma and its counterpart trans-differentiated neuronal cells we have applied proteomics technology and compared protein profiles of the two cell types and identified differentially expressed proteins by 2D-gel electrophoresis, image analyses and mass spectrometry. Results The melanoma and trans-differentiated neuronal cells could be distinguished by the presence of distinct sets of proteins in each. Although approximately 60–70% of the expressed proteins were shared between the two cell types, twelve proteins were induced de novo after infection of melanoma cells with RD114 virus in vitro. Expression of these proteins in trans-differentiated cells was significantly associated with concomitant down regulation of growth promoting proteins and up-regulation of neurogenic proteins (p = 95% proteins expressed in trans-differentiated cells could be associated with the development, differentiation and regulation of nervous system cells. Conclusion Our results indicate that the cat melanoma cells have the ability to differentiate into distinct neuronal cell types and they express proteins that are essential for self-renewal. Since melanocytes arise from the neural crest of the embryo, we conclude that this melanoma arose from embryonic precursor stem cells. This model system provides a unique opportunity to identify domains of interactions between the expressed proteins that halt the

  20. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Tsuji-Takayama, Kazue; Inoue, Toshiya; Ijiri, Yoshihiro; Otani, Takeshi; Motoda, Ryuichi; Nakamura, Shuji; Orita, Kunzo

    2004-01-01

    The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes

  1. NOV/CCN3 impairs muscle cell commitment and differentiation

    International Nuclear Information System (INIS)

    Calhabeu, Frederico; Lafont, Jerome; Le Dreau, Gwenvael; Laurent, Maryvonne; Kazazian, Chantal; Schaeffer, Laurent; Martinerie, Cecile; Dubois, Catherine

    2006-01-01

    NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10 -6 M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts

  2. Epigenetic control of CD8+ T cell differentiation.

    Science.gov (United States)

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  3. Generation of male differentiated germ cells from various types of stem cells.

    Science.gov (United States)

    Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping

    2014-06-01

    Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.

  4. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells.

    Science.gov (United States)

    Szaraz, Peter; Gratch, Yarden S; Iqbal, Farwah; Librach, Clifford L

    2017-08-09

    Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this

  5. Transplantation and differentiation of donor cells in the cloned pigs

    International Nuclear Information System (INIS)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi

    2006-01-01

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal

  6. Unique B cell differentiation profile in tolerant kidney transplant patients.

    Science.gov (United States)

    Chesneau, M; Pallier, A; Braza, F; Lacombe, G; Le Gallou, S; Baron, D; Giral, M; Danger, R; Guerif, P; Aubert-Wastiaux, H; Néel, A; Michel, L; Laplaud, D-A; Degauque, N; Soulillou, J-P; Tarte, K; Brouard, S

    2014-01-01

    Operationally tolerant patients (TOL) display a higher number of blood B cells and transcriptional B cell signature. As they rarely develop an allo-immune response, they could display an abnormal B cell differentiation. We used an in vitro culture system to explore T-dependent differentiation of B cells into plasma cells. B cell phenotype, apoptosis, proliferation, cytokine, immunoglobulin production and markers of differentiation were followed in blood of these patients. Tolerant recipients show a higher frequency of CD20(+) CD24(hi) CD38(hi) transitional and CD20(+) CD38(lo) CD24(lo) naïve B cells compared to patients with stable graft function, correlating with a decreased frequency of CD20(-) CD38(+) CD138(+) differentiated plasma cells, suggestive of abnormal B cell differentiation. B cells from TOL proliferate normally but produce more IL-10. In addition, B cells from tolerant recipients exhibit a defective expression of factors of the end step of differentiation into plasma cells and show a higher propensity for cell death apoptosis compared to patients with stable graft function. This in vitro profile is consistent with down-regulation of B cell differentiation genes and anti-apoptotic B cell genes in these patients in vivo. These data suggest that a balance between B cells producing IL-10 and a deficiency in plasma cells may encourage an environment favorable to the tolerance maintenance. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Indrani Bose

    2017-11-09

    Nov 9, 2017 ... Differentiation is mostly based on binary decisions with the progenitor cells ..... accounts for the dominant part of the remaining variation ... significant loss in information. ..... making in vitro: emerging concepts and novel tools.

  8. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  9. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion

    Directory of Open Access Journals (Sweden)

    Sandra Capellera-Garcia

    2016-06-01

    Full Text Available Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs. We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.

  10. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  11. Directional differentiation of chicken embryonic stem cells into ...

    African Journals Online (AJOL)

    Chicken embryonic stem (ES) cells are useful for producing transgenic chickens and preserving genetic material in avian species. In this study, the differentiation potential of chicken ES cells was investigated in vitro. Chicken ES cells were differentiated into osteoblasts cultured for 15 to 21 days in the induction media ...

  12. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system.

    Science.gov (United States)

    Wattanapanitch, Methichit; Damkham, Nattaya; Potirat, Ponthip; Trakarnsanga, Kongtana; Janan, Montira; U-Pratya, Yaowalak; Kheolamai, Pakpoom; Klincumhom, Nuttha; Issaragrisil, Surapol

    2018-02-26

    Thalassemia is the most common genetic disease worldwide; those with severe disease require lifelong blood transfusion and iron chelation therapy. The definitive cure for thalassemia is allogeneic hematopoietic stem cell transplantation, which is limited due to lack of HLA-matched donors and the risk of post-transplant complications. Induced pluripotent stem cell (iPSC) technology offers prospects for autologous cell-based therapy which could avoid the immunological problems. We now report genetic correction of the beta hemoglobin (HBB) gene in iPSCs derived from a patient with a double heterozygote for hemoglobin E and β-thalassemia (HbE/β-thalassemia), the most common thalassemia syndrome in Thailand and Southeast Asia. We used the CRISPR/Cas9 system to target the hemoglobin E mutation from one allele of the HBB gene by homology-directed repair with a single-stranded DNA oligonucleotide template. DNA sequences of the corrected iPSCs were validated by Sanger sequencing. The corrected clones were differentiated into hematopoietic progenitor and erythroid cells to confirm their multilineage differentiation potential and hemoglobin expression. The hemoglobin E mutation of HbE/β-thalassemia iPSCs was seamlessly corrected by the CRISPR/Cas9 system. The corrected clones were differentiated into hematopoietic progenitor cells under feeder-free and OP9 coculture systems. These progenitor cells were further expanded in erythroid liquid culture system and developed into erythroid cells that expressed mature HBB gene and HBB protein. Our study provides a strategy to correct hemoglobin E mutation in one step and these corrected iPSCs can be differentiated into hematopoietic stem cells to be used for autologous transplantation in patients with HbE/β-thalassemia in the future.

  13. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  14. Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation.

    Science.gov (United States)

    Xue, Ruyue; Li, Julie Yi-Shuan; Yeh, Yiting; Yang, Li; Chien, Shu

    2013-09-01

    Human mesenchymal stem cells (hMSCs) can differentiate into various cell types, including osteogenic and chondrogenic cells. The matrix elasticity and cell seeding density are important factors in hMSCs differentiation. We cultured hMSCs at different seeding densities on polyacrylamide hydrogels with different stiffness corresponding to Young's moduli of 1.6 ± 0.3 and 40 ± 3.6 kPa. The promotion of osteogenic marker expression by hard gel is overridden by a high seeding density. Cell seeding density, however, did not influence the chondrogenic marker expressions induced by soft gel. These findings suggest that interplays between cell-matrix and cell-cell interactions contribute to hMSCs differentiation. The promotion of osteogenic differentiation on hard matrix was shown to be mediated through the Ras pathway. Inhibition of Ras (RasN17) significantly decreased ERK, Smad1/5/8 and AKT activation, and osteogenic markers expression. However, constitutively active Ras (RasV12) had little effect on osteogenic marker expression, suggesting that the Ras pathways are necessary but not sufficient for osteogenesis. Taken together, our results indicate that matrix elasticity and cell density are important microenvironmental cues driving hMSCs proliferation and differentiation. Copyright © 2013 Orthopaedic Research Society.

  15. ent-Jungermannenone C Triggers Reactive Oxygen Species-Dependent Cell Differentiation in Leukemia Cells.

    Science.gov (United States)

    Yue, Zongwei; Xiao, Xinhua; Wu, Jinbao; Zhou, Xiaozhou; Liu, Weilong; Liu, Yaxi; Li, Houhua; Chen, Guoqiang; Wu, Yingli; Lei, Xiaoguang

    2018-02-23

    Acute myeloid leukemia (AML) is a hematologic malignancy that is characterized by clonal proliferation of myeloid blasts. Despite the progress that has been made in the treatment of various malignant hematopoietic diseases, the effective treatment of AML remains very challenging. Differentiation therapy has emerged as a promising approach for leukemia treatment, and new and effective chemical agents to trigger the differentiation of AML cells, especially drug-resistant cells, are urgently required. Herein, the natural product jungermannenone C, a tetracyclic diterpenoid isolated from liverworts, is reported to induce cell differentiation in AML cells. Interestingly, the unnatural enantiomer of jungermannenone C (1) was found to be more potent than jungermannenone C in inducing cell differentiation. Furthermore, compound 1 targets peroxiredoxins I and II by selectively binding to the conserved cysteine residues and leads to cellular reactive oxygen species accumulation. Accordingly, ent-jungermannenone C (1) shows potential for further investigation as an effective differentiation therapy against AML.

  16. Human invariant NKT cell subsets differentially promote differentiation, antibody production, and T cell stimulation by B cells in vitro.

    OpenAIRE

    O'REILLY, VINCENT

    2013-01-01

    PUBLISHED Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and ...

  17. Directional differentiation of chicken embryonic stem cells into ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... In this study, the differentiation potential of chicken ES cells was investigated ... Key words: Chicken embryonic stem cells, in vitro, directional differentiation, .... synthesized by using the Revert Aid first strand cDNA synthesis kit.

  18. Shape-Shifted Red Blood Cells: A Novel Red Blood Cell Stage?

    Science.gov (United States)

    Chico, Verónica; Puente-Marin, Sara; Nombela, Iván; Ciordia, Sergio; Mena, María Carmen; Carracedo, Begoña; Villena, Alberto; Mercado, Luis; Coll, Julio; Ortega-Villaizan, María Del Mar

    2018-04-19

    Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright⁻Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation. shRBCs showed reduced density of the cytoplasm, hemoglobin loss, decondensed chromatin in the nucleus, and striking expression of the B lymphocyte molecular marker IgM. In addition, shRBCs shared some features of mammalian primitive pyrenocytes (extruded nucleus surrounded by a thin rim of cytoplasm and phosphatidylserine (PS) exposure on cell surface). These shRBCs were transiently observed in heat-stressed rainbow trout bloodstream for three days. Functional network analysis of combined transcriptomic and proteomic studies resulted in the identification of proteins involved in pathways related to the regulation of cell morphogenesis involved in differentiation, cellular response to stress, and immune system process. In addition, shRBCs increased interleukin 8 (IL8), interleukin 1 β (IL1β), interferon ɣ (IFNɣ), and natural killer enhancing factor (NKEF) protein production in response to viral hemorrhagic septicemia virus (VHSV). In conclusion, shRBCs may represent a novel cell stage that participates in roles related to immune response mediation, homeostasis, and the differentiation and development of blood cells.

  19. Shape-Shifted Red Blood Cells: A Novel Red Blood Cell Stage?

    Science.gov (United States)

    Chico, Verónica; Puente-Marin, Sara; Ciordia, Sergio; Mena, María Carmen; Carracedo, Begoña; Mercado, Luis; Coll, Julio

    2018-01-01

    Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright–Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation. shRBCs showed reduced density of the cytoplasm, hemoglobin loss, decondensed chromatin in the nucleus, and striking expression of the B lymphocyte molecular marker IgM. In addition, shRBCs shared some features of mammalian primitive pyrenocytes (extruded nucleus surrounded by a thin rim of cytoplasm and phosphatidylserine (PS) exposure on cell surface). These shRBCs were transiently observed in heat-stressed rainbow trout bloodstream for three days. Functional network analysis of combined transcriptomic and proteomic studies resulted in the identification of proteins involved in pathways related to the regulation of cell morphogenesis involved in differentiation, cellular response to stress, and immune system process. In addition, shRBCs increased interleukin 8 (IL8), interleukin 1 β (IL1β), interferon ɣ (IFNɣ), and natural killer enhancing factor (NKEF) protein production in response to viral hemorrhagic septicemia virus (VHSV). In conclusion, shRBCs may represent a novel cell stage that participates in roles related to immune response mediation, homeostasis, and the differentiation and development of blood cells. PMID:29671811

  20. PTEN drives Th17 cell differentiation by preventing IL-2 production.

    Science.gov (United States)

    Kim, Hyeong Su; Jang, Sung Woong; Lee, Wonyong; Kim, Kiwan; Sohn, Hyogon; Hwang, Soo Seok; Lee, Gap Ryol

    2017-11-06

    T helper 17 (Th17) cells are a CD4 + T cell subset that produces IL-17A to mediate inflammation and autoimmunity. IL-2 inhibits Th17 cell differentiation. However, the mechanism by which IL-2 is suppressed during Th17 cell differentiation remains unclear. Here, we show that phosphatase and tensin homologue (PTEN) is a key factor that regulates Th17 cell differentiation by suppressing IL-2 production. Th17-specific Pten deletion ( Pten fl/fl Il17a cre ) impairs Th17 cell differentiation in vitro and ameliorated symptoms of experimental autoimmune encephalomyelitis (EAE), a model of Th17-mediated autoimmune disease. Mechanistically, Pten deficiency up-regulates IL-2 and phosphorylation of STAT5, but reduces STAT3 phosphorylation, thereby inhibiting Th17 cell differentiation. PTEN inhibitors block Th17 cell differentiation in vitro and in the EAE model. Thus, PTEN plays a key role in Th17 cell differentiation by blocking IL-2 expression. © 2017 Kim et al.

  1. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    Science.gov (United States)

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  2. Histone h1 depletion impairs embryonic stem cell differentiation.

    Science.gov (United States)

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  3. Hepatic differentiation potential of commercially available human mesenchymal stem cells.

    Science.gov (United States)

    Ong, Shin-Yeu; Dai, Hui; Leong, Kam W

    2006-12-01

    The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.

  4. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yonghae Son

    2016-01-01

    Full Text Available Oxysterol like 27-hydroxycholesterol (27OHChol has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.

  5. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    Science.gov (United States)

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient ( Ldlr -/- ) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr -/- mice led to intrahepatic Th1 cell differentiation and CD11b + CD11c + leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4 + T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  6. The differentiation potential of adipose tissue-derived mesenchymal stem cells into cell lineage related to male germ cells

    Directory of Open Access Journals (Sweden)

    P. Bräunig

    Full Text Available ABSTRACT The adipose tissue is a reliable source of Mesenchymal stem cells (MSCs showing a higher plasticity and transdifferentiation potential into multilineage cells. In the present study, adipose tissue-derived mesenchymal stem cells (AT-MSCs were isolated from mice omentum and epididymis fat depots. The AT-MSCs were initially compared based on stem cell surface markers and on the mesodermal trilineage differentiation potential. Additionally, AT-MSCs, from both sources, were cultured with differentiation media containing retinoic acid (RA and/or testicular cell-conditioned medium (TCC. The AT-MSCs expressed mesenchymal surface markers and differentiated into adipogenic, chondrogenic and osteogenic lineages. Only omentum-derived AT-MSCs expressed one important gene marker related to male germ cell lineages, after the differentiation treatment with RA. These findings reaffirm the importance of adipose tissue as a source of multipotent stromal-stem cells, as well as, MSCs source regarding differentiation purpose.

  7. Directed neuronal differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  8. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Directory of Open Access Journals (Sweden)

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  9. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    Science.gov (United States)

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  10. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.

    Science.gov (United States)

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-12-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.

  11. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  12. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients.

    Directory of Open Access Journals (Sweden)

    Laura Breda

    Full Text Available Preclinical and clinical studies demonstrate the feasibility of treating β-thalassemia and Sickle Cell Disease (SCD by lentiviral-mediated transfer of the human β-globin gene. However, previous studies have not addressed whether the ability of lentiviral vectors to increase hemoglobin synthesis might vary in different patients.We generated lentiviral vectors carrying the human β-globin gene with and without an ankyrin insulator and compared their ability to induce hemoglobin synthesis in vitro and in thalassemic mice. We found that insertion of an ankyrin insulator leads to higher, potentially therapeutic levels of human β-globin through a novel mechanism that links the rate of transcription of the transgenic β-globin mRNA during erythroid differentiation with polysomal binding and efficient translation, as reported here for the first time. We also established a preclinical assay to test the ability of this novel vector to synthesize adult hemoglobin in erythroid precursors and in CD34(+ cells isolated from patients affected by β-thalassemia and SCD. Among the thalassemic patients, we identified a subset of specimens in which hemoglobin production can be achieved using fewer copies of the vector integrated than in others. In SCD specimens the treatment with AnkT9W ameliorates erythropoiesis by increasing adult hemoglobin (Hb A and concurrently reducing the sickling tetramer (Hb S.Our results suggest two major findings. First, we discovered that for the purpose of expressing the β-globin gene the ankyrin element is particularly suitable. Second, our analysis of a large group of specimens from β-thalassemic and SCD patients indicates that clinical trials could benefit from a simple test to predict the relationship between the number of vector copies integrated and the total amount of hemoglobin produced in the erythroid cells of prospective patients. This approach would provide vital information to select the best candidates for these

  13. [CONDITIONS OF SYNOVIAL MESENCHYMAL STEM CELLS DIFFERENTIATING INTO FIBROCARTILAGE CELLS].

