WorldWideScience

Sample records for erythrocyte phospholipid fatty

  1. Polyunsaturated fatty acid composition of maternal diet and erythrocyte phospholipid status in Chilean pregnant women.

    Science.gov (United States)

    Bascuñán, Karla A; Valenzuela, Rodrigo; Chamorro, Rodrigo; Valencia, Alejandra; Barrera, Cynthia; Puigrredon, Claudia; Sandoval, Jorge; Valenzuela, Alfonso

    2014-11-07

    Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA), which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20-36 years old) in the 3rd-6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid) and low in n-3 PUFA (alpha-linolenic acid and DHA), with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA.

  2. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women

    Directory of Open Access Journals (Sweden)

    Karla A. Bascuñán

    2014-11-01

    Full Text Available Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA, which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20–36 years old in the 3rd–6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid and low in n-3 PUFA (alpha-linolenic acid and DHA, with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA.

  3. [Peculiarities of the phospholipid and fatty acid composition of erythrocyte plasma membranes of the Black Sea fish].

    Science.gov (United States)

    Silkin, Iu A; Silkina, E N; Zabelinskiĭ, S A

    2012-01-01

    The phospholipid and the fatty acid composition of the main phospholipids families of erythrocyte plasma membranes was studied in two species of cartilaginous fish: the common thrasher (Raja clavata L.) and the common stingray (Dasyatis pastinaca) and three bony fish species: the scorpion fish (Scorpaena porcus L.), the smarida (Spicara flexuosa Raf.), and the horse mackerel (Trachurus mediterraneus ponticus Aleev). It was shown that in the studied fish, 70.0-80.0 % of all membrane phospholipids were composed of phosphatidylcholine and phosphatidylethanolamine. Phosphatidylserine, monophosphoinositide, and sphingomyelin were minor components whose content in the erythrocyte membrane fluctuated from 3.0 % to 13.0 %. The fatty acid phospholipids composition was represented by a large specter of acids. From saturated acids, basic for plasma membranes are palmitic (C16: 0) and stearic (C18: 0) acids. From unsaturated acids, the larger part belong to mono-, tetra-, penta-, and hexaenoic acids in fish phospholipids. The calculation of the double bond index and of the unsaturation coefficient showed difference in the deformation ability of erythrocyte membranes of the studied fish.

  4. Plasma and erythrocyte phospholipid fatty acid profile in professional basketball and football players.

    Science.gov (United States)

    Tepsic, Jasna; Vucic, Vesna; Arsic, Aleksandra; Blazencic-Mladenovic, Vera; Mazic, Sanja; Glibetic, Marija

    2009-10-01

    The effect of intensive long-term physical activity on phospholipid fatty acid (FA) composition has not been studied thoroughly. We determined plasma and erythrocyte phospholipid FA status of professional basketball and football players. Our results showed differences in plasma FA profile not only between sportsmen and sedentary subjects, but also between two groups of sportsmen. Plasma FA profile in basketball players showed significantly higher proportion of n-6 FA (20:3, 20:4, and 22:4) and total polyunsaturated FA (PUFA) than controls, while football players had higher palmitoleic acid (16:1) than basketball players and controls. Total PUFA and 22:4 were also higher in basketball than in football players. Erythrocyte FA profile showed no differences between football players and controls. However, basketball players had higher proportion of 18:0 than controls, higher saturated FA and lower 18:2 than two other groups, and higher 22:4 than football players. These findings suggest that long-term intensive exercise and type of sport influence FA profile.

  5. Plasma and erythrocyte membrane phospholipids and fatty acids in Italian general population and hemodialysis patients.

    Science.gov (United States)

    Dessì, Mariarita; Noce, Annalisa; Bertucci, Pierfrancesco; Noce, Gianluca; Rizza, Stefano; De Stefano, Alessandro; Manca di Villahermosa, Simone; Bernardini, Sergio; De Lorenzo, Antonino; Di Daniele, Nicola

    2014-03-21

    Dyslipidemia and abnormal phospholipid metabolism are frequent in uremic patients and increase their risk of cardiovascular disease (CVD): ω-3 polyunsaturated fatty acids (PUFAs) may reduce this risk in the general population. In this study we compared the plasma and erythrocyte cell membrane composition of PUFAs in a group of Caucasian hemodialysis (HD) patients and in a control group of healthy subjects and evaluated the erythrocyte/cell membrane fatty acid ratio as a marker of the dietary intake of phospholipids. The relationship between ω-3 and ω-6 fatty acids and the possible differences in PUFAs concentrations were also investigated. After obtaining a fully informed consent, a total of ninety-nine HD patients and 160 non uremic control subjects from "Tor Vergata" University Hospital were enrolled into the study. None of them took antioxidant drugs or dietary supplements for at least 90 days prior to the observation. Blood samples were analysed by gas-chromatographic coupled to a mass spectrometric detector.The daily intake of total calories, proteins, lipids and carbohydrates is significantly lower in HD patients than in controls (p HD patients (p HD patients, due to the removal of nutrients during the dialysis and to persistent malnutrition. A dietary treatment addressed to increase plasma ω-3 PUFAs and to optimize ω-6/ω-3 ratio may exert a protective action and reduce the risk of CVD in HD patient.

  6. Erythrocyte levels compared with reported dietary intake of marine n-3 fatty acids in pregnant women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, H.S.; Sandstrom, B.

    1995-01-01

    It is well established that marine n-3 fatty acids measured in erythrocyte phospholipids of non-pregnant subjects reflect the subjects' intake of these fatty acids. In 135 pregnant women in the 30th week of gestation we compared intake of marine n-3 fatty acids and energy, estimated by a combined...... dietary self- administered questionnaire and interview, with fatty acids measured in erythrocyte phospholipids. Daily intake (g/d) and nutrient density of marine n-3 fatty acids (mg/MJ) correlated with the n-3 fatty acid: arachidonic acid ratio (FA-ratio) with correlation coefficients of 0.48 and 0.......54 respectively. In a linear regression model with three frequency questions about marine sandwiches, marine cooked meals and fish oil as explanatory variables, and the FA-ratio as dependent variable, the multiple correlation coefficient was 0.46. Conclusions from the study were (1) levels of erythrocyte fatty...

  7. Erythrocyte levels compared with reported dietary intake of marine n-3 fatty acids in pregnant women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sandstrom, B.

    1995-01-01

    It is web established that marine n-3 fatty acids measured in erythrocyte phospholipids of non-pregnant subjects reflect the subjects' intake of these fatty acids. In 135 pregnant women in the 30th week of gestation we compared intake of marine n-3 fatty acids and energy, estimated by a combined...... dietary self-administered questionnaire and interview, with fatty acids measured in erythrocyte phospholipids. Daily intake (g/d) and nutrient density of marine n-3 fatty acids (mg/MJ) correlated with the n-3 fatty acid: arachidonic acid ratio (FA-ratio) with correlation coefficients of 0.48 and 0.......54 respectively. In a linear regression model with three frequency questions about marine sandwiches, marine cooked meals and fish oil as explanatory variables, and the FA-ratio as dependent variable, the multiple correlation coefficient was 0.46. Conclusions from the study were (1) levels of erythrocyte fatty...

  8. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  9. Effect of Omega-3 Fatty Acids on Erythrocyte Membrane in Diabetic Rats

    OpenAIRE

    Hussein, Jihan; Mostafa, Ehab; El-Waseef, Maha; El-Khayat, Zakarya; Badawy, Ehsan; Medhat, Dalia

    2011-01-01

    Background: Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia resulting from defects in insulin secretion, almost always with a major contribution from insulin resistance which may be affected by cell membrane fatty acids and phospholipids fractions.Aim: To evaluate the effects of omega-3 fatty acids on erythrocyte membrane and also in decreasing oxidative stress in diabetic rats.Material and Methods: Sixty healthy male albino rats weighting 180-200 g divided int...

  10. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue

    International Nuclear Information System (INIS)

    Pradhan, D.; Schlegel, R.A.; Williamson, P.

    1991-01-01

    Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho[ 14 C] ethanolamine ([ 14 C]AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by [ 14 C]AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes

  11. Erythrocyte and platelet fatty acids in retinitis pigmentosa.

    Science.gov (United States)

    Stanzial, A M; Bonomi, L; Cobbe, C; Olivieri, O; Girelli, D; Trevisan, M T; Bassi, A; Ferrari, S; Corrocher, R

    1991-05-01

    The fatty acid composition and the glutathione-peroxidase activity (GSH-Px) of erythrocytes and platelets, the production of malondialdehyde (MDA) by platelets and the activity of the main systems of transmembrane cation transport in erythrocyte have been studied in 12 patients (5 males and 7 females) affected by retinitis pigmentosa (RP). A remarkable increase of saturated fatty acids (SFA), particularly of stearic acid (C18:0), has been noted in these patients. The reduced unsaturated/saturated fatty acids ratio (PUFA/SFA) observed in both erythrocytes and platelets and the decrease of arachidonic acid in platelets may depend by an active peroxidation process as documented by the increase of MDA. Platelet glutathione-peroxidase (PTL-GSH-PX) and plasma retinol were in the normal range, whereas erythrocyte glutathione-peroxidase (E-GSH-PX), MDA and plasma alfa-toco-pherol were increased in patients with RP. The activities of Na(+)-K+ pump, cotransport and Na(+)-Li+ countertransport were normal in RP erythrocytes.

  12. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids.

    Science.gov (United States)

    Hauff, Simone; Vetter, Walter

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was approximately 90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were camembert, cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC(eq)) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively.

  13. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    Energy Technology Data Exchange (ETDEWEB)

    Hauff, Simone [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany); Vetter, Walter [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany)], E-mail: w-vetter@uni-hohenheim.de

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was {approx}90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC{sub eq}) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese

  14. Associations between dietary n-6 and n-3 fatty acids and arachidonic acid compositions in plasma and erythrocytes in young and elderly Japanese volunteers

    Directory of Open Access Journals (Sweden)

    Kawabata Terue

    2011-08-01

    Full Text Available Abstract Background We reported that the compositions of arachidonic acid (ARA in erythrocytes and plasma phospholipids (PL in the elderly were lower than those in the young, though the ARA intake was nearly identical. Objective We further analyzed data in four study groups with different ages and sexes, and determined that the blood ARA levels were affected by the kinds of dietary fatty acids ingested. Methods One hundred and four healthy young and elderly volunteers were recruited. Dietary records together with photographic records from 28 consecutive days were reviewed and the fatty acid composition in plasma lipid fractions and erythrocyte PL was analyzed. Results No correlations for ARA between dietary fatty acids and blood lipid fractions were observed. A significant negative correlation between eicosapentaenoic acid (EPA + docosahexaenoic acid (DHA intake and ARA composition in erythrocyte PL was observed. ARA composition in erythrocyte PL was significantly lower in elderly subjects than in young subjects, because EPA and DHA intake in elderly subjects was higher than in young subjects. However, after removing the effect of dietary EPA+DHA intake, the ARA composition in erythrocyte PL in elderly subjects was significantly lower than that in young subjects. Conclusions Changes in physical conditions with aging influenced the low ARA composition of erythrocyte in elderly subjects in addition to the effects of dietary EPA and DHA.

  15. Effects of dietary fat on lipid composition of serum and erythrocytes of the swine and in vitro incorporation of fatty acids into erythrocyte membranes

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    1974-01-01

    Changes in ftty acid patterns of lipids in serum and erythrocytes induced by dietary fats and in vitro incorporation of fatty acids into erythrocyte membranes were investigated with pigs. On feeding various diets, it was found that fatty acid composition of serum and erythrocytes could be modified and altered toward the fatty acid pattern of the diet. In vitro, the incorporation of labelled fatty acids into erythrocyte membranes was accelerated by the addition of cofactors such as lysolecithin, CoA and ATP. Dietary fats also had certain effects on the incorporation of fatty acids into erythrocyte membranes. Erythrocytes, collected from the blood of pigs fed corn oil, incorporated and also released more labelled linoleate than those of pigs fed hydrogenated soybean oil. Palmitic acid was more slowly incorporated into erythrocyte membranes than linoleic acid in the pigs fed both a commercial chow and scheduled meals, indicating selective esterification of fatty acids in the erythrocyte membranes. (author)

  16. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  17. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    International Nuclear Information System (INIS)

    Hauff, Simone; Vetter, Walter

    2009-01-01

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was ∼90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were eq ) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively

  18. Erythrocyte membrane fatty acids in multiple sclerosis patients and ...

    African Journals Online (AJOL)

    The risk of developing multiple sclerosis (MS) is associated with increased dietary intake of saturated fatty acids. For many years it has been suspected that this disease might be associated with an imbalance between unsaturated and saturated fatty acids. We determined erythrocyte membrane fatty acids levels in Hot ...

  19. Associations of erythrocyte fatty acid patterns with insulin resistance

    Science.gov (United States)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  20. Effect of radiation on sodium and water transport in rat erythrocytes and possible repair using olive oil

    International Nuclear Information System (INIS)

    Othman, A.I.; El-Missiry, M.A.

    1991-01-01

    Gamma radiation dose 4 Gy was administered to whole rats, and sodium, water transport and sulfhydryl groups (-SH) contents of the erythrocytes were evaluated in vivo at postirradiation times 1, 3 and 7 days. The present results showed increased sodium and water gain associated with loss of sulfhydryl contents of the erythrocytes. These results are attributed to inhibition of Na pump activity and increased Na leakage into cells which increased the intracellular osmotic elements that lead to influx of water. These changes were secondary to the destruction of erythrocyte -SH groups which was investigated as a change in tertiary structure of the membrane proteins. Olive oil administered intraperitoneally resulted in restoration of the status of the studied parameters. We also noticed an increase in the amount of plasma unsaturated fatty acids including phospholipids. The relation between the reappearance of erythrocyte -SH groups and increased plasma phospholipids suggested a repair role for olive oil. This is through reconstitution of the Na-pump activity in erythrocytes by reactivation of (Na-K) ATPase stimulated by negatively charged plasma phospholipids.4 fig.,1 tab. i

  1. Phospholipid fatty acid and phospholipid etherlipid fingerprints approach to describe complex soil microbial community under impact of cattle husbandry

    Czech Academy of Sciences Publication Activity Database

    Elhottová, Dana; Němcová, Anna; Gattinger, A.

    2007-01-01

    Roč. 48, - (2007), s. 73 ISSN 0009-0646. [Kongres Československé společnosti mikrobiologické /24./. 02.10.2007-05.10.2007, Liberec] Institutional research plan: CEZ:AV0Z60660521 Keywords : phospholipid fatty acid * phospholipid etherlipid fingerprints * cattle husbandry Subject RIV: EH - Ecology, Behaviour

  2. Significant decrease of saturation index in erythrocytes membrane from subjects with non-alcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Notarnicola, Maria; Caruso, Maria Gabriella; Tutino, Valeria; Bonfiglio, Caterina; Cozzolongo, Raffaele; Giannuzzi, Vito; De Nunzio, Valentina; De Leonardis, Giampiero; Abbrescia, Daniela I; Franco, Isabella; Intini, Vincenza; Mirizzi, Antonella; Osella, Alberto R

    2017-08-23

    The lipidomic profiling of erythrocyte membranes is expected to provide a peculiar scenario at molecular level of metabolic and nutritional pathways which may influence the lipid balance and the adaptation and homeostasis of the organism. Considering that lipid accumulation in the cell is important in promoting tissue inflammation, the purpose of this study is to analyze the fatty acid profile in red blood cell membranes of patients with Non-Alcoholic Fatty Liver Disease (NAFLD), in order to identify and validate membrane profiles possibly associated with the degree of hepatic damage. This work presents data obtained at baseline from 101 subjects that participated to a nutritional trial (registration number: NCT02347696) enrolling consecutive subjects with NAFLD. Diagnosis of liver steatosis was performed by using vibration-controlled elastography implemented on FibroScan. Fatty acids, extracted from phospholipids of erythrocyte membranes, were quantified by gas chromatography method. The subjects with severe NAFLD showed a significant decrease of the ratio of stearic acid to oleic acid (saturation index, SI) compared to controls, 1.281 ± 0.31 vs 1.5 ± 0.29, respectively. Low levels of SI in red blood cell membranes, inversely associated with degree of liver damage, suggest that an impairment of circulating cell membrane structure can reflect modifications that take place in the liver. Subjects with severe NAFLDalso showed higher levels of elongase 5 enzymatic activity, evaluated as vaccenic acid to palmitoleic acid ratio. Starting from these evidences, our findings show the importance of lipidomic approach in the diagnosis and the staging of NAFLD.

  3. Effect of intravenous omega-3 fatty acid infusion and hemodialysis on fatty acid composition of free fatty acids and phospholipids in patients with end-stage renal disease.

    Science.gov (United States)

    Madsen, Trine; Christensen, Jeppe Hagstrup; Toft, Egon; Aardestrup, Inge; Lundbye-Christensen, Søren; Schmidt, Erik B

    2011-01-01

    Patients treated with hemodialysis (HD) have been reported to have decreased levels of ω-3 polyunsaturated fatty acids (PUFAs) in plasma and cells. The aim of this study was to investigate the effect of ω-3 PUFAs administered intravenously during HD, as well as the effect of HD treatment, on the fatty acid composition of plasma free fatty acids (FFAs), plasma phospholipids, and platelet phospholipids. Forty-four HD patients were randomized to groups receiving either a single dose of a lipid emulsion containing 4.1 g of ω-3 PUFAs or placebo (saline) administered intravenously during HD. Blood was drawn immediately before (baseline) and after (4 hours) HD and before the next HD session (48 hours). Fatty acid composition was measured using gas chromatography. The increase in ω-3 FFAs was greater in the ω-3 PUFA group compared with the placebo group, whereas the increase in total FFAs was similar between the 2 groups. In the ω-3 PUFA group, ω-3 PUFAs in plasma phospholipids were higher after 48 hours than at baseline, and in platelet phospholipids, ω-3 PUFAs increased after 4 hours. In the placebo group, no changes were observed in ω-3 PUFAs in plasma and platelet phospholipids. Intravenous ω-3 PUFAs administered during HD caused a transient selective increase in ω-3 FFA concentration. Furthermore, ω-3 PUFAs were rapidly incorporated into platelets, and the content of ω-3 PUFAs in plasma phospholipids increased after 48 hours.

  4. Plasma phospholipid long-chain n-3 polyunsaturated fatty acids and body weight change

    DEFF Research Database (Denmark)

    Jakobsen, Marianne Uhre; Dethlefsen, Claus; Due, Karen Margrete

    2011-01-01

    We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers.......We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers....

  5. Nutrition and Reproductive Health: Sperm versus Erythrocyte Lipidomic Profile and ω-3 Intake

    Directory of Open Access Journals (Sweden)

    Gabriela Ruth Mendeluk

    2015-01-01

    Full Text Available Fatty acid analyses of sperm and erythrocyte cell membrane phospholipids in idiopathic infertile patients evidenced that erythrocyte contents of EPA, DHA, omega-6–omega-3 ratio and arachidonic acid provide a mathematical correspondence for the prediction of EPA level in sperm cells. The erythrocyte lipidomic profile of patients was significantly altered, with signatures of typical Western pattern dietary habits and no fish intake. A supplementation with nutritional levels of EPA and DHA and antioxidants was then performed for 3 months, with the follow-up of both erythrocyte and sperm cell membranes composition as well as conventional sperm parameters. Some significant changes were found in the lipidomic membrane profile of erythrocyte but not in sperm cells, which correspondently did not show significant parameter ameliorations. This is the first report indicating that membrane lipids of different tissues do not equally metabolize the fatty acid elements upon supplementation. Molecular diagnostic tools are necessary to understand the cell metabolic turnover and monitor the success of nutraceuticals for personalized treatments.

  6. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets

    International Nuclear Information System (INIS)

    Arisawa, Kotoko; Mitsudome, Haruka; Yoshida, Konomi; Sugimoto, Shizuka; Ishikawa, Tomoko; Fujiwara, Yoko; Ichi, Ikuyo

    2016-01-01

    The degree of saturation of fatty acid chains in the bilayer membrane structure is known to control membrane fluidity and packing density. However, the significance of fatty acid composition in the monolayers of lipid droplets (LDs) has not been elucidated. In this study, we noted a relationship between the size of LDs and the fatty acid composition of the monolayer. To obtain large LDs, we generated NIH3T3 cells overexpressing fat-specific protein 27 (FSP27). This induced the fusion of LDs, resulting in larger LDs in FSP27-overexpressing cells compared with LDs in control cells. Moreover, the lipid extracts of LDs from FSP27-overexpressing cells reconstituted large-droplet emulsions in vitro, implying that the lipid properties of LDs might affect the size of LDs. FSP27-overexpressing cells had more saturated fatty acids in the phospholipid monolayer of the LDs compared with control cells. To further investigate the effects of the degree of phospholipid unsaturation on the size of LDs, we synthesized artificial emulsions of a lipid mixed with distearoylphosphatidylcholine (DSPC, diC18:0-PC) and with dioleoylphosphatidylcholine (DOPC, diC18:1n-9-PC) and compared the sizes of the resulting LDs. The emulsions prepared from saturated PC had larger droplets than those prepared from unsaturated PC. Our results suggest that saturated fatty acid chains in phospholipid monolayers might establish the form and/or stability of large LDs. - Highlights: • The lipid extracts of larger LDs from FSP27 cells reconstructed large-droplet emulsions. • Isolated LDs from FSP27 cells had more saturated fatty acids in the phospholipid monolayer compared with the control. • Saturated fatty acids in the phospholipid monolayer are a factor in the formation of large emulsions.

  7. Dyslipidemia, altered erythrocyte fatty acids and selenium are ...

    African Journals Online (AJOL)

    Venous blood sample was drawn from all subjects and erythrocytes separated for the determination of fatty acids. Plasma lipids, selenium and vitamin E levels were also measured. There were no differences in BMI, weight and height among the three groups except for systolic BP that was lower in VD (148.3±41.8mmHg) ...

  8. Effects of dietary omega-3 and -6 supplementations on phospholipid fatty acid composition in mice uterus during window of pre-implantation.

    Science.gov (United States)

    Fattahi, Amir; Darabi, Masoud; Farzadi, Laya; Salmassi, Ali; Latifi, Zeinab; Mehdizadeh, Amir; Shaaker, Maghsood; Ghasemnejad, Tohid; Roshangar, Leila; Nouri, Mohammad

    2018-03-01

    Since fatty acid composition of uterus phospholipids is likely to influence embryo implantation, this study was conducted to investigate the effects of dietary omega-3 and -6 fatty acids on implantation rate as well as uterine phospholipid fatty acids composition during mice pre-implantation period. Sixty female mice were randomly distributed into:1) control (standard pellet), 2) omega-3 (standard pellet + 10% w/w of omega-3 fatty acids) and 3) omega-6 (standard pellet + 10% w/w of omega-6 fatty acids). Uterine phospholipid fatty acid composition during the pre-implantation window (days 1-5 of pregnancy) was analyzed using gas-chromatography. The implantation rate on the fifth day of pregnancy was also determined. Our results showed that on days 1, 2 and 3 of pregnancy, the levels of arachidonic acid (ARA) as well as total omega-6 fatty acids were significantly higher and the levels of linolenic acid and total omega-3 fatty acids were statistically lower in the omega-6 group compared to the omega-3 group (p omega-6 fatty acids, and poly-unsaturated fatty acids levels were significantly different between the two dietary supplemented groups (p omega-6 fatty acids, especially ARA, with the implantation rate. The present study showed that diets rich in omega-3 and -6 fatty acids could differently modify uterine phospholipid fatty acid composition and uterine levels of phospholipid ARA, and that the total omega-6 fatty acids had a positive association with the implantation rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Comparison of the Incorporation of DHA in Circulatory and Neural Tissue When Provided as Triacylglycerol (TAG), Monoacylglycerol (MAG) or Phospholipids (PL) Provides New Insight into Fatty Acid Bioavailability.

    Science.gov (United States)

    Destaillats, Frédéric; Oliveira, Manuel; Bastic Schmid, Viktoria; Masserey-Elmelegy, Isabelle; Giuffrida, Francesca; Thakkar, Sagar K; Dupuis, Lénaïck; Gosoniu, Maria Laura; Cruz-Hernandez, Cristina

    2018-05-15

    Phospholipids (PL) or partial acylglycerols such as sn -1(3)-monoacylglycerol (MAG) are potent dietary carriers of long-chain polyunsaturated fatty acids (LC-PUFA) and have been reported to provide superior bioavailability when compared to conventional triacylglycerol (TAG). The main objective of the present study was to compare the incorporation of docosahexaenoic acid (DHA) in plasma, erythrocytes, retina and brain tissues in adult rats when provided as PL (PL-DHA) and MAG (MAG-DHA). Conventional dietary DHA oil containing TAG (TAG-DHA) as well as control chow diet were used to evaluate the potency of the two alternative DHA carriers over a 60-day feeding period. Fatty acid profiles were determined in erythrocytes and plasma lipids at time 0, 7, 14, 28, 35 and 49 days of the experimental period and in retina, cortex, hypothalamus, and hippocampus at 60 days. The assessment of the longitudinal evolution of DHA in erythrocyte and plasma lipids suggest that PL-DHA and MAG-DHA are efficient carriers of dietary DHA when compared to conventional DHA oil (TAG-DHA). Under these experimental conditions, both PL-DHA and MAG-DHA led to higher incorporations of DHA erythrocytes lipids compared to TAG-DHA group. After 60 days of supplementation, statistically significant increase in DHA level incorporated in neural tissues analyzed were observed in the DHA groups compared with the control. The mechanism explaining hypothetically the difference observed in circulatory lipids is discussed.

  10. Stability of sonicated aqueous suspensions of phospholipids under air.

    Science.gov (United States)

    Almog, R; Forward, R; Samsonoff, C

    1991-12-01

    The stability of phospholipids in liposomal aqueous suspension against oxidative degradation in air was investigated using spectrophotometric indices, glutathione peroxidase reactivity and thin layer chromatography. Zwitterionic phospholipid was found to be susceptible to degradation via oxidation of polyunsaturated hydrocarbon chains and ester hydrolysis, producing oxidized lysophosphatide and free fatty acid derivatives. These products were characterized as hydroperoxides based on their reactivity with the selenium-dependent glutathione peroxidase isolated from human erythrocytes. Lecithin in Tris buffer was more resistant to hydrolysis than in water. The sonication of 8.0 mM of soybean phosphatidylcholine (SB-PC) suspension in 0.1 M Tris (pH 7.5) in the presence of air produced relatively high concentration of conjugated diene hydroperoxide, but a small amount of hydrolyzed products. Anionic phospholipids, such as egg-phosphatidylglycerol (egg-PG), demonstrated higher resistance to air oxidation than the zwitterionic lecithin, but its oxidation was promoted by sonication.

  11. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Albrechtsen, Hans-Jørgen; Rootzén, Helle

    1997-01-01

    Different multivariate statistical analyses were applied to phospholipid fatty acids representing the biomass composition and to different biogeochemical parameters measured in 37 samples from a landfill contaminated aquifer at Grindsted Landfill (Denmark). Principal component analysis...... and correspondence analysis were used to identify groups of samples showing similar patterns with respect to biogeochemical variables and phospholipid fatty acid composition. The principal component analysis revealed that for the biogeochemical parameters the first principal component was linked to the pollution...... was used to allocate samples of phospholipid fatty acids into predefined classes. A large percentages of samples were classified correctly when discriminating samples into groups of dissolved organic carbon and specific conductivity, indicating that the biomass is highly influenced by the pollution...

  12. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Marta Palusinska-Szysz

    Full Text Available Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL. The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0, octadecenoyl (18∶1 Δ9 and hexadecanoyl (16∶0. However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE, phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24 and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of

  13. Physical and Chemical Processes and the Morphofunctional Characteristics of Human Erythrocytes in Hyperglycaemia

    Directory of Open Access Journals (Sweden)

    Victor V. Revin

    2017-08-01

    Full Text Available Background: This study examines the effect of graduated hyperglycaemia on the state and oxygen-binding ability of hemoglobin, the correlation of phospholipid fractions and their metabolites in the membrane, the activity of proteolytic enzymes and the morphofunctional state of erythrocytes.Methods: Conformational changes in the molecule of hemoglobin were determined by Raman spectroscopy. The structure of the erythrocytes was analyzed using laser interference microscopy (LIM. To determine the activity of NADN-methemoglobinreductase, we used the P.G. Board method. The degree of glycosylation of the erythrocyte membranes was determined using a method previously described by Felkoren et al. Lipid extraction was performed using the Bligh and Dyer method. Detection of the phospholipids was performed using V. E. Vaskovsky method.Results: Conditions of hyperglycaemia are characterized by a low affinity of hemoglobin to oxygen, which is manifested as a parallel decrease in the content of hemoglobin oxyform and the growth of deoxyform, methemoglobin and membrane-bound hemoglobin. The degree of glycosylation of membrane proteins and hemoglobin is high. For example, in the case of hyperglycaemia, erythrocytic membranes reduce the content of all phospholipid fractions with a simultaneous increase in lysoforms, free fatty acids and the diacylglycerol (DAG. Step wise hyperglycaemia in incubation medium and human erythrocytes results in an increased content of peptide components and general trypsin-like activity in the cytosol, with a simultaneous decreased activity of μ-calpain and caspase 3.Conclusions: Metabolic disorders and damage of cell membranes during hyperglycaemia cause an increase in the population of echinocytes and spherocytes. The resulting disorders are accompanied with a high probability of intravascular haemolysis.

  14. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P fatty acids) compared to the control leg (38.2 +/- 0...

  15. Chlorinated Phospholipids and Fatty Acids: (Pathophysiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Jenny Schröter

    2016-01-01

    Full Text Available Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl, generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated phospholipids and plasmalogens such as lysophospholipids, (chlorinated free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.

  16. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival

    Directory of Open Access Journals (Sweden)

    Sin Man Lam

    2017-08-01

    Full Text Available Mechanistic basis governing the extreme longevity and developmental quiescence of dauer juvenile, a “non-ageing” developmental variant of Caenorhabditis elegans, has remained largely obscure. Using a lipidomic approach comprising multiple reaction monitoring transitions specific to distinct fatty acyl moieties, we demonstrated that in comparison to other developmental stages, the membrane phospholipids of dauer larva contain a unique enrichment of polyunsaturated fatty acids (PUFAs. Esterified PUFAs in phospholipids exhibited temporal accumulation throughout the course of dauer endurance, followed by sharp reductions prior to termination of diapause. Reductions in esterified PUFAs were accompanied by concomitant increases in unbound PUFAs, as well as their corresponding downstream oxidized derivatives (i.e. eicosanoids. Global phospholipidomics has unveiled that PUFA sequestration in membrane phospholipids denotes an essential aspect of dauer dormancy, principally via suppression of eicosanoid production; and a failure to upkeep membrane lipid homeostasis is associated with termination of dauer endurance. Keywords: Dauer larva, Phospholipids, Polyunsaturated fatty acids, Eicosanoids, Lipidomics, Caenorhabditis elegans

  17. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level.

    Science.gov (United States)

    Yang, Wei; Fu, Juan; Yu, Miao; Huang, Qingde; Wang, Di; Xu, Jiqu; Deng, Qianchun; Yao, Ping; Huang, Fenghong; Liu, Liegang

    2012-07-08

    The erythrocyte membrane lesion is a serious diabetic complication. A number of studies suggested that n-3 fatty acid could reduce lipid peroxidation and elevate α- or γ-tocopherol contents in membrane of erythrocytes. However, evidence regarding the protective effects of flaxseed oil, a natural product rich in n-3 fatty acid, on lipid peroxidation, antioxidative capacity and membrane deformation of erythrocytes exposed to high glucose is limited. Human peripheral blood erythrocytes were isolated and treated with 50 mM glucose to mimic hyperglycemia in the absence or presence of three different doses of flaxseed oil (50, 100 or 200 μM) in the culture medium for 24 h. The malondialdehyde (MDA) and L-glutathione (GSH) were measured by HPLC and LC/MS respectively. The phospholipids symmetry and membrane fatty acid composition of human erythrocytes were detected by flow cytometry and gas chromatograph (GC). The morphology of human erythrocyte was illuminated by ultra scanning electron microscopy. Flaxseed oil attenuated hyperglycemia-induced increase of MDA and decrease of GSH in human erythrocytes. Human erythrocytes treated with flaxseed oil contained higher C22:5 and C22:6 than those in the 50 mM glucose control group, indicating that flaxseed oil could reduce lipid asymmetric distribution and membrane perturbation. The ultra scanning electron microscopy and flow cytometer have also indicated that flaxseed oil could protect the membrane of human erythrocytes from deformation at high glucose level. The flaxseed oil supplementation may prevent lipid peroxidation and membrane dysfunction of human erythrocytes in hyperglycemia.

  18. Impaired plasma phospholipids and relative amounts of essential polyunsaturated fatty acids in autistic patients from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    El-Ansary Afaf K

    2011-04-01

    Full Text Available Abstract Backgrounds Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to compare the relative concentrations of essential fatty acids (Linoleic and α- linolenic, their long chain polyunsaturated fatty acids and phospholipids in plasma of autistic patients from Saudi Arabia with age-matching controls. Methods 25 autistic children aged 3-15 years and 16 healthy children as control group were included in this study. Relative concentration of essential fatty acids/long chain polyunsaturated fatty acids and omega-3/omega-6 fatty acid series together with phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine were measured in plasma of both groups. Results Remarkable alteration of essential fatty acids/long chain polyunsaturated fatty acids, omeg-3/omega-6 and significant lower levels of phospholipids were reported. Reciever Operating characteristics (ROC analysis of the measured parameters revealed a satisfactory level of sensitivity and specificity. Conclusion Essential fatty acids/long chain polyunsaturated fatty acids and omeg-3/omega-6 ratios, phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine could be used as potential biomarkers that point to specific mechanisms in the development of autism and may help tailor treatment or prevention strategies.

  19. The Effect of Meal Frequency on the Fatty Acid Composition of Serum Phospholipids in Patients with Type 2 Diabetes.

    Science.gov (United States)

    Kahleova, Hana; Malinska, Hana; Kazdova, Ludmila; Belinova, Lenka; Tura, Andrea; Hill, Martin; Pelikanova, Terezie

    2016-01-01

    Fatty acids are important cellular constituents that can affect many metabolic processes relevant for the development of diabetes and its complications. We previously demonstrated a positive effect of eating just 2 meals a day, breakfast and lunch, compared to 6 small meals. The aim of this secondary analysis was to explore the effect of meal frequency on the fatty acid composition of serum phospholipids in subjects with type 2 diabetes (T2D). In a randomized, crossover study, we assigned 54 patients with T2D to follow one of 2 regimens of a hypocaloric diet (-500 kcal/day), each for 12 weeks: 6 meals (A6) or 2 meals a day, breakfast and lunch (B2). The diet in both regimens had the same macronutrient and energy content. The fatty acid composition of serum phospholipids was measured at weeks 0, 12, and 24, using gas liquid chromatography. Insulin sensitivity was derived as an oral glucose insulin sensitivity (OGIS) index. Saturated fatty acids (mainly myristic and palmitic acids) decreased (p meal frequency affects the fatty acid composition of serum phospholipids. The B2 regimen had more marked positive effects, with saturated fatty acids and the ratio of saturated to unsaturated fatty acids decreasing more. The increase in linoleic acid could partly explain the insulin-sensitizing effect of B2 in T2D.

  20. Effects of chronic fly ash exposure on golden hamsters: changes in lung phospholipids and their fatty acid composition as a result of inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, I; Negishi, T; Kamihira, M

    1986-01-01

    Changes in lung phospholipids of golden hamsters exposed to 2 mg/mT coal fly ash for 180 days, 7 days/week, 20 hours/day were examined. In the exposed group the amount of phospholipids in lavaged lung organ increased significantly compared with the control group, but in pulmonary surfactant did not. As regards lipid composition of phospholipids in lavaged lung organ, phosphatidylcholine was slightly increased but sphingomyelin was decreased by exposure. Some significant changes in fatty acid composition of phospholipids were observed between exposed and control group. In pulmonary surfactant, palmitic acid showed no change but myristic acid and oleic acid decreased. On the other hand, in lavaged lung organ, palmitic acid increased but stearic acid and decosatetraenoic acid decreased. Arachidonic acid composition increased in both parts of lung. An increase in the proportion of polyunsaturated fatty acid in whole fatty acid of phospholipids was found in pulmonary surfactant of exposed hamsters. 24 refs., 2 figs., 3 tabs.

  1. Erythrocyte membrane fatty acids in benign and progressive forms of multiple sclerosis

    NARCIS (Netherlands)

    Koch, M; Ramsaransing, GSM; Fokkema, MR; Heersema, DJ; De Keyser, J

    2006-01-01

    BACKGROUND: There is no good explanation why a proportion of patients with multiple sclerosis (MS) have a relatively benign form of the disease. An imbalance between saturated and unsaturated fatty acids (FA) might influence the disease course of MS. AIM: To assess whether the erythrocyte membrane

  2. Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition

    NARCIS (Netherlands)

    Dijkman, N.A.; Kromkamp, J.C.