    Science.gov (United States)

    Fu, Peiliang; Cong, Ruijun; Chen, Song; Zhang, Lei; Ding, Zheru; Zhou, Qi; Li, Lintao; Xu, Zhenyu; Wu, Yuli; Wu, Haishan

    2015-01-01

    To explore the conditions of synovial derived mesenchymal stem cells (SMSCs) differentiating into the fibrocartilage cells by using the orthogonal experiment. The synovium was harvested from 5 adult New Zealand white rabbits, and SMSCs were separated by adherence method. The flow cytometry and multi-directional differentiation method were used to identify the SMSCs. The conditions were found from the preliminary experiment and literature review. The missing test was carried out to screen the conditions and then 12 conditions were used for the orthogonal experiment, including transforming growth factor β1 (TGF-β1), bone morphogenic protein 2 (BMP-2), dexamethasone (DEX), proline, ascorbic acid (ASA), pyruvic acid, insulin + transferrin + selenious acid pre-mixed solution (ITS), bovin serum albumin (BSA), basic fibroblast growth factor (bFGF), intermittent hydraulic pressure (IHP), bone morphogenic protein 7 (BMP-7), and insulin-like growth factor (IGF). The L60 (212) orthogonal experiment was designed using the SPSS 18.0 with 2 level conditions and the cells were induced to differentiate on the small intestinal submucosa (SIS)-3D scaffold. The CD151+/CD44+ cells were detected with the flow cytometry and then the differentiation rate was recorded. The immumohistochemical staining, cellular morphology, toluidine blue staining, and semi-quantitative RT-PCR examination for the gene expressions of sex determining region Y (SRY)-box 9 gene (Sox9), aggrecan gene (AGN), collagen type I gene (Col I), collagen type II gene (Col II), collagen type IX gene (Col IX) were used for result confirmation. The differentiation rate was calculated as the product of CD151/CD44+ cells and cells with Col I high expression. The grow curve was detected with the DNA abundance using the PicoGreen Assay. The visual observation and the variances analysis among the variable were used to evaluate the result of the orthogonal experiment, 1 level interaction was considered. The q-test and the

  14. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells.

    Science.gov (United States)

    Randau, Thomas M; Schildberg, Frank A; Alini, Mauro; Wimmer, Matthias D; Haddouti, El-Mustapha; Gravius, Sascha; Ito, Keita; Stoddart, Martin J

    2013-01-01

    The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal

  15. Transcription factor interplay in T helper cell differentiation

    Science.gov (United States)

    Evans, Catherine M.

    2013-01-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity. PMID:23878131

  16. Transcription factor interplay in T helper cell differentiation.

    Science.gov (United States)

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  17. Division of Labor in Biofilms: the Ecology of Cell Differentiation.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.

  18. Mesenchymal Stem Cells Modulate Differentiation of Myeloid Progenitor Cells During Inflammation.

    Science.gov (United States)

    Amouzegar, Afsaneh; Mittal, Sharad K; Sahu, Anuradha; Sahu, Srikant K; Chauhan, Sunil K

    2017-06-01

    Mesenchymal stem cells (MSCs) possess distinct immunomodulatory properties and have tremendous potential for use in therapeutic applications in various inflammatory diseases. MSCs have been shown to regulate pathogenic functions of mature myeloid inflammatory cells, such as macrophages and neutrophils. Intriguingly, the capacity of MSCs to modulate differentiation of myeloid progenitors (MPs) to mature inflammatory cells remains unknown to date. Here, we report the novel finding that MSCs inhibit the expression of differentiation markers on MPs under inflammatory conditions. We demonstrate that the inhibitory effect of MSCs is dependent on direct cell-cell contact and that this intercellular contact is mediated through interaction of CD200 expressed by MSCs and CD200R1 expressed by MPs. Furthermore, using an injury model of sterile inflammation, we show that MSCs promote MP frequencies and suppress infiltration of inflammatory cells in the inflamed tissue. We also find that downregulation of CD200 in MSCs correlates with abrogation of their immunoregulatory function. Collectively, our study provides unequivocal evidence that MSCs inhibit differentiation of MPs in the inflammatory environment via CD200-CD200R1 interaction. Stem Cells 2017;35:1532-1541. © 2017 AlphaMed Press.

  19. Differential TCR signals for T helper cell programming.

    Science.gov (United States)

    Morel, Penelope A

    2018-05-02

    Upon encounter with their cognate antigen naïve CD4 T cells become activated and are induced to differentiate into several possible T helper (Th) cell subsets. This differentiation depends on a number of factors including antigen presenting cells, cytokines and costimulatory molecules. The strength of the T cell receptor (TCR) signal, related to the affinity of TCR for antigen and antigen dose, has emerged as a dominant factor in determining Th cell fate. Recent studies have revealed that TCR signals of high or low strength do not simply induce quantitatively different signals in the T cells, but rather qualitatively distinct pathways can be induced based on TCR signal strength. This review examines the recent literature in this area and highlights important new developments in our understanding of Th cell differentiation and TCR signal strength. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Effect of radiotherapy on stem cells in head and neck region

    International Nuclear Information System (INIS)

    Sharma, Anu; Krishnan, Manu

    2014-01-01

    Head and neck cancers form a major group of dreaded diseases in India. Radiation therapy is one important treatment modality for this type of cancer. However, inadvertent radiation to normal tissue leads to depletion of its critical stem cells due to genotoxic damage. Cells mostly affected by radiation are rapidly dividing bone marrow and epidermal skin stem cells. The erythroid and myeloid progenitor cells of bone marrow bear the brunt of it causing leucopenia/thrombocytopenia/anemia. Alopecia and pigmentation mark the changes on skin. In brain, two stem cell populations; subgranular and subventricular zones, where neurogenesis occurs throughout life are affected. However, terminally differentiating neurons with low proliferative capacity are spared. In oral tissues, xerostomia is a prominent feature, while dental pulp stem cells undergo senescence. Enamel calcification and tooth root formation are also impaired. Eye shows changes in the limbal stem cells that replace corneal epithelium. All these imply a varied response of stem cells to radiation therapy based on their proliferation capacity; quiescent stem cells being more resistant whereas actively dividing cells, less resistant to radiotherapy. This paper evaluates the differential response of stem cells to radiation therapy in the head and neck area and thereby aims to predict their therapeutic potential. (author)

  1. Early stage differentiation of thallus cells of Porphyra haitanensis (Rhodophyta)

    Science.gov (United States)

    Wang, Sujuan; Sun, Yunlong; Lu, Anming; Wang, Guangyuan

    1987-09-01

    The early stage differentiation of thallus cells of Porphyra haitanensis T. J. Chang et B. F. Zheng was studied. Protoplasts or single cells were isolated from the blades using enzyme mixture comprising 2% sea snail gut enzyme and 1% cellulase. The isolated protoplasts or single cells were incubated in the MES medium. The cell differentiations were examined under the microscope at intervals after incubation. Four types of cell differentiation, namely, normal, abnormal, carposporangial and spermatorangial, and rhizoidal types, were observed. Since normal cell differentiations occur mostly in small thalli 50 mm in length and middle portions of big thalli 200 mm in length, it is essential to select tissues from these two kinds of thalli essential for commercial production.

  2. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells.

    Science.gov (United States)

    Peng, Shao-Yu; Chou, Chien-Wen; Kuo, Yu-Hsuan; Shen, Perng-Chih; Shaw, S W Steven

    2017-06-01

    Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations. Copyright © 2017. Published by Elsevier B.V.

  3. Prostaglandin E2 regulates hematopoietic stem cell

    International Nuclear Information System (INIS)

    Wang Yingying; Zhou Daohong; Meng Aimin

    2013-01-01

    Prostaglandin E2 (PGE2) is a bioactive lipid molecule produced by cyclooxygenase (COX), which plays an important role on hematopoiesis. While it can block differentiation of myeloid progenitors but enhance proliferation of erythroid progenitors. Recent research found that PGE2 have the effects on hematopoietic stem cell (HSC) function and these effects were independent from effects on progenitor cells. Exposure of HSC cells to PGE2 in vitro can increase homing efficiency of HSC to the murine bone marrow compartment and decrease HSC apoptosis, meanwhile increase long-term stem cell engraftment. In-vivo treatment with PGE2 expands short-term HSC and engraftment in murine bone marrow but not long-term HSC.In addition, PGE2 increases HSC survival after radiation injury and enhance hematopoietic recovery, resulting maintains hematopoietic homeostasis. PGE2 regulates HSC homeostasis by reactive oxygen species and Wnt pathway. Clinical beneficial of 16, 16-dimethyl-prostaglandin E2 treatment to enhance engraftment of umbilical cord blood suggest important improvements to therapeutic strategies. (authors)

  4. Influence of Porcine Intervertebral Disc Matrix on Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Hans-Lothar Fuchsbauer

    2011-08-01

    Full Text Available For back disorders, cell therapy is one approach for a real regeneration of a degenerated nucleus pulposus. Human mesenchymal stem cells (hMSC could be differentiated into nucleus pulposus (NP-like cells and used for cell therapy. Therefore it is necessary to find a suitable biocompatible matrix, which supports differentiation. It could be shown that a differentiation of hMSC in a microbial transglutaminase cross-linked gelatin matrix is possible, but resulted in a more chondrocyte-like cell type. The addition of porcine NP extract to the gelatin matrix caused a differentiation closer to the desired NP cell phenotype. This concludes that a hydrogel containing NP extract without any other supplements could be suitable for differentiation of hMSCs into NP cells. The NP extract itself can be cross-linked by transglutaminase to build a hydrogel free of NP atypical substrates. As shown by side-specific biotinylation, the NP extract contains molecules with free glutamine and lysine residues available for the transglutaminase.

  5. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  6. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Emilio Satoshi Hara

    Full Text Available Dental pulp cells (DPCs are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP cells from human DPCs and periodontal ligament cells (PDLCs, and performed a locked nucleic acid (LNA-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs, which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.

  7. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    Science.gov (United States)

    Teschendorff, Andrew E.; Enver, Tariq

    2017-01-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836

  8. Molecular biological features of male germ cell differentiation

    Science.gov (United States)

    HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2007-01-01

    Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260

  9. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    Science.gov (United States)

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  10. Fulltext PDF

    Indian Academy of Sciences (India)

    2012-05-08

    May 8, 2012 ... (RARα403) could reproducibly immortalize lymphohematopoietic progenitors as stem-cell-factor-depen- dent clonal lines, designated as EML cells for their ability to subsequently undergo erythroid, myeloid and lymphoid differentiation in vitro. A 3-day treatment of EML cells with stem cell factor, IL-3, and ...

  11. Capacity of Human Dental Follicle Cells to Differentiate into Neural Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Shingo Kanao

    2017-01-01

    Full Text Available The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. Human dental follicle cells (hDFCs have the capacity to commit to differentiation into multiple cell types. Here we investigated the capacity of hDFCs to differentiate into neural cells and the efficiency of a two-step strategy involving floating neurosphere-like bodies for neural differentiation. Undifferentiated hDFCs showed a spindle-like morphology and were positive for neural markers such as nestin, β-III-tubulin, and S100β. The cellular morphology of several cells was neuronal-like including branched dendrite-like processes and neurites. Next, hDFCs were used for neurosphere formation in serum-free medium containing basic fibroblast growth factor, epidermal growth factor, and B27 supplement. The number of cells with neuronal-like morphology and that were strongly positive for neural markers increased with sphere formation. Gene expression of neural markers also increased in hDFCs with sphere formation. Next, gene expression of neural markers was examined in hDFCs during neuronal differentiation after sphere formation. Expression of Musashi-1 and Musashi-2, MAP2, GFAP, MBP, and SOX10 was upregulated in hDFCs undergoing neuronal differentiation via neurospheres, whereas expression of nestin and β-III-tubulin was downregulated. In conclusion, hDFCs may be another optimal source of neural/glial cells for cell-based therapies to treat neurological diseases.

  12. Bioprinting and Differentiation of Stem Cells

    Directory of Open Access Journals (Sweden)

    Scott A. Irvine

    2016-09-01

    Full Text Available The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered. In addition; it is discussed that the stimulation of stem cell differentiation by bioprinting may lead to the remodeling and modification of the scaffold over time matching the concept of 4D bioprinting. The ability to tune bioprinting properties as an approach to fabricate stem cell bearing scaffolds and to also harness the benefits of the cells multipotency is of considerable relevance to the field of biomaterials and bioengineering.

  13. Cytokinetics and Regulation of Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lajtha, L. G. [Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester (United Kingdom)

    1967-07-15

    Full text: In spite of great differences in the life-span of fully differentiated haemic cells, the cellular kinetics of their production appears to be similar. Recent evidence indicates a common ultimate stem cell for most of the cells in the peripheral blood. The various pathways of differentiation, however, result in transient dividing and differentiating cell populations which differ from each other not only in their specific biochemical processes but also in the manner of control and kinetic pattern of their proliferation. The population best understood is the erythroid progenitor series of cells, primarily because it has the greatest number of experimentally measurable parameters at the present. This will be discussed in detail and comparisons will be made with the myeloid and lymphoid progenitor populations. The fine structure of the bone-marrow stem cell population will be examined in particular, with regard to the suitability or otherwise of the current stem cell models to explain the kinetic pattern of all the peripheral blood elements after perturbations of their steady-state values. Four different assay methods of bone-marrow stem cells have been examined with regard to the kinetic pattern following perturbation of the steady-state system, e.g. by irradiation. Basically, the stem cell assays fall into two categories: those depending on grafting haemopoietic cells into suitably treated recipients, and those in which recovery of the population is allowed in the animal in which the perturbation was produced, without handling the cells. Evidence is accumulating which indicates that in the grafting techniques, a selective loss of stem cells may occur, . especially stem cells in cell cycle, hence in early stages of recovery of the population unduly low numerical values might be noted. In view of this observation, the concept of the colony-forming cell may have to be revised and instead the colony-forming property of the stem cell introduced. (author)

  14. Cytokinetics and Regulation of Progenitor Cells

    International Nuclear Information System (INIS)

    Lajtha, L.G.

    1967-01-01

    Full text: In spite of great differences in the life-span of fully differentiated haemic cells, the cellular kinetics of their production appears to be similar. Recent evidence indicates a common ultimate stem cell for most of the cells in the peripheral blood. The various pathways of differentiation, however, result in transient dividing and differentiating cell populations which differ from each other not only in their specific biochemical processes but also in the manner of control and kinetic pattern of their proliferation. The population best understood is the erythroid progenitor series of cells, primarily because it has the greatest number of experimentally measurable parameters at the present. This will be discussed in detail and comparisons will be made with the myeloid and lymphoid progenitor populations. The fine structure of the bone-marrow stem cell population will be examined in particular, with regard to the suitability or otherwise of the current stem cell models to explain the kinetic pattern of all the peripheral blood elements after perturbations of their steady-state values. Four different assay methods of bone-marrow stem cells have been examined with regard to the kinetic pattern following perturbation of the steady-state system, e.g. by irradiation. Basically, the stem cell assays fall into two categories: those depending on grafting haemopoietic cells into suitably treated recipients, and those in which recovery of the population is allowed in the animal in which the perturbation was produced, without handling the cells. Evidence is accumulating which indicates that in the grafting techniques, a selective loss of stem cells may occur, . especially stem cells in cell cycle, hence in early stages of recovery of the population unduly low numerical values might be noted. In view of this observation, the concept of the colony-forming cell may have to be revised and instead the colony-forming property of the stem cell introduced. (author)

  15. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    OpenAIRE

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Zhang, Y; Flygare, Johan; Lindström, M S; Bryder, David; Karlsson, Stefan

    2015-01-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of Mdm2, the main negative regulator of p53, by the 5S ribonucleoprot...

  16. Cell differentiation and matrix organization in engineered teeth.

    Science.gov (United States)

    Nait Lechguer, A; Couble, M L; Labert, N; Kuchler-Bopp, S; Keller, L; Magloire, H; Bleicher, F; Lesot, H

    2011-05-01

    Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering. Implantation of cultured cell-cell re-associations led to crown morphogenesis, epithelial histogenesis, organ vascularization, and root and periodontium development. The present work aimed to investigate the organization of predentin/dentin, enamel, and cementum which formed and mineralized after implantation. These implants were processed for histology, transmission electron microscopy, x-ray microanalysis, and electron diffraction. After two weeks of implantation, the re-associations showed gradients of differentiating odontoblasts. There were ciliated, polarized, and extended cell processes in predentin/dentin. Ameloblasts became functional. Enamel crystals showed a typical oriented arrangement in the inner and outer enamel. In the developing root, odontoblasts differentiated, cementogenesis occurred, and periodontal ligament fibroblasts interacted with the root surface and newly formed bone. The implantation of cultured dental cell re-associations allows for reproduction of complete functional differentiation at the cell, matrix, and mineral levels.

  17. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.

    1986-01-01

    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  18. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling.

    Science.gov (United States)

    Poloz, Yekaterina; O'Day, Danton H

    2012-04-01

    Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility. Copyright © 2011 International Society of Differentiation. Published by Elsevier B

  19. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    It has been suggested that the BMSCs have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. In this study, we showed that BMSCs can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells by Brdu pulse label technology.

  20. OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.

    Directory of Open Access Journals (Sweden)

    Yumiko Matsubara

    Full Text Available Platelets are essential for hemostatic plug formation and thrombosis. The mechanisms of megakaryocyte (MK differentiation and subsequent platelet production from stem cells remain only partially understood. The manufacture of megakaryocytes (MKs and platelets from cell sources including hematopoietic stem cells and pluripotent stem cells have been highlighted for studying the platelet production mechanisms as well as for the development of new strategies for platelet transfusion. The mouse bone marrow stroma cell line OP9 has been widely used as feeder cells for the differentiation of stem cells into MK lineages. OP9 cells are reported to be pre-adipocytes. We previously reported that 3T3-L1 pre-adipocytes differentiated into MKs and platelets. In the present study, we examined whether OP9 cells differentiate into MKs and platelets using MK lineage induction (MKLI medium previously established to generate MKs and platelets from hematopoietic stem cells, embryonic stem cells, and pre-adipocytes. OP9 cells cultured in MKLI medium had megakaryocytic features, i.e., positivity for surface markers CD41 and CD42b, polyploidy, and distinct morphology. The OP9-derived platelets had functional characteristics, providing the first evidence for the differentiation of OP9 cells into MKs and platelets. We then analyzed gene expressions of critical factors that regulate megakaryopoiesis and thrombopoiesis. The gene expressions of p45NF-E2, FOG, Fli1, GATA2, RUNX1, thrombopoietin, and c-mpl were observed during the MK differentiation. Among the observed transcription factors of MK lineages, p45NF-E2 expression was increased during differentiation. We further studied MK and platelet generation using p45NF-E2-overexpressing OP9 cells. OP9 cells transfected with p45NF-E2 had enhanced production of MKs and platelets. Our findings revealed that OP9 cells differentiated into MKs and platelets in vitro. OP9 cells have critical factors for megakaryopoiesis and

  1. Differential marker expression by cultures rich in mesenchymal stem cells

    Science.gov (United States)

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  2. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    Directory of Open Access Journals (Sweden)

    Teruyo Oishi

    Full Text Available Heterotopic ossification (HO is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+ and PDGFRα(+ cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+ cells and PDGFRα(+ cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+ cells formed bone-like tissue and showed successful engraftment, while CD56(+ cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+ cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+ cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+ cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+ cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+ cells. Our results suggest that PDGFRα(+ cells may be the major source of HO and that the newly identified mi

  3. In vitro differentiation of mouse embryonic stem cells into functional ...

    African Journals Online (AJOL)

    Studies have shown that embryonic stem (ES) cells can be successfully differentiated into liver cells, which offer the potential unlimited cell source for a variety of end-stage liver disease. In our study, in order to induce mouse ES cells to differentiate into hepatocyte-like cells under chemically defined conditions, ES cells ...

  4. Kinetics of granulocytic and erythroid progenitor cells are affected differently by short-term, low-level benzene exposure

    Energy Technology Data Exchange (ETDEWEB)

    Dempster, A.M.; Snyder, C.A. (New York Univ. Medical Center, NY (United States). Inst. of Environmental Medicine)

    1991-09-01

    Mice were exposed to either air or 10 ppm benzene for 6 h/d X 5 d. Immediately after the last exposure, mice were injected, i.v., with either saline or hydroxyurea (HU). The dose of HU was sufficient to kill hematopoietic cells in or near S-phase of the cell cycle and sufficient to synchronize the surviving populations of hematopoietic cells. Three days after benzene exposure, CFU-E numbers had declined to 50% of control values while CFU-GM numbers were equal to control values at this time. The benzene exposures were sufficient to double the percentage of CFU-E in S-phase but produced no such increase among CFU-Gm. During 3 days of recovery from benzene exposure and HU treatment, the CFU-E population expanded 30-fold while the CFU-GM population expanded less than 3-fold. Following benzene exposure and HU treatment, both progenitor cells produced elevated numbers of their respective progeny. When CFU-E from benzene-exposed mice were cultured with varying concentrations of erythropoietin (EPO), the response at maximal EPO concentration was 66% of the response by control CFU-E. This strongly suggests that the CFU-E populations from benzene-exposed mice had been depleted of cells in or near S-phase. The results indicate that CFU-GM respond to low-level benzene exposure by increasing their rate of differentiation but not their rate of proliferation, while CFU-E respond by increasing both their rates of differentiation and proliferation. We speculate that it is the increase in CFU-E proliferation that renders these cells more susceptible to benzene than their granulocytic counterparts, especially those CFU-E at or near the S-phase of the cell cycle. (orig.).

  5. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method.

    Science.gov (United States)

    Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H

    2014-05-01

    We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Distinct roles of the receptor tyrosine kinases c-ErbB and c-Kit in regulating the balance between erythroid cell proliferation and differentiation

    NARCIS (Netherlands)

    Wessely, O.; Mellitzer, G.; von Lindern, M.; Levitzki, A.; Gazit, A.; Ischenko, I.; Hayman, M. J.; Beug, H.

    1997-01-01

    In the bone marrow, multipotent and committed hematopoietic progenitors have to closely regulate their balance between sustained proliferation without differentiation (self renewal) and entering a terminal differentiation pathway. A useful model to analyze this regulation at the molecular level is

  7. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  8. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  9. Rh antigen expression during erythropoeisis: Comparison of cord and adult derived CD34 + cells

    Directory of Open Access Journals (Sweden)

    Gupta Namita

    2008-01-01

    Full Text Available Objectives: Concentrations of O 2 and CO 2 in the fetal circulation differ to that in maternal blood. Previous studies done in algae demonstrate the functional role of Rh antigen as CO 2 transporter. As a preliminary study, it was the aim of this project to compare the expression of Rh polypeptides on cord and adult red blood cell progenitors during ex vivo proliferation and differentiation of CD34 + cells during erythropoeisis. Materials and Methods: CD34 positive hematopoeitic progenitor cells were isolated from umbilical cord blood and adult peripheral blood using an immunomagnetic system and cultured in serum free medium containing erythropoietin in order to compel them along the erythroid lineage. Cultured cells were analyzed for cell surface marker expression by flow cytometry, using monoclonal antibodies to RhAG, Glycophorin A, Rh polypeptides, CD47 and Band 3. Cytospin analysis was also done to study the morphology of cultured cells. Results: The appearance of cell surface markers analyzed on different days of culture varied slightly between samples. There was no evidence to suggest that RhAG, GPA, CD47 and Band 3 expression was any different between adult and cord derived cells. Nevertheless, the results of Rh antigenic expression suggest a reasonable difference between the two groups with adult sample derived cells showing higher and earlier expression than cord blood derived cells. These preliminary findings require further investigation. Conclusion: Comparing the expression of cell surface markers especially Rh polypeptides between adult and cord blood derived erythroid progenitors might assist in discerning their functions and could be valuable in the study of erythropoeisis.

  10. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Puente, Pilar de la; Ludeña, Dolores; López, Marta; Ramos, Jennifer; Iglesias, Javier

    2013-01-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  11. Emergence of nuclear heparanase induces differentiation of human mammary cancer cells

    International Nuclear Information System (INIS)

    Nobuhisa, Tetsuji; Naomoto, Yoshio; Takaoka, Munenori; Tabuchi, Yoko; Ookawa, Keizou; Kitamoto, Dai; Gunduz, Esra; Gunduz, Mehmet; Nagatsuka, Hitoshi; Haisa, Minoru; Matsuoka, Junji; Nakajima, Motowo; Tanaka, Noriaki

    2005-01-01

    The study of epithelial differentiation touches upon many modern aspects of biology. The epithelium is in constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. Recently we reported that heparanase is expressed in nucleus as well as in the cytoplasm and that nuclear heparanase seems to be related to cell differentiation. In this study, we investigated the role of nuclear heparanase in differentiation by transducing human mammary epithelial cancer cells with heparanase which was delivered specifically into nucleus. We observed that expression of nuclear heparanase allowed the cells to differentiate with the appearance of lipid droplets. This finding supports the idea that heparanase plays a novel role in epithelial cell differentiation apart from its known enzymatic function

  12. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Capretto L

    2012-01-01

    Full Text Available Lorenzo Capretto1, Stefania Mazzitelli2, Eleonora Brognara2, Ilaria Lampronti2, Dario Carugo1, Martyn Hill1, Xunli Zhang1, Roberto Gambari2, Claudio Nastruzzi31Engineering Sciences, University of Southampton, Southampton, UK; 2Department of Biochemistry and Molecular Biology, 3Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, ItalyAbstract: This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH, based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol

  13. Whole transcriptome analysis of human erythropoietic cells during ontogenesis suggests a role of VEGFA gene as modulator of fetal hemoglobin and pharmacogenomic biomarker of treatment response to hydroxyurea in β-type hemoglobinopathy patients

    DEFF Research Database (Denmark)

    Chondrou, Vasiliki; Kolovos, Petros; Sgourou, Argyro

    2017-01-01

    from whole transcriptome analysis of erythroid cells, isolated from erythroid tissues at various developmental stages in an effort to identify distinct molecular signatures of each erythroid tissue. Results: From our in-depth data analysis, pathway analysis, and text mining, we opted to focus...

  14. BC-Box Motif-Mediated Neuronal Differentiation of Somatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanno

    2018-02-01

    Full Text Available Von Hippel-Lindau tumor suppressor protein (pVHL functions to induce neuronal differentiation of neural stem/progenitor cells (NSCs and skin-derived precursors (SKPs. Here we identified a neuronal differentiation domain (NDD in pVHL. Neuronal differentiation of SKPs was induced by intracellular delivery of a peptide composed of the amino-acid sequences encoded by the NDD. Neuronal differentiation mediated by the NDD was caused by the binding between it and elongin C followed by Janus kinase-2 (JAK2 ubiquitination of JAK2 and inhibition of the JAK2/the signal transducer and activator of transcription-3(STAT3 pathway. The NDD in pVHL contained the BC-box motif ((A,P,S,TLXXX (A,C XXX(A,I,L,V corresponding to the binding site of elongin C. Therefore, we proposed that other BC-box proteins might also contain an NDD; and subsequently also identified in them an NDD containing the amino-acid sequence encoded by the BC-box motif in BC-box proteins. Furthermore, we showed that different NDD peptide-delivered cells differentiated into different kinds of neuron-like cells. That is, dopaminergic neuron-like cells, cholinergic neuron-like cells, GABAnergic neuron-like cells or rhodopsin-positive neuron-like cells were induced by different NDD peptides. These novel findings might contribute to the development of a new method for promoting neuronal differentiation and shed further light on the mechanism of neuronal differentiation of somatic stem cells.

  15. In vitro differentiation of neural cells from human adipose tissue derived stromal cells.

    Science.gov (United States)

    Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L

    2018-01-01

    Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.

  16. Efficient differentiation of human embryonic stem cells to definitive endoderm.

    Science.gov (United States)

    D'Amour, Kevin A; Agulnick, Alan D; Eliazer, Susan; Kelly, Olivia G; Kroon, Evert; Baetge, Emmanuel E

    2005-12-01

    The potential of human embryonic stem (hES) cells to differentiate into cell types of a variety of organs has generated much excitement over the possible use of hES cells in therapeutic applications. Of great interest are organs derived from definitive endoderm, such as the pancreas. We have focused on directing hES cells to the definitive endoderm lineage as this step is a prerequisite for efficient differentiation to mature endoderm derivatives. Differentiation of hES cells in the presence of activin A and low serum produced cultures consisting of up to 80% definitive endoderm cells. This population was further enriched to near homogeneity using the cell-surface receptor CXCR4. The process of definitive endoderm formation in differentiating hES cell cultures includes an apparent epithelial-to-mesenchymal transition and a dynamic gene expression profile that are reminiscent of vertebrate gastrulation. These findings may facilitate the use of hES cells for therapeutic purposes and as in vitro models of development.

  17. Isolation and Multiple Differentiation Potential Assessment of Human Gingival Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-11-01

    Full Text Available The aim of this study was to isolate human mesenchymal stem cells (MSCs from the gingiva (GMSCs and confirm their multiple differentiation potentials, including the odontogenic lineage. GMSCs, periodontal ligament stem cells (PDLSCs and dermal stem cells (DSCs cultures were analyzed for cell shape, cell cycle, colony-forming unit-fibroblast (CFU-F and stem cell markers. Cells were then induced for osteogenic and adipogenic differentiation and analyzed for differentiation markers (alkaline phosphatase (ALP activity, mineralization nodule formation and Runx2, ALP, osteocalcin (OCN and collagen I expressions for the osteogenic differentiation, and lipid vacuole formation and PPARγ-2 expression for the adipogenic differentiation. Besides, the odontogenic differentiation potential of GMSCs induced with embryonic tooth germ cell-conditioned medium (ETGC-CM was observed. GMSCs, PDLSCs and DSCs were all stromal origin. PDLSCs showed much higher osteogenic differentiation ability but lower adipogenic differentiation potential than DSCs. GMSCs showed the medial osteogenic and adipogenic differentiation potentials between those of PDLSCs and DSCs. GMSCs were capable of expressing the odontogenic genes after ETGC-CM induction. This study provides evidence that GMSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source.

  18. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    Science.gov (United States)

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  19. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maravillas Mellado-López

    2017-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  20. Tracking plasma cell differentiation and survival.

    Science.gov (United States)

    Roth, Katrin; Oehme, Laura; Zehentmeier, Sandra; Zhang, Yang; Niesner, Raluca; Hauser, Anja E

    2014-01-01

    Plasma cells play a crucial role for the humoral immune response as they represent the body's factories for antibody production. The differentiation from a B cell into a plasma cell is controlled by a complex transcriptional network and happens within secondary lymphoid organs. Based on their lifetime, two types of antibody secreting cells can be distinguished: Short-lived plasma cells are located in extrafollicular sites of secondary lymphoid organs such as lymph node medullary cords and the splenic red pulp. A fraction of plasmablasts migrate from secondary lymphoid organs to the bone marrow where they can become long-lived plasma cells. Bone marrow plasma cells reside in special microanatomical environments termed survival niches, which provide factors promoting their longevity. Reticular stromal cells producing the chemokine CXCL12, which is known to attract plasmablasts to the bone marrow but also to promote plasma cell survival, play a crucial role in the maintenance of these niches. In addition, hematopoietic cells are contributing to the niches by providing other soluble survival factors. Here, we review the current knowledge on the factors involved in plasma cell differentiation, their localization and migration. We also give an overview on what is known regarding the maintenance of long lived plasma cells in survival niches of the bone marrow. © 2013 International Society for Advancement of Cytometry.

  1. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Directory of Open Access Journals (Sweden)

    Pham Phuc V

    2011-12-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

  2. Isolation and Osteogenic Differentiation of Rat Periosteum-derived Cells

    OpenAIRE

    Declercq, Heidi Andrea; De Ridder, Leo Isabelle; Cornelissen, Maria Jozefa

    2005-01-01

    Selection of appropriate cultures having an osteogenic potential is a necessity if cell/biomaterial interactions are studied in long-term cultures. Osteoblastic cells derived from rat long bones or calvaria have the disadvantage of being in an advanced differentiation stage which results in terminal differentiation within 21 days. In this regard, less differentiated periosteum-derived osteoprogenitors could be more suitable.

  3. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    International Nuclear Information System (INIS)

    Murakami, Sho; Yoshino, Hironori; Ishikawa, Junya; Yamaguchi, Masaru; Tsujiguchi, Takakiyo; Nishiyama, Ayaka; Yokoyama, Kouki; Kashiwakura, Ikuo

    2015-01-01

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E–mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell–related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E–mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. (author)

  4. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  5. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  6. Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Meyer, Morten; Zeng, Xianmin

    2015-01-01

    Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology, neur...... differentiation from pluripotent stem cells. Moreover, some of the challenges in stem cell biology, differentiation, and proteomics/PTMomics that are not exclusive to neural development will be discussed.......Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology...... the understanding of molecular processes in cells. Substantial advances in PTM enrichment methods and mass spectrometry has allowed the characterization of a subset of PTMs in large-scale studies. This review focuses on the current state-of-the-art of proteomic, as well as PTMomic studies related to human neural...