    2006-01-01

    Phospholipid-derived fatty acids (PLFA) are widely used as chemotaxonomic markers in microbial ecology. In this paper we explore the use of PLFA as chemotaxonomic markers for phytoplankton species. The PLFA composition was determined for 23 species relevant to estuarine phytoplankton. The taxonomic

  3. Plasma phospholipid fatty acid profiles in Korean adults with and without acute coronary syndrome

    Science.gov (United States)

    Background and Objectives: Acute coronary syndrome (ACS), a clinical manifestation of coronary artery disease presenting as unstable angina and/or myocardial infarction, is the third-leading cause of death in South Korea. Plasma phospholipid (PL) fatty acid profiles are considered objective biomarke...

  4. Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition.

    Science.gov (United States)

    Fan, Wei; Lam, Sin Man; Xin, Jingxue; Yang, Xiao; Liu, Zhonghua; Liu, Yuan; Wang, Yong; Shui, Guanghou; Huang, Xun

    2017-03-01

    The general transcription factor TBP (TATA-box binding protein) and its associated factors (TAFs) together form the TFIID complex, which directs transcription initiation. Through RNAi and mutant analysis, we identified a specific TBP family protein, TRF2, and a set of TAFs that regulate lipid droplet (LD) size in the Drosophila larval fat body. Among the three Drosophila TBP genes, trf2, tbp and trf1, only loss of function of trf2 results in increased LD size. Moreover, TRF2 and TAF9 regulate fatty acid composition of several classes of phospholipids. Through RNA profiling, we found that TRF2 and TAF9 affects the transcription of a common set of genes, including peroxisomal fatty acid β-oxidation-related genes that affect phospholipid fatty acid composition. We also found that knockdown of several TRF2 and TAF9 target genes results in large LDs, a phenotype which is similar to that of trf2 mutants. Together, these findings provide new insights into the specific role of the general transcription machinery in lipid homeostasis.

  5. Growth and instability of a phospholipid vesicle in a bath of fatty acids

    Science.gov (United States)

    Dervaux, J.; Noireaux, V.; Libchaber, A. J.

    2017-06-01

    Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.

  6. Risk of secondary lymphedema in breast cancer survivors is related to serum phospholipid fatty acid desaturation.

    Science.gov (United States)

    Ryu, Eunjung; Yim, Seung Yun; Do, Hyun Ju; Lim, Jae-Young; Yang, Eun Joo; Shin, Min-Jeong; Lee, Seung-Min

    2016-09-01

    Secondary lymphedema is a common irreversible side effect of breast cancer surgery. We investigated if risk of secondary lymphedema in breast cancer survivors was related to changes in serum phospholipid fatty acid composition. Study subjects were voluntarily recruited into the following three groups: breast cancer survivors who had sentinel lymph node biopsy without lymphedema (SLNB), those who had auxillary lymph node dissection without lymphedema (ALND), and those who had ALND with lymphedema (ALND + LE). Body mass index (BMI), serum lipid profiles, bioimpedance data with single-frequency bioimpedance analysis (SFBIA), and serum phospholipid compositions were analyzed and compared among the groups. BMI, serum total cholesterol (total-C), and low-density lipoprotein cholesterol (LDL-C) and SFBIA ratios increased only in the ALND + LE. High polyunsaturated fatty acids (PUFAs) and high C20:4 to C18:2 n-6 PUFAs (arachidonic acid [AA]/linoleic acid [LA]) was detected in the ALND and ALND + LE groups compared to SLNB. The ALND + LE group showed increased activity indices for delta 6 desaturase (D6D) and D5D and increased ratio of AA to eicosapentaenoic acid (AA/EPA) compared to the ALND and SLNB groups. Correlation and regression analysis indicated that D6D, D5D, and AA/EPA were associated with SFBIA ratios. We demonstrated that breast cancer survivors with lymphedema had elevated total PUFAs, fatty acid desaturase activity indices, and AA/EPA in serum phospholipids. Our findings suggested that desaturation extent of fatty acid composition might be related to the risk of secondary lymphedema in breast cancer survivors.

  7. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  8. Phospholipid fatty acid composition of microorganisms in pine forest soils of Central Siberia

    Czech Academy of Sciences Publication Activity Database

    Evgrafova, S.Yu.; Šantrůčková, H.; Shibistova, O.B.; Elhottová, Dana; Černá, B.; Zrazhevskaya, G.K.; Lloyd, D.

    2008-01-01

    Roč. 35, č. 5 (2008), s. 452-458 ISSN 1062-3590 Grant - others:Evropská unie(XE) 03-55-1344; Ministry of Education and Science of the Russian Federation(RU) RUX0-002-KR-06 Institutional research plan: CEZ:AV0Z60660521 Keywords : phospholipid fatty acid * microorganisms * pine forest soils Subject RIV: EH - Ecology, Behaviour Impact factor: 0.082, year: 2008

  9. Correlation of Erythrocyte Trans Fatty Acids with Ovulatory Disorder Infertility in Polycystic Ovarian Syndrome

    Directory of Open Access Journals (Sweden)

    Aisa Ghaffarzad

    2014-07-01

    Full Text Available Trans fatty acids are considered to be the important modifiable factor of the ovulatory infertility disorder. The purpose of this study was to test the hypothesis that higher trans fatty acids of erythrocytes (RBC are associated with the risk of ovulatory infertility disorder in polycystic ovarian syndrome (PCOS. Thirty five infertile women with polycystic ovarian syndrome, defined by AES criteria and 29 age-matched healthy women as a control group were recruited for the study. After physical measurements and nutritional assessment, blood samples were collected. Fasting serum glucose and insulin were measured, and then insulin resistance was calculated by homeostasis model assessment (HOMA-IR. Erythrocyte fatty acids were measured by gas chromatography. The patients group had higher waist circumference (WC, insulin levels, HOMA-IR than controls (p< 0.05. Also, case group had lower percentage of normal BMI (BMI<25, physical activity and education levels than healthy women (p< 0.05. Among RBC trans fatty acids only trans linoleate (18:2t were significantly higher in case group than control women (p= 0.019. PCOS group tended to consume more food rich in TFAs than the control group. Logistic regression analysis also showed that only 18:2t is positively associated with risk of ovulatory disorder infertility in PCOS (OR= 1.225, 95% CI. 1.024-1.465; P= 0.026, which was not affected after adjustment for BMI, physical activity and education levels. The results suggested that RBC trans fatty acids might be a predictor of increased risk for ovulatory infertility disorder in women with PCOS.

  10. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    Science.gov (United States)

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    Science.gov (United States)

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that

  12. Gestational age in relation to marine n-3 fatty acids in maternal erythrocytes

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sommer, S.

    1991-01-01

    Gestation is longer in Faroese than Danish women, possibly because of the high intake of marine long-chain n-3 fatty acids that down regulates formation of prostaglandins from arachidonic acid. Polyunsaturated fatty acids were quantified in erythrocytes obtained within 2 days of delivery from...... randomly selected groups of 62 Faroese and 37 Danish women with an assessable gestational age. Average ratio of long-chain n-3 fatty acids to arachidonic acid [(3/6) ratio] was 0.73 (SD = 0.11) in Faroese women and 0.61 (SD = 0.12) in Danish women (p ...-3 fatty acids in the Faroes. A 20% increase in the (3/6) ratio was associated with an increase in pregnancy duration of 5.7 days in Danish women (95% confidence interval, 1.4 to 10.1 days; p = 0.02) and 0.7 days in Faroese women (95% confidence interval, -2.0 to 3.3; p = 0.6). The hypothesized...

  13. Distribution of fatty acids from dietary oils into phospholipid classes of triacylglycerol-rich lipoproteins in healthy subjects.

    Science.gov (United States)

    Abia, Rocio; Pacheco, Yolanda M; Montero, Emilio; Ruiz-Gutierrez, Valentina; Muriana, Francisco J G

    2003-02-21

    Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.

  14. Differential alterations of phospholipid metabolism in cultured cells of neural origin by phorbol esters, fatty acids, diacylglycerols and related compounds

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1986-01-01

    The uptake and metabolism of [ 3 H]methylcholine, [1,2- 14 C]-ethanolamine, [1- 14 C]fatty acids and [ 32 P] were studied in glioma (C6), neuroblastoma (N1E-115) and neuroblastoma-glioma hybrid (NG108-15) cells in culture in the presence of tetradecanoylphorbolacetate (TPA) and related analogues, fatty acids and diacylglycerol (DAG) to assess mechanisms of stimulation of phospholipid synthesis. Choline incorporation into phosphatidylcholine (PC) was stimulated 1.5-3 fold by phorbol esters and 3-10 fold by 18:1(n-9) in C6 cultures; these agents were without effect on N1E-115 and had intermediate effects on NG108-15 cells. Stimulation of [ 32 P] incorporation was predominantly into PC, ethanolamine incorporation into phosphatidylethanolamine (PE) was less stimulated ( 3 H]choline and its incorporation via intracellular phosphocholine into PC whereas exogenous 18:1(n-9) stimulated only utilization of intracellular P-choline in C6 cells. Choline incorporation into PC and relative stimulation by TPA or 18:1 was influenced by medium glucose and choline. Thus, metabolism of phospholipids and their precursors in neural cells can be markedly influenced by phorbol esters and fatty acids but this stimulation is dependent on cell type, growth medium, phospholipid class and nature of the stimulator

  15. Fatty acid desaturase (FADS gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study

    Directory of Open Access Journals (Sweden)

    Yang Long In

    2011-04-01

    Full Text Available Abstract Background We investigated the relationship between fatty acid desaturase (FADS gene polymorphisms and insulin resistance (IR in association with serum phospholipid polyunsaturated fatty acid (FA composition in healthy Korean men. Methods Healthy men (n = 576, 30 ~ 79 years old were genotyped for rs174537 near FADS1 (FEN1-10154G>T, FADS2 (rs174575C>G, rs2727270C>T, and FADS3 (rs1000778C>T SNPs. Dietary intake, serum phospholipid FA composition and HOMA-IR were measured. Results Fasting insulin and HOMA-IR were significantly higher in the rs174575G allele carriers than the CC homozygotes, but lower in the rs2727270T allele carriers than the CC homozygotes. The proportion of linoleic acid (18:2ω-6, LA was higher in the minor allele carriers of FEN1-10154G>T, rs174575C>G and rs2727270C>T than the major homozygotes, respectively. On the other hand, the proportions of dihomo-γ-linolenic acid (20:3ω-6, DGLA and arachidonic acid (20:4ω-6, AA in serum phospholipids were significantly lower in the minor allele carriers of FEN1-10154 G>T carriers and rs2727270C>T than the major homozygotes respectively. AA was also significantly lower in the rs1000778T allele carriers than the CC homozygotes. HOMA-IR positively correlated with LA and DGLA and negatively with AA/DGLA in total subjects. Interestingly, rs174575G allele carriers showed remarkably higher HOMA-IR than the CC homozygotes when subjects had higher proportions of DLGA (≥1.412% in total serum phospholipid FA composition (P for interaction = 0.009 or of AA (≥4.573% (P for interaction = 0.047. Conclusion HOMA-IR is associated with FADS gene cluster as well as with FA composition in serum phospholipids. Additionally, HOMA-IR may be modulated by the interaction between rs174575C>G and the proportion of DGLA or AA in serum phospholipids.

  16. PHOSPHOLIPIDS FROM PUMPKIN (Cucurbita moschata (Duch. Poir SEED KERNEL OIL AND THEIR FATTY ACID COMPOSITION

    Directory of Open Access Journals (Sweden)

    Tri Joko Raharjo

    2011-07-01

    Full Text Available The phospholipids (PL of pumpkin (Cucurbita moschata (Duch Poir seed kernel and their fatty acid composition were investigated. The crude oil was obtained by maceration with isopropanol followed by steps of extraction yielded polar lipids. The quantitative determination of PLs content of the dried pumpkin seed kernel and their polar lipids were calculated based on the elemental phosphorus (P contents which was determined by means of spectrophotometric methods. PL classes were separated from polar lipids via column chromatography. The fatty acid composition of individual PL was identified by gas chromatography-mass spectrometry (GC-MS. The total of PL in the pumpkin seed kernels was 1.27% which consisted of phosphatidylcholine (PC, phosphatidylserine (PS and phosphatidyletanolamine (PE. The predominant fatty acids of PL were oleic and palmitic acid in PC and PE while PS's fatty acid were dominantly consisted of oleic acid and linoleic acid.

  17. Long-chain polyunsaturated fatty acid status in children, adolescents and adults with phenylketonuria.

    Science.gov (United States)

    Gramer, Gwendolyn; Haege, Gisela; Langhans, Claus-Dieter; Schuhmann, Vera; Burgard, Peter; Hoffmann, Georg F

    2016-06-01

    Patients with phenylketonuria have been reported to be deficient in long-chain polyunsaturated fatty acids (LCPUFAs). It has been postulated that good compliance with the dietary regimen negatively influences LCPUFA status. In 36 patients with phenylketonuria and 18 age-matched healthy control subjects LCPUFA-levels in plasma phospholipids and cholesteryl esters, erythrocyte phosphatidylcholine and phosphatidylethanolamine were evaluated. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels did not differ significantly between patients and control subjects in plasma and erythrocyte fractions. There was a significant negative correlation between SDS (standard deviation) scores of DHA-levels in erythrocyte parameters from the respective age-matched control group and patients' concurrent and long-term phenylalanine levels for erythrocyte phosphatidylethanolamine and erythrocyte phosphatidylcholine. Patients with lower (higher) phenylalanine levels had positive (negative) DHA-SDS. In contrast to previous reports we did not find lower LCPUFA-levels in patients with phenylketonuria compared to age-matched healthy control subjects. Good dietary control was associated with better LCPUFA status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Autistic disorder and phospholipids: A review.

    Science.gov (United States)

    Brown, Christine M; Austin, David W

    2011-01-01

    Dysregulated phospholipid metabolism has been proposed as an underlying biological component of neurodevelopmental disorders such as autistic disorder (AD) and attention-deficit/hyperactivity disorder (ADHD). This review provides an overview of fatty acid and phospholipid metabolism and evidence for phospholipid dysregulation with reference to the membrane hypothesis of schizophrenia. While there is evidence that phospholipid metabolism is at least impaired in individuals with AD, it has not been established whether phospholipid metabolism is implicated in causal, mechanistic or epiphenomenological models. More research is needed to ascertain whether breastfeeding, and specifically, the administration of colostrum or an adequate substitute can play a preventative role by supplying the neonate with essential fatty acids (EFAs) at a critical juncture in their development. Regarding treatment, further clinical trials of EFA supplementation are essential to determine the efficacy of EFAs in reducing AD symptomatology and whether supplementation can serve as a cost-effective and readily available intervention. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  19. Factors influencing erythrocyte choline concentrations.

    Science.gov (United States)

    Miller, B L; Jenden, D J; Tang, C; Read, S

    1989-01-01

    Choline concentrations in human erythrocytes increase after freezing and thawing, during incubation in Krebs-phosphate for 30 min or on storage at 0 degrees C for 3-24 hr. The increase is prevented by protein precipitation by 10% perchloric acid, 10% zinc hydroxide, 10% sodium tungstate or boiling in water. It is not prevented by EDTA (10 mM) and is increased by oleate (5 mM). We suggest that the increase is due to the action of phospholipase D on erythrocyte phospholipids.

  20. Effects of malnutrition on the erythrocyte fatty acid composition and plasma vitamin E levels of Pakistani children

    NARCIS (Netherlands)

    Smit, EN; Dijkstra, JM; Schnater, TA; Seerat, E; Muskiet, FAJ; Boersma, ER

    Erythrocyte fatty acids and plasma vitamin E concentrations were determined in 47 grade 2, and 21 grade 3 malnourished Pakistani children (ages 4-56 months). Data were compared with those of 26 age- and sex-matched apparently healthy controls. Evaluation with three statistical approaches revealed

  1. Improving effect of dietary soybean phospholipids supplement on hepatic and serum indexes relevant to fatty liver hemorrhagic syndrome in laying hens.

    Science.gov (United States)

    Yang, Fei; Ruan, Jiming; Wang, Tiancheng; Luo, Junrong; Cao, Huabin; Song, Yalu; Huang, Jianzhen; Hu, Guoliang

    2017-11-01

    In order to investigate the effect of dietary soybean phospholipid supplement on hepatic and serum indexes relevant to fatty liver hemorrhagic syndrome (FLHS) in layers, 135 300-day-old Hyline Brown layers were randomly divided into three groups (control, pathology and prevention), and each group had 45 layers with three replicates. Birds in the three groups were respectively fed the control diet, high-energy low-protein diet and high-energy high-protein diet affixed with 3% soybean phospholipid instead of maize. Results showed in the 30th day, birds' livers in the pathology group became yellowish, enlarged in size and had hemorrhagic spots, while the prevention and control groups' layers did not have such pathological changes. Contents of triglyceride, total cholesterol, low-density lipoprotein - cholesterol, non-esterified fatty acid and malondialdehyde in serum or liver homogenate in prevention and control groups were remarkably lower than those in the pathology group (P fatty liver disease. © 2017 Japanese Society of Animal Science.

  2. Cross-sectional associations of cortical β-amyloid with erythrocyte membrane long-chain polyunsaturated fatty acids in older adults with subjective memory complaints.

    Science.gov (United States)

    Hooper, Claudie; De Souto Barreto, Philipe; Payoux, Pierre; Salabert, Anne Sophie; Guyonnet, Sophie; Andrieu, Sandrine; Vellas, Bruno

    2017-08-01

    Omega-3 (n-3) and 6 (n-6) polyunsaturated fatty acids (PUFAs) have been associated with reduced cognitive decline in observational studies. Hence, we examined the cross-sectional associations between cortical β-amyloid (Aβ) and erythrocyte membrane PUFAs in 61 non-demented elderly individuals reporting subjective memory complaints from the Multidomain Alzheimer Preventive Trial placebo arm. Cortical-to-cerebellar standard uptake value ratios were obtained using [ 18 F] florbetapir positron emission tomography. Fatty acids were measured in erythrocyte membranes by gas chromatography. Associations were explored using adjusted multiple linear regression models and were considered significant at p ≤ 0.005 after correction for multiple testing (10 comparisons). We found no significant associations between cortical Aβ and erythrocyte membrane PUFAs. The associations closest to significance after adjustment were those between Aβ and erythrocyte membrane arachidonic acid (without apolipoprotein E status adjustment: B-coefficient, 0.03; CI, 0.01, 0.05; p = 0.02. Including Apolipoprotein E adjustment: B-coefficient, 0.03; CI, 0.00, 0.06; p = 0.04) and Aβ and erythrocyte membrane linoleic acid (without apolipoprotein E status adjustment: B-coefficient, -0.02; CI, -0.04, 0.00; p = 0.02. Including Apolipoprotein E adjustment: B-coefficient, -0.02; CI, -0.04, 0.00; p = 0.09). Furthermore, the association between Aβ and erythrocyte membrane arachidonic acid seemed to be specific to Apolipoprotein E ε4 non-carriers (B-coefficient 0.03, CI: 0.00, 0.06, p = 0.03, n = 36). In contrast, no association was found between Aβ and erythrocyte membrane linoleic acid in Apolipoprotein E ε4 stratified analysis. Investigating the relationships between Aβ and PUFAs longitudinally would provide further evidence as to whether fatty acids, particularly arachidonic acid and linoleic acid, might modulate cognition through Aβ-dependent mechanisms. © 2017 International

  3. Changes in relative and absolute concentrations of plasma phospholipid fatty acids observed in a randomized trial of Omega-3 fatty acids supplementation in Uganda.

    Science.gov (United States)

    Song, Xiaoling; Diep, Pho; Schenk, Jeannette M; Casper, Corey; Orem, Jackson; Makhoul, Zeina; Lampe, Johanna W; Neuhouser, Marian L

    2016-11-01

    Expressing circulating phospholipid fatty acids (PLFAs) in relative concentrations has some limitations: the total of all fatty acids are summed to 100%; therefore, the values of individual fatty acid are not independent. In this study we examined if both relative and absolute metrics could effectively measure changes in circulating PLFA concentrations in an intervention trial. 66 HIV and HHV8 infected patients in Uganda were randomized to take 3g/d of either long-chain omega-3 fatty acids (1856mg EPA and 1232mg DHA) or high-oleic safflower oil in a 12-week double-blind trial. Plasma samples were collected at baseline and end of trial. Relative weight percentage and absolute concentrations of 41 plasma PLFAs were measured using gas chromatography. Total cholesterol was also measured. Intervention-effect changes in concentrations were calculated as differences between end of 12-week trial and baseline. Pearson correlations of relative and absolute concentration changes in individual PLFAs were high (>0.6) for 37 of the 41 PLFAs analyzed. In the intervention arm, 17 PLFAs changed significantly in relative concentration and 16 in absolute concentration, 15 of which were identical. Absolute concentration of total PLFAs decreased 95.1mg/L (95% CI: 26.0, 164.2; P=0.0085), but total cholesterol did not change significantly in the intervention arm. No significant change was observed in any of the measurements in the placebo arm. Both relative weight percentage and absolute concentrations could effectively measure changes in plasma PLFA concentrations. EPA and DHA supplementation changes the concentrations of multiple plasma PLFAs besides EPA and DHA.Both relative weight percentage and absolute concentrations could effectively measure changes in plasma phospholipid fatty acid (PLFA) concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles.

    Science.gov (United States)

    Fang, J; Barcelona, M J; Semrau, J D

    2000-08-01

    The intact phospholipid profiles (IPPs) of seven species of methanotrophs from all three physiological groups, type I, II and X, were determined using liquid chromatography/electrospray ionization/mass spectrometry. In these methanotrophs, two major classes of phospholipids were found, phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) as well as its derivatives phosphatidylmethylethanolamine (PME) and phosphatidyldimethylethanolamine (PDME). Specifically, the type I methanotrophs, Methylomonas methanica, Methylomonas rubra and Methylomicrobium album BG8 were characterized by PE and PG phospholipids with predominantly C16:1 fatty acids. The type II methanotrophs, Methylosinus trichosporium OB3b and CSC1 were characterized by phospholipids of PG, PME and PDME with predominantly C18:1 fatty acids. Methylococcus capsulatus Bath, a representative of type X methanotrophs, contained mostly PE (89% of the total phospholipids). Finally, the IPPs of a recently isolated acidophilic methanotroph, Methylocella palustris, showed it had a preponderance of PME phospholipids with 18:1 fatty acids (94% of total). Principal component analysis showed these methanotrophs could be clearly distinguished based on phospholipid profiles. Results from this study suggest that IPP can be very useful in bacterial chemotaxonomy.

  5. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study.

    Science.gov (United States)

    Chajès, V; Assi, N; Biessy, C; Ferrari, P; Rinaldi, S; Slimani, N; Lenoir, G M; Baglietto, L; His, M; Boutron-Ruault, M C; Trichopoulou, A; Lagiou, P; Katsoulis, M; Kaaks, R; Kühn, T; Panico, S; Pala, V; Masala, G; Bueno-de-Mesquita, H B; Peeters, P H; van Gils, C; Hjartåker, A; Standahl Olsen, K; Borgund Barnung, R; Barricarte, A; Redondo-Sanchez, D; Menéndez, V; Amiano, P; Wennberg, M; Key, T; Khaw, K T; Merritt, M A; Riboli, E; Gunter, M J; Romieu, I

    2017-11-01

    Intakes of specific fatty acids have been postulated to impact breast cancer risk but epidemiological data based on dietary questionnaires remain conflicting. We assessed the association between plasma phospholipid fatty acids and breast cancer risk in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition study. Sixty fatty acids were measured by gas chromatography in pre-diagnostic plasma phospholipids from 2982 incident breast cancer cases matched to 2982 controls. Conditional logistic regression models were used to estimate relative risk of breast cancer by fatty acid level. The false discovery rate (q values) was computed to control for multiple comparisons. Subgroup analyses were carried out by estrogen receptor (ER) and progesterone receptor expression in the tumours. A high level of palmitoleic acid [odds ratio (OR) for the highest quartile compared with the lowest OR (Q4-Q1) 1.37; 95% confidence interval (CI), 1.14-1.64; P for trend = 0.0001, q value = 0.004] as well as a high desaturation index (DI16) (16:1n-7/16:0) [OR (Q4-Q1), 1.28; 95% C, 1.07-1.54; P for trend = 0.002, q value = 0.037], as biomarkers of de novo lipogenesis, were significantly associated with increased risk of breast cancer. Levels of industrial trans-fatty acids were positively associated with ER-negative tumours [OR for the highest tertile compared with the lowest (T3-T1)=2.01; 95% CI, 1.03-3.90; P for trend = 0.047], whereas no association was found for ER-positive tumours (P-heterogeneity =0.01). No significant association was found between n-3 polyunsaturated fatty acids and breast cancer risk, overall or by hormonal receptor. These findings suggest that increased de novo lipogenesis, acting through increased synthesis of palmitoleic acid, could be a relevant metabolic pathway for breast tumourigenesis. Dietary trans-fatty acids derived from industrial processes may specifically increase ER-negative breast cancer

  6. Effect of a Diet Enriched with Fresh Coconut Saturated Fats on Plasma Lipids and Erythrocyte Fatty Acid Composition in Normal Adults.

    Science.gov (United States)

    Nagashree, Rokkam Shankar; Manjunath, N K; Indu, M; Ramesh, M; Venugopal, V; Sreedhar, P; Pavithra, N; Nagendra, Hongasandra R

    2017-07-01

    The objective of this study was to compare the effects of increased saturated fatty acid (SFA) (provided by fresh coconut) versus monounsaturated fatty acid (MUFA) intake (provided by a combination of groundnuts and groundnut oil) on plasma lipids and erythrocyte fatty acid (EFA) composition in healthy adults. Fifty-eight healthy volunteers, randomized into 2 groups, were provided standardized diet along with 100 g fresh coconut or groundnuts and groundnut oil combination for 90 days in a Yoga University. Fasting blood samples were collected before and after the intervention period for the measurement of plasma lipids and EFA profile. Coconut diet increased low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels significantly. In contrast, the groundnut diet decreased total cholesterol (TC), mainly due to a decrease in HDL levels. There were no differences in the major SFA of erythrocytes in either group. However, coconut consumption resulted in an increase in C14:0 and C24:0 along with a decrease in levels of C18:1 n9 (oleic acid). There was a significant increase in levels of C20:3 n6 (dihomo-gamma linolenic acid, DGLA). Consumption of SFA-rich coconut for 3 months had no significant deleterious effect on erythrocytes or lipid-related factors compared to groundnut consumption. On the contrary, there was an increase in the anti-atherogenic HDL levels and anti-inflammatory precursor DGLA in erythrocyte lipids. This suggests that coconut consumption may not have any deleterious effects on cardiovascular risk in normal subjects.

  7. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    Science.gov (United States)

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  8. [Modification of the pattern of fatty acids of erythrocytes’ membranes due to the acetone intoxication].

    Science.gov (United States)

    Momot, T V; Kushnerova, N F; Rakhmanin, Yu A

    Results of the study of the impact of acetone intoxication on the fatty acids pattern of the general lipids of erythrocytes’ membranes in rats are presented. The inhalation exposure of acetone was carried out in the inoculation chamber with the volume of 100 liters. The chamber was designed for the type of B.A. Kurlyandsky with self-contained system of purification and air regeneration and specified parameters of temperature (20-22С) and air humidity. The flow rate of the air and aerosolized acetone passed through the chamber accounted of 10 liters/min. Concentration of acetone in the chamber was sustained at the level of 206 ± 3,9 mg/m that corresponds to maximum permissible concentration for acetone vapor in the air of a working area. The time of exposure was 6 hours per day for 3 weeks in a monotonous mode, excluding weekend, and was based upon specific parameters of environment simulation in industry. The acetone impact was shown to be accompanied by the gain in the quantity of all kinds of saturated fatty acids and the fall of unsaturated fatty acids in general lipids of erythrocytes ’ membranes in rats and in the structure ofphospholipid fractions. In the content of phosphatydilcholine and phosphatydilethanolamine, as a basic structural phospholipids of biological membranes, there was noted the increase in palmitic and stearic acids. In the range offatty acids of the n-6 family the amount of linoleic and arachidonic acids decreased. In the array of fatty acids of the n-3 family the content of linolenic, eicosapentaenoic and docosahexaenoic acids (n-3 family) declined. Redistribution of fatty acids in the erythrocytes membrane towards to such alteration in quantity as the increasing of saturation and decreasing of the unsaturated fatty acids supposes the change of its physical and chemical properties, permeability, lability and complexity of passing erythrocyte via microcircular channels.

  9. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  10. [Effect of total hypothermia on the fatty acid composition of blood phospholipids of rats and sousliks and light irradiation on chemical processes in lipid extract].

    Science.gov (United States)

    Zabelinskiĭ, S A; Chebotareva, M A; Kalandarov, A M; Feĭzulaev, B A; Klichkhanov, N K; Krivchenko, A I; Kazennov, A M

    2011-01-01

    Effect of hypothermia on the fatty acid composition of rat and souslik blood phospholipids is studied. Different reaction of these animals to cooling is revealed: in rats no changes were observed in the fatty acid composition of blood phospholipids, whereas in the hibernating there were significant changes in the content of individual fatty acids (FA). The content of monoenic acids in sousliks decreased almost by 50%, while the content of saturated acid (C18) and of polyenic acids C18 : 2omega6 and C20 : 4omega6 rose significantly. Such changes seem to be the mechanism that promotes maintenance of the organism viability under conditions of a decreased level of metabolism, heart rhythm, and body temperature and is evolutionarily acquired. At the same time, the observed changes in the content of individual FA do not lead to sharp changes in such integrative parameters as the total non-saturation of phospholipids, which determines liquid properties of chylomicrons and other lipolipoprotein transport particles of the souslik blood. There are studied absorption spectra of blood lipid extracts of rats and sousliks under effect of light as well as effect of light upon the FA composition of lipid extracts of these animals. The FA composition of lipid extracts has been established to remain practically constant, whereas the character of changes of spectra under action of light indicates the presence in the extracts of oxidation-reduction reactions. The obtained data allow suggesting that in the lipid extract there occurs cooperation both of the phospholipid molecules themselves and of them with other organic molecules, which makes it possible for fatty acids to participate in processes of transport both of electrons and of protons. This novel role of FA as a participant of the electron transfer might probably be extrapolated to chemical reactions (processes) occurring inside the membrane.

  11. 13C-labeled 18 : 2n-6 recovered in brush border membrane phospholipids short time after administration

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Høy, Carl-Erik

    2004-01-01

    fatty acids in the two phospholipid pools. Minor effects on BBM-PC and BBM-PE fatty acid profiles (mole-%) were observed. The present study demonstrated for the first time incorporation of C-13-labeled 18:2n-6 into BBM-PC 2 hours and 6 hours after intragastric administration of L*L*L* or ML......*M. This emphasizes the influence of the dietary fatty acid on BBM fatty acid composition and the rapid incorporation of dietary long-chain fatty acids into intestinal enterocyte phospholipids. Medium-chain fatty acids in a single meal exert only a minor influence on the BBM phospholipid fatty acid profile....

  12. Dicarboxylic phospholipids and irradiated biomembranes

    International Nuclear Information System (INIS)

    Dousset, Nicole.

    1977-01-01

    It was decided to study the effects of ionizing radiations on biomembranes, with special reference to erythrocytes and liver microsomes representing two kinds of membrane very common in nature. Diacid phospholipids were observed at these membranes and the results are reported in part one of this work. It appeared essential to examine as far as possible the metabolism, in vitro and in animals, of these diacids and to find out whether certain harmful effects of radiations on the proteins (membrane permeability changes and enzyme inactivation) could be due to the action of these newly formed compounds. The study of acid compounds formed under irradiation was limited to nonanal-9-oic acid and azelaic acid. Part two deals with the incorporation of acid and diacid compounds into lipids and the effects of diacid phospholipids on the membrane permeability. A chapter is devoted to the changes in certain enzyme activities brought about by diacid phospholipids [fr

  13. Serum phospholipid omega-3 polyunsaturated fatty acids and insulin resistance in type 2 diabetes mellitus and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lou, Da-Jun; Zhu, Qi-Qian; Si, Xu-Wei; Guan, Li-Li; You, Qiao-Ying; Yu, Zhong-Ming; Zhang, Ai-Zhen

    2014-01-01

    To investigate the relationship between serum phospholipid omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and insulin resistance (IR) in patients with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). 51 patients with T2DM and NAFLD (T2DM+NAFLD group), 50 with T2DM alone (T2DM group), 45 with NAFLD alone (NAFLD group), and 42 healthy control subjects (NC group) were studied. Serum ω-3 PUFA profiles were analyzed by gas chromatography, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and serum lipid concentrations were measured. Insulin resistance was assessed by the homeostasis model assessment method (HOMA-IR). HOMA-IR levels were higher in the T2DM+NAFLD group than in the T2DM, NAFLD and NC groups (p<0.05), as were ALT, AST, GGT, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) concentrations (p<0.05). Conversely, serum ω-3 PUFA levels were significantly lower in the T2DM+NAFLD group than in the other groups (p<0.05). The ω-3 PUFA level was negatively correlated with HOMA-IR, TC, LDL-C and TG. Serum phospholipid ω-3 PUFA levels were significantly decreased in patients with T2DM and NAFLD, and were negatively related with insulin resistance. Thus, reduced ω-3 PUFAs may play an important role in the development of T2DM and NAFLD. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers

    NARCIS (Netherlands)

    Demel, R.A.; Geurts van Kessel, W.S.M.; Zwaal, R.F.A.; Roelofsen, B.; Deenen, L.L.M. van

    1975-01-01

    The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from

  15. Phospholipid fatty acid analysis as part of the Yucca Mountain Project. Final report

    International Nuclear Information System (INIS)

    Ringelberg, D.B.; White, D.C.

    1996-01-01

    In support of the Yucca Mountain subsurface microbial characterization project phospholipid fatty acid (PLFA) analyses for viable microbial biomass, community composition and nutritional status were performed. Results showed a positive correlation between a decrease in viable biomass and increase in depth with the lowest biomass values being obtained from the Topopah Spring geologic horizon. A plot of the ratio of non-viable (diglyceride fatty acids) to viable (PLFA) cells also showed the lowest values to derive from the Topopah Spring horizon. Estimations of microbial community composition, made from the patterns of PLFA recovered from the sediment samples, revealed similarities between samples collected within the same geologic horizons: Tiva Canyon, Pre-Pah Canyon and Topopah Spring. Results indicated the presence of mixed communities composed of gram positive, gram negative, actinomycete and obligate anaerobic bacteria. Culturable organisms, recovered from similar sediments, were representative of the same bacterial classifications although gram positive bacterial isolates typically outnumbered gram negative isolates. Within the gram negative bacterial community, corroborative indicators of physiological stress were apparent in the Topopah Spring horizon

  16. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity.

    Science.gov (United States)

    Hopperton, Kathryn E; Duncan, Robin E; Bazinet, Richard P; Archer, Michael C

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Erythrocyte polyunsaturated fatty acid status, memory, cognition and mood in older adults with mild cognitive impairment and healthy controls.

    Science.gov (United States)

    Milte, Catherine M; Sinn, Natalie; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Howe, Peter R C

    2011-01-01

    Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, pcognitive decline in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Genetic loci associated with plasma phospholipid N-3 fatty acids: A Meta-Analysis of Genome-Wide association studies from the charge consortium

    NARCIS (Netherlands)

    R.N. Lemaitre (Rozenn); T. Tanaka (Toshiko); W. Tang (Weihong); A. Manichaikul (Ani); M. Foy (Millennia); E.K. Kabagambe (Edmond); J.A. Nettleton (Jennifer ); I.B. King (Irena); L.-C. Weng; S. Bhattacharya (Sayanti); S. Bandinelli (Stefania); J.C. Bis (Joshua); S.S. Rich (Stephen); D.R. Jacobs (David); A. Cherubini (Antonio); B. McKnight (Barbara); S. Liang (Shuang); X. Gu (Xiangjun); K.M. Rice (Kenneth); C.C. Laurie (Cathy); T. Lumley (Thomas); B.L. Browning (Brian); B.M. Psaty (Bruce); Y.D.I. Chen (Yii-Der Ida); Y. Friedlander (Yechiel); L. Djousse (Luc); J.H.Y. Wu (Jason); D.S. Siscovick (David); A.G. Uitterlinden (André); L. Ferrucci (Luigi); M. Fornage (Myriam); M.Y. Tsai (Michael); D. Mozaffarian (Dariush); L.M. Steffen (Lyn); D.K. Arnett (Donna)

    2011-01-01

    textabstractLong-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide

  19. Low omega-3 index values and monounsaturated fatty acid levels in early pregnancy: an analysis of maternal erythrocytes fatty acids.