  7. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shin-Ichi, E-mail: shayashi@med.tottori-u.ac.jp [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Yasuda, Hisataka [Planning and Development, Bioindustry Division, Oriental Yeast Co., Ltd, Itabashi-Ku, Tokyo 174-8505 (Japan); Yoshino, Miya [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  8. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    International Nuclear Information System (INIS)

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-01-01

    Highlights: ► The frequency of C7 differentiation into osteoclast was low and constant. ► Only extended C7 cell cultures exponentially increased osteoclast+ cultures. ► C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’. ► The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’ rather than requiring specific signals to drive this process.

  9. Human Long Noncoding RNA Regulation of Stem Cell Potency and Differentiation

    Directory of Open Access Journals (Sweden)

    Seahyoung Lee

    2017-01-01

    Full Text Available Because of their capability of differentiation into lineage-specific cells, stem cells are an attractive therapeutic modality in regenerative medicine. To develop an effective stem cell-based therapeutic strategy with predictable results, deeper understanding of the underlying molecular mechanisms of stem cell differentiation and/or pluripotency maintenance is required. Thus, reviewing the key factors involved in the transcriptional and epigenetic regulation of stem cell differentiation and maintenance is important. Accumulating data indicate that long noncoding RNAs (lncRNAs mediate numerous biological processes, including stem cell differentiation and maintenance. Here, we review recent findings on the human lncRNA regulation of stem cell potency and differentiation. Although the clinical implication of these lncRNAs is only beginning to be elucidated, it is anticipated that lncRNAs will become important therapeutic targets in the near future.

  10. Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Emma Patricia Bavin

    2015-11-01

    Full Text Available Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to generate artificial tendons. Induced pluripotent stem cells (iPSCs have now been derived from horses but, to date, there are no reports on their ability to differentiate into tendon cells. As iPSCs can be produced from adult cell types, they provide a more accessible source of cells than ESCs, which require the use of horse embryos. The aim of this study was to compare tendon differentiation by ESCs and iPSCs produced through two independent methods. In 2-dimensional differentiation assays the iPSCs expressed tendon associated genes and proteins, which were enhanced by the presence of transforming growth factor-β3. However, in 3-dimensional differentiation assays the iPSCs failed to differentiate into functional tendon cells and generate artificial tendons. These results demonstrate the utility of the 3-dimensional in vitro tendon assay for measuring tendon differentiation and the need for more detailed studies to be performed on equine iPSCs to identify and understand their epigenetic differences from pluripotent ESCs prior to their clinical application.

  11. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zhenqiang Zhao

    2016-12-01

    Full Text Available Mouse embryonic fibroblasts (MEFs and human foreskin fibroblasts (HFFs are used for the culture of human embryonic stem cells (hESCs. MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs =1:1 and HFFs feeder respectively, and then were differentiated into DA neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR (qRT-PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of TH positive cells and expressed higher levels of FOXA2, PITX3, NURR1 and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.

  12. Phytohemagglutinin (PHA) stimulation of peripheral-blood lymphocytes and stem cell take

    Energy Technology Data Exchange (ETDEWEB)

    Astaldi, G [Blood Research Foundation Center, Tortona, Italy; Karanovic, D; Vettori, P P; Karanovic, J; Piletic, O

    1974-01-01

    The effect of PHA-stimulation of peripheral-blood lymphocytes on the spleen-colony formation in irradiated rats was examined. 25-day old Wistar rats underwent total-body irradiation (600 R), and they were used as recipients. On the other hand, 2 and /sup 1///sub 2/ month old untreated Wistar rats were used as donors of peripheral-blood lymphocytes, which were obtained by sedimentation with Dextraven from defibrinated blood. Four rat lots were used. The 1st one did not receive irradiation, and was kept as ''blank control.'' The 2nd one was just irradiated and kept as ''radiated control.'' The 3rd and the 4th rat lots of the series were irradiated, but the former lot was injected i.v. with 5 x 10/sup 7/ peripheral-blood untreated lymphocytes, whereas the fourth lot was injected i.v. with the same amount of lymphocytes, which were previously incubated in vitro for 24 hrs with PHA-M (Difco). The results showed that the PHA-incubation of transplanted peripheral-blood lymphocytes significantly increases the number and size of the macroscopic spleen colonies, in relationship to the colonies which occurs after transplantation of untreated lymphocytes. Histo-cytological observation clearly showed that the colonies formed after injection of mitogen-pretreated peripheral-blood lymphocytes were predominantly of erythroid type and, then, of non-differentiated cells. Only a few of them were of a mixed type, consisting of both undifferentiated cells and erythroid cells.

  13. Role for early-differentiated natural killer cells in infectious mononucleosis.

    Science.gov (United States)

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian; Chijioke, Obinna; Nadal, David

    2014-10-16

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56(dim) NKG2A(+) immunoglobulin-like receptor(-) NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. © 2014 by The American Society of Hematology.

  14. Chemo-mechanical control of neural stem cell differentiation

    Science.gov (United States)

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  15. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.

    Science.gov (United States)

    Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad

    2011-06-10

    Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  17. Effect of coumarins on HL-60 cell differentiation.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    2000-01-01

    Twenty-eight coumarins, including 7 furocoumarins, were examined for their activity of induction of terminal differentiation of human promyelocytic leukemia cells (HL-60) by nitro blue tetrazolium (NBT) reducing, nonspecific esterase, specific esterase and phagocytic activities. Esculetin, nordalbergin, 6,7-dihydroxy-4-methylcoumarin and imperatorin had strong activity among the coumarins examined. HL-60 cells treated with these coumarins differentiated into mature monocyte/macrophage. The structure-activity relationship established from the results revealed that 6,7-dihydroxy moiety had an important role in the induction of differentiation of HL-60.

  18. The Vast Universe of T Cell Diversity: Subsets of Memory Cells and Their Differentiation.

    Science.gov (United States)

    Jandus, Camilla; Usatorre, Amaia Martínez; Viganò, Selena; Zhang, Lianjun; Romero, Pedro

    2017-01-01

    The T cell receptor confers specificity for antigen recognition to T cells. By the first encounter with the cognate antigen, reactive T cells initiate a program of expansion and differentiation that will define not only the ultimate quantity of specific cells that will be generated, but more importantly their quality and functional heterogeneity. Recent achievements using mouse model infection systems have helped to shed light into the complex network of factors that dictate and sustain memory T cell differentiation, ranging from antigen load, TCR signal strength, metabolic fitness, transcriptional programs, and proliferative potential. The different models of memory T cell differentiation are discussed in this chapter, and key phenotypic and functional attributes of memory T cell subsets are presented, both for mouse and human cells. Therapeutic manipulation of memory T cell generation is expected to provide novel unique ways to optimize current immunotherapies, both in infection and cancer.

  19. Chronology of Islet Differentiation Revealed By Temporal Cell Labeling

    Science.gov (United States)

    Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.

    2009-01-01

    OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145

  20. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  2. Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells.

    Science.gov (United States)

    Bagher, Zohreh; Kamrava, Seyed Kamran; Alizadeh, Rafieh; Farhadi, Mohammad; Absalan, Moloud; Falah, Masoumeh; Faghihi, Faezeh; Zare-Sadeghi, Arash; Komeili, Ali

    2018-05-25

    Cell transplantation is a potential therapeutic approach for repairing neuropathological and neurodegenerative disorders of central nervous system by replacing the degenerated cells with new ones. Among a variety of stem cell candidates to provide these new cells, olfactory ectomesenchymal stem cells (OE-MSCs) have attracted a great attention due to their neural crest origin, easy harvest, high proliferation, and autologous transplantation. Since there is no report on differentiation potential of these cells into motor neuron-like cells, we evaluated this potential using Real-time PCR, flowcytometry and immunocytochemistry after the treatment with differentiation cocktail containing retinoic acid and Sonic Hedgehog. Immunocytochemistry staining of the isolated OE-MSCs demonstrated their capability to express nestin and vimentin, as the two markers of primitive neuroectoderm. The motor neuron differentiation of OE-MSCs resulted in changing their morphology into bipolar cells with high expression of motor neuron markers of ChAT, Hb-9 and Islet-1 at the level of mRNA and protein. Consequently, we believe that the OE-MSCs have great potential to differentiate into motor neuron-like cells and can be an ideal stem cell source for the treatment of motor neuron-related disorders of central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pei; Li, Li; Qi, Hui [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Zhou, Han-xin [Department of General Surgery, First Hospital (Shenzhen Second People' s Hospital) of Shenzhen University, 518020 Shenzhen (China); Deng, Chun-yan [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Li, Fu-rong, E-mail: frli62@yahoo.com [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Shenzhen Institution of Gerontology, 518020 Shenzhen (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas that expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.

  4. Cell stiffness, contractile stress and the role of extracellular matrix

    International Nuclear Information System (INIS)

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2009-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  5. Cell stiffness, contractile stress and the role of extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    An, Steven S., E-mail: san@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Kim, Jina [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Ahn, Kwangmi [Division of Biostatistics, Penn State College of Medicine, Hershey, PA 17033 (United States); Trepat, Xavier [CIBER, Enfermedades Respiratorias, 07110 Bunyola (Spain); Drake, Kenneth J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Fredberg, Jeffrey J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States)

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  6. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  7. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    Science.gov (United States)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  8. Response of Turkey Muscle Satellite Cells to Thermal Challenge. II. Transcriptome Effects in Differentiating Cells

    Directory of Open Access Journals (Sweden)

    Kent M. Reed

    2017-11-01

    Full Text Available Background: Exposure of poultry to extreme temperatures during the critical period of post-hatch growth can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells by thermal challenge during differentiation. Our goal is to better define how thermal stress alters breast muscle ultrastructure and subsequent development.Results: Skeletal muscle satellite cells previously isolated from the Pectoralis major muscle of 7-wk-old male turkeys (Meleagris gallopavo from two breeding lines: the F-line (16 wk body weight-selected and RBC2 (randombred control line were used in this study. Cultured cells were induced to differentiate at 38°C (control or thermal challenge temperatures of 33 or 43°C. After 48 h of differentiation, cells were harvested and total RNA was isolated for RNAseq analysis. Analysis of 39.9 Gb of sequence found 89% mapped to the turkey genome (UMD5.0, annotation 101 with average expression of 18,917 genes per library. In the cultured satellite cells, slow/cardiac muscle isoforms are generally present in greater abundance than fast skeletal isoforms. Statistically significant differences in gene expression were observed among treatments and between turkey lines, with a greater number of genes affected in the F-line cells following cold treatment whereas more differentially expressed (DE genes were observed in the RBC2 cells following heat treatment. Many of the most significant pathways involved signaling, consistent with ongoing cellular differentiation. Regulation of Ca2+ homeostasis appears to be significantly affected by temperature treatment, particularly cold treatment.Conclusions: Satellite cell differentiation is directly influenced by temperature at the level of gene transcription with greater effects attributed to selection for fast growth. At lower temperature, muscle-associated genes in the

  9. Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells

    Science.gov (United States)

    Petrakova, O. S.; Ashapkin, V. V.; Voroteliak, E. A.; Bragin, E. Y.; Shtratnikova, V. Y.; Chernioglo, E. S.; Sukhanov, Y. V.; Terskikh, V. V.; Vasiliev, A. V.

    2012-01-01

    Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential. PMID:23346379

  10. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    DEFF Research Database (Denmark)

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik

    2013-01-01

    for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize...... of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE...... formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were...

  11. Activation of PPARγ is not involved in butyrate-induced epithelial cell differentiation

    International Nuclear Information System (INIS)

    Ulrich, S.; Waechtershaeuser, A.; Loitsch, S.; Knethen, A. von; Bruene, B.; Stein, J.

    2005-01-01

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor γ (PPARγ) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPARγ in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPARγ in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPARγ ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPARγ ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPARγ mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPARγ is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation

  12. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    Science.gov (United States)

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-02-28

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.

  13. Regulators of Tfh cell differentiation

    Directory of Open Access Journals (Sweden)

    Gajendra Motiram Jogdand

    2016-11-01

    Full Text Available The follicular helper T (Tfh cells help is critical for activation of B cells, antibody class switching and germinal center formation. The Tfh cells are characterized by the expression of CXCR5, ICOS, PD-1, Bcl-6, and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. Tfh cells are generated from naïve CD4 T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A, migration and positioning in the germinal center by CXCR5, surface receptors (ICOS/ICOSL, SAP/SLAM as well as transcription factor (Bcl-6, c-Maf, STAT3 signaling and repressor miR155. On the other hand Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7, surface receptor (PD-1, CTLA-4, transcription factors Blimp-1, STAT5, T-bet, KLF-2 signaling and repressor miR 146a. Interestingly, miR 17-92 and FOXO1 acts as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin Ligase and miRNA as positive and negative regulators for Tfh differentiation.

  14. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  15. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    Science.gov (United States)

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  16. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency.

    Science.gov (United States)

    Leng, Lizhi; Tan, Yueqiu; Gong, Fei; Hu, Liang; Ouyang, Qi; Zhao, Yan; Lu, Guangxiu; Lin, Ge

    2015-03-01

    Can the induced pluripotent stem cells (iPSCs) derived from women with primary ovarian insufficiency (POI) differentiate into germ cells for potential disease modeling in vitro? The iPSC lines derived from POI patients with 46, X, del(X)(q26) or 46, X, del(X)(q26)9qh+ could differentiate into germ cells and expressed lower levels of genes in the deletion region of the X chromosome. iPSC technology has been envisioned as an approach for generating patient-specific stem cells for disease modeling and for developing novel therapies. It has also been confirmed that iPSCs differentiate into germ cells. We compared the differentiation ability of germ cells and the gene expression level of germ cell-related genes in the X chromosome deletion region of iPSC lines derived from POI patients (n = 2) with an iPSC line derived from normal fibroblasts (n = 1). We established three iPSC lines from two patients with partial Xq deletion-induced POI and normal fibroblasts by overexpressing four factors: octamer-binding transcription factor 4 (OCT4), sex-determining region Y-box 2 (SOX2), Nanog homeobox (NANOG), and lin-28 homolog (LIN28), using lentiviral vectors. We then generated stable-transfected fluorescent reporter cell lines under the control of the Asp-Glu-Ala-Asp box polypeptide 4 (DDX4, also called VASA) promoter, and selected clonal derived sublines. We induced subline differentiation into germ cells by adding Wnt3a (30 ng/ml) and bone morphogenetic protein 4 (100 ng/ml). After 12 days of differentiation, green fluorescent protein (GFP)-positive and GFP-negative cells were isolated via fluorescence-activated cell sorting and analyzed for endogenous VASA protein (immunostaining) and for germ cell markers and genes expressed in the deleted region of the X chromosome (quantitative RT-PCR). The POI- and normal fibroblast-derived iPSCs had typical self-renewal and pluripotency characteristics. After stable transfection with the VASA-GFP construct, the sublines POI1-iPS-V.1

  17. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  18. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?

    Science.gov (United States)

    Willems, Christophe; Vankelecom, Hugo

    2014-01-01

    The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.

  19. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Michiko [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Aging Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Mukai, Atsushi; Shiomi, Kosuke [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Song, Si-Yong [Institute of Neuroscience, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193 (Japan); Hashimoto, Naohiro, E-mail: nao@ncgg.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2011-01-15

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  20. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    International Nuclear Information System (INIS)

    Yanagisawa, Michiko; Mukai, Atsushi; Shiomi, Kosuke; Song, Si-Yong; Hashimoto, Naohiro

    2011-01-01

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  1. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors

    Science.gov (United States)

    Doulatov, Sergei; Vo, Linda T.; Macari, Elizabeth R.; Wahlster, Lara; Kinney, Melissa A.; Taylor, Alison M.; Barragan, Jessica; Gupta, Manav; McGrath, Katherine; Lee, Hsiang-Ying; Humphries, Jessica M.; DeVine, Alex; Narla, Anupama; Alter, Blanche P.; Beggs, Alan H.; Agarwal, Suneet; Ebert, Benjamin L.; Gazda, Hanna T.; Lodish, Harvey F.; Sieff, Colin A.; Schlaeger, Thorsten M.; Zon, Leonard I.; Daley, George Q.

    2017-01-01

    Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA. PMID:28179501

  2. Osteogenic differentiation of human dental papilla mesenchymal cells

    International Nuclear Information System (INIS)

    Ikeda, Etsuko; Hirose, Motohiro; Kotobuki, Noriko; Shimaoka, Hideki; Tadokoro, Mika; Maeda, Masahiko; Hayashi, Yoshiko; Kirita, Tadaaki; Ohgushi, Hajime

    2006-01-01

    We isolated dental papilla from impacted human molar and proliferated adherent fibroblastic cells after collagenase treatment of the papilla. The cells were negative for hematopoietic markers but positive for CD29, CD44, CD90, CD105, and CD166. When the cells were further cultured in the presence of β-glycerophosphate, ascorbic acid, and dexamethasone for 14 days, mineralized areas together with osteogenic differentiation evidenced by high alkaline phosphatase activity and osteocalcin contents were observed. The differentiation was confirmed at both protein and gene expression levels. The cells can also be cryopreserved and, after thawing, could show in vivo bone-forming capability. These results indicate that mesenchymal type cells localize in dental papilla and that the cells can be culture expanded/utilized for bone tissue engineering

  3. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  4. Cell membrane and cell junctions in differentiation of preimplanted mouse embryos.