    Science.gov (United States)

    Hoge, Axelle; Bernardy, Florence; Donneau, Anne-Françoise; Dardenne, Nadia; Degée, Sylvie; Timmermans, Marie; Nisolle, Michelle; Guillaume, Michèle; Castronovo, Vincenzo

    2018-04-02

    It is unanimously recognized that the maternal nutritional status at the pregnancy onset influence both short-term and long-term health of the mother and offspring. Among several nutrients, LCPUFA, particularly from the omega-3 family, are of utmost importance. This study was carried out to determine fatty acids profile of maternal erythrocyte membranes in early pregnancy and to identify potential determinants impacting on this status. A cohort of 122 healthy women with a singleton pregnancy was included. Fatty acids were analyzed using gas chromatography. Because of the lack of cutoff values, reference ranges were used to determine fatty acids categories. Of concern, our data revealed low monounsaturated and long-chain omega-3 fatty acid status in most participants. More than 75% of Belgian pregnant women exhibited Pal, AO and EPA levels as well as IOM3 values below the laboratory reference ranges. Higher DHA concentrations and IOM3 values were found among foreign-nationality participants, non-smokers and physically active women. With regard to dietary factors, omega-3 supplements and diet seem to be complementary since DHA from supplements (but not from diet) and EPA from diet (but not from supplements) were found to be associated with higher concentrations of DHA and EPA, respectively. Our study presents evidence demonstrating that the fatty acid status of most early pregnant women is far from being optimal based on the admitted general reference values. Clinicians should be advice to carefully evaluate and improve this status to guarantee the best possible outcome for both the mother and the baby.

  20. Erythrocyte nanovesicles: Biogenesis, biolo

    Directory of Open Access Journals (Sweden)

    Gamaleldin I. Harisa

    2017-01-01

    Full Text Available Nanovesicles (NVs represent a novel transporter for cell signals to modify functions of target cells. Therefore, NVs play many roles in both physiological and pathological processes. This report highlights biogenesis, composition and biological roles of erythrocytes derived nanovesicles (EDNVs. Furthermore, we address utilization of EDNVs as novel drug delivery cargo as well as therapeutic target. EDNVs are lipid bilayer vesicles rich in phospholipids, proteins, lipid raft, and hemoglobin. In vivo EDNVs biogenesis is triggered by an increase of intracellular calcium levels, ATP depletion and under effect of oxidative stress conditions. However, in vitro production of EDNVs can be achieved via hypotonic treatment and extrusion of erythrocyte. NVs can be used as biomarkers for diagnosis, monitoring of therapy and drug delivery system. Many therapeutic agents are suggested to decrease NVs biogenesis.

  1. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Archer, Michael C., E-mail: m.archer@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada)

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  2. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    International Nuclear Information System (INIS)

    Hopperton, Kathryn E.; Duncan, Robin E.; Bazinet, Richard P.; Archer, Michael C.

    2014-01-01

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from 14 C-labeled acetate to those supplied exogenously as 14 C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare utilization of

  3. Functional State of Rat’s Erythrocytes Under Different Stress Conditions

    Directory of Open Access Journals (Sweden)

    A.A. Martusevich

    2016-08-01

    Full Text Available Background: In our early publications was shown that electrophorhetic motility of erythrocytes (EPME is a high effective criteria of adaptation response. This correlation is based on parallel development of adaptation syndrome and activation of the main organism regulatory systems, such as sympatoadrenalic and hypotalamo-hypophosial-adrenal ones. Objective: study of the influence of physical exercises and adrenaline injections on electrophorhetic motility, membrahes phospholipids spectrum and oxidative metabolism of the rats’ erythrocytes. Methods: Rats were divided into three equal groups. First group of animals was control (n=10; without any manipulations. Rats of second group were subjected to physical load in the form of a sailing duration of 15 minutes with a cargo amounting to 10% of animal body weight (water temperature – 26-280C. Rats of third group were intraperitoneally injected with adrenaline hydrochloride (0.1 mg/kg. Blood sampling was made from the sublingual vein in 15, 30, 60, 120 minutes and 24 hours after exposure. We estimated the dynamics of the electrophorhetic motility of erythrocytes (EPME, the phospholipid spectrum of erythrocytes membranes, the concentration of malonic dialdehyde (MDA and the state of the glutathione system. Results and conclusions: The study suggests that red blood cell as a biological system is capable for realization of stress response may develop a special “alarm reaction” after action of the stress agent. This response initiates activation of free radical processes and phospholipids profile in erythrocyte membranes with reducing of its electronegativity. This stage enhances the activity of the antioxidant system, is limiting the development of lipid peroxidation processes, and leads to the development of "adaptation stage" of the cellular system, coupled with the restoration of the electronegativity of the membrane and the mobilization of reserves of low molecular antioxidants, particularly

  4. Morphological and physical analysis of natural phospholipids-based biomembranes.

    Directory of Open Access Journals (Sweden)

    Adrien Jacquot

    Full Text Available BACKGROUND: Liposomes are currently an important part of biological, pharmaceutical, medical and nutritional research, as they are considered to be among the most effective carriers for the introduction of various types of bioactive agents into target cells. SCOPE OF REVIEW: In this work, we study the lipid organization and mechanical properties of biomembranes made of marine and plant phospholipids. Membranes based on phospholipids extracted from rapeseed and salmon are studied in the form of liposome and as supported lipid bilayer. Dioleylphosphatidylcholine (DOPC and dipalmitoylphosphatidylcholine (DPPC are used as references to determine the lipid organization of marine and plant phospholipid based membranes. Atomic force microscopy (AFM imaging and force spectroscopy measurements are performed to investigate the membranes' topography at the micrometer scale and to determine their mechanical properties. MAJOR CONCLUSIONS: The mechanical properties of the membranes are correlated to the fatty acid composition, the morphology, the electrophoretic mobility and the membrane fluidity. Thus, soft and homogeneous mechanical properties are evidenced for salmon phospholipids membrane containing various polyunsaturated fatty acids. Besides, phase segregation in rapeseed membrane and more important mechanical properties were emphasized for this type of membranes by contrast to the marine phospholipids based membranes. GENERAL SIGNIFICANCE: This paper provides new information on the nanomechanical and morphological properties of membrane in form of liposome by AFM. The originality of this work is to characterize the physico-chemical properties of the nanoliposome from the natural sources containing various fatty acids and polar head.

  5. The composition of polyunsaturated fatty acids in erythrocytes of lactating mothers and their infants

    DEFF Research Database (Denmark)

    Jørgensen, M.H.; Nielsen, P.K.; Michaelsen, K.F.

    2006-01-01

    Long-chain polyunsaturated fatty acids (LCPUFA) in breastmilk, specifically docosahexaenoic acid (DHA), are important for infant brain development. Accretion of DHA in the infant brain is dependent on DHA-status, intake and metabolism. The aim of this study was to describe changes in maternal...... and infant erythrocyte (RBC) DHA-status during the first four months of lactation. We examined 17 mothers and their term infants at 1, 2 and 4 months of age. Milk samples and RBC from the mothers and infants were obtained and analysed for fatty acid composition. Comparative analysis of the results showed...... that the content of DHA in maternal RBC-phosphatidylcholine (PE) decreased over the four month period and this was not accompanied by a decrease in DHA in infant RBC-PE (P = 0.005). The ratio of n-6 PUFA to n-3 PUFA increased over time in maternal RBC-PE, but not in infant RBC-PE (P

  6. Different in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study

    NARCIS (Netherlands)

    Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Groenendijk-van Woudenbergh, G.J.; Feskens, E.J.M.

    2014-01-01

    Background Conflicting evidence exists regarding the association between saturated fatty acids (SFAs) and type 2 diabetes. In this longitudinal case-cohort study, we aimed to investigate the prospective associations between objectively measured individual plasma phospholipid SFAs and incident type 2

  7. Association between vascular calcification scores on plain radiographs and fatty acid contents of erythrocyte membrane in hemodialysis patients.

    Science.gov (United States)

    Son, Young K; Lee, Su M; Kim, Seong E; Kim, Ki H; Lee, Seon Y; Bae, Hae R; Han, Jin Y; Park, Yongsoon; An, Won S

    2012-01-01

    Vascular calcification (VC) scores determined by using simple plain radiographic films are known to be associated with coronary artery disease and mortality in patients undergoing hemodialysis (HD). Omega-3 fatty acid (FA) has been shown to reduce ectopic calcifications in an animal model, and it has also been shown that erythrocyte membrane omega-3 FA content is an independent discriminator of coronary artery disease. The present study was designed to demonstrate relations between VC scores and erythrocyte membrane FA contents in patients undergoing HD. A cross-sectional study was carried out. The study was carried out at an outpatient hemodialysis unit at Dong-A University Hospital, Busan, Republic of Korea. A total of 31 patients undergoing HD were recruited. Patients with significant malnutrition, a short duration of dialysis (acid and docosahexaenoic acid were not found to be related with VC on simple plain radiographic films. However, erythrocyte membrane contents of oleic acid and total monounsaturated FA (MUFA) were significantly higher in patients with significant VC scores. Furthermore, erythrocyte membrane contents of MUFA and oleic acid were found to be negatively associated with high-density lipoprotein cholesterol level and positively associated with triglyceride level. Erythrocyte membrane contents of MUFA and oleic acid were found to be associated with VC scores determined using plain radiographs and with dyslipidemia in patients undergoing HD. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    Directory of Open Access Journals (Sweden)

    Vito Verardo

    2017-01-01

    Full Text Available Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.

  9. Fatty acid profile of maternal and fetal erythrocytes and placental expression of fatty acid transport proteins in normal and intrauterine growth restriction pregnancies.

    Science.gov (United States)

    Assumpção, Renata P; Mucci, Daniela B; Fonseca, Fernanda C P; Marcondes, Henrique; Sardinha, Fátima L C; Citelli, Marta; Tavares do Carmo, Maria G

    2017-10-01

    Long-chain polyunsaturated fatty acids (LC-PUFA), mainly docosahexaenoic (DHA) and arachidonic acids (AA), are critical for adequate fetal growth and development. We investigated mRNA expression of proteins involved in hydrolysis, uptake and/or transport of fatty acids in placenta of fifteen full term normal pregnancies and eleven pregnancies complicated by intrauterine growth restriction (IUGR) with normal umbilical blood flows. The mRNA expression of LPL, FATPs (-1, -2 and -4) and FABPs (-1 and -3) was increased in IUGR placentas, however, tissue profile of LC-PUFA was not different between groups. Erythrocytes from both mothers and fetuses of the IUGR group showed lower concentrations of AA and DHA and inferior DHA/ALA ratio compared to normal pregnancies (P < 0.05). We hypothesize that reduced circulating levels of AA and DHA could up-regulate mRNA expression of placental fatty acids transporters, as a compensatory mechanism, however this failed to sustain normal LC-PUFA supply to the fetus in IUGR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    International Nuclear Information System (INIS)

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max [L.] Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with [1- 14 C] acetate, 1 mM Na acetate and 50 μg/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction

  11. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Forouhi, N.G.; Imamura, Fumiaki; Sharp, S.J.; Koulman, A.; Schulze, M.B.; Feskens, E.J.M.

    2016-01-01

    Background
    Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations.

    Methods and Findings
    Plasma phospholipid PUFAs were measured by gas chromatography

  12. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes : The EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Forouhi, Nita G.; Imamura, Fumiaki; Sharp, Stephen J.; Koulman, Albert; Schulze, Matthias B.; Zheng, Jusheng; Ye, Zheng; Sluijs, Ivonne; Guevara, Marcela; Huerta, José María; Kröger, Janine; Wang, Laura Yun; Summerhill, Keith; Griffin, Julian L.; Feskens, Edith J M; Affret, Aurélie; Amiano, Pilar; Boeing, Heiner; Dow, Courtney; Fagherazzi, Guy; Franks, Paul W.; Gonzalez, Carlos; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay Tee; Kühn, Tilman; Mortensen, Lotte Maxild; Nilsson, Peter M.; Overvad, Kim; Pala, Valeria; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rodriguez-Barranco, Miguel; Rolandsson, Olov; Sacerdote, Carlotta; Scalbert, Augustin; Slimani, Nadia; Spijkerman, Annemieke M W; Tjonneland, Anne; Tormo, Maria Jose; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Langenberg, Claudia; Riboli, Elio; Wareham, Nicholas J.

    2016-01-01

    Background: Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations. Methods and Findings: Plasma phospholipid PUFAs were measured by gas chromatography among 12,132

  13. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians.

    Science.gov (United States)

    Cribb, Lachlan; Murphy, Jenifer; Froud, Amy; Oliver, Georgina; Bousman, Chad A; Ng, Chee H; Sarris, Jerome

    2017-05-29

    Polyunsaturated fatty acids (PUFAs) play an important role in the pathophysiology of major depressive disorder (MDD), related, in part, to their role in inflammatory systems. The enzymes δ-5 and δ-6 desaturase are the rate-limiting steps in the metabolism of PUFAs and are encoded in the genes fatty acid desaturase (FADS) 1 and 2, respectively. Single nucleotide polymorphisms (SNPs) and haplotypes within the FADS gene cluster have been shown to influence PUFA composition. The objective of this study was to determine whether key omega-3 (n-3) and omega-6 (n-6) fatty acids may be associated with depression, and to explore the role of FADS genotype in PUFA variation. Four erythrocyte long chain (LC) fatty acids (linoleic acid [LA], α-linolenic acid [ALA], arachidonic acid [AA] and Eicosapentaenoic acid [EPA]), as well as six SNPs (rs174537, rs174547, rs174570, rs174575, rs498793 and rs3834458) within the FADS gene cluster were measured in a sample of 207 participants (154 with MDD versus 53 non-depressed controls). The precursor LC-PUFAs LA and ALA appeared to be negatively associated with depression (P depression (P Precursor LC-PUFAs, LA and ALA, appear to be associated with MDD and potentially modulated by genetic variation in the FADS gene cluster. These results provide support for the consideration of PUFA composition, diet and FADS genetic variation in the pathophysiology of MDD.

  14. Long-chain polyunsaturated fatty acids in breast-milk and erythrocytes and neurodevelopmental outcomes in Danish late-preterm infants

    DEFF Research Database (Denmark)

    Andersen, Stine Brøndum; Hellgren, Lars I; Larsen, Mette Krogh

    2015-01-01

    found that breast-milk content of arachidonic acid (AA) and docosahexaenoic acid (DHA) was similar to reported fatty acid compositions of term human milk. Infant RBC-AA decreased from 1 week to 1 month of age and the size of the decrease was associated with better NNNS-scores at 1 month, specifically......Background: The supply of long-chain polyunsaturated fatty acids (LC-PUFA) during pregnancy and early lactation has been shown to affect cognitive development in preterm infants, but the effect on early neurodevelopment of late-preterm infants has not yet been examined. Aim: To examine the fatty...... acid composition of late-preterm human milk and identify possible associations between infant LC-PUFA status and perinatal as well as 1-year neurobehavioral outcomes. Methods: Mother’s milk and erythrocytes (RBC) were sampled from 53 Danish late-preterm infants (33-36 weeks of gestation) 1 week and 1...

  15. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  17. Phospholipid fatty acid analysis to monitor the co-composting process of olive oil mill wastes and organic household refuse

    OpenAIRE

    Barje , F.; Amir , S.; Winterton , Peter; Pinelli , Eric; Merlina , Georges; Cegarra , J.; Revel , Jean-Claude; Hafidi , Mohamed

    2008-01-01

    International audience; The co-composting of olive oil mill wastes and household refuse was followed for 5 months. During the thermophilic phase of composting, the aerobic heterotrophic bacteria (AHB) count, showed a significant rise with a slight regression of fungal biomass. In the same way, phospholipid fatty acids PLFAs common in bacteria, showed a significant increase of hydroxyl and branched PLFAs. The evaluation of the ratio of octadecenoic PLFAs to stearic acid (C18:1/C18:0) revealed ...

  18. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    Science.gov (United States)

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  19. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    Science.gov (United States)

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  20. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    Directory of Open Access Journals (Sweden)

    Josef Trögl

    2015-02-01

    Full Text Available The phospholipid fatty acid (PLFA content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS. Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm of the input microbial suspension (R2 = 0.99. After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0 to their metabolic precursors (16:1ω7 + 18:1ω7, an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications.

  1. Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

    Science.gov (United States)

    Mašek, Tomislav; Starčević, Kristina

    2017-07-13

    We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Keloids in rural black South Africans. Part 2: dietary fatty acid intake and total phospholipid fatty acid profile in the blood of keloid patients.

    Science.gov (United States)

    Louw, L; Dannhauser, A

    2000-11-01

    In the second part of this study, emphasis is placed on nutritional intakes (fatty acids and micronutrients) and fatty acid intake and metabolism in the blood, respectively, according to a combined 24 h recall and standardized food frequency questionnaire analyses of keloid prone patients (n=10), compared with normal black South Africans (n=80), and total phospholipid blood (plasma and red blood cell ) analyses of keloid patients (n=20), compared with normal individuals (n=20). Lipid extraction and fractionation by standard procedures, total phospholipid (TPL) separation with thin layer chromatography, and fatty acid methyl ester analyses with gas liquid chromatography techniques were used. Since nutrition may play a role in several disease disorders, the purpose of this study was to confirm or refute a role for essential fatty acids (EFAs) in the hypothesis of keloid formations stated in part 1 of this study. (1)According to the Canadian recommendation (1991), we observed that in keloid patients linoleic acid (LA) and arachidonic acid (AA) dietary intakes, as EFAs of the omega-6-series, are higher than the recommended 7-11 g/d. However, the a-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) dietary intakes, as EFAs of the omega-3 series, are lower than the recommendation of 1.1-1.5 g/d. This was also the case in the control group, where a higher dietary intake of the omega-6 fatty acids and a slightly lower dietary intake of the omega-3 fatty acids occurred. Thus, we confirm a high dietary intake of LA (as a product of organ meats, diary products and many vegetable oils) and AA (as a product of meats and egg yolks), as well as lower dietary intakes of ALA (as a product of grains, green leafy vegetables, soy oil, rapeseed oil and linseed), and EPA and DHA (as products of marine oils). Lower micronutrient intakes than the recommended dietary allowances were observed in the keloid group that may influence EFA metabolism and/or collagen

  3. Erythrocyte membrane fatty acids and breast cancer risk: a prospective analysis in the nurses' health study II.

    Science.gov (United States)

    Hirko, Kelly A; Chai, Boyang; Spiegelman, Donna; Campos, Hannia; Farvid, Maryam S; Hankinson, Susan E; Willett, Walter C; Eliassen, A Heather

    2018-03-15

    The roles of specific fatty acids in breast cancer etiology are unclear, particularly among premenopausal women. We examined 34 individual fatty acids, measured in blood erythrocytes collected between 1996 and 1999, and breast cancer risk in a nested case-control study of primarily premenopausal women in the Nurses' Health Study II. Breast cancer cases diagnosed after blood collection and before June 2010 (n = 794) were matched to controls and conditional logistic regression was used to estimate OR's (95% CI's) for associations of fatty acids with breast cancer; unconditional logistic regression was used for stratified analyses. Fatty acids were not significantly associated with breast cancer risk overall; however, heterogeneity by body mass index (BMI) was observed. Among overweight/obese women (BMI ≥ 25), several odd-chain saturated (SFA, e.g. 17:0, OR Q4vsQ1 (95% CI) =1.85 (1.18-2.88), p trend =0.006 p int fatty acids (SFA 15:0 + 17:0 + TFA 16:1n-7t; OR Q4vsQ1 (95% CI) =1.83(1.16-2.89), p trend =0.005, p int fatty acids (n-3 PUFA, e.g. alpha-linolenic acid; OR Q4vsQ1 (95% CI) =0.57 (0.36-0.89), p trend =0.017, p int =0.03) were inversely associated with breast cancer. Total SFA were inversely associated with breast cancer among women with BMI fatty acids were not associated with breast cancer overall, our findings suggest positive associations of several SFA, TFA and dairy-derived fatty acids and inverse associations of n-3 PUFA with breast cancer among overweight/obese women. Given these fatty acids are influenced by diet, and therefore are potentially modifiable, further investigation of these associations among overweight/obese women is warranted. © 2017 UICC.

  4. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    Science.gov (United States)

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  5. Storage stability of marine phospholipids emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale

    Marine phospholipids (MPL) are believed to provide more advantages than fish oil from the same source. They are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic...... acids (DHA) than oily triglycerides (fish oil). Therefore, the objective of this study is to explore the feasibility of using marine phospholipids emulsions as delivery system through investigation of the physical, oxidative and hydrolytic stability of MPL emulsions with or without addition of fish oil....... The effect of initial Peroxide Value, total lipids, phospholipids and antioxidants content on stability of MPL emulsions were studied. The physical stability was investigated through measurement of particle size distribution and creaming stability, which involve measurement of changes (%) in emulsion volume...

  6. Synthesis of sn-1 functionalized phospholipids as substrates for secretory phospholipase A2

    DEFF Research Database (Denmark)

    Linderoth, Lars; Peters, Günther H.J.; Jørgensen, K.

    2007-01-01

    Secretory phospholipase A2 (sPLA2) represents a family of small water-soluble enzymes that catalyze the hydrolysis of phospholipids in the sn-2 position liberating free fatty acids and lysophospholipids. Herein we report the synthesis of two new phospholipids (1 and 2) with bulky allyl-substituen......Secretory phospholipase A2 (sPLA2) represents a family of small water-soluble enzymes that catalyze the hydrolysis of phospholipids in the sn-2 position liberating free fatty acids and lysophospholipids. Herein we report the synthesis of two new phospholipids (1 and 2) with bulky allyl...... of the allyl-substituents by a zinc mediated allylation. Small unilamellar liposomes composed of phospholipids 1 and 2 were subjected to sPLA2 activity measurements. Our results show that only phospholipid 1 is hydrolyzed by the enzyme. Molecular dynamics simulations revealed that the lack of hydrolysis...

  7. Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2,4-D- exposed rats

    Directory of Open Access Journals (Sweden)

    Nakbi Amel

    2010-08-01

    Full Text Available Abstract Background Oxidative stress produced by reactive oxygen species (ROS has been linked to the development of several diseases such as cardiovascular, cancer, and neurodegenerative diseases. This study investigates the possible protective effect of extra virgin olive oil (EVOO, lipophilic fraction (OOLF and hydrophilic fraction (OOHF on oxidative stress and fatty acid profile of erythrocytes in 2,4-D treated rats. Methods Male Wistar rats were divided randomly into eight groups: control (C, (2,4-D at a dose of 5 mg/kg b.w., (2,4-D/EVOO was given 2,4-D plus EVOO, (2,4-D/OOHF that received 2,4-D plus hydrophilic fraction, (2,4-D/OOLF treated with 2,4-D plus lipophilic fraction, (EVOO that received only EVOO, (OOHF was given hydrophilic fraction and (OOLF treated with lipophilic fraction. These components were daily administered by gavages for 4 weeks. Results 2,4-D treatment lead to decrease of antioxidant enzyme activities, namely, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and glutathione reductase (GR associated with a higher amount of MDA level. Erythrocyte membranes' fatty acid composition was also significantly modified with 2,4-D exposure. EVOO and hydrophilic fraction supplemented to rats with or not 2,4-D treatment enhanced the antioxidant enzyme activities and reduced the MDA level. However, lipophilic fraction did not show any improvement in oxidative damage induced by 2,4-D in spite its richness in MUFA and vitamins. Conclusion EVOO administered to 2,4-D-treated rats protected erythrocyte membranes against oxidative damage by means of preventing excessive lipid peroxidation to increase the MUFA composition and increase maintaining antioxidants enzymes at normal concentrations.

  8. [The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity].

    Science.gov (United States)

    Onopchenko, O V; Kosiakova, H V; Horid'ko, T M; Klimashevskyĭ, V M; Hula, N M

    2014-01-01

    We used alimentary obesity-induced insulin resistance (IR) model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic) and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic) fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight) caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influence of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  9. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    Science.gov (United States)

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils

    DEFF Research Database (Denmark)

    Ferrari, Alejandro E.; Ravnskov, Sabine; Larsen, John

    2015-01-01

    practices while NLFA 20:0 appears to be a good marker of HRsoils despite season or location. The PLFA-based taxonomic biomarkers for total bacteria, Gramnegativebacteria and arbuscular mycorrhiza showed a significant trend NE>HR>LR in the wintersampling. HR management was also characterized by high levels......Analysis of phospholipids (PLFA) and neutral lipids fatty acids (NLFA) was used to characterizeno-till productive agricultural soils associated with different crop rotation levels, replicated across a400 km transect in the Argentinean pampas, during two sampling seasons, summer and winter...

  11. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    Science.gov (United States)

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  12. The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity

    Directory of Open Access Journals (Sweden)

    O. V. Onopchenko

    2014-02-01

    Full Text Available We used alimentary obesity-induced insulin resistance (IR model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influen­ce of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  13. Erythrocyte fatty acids and risk of proliferative and nonproliferative fibrocystic disease in women in Shanghai, China.

    Science.gov (United States)

    Shannon, Jackilen; King, Irena B; Lampe, Johanna W; Gao, Dao Li; Ray, Roberta M; Lin, Ming-Gang; Stalsberg, Helge; Thomas, David B

    2009-01-01

    Although benign breast changes are more common than breast cancer, little evidence regarding risk factors for benign breast conditions is available. Omega-3 (n-3) fatty acids have antiinflammatory and antiproliferative actions and may be important in reducing the risk of benign conditions. There is a lack of research on the association of n-3 fatty acids with risk of benign fibrocystic breast changes. The objectives of the study were to evaluate the role of n-3 and other fatty acids in the development of benign proliferative fibrocystic conditions (PFCs) and nonproliferative fibrocystic conditions (NPFCs) in the breast and to evaluate the progression of fibrocystic changes in breast cancer. We conducted a case-control study to determine erythrocyte fatty acid concentrations in 155 women with NPFCs, 185 women with PFCs, 241 women with breast cancer (127 with nonproliferative and 114 with proliferative changes in the noncancerous extratumoral mammary epithelium), and 1,030 control subjects. We estimated the relative risk of NPFCs, PFCs, and breast cancer with proliferative and nonproliferative changes in extratumoral tissue compared with the risk of these changes alone. Women in the highest quartile of eicosapentaenoic acid concentrations were 67% less likely to have an NPFC alone or with breast cancer and 49% less likely to have breast cancer than were women with PFCs. gamma-Linolenic acid (18:3n-6) was positively associated with all fibrocystic and cancerous conditions. Palmitic:palmitoleic acid (n-7 saturation index) was inversely associated with risk in all comparisons. Our results support a protective effects of n-3 fatty acid intake and the n-7 saturation index against benign fibrocystic breast changes and the progression of proliferative changes to breast cancer.

  14. Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-chun; WANG Guang-huo; YAO Huai-ying

    2007-01-01

    The microbial communities under irrigated rice cropping with different fertilizer treatments, including control (CK), PK, NK, NP, NPK fertilization, were investigated using phospholipid fatty acid (PLFA) profile method. The results of this study revealed that the fertilizer practice had an impact on the community structure of specific microbial groups. The principal components analysis (PCA) showed that proportion of the actinomycete PLFAs (10Me 18:0 and 10Me 16:0) were the lowest in the PK treatment and the highest in the NPK treatment, which means that soil nitrogen status affected the diversity of actinomycetes, whereas nitrogen cycling was related to the actinomycets. Under CK treatment, the ratio of Gram-positive to Gram-negative bacteria was lower compared with that in fertilizer addition treatments, indicating that fertilizer application stimulated Gram-positive bacterial population in paddy soil. The fatty acid 18:2ω6, 9, which is considered to be predominantly of fungal origin, was at low level in all the treatments. The ratio of cy19:0 to 18:1ω7, which has been proposed as an indicator of stress conditions, decreased in PK treatment. Changes of soil microbial community under different fertilizer treatments of paddy soil were detected in this study; however, the causes that lead to changes in the microbial community still needs further study.

  15. Stimulation of ceramide formation and suicidal erythrocyte death by vitamin K(3) (menadione).

    Science.gov (United States)

    Qadri, Syed M; Eberhard, Matthias; Mahmud, Hasan; Föller, Michael; Lang, Florian

    2009-11-25

    Vitamin K(3) is an essential micronutrient required for the activation of coagulation factors and thus hemostasis. Administration of vitamin K(3) analogues may cause anemia, which at least in theory could be due to stimulation of suicidal erythrocyte death or eryptosis characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane leading to exposure of phosphatidylserine at the erythrocyte surface. Eryptosis is triggered by an increase in the cytosolic Ca(2+) activity, by ceramide and by energy depletion (decrease of cytosolic ATP). The present experiments explored, whether vitamin K(3) may influence eryptosis. Hemolysis was estimated from the supernatant hemoglobin concentration, phosphatidylserine-exposing erythrocytes from annexin V-binding in fluorescence-activated cell sorter (FACS) analysis, erythrocyte volume from forward scatter in FACS analysis, ceramide formation from binding of fluorescent antibodies, and erythrocyte ATP content from a luciferin-luciferase assay. As a result, vitamin K(3) (> or =1microM) caused lysis of an only small fraction of erythrocytes, but significantly increased ceramide formation, significantly increased the percentage of annexin V-binding erythrocytes, significantly decreased forward scatter and, at higher concentrations, significantly decreased the cellular ATP content. In conclusion, vitamin K(3) stimulates suicidal erythrocyte death, an effect at least partially due to ceramide formation and ATP depletion.

  16. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein

    NARCIS (Netherlands)

    van Meer, G.|info:eu-repo/dai/nl/068570368; Poorthuis, B.J.H.M.; Wirtz, K.W.A.|info:eu-repo/dai/nl/068427956; op den Kamp, J.A.F.; van Deenen, L.L.M.

    1980-01-01

    The exchange of phosphatidylcholine between intact human or rat erythrocytes and rat liver microsomes was greatly stimulated by phosphatidylcholine-specific exchange proteins from rat liver and beef liver. It was found, however, that compared to the exchange reaction between phospholipid vesicles

  17. Effect of low-dose gamma radiation on individual phospholipids in aqueous suspension

    International Nuclear Information System (INIS)

    Tinsley, P.W.; Maerker, G.

    1993-01-01

    A series of individual phospholipids (phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines and phosphatidylglycerols) containing either saturated or unsaturated fatty acid chains was irradiated at 9.66 kgy and 0.4 degree C in aqueous suspension. The phospholipids were analyzed by normal-phase high-performance liquid chromatography on a silica column with an evporative light scattering detector. Phospholipid disppearance and production of two radiolytic products, phosphatidic acid and the lysophospholipid, after irradiation were quantitated from calibration curves of synthetic standards. Dipalmitoylphosphatidic acid and monopalmitoylphosphatidylcholine from irradiated dipalmitoylphosphatidylcholine were identified by liquid secondary-ion mass spectrometry

  18. Induction of Suicidal Erythrocyte Death by Novobiocin

    Directory of Open Access Journals (Sweden)

    Adrian Lupescu

    2014-03-01

    Full Text Available Background: Novobiocin, an aminocoumarin antibiotic, interferes with heat shock protein 90 and hypoxia inducible factor dependent gene expression and thus compromises cell survival. Similar to survival of nucleated cells, erythrocyte survival could be disrupted by eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phospholipd scrambling of the cell membrane with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i. The Ca2+ sensitivity of phospholipid scrambling is enhanced by ceramide. The present study explored, whether novobiocin elicits eryptosis. Methods: [Ca2+]i was estimated from Fluo3-fluorescence, ceramide abundance utilizing fluorescent antibodies, cell volume from forward scatter, phosphatidylserine-exposure from annexin V binding. Results: A 48 hours exposure to novobiocin (500 µM was followed by a significant increase of [Ca2+]i, decrease of forward scatter, increase of annexin-V-binding and enhanced ceramide formation. Removal of extracellular Ca2+ virtually abrogated the increase of annexin-V-binding following novobiocin exposure. Conclusions: Novobiocin stimulates eryptosis, an effect at least in part due to entry of extracellular Ca2+ and formation of ceramide.

  19. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  20. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein

    NARCIS (Netherlands)

    van Meer, G.; Poorthuis, B. J.; Wirtz, K. W.; Op den Kamp, J. A.; van Deenen, L. L.

    1980-01-01

    1. The exchange of phosphatidylcholine between intact human or rat erythrocytes and rat liver microsomes was greatly stimulated by phosphatidylcholine-specific exchange proteins from rat liver and beef liver. It was found, however, that compared to the exchange reaction between phospholipid vesicles

  1. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  2. Lipopeptide-Induced Suicidal Erythrocyte Death Correlates with the Degree of Acylation

    Directory of Open Access Journals (Sweden)

    Abdulla Al Mamun Bhuyan

    2017-01-01

    Full Text Available Background/Aims: Consequences of bacterial infection include anemia, which could result from stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Bacterial components known to stimulate eryptosis include lipopeptides. Signaling mediating the triggering of eryptosis include increased cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and cellular accumulation of ceramide. The present study aimed to define the molecular requirements for lipopeptide-induced cell membrane scrambling. Methods: Human erythrocytes were incubated for 48 hours in the absence and presence of 1 or 5 µg/ml of the synthetic lipopeptides Pam1 (lipopeptide with one fatty acid, Pam2 (lipopeptide with two fatty acids, or Pam3 (lipopeptide with three fatty acids. In the following phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCF dependent fuorescence, and ceramide abundance utilizing specific antibodies. Results: Pam1 (5 µg/ml, Pam2 (5 µg/ml and Pam3 (1 and 5 µg/ml significantly increased the percentage of annexin-V-binding to erythrocytes in a dose dependent manner, which was largely independent of Ca2+. Pam1-3 increased the percentage of both, swollen and shrunken erythrocytes without significantly modifying the average forward scatter. They also increased reactive oxygen species (ROS and ceramide abundance. In all assays the effect on eryptosis increased with increasing number of fatty acids, with Pam3 showing always the strongest effect. In contrast, a comparison of the effect of Pam1-3 on TLR2 dependent immune stimulation showed that not Pam3 but Pam2 displayed the strongest activity, and that immune stimulation was triggered at much lower concentrations than eryptosis. Conclusions: Lipopeptides are not only important

  3. Morphological Effects and Antioxidant Capacity of Solanum crispum (Natre) In Vitro Assayed on Human Erythrocytes.

    Science.gov (United States)

    Suwalsky, Mario; Ramírez, Patricia; Avello, Marcia; Villena, Fernando; Gallardo, María José; Barriga, Andrés; Manrique-Moreno, Marcela

    2016-06-01

    In order to gain insight into the molecular mechanism of the antioxidant properties of Solanum crispum, aqueous extracts of its leaves were assayed on human erythrocytes and molecular models of its membrane. Phenolics and alkaloids were detected by HPLC-MS. Scanning electron and defocusing microscopy showed that S. crispum changed erythrocytes from the normal shape to echinocytes. These results imply that molecules present in the aqueous extracts were located in the outer monolayer of the erythrocyte membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that S. crispum preferentially interacted with DMPC bilayers. Experiments regarding its antioxidant properties showed that S. crispum neutralized the oxidative capacity of HClO on DMPE bilayers; defocusing microscopy and hemolysis assays demonstrated the protective effect of S. crispum against the oxidant effects of HClO on human erythrocytes.

  4. Efficient and Specific Analysis of Red Blood Cell Glycerophospholipid Fatty Acid Composition

    OpenAIRE

    Klem, Sabrina; Klingler, Mario; Demmelmair, Hans; Koletzko, Berthold

    2012-01-01

    BACKGROUND: Red blood cell (RBC) n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation. AIM: We developed a method for the specific a...

  5. Erythrocyte fatty acids and risk of proliferative and nonproliferative fibrocystic disease in women in Shanghai, China123

    Science.gov (United States)

    Shannon, Jackilen; King, Irena B; Lampe, Johanna W; Gao, Dao Li; Ray, Roberta M; Lin, Ming-Gang; Stalsberg, Helge; Thomas, David B

    2009-01-01

    Background: Although benign breast changes are more common than breast cancer, little evidence regarding risk factors for benign breast conditions is available. Omega-3 (n–3) fatty acids have antiinflammatory and antiproliferative actions and may be important in reducing the risk of benign conditions. There is a lack of research on the association of n–3 fatty acids with risk of benign fibrocystic breast changes. Objectives: The objectives of the study were to evaluate the role of n–3 and other fatty acids in the development of benign proliferative fibrocystic conditions (PFCs) and nonproliferative fibrocystic conditions (NPFCs) in the breast and to evaluate the progression of fibrocystic changes in breast cancer. Design: We conducted a case-control study to determine erythrocyte fatty acid concentrations in 155 women with NPFCs, 185 women with PFCs, 241 women with breast cancer (127 with nonproliferative and 114 with proliferative changes in the noncancerous extratumoral mammary epithelium), and 1030 control subjects. We estimated the relative risk of NPFCs, PFCs, and breast cancer with proliferative and nonproliferative changes in extratumoral tissue compared with the risk of these changes alone. Results: Women in the highest quartile of eicosapentaenoic acid concentrations were 67% less likely to have an NPFC alone or with breast cancer and 49% less likely to have breast cancer than were women with PFCs. γ-Linolenic acid (18:3n–6) was positively associated with all fibrocystic and cancerous conditions. Palmitic:palmitoleic acid (n–7 saturation index) was inversely associated with risk in all comparisons. Conclusion: Our results support a protective effects of n–3 fatty acid intake and the n–7 saturation index against benign fibrocystic breast changes and the progression of proliferative changes to breast cancer. PMID:19056601

  6. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  7. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: the Prevencion con Dieta Mediterranea Study.

    Science.gov (United States)

    Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina

    2009-11-01

    A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.