    Science.gov (United States)

    Izquierdo, L; Fernández, S; López, T

    1976-12-01

    Cell membrane and cell junctions in differentiation of preimplanted mouse embryos, (membrana celular y uniones celulares en la diferenciación del embrión de ratón antes de la implantación). Arch. Biol. Med. Exper. 10: 130-134, 1976. The development of cell junctions that seal the peripheral blastomeres could be a decisive step in the differentiation of morulae into blastocysts. The appearance of these junctions is studied by electron microscopy of late morulae and initial blastocysts. Zonulae occludentes as well as impermeability to lanthanum emulsion precedes the appearance of the blastocel and hence might be considered as one of its necessary causes.

  5. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    Science.gov (United States)

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  6. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...... at similar concentrations to the passive adsorption process, as measured by enzyme-linked immunosorbent assays, and the bound IL-4 did not leak into solution to any measurable extent during cell culture. However, covalently bound IL-4 was incapable of inducing monocyte differentiation. This may be caused...

  7. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    Science.gov (United States)

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  8. Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy.

    Science.gov (United States)

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L

    2015-11-17

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  9. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-12-01

    Full Text Available Human pluripotent stem cells, including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs, hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4, epidermal growth factor (EGF, fibroblast growth factor (FGF, keratinocyte growth factor (KGF, hepatocyte growth factor (HGF, noggin, transforming growth factor (TGF-α, and WNT3A are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.

  10. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    Science.gov (United States)

    Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Singh, A. J. A. Ranjith; Peng, I-Chia; Priya, Sivan Padma; Hamat, Rukman Awang; Higuchi, Akon

    2014-01-01

    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation. PMID:25526563

  11. VMAT2 identified as a regulator of late-stage β-cell differentiation.

    Science.gov (United States)

    Sakano, Daisuke; Shiraki, Nobuaki; Kikawa, Kazuhide; Yamazoe, Taiji; Kataoka, Masateru; Umeda, Kahoko; Araki, Kimi; Mao, Di; Matsumoto, Shirou; Nakagata, Naomi; Andersson, Olov; Stainier, Didier; Endo, Fumio; Kume, Kazuhiko; Uesugi, Motonari; Kume, Shoen

    2014-02-01

    Cell replacement therapy for diabetes mellitus requires cost-effective generation of high-quality, insulin-producing, pancreatic β cells from pluripotent stem cells. Development of this technique has been hampered by a lack of knowledge of the molecular mechanisms underlying β-cell differentiation. The present study identified reserpine and tetrabenazine (TBZ), both vesicular monoamine transporter 2 (VMAT2) inhibitors, as promoters of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Neurog3 (referred to henceforth as Ngn3)-positive endocrine precursors. VMAT2-controlled monoamines, such as dopamine, histamine and serotonin, negatively regulated β-cell differentiation. Reserpine or TBZ acted additively with dibutyryl adenosine 3',5'-cyclic AMP, a cell-permeable cAMP analog, to potentiate differentiation of embryonic stem (ES) cells into β cells that exhibited glucose-stimulated insulin secretion. When ES cell-derived β cells were transplanted into AKITA diabetic mice, the cells reversed hyperglycemia. Our protocol provides a basis for the understanding of β-cell differentiation and its application to a cost-effective production of functional β cells for cell therapy.

  12. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations

    Directory of Open Access Journals (Sweden)

    Mathilde Couteaudier

    2015-03-01

    Full Text Available A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.

  14. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  15. Heme and erythropoieis: more than a structural role

    OpenAIRE

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own ...

  16. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a

  17. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  18. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells

    Directory of Open Access Journals (Sweden)

    Li Chen

    2018-05-01

    Full Text Available Human stromal stem cells (hMSCs differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs: Cofilin 1 (CFL1 and Destrin (DSTN or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4. In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1 which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Keywords: Actin cytoskeleton, Actin depolymerizing factors, Adipocyte differentiation, Human stromal stem cells

  19. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation

    Directory of Open Access Journals (Sweden)

    Paula A. Baldión

    2018-01-01

    Full Text Available Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1, and OLC expanded after trypsinization (EXP-21 were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry.

  20. Epigenetic landscapes reveal transcription factors regulating CD8+ T cell differentiation

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J. Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P.; Pereira, Renata M.; Crotty, Shane; Chang, John T.; Pipkin, Matthew E.; Wang, Wei; Goldrath, Ananda W.

    2017-01-01

    Dynamic changes in the expression of transcription factors (TFs) can influence specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that TF expression and binding contributed to establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of differentiation intermediates, facilitating identification of TFs with previously unappreciated roles in CD8+ T cell differentiation. PMID:28288100

  1. Detection of trans-acting factors for hemoglobin switching by cell fusions

    International Nuclear Information System (INIS)

    Broyles, R.H.; Palmer, J.C.; Smith, D.J.; Ramseyer, T.H.

    1986-01-01

    The authors have devised protocols for chemically fusing erythroid cells from amphibians of different developmental stages, so that we may study the short-term effects of trans-acting factors on globin gene expression. The authors are performing both homospecifc (Rana x Rana) and heterospecific (Rana x Xenopus) fusions; and they are detecting the expression of specific globin genes with selective radioactive labeling ( 35 S-methionine is incorporated only into adult globins), polyacrylamide gel electrophoresis, monospecific antisera, and cDNA probes that are species-and developmental stage-specific. Their results indicate that: (1) there are factors in tadpole erythroblasts that can reactivate adult Hb synthesis in mature, synthetically-inactive adult RBCs; (2) there are factors in tadpole erythroblasts that can reactivate tadpole globin genes in adult RBCs; and (3) there are factors in adult erythroid cells that apparently activate adult globin genes in tadpole RBCs. These results suggests that erythroid cells from animals of different developmental stages possess different sets of globin gene-specific trans-acting factors which can be studied with a system that exhibits normal developmental Hb switching

  2. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells.

    Science.gov (United States)

    Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao

    2009-01-01

    Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.

  3. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  4. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation

    Science.gov (United States)

    Quinn, Kyle P.; Sridharan, Gautham V.; Hayden, Rebecca S.; Kaplan, David L.; Lee, Kyongbum; Georgakoudi, Irene

    2013-12-01

    The non-invasive high-resolution spatial mapping of cell metabolism within tissues could provide substantial advancements in assessing the efficacy of stem cell therapy and understanding tissue development. Here, using two-photon excited fluorescence microscopy, we elucidate the relationships among endogenous cell fluorescence, cell redox state, and the differentiation of human mesenchymal stem cells into adipogenic and osteoblastic lineages. Using liquid chromatography/mass spectrometry and quantitative PCR, we evaluate the sensitivity of an optical redox ratio of FAD/(NADH + FAD) to metabolic changes associated with stem cell differentiation. Furthermore, we probe the underlying physiological mechanisms, which relate a decrease in the redox ratio to the onset of differentiation. Because traditional assessments of stem cells and engineered tissues are destructive, time consuming, and logistically intensive, the development and validation of a non-invasive, label-free approach to defining the spatiotemporal patterns of cell differentiation can offer a powerful tool for rapid, high-content characterization of cell and tissue cultures.

  5. Effect of ionizing radiation on the differentiation of neural stem cells

    International Nuclear Information System (INIS)

    Liu Ping; Tu Yu

    2010-01-01

    In order to investigate the effect of ionizing radiation on neural stem cells differentiation, we cultured neural stem cells of newborn rat in serum-free media containing EGF or bFGF. The neural stem cells were divided into 4 groups, which were irradiated by γ-rays with doses of 0, 0.5, 1, and 2 Gy. The irradiated cells were cultured under the same condition for 7 days, and the nestin content of neural stem cell was detected by immunofluorescence. The same method was carried out with irradiated cells in the culture medium after removing EGF, bFGF for 7 days, NSE and GFAP expression content and nestin were also detected by immunofluorescence. It has been found that the irradiated neural stem cells can express less nestin and differentiate more neurons compared to that of control group. Results show that ionizing radiation can induce the differentiation of the neural stem cells and make the neural stem cells differentiate more neuron. (authors)

  6. An engineered cell-imprinted substrate directs osteogenic differentiation in stem cells

    DEFF Research Database (Denmark)

    Kamguyan, Khorshid; Katbab, Ali Asghar; Mahmoudi, Morteza

    2018-01-01

    A cell-imprinted poly(dimethylsiloxane)/hydroxyapatite nanocomposite substrate was fabricated to engage topographical, mechanical, and chemical signals to stimulate and boost stem cell osteogenic differentiation. The physicochemical properties of the fabricated substrates, with nanoscale resolution...

  7. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons

    Directory of Open Access Journals (Sweden)

    Vitor Fortuna

    2015-06-01

    Full Text Available The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs develop in close proximity to the dorsal aorta (DA and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA differentiation of SN precursors temporally coincides with vascular mural cell (VMC recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  8. Current perspectives in Set7 mediated stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Nazanin Karimnia

    2016-12-01

    Full Text Available Set7 is a key regulatory enzyme involved in the methylation of lysine residues of histone and non-histone proteins. This lysine methyltransferase is induced during stem cell differentiation and regulates lineage specific gene transcription and cell fate. In this article we discuss recent experimental evidence identifying regulatory targets under the control of Set7 as well as emerging evidence of regulation in stem cell differentiation. Furthermore, we discuss the function of non-coding RNAs regulated by Set7 implicated in cell plasticity.

  9. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells

    International Nuclear Information System (INIS)

    Scharmach, E.; Hessel, S.; Niemann, B.; Lampen, A.

    2009-01-01

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  10. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells.

    Science.gov (United States)

    Scharmach, E; Hessel, S; Niemann, B; Lampen, A

    2009-11-30

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  11. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.

    Science.gov (United States)

    White, Patricia M; Doetzlhofer, Angelika; Lee, Yun Shain; Groves, Andrew K; Segil, Neil

    2006-06-22

    Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.

  12. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    Directory of Open Access Journals (Sweden)

    Kawinthra Khwanraj

    2015-01-01

    Full Text Available The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson’s disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH in undifferentiated and retinoic acid- (RA- induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible.

  13. Human mesenchymal stem cells promote CD34+ hematopoietic stem cell proliferation with preserved red blood cell differentiation capacity.

    Science.gov (United States)

    Lau, Show Xuan; Leong, Yin Yee; Ng, Wai Hoe; Ng, Albert Wee Po; Ismail, Ida Shazrina; Yusoff, Narazah Mohd; Ramasamy, Rajesh; Tan, Jun Jie

    2017-06-01

    Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34 + hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 10 8  ± 1.8 × 10 7 after day 7 compared to the conditioned medium and the control group (8.9 × 10 7  ± 1.1 × 10 8 and 7.0 × 10 7  ± 3.3 × 10 6 respectively, P cell was greater compared to earlier passages, indicating successful RBC differentiation. Cord blood-derived CD34 + HSCs can be greatly expanded by co-culturing with MSCs without affecting the RBC differentiation capability, suggesting the importance of direct MSC-HSCs contact in HSC expansion and RBC differentiation. © 2017 International Federation for Cell Biology.

  14. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    International Nuclear Information System (INIS)

    Hwang, Do Won; Lee, Dong Soo

    2012-01-01

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously

  15. Role of OCT-1 and partner proteins in T cell differentiation.

    Science.gov (United States)

    Hwang, Soo Seok; Kim, Lark Kyun; Lee, Gap Ryol; Flavell, Richard A

    2016-06-01

    The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells. Copyright © 2016. Published by Elsevier B.V.

  16. Differentiation of stem cells upon deprivation of exogenous FGF2

    DEFF Research Database (Denmark)

    Kjartansdóttir, Kristín Rós; Gabrielsen, Anette; Reda, Ahmed

    2012-01-01

    Establishing a model for in vitro differentiation of human embryonic stem cells (hESCs) towards the germ cell lineage could be used to identify molecular mechanisms behind germ cell differentiation that may help in understanding human infertility. Here, we evaluate whether a lack of exogenous...... fibroblast growth factor 2 (FGF2) is supporting spontaneous differentiation of hESCs cultured on human foreskin fibroblast (hFF) monolayers towards germ cell lineage. Additionally to depriving the hESCs of exogenous FGF2, cells were stimulated with all-trans retinoic acid (ATRA). To get a more comprehensive...... impression on effects of removal of FGF2 and stimulation with ATRA, we combined the results of three cell lines for each experimental setting. When combining gene expression profiles of three cell lines for 96 genes, only 6 genes showed a significant up-regulation in all cell lines, when no FGF2 was added...

  17. Proteomic analysis of PC12 cell differentiation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Zhang Junquan; Gao Ronglian; Chen Xiaohua; Wang Zhidong; Dong Bo; Rao Yalan; Hou Lili; Zhang Hao; Mao Bingzhi

    2005-01-01

    Objective: To explore the molecular mechanism of PC12 cell differentiation induced by ionizing radiation and screen the molecular target of nervous system injured by irradiation. Methods: PC12 cells were irradiated with 16 Gy 60 Co γ ray. Total proteins of normal and irradiated cells were prepared 48 hours after irradiation and separated with two dimensional gel electrophoresis. Some differential expressed proteins were characterized with mass spectrometry. Results: 876 differential expressed proteins were observed. Up-regulated expression of ubiquitin carboxyl-terminal hydratase L1 was found. Down-regulated expression of new protein similar to HP1α was found. Conclusion: The characterization of some differential expressed proteins through proteomic analysis would benefit the research of molecular mechanism of PC12 cell differentiation induced by ionizing radiation. (authors)

  18. Mast Cells Density in Fibrotic Capsule of Enchondroma and Well-Differentiated Chondrosarcoma: A Method for Histopathologic Differentiation

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Kharazi Fard

    2012-02-01

    Full Text Available Background: An enchondroma is a benign and a well-differentiated chondrosarcoma is an invasive chondroid tumor with high recurrence potential. In spite of biologic differences, these two tumors have very similar histopathologic appearance. It has been shown that the biologic nature of the connective tissue around benign and malignant tumors varies in the number of mast cells. The aim of this study was to study the histopathologic distinction of enchondroma and well-differentiated chondrosarcoma using the density of the mast cells in fibrotic capsule. Methods: Twelve enchondroma and 15 well-differentiated chondrosarcoma were collected from Pathology department of Cancer Institute and Central Pathology department of Imam Khomeini Hospital in Tehran. 3 micron paraffin embedded tissue sections were stained by toluidine blue for mast cells counting. Mast cells were counted in fibrous capsule of all cases. Mast cells counts were accomplished in 10 high power fields .The average number of mast cells in 10HPF was determined as an index for each lesion. Mann-Whitney U test was used for statistical analysis. Results: Mean index in enchondroma and well-differentiated chondrosarcoma groups were 0.1±0.12 and 0.31±0.33 respectively, showing a significant difference between number of mast cells in the fibrotic capsule in these two lesions (p=0.028. Comparison of the corresponding points in ROC curve, showed a cut-off point = 0.15, with positive predictive value of 61%, negative predictive value 71%, specificity of 33.3% and sensitivity of 66.7%, (p=0.025. Conclusion: Average density of the mast cells in the surrounding fibrotic capsules of enchondroma and well-differentiated chondrosarcoma along with other criterions, could be a beneficial factor for histologically differentiation between these two lesions.

  19. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay.

    Directory of Open Access Journals (Sweden)

    Kelly J Chandler

    Full Text Available The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7 and cytotoxicity (DRAQ5™/Sapphire700™ were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC₅₀ values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500 revealed significant associations for a subset of chemicals (26 that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.

  1. Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Inoue, Hirofumi; Takahashi, Nobuyuki; Katsumata-Tsuboi, Rie; Uehara, Mariko

    2017-01-01

    Sulforaphane (SFN), a kind of isothiocyanate, is derived from broccoli sprouts. It has anti-tumor, anti-inflammatory, and anti-oxidation activity. The molecular function of SFN in the inhibition of osteoclast differentiation is not well-documented. In this study, we assessed the effect of SFN on osteoclast differentiation in vitro. SFN inhibited osteoclast differentiation in both bone marrow cells and RAW264.7 cells. Key molecules involved in the inhibitory effects of SFN on osteoclast differentiation were determined using a microarray analysis, which showed that SFN inhibits osteoclast-associated genes, such as osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells cytoplasmic-1, tartrate-resistant acid phosphatase, and cathepsin K. Moreover, the mRNA expression levels of the cell-cell fusion molecules dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP) were strongly suppressed in cells treated with SFN. Furthermore, SFN increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1), a regulator of macrophage and osteoclast cell fusion. Thus, our data suggested that SFN significantly inhibits the cell-cell fusion molecules DC-STAMP and OC-STAMP by inducing the phosphorylation of STAT1 (Tyr701), which might be regulated by interactions with OSCAR. - Highlights: • Sulforaphane inhibited osteoclast differentiation and osteoclast cell-fusion. • Sulforaphane suppressed not only NFATc1, but also cell-cell fusion molecules, DC-STAMP and OC-STAMP. • Sulforaphane decreased multinucleated osteoclasts, whereas increased mono-nucleated osteoclasts. • Sulforaphane inhibits the cell-cell fusion by inducing the phosphorylation of STAT1 (Tyr701).