  8. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  9. Water column distribution of phospholipid-derived fatty acids of marine microorganisms in the Humboldt Current system off northern Chile

    Science.gov (United States)

    Espinosa, Luisa F.; Pantoja, Silvio; Pinto, Luis A.; Rullkötter, Jürgen

    2009-07-01

    Suspended particulate matter samples from the oxygenated surface zone, the oxygen minimum zone, and the oxygenated deeper zone were collected from the upwelling area off Antofagasta in northern Chile during austral autumn (April 2001) to study the composition of microbial phospholipid-derived fatty acid methyl esters, using capillary gas chromatography-mass spectrometry. Whereas phytoplanktonic carbon dominated living organic matter near the coast, bacterial carbon was most abundant offshore. The biomarker distribution showed some differences between the depth levels sampled, such as the highest microbial abundance in the epipelagic zone represented by phytoplankton, especially diatoms, and a homogeneous distribution of bacterial biomarkers, with no indication of vertical segregation of functional groups as previously thought.

  10. Effects of Chain Length and Saturability of Fatty Acids on Phospholipids and Proteins in Plasma Membranes of Bovine Mammary Gland.

    Science.gov (United States)

    Yan, Qiongxian; Tang, Shaoxun; Han, Xuefeng; Bamikole, Musibau Adungbe; Zhou, Chuanshe; Kang, Jinhe; Wang, Min; Tan, Zhiliang

    2016-12-01

    Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > β-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm -1 for phospholipids, and at 1628 and 1560 cm -1 for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The β-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.

  11. Efficient and specific analysis of red blood cell glycerophospholipid fatty acid composition.

    Directory of Open Access Journals (Sweden)

    Sabrina Klem

    Full Text Available BACKGROUND: Red blood cell (RBC n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation. AIM: We developed a method for the specific analysis of RBC glycerophospholipids. The application of the new method in a DHA supplementation trial and the comparison to established markers will determine the relevance of RBC GPL as a valid fatty acid status marker in humans. METHODS: Methyl esters of glycerophospholipid fatty acids are selectively generated by a two step procedure involving methanolic protein precipitation and base-catalysed methyl ester synthesis. RBC GPL solubilisation is facilitated by ultrasound treatment. Fatty acid status in RBC glycerophospholipids and other established markers were evaluated in thirteen subjects participating in a 30 days supplementation trial (510 mg DHA/d. OUTCOME: The intra-assay CV for GPL fatty acids ranged from 1.0 to 10.5% and the inter-assay CV from 1.3 to 10.9%. Docosahexaenoic acid supplementation significantly increased the docosahexaenoic acid contents in all analysed lipid fractions. High correlations were observed for most of the mono- and polyunsaturated fatty acids, and for the omega-3 index (r = 0.924 between RBC phospholipids and glycerophospholipids. The analysis of RBC glycerophospholipid fatty acids yields faster, easier and less costly results equivalent to the conventional analysis of RBC total phospholipids.

  12. [Trans fatty acids in the nutrition of children with neurological disorders].

    Science.gov (United States)

    Cortés, E; Aguilar, M J; Rizo, M M; Hidalgo, M J

    2013-01-01

    Trans-fatty acids are present in various foods, being the only source of the same in humans. Its presence in high concentrations is a risk factor for health, being involved in a series of events, cardiovascular, inflammatory, etc. Therefore, steps have been taken for its decrease in the diet. The aim is to determine serum and phospholipids of membranes in healthy children and neurological alterations. It has analyzed the fatty acids trans in 34 healthy children and 374 with various neurological pathologies. Serum and blood cells, making the lipid extraction, samples have been separation of the phospholipids of cells membranes, methylation of fatty acids, separation by gas chromatography and quantification using mass detector. The data have been processed statistically. The distribution of trans fatty acids and their sum is not normally distributed, so its nonparemetric tests were used. The values are higher than in serum phospholipids and membrane with a weak but significant correlation. The tC18: 1 is in a double proportion in children with neurological disorders in healthy children, both in serum and membrane phospholipids, with significant differences. The highest proportion of trans-fatty acids in the group of children with neurological disorders is caused no doubt by an increase in intake, due to less adequate food. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  13. Effect of polyunsaturated fatty acids and phospholipids on [3H]-vitamin E incorporation into pulmonary artery endothelial cell membranes

    International Nuclear Information System (INIS)

    Sekharam, K.M.; Patel, J.M.; Block, E.R.

    1990-01-01

    Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E

  14. Influence of dietary triacylglycerol structure and level of n-3 fatty acids administered during development on brain phospholipids and memory and learning ability of rats

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Hougaard, K.S.

    2004-01-01

    of the nervous system. Methods: Pregnant rats were fed experimental diets from the 8th day of pregnancy throughout lactation. After weaning and until 13 weeks of age, the pups were fed the same diet as their dams. The experimental diets contained either a structured oil, a linseed oil, or a fish oil...... and 22:6n-3 adding up to a total of 2 mol% n-3 fatty acids. The effects of the experimental diets were compared to the effect of a chow diet. Results: The amount of 22:6n-3 in brain phosphatidyl ethanolamine (PE) and phosphatidyl serine (PS) of dams and offspring (3 and 13 weeks of age) was not affected......The objective of this study was to examine the effects of triacylglycerol (TAG) structure and level of n-3 fatty acids on fatty acid profile of brain phospholipids (PL) of dams and offspring, and the memory and learning ability of the offspring, when administered during initial development...

  15. Can polymorphisms in the fatty acid desaturase (FADS) gene cluster alter the effects of fish oil supplementation on plasma and erythrocyte fatty acid profiles? An exploratory study.

    Science.gov (United States)

    Meldrum, Suzanne J; Li, Yuchun; Zhang, Guicheng; Heaton, Alexandra E M; D'Vaz, Nina; Manz, Judith; Reischl, Eva; Koletzko, Berthold V; Prescott, Susan L; Simmer, Karen

    2017-09-19

    The enzymes encoded by fatty acid desaturases (FADS) genes determine the desaturation of long-chain polyunsaturated fatty acids (LCPUFA). We investigated if haplotype and single nucleotide polymorphisms (SNPs) in FADS gene cluster can influence LCPUFA status in infants who received either fish oil or placebo supplementation. Children enrolled in the Infant Fish Oil Supplementation Study (IFOS) were randomly allocated to receive either fish oil or placebo from birth to 6 months of age. Blood was collected at 6 months of age for the measurement of fatty acids and for DNA extraction. A total of 276 participant DNA samples underwent genotyping, and 126 erythrocyte and 133 plasma fatty acid measurements were available for analysis. Twenty-two FADS SNPs were selected on the basis of literature and linkage disequilibrium patterns identified from the HapMap data. Haplotype construction was completed using PHASE. For participants allocated to the fish oil group who had two copies of the FADS1 haplotype consisting of SNP minor alleles, DHA levels were significantly higher compared to other haplotypes. This finding was not observed for the placebo group. Furthermore, for members of the fish oil group only, the minor homozygous carriers of all the FADS1 SNPs investigated had significantly higher DHA than other genotypes (rs174545, rs174546, rs174548, rs174553, rs174556, rs174537, rs174448, and rs174455). Overall results of this preliminary study suggest that supplementation with fish oil may only significantly increase DHA in minor allele carriers of FADS1 SNPs. Further research is required to confirm this novel finding.

  16. Enzyme catalysed production of phospholipids with modified fatty acid profile

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk

    2006-01-01

    Phospholipider har stor anvendelse i levnedsmiddel-, kosmetik-, og farmaceutiske produkter for blandt andet deres emulgerende egenskaber samt evne til at danne liposomer. Interessen for at ændre på phospholipidernes struktur er stigende. Strukturændringer resulterer i ændret funktionalitet. Ved u...

  17. [Effect of pregnancy and lactation on the nutritional status of essential fatty acids in rat].

    Science.gov (United States)

    Araya, J; Barriga, C

    1996-08-01

    Pregnancy and lactation could be high risk situations for the development of essential fatty acid deficiencies. To study the effect of pregnancy and lactation on red blood cell phospholipids percentual fatty acid composition of virgin, pregnant and lactating rats. Twenty four pregnant rats of 50 +/- 1 days of age were supplement with soy and 24 with fish oil during 21 days. Twelve rats of each group were sacrificed after 18 days of lactation, twenty four non pregnant rats received soy oil and acted as controls of pregnant and lactating rats. Red blood cell phospholipid fatty acid composition was analyzed by gas chromatography. The percentage of total omega-6 fatty acids of red blood cell phospholipid was 37.8 +/- 5.9, 32.6 +/- 0.6 and 38.3 +/- 3.5% in non pregnant, pregnant and lactating rats respectively (p oil reverted the decrease in omega-6 and omega-3 fatty acid percentage of pregnant and lactating rats. Pregnancy and lactation decrease the capacity to transform precursors of essential fatty acids in long chain polyunsaturated fatty acids.

  18. Clofazimine Induced Suicidal Death of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Arbace Officioso

    2015-08-01

    Full Text Available Background/Aims: The antimycobacterial riminophenazine clofazimine has previously been shown to up-regulate cellular phospholipase A2 and to induce apoptosis. In erythrocytes phospholipase A2 stimulates eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Phospholipase A2 is in part effective by fostering formation of prostaglandin E2, which triggers Ca2+ entry. Stimulators of Ca2+ entry and eryptosis further include oxidative stress and energy depletion. The present study tested, whether and how clofazimine induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, cytosolic Ca2+ activity ([Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS from 2′, 7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, and cytosolic ATP level utilizing a luciferin-luciferase assay kit. Results: A 24-48 hours exposure of human erythrocytes to clofazimine (≥1.5 µg/ml significantly increased the percentage of annexin-V-binding cells without appreciably modifying forward scatter. Clofazimine significantly increased [Ca2+]i, significantly decreased cytosolic ATP, but did not significantly modify ROS. The effect of clofazimine on annexin-V-binding was significantly blunted, but not fully abolished by removal of extracellular Ca2+, and by phospholipase A2 inhibitor quinacrine (25 µM. Clofazimine further augmented the effect of Ca2+ ionophore ionomycin (0.1 µM on eryptosis. The clofazimine induced annexin-V-binding was, however, completely abrogated by combined Ca2+ removal and addition of quinacrine. Conclusion: Clofazimine stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect in part dependent on entry of extracellular Ca2+, paralleled by cellular energy depletion and sensitive to

  19. Administration of phospholipide hepatoprotective drug Phosphogliv in patients with psoriatic arthritis (preliminary results

    Directory of Open Access Journals (Sweden)

    T. V. Korotaeva

    2004-01-01

    Full Text Available Considering membrane-reparative properties of a new phospholipid hepatoprotector Phosphogliv (FG its therapeutic efficacy was assessed in 9 pts with psoriatic arthritis (PA accompanied by prominent disturbances of blood rheology. FG was given 0,6 g a day during 3 months. Significant decrease of erythrocyte aggregation resulting in increase of erythrocyte aggregation formation time and diminishment of their hydrodynamic resistance without changes of whole blood general caisson viscosity was achieved. Significant improvement of Richie index, tender joint count and pt assessment was noted. The results prove availability of PG administration in PA therapy and possibility of enlargement PG application area owing to membrane-reparative properties of contained in it polyunsaturated phosphatidilcholin in combination with immunomodulating and anti-inflammatory action of glycyrrhizinic acid.

  20. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat

    Czech Academy of Sciences Publication Activity Database

    Vokurková, Martina; Rauchová, Hana; Dobešová, Zdenka; Loukotová, Jana; Nováková, O.; Kuneš, Jaroslav; Zicha, Josef

    2016-01-01

    Roč. 65, č. 1 (2016), s. 91-99 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NV15-25396A; GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : reticulocytes * immature erythrocytes * mean cellular hemoglobin content * membrane phospholipids * membrane cholesterol Subject RIV: ED - Physiology Impact factor: 1.461, year: 2016

  1. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin

    Directory of Open Access Journals (Sweden)

    Morena Mischitelli

    2016-11-01

    Full Text Available Background/Aims: The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study aimed to test, whether emodin induces eryptosis and, if so, to elucidate underlying cellular mechanisms. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: Exposure of human erythrocytes for 48 hours to emodin (≥ 10 µM significantly increased the percentage of annexin-V-binding cells, and at higher concentrations (≥ 50 µM significantly increased forward scatter. Emodin significantly increased Fluo3-fluorescence (≥ 10 µM, DCFDA fluorescence (75 µM and ceramide abundance (75 µM. The effect of emodin on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Emodin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry and paralleled by oxidative stress and ceramide appearance at the erythroctye surface.

  2. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    International Nuclear Information System (INIS)

    Suwalsky, Mario; Gonzalez, Raquel; Villena, Fernando; Aguilar, Luis F.; Sotomayor, Carlos P.; Bolognin, Silvia; Zatta, Paolo

    2010-01-01

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl 3 was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 μM; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 μM concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 μm-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 μM to 100 μM.

  3. Composition and physical state of phospholipids in calanoid copepods from India and Norway

    Digital Repository Service at National Institute of Oceanography (India)

    Farkas, T.; Storebakken, T.; Bhosle, N.B.

    The fatty acid composition and physical state of isolated phospholipids obtained from marine copepods collected on the Southwest coast of India (Calanus spp.) and the west coast of Norway (Calanus finmarchicus) were investigated to compare...

  4. Acculturation and Plasma Fatty Acid Concentrations in Hispanic and Chinese-American Adults: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Diep, Cassandra S; Lemaitre, Rozenn N; Chen, Tzu-An; Baranowski, Tom; Lutsey, Pamela L; Manichaikul, Ani W; Rich, Stephen S; St-Jules, David E; Steffen, Brian T; Tsai, Michael Y; Siscovick, David S; Frazier-Wood, Alexis C

    2016-01-01

    Acculturation to the U.S. is associated with increased risk of cardiovascular disease, but the etiologic pathways are not fully understood. Plasma fatty acid levels exhibit ethnic differences and are emerging as biomarkers and predictors of cardiovascular disease risk. Thus, plasma fatty acids may represent one pathway underlying the association between acculturation and cardiovascular disease. We investigated the cross-sectional relationship between acculturation and plasma phospholipid fatty acids in a diverse sample of Hispanic- and Chinese-American adults. Participants included 377 Mexican, 320 non-Mexican Hispanic, and 712 Chinese adults from the Multi-Ethnic Study of Atherosclerosis, who had full plasma phospholipid assays and acculturation information. Acculturation was determined from three proxy measures: nativity, language spoken at home, and years in the U.S., with possible scores ranging from 0 (least acculturated) to 5 (most acculturated) points. α-Linolenic acid, linoleic acid, eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid were measured in fasting plasma. Linear regression models were conducted in race/ethnicity-stratified analyses, with acculturation as the predictor and plasma phospholipid fatty acids as the outcome variables. We ran secondary analyses to examine associations between acculturation and dietary fatty acids for comparison. Covariates included age, gender, education, and income. Contrary to our hypothesis, no statistically significant associations were detected between acculturation and plasma phospholipid fatty acids for Chinese, non-Mexican Hispanic, or Mexican participants. However, acculturation was related to dietary total n-6 fatty acids and dietary n-3/n-6 ratios in expected directions for Mexican, non-Mexican Hispanic, and combined Hispanic participants. In Chinese individuals, acculturation was unexpectedly associated with lower arachidonic acid intake. Absence of associations between acculturation and

  5. Relationship between red cell membrane fatty acids and adipokines in individuals with varying insulin sensitivity.

    Science.gov (United States)

    Min, Y; Lowy, C; Islam, S; Khan, F S; Swaminathan, R

    2011-06-01

    Plasma leptin and adiponectin, and membrane phospholipid fatty acid composition are implicated into the mechanism of insulin resistance but no clear pattern has emerged. Hence, this study examined these variables in subjects presenting to the diabetic clinic for a diagnostic glucose tolerance test. Body composition, glucose, glycated hemoglobin, insulin, leptin, adiponectin, and red cell and plasma phospholipid fatty acids were assessed from 42 normal and 28 impaired glucose tolerant subjects. Insulin sensitivity was determined by homeostatic model assessment. The plasma phosphatidylcholine fatty acid composition of the impaired glucose tolerant subjects was similar to that of normal subjects. However, the impaired glucose tolerant subjects had significantly lower linoleic (Pphosphatidylcholine and phosphatidylethanolamine compared with the normal subjects. Moreover, red cell phosphatidylcholine docosahexaenoic acid correlated positively with adiponectin (r=0.290, Pinsulin (r=-0.335, Pinsulin resistance (r=-0.322, Pinsulin level whereas insulin was the only component that predicted the membrane fatty acids. We postulate that membrane phospholipids fatty acids have an indirect role in determining insulin concentration but insulin has a major role in determining membrane fatty acid composition.

  6. Plasma phospholipid pentadecanoic acid, EPA, and DHA, and the frequency of dairy and fish product intake in young children

    Directory of Open Access Journals (Sweden)

    Nicolai A. Lund-Blix

    2016-08-01

    Full Text Available Background: There is a lack of studies comparing dietary assessment methods with the biomarkers of fatty acids in children. Objective: The objective was to evaluate the suitability of a food frequency questionnaire (FFQ to rank young children according to their intake of dairy and fish products by comparing food frequency estimates to the plasma phospholipid fatty acids pentadecanoic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA. Design: Cross-sectional data for the present study were derived from the prospective cohort ‘Environmental Triggers of Type 1 Diabetes Study’. Infants were recruited from the Norwegian general population during 2001–2007. One hundred and ten (age 3–10 years children had sufficient volumes of plasma and FFQ filled in within 2 months from blood sampling and were included in this evaluation study. The quantitative determination of plasma phospholipid fatty acids was done by fatty acid methyl ester analysis. The association between the frequency of dairy and fish product intake and the plasma phospholipid fatty acids was assessed by a Spearman correlation analysis and by investigating whether participants were classified into the same quartiles of distribution. Results: Significant correlations were found between pentadecanoic acid and the intake frequency of total dairy products (r=0.29, total fat dairy products (r=0.39, and cheese products (r=0.36. EPA and DHA were significantly correlated with the intake frequency of oily fish (r=0.26 and 0.37, respectively and cod liver/fish oil supplements (r=0.47 for EPA and r=0.50 DHA. To a large extent, the FFQ was able to classify individuals into the same quartile as the relevant fatty acid biomarker. Conclusions: The present study suggests that, when using the plasma phospholipid fatty acids pentadecanoic acid, EPA, and DHA as biomarkers, the FFQ used in young children showed a moderate capability to rank the intake frequency of dairy products with a

  7. Plasma phospholipid pentadecanoic acid, EPA, and DHA, and the frequency of dairy and fish product intake in young children.

    Science.gov (United States)

    Lund-Blix, Nicolai A; Rønningen, Kjersti S; Bøås, Håkon; Tapia, German; Andersen, Lene F

    2016-01-01

    There is a lack of studies comparing dietary assessment methods with the biomarkers of fatty acids in children. The objective was to evaluate the suitability of a food frequency questionnaire (FFQ) to rank young children according to their intake of dairy and fish products by comparing food frequency estimates to the plasma phospholipid fatty acids pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Cross-sectional data for the present study were derived from the prospective cohort 'Environmental Triggers of Type 1 Diabetes Study'. Infants were recruited from the Norwegian general population during 2001-2007. One hundred and ten (age 3-10 years) children had sufficient volumes of plasma and FFQ filled in within 2 months from blood sampling and were included in this evaluation study. The quantitative determination of plasma phospholipid fatty acids was done by fatty acid methyl ester analysis. The association between the frequency of dairy and fish product intake and the plasma phospholipid fatty acids was assessed by a Spearman correlation analysis and by investigating whether participants were classified into the same quartiles of distribution. Significant correlations were found between pentadecanoic acid and the intake frequency of total dairy products (r=0.29), total fat dairy products (r=0.39), and cheese products (r=0.36). EPA and DHA were significantly correlated with the intake frequency of oily fish (r=0.26 and 0.37, respectively) and cod liver/fish oil supplements (r=0.47 for EPA and r=0.50 DHA). To a large extent, the FFQ was able to classify individuals into the same quartile as the relevant fatty acid biomarker. The present study suggests that, when using the plasma phospholipid fatty acids pentadecanoic acid, EPA, and DHA as biomarkers, the FFQ used in young children showed a moderate capability to rank the intake frequency of dairy products with a high-fat content and cod liver/fish oil supplements.

  8. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    International Nuclear Information System (INIS)

    Hingorani, V.; Brecher, P.

    1987-01-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either [6- 14 C]glucose or [1- 14 C]oleic acid and the incorporation of radioactivity into 14 CO 2 , lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO 2 was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to 14 CO 2 was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO 2 and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously

  9. Phospholipid classes and fatty acid composition of ewe’s and goat’s milk

    Directory of Open Access Journals (Sweden)

    Zancada, L.

    2013-06-01

    Full Text Available The content, distribution of individual species, and the fatty acid composition of phospholipids (PL from ewe’s and goat’s milk were analyzed. The binding of enterotoxigenic and uropathogenic Escherichia coli strains to PL and the inhibition of bacterial hemagglutination by PL were addressed using high performance thin-layer chromatography-overlay assays and microtiter plates, respectively. Ovine and caprine milk contained more PL than bovine milk but less than human milk. The profile of individual PL was similar, including sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol in both ovine and caprine milk. Regarding the fatty acid composition, a high content of long-chain fatty acids (more than C16 and unsaturated fatty acids, with C18:1 as the most abundant was found in ovine and caprine milk PL. Ovine milk has longer and less saturated fatty acids while caprine milk has shorter and more saturated ones. Neither the adhesion of any bacterial strains assayed to the individual PL from ovine or caprine milk nor the inhibition of bacterial hemagglutination by PL were observed. These are important constituents of the milk fat globule membrane, but it seems that they do not play a role in the defence of new-borns against bacteria if the results obtained are taken into account.Se ha analizado el contenido, distribución de las especies individuales y la composición en ácidos grasos de los fosfolípidos (FL de la leche de oveja y de cabra. Se ha estudiado también la unión de cepas enterotoxigénicas y uropatogénicas de Escherichia coli a estos compuestos y el efecto de los FL sobre la hemaglutinación provocada por estas bacterias mediante inmunodetección en placa y ensayos en placas multipocillo, respectivamente. La leche de oveja y de cabra contiene más FL que la de vaca, pero menos que la leche humana. El perfil de FL individuales es similar en la leche de oveja y de cabra e incluye

  10. CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism CONDUCTION ANOMALIES IN CD36-DEFICIENT MICE DURING FASTING

    Czech Academy of Sciences Publication Activity Database

    Pietka, T. A.; Sulkin, M.S.; Kuda, Ondřej; Wang, W.; Zhou, D.; Yamada, K. A.; Yang, K.; Su, X.; Gross, R. W.; Nerbonne, J. M.; Efimov, I. R.; Abumrad, N. A.

    2012-01-01

    Roč. 287, č. 46 (2012), s. 38901-38912 ISSN 0021-9258 Institutional support: RVO:67985823 Keywords : calcium * cyclic AMP (cAMP) * heart * phospholipid * phospholipid metabolism * polyunsaturated fatty acids * CD36 deficiency * SERCA2a * sudden death Subject RIV: ED - Physiology Impact factor: 4.651, year: 2012

  11. Phospholipid fatty acids in mitochondria and microsomes of wheat and rice seedling roots during aeration and anaerobiosis

    International Nuclear Information System (INIS)

    Chirkova, T.V.; Sinyutina, N.F.; Blyudzin, Yu.A.; Barskii, I.E.; Smetannikova, S.V.

    1989-01-01

    Mitochondrial and microsomal fractions were isolated from the roots after residence of wheat and rice seedlings under conditions of aeration or anaerobiosis and used to determine the percentage ratio of phospholipid fatty acids (PFA), their content, and the rate of incorporation of [2- 14 C]-acetate into them. In rice mitochondria under anaerobic influence, the ratio of unsaturated to saturated PFA was higher than the level that occurred in the control plants and PFA content remained close to the control level throughout the entire course of exposure. On the other hand, these indices declined in wheat mitochondria and microsomes of both plants. Anoxia also powerfully inhibited incorporation of labelled acetate into PFA of both membrane fractions in wheat and rice seedlings alike. Probably indicating adaptive reorganizations in composition of the main groups of PFA and inhibition of their decomposition in rice mitochondria, the obtained data are discussed in relation to greater resistance to temporary anaerobiosis in rice as compared with wheat

  12. Triggering of Suicidal Erythrocyte Death by Regorafenib

    Directory of Open Access Journals (Sweden)

    Jens Zierle

    2016-01-01

    Full Text Available Background/Aims: The multikinase inhibitor regorafenib is utilized for the treatment of malignancy. The substance is effective in part by triggering suicidal death or apoptosis of tumor cells. Side effects of regorafenib include anemia. At least in theory, regorafenib induced anemia could result from stimulated suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study explored, whether regorafenib induces eryptosis and, if so, whether it is effective up- and/or downstream of Ca2+. Methods: To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to regorafenib (≥ 0.5 µg/ml significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter (≥ 1.25 µg/ml, but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of regorafenib on annexin-V-binding and forward scatter was not significantly blunted by removal of extracellular Ca2+. Regorafenib (5 µg/ml significantly augmented the increase of annexin-V-binding, but significantly blunted the decrease of forward scatter following treatment with the Ca2+ ionophore ionomycin. Conclusions: Regorafenib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+.

  13. Triggering of Suicidal Erythrocyte Death by Regorafenib.

    Science.gov (United States)

    Zierle, Jens; Bissinger, Rosi; Bouguerra, Ghada; Abbès, Salem; Lang, Florian

    2016-01-01

    The multikinase inhibitor regorafenib is utilized for the treatment of malignancy. The substance is effective in part by triggering suicidal death or apoptosis of tumor cells. Side effects of regorafenib include anemia. At least in theory, regorafenib induced anemia could result from stimulated suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether regorafenib induces eryptosis and, if so, whether it is effective up- and/or downstream of Ca2+. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. A 48 hours exposure of human erythrocytes to regorafenib (≥ 0.5 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter (≥ 1.25 µg/ml), but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of regorafenib on annexin-V-binding and forward scatter was not significantly blunted by removal of extracellular Ca2+. Regorafenib (5 µg/ml) significantly augmented the increase of annexin-V-binding, but significantly blunted the decrease of forward scatter following treatment with the Ca2+ ionophore ionomycin. Regorafenib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+. © 2016 The Author(s) Published by S. Karger AG, Basel.

  14. Fucoxanthin Induced Suicidal Death of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Marilena Briglia

    2015-12-01

    Full Text Available Background/Aims: Fucoxanthin, a carotenoid isolated from brown seaweeds, induces suicidal death or apoptosis of tumor cells and is thus considered for the treatment or prevention of malignancy. In analogy to apoptosis of nucleated cell, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and activation of p38 kinase or protein kinase C. The present study explored, whether and how fucoxanthin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS from DCFDA dependent fluorescence and lipid peroxidation using BODIPY fluoresence. Results: A 48 hours exposure of human erythrocytes to fucoxanthin significantly increased the percentage of annexin-V-binding cells (≥ 50 µM, significantly decreased average forward scatter (≥ 25 µM, significantly increased hemolysis (≥ 25 µM, significantly increased Fluo3-fluorescence (≥ 50 µM, significantly increased lipid peroxidation, but did not significantly modify DCFDA fluorescence. The effect of fucoxanthin on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+, and was insensitive to p38 kinase inhibitor skepinone (2 µM and to protein kinase C inhibitor calphostin (100 nM. Conclusion: Fucoxanthin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.

  15. Stimulation of Suicidal Erythrocyte Death by Garcinol

    Directory of Open Access Journals (Sweden)

    Antonella Fazio

    2015-09-01

    Full Text Available Background/Aims: The benzophenone garcinol from dried fruit rind of Garcinia indica counteracts malignancy, an effect at least in part due to stimulation of apoptosis. The proapototic effect of garcinol is attributed in part to inhibition of histone acetyltransferases and thus modification of gene expression. Moreover, garcinol triggers mitochondrial depolarisation. Erythrocytes lack gene expression and mitochondria but are nevertheless able to enter apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, energy depletion and Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i. The present study explored, whether and how garcinol induces eryptosis. Methods: To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and cytosolic ATP levels utilizing a luciferin-luciferase-based assay. Results: A 24 hours exposure of human erythrocytes to garcinol (2.5 or 5 µM significantly increased the percentage of annexin-V-binding cells. Garcinol decreased (at 1 µM and 2.5 µM or increased (at 5 µM forward scatter. Garcinol (5 µM further increased Fluo3-fluorescence, increased DCFDA fluorescence, and decreased cytosolic ATP levels. The effect of garcinol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Garcinol triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation, energy depletion and Ca2+ entry.

  16. Effect of cottonseed and canola seed on unsaturated fatty acid ...

    African Journals Online (AJOL)

    student

    biohydrogenation in the rumen and showed that the type of dietary fat has a marked impact on lipid ... Keywords: Extruded oil seed, fatty acid, lamb plasma, liver, Mehraban lambs ..... Effects of diets low in fat or essential fatty acids on the fatty ... Review: Erythrocyte membrane: structure, function, and pathophysiology. Vet.

  17. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  18. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  19. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk.

    Science.gov (United States)

    Ferreiro, T; Gayoso, L; Rodríguez-Otero, J L

    2015-01-01

    The objective of this study was to compare the phospholipid content of conventional milk with that of organic milk and milk rich in conjugated linoleic acid (CLA). The membrane enclosing the fat globules of milk is composed, in part, of phospholipids, which have properties of interest for the development of so-called functional foods and technologically novel ingredients. They include phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and the sphingophospholipid sphingomyelin (SM). Milk from organically managed cows contains higher levels of vitamins, antioxidants, and unsaturated fatty acids than conventionally produced milk, but we know of no study with analogous comparisons of major phospholipid contents. In addition, the use of polyunsaturated-lipid-rich feed supplement (extruded linseed) has been reported to increase the phospholipid content of milk. Because supplementation with linseed and increased unsaturated fatty acid content are the main dietary modifications used for production of CLA-rich milk, we investigated whether these modifications would lead to this milk having higher phospholipid content. We used HPLC with evaporative light scattering detection to determine PE, PI, PC, PS, and SM contents in 16 samples of organic milk and 8 samples of CLA-rich milk, in each case together with matching reference samples of conventionally produced milk taken on the same days and in the same geographical areas as the organic and CLA-rich samples. Compared with conventional milk and milk fat, organic milk and milk fat had significantly higher levels of all the phospholipids studied. This is attributable to the differences between the 2 systems of milk production, among which the most influential are probably differences in diet and physical exercise. The CLA-rich milk fat had significantly higher levels of PI, PS, and PC than conventional milk fat, which is also attributed to dietary differences: rations for

  20. Transfer of oleic acid between albumin and phospholipid vesicles

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Cistola, D.P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13 C NMR spectroscopy and 90% isotopically substituted [1- 13 C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles, the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with ≥80% of the oleic acid associated with albumin at pH 7.4; association was ≥90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13 C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data

  1. Elevated 2,3-diphosphoglycerate concentrations and alteration of structural integrity in the erythrocytes of Indian cases of visceral leishmaniasis.

    Science.gov (United States)

    Biswas, T; Ghosh, D K; Mukherjee, N; Ghosal, J

    1995-08-01

    The visceral leishmaniasis (VL) known as kala-azar in India is characterized by severe anaemia. The anaemia seems to be the result, at least in part, of the relatively short life-time of the erythrocytes, which have weakened cell membranes, possibly because of elevated concentrations of 2,3-diphosphoglycerate (2,3-DPG). There is a negative correlation (r = 0.91; P < 0.01) between erythrocytic 2,3-DPG concentrations and the blood concentration of haemoglobin, and the erythrocytes from infected patients display higher osmotic fragility than those from uninfected controls. Spectrofluorometry, using 1,6-diphenyl 1,3,5-hexatriene as a probe, indicated that fluorescence depolarization and microviscosity are also higher in the erythrocytic membranes from VL cases than in those from the controls. The cholesterol/phospholipid ratio is also relatively high in the membranes from the VL cases and there is degradation of the skeletal components and the major integral protein (band 3). The enhanced concentration of 2,3-DPG may be related to the altered structural integrity of the erythrocytes and this may lead to anisocytosis and the reduction in the erythrocytic half life.

  2. Effects of gamma-irradiation on the erythrocyte membrane: ESR, NMR and biochemical studies

    International Nuclear Information System (INIS)

    Cantafora, A.; Ceccarini, M.; Guidoni, L.; Ianzini, F.; Minetti, M.; Viti, V.

    1987-01-01

    The effects of gamma-irradiation on resealed erythrocyte ghosts have been examined with different techniques. Phospholipid analysis reveals peroxidative damage on the polyunsaturated chains of phosphatidylethanolamine. Gel electrophoresis and ESR measurements indicate modifications of the cytoskeletal proteins. 31 P nuclear magnetic resonance data show bilayer modifications that can be interpreted as changes in lipid-protein interactions. The overall picture from the present results favours interaction between lipids and proteins in the inner monolayer of the membrane. (author)

  3. Effect of temperature and pH on the lipid photoperoxidation and the structural state of erythrocyte membranes

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Pelenitsyn, A.B.; Vladimirov, Yu.A.

    1978-01-01

    The degree of lipid photoperoxidation in erythrocytes (the amount of TBA-active products accumulated under the given dose of ultraviolet irradiation at 254 nm) increased abruptly with temperature in the interval 12 - 20 0 C, then it increased more slowly and later on passed over the maximum at about 30 - 32 0 C. Apparently, the degree of lipid photoperoxidation can serve as a sensitive index of lipid structural state. Using a method of modelling of erythrocyte membranes by liposomes of different chemical content, it was shown that under temperature changes in physiological limits the lipids of erythrocyte membranes undergo at least two structural transformations. The first might be a change in the relative position of cholesterol and phospholipids. The second is followed by the enhancement of membrane antioxidant activity. The degree of lipid photoperoxidation in erythrocytes grows with increasing pH from 6 to 8 according to S-shaped curve with middle point at pH 7.0. This effect can be attributed to structural transformation of membrane lipid zone associated with ionization of membrane protein hystidine. The swelling of erythrocytes in hypotonic medium also leads to structural transformation of lipid zone. (author)

  4. Triggering of Suicidal Erythrocyte Death Following Boswellic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Salvatrice Calabrò

    2015-08-01

    Full Text Available Background/Aims: The antinflammatory natural product boswellic acid is effective against cancer at least in part by inducing tumor cell apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, energy depletion, ceramide formation and p38 kinase activation. The present study tested, whether and how boswellic acid induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies, reactive oxygen species (ROS from 2′,7′-dichlorodihydrofuorescein diacetate (DCFDA fluorescence, and cytosolic ATP concentration utilizing a luciferin-luciferase assay kit. Results: A 24 hours exposure of human erythrocytes to boswellic acid (5 µg/ml significantly increased the percentage of annexin-V-binding cells (to 9.3 ±0.9 % and significantly decreased forward scatter. Boswellic acid did not significantly modify [Ca2+]i, cytosolic ATP, ROS, or ceramide abundance. The effect of boswellic acid on annexin-V-binding was significantly blunted, but not abolished by p38 kinase inhibitors skepinone (2 µM and SB203580 (2 µM. Conclusions: Boswellic acid stimulates cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part dependent on p38 protein kinase activity.

  5. Sea cucumber and blue mussel: new sources of phospholipid enriched omega-3 fatty acids with a potential role in 3T3-L1 adipocyte metabolism.

    Science.gov (United States)

    Vaidya, Hitesh; Cheema, Sukhinder K

    2014-12-01

    Omega (n)-3 polyunsaturated fatty acids (PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are known to reduce the risk of insulin resistance and ameliorate obesity-associated disorders. DHA and EPA structured in the phospholipid form possess superior biological effects compared to the triglyceride form available in fish oil. In this study, we have found that sea cucumber (SC) and blue mussel (BM) from Newfoundland and Labrador are rich sources of n-3 PUFA structured in the phospholipid form. Treatment with SC and BM methanolic extracts (250 and 100 μg mL(-1), respectively) significantly (p triglyceride accumulation in 3T3-L1 adipocytes, along with an increase in the mRNA expression of the peroxisome proliferator-activated receptor-γ (37 and 39%, respectively) and adiponectin (57 and 56%, respectively) compared with control cells (p triglyceride accumulation in 3T3-L1 cells as opposed to an increase in triglyceride accumulation at lower concentrations. This was due to inhibition of acetyl-CoA carboxylase-1 and SREBP-1 mRNA expression compared to control cells (p triglyceride accumulation at higher concentrations is not due to breakdown and release of fat. This is the first report to show that SC and BM are new sources of phospholipid bonded n-3 PUFA, with the potential to target insulin resistance and obesity.

  6. 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans.

    Directory of Open Access Journals (Sweden)

    Blair C R Dancy

    Full Text Available Membranes define cellular and organelle boundaries, a function that is critical to all living systems. Like other biomolecules, membrane lipids are dynamically maintained, but current methods are extremely limited for monitoring lipid dynamics in living animals. We developed novel strategies in C. elegans combining 13C and 15N stable isotopes with mass spectrometry to directly quantify the replenishment rates of the individual fatty acids and intact phospholipids of the membrane. Using multiple measurements of phospholipid dynamics, we found that the phospholipid pools are replaced rapidly and at rates nearly double the turnover measured for neutral lipid populations. In fact, our analysis shows that the majority of membrane lipids are replaced each day. Furthermore, we found that stearoyl-CoA desaturases (SCDs, critical enzymes in polyunsaturated fatty acid production, play an unexpected role in influencing the overall rates of membrane maintenance as SCD depletion affected the turnover of nearly all membrane lipids. Additionally, the compromised membrane maintenance as defined by LC-MS/MS with SCD RNAi resulted in active phospholipid remodeling that we predict is critical to alleviate the impact of reduced membrane maintenance in these animals. Not only have these combined methodologies identified new facets of the impact of SCDs on the membrane, but they also have great potential to reveal many undiscovered regulators of phospholipid metabolism.

  7. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study.

    Directory of Open Access Journals (Sweden)

    Nita G Forouhi

    2016-07-01

    Full Text Available Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs are related to type 2 diabetes (T2D is debated. Objectively measured plasma PUFAs can help to clarify these associations.Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC-InterAct study across eight European countries. Country-specific hazard ratios (HRs were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, α-linolenic acid (ALA was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88-0.98, but eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were not significantly associated. Among n-6 PUFAs, linoleic acid (LA (0.80; 95% CI 0.77-0.83 and eicosadienoic acid (EDA (0.89; 95% CI 0.85-0.94 were inversely related, and arachidonic acid (AA was not significantly associated, while significant positive associations were observed with γ-linolenic acid (GLA, dihomo-GLA, docosatetraenoic acid (DTA, and docosapentaenoic acid (n6-DPA, with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs.These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA but no convincing association of marine-derived n3 PUFAs (EPA and DHA with T2D. Moreover, they highlight that the most abundant n6-PUFA (LA is inversely

  8. Phospholipid transfer activities in toad oocytes and developing embryos

    International Nuclear Information System (INIS)

    Rusinol, A.; Salomon, R.A.; Bloj, B.

    1987-01-01

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing 14 C-labeled phospholipids and 3 H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily after fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth

  9. Changes in cholesterol content and fatty acid composition of serum lipid in irradiated rat

    International Nuclear Information System (INIS)

    Ohashi, Shigeru

    1979-01-01

    The effect of a single dose of whole body irradiation on the serum cholesterol content and fatty acid composition of serum lipids in rats was investigated. A change in the fatty acid composition of liver lipids was also observed. After 600 rad of irradiation, the cholesterol content increased, reached a maximum 3 days after irradiation, and then decreased. After irradiation, an increase in cholesterol content and a marked decrease in triglyceride content were observed, bringing about a change in the amount of total serum lipids. The fatty acid compositions of normal and irradiated rat sera were compared. The relative percentages of palmitic and oleic acids in total lipids decreased while those of stearic and arachidonic acids increased. Serum triglyceride had trace amounts of arachidonic acid and the unsaturated fatty acid component decreased after irradiation. On the other hand, unsaturated fatty acid in cholesterol ester increased after irradiation, while linoleic and arachidonic acids made up 29% and 22% in the controls and 17% and 61% after irradiation, respectively. The fatty acid composition of total liver lipids after irradiation showed a decrease in palmitic and oleic acids and an increase in stearic and arachidonic acids, the same trend as observed in serum lipid fatty acid. Liver cholesterol ester showed trace amounts of linoleic and arachidonic acids and an increase in short-chain fatty acid after irradiation. The major component of serum phospholipids was phosphatidylcholine while palmitostearyl lecithine and unsaturated fatty acid were minor components. Moreover, phosphatidylcholine and phosphatidylethanolamine were the major components of liver phospholipids, having highly unsaturated fatty acids. The changes in fatty acid composition were similar to the changes in total phospholipids. (J.P.N.)

  10. A simple solid-phase extraction method for the analysis of red cell phospholipids by liquid chromatography- tandem mass spectrometry.

    Science.gov (United States)

    Nguyen, Van Long

    2018-02-25

    There has been increasing interest in the analysis of phospholipids in red blood cells as potential long-term biomarkers of different disease states. Here, we describe a simple method for the analysis of two phospholipids: 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol (PE 16:0/18:1) and 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanol (PE 16:/0/18:2) in erythrocytes by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Whole blood samples were removed free of plasma and washed in isotonic saline. Red cells were lysed with ultrapure water. Lysate samples were processed using a hybrid solid-phase extraction (SPE) phospholipid cartridge (1 mL, 30 mg). Both PE 16:0/18:1 and PE 16:0/18:2 and their deuterated internal standards were separated on an ACE C4 (150 mm × 2.1 mm, 2.7 μm particle size) by gradient elution at a flow rate of 0.5 mL per minute using mobile phases consisting of 0.01 mol/L ammonium acetate in: water (A), methanol (B), and isopropanol (C). The phospholipid species were quantified by the following transitions: PE 16:0/18:1: 701.5→281.3 and PE 16:0/18:2: 699.5→279.3. Both PE species displayed linearity ranging from 10 to 500 μg/L. The coefficient of variation (CV%) of PE 16:0/18:1 concerning intraday and interday precision was between 1.9%-2.6% and 3.0%-4.3%, respectively. For PE 16:0/18:2, this was between 1.8%-3.4% and 3.7%-4.1%, respectively. Both phospholipid species had accuracy (PE 16:0/18:1: 91%-98% and PE 16:0/18:2: 94%-103%) and extraction recovery (PE 16:0/18:1: 95%-106% and PE 16:0/18:2: 92%-102%) exceeding 90% over the analytical range. The limit of detection was 5 μg/L. Here we propose a simple SPE LC-MS/MS method for analyzing phospholipids in erythrocytes, which can be easily adopted. © 2018 Wiley Periodicals, Inc.

  11. Association of Blood Fatty Acid Composition and Dietary Pattern with the Risk of Non-Alcoholic Fatty Liver Disease in Patients Who Underwent Cholecystectomy.

    Science.gov (United States)

    Shim, Poyoung; Choi, Dongho; Park, Yongsoon

    2017-01-01

    The relationship between diet and non-alcoholic fatty liver disease (NAFLD) in patients with gallstone disease and in those who have a high risk for NAFLD has not been investigated. This study was conducted to investigate the association between the risk of NAFLD and dietary pattern in patients who underwent cholecystectomy. Additionally, we assessed the association between erythrocyte fatty acid composition, a marker for diet, and the risk of NAFLD. Patients (n = 139) underwent liver ultrasonography to determine the presence of NAFLD before laparoscopic cholecystectomy, reported dietary intake using food frequency questionnaire, and were assessed for blood fatty acid composition. Fifty-eight patients were diagnosed with NAFLD. The risk of NAFLD was negatively associated with 2 dietary patterns: consuming whole grain and legumes and consuming fish, vegetables, and fruit. NAFLD was positively associated with the consumption of refined grain, meat, processed meat, and fried foods. Additionally, the risk of NAFLD was positively associated with erythrocyte levels of 16:0 and 18:2t, while it was negatively associated with 20:5n3, 22:5n3, and Omega-3 Index. The risk of NAFLD was negatively associated with a healthy dietary pattern of consuming whole grains, legumes, vegetables, fish, and fruit and with an erythrocyte level of n-3 polyunsaturated fatty acids rich in fish. © 2017 S. Karger AG, Basel.

  12. Quantitative changes of main components of erythrocyte membranes which define architectonics of cells under pttg gene knockout

    Directory of Open Access Journals (Sweden)

    О. P. Kanyuka

    2014-04-01

    Full Text Available A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein – β-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of ery­throcyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed under pttg gene knockout.

  13. Unique honey bee (Apis mellifera hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Directory of Open Access Journals (Sweden)

    Kirk J Grubbs

    Full Text Available Microbial communities (microbiomes are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME and phospholipid-derived fatty acid (PLFA analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  14. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Science.gov (United States)

    Grubbs, Kirk J; Scott, Jarrod J; Budsberg, Kevin J; Read, Harry; Balser, Teri C; Currie, Cameron R

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  15. Circulating Phospholipid Patterns in NAFLD Patients Associated with a Combination of Metabolic Risk Factors

    Directory of Open Access Journals (Sweden)

    Shilpa Tiwari-Heckler

    2018-05-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is associated with inefficient macro- and micronutrient metabolism, and alteration of circulating phospholipid compositions defines the signature of NAFLD. This current study aimed to assess the pattern of serum phospholipids in the spectrum of NAFLD, and its related comorbidities and genetic modifications. Methods: 97 patients with diagnosed NAFLD were recruited at a single center during 2013–2016. Based on histological and transient elastography assessment, 69 patients were divided into non-alcoholic steatohepatitis (NASH and non-alcoholic fatty liver (NAFL subgroups. 28 patients served as healthy controls. Serum phospholipids were determined by liquid-chromatography mass spectrometry (LC-MS/MS. Results: The total content of phosphatidylcholine (PC and sphingomyelin in the serum was significantly increased in NAFL and NASH patients, compared to healthy controls. In addition, serum lysophospatidylethanolamine levels were significantly decreased in NAFL and NASH individuals. Circulating PC species, containing linoleic and α-linolenic acids, were markedly increased in NAFLD patients with hypertension, compared to NAFLD patients without hypertension. The pattern of phospholipids did not differ between NAFLD patients with diabetes and those without diabetes. However, NAFLD patients with hyperglycemia (blood glucose level (BGL >100 mg/dL exhibited significantly a higher amount of monounsaturated phosphatidylethanolamine than those with low blood glucose levels. In addition, NAFLD patients with proven GG-genotype of PNPLA3, who were at higher risk for the development of progressive disease with fibrosis, showed lower levels of circulating plasmalogens, especially 16:0, compared to those with CC- and CG-allele. Conclusions: Our extended lipidomic study presents a unique metabolic profile of circulating phospholipids associated with the presence of metabolic risk factors or the genetic background

  16. Composition and metabolism of phospholipids in Octopus vulgaris and Sepia officinalis hatchlings.

    Science.gov (United States)

    Reis, Diana B; Acosta, Nieves G; Almansa, Eduardo; Tocher, Douglas R; Andrade, José P; Sykes, António V; Rodríguez, Covadonga

    2016-10-01

    The objective of the present study was to characterise the fatty acid (FA) profiles of the major phospholipids, of Octopus vulgaris and Sepia officinalis hatchlings, namely phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE); and to evaluate the capability of both cephalopod species on dietary phospholipid remodelling. Thus, O. vulgaris and S. officinalis hatchlings were in vivo incubated with 0.3μM of L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PC or L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PE. Octopus and cuttlefish hatchlings phospholipids showed a characteristic FA profiles with PC presenting high contents of 16:0 and 22:6n-3 (DHA); PS having high 18:0, DHA and 20:5n-3 (EPA); PI a high content of saturated FA; and PE showing high contents of DHA and EPA. Interestingly, the highest content of 20:4n-6 (ARA) was found in PE rather than PI. Irrespective of the phospholipid in which [1-(14)C]ARA was initially bound (either PC or PE), the esterification pattern of [1-(14)C]ARA in octopus lipids was similar to that found in their tissues with high esterification of this FA into PE. In contrast, in cuttlefish hatchlings [1-(14)C]ARA was mainly recovered in the same phospholipid that was provided. These results showed a characteristic FA profiles in the major phospholipids of the two species, as well as a contrasting capability to remodel dietary phospholipids, which may suggest a difference in phospholipase activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Absolute versus relative measures of plasma fatty acids and health outcomes: example of phospholipid omega-3 and omega-6 fatty acids and all-cause mortality in women.

    Science.gov (United States)

    Miura, Kyoko; Hughes, Maria Celia B; Ungerer, Jacobus P J; Smith, David D; Green, Adèle C

    2018-03-01

    In a well-characterised community-based prospective study, we aimed to systematically assess the differences in associations of plasma omega-3 and omega-6 fatty acid (FA) status with all-cause mortality when plasma FA status is expressed in absolute concentrations versus relative levels. In a community sample of 564 women aged 25-75 years in Queensland, Australia, baseline plasma phospholipid FA levels were measured using gas chromatography. Specific FAs analysed were eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, total long-chain omega-3 FAs, linoleic acid, arachidonic acid, and total omega-6 FAs. Levels of each FA were expressed in absolute amounts (µg/mL) and relative levels (% of total FAs) and divided into thirds. Deaths were monitored for 17 years and hazard ratios and 95% confidence intervals calculated to assess risk of death according to absolute versus relative plasma FA levels. In total 81 (14%) women died during follow-up. Agreement between absolute and relative measures of plasma FAs was higher in omega-3 than omega-6 FAs. The results of multivariate analyses for risk of all-cause mortality were generally similar with risk tending to inverse associations with plasma phospholipid omega-3 FAs and no association with omega-6 FAs. Sensitivity analyses examining effects of age and presence of serious medical conditions on risk of mortality did not alter findings. The directions and magnitude of associations with mortality of absolute versus relative FA levels were comparable. However, plasma FA expressed as absolute concentrations may be preferred for ease of comparison and since relative units can be deduced from absolute units.

  18. Comparison between the AA/EPA ratio in depressed and non depressed elderly females: omega-3 fatty acid supplementation correlates with improved symptoms but does not change immunological parameters

    Directory of Open Access Journals (Sweden)

    Rizzo Angela

    2012-10-01

    Full Text Available Abstract Background Depression is one of the most frequently missed diagnoses in elderly people, with obvious negative effects on quality of life. Various studies have shown that long chain omega-3 polyunsaturated fatty acids (n-3 PUFA may be useful in its management. Our objective was to evaluate whether a supplement containing n-3 PUFA improves depressive symptoms in depressed elderly patients, and whether the blood fatty acid pattern is correlated with these changes. Methods The severity of depressive symptoms according to the Geriatric Depression Scale (GDS, blood fatty acid composition and erythrocyte phospholipids were analyzed in 46 depressed females aged 66-95y, diagnosed with depression according to DSMIV, within the context of a randomized, double-blind, placebo-controlled trial. 22 depressed females were included in the intervention group (2.5 g/day of n-3 PUFA for 8 weeks, and 24 in the placebo group. We also measured immunological parameters (CD2, CD3, CD4, CD8, CD16, CD19 and cytokines (IL-5, IL-15. Results The mean GDS score and AA/EPA ratio, in whole blood and RBC membrane phospholipids, were significantly lower after 2 months supplementation with n-3 PUFA. A significant correlation between the amelioration of GDS and the AA/EPA ratio with some immunological parameters, such as CD2, CD19, CD4, CD16 and the ratio CD4/CD8, was also found. Nevertheless, omega-3 supplementation did not significantly improve the studied immunological functions. Conclusions n-3 PUFA supplementation ameliorates symptoms in elderly depression. The n-3 PUFA status may be monitored by means of the determination of whole blood AA/EPA ratio.

  19. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  20. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    Science.gov (United States)

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  1. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    Science.gov (United States)

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p acids arachidic, behenic, and lignoceric acid (p acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  2. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    Science.gov (United States)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  3. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  4. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    Directory of Open Access Journals (Sweden)

    Carla Ferreri

    2016-12-01

    Full Text Available Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1; and (ii the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.

  5. Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models

    Energy Technology Data Exchange (ETDEWEB)

    Suwalsky, Mario, E-mail: msuwalsk@udec.cl [Faculty of Chemical Sciences, University of Concepcion, Concepcion (Chile); Zambrano, Pablo; Mennickent, Sigrid [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Villena, Fernando [Faculty of Biological Sciences, University of Concepcion, Concepcion (Chile); Sotomayor, Carlos P.; Aguilar, Luis F. [Instituto de Quimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Bolognin, Silvia [CNR-Institute for Biomedical Technologies, University of Padova, Padova (Italy)

    2011-03-18

    Research highlights: {yields} PPA is a common ingredient in cough-cold medication and appetite suppressants. {yields} Reports on its effects on human erythrocytes are very scarce. {yields} We found that PPA induced in vitro morphological changes to human erythrocytes. {yields} PPA interacted with isolated unsealed human erythrocyte membranes. {yields} PPA interacted with class of lipid present in the erythrocyte membrane outer monolayer. -- Abstract: Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 {mu}M; (c) X-ray diffraction studies showed that PPA in the 0.1-0.5 m

  6. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane.

    Science.gov (United States)

    Suwalsky, M; Jemiola-Rzeminska, M; Astudillo, C; Gallardo, M J; Staforelli, J P; Villena, F; Strzalka, K

    2015-11-01

    Usnic acid (UA) has been associated with chronic diseases through its antioxidant action. Its main target is the cell membrane; however, its effect on that of human erythrocytes has been scarcely investigated. To gain insight into the molecular mechanisms of the interaction between UA and cell membranes human erythrocytes and molecular models of its membrane have been utilized. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. Results by X-ray diffraction showed that UA produced structural perturbations on DMPC and DMPE bilayers. DSC studies have indicated that thermotropic behavior of DMPE was most strongly distorted by UA than DMPC, whereas the latter is mainly affected on the pretransition. Scanning electron (SEM) and defocusing microscopy (DM) showed that UA induced alterations to erythrocytes from the normal discoid shape to echinocytes. These results imply that UA molecules were located in the outer monolayer of the erythrocyte membrane. Results of its antioxidant properties showed that UA neutralized the oxidative capacity of HClO on DMPC and DMPE bilayers; SEM, DM and hemolysis assays demonstrated the protective effect of UA against the deleterious oxidant effects of HClO upon human erythrocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Isoprenoid-phospholipid conjugates as potential therapeutic agents: Synthesis, characterization and antiproliferative studies.

    Directory of Open Access Journals (Sweden)

    Anna Gliszczyńska

    Full Text Available The aim of this research was to extend application field of isoprenoid compounds by their introduction into phospholipid structure as the transport vehicle. The series of novel isoprenoid phospholipids were synthesized in high yields (24-97%, their structures were fully characterized and its anticancer activity was investigated in vitro towards several cell lines of different origin. Most of synthesized compounds showed a significantly higher antiproliferative effect on tested cell lines than free terpene acids. The most active phosphatidylcholine analogue, containing 2,3-dihydro-3-vinylfarnesoic acids instead of fatty acids in both sn-1 and sn-2 position, inhibits the proliferation of colon cancer cells at 13.6 μM.

  8. Comparison of the Distribution of Unsaturated Fatty Acids at the Sn-2 Position of Phospholipids and Triacylglycerols in Marine Fishes and Mammals.

    Science.gov (United States)

    Beppu, Fumiaki; Yasuda, Keiko; Okada, Ayako; Hirosaki, Yoshitsugu; Okazaki, Masako; Gotoh, Naohiro

    2017-11-01

    Highly unsaturated fatty acid (HUFA) binding at the sn-2 position of phospholipids (PL) becomes a resource for prostaglandin, leukotriene, resolvin, and protectin synthesis. Both triacylglycerol (TAG) and PL synthesis pathways in vivo are via phosphatidic acid; therefore, the distribution of fatty acid species at the sn-2 position must theoretically be the same for TAG and PL if rearrangement does not occur. However, it is known that little HUFA is located at the sn-2 position of TAG in marine mammals. Therefore, distribution of fatty acid species at the sn-2 position of TAG and PL was compared between marine fishes and mammals in this study. The composition of fatty acids binding at the sn-2 or sn-1,3 position of PL and TAG was analyzed via hydrolysis with enzymes and GC-FID. The results showed that 20:4n-6, 20:5n-3, 22:5n-3, and 22:6n-3 were primarily located at the sn-1,3 positions of TAG in marine mammals. Comparison of the binding positions of HUFA and 16:0 in PL and TAG suggested the existence of Lands' cycle in marine fishes and mammals. In conclusion, both marine fishes and mammals condensed HUFA as a source of eicosanoid at the sn-2 position of PL. Furthermore, abundance ratios for 22:5n-3 or 22:6n-3 at the sn-2 position (sn-2 ratio) in TAG and PL (calculated by the equation: [abundance ratio at sn-2 position of TAG]/[abundance ratio at sn-2 position of PL]) was less than 0.35 in marine mammals; however, it was greater than 0.80 in marine fishes. These differences suggested that the HUFA consisted of 22 carbon atoms and had different roles in marine fishes and mammals.

  9. Running speed in mammals increases with muscle n-6 polyunsaturated fatty acid content.

    Directory of Open Access Journals (Sweden)

    Thomas Ruf

    Full Text Available Polyunsaturated fatty acids (PUFAs are important dietary components that mammals cannot synthesize de novo. Beneficial effects of PUFAs, in particular of the n-3 class, for certain aspects of animal and human health (e.g., cardiovascular function are well known. Several observations suggest, however, that PUFAs may also affect the performance of skeletal muscles in vertebrates. For instance, it has been shown that experimentally n-6 PUFA-enriched diets increase the maximum swimming speed in salmon. Also, we recently found that the proportion of PUFAs in the muscle phospholipids of an extremely fast runner, the brown hare (Lepus europaeus, are very high compared to other mammals. Therefore, we predicted that locomotor performance, namely running speed, should be associated with differences in muscle fatty acid profiles. To test this hypothesis, we determined phospholipid fatty acid profiles in skeletal muscles of 36 mammalian species ranging from shrews to elephants. We found that there is indeed a general positive, surprisingly strong relation between the n-6 PUFAs content in muscle phospholipids and maximum running speed of mammals. This finding suggests that muscle fatty acid composition directly affects a highly fitness-relevant trait, which may be decisive for the ability of animals to escape from predators or catch prey.

  10. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.

    Science.gov (United States)

    Uttlová, Petra; Pinkas, Dominik; Bechyňková, Olga; Fišer, Radovan; Svobodová, Jaroslava; Seydlová, Gabriela

    2016-12-01

    Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 μg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.

    Science.gov (United States)

    Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A

    2016-08-01

    Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae.

  12. Distribution and mobility of omega 3 fatty acids in rainbow trout fed varying levels and types of dietary lipid.

    Science.gov (United States)

    Castledine, A J; Buckley, J T

    1980-04-01

    The availability of essential fatty acids in fish neutral lipid to tissue phospholipids was determined under conditions of adequate and inadequate essential fatty acid intake as well as during fasting. Juvenile rainbow trout were fed a semi-purified diet containing varying levels of cod liver oil, with or without supplementary olein. Fatty acid analysis indicated that in all treatments the neutral lipid pool was not turned over during feeding but was enhanced by exogenous or endogenously synthesized fatty acids. Fish that received diets devoid of essential fatty acids maintained virtually all of the docosahexenoic acid originally present in each lipid pool. Fish fed diets containing essential fatty acids deposited them in proportion to the dietary levels. After a 4-week fast, no change was noted in the relative levels of fatty acids in neutral lipid indicating that all fatty acids in neutral lipid were catabolized equally--including essential fatty acids. During fasting there was a selective retention of docosahexenoic and linoleic acids in the phospholipid pool.

  13. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content.

    Directory of Open Access Journals (Sweden)

    Nagendra N Mishra

    Full Text Available The lipopeptide antibiotic, daptomycin (DAP interacts with the bacterial cell membrane (CM. Development of DAP resistance during therapy in a clinical strain of Enterococcus faecalis was associated with mutations in genes encoding enzymes involved in cell envelope homeostasis and phospholipid metabolism. Here we characterized changes in CM phospholipid profiles associated with development of DAP resistance in clinical enterococcal strains.Using two clinical strain-pairs of DAP-susceptible and DAP-resistant E. faecalis (S613 vs. R712 and E. faecium (S447 vs. R446 recovered before and after DAP therapy, we compared four distinct CM profiles: phospholipid content, fatty acid composition, membrane fluidity and capacity to be permeabilized and/or depolarized by DAP. Additionally, we characterized the cell envelope of the E. faecium strain-pair by transmission electron microscopy and determined the relative cell surface charge of both strain-pairs.Both E. faecalis and E. faecium mainly contained four major CM PLs: phosphatidylglycerol (PG, cardiolipin, lysyl-phosphatidylglycerol (L-PG and glycerolphospho-diglycodiacylglycerol (GP-DGDAG. In addition, E. faecalis CMs (but not E. faecium also contained: i phosphatidic acid; and ii two other unknown species of amino-containing PLs. Development of DAP resistance in both enterococcal species was associated with a significant decrease in CM fluidity and PG content, with a concomitant increase in GP-DGDAG. The strain-pairs did not differ in their outer CM translocation (flipping of amino-containing PLs. Fatty acid content did not change in the E. faecalis strain-pair, whereas a significant decrease in unsaturated fatty acids was observed in the DAP-resistant E. faecium isolate R446 (vs S447. Resistance to DAP in E. faecium was associated with distinct structural alterations of the cell envelope and cell wall thickening, as well as a decreased ability of DAP to depolarize and permeabilize the CM

  14. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    Science.gov (United States)

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  15. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  16. Changes in erythrocytic deformability and plasma viscosity in neonatal ictericia.

    Science.gov (United States)

    Bonillo-Perales, A; Muñoz-Hoyos, A; Martínez-Morales, A; Molina-Carballo, A; Uberos-Fernández, J; Puertas-Prieto, A

    1999-01-01

    We studied 45 full-term newborns divided into 3 groups. Group 1: 17 newborns with bilirubin ictericia (bilirubin 11-20 mg/dL) and Group 3: 10 newborns with moderate hemolytic ictericia needing exchange transfusion. The following were studied: erythrocytic deformability, plasma viscosity, plasmatic osmolarity, seric bilirubin, bilirubin/albumin ratio, free fatty acids and corpuscular volume of the erythrocytes. In full-term newborns, the following are risk factors for increased erythrocytic rigidity: neonatal hemolytic illness (p = 0.004, odds ratio: 7.02), increases in total bilirubin (p = 0.02, odds ratio: 4.3) and increases in the bilirubin/albumin ratio (p = 0.025, odds ratio: 4.25). Furthermore, the most important risk factor for high plasma viscosity is also neonatal hemolytic illness (p = 0.01, odds ratio: 2.30). The role of total bilirubin is also important (p = 0.09, odds ratio: 2.10), while that of the bilirubin/albumin ratio (p = 0.012, NS) is less so. The greater the hemolysis, the greater the erythrocytic rigidity and plasma viscosity (p ictericia, hemolytic illness and increases in the bilirubin/albumin ratio are accompanied by rheological alterations that could affect cerebral microcirculation and cause a neurological deficit not exclusively related to the levels of bilirubin in plasma.

  17. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers

    International Nuclear Information System (INIS)

    Hamilton, J.A.

    1989-01-01

    Temperature-dependent (5-42 degree C) 13 C NMR spectra of albumin complexes with 90% isotopically substituted [1- 13 C]octanoic or [1- 13 C]decanoic acids showed a single peak at >30 degree C but three peaks at lower temperatures. The chemical-shift differences result from different ionic and/or hydrogen-bonding interactions between amino acid side chains and the fatty acid carboxyl carbon. Rapid exchange of fatty acid among binding sites obscures these sites at temperatures >30 degree C. Rate constants for exchange at 33 degree C were 350 sec -1 for octanoate and 20 sec -1 for decanoate. Temperature-dependent data for octanoate showed an activation energy of 2 kcal/mol for exchange. Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35 degree C, indicating longer lifetimes in the different binding sites. Fatty acid exchange between albumin and model membranes (phosphatidylcholine bilayers) occurred on a time scale comparable to that for exchange among albumin binding sites, following the order octanoate > decanoate > laurate. The equilibrium distribution of fatty acid between lipid bilayers and protein was measured directly from NMR spectra. Decreasing pH increased the relative affinity of fatty acid for the lipid bilayer. The results predict that the relative affinity of octanoic acid for albumin and membranes will be similar to that of long-chain fatty acids, but the rate of equilibration will be ∼ 10 4 faster for octanoic acid

  18. Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid.

    Science.gov (United States)

    Guijas, Carlos; Astudillo, Alma M; Gil-de-Gómez, Luis; Rubio, Julio M; Balboa, María A; Balsinde, Jesús

    2012-11-01

    Cells metabolize arachidonic acid (AA) to adrenic acid (AdA) via 2-carbon elongation reactions. Like AA, AdA can be converted into multiple oxygenated metabolites, with important roles in various physiological and pathophysiological processes. However, in contrast to AA, there is virtually no information on how the cells regulate the availability of free AdA for conversion into bioactive products. We have used a comparative lipidomic approach with both gas chromatography and liquid chromatography coupled to mass spectrometry to characterize changes in the levels of AA- and AdA-containing phospholipid species in RAW 264.7 macrophage-like cells. Incubation of the cells with AA results in an extensive conversion to AdA but both fatty acids do not compete with each other for esterification into phospholipids. AdA but not AA, shows preference for incorporation into phospholipids containing stearic acid at the sn-1 position. After stimulation of the cells with zymosan, both AA and AdA are released in large quantities, albeit AA is released to a greater extent. Finally, a variety of phosphatidylcholine and phosphatidylinositol molecular species contribute to AA; however, AdA is liberated exclusively from phosphatidylcholine species. Collectively, these results identify significant differences in the cellular utilization of AA and AdA by the macrophages, suggesting non-redundant biological actions for these two fatty acids. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Synthesis and release of fatty acids by human trophoblast cells in culture

    International Nuclear Information System (INIS)

    Coleman, R.A.; Haynes, E.B.

    1987-01-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from [ 14 C]acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from [ 14 C]acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. [ 14 C]acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with [1- 14 C]oleate; trophoblast cells then released 14 C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the 14 C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release

  20. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1997-01-01

    The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1 omega 5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1 omega 5...... in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1 omega 5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage...... lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely, with neutral lipid fatty acid 16:1 omega 5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1 omega 5. The fungal neutral lipid/phospholipid ratio...

  1. Tropical to sub-polar gradient in phospholipid composition suggests adaptive tuning of biological membrane function in drosophilds

    Czech Academy of Sciences Publication Activity Database

    Slotsbo, S.; Sorensen, J. G.; Holmstrup, M.; Košťál, Vladimír; Kellermann, V.; Overgaard, J.

    2016-01-01

    Roč. 30, č. 5 (2016), s. 759-768 ISSN 0269-8463 Institutional support: RVO:60077344 Keywords : cold tolerance * Drosophila * phospholipid fatty acid composition Subject RIV: ED - Physiology Impact factor: 5.630, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12568/abstract

  2. Whole body gamma radiation effects on rheological behaviour (deformability) of rat erythrocytes

    International Nuclear Information System (INIS)

    Soliman, M.S.

    2004-01-01

    This study was designed to determine the effect of whole body gamma irradiation on the rheological behaviour of rat erythrocytes (deformability). Animals were divided into 4 irradiated groups and 4 control groups according to their sacrificing time intervals (1 st, 3 rd, 5 th and 7 th days) post-irradiation with dose (6 Gy). In all animals and at the previous time intervals, red blood cell (RBC) membrane proteins electrophoretic pattern, RBC membrane lipids levels (cholesterol and phospholipids), RBC electrolytes levels (sodium, potassium and calcium), corpuscular osmotic fragility and RBC morphological by scanning electron microscopy were determined. Highly significant increase in membrane cholesterol, RBC sodium, calcium and corpuscular osmotic fragility accompanied by highly significant decrease in membrane phospholipids, RBC potassium and RBC deformability were found. No changes in membrane proteins electrophoretic patterns were detected. Morphologically, there were increase in the incidences of echinocytes and spherocytes development, which were time dependent. According to the previous results, irradiation promotes alterations in RBC shape (echinocytosis), membrane skeletal dysfunction, membrane lipid peroxidation, increase in membrane cholesterol/phospholipid content, changes in membrane electrolyte permeability and decrease then increase in osmotic fragility. These alterations in turn led to decrease in cellular deformability as a result of increased membrane rigidity and also due to cells dehydration caused by excess leakage of potassium ions from the RBCs

  3. Longitudinal Associations of Phospholipid and Cholesteryl Ester Fatty Acids With Disorders Underlying Diabetes.

    Science.gov (United States)

    Johnston, Luke W; Harris, Stewart B; Retnakaran, Ravi; Zinman, Bernard; Giacca, Adria; Liu, Zhen; Bazinet, Richard P; Hanley, Anthony J

    2016-06-01

    Specific serum fatty acid (FA) profiles predict the development of incident type 2 diabetes; however, limited longitudinal data exist exploring their role in the progression of insulin sensitivity (IS) and β-cell function. To examine the longitudinal associations of the FA composition of serum phospholipid (PL) and cholesteryl ester (CE) fractions with IS and β-cell function over 6 years. The Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort is a longitudinal observational study, with clinic visits occurring every 3 years. Three visits have been completed, totaling 6 years of follow-up. Individuals (n = 477) at risk for diabetes recruited from the general population in London and Toronto, Canada. Values from an oral glucose tolerance test were used to compute 1/HOMA-IR and the Matsuda index for IS, the insulinogenic index over HOMA-IR, and the insulin secretion-sensitivity index-2 for β-cell function. Thin-layer chromatograph and gas chromatograph quantified FA. Generalized estimating equations were used for the analysis. IS and β-cell function declined by 8.3-19.4% over 6 years. In fully adjusted generalized estimating equation models, PL cis-vaccenate (18:1n-7) was positively associated with all outcomes, whereas γ-linolenate (GLA; 18:3n-6) and stearate (18:0) were negatively associated with IS. Tests for time interactions revealed that PL eicosadienoate (20:2n-6) and palmitate (16:0) and CE dihomo-γ-linolenate (20:3n-6), GLA, and palmitate had stronger associations with the outcomes after longer follow-up. In a Canadian population at risk for diabetes, we found that higher PL stearate and GLA and lower cis-vaccenic acid predicted consistently lower IS and β-cell function over 6 years.

  4. Perimicrovillar membrane assembly: the fate of phospholipids synthesised by the midgut of Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Paula Rego Bittencourt-Cunha

    2013-06-01

    Full Text Available In this study, we describe the fate of fatty acids that are incorporated from the lumen by the posterior midgut epithelium of Rhodnius prolixus and the biosynthesis of lipids. We also demonstrate that neutral lipids (NL are transferred to the haemolymphatic lipophorin (Lp and that phospholipids remain in the tissue in which they are organised into perimicrovillar membranes (PMMs. 3H-palmitic acid added at the luminal side of isolated midguts of R. prolixus females was readily absorbed and was used to synthesise phospholipids (80% and NL (20%. The highest incorporation of 3H-palmitic acid was on the first day after a blood meal. The amounts of diacylglycerol (DG and triacylglycerol synthesised by the tissue decreased in the presence of Lp in the incubation medium. The metabolic fates of 3H-lipids synthesised by the posterior midgut were followed and it was observed that DG was the major lipid released to Lp particles. However, the majority of phospholipids were not transferred to Lp, but remained in the tissue. The phospholipids that were synthesised and accumulated in the posterior midgut were found to be associated with Rhodnius luminal contents as structural components of PMMs.

  5. Interaction of (n-3) and (n-6) fatty acids in desaturation and chain elongation of essential fatty acids in cultured glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1987-01-01

    Recent research in various biological systems has revived interest in interactions between the (n-6) and (n-3) essential fatty acids. We have utilized cultured glioma cells to show that linolenic acid, 18:3(n-3), is rapidly desaturated and chain elongated; 20:5(n-3) is the major product and accumulates almost exclusively in phospholipids. We examined effects of various (n-6), (n-3), (n-9) and (n-7) fatty acids at 40 microM concentration on desaturation and chain elongation processes using [1- 14 C]18:3(n-3) as substrate. In general, monoenoic fatty acids were without effect. The (n-6) fatty acids (18:2, 18:3, 20:3, 20:4 and 22:4) had little effect on total product formed. There was a shift of labeled product to triacylglycerol, and in phospholipids, slightly enhanced conversion of 20:5 to 22:5 was evident. In contrast, 22:6(n-3) was inhibitory, whereas 20:3(n-3) and 20:5(n-3) had much less effect. At concentrations less than 75 microM, all acids were inhibitory. Most products were esterified to phosphatidylcholine, but phosphatidylethanolamine also contained a major portion of 20:5 and 22:5. We provide a condensed overview of how the (n-6) and (n-3) fatty acids interact to modify relative rates of desaturation and chain elongation, depending on the essential fatty acid precursor. Thus, the balance between these dietary acids can markedly influence enzymes providing crucial membrane components and substrates for biologically active oxygenated derivatives

  6. High Fat Diet-Induced Changes in Mouse Muscle Mitochondrial Phospholipids Do Not Impair Mitochondrial Respiration Despite Insulin Resistance

    Science.gov (United States)

    Hulshof, Martijn F. M.; van den Berg, Sjoerd A. A.; Schaart, Gert; van Dijk, Ko Willems; Smit, Egbert; Mariman, Edwin C. M.

    2011-01-01

    Background Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. Methodology C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. Principal Findings At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (−4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. Conclusions/Interpretation Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  7. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.