  2. Mitochondria in aging cell differentiation

    Czech Academy of Sciences Publication Activity Database

    Palková, Zdena; Váchová, Libuše

    2016-01-01

    Roč. 8, č. 7 (2016), s. 1287-1288 ISSN 1945-4589 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : mitochondria * cell differentiation * retrograde signaling Subject RIV: EE - Microbiology, Virology Impact factor: 4.867, year: 2016

  3. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage.

    Science.gov (United States)

    Fuller, Margaret T

    2016-01-01

    I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation. © 2016 Elsevier Inc. All rights reserved.

  4. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan

    2011-01-01

    in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...... at similar concentrations to the passive adsorption process, as measured by enzyme-linked immunosorbent assays, and the bound IL-4 did not leak into solution to any measurable extent during cell culture. However, covalently bound IL-4 was incapable of inducing monocyte differentiation. This may be caused...

  5. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Hu, Huimin; Qiu, Weimin

    2018-01-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined...... the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) or treating the cells by Phalloidin reduced adipocyte...

  6. Thrombopoietin inhibits murine mast cell differentiation

    Science.gov (United States)

    Martelli, Fabrizio; Ghinassi, Barbara; Lorenzini, Rodolfo; Vannucchi, Alessandro M; Rana, Rosa Alba; Nishikawa, Mitsuo; Partamian, Sandra; Migliaccio, Giovanni; Migliaccio, Anna Rita

    2009-01-01

    We have recently shown that Mpl, the thrombopoietin receptor, is expressed on murine mast cells and on their precursors and that targeted deletion of the Mpl gene increases mast cell differentiation in mice. Here we report that treatment of mice with thrombopoietin, or addition of this growth factor to bone marrow-derived mast cell cultures, severely hampers the generation of mature cells from their precursors by inducing apoptosis. Analysis of the expression profiling of mast cells obtained in the presence of thrombopoietin suggests that thrombopoietin induces apoptosis of mast cells by reducing expression of the transcription factor Mitf and its target anti-apoptotic gene Bcl2. PMID:18276801

  7. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  8. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells.

    Science.gov (United States)

    Kaitsuka, Taku; Tomizawa, Kazuhito

    2015-11-06

    Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.

  9. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Taku Kaitsuka

    2015-11-01

    Full Text Available Protein transduction using cell-penetrating peptides (CPPs is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.

  10. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Can Chen

    2018-01-01

    Full Text Available Stem cell transplantation is one of most valuable methods in the treatment of myocardial infarction, and adipose-derived stem cells (ASCs are becoming a hot topic in medical research. Previous studies have shown that ASCs can be differentiated into cardiomyocyte-like cells, but the efficiency and survival rates are low. We investigated the role and mechanism of microRNA-1 (miR-1 in the differentiation of ASCs into cardiomyocyte-like cells. ASCs and cardiomyocytes were isolated from neonatal rats. We constructed lentivirus for overexpressing miR-1 and used DAPT, an antagonist of the Notch1 pathway, for in vitro analyses. We performed cocultures with ASCs and cardiomyocytes. The differentiation efficiency of ASCs was detected by cell-specific surface antigens. Our results showed that miR-1 can promote the expression of Notch1 and reduce the expression of Hes1, a Notch pathway factor, and overexpression of miR-1 can promote the differentiation of ASCs into cardiomyocyte-like cells, which may occur by regulating Notch1 and Hes1.

  11. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  12. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xinxin Han

    2017-01-01

    Full Text Available Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

  13. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation.

    Science.gov (United States)

    Xiong, Z; Zhao, S; Mao, X; Lu, X; He, G; Yang, G; Chen, M; Ishaq, M; Ostrikov, K

    2014-03-01

    An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~150 ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. Published by Elsevier B.V.

  14. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation

    Directory of Open Access Journals (Sweden)

    Z. Xiong

    2014-03-01

    Full Text Available An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS, but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs are shown to effectively direct in vitro differentiation of neural stem cells (NSCs predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~150 ns micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons and O4 (for oligodendrocytes, while the expression of GFAP (for astrocytes remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives.

  15. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reconstructing human pancreatic differentiation by mapping specific cell populations during development

    DEFF Research Database (Denmark)

    Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire

    2017-01-01

    . Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic......Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate...... cell types and how such lineage decisions are regulated....

  17. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  18. Collagen Type I Improves the Differentiation of Human Embryonic Stem Cells towards Definitive Endoderm

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Petersen, Dorthe Roenn; Møller, Jonas Bech

    2015-01-01

    Human embryonic stem cells have the ability to generate all cell types in the body and can potentially provide an unlimited source of cells for cell replacement therapy to treat degenerative diseases such as diabetes. Current differentiation protocols of human embryonic stem cells towards insulin...... and consistent differentiation of stem cells to definitive endoderm. The results shed light on the importance of extracellular matrix proteins for differentiation and also points to a cost effective and easy method to improve differentiation....... embryonic stem cells to the definitive endoderm lineage. The percentage of definitive endoderm cells after differentiation on collagen I and fibronectin was >85% and 65%, respectively. The cells on collagen I substrates displayed different morphology and gene expression during differentiation as assessed...

  19. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice

    Directory of Open Access Journals (Sweden)

    Charlton HM

    2003-02-01

    Full Text Available Abstract During mammalian testis development distinct generations of fetal and adult Leydig cells arise. Luteinising hormone (LH is required for normal adult Leydig cell function and for the establishment of normal adult Leydig cell number but its role in the process of adult Leydig cell differentiation has remained uncertain. In this study we have examined adult Leydig cell differentiation in gonadotrophin-releasing hormone (GnRH-null mice which are deficient in circulating gonadotrophins. Adult Leydig cell differentiation was assessed by measuring expression of mRNA species encoding four specific markers of adult Leydig cell differentiation in the mouse. Each of these markers (3β-hydroxysteroid dehydrogenase type VI (3βHSD VI, 17β-hydroxysteroid dehydrogenase type III (17βHSD III, prostaglandin D (PGD-synthetase and oestrogen sulphotransferase (EST is expressed only in the adult Leydig cell lineage in the normal adult animal. Real-time PCR studies showed that all four markers are expressed in adult GnRH-null mice. Localisation of 3βHSD VI and PGD-synthetase expression by in situ hybridisation confirmed that these genes are expressed in the interstitial tissue of the GnRH-null mouse. Treatment of animals with human chorionic gonadotrophin increased expression of 3βHSD VI and 17βHSD III within 12 hours further indicating that differentiated, but unstimulated cells already exist in the GnRH-null mouse. Thus, while previous studies have shown that LH is required for adult Leydig cell proliferation and activity, results from the present study show that adult Leydig cell differentiation will take place in animals deficient in LH.

  20. Cell kinetics of differentiation of Na+-dependent hexose transport in a cultured renal epithelial cell line

    International Nuclear Information System (INIS)

    Cook, J.S.; Weiss, E.R.

    1985-01-01

    Fully differentiated cells of the renal proximal tubule have the capability of taking up hexoses across their apical borders by transport coupled to the Na + -electrochemical gradient. This property is also found in postconfluent cultures of the cloned cell line LLC-PK 1 , a morphologically polarized line of renal cells. Postconfluent cells develop the Na + -dependent capacity to transport hexoses at their apical surface. This function is not observable during the growth phase of the cultures. To analyze the developmental process at the cellular level a method has been derived to separate transporting cells, expressing the differentiated function, from nontransporting cells. The method is based on the swelling of the cells accompanying the uptake of the nonmetabolizable glucose analog alpha methylglucoside. The swollen cells have a lower buoyant density than the undifferentiated cells and may be separated from them on density gradients. Analysis of the distribution of cells on such gradients shows that after the cells reach confluence the undifferentiated subpopulation is recruited onto the differentiation pathway with a rate constant of 0.2 per day, that 5 to 7 days are required for a cell to traverse this pathway to the fully differentiated state, and that once the maximum uptake capacity is achieved the cells do not develop further

  1. Mycobacterium tuberculosis directs T helper 2 cell differentiation by inducing interleukin-1β production in dendritic cells.

    Science.gov (United States)

    Dwivedi, Ved Prakash; Bhattacharya, Debapriya; Chatterjee, Samit; Prasad, Durbaka Vijay Raghva; Chattopadhyay, Debprasad; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2012-09-28

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), resides and replicates within phagocytes and persists in susceptible hosts by modulating protective innate immune responses. Furthermore, M. tuberculosis promotes T helper 2 (Th2) immune responses by altering the balance of T cell polarizing cytokines in infected cells. However, cytokines that regulate Th2 cell differentiation during TB infection remain unknown. Here we show that IL-1β, produced by phagocytes infected by virulent M. tuberculosis strain H37Rv, directs Th2 cell differentiation. In sharp contrast, the vaccine strain bacille Calmette-Guérin as well as RD-1 and ESAT-6 mutants of H37Rv failed to induce IL-1β and promote Th2 cell differentiation. Furthermore, ESAT-6 induced IL-1β production in dendritic cells (DCs), and CD4(+) T cells co-cultured with infected DCs differentiated into Th2 cells. Taken together, our findings indicate that IL-1β induced by RD-1/ESAT-6 plays an important role in the differentiation of Th2 cells, which in turn facilitates progression of TB by inhibiting host protective Th1 responses.

  2. Phytohemagglutinin (PHA) stimulation of peripheral-blood lymphocytes and stem cell take

    Energy Technology Data Exchange (ETDEWEB)

    Astaldi, G. (Blood Research Foundation Center, Tortona, Italy); Karanovic, D.; Vettori, P.P.; Karanovic, J.; Piletic, O.

    1974-01-01

    The effect of PHA-stimulation of peripheral-blood lymphocytes on the spleen-colony formation in irradiated rats was examined. 25-day old Wistar rats underwent total-body irradiation (600 R), and they were used as recipients. On the other hand, 2 and /sup 1///sub 2/ month old untreated Wistar rats were used as donors of peripheral-blood lymphocytes, which were obtained by sedimentation with Dextraven from defibrinated blood. Four rat lots were used. The 1st one did not receive irradiation, and was kept as ''blank control.'' The 2nd one was just irradiated and kept as ''radiated control.'' The 3rd and the 4th rat lots of the series were irradiated, but the former lot was injected i.v. with 5 x 10/sup 7/ peripheral-blood untreated lymphocytes, whereas the fourth lot was injected i.v. with the same amount of lymphocytes, which were previously incubated in vitro for 24 hrs with PHA-M (Difco). The results showed that the PHA-incubation of transplanted peripheral-blood lymphocytes significantly increases the number and size of the macroscopic spleen colonies, in relationship to the colonies which occurs after transplantation of untreated lymphocytes. Histo-cytological observation clearly showed that the colonies formed after injection of mitogen-pretreated peripheral-blood lymphocytes were predominantly of erythroid type and, then, of non-differentiated cells. Only a few of them were of a mixed type, consisting of both undifferentiated cells and erythroid cells.

  3. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive

  4. Erythropoiesis in the aged mouse. II. Response to stimulation in vitro

    International Nuclear Information System (INIS)

    Udupa, K.B.; Lipschitz, D.A.

    1984-01-01

    In this study, in vitro evidence is presented that erythropoietic precursors in aged mice respond less to stimulation by erythropoietin than do precursors in young mice. The effect of age on proliferation of differentiated erythroid cells from the marrow of young and old mice was examined in liquid culture to which increasing concentrations of erythropoietin were added. Cellular proliferation was measured indirectly by 59 Fe incorporation into heme and directly as tritiated thymidine incorporation into DNA. The number of normoblasts remaining in culture with and without the addition of erythropoietin was also measured. In each case, cellular proliferation was significantly lower in marrow in old than in young mice. In contrast, CFU-E colonies cultured with increasing doses of erythropoietin were similar in young and old animals. These findings indicate that aging causes a reduction in the proliferative response of differentiated erythroid cells. Failure of these cells to respond to stimulation is the likely mechanism for the reduced erythropoietic proliferative capacity found in aged animals

  5. Regulation of TFIIIB during F9 cell differentiation.

    Science.gov (United States)

    Athineos, Dimitris; Marshall, Lynne; White, Robert J

    2010-03-12

    Differentiation of F9 embryonal carcinoma (EC) cells into parietal endoderm (PE) provides a tractable model system for studying molecular events during early and inaccessible stages of murine development. PE formation is accompanied by extensive changes in gene expression both in vivo and in culture. One of the most dramatic is the ~10-fold decrease in transcriptional output by RNA polymerase (pol) III. This has been attributed to changes in activity of TFIIIB, a factor that is necessary and sufficient to recruit pol III to promoters. The goal of this study was to identify molecular changes that can account for the low activity of TFIIIB following F9 cell differentiation. Three essential subunits of TFIIIB decrease in abundance as F9 cells differentiate; these are Brf1 and Bdp1, which are pol III-specific, and TBP, which is also used by pols I and II. The decreased levels of Brf1 and Bdp1 proteins can be explained by reduced expression of the corresponding mRNAs. However, this is not the case for TBP, which is regulated post-transcriptionally. In proliferating cells, pol III transcription is stimulated by the proto-oncogene product c-Myc and the mitogen-activated protein kinase Erk, both of which bind to TFIIIB. However, c-Myc levels fall during differentiation and Erk becomes inactive through dephosphorylation. The diminished abundance of TFIIIB is therefore likely to be compounded by changes to these positive regulators that are required for its full activity. In addition, PE cells have elevated levels of the retinoblastoma protein RB, which is known to bind and repress TFIIIB. The low activity of TFIIIB in PE can be attributed to a combination of changes, any one of which could be sufficient to inhibit pol III transcription. Declining levels of essential TFIIIB subunits and of activators that are required for maximal TFIIIB activity are accompanied by an increase in a potent repressor of TFIIIB. These events provide fail-safe guarantees to ensure that pol III

  6. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  7. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.

    Science.gov (United States)

    Hinnant, Taylor D; Alvarez, Arturo A; Ables, Elizabeth T

    2017-09-01

    Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken

  8. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  10. Poorly Differentiated Squamous Cell Carcinoma Arising in Tattooed Skin

    Science.gov (United States)

    Sarma, Deba P.; Dentlinger, Renee B.; Forystek, Amanda M.; Stevens, Todd; Huerter, Christopher

    2010-01-01

    Introduction. Tattoos have increasingly become accepted by mainstream Western society. As a result, the incidence of tattoo-associated dermatoses is on the rise. The presence of a poorly differentiated squamous cell carcinoma in an old tattooed skin is of interest as it has not been previously documented. Case Presentation. A 79-year-old white homeless man of European descent presented to the dermatology clinic with a painless raised nodule on his left forearm arising in a tattooed area. A biopsy of the lesion revealed a poorly differentiated squamous cell carcinoma infiltrating into a tattoo. The lesion was completely excised and the patient remains disease-free one year later. Conclusion. All previous reports of squamous cell carcinomas arising in tattoos have been well-differentiated low-grade type or keratoacanthoma-type and are considered to be coincidental rather than related to any carcinogenic effect of the tattoo pigments. Tattoo-associated poorly differentiated invasive carcinoma appears to be extremely rare. PMID:21274289

  11. Poorly Differentiated Squamous Cell Carcinoma Arising in Tattooed Skin

    Directory of Open Access Journals (Sweden)

    Deba P. Sarma

    2010-01-01

    Full Text Available Introduction. Tattoos have increasingly become accepted by mainstream Western society. As a result, the incidence of tattoo-associated dermatoses is on the rise. The presence of a poorly differentiated squamous cell carcinoma in an old tattooed skin is of interest as it has not been previously documented. Case Presentation. A 79-year-old white homeless man of European descent presented to the dermatology clinic with a painless raised nodule on his left forearm arising in a tattooed area. A biopsy of the lesion revealed a poorly differentiated squamous cell carcinoma infiltrating into a tattoo. The lesion was completely excised and the patient remains disease-free one year later. Conclusion. All previous reports of squamous cell carcinomas arising in tattoos have been well-differentiated low-grade type or keratoacanthoma-type and are considered to be coincidental rather than related to any carcinogenic effect of the tattoo pigments. Tattoo-associated poorly differentiated invasive carcinoma appears to be extremely rare.

  12. Effect of citrus flavonoids on HL-60 cell differentiation.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-01-01

    Twenty-seven Citrus flavonoids were examined for their activity of induction of terminal differentiation of human promyelocytic leukemia cells (HL-60) by nitro blue tetrazolium (NBT) reducing, nonspecific esterase, specific esterase, and phagocytic activities. 10 flavonoids were judged to be active (percentage of NBT reducing cells was more than 40% at a concentration of 40 microM), and the rank order of potency was natsudaidain, luteolin, tangeretin, quercetin, apigenin, 3, 3, '4, '5, 6, 7, 8-heptamethoxyflavone, nobiletin, acacetin, eriodictyol, and taxifolin. These flavonoids exerted their activity in a dose-dependent manner. HL-60 cells treated with these flavonoids differentiated into mature monocyte/macrophage. The structure-activity relationship established from comparison between flavones and flavanones revealed that ortho-catechol moiety in ring B and C2-C3 double bond had an important role for induction of differentiation of HL-60. In polymethoxylated flavones, hydroxyl group at C3 and methoxyl group at C8 enhanced the differentiation-inducing activity.