    Directory of Open Access Journals (Sweden)

    Joris Hoeks

    Full Text Available BACKGROUND: Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. METHODOLOGY: C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD or HFD (45 kcal%. Skeletal muscle mitochondria were isolated and fatty acid (FA composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. PRINCIPAL FINDINGS: At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9 were decreased (-4.0%, p<0.001, whereas saturated FA (16∶0 were increased (+3.2%, p<0.001 in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6 showed a pronounced increase (+4.0%, p<0.001. Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002 and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. CONCLUSIONS/INTERPRETATION: Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  8. In vitro effects of the anti-Alzheimer drug memantine on the human erythrocyte membrane and molecular models

    International Nuclear Information System (INIS)

    Zambrano, Pablo; Suwalsky, Mario; Villena, Fernando; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2017-01-01

    Memantine is a NMDA antagonist receptor clinically used for treating Alzheimer's disease. NMDA receptors are present in the human neurons and erythrocyte membranes. The aim of the present study was to investigate the effects of memantine on human erythrocytes. With this purpose, the drug was developed to in vitro interact with human red cells and bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). The latter represent lipids respectively present in both outer and inner monolayers of the red cell membrane. Results obtained by scanning electron microscopy (SEM) showed that memantine changed the normal biconcave shape of red cells to cup-shaped stomatocytes. According to the bilayer-couple hypothesis the drug intercalated into the inner monolayer of the erythrocyte membrane. Experimental results obtained by X-ray diffraction on multibilayers of DMPC and DMPE, and by differential scanning calorimetry on multilamellar vesicles indicated that memantine preferentially interacted with DMPC in a concentration-dependent manner. Thus, it can be concluded that in the low therapeutic plasma concentration of circa 1 μM memantine is located in NMDA receptor channel without affecting the erythrocyte shape. However, at higher concentrations, once the receptors became saturated excess of memantine molecules (20 μM) would interact with phosphoinositide lipids present in the inner monolayer of the erythrocyte membrane inducing the formation of stomatocytes. However, 40–50 μM memantine was required to interact with isolated phosphatidylcholine bilayers. - Highlights: • The interaction of memantine with human erythrocytes and lipid bilayers were assessed. • Memantine induced morphological changes to human erythrocytes. • Memantine interacted with classes of phospholipids present in the erythrocyte membrane. • Results support the hypothesis that memantine interacts with NMDA receptors.

  9. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium

    International Nuclear Information System (INIS)

    Ferain, Aline; Bonnineau, Chloé; Neefs, Ineke; Rees, Jean François; Larondelle, Yvan; Schamphelaere, Karel A.C.De; Debier, Cathy

    2016-01-01

    Highlights: • The phospholipid composition of rainbow trout liver cells was successfully changed. • Cell phospholipids influenced methylmercury (MeHg) and cadmium (Cd) toxicity. • Cells enriched in 18:3n-3, 20:5n-3 or 22:5n-6 were more resistant to MeHg and Cd. • Cell enrichment in 22:6n-3 increased resistance to Cd but not MeHg. - Abstract: The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24 h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly

  10. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Ferain, Aline, E-mail: aline.ferain@uclouvain.be [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Bonnineau, Chloé [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Irstea, UR MALY, Centre de Lyon-Villeurbanne, rue de la Doua 5/32108, F-69616 Villeurbanne (France); Neefs, Ineke; Rees, Jean François; Larondelle, Yvan [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium); Schamphelaere, Karel A.C.De [Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Debier, Cathy [Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve (Belgium)

    2016-08-15

    Highlights: • The phospholipid composition of rainbow trout liver cells was successfully changed. • Cell phospholipids influenced methylmercury (MeHg) and cadmium (Cd) toxicity. • Cells enriched in 18:3n-3, 20:5n-3 or 22:5n-6 were more resistant to MeHg and Cd. • Cell enrichment in 22:6n-3 increased resistance to Cd but not MeHg. - Abstract: The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24 h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly

  11. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species.

    Science.gov (United States)

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-11-15

    The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the

  12. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  13. Chemistry of phospholipid oxidation.

    Science.gov (United States)

    Reis, Ana; Spickett, Corinne M

    2012-10-01

    The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids

  14. Profile of Free Fatty Acids and Fractions of Phospholipids, Cholesterol Esters and Triglycerides in Serum of Obese Youth with and without Metabolic Syndrome.

    Science.gov (United States)

    Bermúdez-Cardona, Juliana; Velásquez-Rodríguez, Claudia

    2016-02-15

    The study evaluated the profile of circulating fatty acids (FA) in obese youth with and without metabolic syndrome (MetS) to determine its association with nutritional status, lifestyle and metabolic variables. A cross-sectional study was conducted in 96 young people, divided into three groups: obese with MetS (OBMS), obese (OB) and appropriate weight (AW). FA profiles were quantified by gas chromatography; waist circumference (WC), fat folds, lipid profile, high-sensitivity C-reactive protein, glucose, insulin, the homeostasis model assessment (HOMA index), food intake and physical activity (PA) were assessed. The OBMS group had significantly greater total free fatty acids (FFAs), palmitic-16:0 in triglyceride (TG), palmitoleic-16:1n-7 in TG and phospholipid (PL); in the OB group, these FAs were higher than in the AW group. Dihomo-gamma-linolenic (DHGL-20:3n-6) was higher in the OBMS than the AW in PL and FFAs. Linoleic-18:2n-6 in TG and PL had the lowest proportion in the OBMS group. WC, PA, total FFA, linoleic-18:2n-6 in TG and DHGL-20:3n-6 in FFAs explained 62% of the HOMA value. The OB group presented some higher proportions of FA and biochemical values than the AW group. The OBMS had proportions of some FA in the TG, PL and FFA fractions that correlated with disturbances of MetS.

  15. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; DiRusso, C C; Elberger, A

    1997-01-01

    decrease in the uptake of the fluorescent long-chain fatty acid analogue boron dipyrromethene difluoride dodecanoic acid (BODIPY-3823); 3) a reduced rate of exogenous oleate incorporation into phospholipids; and 4) a 2-3-fold decrease in the rates of oleate uptake. These data support the hypothesis...

  16. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  17. Kinetics of different 123-I and 14-C fatty acids in normal and diabetic rat myocardium in vivo

    International Nuclear Information System (INIS)

    Beckurts, T.E.; Shreeve, W.W.; Machulla, H.-J.; Feinendegen, L.E.

    1984-01-01

    For measuring myocardial metabolism by single photon scintigraphy various iodinated substrate analogues have been proposed. The present study compares in normal and diabetic rats the metabolic pathways of 14-C-palmitic acid (PA), 123-I-para-phenylpentadecanoic acid (I-pPPDA), 123-I-ortho-phenylpentadecanoic acid (I-oPPDA), 14-C-stearic acid (SA) and 123-I-w-heptadecanoic acid (I-ωHDA). In normal and diabetic rats free fatty acids showed a rapid tracer accumulation and an initial rapid, then a slow rate component of release. PA and I-pPPDA were preferentially esterified into triglycerides, whereas SA and I-ωHDA equally distributed between triglycerides and phospholipids. I-oPPDA nearly exclusively labelled the free fatty acid pool. - Turnover of SA and I-ωHDA was similar in triglycerides and phospholipids; yet PA and I-pPPDA continued to increase in triglycerides for 3-5 minutes after injection but decreased in phospholipids. - Following induction of diabetes by Streptocotocin, the primary effect was an inhibition of incorporation of all substrates tested into triglycerides and phospholipids with an initial rapid turnover in the total lipid fraction. - Of the total myocardial activities a considerable fraction was water soluble and another bound to solid tissue residue, with an early maximum and subsequent decline; the values for 14-C-labelled substrates remained below those of radioiodine. Thus different labelled fatty acids behave metabolically differently and promise to be useful for differentiating various intracellular metabolic pathways. External analysis of myocardial fatty acids metabolism requires correction for labelled catabolites. (Author)

  18. Early Effect of High Dose of Ionizing Radiation Exposure on Plasma Lipids Profile and Liver Fatty Acids Composition in Rats

    International Nuclear Information System (INIS)

    Noaman, E.; Mansour, S.Z.; Ibrahim, N.K.

    2005-01-01

    The present study was conducted to analyze the effect of acute gamma-irradiation on rats at supralethal doses of 20 Gy to determine the synthesis and amounts of free fatty acids, neutral lipids and phospholipids of plasma and liver after 24 and 48 h of gamma-irradiation. Male Wistar rats weighing 120+- 20 g were exposed to 20 Gy of gamma radiation (dose rate of 0.59 Gy/min). Exposure of rats to ionizing radiation resulted in significant alterations in the assayed parameters indicating lipid metabolism disturbance. Plasma cholesterol and phospholipid levels increased up to 71.3 and 71.5 %, respectively, after 24 h from radiation exposure and then returned to 28 and 27 % change in-compare with control values after 48 h post-irradiation. Plasma triacylglycerol concentrations increased concomitantly with irradiation, but their values are less high than cholesterol and phospholipid levels recording significant changes at 19 and 9 % comparing with control rats. Lipid peroxidation measured as MDA recorded significant elevation after 24 and 48 h post irradiation. It was shown that the synthesis of free fatty acids, cholesterol, cholesterol ethers and phospholipids was activated 48 h after irradiation at 20 Gy. The amount of free fatty acids of the rat liver decreased at 20 Gy exposures. This is assumed to be a result of the radioresistance to some degree in the system of free fatty acid synthesis of the rat to the gamma-irradiation in the lethal doses

  19. The implication of omega-3 polyunsaturated fatty acids in retinal physiology

    Directory of Open Access Journals (Sweden)

    Acar Niyazi

    2007-05-01

    Full Text Available Neuronal tissues such as the retina and the brain are characterized by their high content in phospholipids. In the retina, phospholipids can account for until 80% of total lipids and are mainly composed by species belonging to phosphatidyl-choline and phosphatidyl-ethanolamine sub-classes. Within fatty acids esterified on retinal phospholipids, omega-3 PUFAs are major components since docosahexaenoic acid (DHA can represent until 50% of total fatty acids in the photoreceptor outer segments. For long time, DHA is known to play a major role in membrane function and subsequently in visual processes by affecting permeability, fluidity, thickness and the activation of membrane-bound proteins. Today, more and more studies show that PUFAs from the omega-3 series may also operate as protective factors in retinal vascular and immuno-regulatory processes, in maintaining the physiologic redox balance and in cell survival. They may operate within complex systems involving eicosanoids, angiogenic factors, inflammatory factors and matrix metalloproteinases. This new and emerging concept based on the interrelationship of omega-3 PUFAs with neural and vascular structure and function appears to be essential when considering retinal diseases of public health significance such as age-related macular degeneration.

  20. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC-Norfolk prospective study.

    Directory of Open Access Journals (Sweden)

    Kay-Tee Khaw

    Full Text Available The lack of association found in several cohort studies between dietary saturated fat and coronary heart disease (CHD risk has renewed debate over the link between dietary fats and CHD.We assessed the relationship between plasma phospholipid fatty acid (PFA concentration and incident CHD using a nested case control design within a prospective study (EPIC-Norfolk of 25,639 individuals aged 40-79 years examined in 1993-1997 and followed up to 2009. Plasma PFA concentrations were measured by gas chromatography in baseline samples retrieved from frozen storage. In 2,424 men and women with incident CHD compared with 4,930 controls alive and free of cardiovascular disease, mean follow-up 13 years, saturated PFA (14:0, 16:0,18:0 plasma concentrations were significantly associated with increased CHD risk (odds ratio [OR] 1.75, 95% CI 1.27-2.41, p<0.0001, in top compared to bottom quartiles (Q, and omega-6 polyunsaturated PFA concentrations were inversely related (OR 0.77, 0.60-0.99, p<0.05 after adjusting for age, sex, body mass index, blood pressure, smoking, alcohol intake, plasma vitamin C, social class, education, and other PFAs. Monounsaturated PFA, omega-3 PFA, and trans PFA concentrations were not significantly associated with CHD. Odd chain PFA (15:0, 17:0 concentrations were significantly inversely associated with CHD (OR 0.73, 0.59-0.91, p<0.001, Q4 versus Q1. Within families of saturated PFA or polyunsaturated PFA, significantly heterogeneous relationships with CHD were observed for individual fatty acids.In this study, plasma concentrations of even chain saturated PFA were found to be positively and omega-6 polyunsaturated PFA inversely related to subsequent coronary heart disease risk. These findings are consistent with accumulating evidence suggesting a protective role of omega-6 fats substituting for saturated fats for CHD prevention.

  1. Maternal DHA levels and Toddler Free-Play Attention

    OpenAIRE

    Kannass, Kathleen N.; Colombo, John; Carlson, Susan E.

    2009-01-01

    We investigated the relationship between maternal docosahexaenoic acid (DHA) levels at birth and toddler free-play attention in the second year. Toddler free-play attention was assessed at 12 and 18 months, and maternal erythrocyte (red-blood cell; RBC) phospholipid DHA (percentage of total fatty acids) was measured from mothers at delivery. Overall, higher maternal DHA status at birth was associated with enhanced attentional functioning during the second year. Toddlers whose mothers had high...

  2. Effect of phosphatidylinositol and inside-out erythrocyte vesicles on autolysis of mu- and m-calpain from bovine skeletal muscle.

    Science.gov (United States)

    Zalewska, Teresa; Thompson, Valery F; Goll, Darrel E

    2004-08-23

    The finding that phospholipid micelles lowered the Ca2+ concentration required for autolysis of the calpains led to a hypothesis suggesting that the calpains are translocated to the plasma membrane where they interact with phospholipids to initiate their autolysis. However, the effect of plasma membranes themselves on the Ca2+ concentration required for calpain autolysis has never been reported. Also, if interaction with a membrane lowers the Ca2+ required for autolysis, the membrane-bound-calpain must autolyze itself, because it would be the only calpain having the reduced Ca2+ requirement. This implies that the autolysis is an intramolecular process, although several studies have shown that autolysis of the calpains in an in vitro assay and in the absence of phospholipid is an intermolecular process. Inside-out vesicles prepared from erythrocytes had no effect on the Ca2+ concentration required for autolysis of either mu- or m-calpain, although phosphatidylinositol (PI) decreased the Ca2+ concentration required for autolysis of the same calpains. The presence of a substrate for the calpains, beta-casein, reduced the rate of autolysis of both mu- and m-calpain both in the presence and in the absence of PI, suggesting that mu- and m-calpain autolysis is an intermolecular process in the presence of PI just as it is in its absence. Because IOV have no effect on the Ca2+ concentration required for calpain autolysis, association with the plasma membrane, at least with erythrocyte plasma membranes, does not initiate calpain autolysis by reducing the Ca2+ concentration required for autolysis as suggested by the membrane-activation hypothesis. Interaction with a membrane may serve to bind calpains to their substrates rather than promoting autolysis.

  3. A thioesterase bypasses the requirement for exogenous fatty acids in the plsX deletion of Streptococcus pneumoniae

    NARCIS (Netherlands)

    Parsons, J.B.; Frank, M.W.; Eleveld, M.J.; Schalkwijk, J.; Broussard, T.C.; Jonge, M.I. de; Rock, C.O.

    2015-01-01

    PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid

  4. CLINICAL IMPLICATION OF FATTY ACID CHANGES IN PATIENTS WITH PRIMARY GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2015-12-01

    Full Text Available Aim. To study blood levels of non-esterified fatty acids (NEFAs and adenyl nucleotides, and fatty acids levels in lipids of erythrocyte membranes in patients with primary gout associated with arterial hypertension (HT. Material and methods. 175 male patients with primary gout were included in the study. According to 24-hour blood pressure (BP monitoring results patients were split into two groups: 74 patients with normal BP (group 1 and 101 patients with HT (group 2. 29 healthy age-comparable subjects were included into control group. Uric acid, total NEFAs and glycerol blood levels were studied in all patients. Adenyl nucleotides (ATP , ADP and AMP levels were determined in erythrocytes. Higher fatty acid levels were specified in lipids of erythrocyte membranes, including the following acids: myristinic (С14:0, palmitinic (С16:0, stearic (С18:0, pentadecanic (С15:0, heptadecanic (С17:0, pentadecenic (С15:1, heptadecenic (С17:1, palmitooleic (С16:1, oleic (С18:1, linoleic (С18:2ω6, α-linolenic (С18:3ω3, γ-linolenic (С18:3ω6, dihomo-γ-linolenic (С20:3ω6, arachidonic (С20:4ω6, eicosapentaenoic (С20:5ω3, and docosapentaenoic (С22:5ω3. Results and discussion. Hypertensive patients with gout demonstrated higher NEFAs blood level and greater changes in ATP-ADP-AMP system than normotensive gout patients and healthy subjects as well as 2.2 and 3.7 times higher NEFAs/ATP ratio, respectively. In hypertensive patients with primary gout the composition of fatty acids in erythrocyte membranes lipids changed due to increase in saturated fatty acids amount and decrease in unsaturated fatty acids amount, at that monoenic acid levels increased while polyenic acid levels decreased in unsaturated acids composition. Hypertensive patients with gout shown 1.3 and 2.5 times less levels of ω-3 poly-unsaturated fatty acids (PUFA than normotensive gout patients and healthy subjects, respectively. At the same time ω-6 PUFA levels changed in

  5. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves.

    Science.gov (United States)

    Yurchenko, Olga; Shockey, Jay M; Gidda, Satinder K; Silver, Maxwell I; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2017-08-01

    The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end-uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild-type, cgi-58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High-leaf-oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co-expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant-pest interactions are discussed. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  7. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  8. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeiraa, Paulo Goncalves; Siewers, Verena

    2018-01-01

    and tightly regulated metabolic network. Here we generated a Saccharomyces cerevisiae platform strain with a simplified lipid metabolism network with high-level production of free fatty acids (FFAs) due to redirected fatty acid metabolism and reduced feedback regulation. Deletion of the main fatty acid...

  9. Differential intrahepatic phospholipid zonation in simple steatosis and nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Julia Wattacheril

    Full Text Available Nonalcoholic fatty liver disease (NAFLD occurs frequently in a setting of obesity, dyslipidemia and insulin resistance, but the etiology of the disease, particularly the events favoring progression to nonalcoholic steatohepatitis (NASH as opposed to simple steatosis (SS, are not fully understood. Based on known zonation patterns in protein, glucose and lipid metabolism, coupled with evidence that phosphatidylcholine may play a role in NASH pathogenesis, we hypothesized that phospholipid zonation exists in liver and that specific phospholipid abundance and distribution may be associated with histologic disease. A survey of normal hepatic protein expression profiles in the Human Protein Atlas revealed pronounced zonation of enzymes involved in lipid utilization and storage, particularly those facilitating phosphatidylcholine (PC metabolism. Immunohistochemistry of obese normal, SS and NASH liver specimens with anti-phosphatidylethanomine N-methyltransferase (PEMT antibodies showed a progressive decrease in the zonal distribution of this PC biosynthetic enzyme. Phospholipid quantitation by liquid chromatography mass spectrometry (LC-MS in hepatic extracts of Class III obese patients with increasing NAFLD severity revealed that most PC species with 32, 34 and 36 carbons as well as total PC abundance was decreased with SS and NASH. Matrix assisted laser desorption ionization-imaging mass spectrometry (MALDI-IMS imaging revealed strong zonal distributions for 32, 34 and 36 carbon PCs in controls (minimal histologic findings and SS that was lost in NASH specimens. Specific lipid species such as PC 34:1 and PC 36:2 best illustrated this phenomenon. These findings suggest that phospholipid zonation may be associated with the presence of an intrahepatic proinflammatory phenotype and thus have broad implications in the etiopathogenesis of NASH.

  10. Do fatty acids affect fetal programming?

    Science.gov (United States)

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  11. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane.

    Directory of Open Access Journals (Sweden)

    Leilismara Sousa

    Full Text Available Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1, iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5% than in women and was associated with an increase (446% in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS and an increase (327% in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132% in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.

  12. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    Science.gov (United States)

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Nut consumption, serum fatty acid profile and estimated coronary heart disease risk in type 2 diabetes.

    Science.gov (United States)

    Nishi, S K; Kendall, C W C; Bazinet, R P; Bashyam, B; Ireland, C A; Augustin, L S A; Blanco Mejia, S; Sievenpiper, J L; Jenkins, D J A

    2014-08-01

    Nut consumption has been associated with decreased risk of coronary heart disease (CHD) and type 2 diabetes which has been largely attributed to their healthy fatty acid profile, yet this has not been ascertained. Therefore, we investigated the effect of nut consumption on serum fatty acid concentrations and how these relate to changes in markers of glycemic control and calculated CHD risk score in type 2 diabetes. 117 subjects with type 2 diabetes consumed one of three iso-energetic (mean 475 kcal/d) supplements for 12 weeks: 1. full-dose nuts (50-100 g/d); 2. half-dose nuts with half-dose muffins; and 3. full-dose muffins. In this secondary analysis, fatty acid concentrations in the phospholipid, triacylglycerol, free fatty acid, and cholesteryl ester fractions from fasting blood samples obtained at baseline and week 12 were analyzed using thin layer and gas chromatography. Full-dose nut supplementation significantly increased serum oleic acid (OA) and MUFAs compared to the control in the phospholipid fraction (OA: P = 0.036; MUFAs: P = 0.024). Inverse associations were found with changes in CHD risk versus changes in OA and MUFAs in the triacylglycerol (r = -0.256, P = 0.011; r = -0.228, P = 0.024, respectively) and phospholipid (r = -0.278, P = 0.006; r = -0.260, P = 0.010, respectively) fractions. In the cholesteryl ester fraction, change in MUFAs was inversely associated with markers of glycemic control (HbA1c: r = -0.250, P = 0.013; fasting blood glucose: r = -0.395, P consumption increased OA and MUFA content of the serum phospholipid fraction, which was inversely associated with CHD risk factors and 10-year CHD risk. NCT00410722, clinicaltrials.gov. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men

    Directory of Open Access Journals (Sweden)

    Hong SH

    2013-05-01

    Full Text Available Seul Hee Hong,1,* Jung Hyun Kwak,2,* Jean Kyung Paik,3 Jey Sook Chae,2 Jong Ho Lee1,21National Research Laboratory for Clinical Nutrigenetics/Nutrigenomics, 2Research Institute of Science for Aging, Yonsei University, Seoul, South Korea; 3Department of Food and Nutrition, Eulji University, Gyeonggi-do, South Korea *These authors contributed equally to this workBackground: To investigate the association of FADS gene polymorphisms with age-related changes in polyunsaturated fatty acids (PUFAs in serum phospholipids and oxidative stress markers.Methods: We genotyped 122 nonobese men aged 35–59 years without any known diseases at baseline for rs174537 near FADS1 (FEN1 rs174537G > T, FADS2 (rs174575, rs2727270, and FADS3 (rs1000778, and followed them for 3 years.Results: Among the four single-nucleotide polymorphisms, the minor variants of rs174537 and rs2727270 were significantly associated with lower concentrations of long-chain PUFAs. However, rs174537G > T showed stronger association. At baseline, men with the rs174537T allele had lower arachidonic acid (AA and AA/linoleic acid (LA, and higher interleukin (IL-6 levels than rs174537GG counterparts. After 3 years, rs174537GG men had significantly increased AA (P = 0.022, AA/dihomo-γ-linolenic acid (DGLA (P = 0.007, docosapentaenoic acid (DPA, low-density lipoprotein (LDL cholesterol, and oxidized LDL (ox-LDL, but decreased eicosatrienoic acid. The rs174537T group showed significantly increased γ-linolenic acid and ox-LDL, and decreased eicosadienoic acid, eicosapentaenoic acid (EPA/α-linolenic acid (ALA, and IL-6. After 3 years, the rs174537T group had lower AA (P < 0.001, AA/DGLA (P = 0.019, EPA, DPA, EPA/ALA, and urinary 8-epi-prostaglandin F2α (8-epi-PGF2α (P = 0.011 than rs174537GG. Changes in AA (P = 0.001, AA/DGLA (P = 0.017, EPA, DPA, EPA/ALA, and urinary 8-epi-PGF2α (P < 0.001 were significantly different between the groups after adjusting for baseline values. Overall, changes in AA

  15. Effects of Three Kinds of Curcuminoids on Anti-Oxidative System and Membrane Deformation of Human Peripheral Blood Erythrocytes in High Glucose Levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-01-01

    Full Text Available Background/Aims: Curcuminoids are the main bioactive constituents of the rhizome of turmeric. Erythrocytes lesions in diabetes are probably related to hyperglycemia and protein glycation. It has been reported that curcumin prevent lipid peroxidation. However, reports on the effects of demethoxycurcumin and bis-demethoxycurcumin on human erythrocytes at high glucose levels are scarce. Our aim is to investigate the effect of curcuminoids on oxidative stress and membrane of erythrocytes exposed to hyperglycemic condition. Methods: In this study, the different blood samples were treated with two doses of glucose (10 or 30 mM to mimic hyperglycemia in the presence or absence of three kinds of curcuminoids (5 or 10 μM in a medium at 37 °C for 24 h (Each experiment consists of 20 blood samples from 10 male and 10 female volunteers. The malondialdehyde was checked by HPLC, antioxidase (GSH and GSSG were measured by LC/MS, SOD was checked by WST-1 kit, morphology and phospholipid symmetry were detected by flow cytometry, confocal scanning microscope and scanning electron microscope. Results: The results illustrated that all three curcuminoids reduce oxidative stress damage on the membrane and maintain a better profile for erythrocytes. Furthermore, three curcuminoids had benefit effects on antioxidase. Conclusion: The three kinds of curcuminoids supplementation may prevent lipid peroxidation at different intensity and membrane dysfunction of human erythrocytes in hyperglycemia.

  16. Long-Term Effects of Docosahexaenoic Acid-Bound Phospholipids and the Combination of Docosahexaenoic Acid-Bound Triglyceride and Egg Yolk Phospholipid on Lipid Metabolism in Mice

    Science.gov (United States)

    Che, Hongxia; Cui, Jie; Wen, Min; Xu, Jie; Yanagita, Teruyoshi; Wang, Qi; Xue, Changhu; Wang, Yuming

    2018-04-01

    The bioavailability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) depends on their chemical forms. This study investigated the long-term effects of DHA-bound triglyceride (TG-DHA), DHA-bound phospholipid (PL-DHA), and the combination of TG-DHA and egg yolk phospholipid (Egg-PL) on lipid metabolism in mice fed with a high-fat diet (fat levels of 22.5%). Male C57BL/6J mice were fed with different formulations containing 0.5% DHA, including TG-DHA, PL-DHA, and the combination of TG-DHA and Egg-PL, for 6 weeks. Serum, hepatic, and cerebral lipid concentrations and the fatty acid compositions of the liver and brain were determined. The concentrations of serum total triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and hepatic TG in the PL-DHA group and the combination group were significantly lower than those in the high-fat (HF) group ( P Egg-PL in decreasing the AI. Long-term dietary supplementation with low amount of DHA (0.5%) may improve hepatic DHA levels, although cerebral DHA levels may not be enhanced.

  17. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  18. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    International Nuclear Information System (INIS)

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-01-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  19. Isolation and Analysis of Phospholipids in Dairy Foods

    Directory of Open Access Journals (Sweden)

    Lígia Pimentel

    2016-01-01

    Full Text Available The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer’s disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors.

  20. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance.

    Science.gov (United States)

    Ross, Brian M; Maxwell, Ross; Glen, Iain

    2011-03-30

    Oxidative stress has been reported to be elevated in mental illness. Preliminary evidence suggests this phenomenon can be assessed non-invasively by determining breath levels of the omega-3 polyunsaturated fatty acid (PUFA) oxidation product ethane. This study compares alkane levels in chronic, medicated, patients with schizophrenia or bipolar disorder with those in healthy controls. Both ethane and butane levels were significantly increased in patients with schizophrenia or bipolar disorder, although elevated butane levels were likely due to increased ambient gas concentrations. Ethane levels were not correlated with symptom severity or with erythrocyte omega-3 PUFA levels. Our results support the hypothesis that oxidative stress is elevated in patients with schizophrenia and bipolar disorder leading to increased breath ethane abundance. This does not appear to be caused by increased abundance of omega-3 PUFA, but rather is likely due to enhanced oxidative damage of these lipids. As such, breath hydrocarbon analysis may represent a simple, non-invasive means to monitor the metabolic processes occurring in these disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Tim A D Smith

    Full Text Available The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined.MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK, CTP:phosphocholine cytidylyl transferase (CCT and PtdCho-phospholipase C (PLC were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography.Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U]glucose.This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.

  2. A randomized longitudinal dietary intervention study during pregnancy: effects on fish intake, phospholipids, and body composition.

    Science.gov (United States)

    Bosaeus, Marja; Hussain, Aysha; Karlsson, Therese; Andersson, Louise; Hulthén, Lena; Svelander, Cecilia; Sandberg, Ann-Sofie; Larsson, Ingrid; Ellegård, Lars; Holmäng, Agneta

    2015-01-02

    Fish and meat intake may affect gestational weight gain, body composition and serum fatty acids. We aimed to determine whether a longitudinal dietary intervention during pregnancy could increase fish intake, affect serum phospholipid fatty acids, gestational weight gain and body composition changes during pregnancy in women of normal weight participating in the Pregnancy Obesity Nutrition and Child Health study. A second aim was to study possible effects in early pregnancy of fish intake and meat intake, respectively, on serum phospholipid fatty acids, gestational weight gain, and body composition changes during pregnancy. In this prospective, randomized controlled study, women were allocated to a control group or to a dietary counseling group that focused on increasing fish intake. Fat mass and fat-free mass were measured by air-displacement plethysmography. Reported intake of fish and meat was collected from a baseline population and from a subgroup of women who participated in each trimester of their pregnancies. Serum levels of phospholipid arachidonic acid (s-ARA), eicosapentaenoic acid (s-EPA), and docosahexaenoic acid (s-DHA) were measured during each trimester. Weekly fish intake increased only in the intervention group (n = 18) from the first to the second trimester (median difference 113 g, p = 0.03) and from the first to the third trimester (median difference 75 g, p = 0.01). In the first trimester, fish intake correlated with s-EPA (r = 0.36, p = 0.002, n = 69) and s-DHA (r = 0.34, p = 0.005, n = 69), and meat intake correlated with s-ARA (r = 0.28, p = 0.02, n = 69). Fat-free mass gain correlated with reported meat intake in the first trimester (r = 0.39, p = 0.01, n = 45). Dietary counseling throughout pregnancy could help women increase their fish intake. Intake of meat in early pregnancy may increase the gain in fat-free mass during pregnancy.

  3. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells.

    Science.gov (United States)

    Zhou, Weibo; Simpson, P Jeanette; McFadden, Jill M; Townsend, Craig A; Medghalchi, Susan M; Vadlamudi, Aravinda; Pinn, Michael L; Ronnett, Gabriele V; Kuhajda, Francis P

    2003-11-01

    C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the

  4. FATTY ACID STABLE ISOTOPE INDICATORS OF MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    Science.gov (United States)

    The soil microbial community plays an important role in tropical ecosystem functioning because of its importance in the soil organic matter (SOM) cycle. We have measured the stable carbon isotopic ratio (delta13C) of individual phospholipid fatty acids (PLFAs) in a variety of tr...

  5. A study of associations between early DHA status and fatty acid desaturase (FADS) SNP and developmental outcomes in children of obese mothers

    DEFF Research Database (Denmark)

    Andersen, Karina R; Harsløf, Laurine B S; Schnurr, Theresia M

    2017-01-01

    DHA from diet or endogenous synthesis has been proposed to affect infant development, however, results are inconclusive. In this study, we aim to verify previously observed fatty acid desaturase gene cluster (FADS) SNP-specific associations with erythrocyte DHA status in 9-month-old children...... and sex-specific association with developmental outcomes. The study was performed in 166 children (55 % boys) of obese mothers. Erythrocyte fatty acid composition was analysed in blood-samples obtained at 9 months of age, and developmental outcomes assessed by the Ages and Stages Questionnaire at 3 years......-increasing FADS SNP and erythrocyte DHA status were consistently associated with improved personal-social skills in this small cohort of children of obese mothers irrespective of sex, but the sample was too small to verify potential sex-specific effects....

  6. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-01-01

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  7. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  8. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics.

    Science.gov (United States)

    Mitchell, Todd W; Buffenstein, Rochelle; Hulbert, A J

    2007-11-01

    Phospholipids containing highly polyunsaturated fatty acids are particularly prone to peroxidation and membrane composition may therefore influence longevity. Phospholipid molecules, in particular those containing docosahexaenoic acid (DHA), from the skeletal muscle, heart, liver and liver mitochondria were identified and quantified using mass-spectrometry shotgun lipidomics in two similar-sized rodents that show an approximately 9-fold difference in maximum lifespan. The naked mole rat is the longest-living rodent known with a maximum lifespan of >28 years. Total phospholipid distribution is similar in tissues of both species; DHA is only found in phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS), and DHA is relatively more concentrated in PE than PC. Naked mole-rats have fewer molecular species of both PC and PE than do mice. DHA-containing phospholipids represent 27-57% of all phospholipids in mice but only 2-6% in naked mole-rats. Furthermore, while mice have small amounts of di-polyunsaturated PC and PE, these are lacking in naked mole-rats. Vinyl ether-linked phospholipids (plasmalogens) are higher in naked mole-rat tissues than in mice. The lower level of DHA-containing phospholipids suggests a lower susceptibility to peroxidative damage in membranes of naked mole-rats compared to mice. Whereas the high level of plasmalogens might enhance membrane antioxidant protection in naked mole-rats compared to mice. Both characteristics possibly contribute to the exceptional longevity of naked mole-rats and may indicate a special role for peroxisomes in this extended longevity.

  9. Inflammatory markers in dependence on the plasma concentration of 37 fatty acids after the coronary stent implantation.

    Science.gov (United States)

    Handl, Jiří; Meloun, Milan; Mužáková, Vladimíra

    2018-02-05

    Using the regression model building the relationships between the concentration of 37 fatty acids of blood plasma phospholipids of 41 patients with coronary artery disease after coronary stent implantation, the inflammatory response and oxidative stress markers were estimated. The dynamics of the inflammatory response and the oxidative stress was indicated by measuring plasma concentrations of highly sensitive C-reactive protein, interleukin-6, serum amyloid A and malondialdehyde before, 24h after stent implantation. The multiple linear regression analysis was preceded by an exploratory data analysis, principal component analysis, factor analysis and cluster analysis, which proved a hidden internal relation of 37 fatty acids. The concentration of cerotic acid (C26:0) has been positively associated with an increase of malondialdehyde concentration after stent implantation, while the concentrations of tetracosatetraenoic (C24:4 N6) and nonadecanoic (C19:0) acids were associated with decrease of lipoperoxidation. The increase of interleukin-6 during the 24h after implantation was associated with higher levels of pentadecanoic acid (C15:0) and lower levels of α-linolenic acid (C18:3 N3). Regression models found several significant fatty acids at which the strength of the parameter β for each fatty acid on selected markers of C-reactive protein, malondialdehyde, interleukin-6 and serum amyloid A was estimated. Parameter β testifies to the power of the positive or negative relationship of the fatty acid concentration on the concentration of selected markers. The influencing effect of the cerotic acid (C26:0) concentration in plasma phospholipids exhibiting parameter β=140.4 is, for example, 3.5 times higher than this effect of n-3 tetracosapentaenoic acid (C24:5 N3) with β=40.0. Composition of fatty acids in plasma phospholipids shows spectrum of fatty acids available for intercellular communication in systemic inflammatory response of organism and should affect

  10. Phospholipid composition of Dipylidium caninum.

    Science.gov (United States)

    Chopra, A K; Jain, S K; Vinayak, V K; Khuller, G K

    1978-11-15

    The phospholipid composition of Dipylidium caninum has been studied. Chloroform-methanol-soluble fraction amounted to 2.4% and phospholipids to 0.5% of the wet weight of the parasite. Phosphatidyl choline and phosphatidyl ethanolamine represented the bulk of the phospholipids, whereas phosphatidyl serine, phosphatidyl inositol, lysolecithin and lysophosphatidyl ethanolamine were present in minor amounts. Sulfatides were also identified in this parasite.

  11. Increased Erythrocyte Eicosapentaenoic Acid and Docosahexaenoic Acid Are Associated With Improved Attention and Behavior in Children With ADHD in a Randomized Controlled Three-Way Crossover Trial.

    Science.gov (United States)

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2015-11-01

    To investigate effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on attention, literacy, and behavior in children with ADHD. Ninety children were randomized to consume supplements high in EPA, DHA, or linoleic acid (control) for 4 months each in a crossover design. Erythrocyte fatty acids, attention, cognition, literacy, and Conners' Parent Rating Scales (CPRS) were measured at 0, 4, 8, 12 months. Fifty-three children completed the treatment. Outcome measures showed no significant differences between the three treatments. However, in children with blood samples (n = 76-46), increased erythrocyte EPA + DHA was associated with improved spelling (r = .365, p attention (r = -.540, p improve behavior, attention, and literacy in children with ADHD. © The Author(s) 2013.

  12. Tissue phospholipids (TPL) in avian tuberculosis (AT)

    International Nuclear Information System (INIS)

    Nandedkar, A.K.N.; Malhotra, H.C.

    1986-01-01

    AT constitutes one of the major problems in animal husbandry. Chickens (white, leg horn, male, 400-600 g) were infected with Mycobacterium avium maintained on I.U.T. medium to induce clinical AT which was confirmed by histopathological examinations of the affected tissues. Fatty infiltration and tissue enlargement was visible in infected birds. After 4 wks, incorporation of i.v. 32 P (50 uCi/100 g body wt.) in affected tissues was followed for 3,7,9,12 hr intervals. Lipids were extracted and fractionated by silicic acid (SA) column and SA impregnated paper chromatography. When compared with pair-fed controls, in AT slower turnover of TPL in liver, slightly higher in heart and significantly increased turnover of TPL in serum were observed. No appreciable change in total TPL content was noticed in brain, spleen and kidney. Further fractionation of TPL provided better understanding of the metabolism. Increase in lysophosphatidyl-choline (LPC) and -ethanolamine (LPE) content, powerful hemolytic agents, in liver may explain frequent occurrence of anemia in tuberculosis. Also, a concomitant marked increase in the ratio of total saturated/unsaturated fatty acids is observed in serum phosphatidyl choline fraction. This confirms the observation that the membrane phospholipid metabolism is significantly affected in tuberculosis infection

  13. ER phospholipid composition modulates lipogenesis during feeding and in obesity.

    Science.gov (United States)

    Rong, Xin; Wang, Bo; Palladino, Elisa Nd; de Aguiar Vallim, Thomas Q; Ford, David A; Tontonoz, Peter

    2017-10-02

    Sterol regulatory element-binding protein 1c (SREBP-1c) is a central regulator of lipogenesis whose activity is controlled by proteolytic cleavage. The metabolic factors that affect its processing are incompletely understood. Here, we show that dynamic changes in the acyl chain composition of ER phospholipids affect SREBP-1c maturation in physiology and disease. The abundance of polyunsaturated phosphatidylcholine in liver ER is selectively increased in response to feeding and in the setting of obesity-linked insulin resistance. Exogenous delivery of polyunsaturated phosphatidylcholine to ER accelerated SREBP-1c processing through a mechanism that required an intact SREBP cleavage-activating protein (SCAP) pathway. Furthermore, induction of the phospholipid-remodeling enzyme LPCAT3 in response to liver X receptor (LXR) activation promoted SREBP-1c processing by driving the incorporation of polyunsaturated fatty acids into ER. Conversely, LPCAT3 deficiency increased membrane saturation, reduced nuclear SREBP-1c abundance, and blunted the lipogenic response to feeding, LXR agonist treatment, or obesity-linked insulin resistance. Desaturation of the ER membrane may serve as an auxiliary signal of the fed state that promotes lipid synthesis in response to nutrient availability.

  14. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  15. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Science.gov (United States)

    Torella, Joseph P.; Ford, Tyler J.; Kim, Scott N.; Chen, Amanda M.; Way, Jeffrey C.; Silver, Pamela A.

    2013-01-01

    Medium-chain fatty acids (MCFAs, 4–12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even- and odd-chain–length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired. PMID:23798438

  16. [Lipid and fatty acid profile of Perna viridis, green mussel (Mollusca: Bivalvia) in different areas of the Eastern Venezuela and the West Coast of Trinidad].

    Science.gov (United States)

    Koftayan, Tamar; Milano, Jahiro; D'Armas, Haydelba; Salazar, Gabriel

    2011-03-01

    The species Perna viridis is a highly consumed species, which fast growth makes it an interesting aquaculture alternative for Venezuelan and Trinidad coasts. With the aim to contribute with its nutritional value information, this study analyzed lipid and fatty acid contents from samples taken in five locations from Eastern Venezuela and three from Trinidad West Coast. Total lipids were extracted and quantified, from a pooled sample of 100 organisms per location, by standard gravimetric methods, and their identification and quantification was done by TLC/FID (Iatroscan system). Furthermore, the esterified fatty acids of total lipid, phospholipids and triacylglycerols were identified and quantified by gas chromatography. Eastern Venezuela samples from Los Cedros, La Brea and Chaguaramas showed the highest total lipid values of 7.92, 7.74 and 7.53, respectively, and the minimum values were obtained for La Restinga (6.08%). Among lipid composition, Chacopata samples showed the lowest phospholipid concentration (48.86%) and the maximum values for cholesterol (38.87%) and triacylglycerols (12.26%); besides, La Esmeralda and Rio Caribe samples exhibited maximum phospholipids (88.71 and 84.93 respectively) and minimum cholesterol (6.50 and 4.42%) concentrations. Saturated fatty acids represented between 15.04% and 65.55% within total lipid extracts, with maximum and minimum values for La Esmeralda and Chacopata, respectively. Polyunsaturated results resulted between 7.80 and 37.18%, with higher values in La Brea and lower values in La Esmeralda. For phospholipids, saturated fatty acids concentrations varied between 38.81 and 48.68% for Chaguaramas and Chacopata samples, respectively. In the case of polyunsaturated fatty acids, these varied between non detected and 34.51%, with high concentrations in Los Cedros (27.97%) and Chaguaramas (34.51%) samples. For the triacylglycerols, the saturated fatty acids composition oscillated between 14.27 and 53.80% with low

  17. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring - a preliminary study

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Høy, Carl-Erik

    2003-01-01

    The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed experime......The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed...... experimental diets from the 8(th) day of pregnancy throughout lactation. After weaning and until 13 weeks of age, the offspring were fed the same diet as their dams. The experimental diets contained either a specific structured oil, linseed oil or fish oil. In the specific structured oil, a-linolenic acid (18...... fatty acids. Samples from three animals in each group were analyzed. The highest level of 22:6n-3 in the breast milk was obtained with diets containing this fatty acid itself. The fatty acid profile of rat dam liver PL was very different from the milk lipids indicating that the maternal dietary fats...

  18. Omega-3 Fatty Acid Supplementation for the Treatment of Children with Attention-Deficit/Hyperactivity Disorder Symptomatology: Systematic Review and Meta-Analysis

    Science.gov (United States)

    Bloch, Michael H.; Qawasmi, Ahmad

    2011-01-01

    Objective: Several studies have demonstrated differences in omega-3 fatty acid composition in plasma and in erythrocyte membranes in patients with attention-deficit/hyperactivity disorder (ADHD) compared with unaffected controls. Omega-3 fatty acids have anti-inflammatory properties and can alter central nervous system cell membrane fluidity and…

  19. Variations in fluid chemistry and membrane phospholipid fatty acid composition of the bacterial community in a cold storage groundwater system during clogging events

    International Nuclear Information System (INIS)

    Vetter, Alexandra; Mangelsdorf, Kai; Wolfgramm, Markus; Rauppach, Kerstin; Schettler, Georg; Vieth-Hillebrand, Andrea

    2012-01-01

    In order to monitor the operating mode of the cold storage of the German Parliament (North German Basin) the fluid chemistry and the phospholipid fatty acid (PLFA) composition of the indigenous microbial community have been monitored from August 2006 to August 2009. During this time two periods of reduced injection (clogging events) characterized by Fe precipitates and microbial biofilms in filters occurred in the injection wells impairing the operating state of the investigated cold storage. The fluid monitoring revealed the presence of sufficient amounts of potential C and energy sources (e.g. DOC and SO 4 2- ) in the process water to sustain microbial life in the cold storage. In times of reduced injection the PLFA inventory of the microbial community differs significantly from times of normal operating phases indicating compositional changes in the indigenous microbial ecosystem. The most affected fatty acids (FAs) are 16:1ω7c (increase), 16:1ω7t (decrease) and 18:1ω7c (increase), interpreted to originate mainly from Fe and S oxidizers, as well as branched FA with 15, 16 and 17 C atoms (decrease) most likely representing sulfate-reducing bacteria (SRB). Based on this variability, PLFA ratios have been created to reflect the increasing dominance of biofilm forming S and Fe oxidizers during the disturbance periods. These ratios are potential diagnostic tools to assess the microbiological contribution to the clogging events and to find appropriate counteractive measures (e.g. mechanical cleaning vs disinfection). The correlation between changes in the PLFA composition and the operational state suggests that microbially mediated processes play a significant role in the observed clogging events in the investigated cold storage.

  20. Molecular distributions of phospholipid ester-linked fatty acids in a soil profile of the Dinghushan Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    Shengyi Mao

    2018-01-01

    Full Text Available Phospholipid ester-linked fatty acids (PLFA were used to investigate the microbial ecology and its association with carbon accumulation in one soil profile from the Dinghushan Biosphere Preserve in south China, in order to probe the mechanisms that control the carbon accumulation at the depth of 0 - 20 cm in the Dinghushan forest soil profile. The data show that sulfate reducing bacteria (SRB occur in the top 10 cm, and methanotrophic bacteria and fungi are not present below 10 cm, and the gram-negative bacteria are reduced with gram-positive bacteria dominating at that depth; all of which indicated that the activities of some of the microorganisms were inhibited, from which we infer that the available carbon source and oxygen content of micro environment may be reduced below 10 cm of the profile. The shallow depth (top 10 cm of the soil anaerobic zone at the Wukesong profile, compared to the normal soil anaerobic zone (top 20 - 30 cm, is considered to be mainly the result of the high precipitation of acidic rain. The physicochemical reactions caused by acid rain in the soil system result in a decreased soil porosity, and a correspondingly decreased porosity-dependent oxygen concentration, leading to the thriving of SRB in the shallow depth. Although the increase of soil organic carbon stock is attributed to numerous factors, the decreasing rate of litter decomposition in the topsoil layer, together with the rise of the depth of the anaerobic zone, may play key roles in the carbon accumulation in the depth of 0 - 20 cm in the soil profile from the Dinghushan Biosphere Preserve.

  1. Uptake, turnover and distribution of chlorinated fatty acids in aquatic biota

    Energy Technology Data Exchange (ETDEWEB)

    Bjoern, Helena

    1999-09-01

    Chlorinated fatty acids (CIFAs) are the major contributors of extractable, organically bound chlorine in fish lipids. A known anthropogenic source of CIFAs is chlorine bleached pulp production. Additional anthropogenic sources may exist, e.g., chlorine-containing discharge from industrial and household waste and they may also occur naturally. CIFAs have a wide geographic distribution. They have, for instance, been identified in fish both from Alaskan and Scandinavian waters. In toxicological studies of CIFAs, the most pronounced effects have been found in reproductive related processes. CIFAs have also been shown to disrupt cell membrane functions. The present study was carried out to further characterise the ecotoxicological properties of CIFAs and their presence in biota. To investigate the biological stability of CIFAs, two experiments were carried out using radiolabelled chlorinated and non-chlorinated fatty acids. In both experiments, CIFAs were taken up from food by fish and assimilated to lipids. From the first experiment it was concluded that the chlorinated fatty acid investigated was turned over in the fish to a lower degree than the non-chlorinated analogue. In the second experiment, the transfer of a chlorinated fatty acid was followed over several trophic levels and the chlorinated fatty acid was transferred to the highest trophic level. In samples with differing loads of persistent organic pollutants (POPs) from both fish and marine mammals, high concentrations and diversity of CIFAs were detected. This was also observed in samples with low POP concentration. Chlorohydroxy fatty acids made up a considerable portion of the CIFAs in certain samples, both from limnic fish and marine mammals. CIFAs in fish were found to be bound in complex lipids such as triacylglycerols (storage lipids) and phospholipids, as well as in acyl sterols (membrane lipids). In the marine mammals investigated, high concentrations of CIFAs were mainly bound in phospholipids. If

  2. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats.

    Science.gov (United States)

    Coste, T; Pierlovisi, M; Leonardi, J; Dufayet, D; Gerbi, A; Lafont, H; Vague, P; Raccah, D

    1999-07-01

    Metabolic and vascular abnormalities are implicated in the pathogenesis of diabetic neuropathy. Two principal metabolic defects are altered lipid metabolism resulting from the impairment of delta-6-desaturase, which converts linoleic acid (LA) into gamma linolenic acid (GLA), and reduced nerve Na+, K+ ATPase activity. This reduction may be caused by a lack of incorporation of (n-6) fatty acids in membrane phospholipids. Because this ubiquitous enzyme maintains the membrane electrical potential and allows repolarization, disturbances in its activity can alter the process of nerve conduction velocity (NCV). We studied the effects of supplementation with GLA (260 mg per day) on NCV, fatty acid phospholipid composition, and Na+, K+ ATPase activity in streptozotocin-diabetic rats. Six groups of 10 rats were studied. Two groups served as controls supplemented with GLA or sunflower oil (GLA free). Two groups with different durations of diabetes were studied: 6 weeks with no supplementation and 12 weeks supplemented with sunflower oil. To test the ability of GLA to prevent or reverse the effects of diabetes, two groups of diabetic rats were supplemented with GLA, one group for 12 weeks and one group for 6 weeks, starting 6 weeks after diabetes induction. Diabetes resulted in a 25% decrease in NCV (P < 0.0001), a 45% decrease in Na+, K+ ATPase activity (P < 0.0001), and an abnormal phospholipid fatty acid composition. GLA restored NCV both in the prevention and reversal studies and partially restored Na+, K+ ATPase activity in the preventive treatment group (P < 0.0001). These effects were accompanied by a modification of phospholipid fatty acid composition in nerve membranes. Overall, the results suggest that membrane fatty acid composition plays a direct role in NCV and confirm the beneficial effect of GLA supplementation in diabetic neuropathy.

  3. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  4. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

    Science.gov (United States)

    Severin, Fedor F.; Severina, Inna I.; Antonenko, Yury N.; Rokitskaya, Tatiana I.; Cherepanov, Dmitry A.; Mokhova, Elena N.; Vyssokikh, Mikhail Yu.; Pustovidko, Antonina V.; Markova, Olga V.; Yaguzhinsky, Lev S.; Korshunova, Galina A.; Sumbatyan, Nataliya V.; Skulachev, Maxim V.; Skulachev, Vladimir P.

    2010-01-01

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  5. Maternal Fatty Acids and Their Association with Birth Outcome: A Prospective Study

    Science.gov (United States)

    Meher, Akshaya; Randhir, Karuna; Mehendale, Savita; Wagh, Girija; Joshi, Sadhana

    2016-01-01

    Maternal nutrition, especially LCPUFA, is an important factor in determining fetal growth and development. Our earlier cross sectional study reports lower docosahexanoic acid (DHA) levels at the time of delivery in mothers delivering low birth weight (LBW) babies. This study was undertaken to examine the role of the maternal omega-3 and omega-6 fatty acid profile across the gestation in fetal growth. This is a hospital based study where women were recruited in early gestation. Maternal blood was collected at 3 time points, i.e., T1 = 16th–20th week, T2 = 26th–30th week and T3 = at delivery. Cord blood was collected at delivery. At delivery, these women were divided into 2 groups: those delivering at term a baby weighing >2.5kg [Normal birth weight (NBW) group] and those delivering at term a baby weighing Fatty acids were analysed using gas chromatography. At T1 of gestation, maternal erythrocyte DHA levels were positively (pacid and total erythrocyte omega-6 fatty acid levels at T2 were higher (pfatty acid levels were lower (pfatty acid levels were higher (p<0.05) in the LBW group at delivery. Our data demonstrates the possible role of LCPUFA in the etiology of LBW babies right from early pregnancy. PMID:26815428

  6. Antibiotic interaction with phospholipid monolayers

    International Nuclear Information System (INIS)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G.

    2002-01-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids

  7. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  8. Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity

    DEFF Research Database (Denmark)

    Mathiassen, Jakob Hovalt; Nejrup, Rikke Guldhammer; Frøkiær, Hanne

    2015-01-01

    in particular to limit fatty acid absorption in babies given infant formulas. Since interaction between the lipid droplet and the gastric and duodenal lipases occur through the hydrophobic/hydrophilic interface, the composition of the emulsifier may be crucial for efficient hydrolysis. We therefore determined...... hydrolytic rate of gastric lipase and pancreatic lipase, on their own or pancreatic lipase after gastric lipase on TAG droplets of similar size emulsified in either soy lecithin (SL) or in bovine milk phospholipids (MPL), more similar to human milk globule membrane lipids than soy lecithin. Gastric lipase...... for formulas for term-born infants....

  9. Marine n-3 polyunsaturated fatty acids in patients with end-stage renal failure and in subjects without kidney disease: a comparative study.

    Science.gov (United States)

    Madsen, Trine; Christensen, Jeppe H; Svensson, My; Witt, Petra M; Toft, Egon; Schmidt, Erik B

    2011-03-01

    Patients with end-stage renal disease treated with chronic hemodialysis (HD) are reported to have low levels of marine n-3 polyunsaturated fatty acids (PUFA) in plasma and cell membranes compared with healthy subjects. The aim of this study was to investigate whether n-3 PUFA levels in plasma and cells are lower in HD patients as compared with subjects without kidney disease. A comparative study was carried out. This study was carried out at the Departments of Nephrology and Cardiology, Aalborg Hospital, Aarhus University Hospital, Denmark. This study consisted of 2 study populations comprising HD patients and 5 study populations comprising subjects without kidney disease. The fatty acid distribution in plasma phospholipids and platelet phospholipids was measured using gas chromatography. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) levels in plasma or serum phospholipids and platelet phospholipids in HD patients were compared with n-3 PUFA levels in subjects without kidney disease. EPA and DHA were lower and AA/EPA was higher in plasma/serum phospholipids in HD patients than in subjects without kidney disease. Similarly, higher AA and AA/EPA and lower EPA and DHA levels were found in platelet phospholipids of HD patients. Adjustment for gender, age, and habitual intake of fish and fish oil supplements did not change these results. HD patients have lower n-3 PUFA levels in plasma and cells compared with subjects without kidney disease. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Science.gov (United States)

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  11. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2016-03-01

    Full Text Available In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  12. Influence of Erythrocyte Membrane Stability in Atherosclerosis.

    Science.gov (United States)

    da Silva Garrote-Filho, Mario; Bernardino-Neto, Morun; Penha-Silva, Nilson

    2017-04-01

    The purpose of this study is to show how an excess of cholesterol in the erythrocyte membrane contributes stochastically to the progression of atherosclerosis, leading to damage in blood rheology and O 2 transport, deposition of cholesterol (from trapped erythrocytes) in an area of intraplaque hemorrhage, and local exacerbation of oxidative stress. Cholesterol contained in the membrane of erythrocytes trapped in an intraplaque hemorrhage contributes to the growth of the necrotic nucleus. There is even a relationship between the amount of cholesterol in the erythrocyte membrane and the severity of atherosclerosis. In addition, the volume variability among erythrocytes, measured by RDW, is predictive of a worsening of this disease. Erythrocytes contribute to the development of atherosclerosis in several ways, especially when trapped in intraplate hemorrhage. These erythrocytes are oxidized and phagocytosed by macrophages. The cholesterol present in the membrane of these erythrocytes subsequently contributes to the growth of the atheroma plaque. In addition, when they rupture, erythrocytes release hemoglobin, which leads to the generation of free radicals. Finally, increased RDW may predict the worsening of atherosclerosis, due to the effects of inflammation and oxidative stress on erythropoiesis and erythrocyte volume. A better understanding of erythrocyte participation in atherosclerosis may contribute to the improvement of the prevention and treatment strategies of this disease.

  13. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-01-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  14. Role of Omega-3 Fatty Acids in the Etiology, Treatment, and Prevention of Depression: Current Status and Future Directions

    Science.gov (United States)

    McNamara, Robert K.

    2016-01-01

    Over the past three decades a body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of major depressive disorder (MDD). Cross-national and cross-sectional data suggest that greater habitual intake of preformed EPA+DHA is associated with reduced risk for developing depressive symptoms and syndromal MDD. Erythrocyte EPA and DHA composition is highly correlated with habitual fish or fish oil intake, and case-control studies have consistently observed lower erythrocyte EPA and/or DHA levels in patients with MDD. Low erythrocyte EPA+DHA composition may also be associated with increased risk for suicide and cardiovascular disease, two primary causes of excess premature mortality in MDD. While controversial, dietary EPA+DHA supplementation may have antidepressant properties and may augment the therapeutic efficacy of antidepressant medications. Neuroimaging and rodent neurodevelopmental studies further suggest that low LCn-3 fatty acid intake or biostatus can recapitulate central pathophysiological features associated with MDD. Prospective findings suggest that low LCn-3 fatty acid biostatus increases risk for depressive symptoms in part by augmenting pro-inflammatory responsivity. When taken collectively, these translational findings provide a strong empirical foundation in support of dietary LCn-3 fatty acid deficiency as a modifiable risk factor for MDD. This review provides an overview of this translational evidence and then discusses future directions including strategies to translate this evidence into routine clinical screening and treatment algorithms. PMID:27766299

  15. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  16. Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach

    NARCIS (Netherlands)

    Kürten, B.; Frutos, I.; Struck, U.; Painting, S.J.; Polunin, N.V.C.; Middelburg, J.J.

    The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs).

  17. Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach

    NARCIS (Netherlands)

    Kürten, B.; Frutos, I.; Struck, U.; Painting, S.J.; Polunin, N.V.C.; Middelburg, J.J.

    2013-01-01

    The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs).

  18. Dielectric inspection of erythrocyte morphology

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  19. Dielectric inspection of erythrocyte morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  20. The interaction of insulin with phospholipids

    Science.gov (United States)

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholineInsulin decreased the [14C]glucose solubilized by phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid, but not by sphingomyelin. 5. The significance of these results and the molecular requirements for the formation of insulin–phospholipid complexes in chloroform are discussed. PMID:5158903

  1. A study of associations between early DHA status and fatty acid desaturase (FADS) SNP and developmental outcomes in children of obese mothers.

    Science.gov (United States)

    Andersen, Karina R; Harsløf, Laurine B S; Schnurr, Theresia M; Hansen, Torben; Hellgren, Lars I; Michaelsen, Kim F; Lauritzen, Lotte

    2017-01-01

    DHA from diet or endogenous synthesis has been proposed to affect infant development, however, results are inconclusive. In this study, we aim to verify previously observed fatty acid desaturase gene cluster (FADS) SNP-specific associations with erythrocyte DHA status in 9-month-old children and sex-specific association with developmental outcomes. The study was performed in 166 children (55 % boys) of obese mothers. Erythrocyte fatty acid composition was analysed in blood-samples obtained at 9 months of age, and developmental outcomes assessed by the Ages and Stages Questionnaire at 3 years. Erythrocyte DHA level ranged from 4·4 to 9·9 % of fatty acids, but did not show any association with FADS SNP or other potential determinants. Regression analysis showed associations between erythrocyte DHA and scores for personal-social skills (β 1·8 (95 % CI 0·3, 3·3), P=0·019) and problem solving (β 3·4 (95 % CI 1·2, 5·6), P=0·003). A tendency was observed for an association in opposite direction between minor alleles (G-variant) of rs1535 and rs174575 and personal-social skills (P=0·062 and 0·068, respectively), which became significant when the SNP were combined based on their previously observed effect on erythrocyte DHA at 9 months of age (β 2·6 (95 % CI 0·01, 5·1), P=0·011). Sex-SNP interaction was indicated for rs174575 genotype on fine motor scores (P=0·016), due to higher scores among minor allele carrying girls (P=0·043), whereas no effect was seen among boys. In conclusion, DHA-increasing FADS SNP and erythrocyte DHA status were consistently associated with improved personal-social skills in this small cohort of children of obese mothers irrespective of sex, but the sample was too small to verify potential sex-specific effects.

  2. Omega-3 fatty acids status in human subjects estimated using a food frequency questionnaire and plasma phospholipids levels

    Directory of Open Access Journals (Sweden)

    Garneau Véronique

    2012-07-01

    Full Text Available Abstract Background Intakes of omega-3 (n-3 fatty acids (FA are associated with several health benefits. The aim of this study was to verify whether intakes of n-3 FA estimated from a food frequency questionnaire (FFQ correlate with n-3 FA levels measured in plasma phospholipids (PL. Methods The study sample consisted of 200 French-Canadians men and women aged between 18 to 55 years. Dietary data were collected using a validated FFQ. Fasting blood samples were collected and the plasma PL FA profile was measured by gas chromatography. Results Low intakes of n-3 long-chain FA together with low percentages of n-3 long-chain FA in plasma PL were found in French-Canadian population. Daily intakes of eicosapentaenoic acid (EPA, docosapentaenoic acid (DPA and docosahexaenoic acid (DHA were similar between men and women. Yet, alpha-linolenic acid (ALA and total n-3 FA intakes were significantly higher in men compared to women (ALA: 2.28 g and 1.69 g, p n-3 FA: 2.57 g and 1.99 g, p n-3 FA (men: r = 0.47, p  Conclusion Estimated n-3 long-chain FA intake among this young and well-educated French-Canadian population is lower than the recommendations. Further, FFQ data is comparable to plasma PL results to estimate DHA and total n-3 FA status in healthy individuals as well as to evaluate the EPA and DPA status in women. Overall, this FFQ could be used as a simple, low-cost tool in future studies to rank n-3 FA status of individuals.

  3. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices.

    Science.gov (United States)

    Shekarforoush, Elhamalsadat; Mendes, Ana C; Baj, Vanessa; Beeren, Sophie R; Chronakis, Ioannis S

    2017-10-17

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  4. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    Directory of Open Access Journals (Sweden)

    Elhamalsadat Shekarforoush

    2017-10-01

    Full Text Available Electrospun phospholipid (asolectin microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC and the total phenolic content (TPC of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient and pressures (vacuum, ambient. 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  5. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Essential fatty acid deficiency in patients with severe fat malabsorption

    DEFF Research Database (Denmark)

    Jeppesen, Palle B; Christensen, Michael Søberg; Høy, Carl-Erik

    1997-01-01

    Essential fatty acid deficiency is commonly described in patients receiving parenteral nutrition, but the occurrence in patients with severe fat malabsorption not receiving parenteral nutrition is uncertain. One hundred twelve patients were grouped according to their degree of fat malabsorption......: group 1, 50% (n = 15). Fecal fat was measured by the method of Van de Kamer the last 2 of 5 d of a 75-g fat diet. Serum fatty acids in the phospholipid fraction were measured by gas-liquid chromatography after separation...... by thin-layer chromatography and expressed as a percentage of total fatty acids. The concentration of linoleic acid in groups 1, 2, 3, and 4 was 21.7%, 19.4%, 16.4%, and 13.4% respectively (P acid in groups 1, 2, 3, and 4 was 0.4%, 0.4%, 0.3% and 0.3%, respectively...

  7. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    Science.gov (United States)

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  8. Porphyrin-phospholipid interaction and ring metallation depending on the phospholipid polar head type.

    Science.gov (United States)

    Ramos, Ana P; Pavani, Christiane; Iamamoto, Yassuko; Zaniquelli, Maria E D

    2010-10-01

    The interaction between a hydrophobically modified 5,10,15,20-tetrakis(4-N-tetradecyl-pyridyl) porphyrin and three phospholipids: two negatively charged, DMPA (the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid) and DMPG (the sodium salt of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) and a zwitterionic DMPC (dimyristoyl-sn-glycero-phosphatidylcholine), were studied by means of surface pressure isotherms and spectroscopic methods. The interaction results in partial or total metallation of the porphyrin with zinc ions in the presence of negatively charged phospholipids, as attested by UV-vis and luminescence spectroscopy of the transferred films. In the presence of the zwitterionic phospholipid no insertion of zinc ion in the porphyrin ring is detected. These results are relevant for the understanding of photosensitizer-lipid-carrier binding for use in photodynamic therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A [Emory-MED; (Scripps)

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  10. Targeted metabolomic profiling indicates structure-based perturbations in serum phospholipids in children with acetaminophen overdose

    Directory of Open Access Journals (Sweden)

    Sudeepa Bhattacharyya

    Full Text Available Phospholipids are an important class of lipids that act as building blocks of biological cell membranes and participate in a variety of vital cellular functions including cell signaling. Previous studies have reported alterations in phosphatidylcholine (PC and lysophosphatidylcholine (lysoPC metabolism in acetaminophen (APAP-treated animals or cell cultures. However, little is known about phospholipid perturbations in humans with APAP toxicity. In the current study, targeted metabolomic analysis of 180 different metabolites including 14 lysoPCs and 73 PCs was performed in serum samples from children and adolescents hospitalized for APAP overdose. Metabolite profiles in the overdose group were compared to those of healthy controls and hospitalized children receiving low dose APAP for treatment of pain or fever (therapeutic group. PCs and lysoPCs with very long chain fatty acids (VLCFAs were significantly decreased in the overdose group, while those with comparatively shorter chain lengths were increased in the overdose group compared to the therapeutic and control groups. All ether linked PCs were decreased in the overdose group compared to the controls. LysoPC-C26:1 was highly reduced in the overdose group and could discriminate between the overdose and control groups with 100% sensitivity and specificity. The PCs and lysoPCs with VLCFAs showed significant associations with changes in clinical indicators of drug metabolism (APAP protein adducts and liver injury (alanine aminotransferase, or ALT. Thus, a structure-dependent reduction in PCs and lysoPCs was observed in the APAP-overdose group, which may suggest a structure-activity relationship in inhibition of enzymes involved in phospholipid metabolism in APAP toxicity. Keywords: Metabolomics, Phospholipids, Acetaminophen, Hepatotoxicity, Drug

  11. Evaluation of Ultrafiltration Performance for Phospholipid Separation

    Science.gov (United States)

    Aryanti, N.; Wardhani, D. H.; Maulana, Z. S.; Roberto, D.

    2017-11-01

    Ultrafiltration membrane for degumming of crude palm oil has been applied as an alternative method since the membrane process required less procedure than the conventional degumming. This research focused on the examination of ultrafiltration performance for phospholipid separation from model crude palm oil degumming. Specifically, profile flux and rejection, as well as blocking mechanism, were investigated. Feed consisting of Refined Crude Palm Oil - Isopropanol - Lecithin mixtures were represented as crude palm oil degumming. Lecithin was denoted a phospholipid component, and the concentrations of lecithin in feed were varied to 0.1%, 0.2%, and 0.3%. The concentration of phospholipid was determined as phosphor content. At the concentration of lecithin in feed representing phospholipid concentration of 8,45 mg/kg, 8,45 mg/kg, 24,87 mg/kg and 57,58 mg/kg, respectively. Flux profiles confirmed that there was a flux decline during filtration. In addition, the lecithin concentrations do not significantly effect on further flux decline. Rejection characteristic and phospholipid concentration in the permeate showed that the phospholipid rejections by ultrafiltration were in the range of 23-79,5% representing permeate’s phospholipid concentration of 1,73 - 44,25 mg/kg. Evaluation of fouling mechanism by Hermia’s blocking model confirmed that the standard blocking is the dominant mechanism in the ultrafiltration of lecithin mixture.

  12. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    Science.gov (United States)

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  13. P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes.

    Science.gov (United States)

    Valton, Emeline; Amblard, Christian; Wawrzyniak, Ivan; Penault-Llorca, Frederique; Bamdad, Mahchid

    2013-12-05

    Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.

  14. Ameliorative potential of S-allylcysteine: effect on lipid profile and changes in tissue fatty acid composition in experimental diabetes.

    Science.gov (United States)

    Saravanan, Ganapathy; Ponmurugan, Ponnusamy

    2012-09-01

    Hyperlipidemia is an associated complication of diabetes mellitus. The association of hyperglycemia with an alteration of lipid parameters presents a major risk for cardiovascular complications in diabetes. The present study was designed to examine the antihyperlipidemic effect of S-allylcysteine (SAC) in STZ induced diabetic rats. The levels of blood glucose, cholesterol (TC), triglycerides (TG), free fatty acids, phospholipids and fatty acid composition were estimated in the liver and kidneys of control and experimental groups of rats. Oral administration of SAC at a dose of 150 mg/kg bodyweight per day to STZ-induced diabetic rats for a period of 45 days resulted in a significant reduction in fasting blood glucose, TC, TG, free fatty acids, phospholipids, LDL-C, VLDL-C and elevation of HDL-C in comparison with diabetic control group. Oral administration of SAC to diabetic rats also decreased the concentrations of fatty acids, viz., palmitic, stearic (16:1), and oleic acid (18:1), whereas linolenic (18:3) and arachidonic acid (20:4) were elevated. The antihyperlipidemic effect of SAC was compared with glyclazide; a well-known antihyperglycemic drug. The result of the present study indicates that SAC showed an antihyperlipidemic effect in addition to its antidiabetic effect in experimental diabetes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  15. Minor amounts of plasma medium-chain fatty acids and no improved time trial performance after consuming lipids

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Nybo, L.; Xu, Xuebing

    2003-01-01

    after consumption of specific structured triacylglycerol, consisting of a mixture of medium-chain fatty acids and long-chain fatty acids, to prevent the adverse effects observed by MCT (pure medium-chain fatty acids) regarding gastrointestinal distress. Seven well-trained subjects cycled 3 h at 55......% of maximum 02 uptake during which they ingested CHO or CHO plus specific structured triacylglycerols. Immediately after the constant-load cycling, the subjects performed a time trial of similar to50-min duration. Breath and blood samples were obtained regularly during the experiment. Fatty acid composition...... of plasma triacylglycerols, fatty acids, and phospholipids was determined. Performance was similar after administration of CHO plus specific structured triacylglycerol [medium-, long-, and medium-chain fatty acid (MLM)] compared with CHO (50.0 +/- 1.8 and 50.8 +/- 3.6 min, respectively). No plasma 8...

  16. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    Science.gov (United States)

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements.

  17. Positional Distribution of Fatty Acids in Triacylglycerols and Phospholipids from Fillets of Atlantic Salmon (Salmo Salar) Fed Vegetable and Fish Oil Blends.

    Science.gov (United States)

    Ruiz-Lopez, Noemi; Stubhaug, Ingunn; Ipharraguerre, Ignacio; Rimbach, Gerald; Menoyo, David

    2015-07-10

    The nutritional and functional characteristics of dietary fat are related to the fatty acid (FA) composition and its positional distribution in the triacylglycerol (TAG) fraction. Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, eicosapentaenoic (EPA) and docoxahexaenoic (DHA) acids). However, the impact of lipid sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. The present study determines the effect of feeding salmon with blends of palm, rapeseed, and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and low: L-ED 4.6%) on the fillet lipid class composition and the positional distribution of FA in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% of the EPA and around 80% of DHA was located in the sn-2 position. The positional distribution of FA in phosphatidylcholine (PC), showed that around 80% of the EPA and around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively) but similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA concentrations does not affect their positional distribution in the fillet TAG.

  18. Positional Distribution of Fatty Acids in Triacylglycerols and Phospholipids from Fillets of Atlantic Salmon (Salmo Salar Fed Vegetable and Fish Oil Blends

    Directory of Open Access Journals (Sweden)

    Noemi Ruiz-Lopez

    2015-07-01

    Full Text Available The nutritional and functional characteristics of dietary fat are related to the fatty acid (FA composition and its positional distribution in the triacylglycerol (TAG fraction. Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, eicosapentaenoic (EPA and docoxahexaenoic (DHA acids. However, the impact of lipid sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. The present study determines the effect of feeding salmon with blends of palm, rapeseed, and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and low: L-ED 4.6% on the fillet lipid class composition and the positional distribution of FA in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% of the EPA and around 80% of DHA was located in the sn-2 position. The positional distribution of FA in phosphatidylcholine (PC, showed that around 80% of the EPA and around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively but similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA concentrations does not affect their positional distribution in the fillet TAG.

  19. Metabolism of dietary fatty alcohol, fatty acid, and wax ester in carp

    International Nuclear Information System (INIS)

    Mankura, Mitsumasa; Kayama, Mitsu; Iijima, Noriaki.

    1987-01-01

    Lipids in various tissues of the carp, Cyprinus carpio were analyzed. The fates of force-fed [1- 14 C]palmitic acids, [1- 14 C]cetyl alcohol, and oleyl[1- 14 C]linoleate, were compared with those given in vitro experiments. Major lipid classes in all except adipose tissue were found to be polar lipids (phospholipids) and triacylglycerols. The major fatty acids in nearly all the tissues were 16 : 0, 18 : 1, 18 : 2, and 22 : 6. Although the radioactivity incorporation into wax esters from [1- 14 C]palmitic acid and [1- 14 C]cetyl alcohol for various tissue homogenates was quite high, in vivo incorporation of these labelled compounds into wax esters was very low and radioactivity was distributed mainly in the lipids of muscle, skin, hepatopancreas, intestine, and gill. Almost all the radioactivity in various tissues was present in phospatidylcholine and triacylglycerols. Most of the oleyl[1- 14 C]linoleate was easily hydrolyzed by various tissue homogenates. Force-fed oleyl[1- 14 C]linoleate was hydrolyzed in the intestine and then transported to other tissues, such as muscle, kin, gill, and hepatopancreas. Moreover, released radioactivity from oleyl[1- 14 C]linoleate was present in mainly phosphatidylcholine and triacylglycerols. Radioactivity was also detected in wax esters in plasma. Certain amounts for fatty acids released from [1- 14 C]triolein in the hepatopancreas homogenates were incorporated into wax esters; this was stimulated by the addition of oleyl alcohol. The present results indicate extensive hydrolysis of wax ester to possibly occur in the intestine and certain portions of the fatty alcohol moiety to be resterfied. The portions may be oxidized to fatty acids and which subsequently behave as dietary fatty acids. (author) 50 ref

  20. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    results have shown that dietary alpha-linolenic acid deficiency induces more marked abnormalities in certain cerebral structures than in others, as the frontal cortex and pituitary gland are more severely affected. These selective lesions are accompanied by behavioural disorders more particularly affecting certain tests (habituation, adaptation to new situations). Biochemical and behavioural abnormalities are partially reversed by a dietary phospholipid supplement, especially omega-3-rich egg yolk extracts or pig brain. A dose-effect study showed that animal phospholipids are more effective than plant phospholipids to reverse the consequences of alpha-linolenic acid deficiency, partly because they provide very long preformed chains. Alpha-linolenic acid deficiency decreases the perception of pleasure, by slightly altering the efficacy of sensory organs and by affecting certain cerebral structures. Age-related impairment of hearing, vision and smell is due to both decreased efficacy of the parts of the brain concerned and disorders of sensory receptors, particularly of the inner ear or retina. For example, a given level of perception of a sweet taste requires a larger quantity of sugar in subjects with alpha-linolenic acid deficiency. In view of occidental eating habits, as omega-6 fatty acid deficiency has never been observed, its impact on the brain has not been studied. In contrast, omega-9 fatty acid deficiency, specifically oleic acid deficiency, induces a reduction of this fatty acid in many tissues, except the brain (but the sciatic nerve is affected). This fatty acid is therefore not synthesized in sufficient quantities, at least during pregnancy-lactation, implying a need for dietary intake. It must be remembered that organization of the neurons is almost complete several weeks before birth, and that these neurons remain for the subject's life time. Consequently, any disturbance of these neurons, an alteration of their connections, and impaired turnover of their

  1. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression

    DEFF Research Database (Denmark)

    Assies, Johanna; Pouwer, François; Lok, Anja

    2010-01-01

    status of patients with MDD-R not only differs with regard to omega-3 and omega-6 PUFAs, but also concerns other fatty acids. These alterations may be due to: differences in diet, changes in synthesizing enzyme activities, higher levels of chronic (oxidative) stress but may also result from adaptive...... strategies by providing protection against enhanced oxidative stress and production of free radicals....