  13. Acridones as inducers of HL-60 cell differentiation.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H

    1999-03-01

    Fifteen acridone alkaloids were examined for their activity of induction of human promyelocytic leukemia cell (HL-60) differentiation. HL-60 cells were differentiated into mature monocyte/macrophage by atalaphyllidine (9), atalaphyllinine (12), and des-N-methylnoracronycine (13). The activities of NBT reduction, nonspecific esterase, and phagocytosis, were induced by 2.5 microM of 9, 12, and 13. After a 4-day treatment, 9, 12, and 13 at 10 microM inhibited clonal proliferation of HL-60 cells by 28, 96, and 63%, respectively. The structure-activity relationship established from the results revealed that hydroxyl group at C-1 and prenyl group at C-2 had an important role.

  14. Somatic mutation and cell differentiation in neoplastic transformation

    International Nuclear Information System (INIS)

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs

  15. Generation of megakaryocytic progenitors from human embryonic stem cells in a feeder- and serum-free medium.

    Directory of Open Access Journals (Sweden)

    Marjorie Pick

    Full Text Available BACKGROUND: The production of human platelets from embryonic stem cells in a defined culture system is a prerequisite for the generation of platelets for therapeutic use. As an important step towards this goal, we report the differentiation of human embryonic stem cells (hESCs towards the megakaryocyte (Mk lineage using a 'spin embryoid body' method in serum-free differentiation medium. METHODOLOGY AND PRINCIPAL FINDINGS: Immunophenotypic analyses of differentiating hESC identified a subpopulation of cells expressing high levels of CD41a that expressed other markers associated with the Mk lineage, including CD110, CD42b and CD61. Differentiated cells were sorted on the basis of their expression of CD41a, CD34 and CD45 and assessed for Mk colony formation, expression of myeloid and Mk genes and ability to endoreplicate DNA. In a collagen-based colony assay, the CD41a⁺ cells sorted from these differentiation cultures produced 100-800 Mk progenitors at day 13 and 25-160 Mk progenitors at day 20 of differentiation per 100,000 cells assayed. Differentiated Mk cells produced platelet-like particles which expressed CD42b and were activated by ADP, similar to platelets generated from precursors in cord blood. These studies were complemented by real time PCR analyses showing that subsets of cells enriched for CD41a⁺ Mk precursors expressed high levels of Mk associated genes such as PF4 and MPL. Conversely, high levels of myeloid and erythroid related transcripts, such as GATA1, TAL1/SCL and PU.1, were detected in sorted fractions containing CD34⁺ and CD45⁺ cells. CONCLUSIONS: We describe a serum- and feeder-free culture system that enabled the generation of Mk progenitors from human embryonic stem cells. These cells formed colonies that included differentiated Mks that fragmented to form platelet-like particles. This protocol represents an important step towards the generation of human platelets for therapeutic use.

  16. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  17. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions

    Directory of Open Access Journals (Sweden)

    Wolfgang H Cerwinka

    2012-01-01

    Full Text Available To develop and characterize a novel cell culture method for the generation of undifferentiated and differentiated human mesenchymal stem cell 3D structures, we utilized the RWV system with a gelatin-based scaffold. 3 × 106 cells generated homogeneous spheroids and maximum spheroid loading was accomplished after 3 days of culture. Spheroids cultured in undifferentiated spheroids of 3 and 10 days retained expression of CD44, without expression of differentiation markers. Spheroids cultured in adipogenic and osteogenic differentiation media exhibited oil red O staining and von Kossa staining, respectively. Further characterization of osteogenic lineage, showed that 10 day spheroids exhibited stronger calcification than any other experimental group corresponding with significant expression of vitamin D receptor, alkaline phosphatase, and ERp60 . In conclusion this study describes a novel RWV culture method that allowed efficacious engineering of undifferentiated human mesenchymal stem cell spheroids and rapid osteogenic differentiation. The use of gelatin scaffolds holds promise to design implantable stem cell tissue of various sizes and shapes for future regenerative treatment.

  18. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation.

    Science.gov (United States)

    Paldi, Andras

    2018-01-01

    The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

  19. Pathways in pluripotency and differentiation of embryonic cells

    NARCIS (Netherlands)

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew

  20. Resveratrol Ameliorates the Maturation Process of β-Cell-Like Cells Obtained from an Optimized Differentiation Protocol of Human Embryonic Stem Cells

    Science.gov (United States)

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  1. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  2. Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells.

    Science.gov (United States)

    Lee, Jung Seung; Yang, Kisuk; Cho, Ann-Na; Cho, Seung-Woo

    2018-01-01

    Biomaterials that promote the self-renewal ability and differentiation capacity of neural stem cells (NSCs) are desirable for improving stem cell therapy to treat neurodegenerative diseases. Incorporation of micro- and nanoparticles into stem cell culture has gained great attention for the control of stem cell behaviors, including proliferation and differentiation. In this study, ferritin, an iron-containing natural protein nanoparticle, was applied as a biomaterial to improve the self-renewal and differentiation of NSCs and neural progenitor cells (NPCs). Ferritin nanoparticles were added to NSC or NPC culture during cell growth, allowing for incorporation of ferritin nanoparticles during neurosphere formation. Compared to neurospheres without ferritin treatment, neurospheres with ferritin nanoparticles showed significantly promoted self-renewal and cell-cell interactions. When spontaneous differentiation of neurospheres was induced during culture without mitogenic factors, neuronal differentiation was enhanced in the ferritin-treated neurospheres. In conclusion, we found that natural nanoparticles can be used to improve the self-renewal ability and differentiation potential of NSCs and NPCs, which can be applied in neural tissue engineering and cell therapy for neurodegenerative diseases.

  3. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    Science.gov (United States)

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  4. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Directory of Open Access Journals (Sweden)

    Teruko Taketo

    2015-06-01

    Full Text Available The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  5. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070 (China); Wang, Jian-Tao, E-mail: wangjiantao65@hotmail.com [Eye Center, Tianjin Medical University, 64 Tongan Road, Tianjin 300070 (China); Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033 (United States)

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  6. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  7. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Ren Hongying; Cao Ying; Zhao, Qinjun; Li Jing; Zhou Cixiang; Liao Lianming; Jia Mingyue; Zhao Qian; Cai Huiguo; Han Zhongchao; Yang Renchi; Chen Guoqiang; Zhao, R.C.

    2006-01-01

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O 2 , bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G 2 /S/M phase cells increased evidently under 8% O 2 condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O 2 condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl 2 ) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation

  8. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    Science.gov (United States)

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  9. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Proteomic analysis of osteogenic differentiation of dental follicle precursor cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Petersen, Jørgen; Völlner, Florian

    2009-01-01

    of differentiation. In the present study we applied 2-DE combined with capillary-LC-MS/MS analysis to profile differentially regulated proteins upon differentiation of dental follicle precursor cells (DFPCs). Out of 115 differentially regulated proteins, glutamine synthetase, lysosomal proteinase cathepsin B....... The bioinformatic analyses suggest that proteins associated with cell cycle progression and protein metabolism were down-regulated and proteins involved in catabolism, cell motility and biological quality were up-regulated. These results display the general physiological state of DFPCs before and after osteogenic...... proteins, plastin 3 T-isoform, beta-actin, superoxide dismutases, and transgelin were found to be highly up-regulated, whereas cofilin-1, pro-alpha 1 collagen, destrin, prolyl 4-hydrolase and dihydrolipoamide dehydrogenase were found to be highly down-regulated. The group of up-regulated proteins...

  11. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    Science.gov (United States)

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  12. Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration.

    Science.gov (United States)

    Maier, Oliver; Böhm, Julia; Dahm, Michael; Brück, Stefan; Beyer, Cordian; Johann, Sonja

    2013-06-01

    Alpha-motoneurons appear to be exceedingly affected in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Morphological and physiological degeneration of this neuronal phenotype is typically characterized by a marked decrease of neuronal markers and by alterations of cholinergic metabolism such as reduced choline acetyltransferase (ChAT) expression. The motoneuron-like cell line NSC-34 is a hybrid cell line produced by fusion of neuroblastoma with mouse motoneuron-enriched primary spinal cord cells. In order to further establish this cell line as a valid model system to investigate cholinergic neurodegeneration, NSC-34 cells were differentiated by serum deprivation and additional treatment with all-trans retinoic acid (atRA). Cell maturation was characterized by neurite outgrowth and increased expression of neuronal and cholinergic markers, including MAP2, GAP-43 and ChAT. Subsequently, we used differentiated NSC-34 cells to study early degenerative responses following exposure to various neurotoxins (H2O2, TNF-α, and glutamate). Susceptibility to toxin-induced cell death was determined by means of morphological changes, expression of neuronal marker proteins, and the ratio of pro-(Bax) to anti-(Bcl-2) apoptotic proteins. NSC-34 cells respond to low doses of neurotoxins with increased cell death of remaining undifferentiated cells with no obvious adverse effects on differentiated cells. Thus, the different vulnerability of differentiated and undifferentiated NSC-34 cells to neurotoxins is a key characteristic of NSC-34 cells and has to be considered in neurotoxic studies. Nonetheless, application of atRA induced differentiation of NSC-34 cells and provides a suitable model to investigate molecular events linked to neurodegeneration of differentiated neurons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke

    2013-01-01

    by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion......Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... of the ER does not affect global protein redox status until an extensive production of cargo proteins has started....

  14. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  15. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-04-01

    Full Text Available Differentiation of human pluripotent stem cells towards definitive endoderm (DE is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Keywords: hPSC, Differentiation, Definitive endoderm, Heterogeneity, Single cell, RNA sequencing

  16. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells.

    Science.gov (United States)

    Barretto, Letícia Siqueira de Sá; Lessio, Camila; Sawaki e Nakamura, Ahy Natally; Lo Turco, Edson Guimarães; da Silva, Camila Gonzaga; Zambon, João Paulo; Gozzo, Fábio César; Pilau, Eduardo Jorge; de Almeida, Fernando Gonçalves

    2014-10-01

    Human adipose tissue has been described as a potential alternative reservoir for stem cells. Although studies have been performed in rabbits using autologous adipose-derived stem cells (ADSC), these cells have not been well characterized. The primary objectives of this study were to demonstrate the presence of adipose-derived stem cells isolated from rabbit inguinal fat pads and to characterize them through osteogenic and adipogenic in vitro differentiation and lipid fingerprinting analysis. The secondary objective was to evaluate cell behavior through growth kinetics, cell viability, and DNA integrity. Rabbit ADSCs were isolated to determine the in vitro growth kinetics and cell viability. DNA integrity was assessed by an alkaline Comet assay in passages 0 and 5. The osteogenic differentiation was evaluated by Von Kossa, and Alizarin Red S staining and adipogenic differentiation were assessed by Oil Red O staining. Lipid fingerprinting analyses of control, adipogenic, and osteogenic differentiated cells were performed by MALDI-TOF/MS. We demonstrate that rabbit ADSC have a constant growth rate at the early passages, with increased DNA fragmentation at or after passage 5. Rabbit ADSC viability was similar in passages 2 and 5 (90.7% and 86.6%, respectively), but there was a tendency to decreased cellular growth rate after passage 3. The ADSC were characterized by the expression of surface markers such as CD29 (67.4%) and CD44 (89.4%), using CD 45 (0.77%) as a negative control. ADSC from rabbits were successfully isolated form the inguinal region. These cells were capable to differentiate into osteogenic and adipogenic tissue when they were placed in inductive media. After each passage, there was a trend towards decreased cell growth. On the other hand, DNA fragmentation increased at each passage. ADSC had a different lipid profile when placed in control, adipogenic, or osteogenic media.

  17. FGF7 and cell density are required for final differentiation of pancreatic amylase-positive cells from human ES cells.

    Science.gov (United States)

    Takizawa-Shirasawa, Sakiko; Yoshie, Susumu; Yue, Fengming; Mogi, Akimi; Yokoyama, Tadayuki; Tomotsune, Daihachiro; Sasaki, Katsunori

    2013-12-01

    The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.

  18. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells

    DEFF Research Database (Denmark)

    Weilner, Sylvia; Schraml, Elisabeth; Wieser, Matthias

    2016-01-01

    Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration....... However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells....... As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation...

  19. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Hu, Huimin; Qiu, Weimin

    2018-01-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined...... differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte...... differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating h...

  20. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  1. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    Science.gov (United States)

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  2. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    Science.gov (United States)

    Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu

    2018-04-02

    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

  3. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation.

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-05-01

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8 + T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8 + T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8 + T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8 + T cell differentiation.

  4. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    Science.gov (United States)

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can

  5. EZH2: a pivotal regulator in controlling cell differentiation.

    Science.gov (United States)

    Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan

    2012-01-01

    Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.

  6. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells.

    Directory of Open Access Journals (Sweden)

    Opas Traitanon

    Full Text Available The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC and mTOR inhibitor (Sirolimus, SRL on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monitored by flow cytometry. SRL at clinically relevant concentrations (6 ng/ml profoundly inhibited CD19(+ B cell proliferation compared to controls whereas TAC at similar concentrations had a minimal effect. CD27(+ memory B cells were affected more by SRL than naïve CD27- B cells. SRL effectively blocked B cell differentiation into plasma cells (CD19(+CD138(+ and Blimp1(+/Pax5(low cells even at low dose (2 ng/ml, and totally eliminated them at 6 ng/ml. SRL decreased absolute B cell counts, but the residual responding cells acquired an activated phenotype (CD25(+/CD69(+ and increased the expression of HLA-DR. SRL-treated stimulated B cells on a per cell basis were able to enhance the proliferation of allogeneic CD4(+CD25(- T cells and induce a shift toward the Th1 phenotype. Thus, SRL and TAC have different effects on B lymphocytes. These data may provide insights into the clinical use of these two agents in recipients of solid organ transplants.

  7. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation

    Directory of Open Access Journals (Sweden)

    Hendrich Christian

    2005-03-01

    Full Text Available Abstract Background The human cysteine rich protein 61 (CYR61, CCN1 as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. Results Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry. RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARγ, aggrecan. Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. Conclusion The

  8. Directed Differentiation of Human Pluripotent Stem Cells to Microglia

    Directory of Open Access Journals (Sweden)

    Panagiotis Douvaras

    2017-06-01

    Full Text Available Microglia, the immune cells of the brain, are crucial to proper development and maintenance of the CNS, and their involvement in numerous neurological disorders is increasingly being recognized. To improve our understanding of human microglial biology, we devised a chemically defined protocol to generate human microglia from pluripotent stem cells. Myeloid progenitors expressing CD14/CX3CR1 were generated within 30 days of differentiation from both embryonic and induced pluripotent stem cells (iPSCs. Further differentiation of the progenitors resulted in ramified microglia with highly motile processes, expressing typical microglial markers. Analyses of gene expression and cytokine release showed close similarities between iPSC-derived (iPSC-MG and human primary microglia as well as clear distinctions from macrophages. iPSC-MG were able to phagocytose and responded to ADP by producing intracellular Ca2+ transients, whereas macrophages lacked such response. The differentiation protocol was highly reproducible across several pluripotent stem cell lines.

  9. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells

    International Nuclear Information System (INIS)

    Zhang Xiaohong; Soda, Yasushi; Takahashi, Kenji; Bai, Yuansong; Mitsuru, Ayako; Igura, Koichi; Satoh, Hitoshi; Yamaguchi, Satoru; Tani, Kenzaburo; Tojo, Arinobu; Takahashi, Tsuneo A.