  2. A Correlation Study of DHA Intake Estimated by a FFQ and Concentrations in Plasma and Erythrocytes in Mid- and Late Pregnancy

    Science.gov (United States)

    Zhou, Yu-Bo; Li, Hong-Tian; Trasande, Leonardo; Wang, Lin-Lin; Zhang, Ya-Li; Si, Ke-Yi; Bai, Man-Xi; Liu, Jian-Meng

    2017-01-01

    Adequate docosahexaenoic acid (DHA) is essential for the optimal growth and development of the fetus. Maternal DHA content fluctuates during pregnancy. The correlation of DHA content with dietary intake might be varied over the course of pregnancy. We aimed to compare the dietary DHA intake, estimated by a DHA-specific semiquantitative food frequency questionnaire (FFQ) against its blood content, among mid- and late-term pregnant women. A total of 804 Chinese pregnant women completed the tailored FFQ and provided fasting venous blood samples. Dietary DHA intake (mg/day) in the previous month was calculated from the FFQ using Chinese Food Composition Table. DHA concentrations (weight percent of total fatty acids) in plasma and erythrocytes were measured by capillary gas chromatography. Spearman correlation coefficients (rs) between DHA intake and its relative concentrations were calculated. After adjustment for maternal age, pre-pregnancy body mass index, stage of pregnancy, parity, education level, ethnicity, and annual family income per capita, the correlation coefficients of DHA intake with its concentrations in plasma and erythrocytes were 0.35 and 0.33, respectively (p DHA intake and its plasma or erythrocytes concentrations (p DHA intake, estimated by the FFQ, was positively correlated with its concentrations in plasma and erythrocytes in Chinese pregnant women, especially for women in late pregnancy, with the exception of the erythrocytes of those living in a coastland area. PMID:29144430

  3. Muscle and genotype effects on fatty acid composition of goat kid intramuscular fat

    Directory of Open Access Journals (Sweden)

    Valeriano Domenech

    2011-07-01

    Full Text Available Little is known about the fatty acid composition of the major muscles in goats from different breeds. Forty entire male suckling kids, 20 Criollo Cordobes and 20 Anglo Nubian, were slaughtered at 75 days of age and the fatty acid composition of their longissimus thoracis (LT and semitendinosus (ST muscles was analysed to clarify the effects of genotype and muscle type on goat kid meat. Genotype had a great influence on the fatty acid composition of goat kid meat. Meat from Criollo Cordobes had greater saturated (P<0.001 and lower monounsaturated (P<0.001 and polyunsaturated fatty acids (P=0.002 concentration than meat from Anglo Nubian, showing higher saturated fatty acids (SFA. On the other hand, intramuscular fat content from both genotypes was higher (P=0.042 in ST muscle, while the lowest cholesterol levels were observed in ST of Criollo Cordobes (P=0.038. That higher fat content resulted in lower relative contents of total polyunsaturated (P<0.001 and n-3 (P=0.002 fatty acids due to the lower contribution of the membrane phospholipids.

  4. Different kinetic in incorporation and depletion of n-3 fatty acids in erythrocytes and leukocytes of mice

    DEFF Research Database (Denmark)

    Mu, Huiling; Thogersen, Regitze Louise; Maaetoft-Udsen, Kristina

    2006-01-01

    during a 6-wk feeding period. Over the first 3-wk period (the incorporation period) the mice were fed a special diet with a high n-3/n-6 PUFA ratio. In the following 3-wk period (the depletion period) the mice were fed a standard chow diet. A linear increase of the concentration of EPA and DHA...... in erythrocyte membranes was observed during the incorporation period, whereas a stagnation was observed after the second week for leukocytes. The level of EPA did not fall to the background level after the depletion period, and the level of DHA was kept almost constant during the depletion period...... in the erythrocyte membranes. In leukocytes the concentration of both EPA and DHA decreased during the depletion period, but did not reach the background level after the 3-wk depletion. In conclusion, the kinetics of EPA and DHA in the different cells are different. The rate of incorporation is faster than...

  5. Characterization of contamination, source and degradation of petroleum between upland and paddy fields based on geochemical characteristics and phospholipid fatty acids.

    Science.gov (United States)

    Zhang, Juan; Wang, Renqing; Du, Xiaoming; Li, Fasheng; Dai, Jiulan

    2012-01-01

    To evaluate contamination caused by petroleum, surface soil samples were collected from both upland and paddy fields along the irrigation canals in the Hunpu wastewater irrigation region in northeast China. N-alkanes, terpanes, steranes, and phospholipid fatty acids (PLFA) in the surface soil samples were analyzed. The aliphatic hydrocarbon concentration was highest in the samples obtained from the upland field near an operational oil well; it was lowest at I-3P where wastewater irrigation promoted the downward movement of hydrocarbons. The Hunpu region was found contaminated by heavy petroleum from oxic lacustrine fresh water or marine deltaic source rocks. Geochemical parameters also indicated significantly heavier contamination and degradation in the upland fields compared with the paddy fields. Principal component analysis based on PLFA showed various microbial communities between petroleum contaminated upland and paddy fields. Gram-negative bacteria indicated by 15:0, 3OH 12:0, and 16:1(9) were significantly higher in the paddy fields, whereas Gram-positive bacteria indicated by i16:0 and 18:1(9)c were significantly higher in the upland fields (p petroleum contamination. Poly-unsaturated PLFA (18:2omega6, 9; indicative of hydrocarbon-degrading bacteria and fungi) was also significantly elevated in the upland fields. This paper recommends more sensitive indicators of contamination and degradation of petroleum in soil. The results also provide guidelines on soil pollution control and remediation in the Hunpu region and other similar regions.

  6. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    Science.gov (United States)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  7. No effect of human serum and erythrocytes enriched in n-3 fatty acids by oral intake on Plasmodium falciparum bloodstage parasites in vitro

    DEFF Research Database (Denmark)

    Abu-Zeid, Y.A.; Hansen, Harald S.; Jakobsen, P.H.

    1993-01-01

    -s) and pre-intake erythrocyte (pre-e). Also the effect of EPA and arachidonic acid (AA, 20:4n-6) on the erythrocytic growth of P. falciparum was tested using in vitro assays. The results show that both post-s and post-e had no antimalarial activity on P. falciparum. No differential antimalarial effect...... acid (EPA, 20:5n-3) of 3.5g/d and docosahexaenoic acid (DHA, 22:6n-3) of 2.5 g/d and 24 mg/d of total tocopherol. Post-intake fish oil serum (post-s) and erythrocytes (post-e) were tested in vitro for inhibitory activity against blood stages of P. falciparum compared with pre-intake serum (pre...

  8. [Ceruloplasmin receptor on human erythrocytes].

    Science.gov (United States)

    Saenko, E L; Basevich, V V; Iaropolov, A I

    1988-08-01

    The structural fragments of the human ceruloplasmin (CP) molecule and of erythrocyte receptors which provide for the specific interaction of CP with erythrocytes were identified, and their properties were investigated. The interaction of CP with erythrocytes, both intact and treated with neuroaminidase and proteolytic enzymes (trypsin, chymotrypsin, papaine, pronase E) is described. Experiments with CP reception were performed at 4 degrees C, using [125I]CP and [125I]asialo-CP. The parameters of binding were determined in Scatchard plots. It was demonstrated that the specific binding of CP to erythrocyte receptors is determined by its interaction with two structural sites of the carbohydrate moiety of the CP molecule, i.e., the terminal residues of sialic acids and a site, (formula; see text) located at a large distance from the chain terminus.

  9. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort

    NARCIS (Netherlands)

    Patel, P.S.; Sharp, S.J.; Jansen, E.H.J.M.

    2010-01-01

    Background Epidemiologic evidence for the association between types of fatty acid and risk of type 2 diabetes is inconsistent This may in part be due to the limitations of fatty acid measurement methods Objective The objective was to use 3 different measures of fatty acid to estimate the prospective

  10. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  11. Role of erythrocyte tropomodulin in the biomechanics and topology of the erythrocyte membrane skeletal network

    OpenAIRE

    Green, Terrell Ann

    2010-01-01

    The erythrocyte membrane skeleton is a multi-protein complex providing mechanical properties and stability to erythrocytes. Defects in the skeleton can manifest in dysfunction and disease such as hemolytic anemia. Erythrocyte tropomodulin (E-Tmod) is a slow-growing end actin-capping protein and has been proposed that together with tropomyosin 5 or 5b they form a "molecular ruler" which dictates protofilament length of 37 nm in the network. In this study, the role for E-Tmod in the network org...

  12. Effect of fish oil supplementation on the n-3 fatty acid content of red blood cell membranes in preterm infants.

    Science.gov (United States)

    Carlson, S E; Rhodes, P G; Rao, V S; Goldgar, D E

    1987-05-01

    Very low birth weight infants demonstrate significant reductions in red blood cell membrane docosahexaenoic acid (DHA, 22:6n-3) following delivery unless fed human milk. The purpose of the present study was to determine if a dietary source of DHA (MaxEPA, R. P. Scherer Corporation, Troy, MI) could prevent the decline in red blood cell phospholipid DHA in very low birth weight infants whose enteral feeding consisted of a preterm formula without DHA. Longitudinal data were obtained on membrane phospholipid DHA in both unsupplemented and MaxEPA-supplemented infants by a combination of thin-layer and gas chromatography. These infants (n = 39) ranged in age from 10 to 53 days at enrollment (0 time). At enrollment, phospholipid DHA and arachidonic acid (20:4n-6) were inversely correlated with age in days. During the study, mean red blood cell phospholipid DHA declined without supplementary DHA as determined by biweekly measurement, but infants supplemented with MaxEPA maintained the same weight percent of phospholipid (phosphatidylethanolamine, phosphatidylcholine, and phosphatidylserine) DHA as at enrollment. The pattern of red blood cell phospholipid fatty acids in supplemented infants was similar to that reported for preterm infants fed human milk.

  13. Extracellular histones induce erythrocyte fragility and anemia.

    Science.gov (United States)

    Kordbacheh, Farzaneh; O'Meara, Connor H; Coupland, Lucy A; Lelliott, Patrick M; Parish, Christopher R

    2017-12-28

    Extracellular histones have been shown to play an important pathogenic role in many diseases, primarily through their cytotoxicity toward nucleated cells and their ability to promote platelet activation with resultant thrombosis and thrombocytopenia. In contrast, little is known about the effect of extracellular histones on erythrocyte function. We demonstrate in this study that histones promote erythrocyte aggregation, sedimentation, and using a novel in vitro shear stress model, we show that histones induce erythrocyte fragility and lysis in a concentration-dependent manner. Furthermore, histones impair erythrocyte deformability based on reduced passage of erythrocytes through an artificial spleen. These in vitro results were mirrored in vivo with the injection of histones inducing anemia within minutes of administration, with a concomitant increase in splenic hemoglobin content. Thrombocytopenia and leukopenia were also observed. These findings suggest that histones binding to erythrocytes may contribute to the elevated erythrocyte sedimentation rates observed in inflammatory conditions. Furthermore, histone-induced increases in red blood cell lysis and splenic clearance may be a significant factor in the unexplained anemias seen in critically ill patients. © 2017 by The American Society of Hematology.

  14. Differences in essential fatty acid requirements by enteral and parenteral routes of administration in patients with fat malabsorption

    DEFF Research Database (Denmark)

    Jeppesen, Palle B; Høy, Carl-Erik; Mortensen, Per B

    1999-01-01

    Background: Essential fatty acid (EFA) requirements of patients receiving home parenteral nutrition (HPN) are uncertain. Objective: The objective was to evaluate the influence of the route of administration (enteral compared with parenteral) on plasma phospholipid EFA concentrations. Design......: Intestinal absorption, parenteral supplement of EFAs, and plasma phospholipid EFA concentrations were investigated in balance studies in 4 groups (A, B, C, and D) of 10 patients with short-bowel syndrome and a fecal loss of >2000 kJ/d. Groups A (fat malabsorption 50%) did...... absorption was negligible in groups C and D. Thus, intestinal absorption of EFAs in group A. corresponded to parenteral EFA supplements in group C, whereas group D was almost totally deprived of EFAs. The median plasma phospholipid concentration of linoleic acid decreased by 21.9%, > 16.3%, >13.8%, 11...

  15. Polyunsaturated fatty acids and their metabolites in brain function and disease.

    Science.gov (United States)

    Bazinet, Richard P; Layé, Sophie

    2014-12-01

    The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.

  16. The mechanism of erythrocyte sedimentation. Part 2: The global collapse of settling erythrocyte network.

    Science.gov (United States)

    Pribush, A; Meyerstein, D; Meyerstein, N

    2010-01-01

    Results reported in the companion paper showed that erythrocytes in quiescent blood are combined into a network followed by the formation of plasma channels within it. This study is focused on structural changes in the settling dispersed phase subsequent to the channeling and the effect of the structural organization on the sedimentation rate. It is suggested that the initial, slow stage of erythrocyte sedimentation is mainly controlled by the gravitational compactness of the collapsed network. The lifetime of RBC network and hence the duration of the slow regime of erythrocyte sedimentation decrease with an increase in the intercellular pair potential and with a decrease in Hct. The gravitational compactness of the collapsed network causes its rupture into individual fragments. The catastrophic collapse of the network transforms erythrocyte sedimentation from slow to fast regime. The size of RBC network fragment is insignificantly affected by Hct and is mainly determined by the intensity of intercellular attractive interactions. When cells were suspended in the weak aggregating medium, the Stokes radius of fragments does not differ measurably from that of individual RBCs. The proposed mechanism provides a reasonable explanation of the effects of RBC aggregation, Hct and the initial height of the blood column on the delayed erythrocyte sedimentation.

  17. Erythrocyte fluorescence and lead intoxication.

    Science.gov (United States)

    Clark, K G

    1976-01-01

    Blood samples from people exposed to inorganic lead were examined by fluorescence microscopy for excess erythrocyte porphyrin. With continued lead absorption, fluorescent erythrocytes appeared in the circulation of workers handling this metal or its compounds, and they progressively increased in number and brilliance. These changes ensued if the blood lead concentration was maintained above 2-42 mumol/l (50 mug/100 ml), and preceded any material fall in the haemoglobin value. At one factory, 62-5% of 81 symptomless workers showed erythrocyte fluorescence attributable to the toxic effects of lead. Excess fluorocytes were found in blood samples from a child with pica and three of her eight siblings. These four were subsequently shown to have slightly increased blood lead concentrations (2-03 to 2-32 mumol/l). Fluorescence microscopy for excess erythrocyte porphyrin is a sensitive method for the detection of chronic lead intoxication. A relatively slight increase in the blood lead is associated with demonstrabel changes in erythrocyte porphyrin content. The procedure requires little blood, and may be performed upon stored samples collected for lead estimation. The results are not readily influenced by contamination, and provide good confirmatory evidence for the absorption of biochemically active lead. PMID:963005

  18. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers

    Directory of Open Access Journals (Sweden)

    CARVAJAL OCTAVIO

    1997-01-01

    Full Text Available Objective. The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Material and methods. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. Results. The hypertriglyceridemic group showed a statistically significant (p< 0.05 reduction of triglycerides and significant (p< 0.01 elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. Conclusions. The hipolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.

  19. Integration of palmitat-1-14C in lecithine and phospholipid content in normal and micro-embolized rabbit lungs

    International Nuclear Information System (INIS)

    Wichert, P. von; Wilke, A.; Gaertner, U.

    1975-01-01

    Glass microspheres were used for a diffuse pulmonary microembolisation, as a modell for shock lung. Microembolisation is regarded as an important factor in pathogenesis of shock lung. The capacity of lung for lecithin synthesis was measured with palmitat-1- 14 C incorporation. The phospholipid content and the composition of the fatty acids of lecithine were investigated. From the results it was possible, that the surfactant system may alterated by the vascular blocking. The dates supporting the importance of microembolisation in pathogenesis of shock lung. (orig.) [de

  20. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    Science.gov (United States)

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  1. Temperature-induced changes in lecithin model membranes detected by novel covalent spin-labelled phospholipids.

    Science.gov (United States)

    Stuhne-Sekalec, L; Stanacev, N Z

    1977-02-01

    Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.

  2. Changes in haematology, plasma biochemistry and erythrocyte ...

    African Journals Online (AJOL)

    The results suggest that maintaining wild birds in captivity for a prolonged period could be stressful as shown by the heterophil/lymphocytes ratio and reduced erythrocyte osmotic resistance, and could lead to decreases in erythrocyte parameters and muscle wasting. Keywords: Haematological parameters, erythrocyte ...

  3. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  4. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    Science.gov (United States)

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  5. Phospholipid composition and longevity: lessons from Ames dwarf mice.

    Science.gov (United States)

    Valencak, Teresa G; Ruf, Thomas

    2013-12-01

    Membrane fatty acid (FA) composition is correlated with longevity in mammals. The "membrane pacemaker hypothesis of ageing" proposes that animals which cellular membranes contain high amounts of polyunsaturated FAs (PUFAs) have shorter life spans because their membranes are more susceptible to peroxidation and further oxidative damage. It remains to be shown, however, that long-lived phenotypes such as the Ames dwarf mouse have membranes containing fewer PUFAs and thus being less prone to peroxidation, as would be predicted from the membrane pacemaker hypothesis of ageing. Here, we show that across four different tissues, i.e., muscle, heart, liver and brain as well as in liver mitochondria, Ames dwarf mice possess membrane phospholipids containing between 30 and 60 % PUFAs (depending on the tissue), which is similar to PUFA contents of their normal-sized, short-lived siblings. However, we found that that Ames dwarf mice membrane phospholipids were significantly poorer in n-3 PUFAs. While lack of a difference in PUFA contents is contradicting the membrane pacemaker hypothesis, the lower n-3 PUFAs content in the long-lived mice provides some support for the membrane pacemaker hypothesis of ageing, as n-3 PUFAs comprise those FAs being blamed most for causing oxidative damage. By comparing tissue composition between 1-, 2- and 6-month-old mice in both phenotypes, we found that membranes differed both in quantity of PUFAs and in the prevalence of certain PUFAs. In sum, membrane composition in the Ames dwarf mouse supports the concept that tissue FA composition is related to longevity.

  6. Regional distribution of phospholipids in porcine vitreous humor.

    Science.gov (United States)

    Schnepf, Abigail; Yappert, Marta Cecilia; Borchman, Douglas

    2017-07-01

    This project explores the regional phospholipid distribution in porcine vitreous humor, retina, and lens. Matrix-assisted laser desorption mass spectrometry has been used previously to image lipids, proteins, and other metabolites in retinas and lenses. However, the regional composition of phospholipids in vitreous humors is not known. To address this issue, we have applied this mass spectral method to explore the regional phospholipid distribution in porcine vitreous humor both ex-situ and in-vitro. To establish the possible source(s) of phospholipids in the vitreous humor, compositional studies of the lens and retina were also pursued. Due to the overall low levels of phospholipids in vitreous humor, it was necessary to optimize the experimental approaches for ex-situ and in-vitro studies. The sensitivity observed in the spectra of methanol extracts from the lens and retina was higher than that for methanol:chloroform extracts, but the compositional trends were the same. A fourfold improvement in sensitivity was observed in the analysis of vitreous humor extracts obtained with the Bligh and Dyer protocol relative to the other two extraction methods. For ex-situ studies, the 'stamp method' with para-nitroaniline as the matrix was chosen. Throughout the vitreous humor, phosphatidylcholines were the most abundant phospholipids. In-vitro results showed higher relative levels of phospholipids compared to the 'stamp' method. However, more details in the regional phospholipid distribution were provided by the ex-situ approach. Both in-vitro and ex-situ results indicated higher levels of phospholipids in the posterior vitreous region, followed by the anterior and central regions. The posterior region contained more unsaturated species whereas more saturated phospholipids were detected in the anterior region. The observed trends suggest that the phospholipids detected in the posterior vitreous humor migrate from the retina and associated vasculature while those present in

  7. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.

    Science.gov (United States)

    Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M

    2018-06-05

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.

  8. Pre- and early-postnatal nutrition modify gene and protein expressions of muscle energy metabolism markers and phospholipid Fatty Acid composition in a muscle type specific manner in sheep.

    Directory of Open Access Journals (Sweden)

    Lei Hou

    Full Text Available We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD and biceps femoris (BF and in the cardiac muscle (ventriculus sinister cordis (VSC of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM or 50% (LOW of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty, twin offspring received a high-carbohydrate-high-fat (HCHF or a moderate-conventional (CONV diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults. The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4 protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced

  9. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  10. No effect of human serum and erythrocytes enriched in n-3 fatty acids by oral intake on Plasmodium falciparum blood stage parasites in vitro

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Hansen, H S; Jakobsen, P H

    1993-01-01

    -s) and pre-intake erythrocyte (pre-e). Also the effect of EPA and arachidonic acid (AA, 20:4n-6) on the erythrocytic growth of P. falciparum was tested using in vitro assays. The results show that both post-s and post-e had no antimalarial activity on P. falciparum. No differential antimalarial effect...... acid (EPA, 20:5n-3) of 3.5 g/d and docosahexaenoic acid (DHA, 22:6n-3) of 2.5 g/d and 24 mg/d of total tocopherol. Post-intake fish oil serum (post-s) and erythrocytes (post-e) were tested in vitro for inhibitory activity against blood stages of P. falciparum compared with pre-intake serum (pre...

  11. Selective remodeling of cardiolipin fatty acids in the aged rat heart

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I

    2006-01-01

    Full Text Available Abstract Background The heart is rich in cardiolipin, a phospholipid acylated in four sites, predominately with linoleic acid. Whether or not aging alters the composition of cardiolipin acyl chains is controversial. We therefore measured the fatty acid concentration of cardiolipin in hearts of 4, 12 and 24 month old rats that consumed one diet, adequate in fatty acids for the duration of their life. Results The concentration (nmol/g of linoleic acid was decreased in 24 month old rats (3965 ± 617, mean ± SD vs 4 month old rats (5525 ± 656, while the concentrations of arachidonic and docosahexaenoic acid were increased in 24 month old rats (79 ± 9 vs 178 ± 27 and 104 ± 16 vs 307 ± 68 for arachidonic and docosahexaenoic acids, 4 months vs 24 months, respectively. Similar changes were not observed in ethanolamine glycerophospholipids or plasma unesterified fatty acids, suggesting specificity of these effects to cardiolipin. Conclusion These results demonstrate that cardiolipin remodeling occurs with aging, specifically an increase in highly unsaturated fatty acids.

  12. Selective radiolabeling and isolation of the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase

    International Nuclear Information System (INIS)

    Roberts, W.L.; Rosenberry, T.L.

    1986-01-01

    The hydrophobic, membrane-binding domain of purified human erythrocyte acetylcholinesterase was labeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-[ 125 I]iodophenyl)diazirine. The radiolabel was incorporated when the enzyme was prepared in detergent-free aggregates, in detergent micelles, or in phospholipid liposomes, but the highest percentage of labeling occurred in the detergent-free aggregates. Papain digestion of the enzyme released the hydrophobic domain, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate or gel exclusion chromatography demonstrated that the label was localized exclusively in the cleaved hydrophobic domain fragment. This fragment was purified in a three-step procedure. Digestion was conducted with papain attached to Sepharose CL-4B, and the supernatant was adsorbed to acridinium affinity resin to remove the hydrophilic enzyme fragment. The nonretained fragment associated with Triton X-100 micelles was then chromatographed on Sepharose CL-6B, and finally detergent was removed by chromatography on Sephadex LH-60 in an ethanol-formic acid solvent. The fragment exhibited an apparent molecular weight of 3100 on the Sephadex LH-60 column when compared with peptide standards. However, amino acid analysis of the purified fragment revealed only 1 mol each of histidine and glycine per mole of fragment in contrast to the 25-30 mole of amino acids expected on the basis of the molecular weight estimate. This result suggests a novel non-amino acid structure for the hydrophobic domain of human erythrocyte acetylcholinesterase

  13. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver.

    Science.gov (United States)

    Fukuda, N; Ontko, J A

    1984-08-01

    In a series of experiments with male rat livers perfused with or without 5-tetradecyloxy-2-furoic acid (TOFA) in the presence and absence of oleate, the relationships between fatty acid synthesis, oxidation, and esterification from newly synthesized and exogenous fatty acid substrates have been examined. When livers from fed rats were perfused without exogenous fatty acid substrate, 20% of the triglyceride secreted was derived from de novo fatty acid synthesis. Addition of TOFA caused immediate and nearly complete inhibition of fatty acid synthesis, measured by incorporation of 3H2O into fatty acids. Concurrently, ketone body production increased 140% and triglyceride secretion decreased 84%. These marked reciprocal alterations in fatty acid synthesis and oxidation in the liver almost completely abolished the production of very low density lipoproteins (VLDL). Cholesterol synthesis was also depressed by TOFA, suggesting that this drug also inhibited lipid synthesis at a site other than acetyl-CoA carboxylase. When livers from fed rats were supplied with a continuous infusion of [1-14C]oleate as exogenous substrate, similar proportions, about 45-47%, of both ketone bodies and triglyceride in the perfusate were derived from the infused [1-14C]oleate. The production of ketone bodies was markedly increased by TOFA; the secretion of triglyceride and cholesterol were decreased. Altered conversion of [1-14C]oleate into these products occurred in parallel. While TOFA decreased esterification of oleate into triglyceride, incorporation of [1-14C]oleate into liver phospholipid was increased, indicating that TOFA also affected glycerolipid synthesis at the stage of diglyceride processing. The decreased secretion of triglyceride and cholesterol following TOFA treatment was localized almost exclusively in VLDL. The specific activities of 3H and of 14C fatty acids in triglyceride of the perfusate were greater than those of liver triglyceride, indicating preferential secretion of

  14. Platelet activating factor activity in the phospholipids of bovine spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Parks, J.E.; Hough, S.; Elrod, C. (Cornell Univ., Ithaca, NY (USA))

    1990-11-01

    Platelet activating factor (PAF) has been detected in sperm from several mammalian species and can affect sperm motility and fertilization. Because bovine sperm contain a high percentage of ether-linked phospholipid precursors required for PAF synthesis, a study was undertaken to determine the PAF activity of bovine sperm phospholipids. Total lipids of washed, ejaculated bull sperm were extracted, and phospholipids were fractionated by thin-layer chromatography. Individual phospholipid fractions were assayed for PAF activity on the basis of (3H)serotonin release from equine platelets. PAF activity was detected in the PAF fraction (1.84 pmol/mumol total phospholipid) and in serine/inositol (PS/PI), choline (CP), and ethanolamine phosphoglyceride (EP) and cardiolipin (CA) fractions. Activity was highest in the CP fraction (8.05 pmol/mumol total phospholipid). Incomplete resolution of PAF and neutral lipids may have contributed to the activity in the PS/PI and CA fractions, respectively. Phospholipids from nonsperm sources did not stimulate serotonin release. Platelet activation by purified PAF and by sperm phospholipid fractions was inhibited by the receptor antagonist SRI 63-675. These results indicate that bovine sperm contain PAF and that other sperm phospholipids, especially CP and EP, which are high in glycerylether components, are capable of receptor-mediated platelet activation.

  15. Conjugated Bilirubin Triggers Anemia by Inducing Erythrocyte Death

    Science.gov (United States)

    Lang, Elisabeth; Gatidis, Sergios; Freise, Noemi F; Bock, Hans; Kubitz, Ralf; Lauermann, Christian; Orth, Hans Martin; Klindt, Caroline; Schuier, Maximilian; Keitel, Verena; Reich, Maria; Liu, Guilai; Schmidt, Sebastian; Xu, Haifeng C; Qadri, Syed M; Herebian, Diran; Pandyra, Aleksandra A; Mayatepek, Ertan; Gulbins, Erich; Lang, Florian; Häussinger, Dieter; Lang, Karl S; Föller, Michael; Lang, Philipp A

    2015-01-01

    Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca2+ influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. Conclusion: Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease. (Hepatology 2015;61:275–284) PMID:25065608

  16. Docosahexaenoic (DHA modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4 gene expression to ensure self-protection from oxidative damage in hippocampal cells

    Directory of Open Access Journals (Sweden)

    Veronica eCasañas-Sanchez

    2015-07-01

    Full Text Available Docosahexaenoic acid (DHA, 22:6n-3 is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4, the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and APP/PS1 transgenic mice, a familial model of Alzheimer’s disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the ‘sentinel RNA hypothesis’ would expand the ability of Gpx4 (and DHA to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear

  17. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  18. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Ramirez, Kelsey; Laurens, Lieve M. L.

    2016-01-13

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  19. Allosensibilisation to erythrocyte antigens (literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2015-01-01

    Full Text Available In this article literature review of the causes of allosensibilisation to erythrocyte antigens are presented. It is shown that the ability to produce antierythrocyte antibodies is affected by many factors, principal of whom it is difficult to identify. For the allosensibilisation development requires genetically determined differences in erythrocyte antigens phenotypes of donor and recipient, mother and fetus, which can lead to immune response and antibodies production. The biochemical nature of erythrocyte antigens, antigen dose (the amount of transfused doses, the number of antigens determinants on donor and fetus erythrocytes, the number of pregnancies are important. Individual patient characteristics: age, gender, diseases, the use of immunosuppressive therapy and the presence of inflammatory processes, are also relevant. Note that antibody to one erythrocyte antigens have clinical value, and to the other – have no. The actual data about frequency of clinically significant antibodies contribute to the development of post-transfusion hemolytic complications prophylaxis as well as the improvement of laboratory diagnosis of hemolytic disease of the newborn in the presence of maternal antierythrocyte antibodies.

  20. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    Science.gov (United States)

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  1. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    Directory of Open Access Journals (Sweden)

    Tushar Ranjan Moharana

    Full Text Available Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1, which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL, as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  2. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    Science.gov (United States)

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  3. Phospholipid anaysis of extant microbiota for monitoring in situ bioremediation effectiveness

    International Nuclear Information System (INIS)

    Pinkart, H.C.; Ringelberg, D.B.; Stair, J.O.; Sutton, S.D..; Pfiffner, S.M.; White, D.C.

    1995-01-01

    Two sites undergoing bioremediation were studied using the signature lipid biomarker (SLB) technique. This technique isolates microbial lipid moieties specifically related to viable biomass and to both prokaryotic and eukaryotic biosynthetic pathways. The first site was a South Pacific atoll heavily contaminated with petroleum hydrocarbons. The second site was a mine waste reclamation area. The SLB technique was applied to quantitate directly the viable biomass, community structure, and nutritional/physiological status of the microbiota in the soils and subsurface sediments of these sites. All depths sampled at the Kwajalein Atoll site showed an increase in biomass that correlated with the co-addition of air, water, and nutrients. Monoenoic fatty acids increased in abundance with the nutrient amendment, which suggested an increase in gram-negative bacterial population. Ratios of specific phospholipid fatty acids indicative of nutritional stress decreased with the nutrient amendment. Samples taken from the mine reclamation site showed increases in total microbial biomass and in Thiobacillus biomass in the plots treated with lime and bactericide, especially when a cover soil was added. The plot treated with bactericide and buffered lime without the cover soil showed some decrease in Thiobacillus numbers, but was still slightly higher than that observed in the control plots

  4. The influence of alkali fatty acids on the properties and the stability of parenteral O/W emulsions modified with solutol HS 15.

    Science.gov (United States)

    Buszello, K; Harnisch, S; Müller, R H; Müller, B W

    2000-03-01

    Arachis oil based parenteral O/W emulsions were prepared using soya bean phosphatidylcholine (SPC) and different combinations of co-emulsifiers containing polyethylene glycol fatty acid esters (Solutol HS 15) and alkali fatty acids (sodium laurate, sodium stearate). The parameters measured were droplet size (both by photon correlation spectroscopy and laser diffractometry), pH and zeta potential. All emulsions were subjected to autoclaving. The addition of polyethylene glycol 12-hydroxy stearate (Solutol HS 15) led to a significant decrease of mean oil droplet size. For long-term stability the amount added turned out to be the most important factor. With increased amounts of Solutol HS 15 the packing density of the emulsifier layer and the zeta potential decreased leading to instability. The optimum load of Solutol HS 15 was found to be 15 micromol/ml. Alkali fatty acids markedly improved the physical stability of the emulsions. Improved stability properties conferred to emulsions by alkali fatty acids could be attributed to the zeta potential increase even in the presence of Solutol HS 15. Consequently a mixed emulsifier film was established in which the ionized fatty acids determined the interface charge. In addition to this a strengthening of the molecular interactions occurring between phospholipid and Solutol HS 15 emulsifier in the presence of ionized fatty acids at the O/W interface can be assumed (L. Rydhag, The importance of the phase behaviour of phospholipids for emulsion stability, Fette Seifen Anstrichm. 81 (1979) 168-173). Different co-emulsifier mixtures were shown to have a pronounced impact on the plasma protein adsorption onto emulsion droplets.

  5. Omega-3 polyunsaturated fatty acid blood biomarkers increase linearly in men and women after tightly controlled intakes of 0.25, 0.5, and 1 g/d of EPA + DHA.

    Science.gov (United States)

    Patterson, Ashley C; Chalil, Alan; Aristizabal Henao, Juan J; Streit, Isaac T; Stark, Ken D

    2015-12-01

    Blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been related to coronary heart disease risk. Understanding the response of EPA + DHA in blood to dietary intake of EPA + DHA would facilitate the use of blood measures as markers of adherence and enable the development of dietary recommendations. The objective of this study is examine the blood response to intakes of EPA + DHA ≤1 g/d with an intervention designed for dietary adherence. It was hypothesized this relationship would be linear and that intakes of EPA + DHA DHA intake of men and women (n = 20) was determined by food frequency questionnaire and adherence was monitored by weekly fingertip blood sampling for fatty acid determinations. Participants consumed nutraceuticals to achieve intakes of 0.25 g/d and 0.5 g/d EPA + DHA for successive four-week periods. A subgroup (n = 5) had intakes of 1.0 g/d EPA + DHA for an additional 4 weeks. Fatty acid composition of whole blood, erythrocytes, and plasma phospholipids were determined at each time point. Blood levels of EPA and DHA increased linearly in these pools. A comprehensive review of the literature was used to verify the blood-intake relationship. Blood levels of long chain omega-3 polyunsaturated fatty acids reached blood levels associated with the highest levels of primary cardiac arrest reduction and sudden cardiac death risk only with intakes of 1.0 g/d of EPA + DHA. The blood biomarker response to intakes of EPA + DHA ≤1 g/d is linear in a small but highly adherent study sample and this information can assist in determining adherence in clinical studies and help identify dietary intake targets from associations between blood and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effect of phospholipid deposits on adhesion of bacteria to contact lenses.

    Science.gov (United States)

    Babaei Omali, Negar; Proschogo, Nicholas; Zhu, Hua; Zhao, Zhenjun; Diec, Jennie; Borazjani, Roya; Willcox, Mark D P

    2012-01-01

    Protein and lipid deposits on contact lenses may contribute to clinical complications. This study examined the effect of phospholipids on the adhesion of bacteria to contact lenses. Worn balafilcon A (n = 11) and senofilcon A (n = 11) were collected after daily wear and phospholipids were extracted in chloroform:methanol. The amount of phospholipid was measured by electrospray ionization mass spectrometry. Unworn lenses soaked in phospholipids were exposed to Pseudomonas aeruginosa and Staphylococcus aureus. After 18 h incubation, the numbers of P. aeruginosa or S. aureus that adhered to the lenses were measured. Phospholipid was tested for possible effects on bacterial growth. A broad range of sphingomyelins (SM) and phosphatidylcholines