    2006-01-01

    We reported previously that mesenchymal progenitor cells derived from chorionic villi of the human placenta could differentiate into osteoblasts, adipocytes, and chondrocytes under proper induction conditions and that these cells should be useful for allogeneic regenerative medicine, including cartilage tissue engineering. However, similar to human mesenchymal stem cells (hMSCs), though these placental cells can be isolated easily, they are difficult to study in detail because of their limited life span in vitro. To overcome this problem, we attempted to prolong the life span of human placenta-derived mesenchymal cells (hPDMCs) by modifying hTERT and Bmi-1, and investigated whether these modified hPDMCs retained their differentiation capability and multipotency. Our results indicated that the combination of hTERT and Bmi-1 was highly efficient in prolonging the life span of hPDMCs with differentiation capability to osteogenic, adipogenic, and chondrogenic cells in vitro. Clonal cell lines with directional differentiation ability were established from the immortalized parental hPDMC/hTERT + Bmi-1. Interestingly, hPDMC/Bmi-1 showed extended proliferation after long-term growth arrest and telomerase was activated in the immortal hPDMC/Bmi-1 cells. However, the differentiation potential was lost in these cells. This study reports a method to extend the life span of hPDMCs with hTERT and Bmi-1 that should become a useful tool for the study of mesenchymal stem cells

  10. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    Science.gov (United States)

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  11. Hematopoietic defects in response to reduced Arhgap21

    Directory of Open Access Journals (Sweden)

    Juliana Xavier-Ferrucio

    2018-01-01

    Full Text Available Arhgap21 is a member of the Rho GTPase activating protein (RhoGAP family, which function as negative regulators of Rho GTPases. Arhgap21 has been implicated in adhesion and migration of cancer cells. However, the role of Arhgap21 has never been investigated in hematopoietic cells. Herein, we evaluated functional aspects of hematopoietic stem and progenitor cells (HSPC using a haploinsufficient (Arhgap21+/− mouse. Our results show that Arhgap21+/− mice have an increased frequency of phenotypic HSC, impaired ability to form progenitor colonies in vitro and decreased hematopoietic engraftment in vivo, along with a decrease in LSK cell frequency during serial bone marrow transplantation. Arhgap21+/− hematopoietic progenitor cells have impaired adhesion and enhanced mobilization of immature LSK and myeloid progenitors. Arhgap21+/− mice also exhibit reduced erythroid commitment and differentiation, which was recapitulated in human primary cells, in which knockdown of ARHGAP21 in CMP and MEP resulted in decreased erythroid commitment. Finally, we observed enhanced RhoC activity in the bone marrow cells of Arhgap21+/− mice, indicating that Arhgap21 functions in hematopoiesis may be at least partially mediated by RhoC inactivation. Keywords: Arhgap21, Hematopoiesis, Erythroid cells, Hematopoietic stem and progenitor cells, Fate decision

  12. Functions of Heterogeneous Nuclear Ribonucleoproteins in Stem Cell Potency and Differentiation

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.

  13. Identification of p63+ keratinocyte progenitor cells in circulation and their matrix-directed differentiation to epithelial cells.

    Science.gov (United States)

    Nair, Renjith P; Krishnan, Lissy K

    2013-04-11

    In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. We demonstrated that KPCs are p63(+) and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63(+) KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a

  14. Kynurenine promotes the goblet cell differentiation of HT-29 colon carcinoma cells by modulating Wnt, Notch and AhR signals.

    Science.gov (United States)

    Park, Joo-Hung; Lee, Jeong-Min; Lee, Eun-Jin; Kim, Da-Jeong; Hwang, Won-Bhin

    2018-04-01

    Various amino acids regulate cell growth and differentiation. In the present study, we examined the ability of HT-29 cells to differentiate into goblet cells in RPMI and DMEM which are largely different in the amounts of numerous amino acids. Most of the HT-29 cells differentiated into goblet cells downregulating the stem cell marker Lgr5 when cultured in DMEM, but remained undifferentiated in RPMI. The goblet cell differentiation in DMEM was inhibited by 1-methyl-tryptophan (1-MT), an inhibitor of indoleamine 2,3 dioxygenase-1 which is the initial enzyme in tryptophan metabolism along the kynurenine (KN) pathway, whereas tryptophan and KN induced goblet cell differentiation in RPMI. The levels of Notch1 and its activation product Notch intracytoplasmic domain in HT-29 cells were lower in DMEM than those in RPMI and were increased by 1-MT in both media. HT-29 cells grown in both media expressed β-catenin at the same level on day 2 when goblet cell differentiation was not observed. β-catenin expression, which was increased by 1-MT in both media, was decreased by KN. DMEM reduced Hes1 expression while enhancing Hath1 expression. Finally, aryl hydrocarbon receptor (AhR) activation moderately induced goblet cell differentiation. Our results suggest that KN promotes goblet cell differentiation by regulating Wnt, Notch, and AhR signals and expression of Hes1 and Hath1.

  15. Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells

    International Nuclear Information System (INIS)

    Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschlaeger, Markus

    2006-01-01

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status

  16. New insights into redox regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Ren, Fenglian; Wang, Kui; Zhang, Tao; Jiang, Jingwen; Nice, Edouard Collins; Huang, Canhua

    2015-08-01

    Reactive oxygen species (ROS), the natural byproducts of aerobic metabolism, are precisely orchestrated to evoke diverse signaling pathways. To date, studies have focused mainly on the detrimental effects of ROS in stem cells. Recently, accumulating evidence has suggested that ROS also function as second messengers that modulate stem cell self-renewal and differentiation by regulating intricate signaling networks. Although many efforts have been made to clarify the general effects of ROS on signal transduction in stem cells, less is known about the initial and direct executors of ROS signaling, which are known as 'redox sensors'. Modifications of cysteine residues in redox sensors are of significant importance in the modulation of protein function in response to different redox conditions. Intriguingly, most key molecules in ROS signaling and cell cycle regulation (including transcriptional factors and kinases) that are crucial in the regulation of stem cell self-renewal and differentiation have the potential to be redox sensors. We highlight herein the importance of redox regulation of these key regulators in stem cell self-renewal and differentiation. Understanding the mechanisms of redox regulation in stem cell self-renewal and differentiation will open exciting new perspectives for stem cell biology. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-09-01

    Full Text Available Identifying molecular mechanisms that regulate insulin expression in bone marrow-derived mesenchymal stem cells (bmMSCs can provide clues on how to stimulate the differentiation of bmMSCs into insulin-producing cells (IPCs, which can be used as a therapeutic approach against type 1 diabetes (T1D. As repression factors may inhibit differentiation, the efficiency of this process is insufficient for cell transplantation. In this study, we used the mouse insulin 2 (Ins2 promoter sequence and performed a DNA affinity precipitation assay combined with liquid chromatography-mass spectrometry to identify the transcription factor, chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI. Functionally, bmMSCs were reprogrammed into IPCs via COUP-TFI suppression and MafA overexpression. The differentiated cells expressed higher levels of genes specific for islet endocrine cells, and they released C-peptide and insulin in response to glucose stimulation. Transplantation of IPCs into streptozotocin-induced diabetic mice caused a reduction in hyperglycemia. Mechanistically, COUP-TFI bound to the DR1 (direct repeats with 1 spacer element in the Ins2 promoter, thereby negatively regulating promoter activity. Taken together, the data provide a novel mechanism by which COUP-TFI acts as a negative regulator in the Ins2 promoter. The differentiation of bmMSCs into IPCs could be improved by knockdown of COUP-TFI, which may provide a novel stem cell-based therapy for T1D. Keywords: siRNAs, differentiation, stem cell transplantation, diabetes, mesenchymal stem cells

  18. Noncoding RNA in the Transcriptional Landscape of Human Neural Progenitor Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Patrick eHecht

    2015-10-01

    Full Text Available Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8% and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer’s disease. Weighted gene co-expression network analysis (WGCNA was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7% to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders.

  19. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  20. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Gandhimathi, Chinnasamy [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Venugopal, Jayarama Reddy [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Tham, Allister Yingwei [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Kumar, Srinivasan Dinesh, E-mail: dineshkumar@ntu.edu.sg [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore)

    2015-04-01

    Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(L-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis. The results showed that the fiber diameter and pore size of scaffolds observed around 228 ± 62–320 ± 22 nm and 1.5–6.9 μm respectively. Resulting nanofibrous scaffolds are highly porous (87–94%) with ultimate tensile strength observed in the range of 1.51–4.86 MPa and also showed better hydrophilic properties after addition of AA, TC and n-HA. Human mesenchymal stem cells (MSCs) cultured on these bio-composite nanofibrous scaffolds and stimulated to osteogenic differentiation in the presence of AA/TC/n-HA for BTE. The cell proliferation and biomaterial interactions were studied using MTS assay, SEM and CMFDA dye exclusion methods. Osteogenic differentiation of MSCs was proven by using alkaline phosphatase activity, mineralization and double immunofluorescence staining of both CD90 and osteocalcin. The observed results suggested that the fabricated PLACL/SF/AA/TC/n-HA biocomposite hybrid nanofibrous scaffolds have good potential for the differentiation of MSCs into osteogenesis for bone tissue engineering. - Highlights: • We fabricated and characterized hybrid porous nanofibrous scaffolds. • PLACL/SF/AA/TC/n-HA scaffolds promote cell differentiation and mineralization. • Porous nanofibrous scaffolds initiate MSC differentiation into osteogenic cells. • Biomimetic nanofibrous scaffolds have good potential for bone tissue engineering.

  1. A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation.

    Science.gov (United States)

    Wang, Lan; Guan, Xin; Wang, Huihui; Shen, Bin; Zhang, Yu; Ren, Zhihua; Ma, Yupo; Ding, Xinxin; Jiang, Yongping

    2017-07-18

    Accumulated evidence supports the potent stimulating effects of multiple small molecules on the expansion of hematopoietic stem cells (HSCs) which are important for the therapy of various hematological disorders. Here, we report a novel, optimized formula, named the SC cocktail, which contains a combination of three such small molecules and four cytokines. Small-molecule candidates were individually screened and then combined at their optimal concentration with the presence of cytokines to achieve maximum capacity for stimulating the human CD34 + cell expansion ex vivo. The extent of cell expansion and the immunophenotype of expanded cells were assessed through flow cytometry. The functional preservation of HSC stemness was confirmed by additional cell and molecular assays in vitro. Subsequently, the expanded cells were transplanted into sublethally irradiated NOD/SCID mice for the assessment of human cell viability and engraftment potential in vivo. Furthermore, the expression of several genes in the cell proliferation and differentiation pathways was analyzed through quantitative polymerase chain reaction (qPCR) during the process of CD34 + cell expansion. The SC cocktail supported the retention of the immunophenotype of hematopoietic stem/progenitor cells remarkably well, by yielding purities of 86.6 ± 11.2% for CD34 + cells and 76.2 ± 10.5% for CD34 + CD38 - cells, respectively, for a 7-day culture. On day 7, the enhancement of expansion of CD34 + cells and CD34 + CD38 - cells reached a maxima of 28.0 ± 5.5-fold and 27.9 ± 4.3-fold, respectively. The SC cocktail-expanded CD34 + cells preserved the characteristics of HSCs by effectively inhibiting their differentiation in vitro and retained the multilineage differentiation potential in primary and secondary in vivo murine xenotransplantation trials. Further gene expression analysis suggested that the small-molecule combination strengthened the ability of the cytokines to enhance the Notch

  2. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  3. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.

    Science.gov (United States)

    Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat

    2016-01-01

    Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).

  4. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation.

    Science.gov (United States)

    Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio

    2017-02-10

    Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all isoforms of HK. Thus, it is unclear which isoform has a critical role in Th17 cell differentiation and in rheumatoid arthritis (RA) pathogenesis. Here we demonstrated that 3-bromopyruvate (BrPA), a specific HK2 inhibitor, significantly decreased the arthritis scores and the histological scores in SKG mice, with a significant increase in Treg cells, decrease in Th17 cells, and decrease in activated DCs in the spleen. In vitro, BrPA facilitated the differentiation of Treg cells, suppressed Th17 cells, and inhibited the activation of DCs. These results suggested that BrPA may be a therapeutic target of murine arthritis. Although the role of IL-17 is not clarified in the treatment of RA, targeting cell metabolism to alter the immune cell functions might lead to a new therapeutic strategy for RA.

  5. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.

    Science.gov (United States)

    Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro

    2017-07-01

    Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    Science.gov (United States)

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications. © 2013 Wiley Periodicals, Inc.

  7. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes.

    Science.gov (United States)

    Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong

    2008-09-01

    Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.

  8. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells.

    Science.gov (United States)

    Chen, Li; Hu, Huimin; Qiu, Weimin; Shi, Kaikai; Kassem, Moustapha

    2018-05-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hongying, Ren; Huiguo, Cai; Zhongchao, Han; Renchi, Yang; Zhao, Qinjun [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); Ying, Cao; Jing, Li [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Cixiang, Zhou [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Lianming, Liao; Mingyue, Jia [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Qian, Zhao [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Guoqiang, Chen [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Zhao, R C [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)]. E-mail: chunhuaz@public.tpt.tj.cn

    2006-08-18

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O{sub 2}, bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G{sub 2}/S/M phase cells increased evidently under 8% O{sub 2} condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O{sub 2} condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl{sub 2}) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.

  10. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    Science.gov (United States)

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  11. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions.

    Directory of Open Access Journals (Sweden)

    Masakatsu D Yanagimachi

    Full Text Available Monocytic lineage cells (monocytes, macrophages and dendritic cells play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3 × 10(6 ± 0.3 × 10(6 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5-6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery.

  12. Existence and stability of periodic solutions of an impulsive differential equation and application to CD8 T-cell differentiation.

    Science.gov (United States)

    Girel, Simon; Crauste, Fabien

    2018-06-01

    Unequal partitioning of the molecular content at cell division has been shown to be a source of heterogeneity in a cell population. We propose to model this phenomenon with the help of a scalar, nonlinear impulsive differential equation (IDE). To study the effect of molecular partitioning at cell division on the effector/memory cell-fate decision in a CD8 T-cell lineage, we study an IDE describing the concentration of the protein Tbet in a CD8 T-cell, where impulses are associated to cell division. We discuss how the degree of asymmetry of molecular partitioning can affect the process of cell differentiation and the phenotypical heterogeneity of a cell population. We show that a moderate degree of asymmetry is necessary and sufficient to observe irreversible differentiation. We consider, in a second part, a general autonomous IDE with fixed times of impulse and a specific form of impulse function. We establish properties of the solutions of that equation, most of them obtained under the hypothesis that impulses occur periodically. In particular, we show how to investigate the existence of periodic solutions and their stability by studying the flow of an autonomous differential equation. Then we apply those properties to prove the results presented in the first part.

  13. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  14. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    Science.gov (United States)

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging

    Directory of Open Access Journals (Sweden)

    Wang Ruoning

    2010-05-01

    Full Text Available Abstract Background Dental pulp stem cells (DPSCs can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. Results DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1, the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin, odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein, and chondrocyte-specific gene/protein (type II collagen was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9. Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. Conclusions These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.

  16. CD4+ T cell-derived novel peptide Thp5 induces interleukin-4 production in CD4+ T cells to direct T helper 2 cell differentiation.

    Science.gov (United States)

    Khan, Mohd Moin; Chatterjee, Samit; Dwivedi, Ved Prakash; Pandey, Nishant Kumar; Singh, Yogesh; Tousif, Sultan; Bhavesh, Neel Sarovar; Van Kaer, Luc; Das, Jyoti; Das, Gobardhan

    2012-01-20

    The differentiation of naïve CD4(+) T cells into T helper 2 (Th2) cells requires production of the cytokine IL-4 in the local microenvironment. It is evident that naïve/quiescently activated CD4(+) T cells produce the IL-4 that drives Th2 cell differentiation. Because early production of IL-4 in naïve T cells leads to preferential Th2 cell differentiation, this process needs to be tightly regulated so as to avoid catastrophic and misdirected Th2 cell differentiation. Here, we show that Thp5, a novel peptide with structural similarity to vasoactive intestinal peptide, regulates production of early IL-4 in newly activated CD4(+) T cells. Induction of IL-4 in CD4(+) T cells by Thp5 is independent of the transcription factor STAT6 but dependent on ERK1/2 signaling. Furthermore, cytokines (IL-12 and TGF-β) that promote the differentiation of Th1 or Th17 cells inhibit Thp5 induction, thus suppressing Th2 cell differentiation. We further showed that Thp5 enhances Th2 responses and exacerbates allergic airway inflammation in mice. Taken together, our findings reveal that early activated CD4(+) T cells produce Thp5, which plays a critical role as a molecular switch in the differentiation of Th cells, biasing the response toward the Th2 cell phenotype.

  17. Induction of early differentiation as a means of cell sterilization

    International Nuclear Information System (INIS)

    Wangenheim, K.-H. v.

    1979-01-01

    Investigations in plants suggest that cytoplasmic growth during mitotic delay induces an early attainment of terminal differentiation and cessation of mitotic activity. In mammals a direct demonstration of these processes is difficult. Plants and mammals show, however, a common phenomenon: Polyploidy does not usually reduce radiosensitivity as drastically as predicted by genetical considerations and certain experimental results. In root meristems of barley it is shown that cytoplasmic growth during mitotic delay increases the amount of cytoplasma per nuclear genome to approximately the same levels in tetraploid as in diploid cells. This results in the same loss, for both ploidy levels, of meristematic cells due to early differentiation. Apparently, under usual conditions, polyploidy is unable to significantly reduce radiosensitivity because the induction of differentiation processes is more important to radiation damage than the direct effect of genetic damage. Since the same basic principles also occur in mammals, it is suggested that early differentiation, and thereby cell sterilization, are induced in mammalian cells by the same mechanism as in plants. (Auth.)

  18. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    Science.gov (United States)

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  19. Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanjun Kim

    2015-01-01

    Full Text Available Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor or negatively (IWR-1-endo, Axin stabilizer control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.

  20. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells

    International Nuclear Information System (INIS)

    Ghazanfari, Samane; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali

    2009-01-01

    Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle α-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues.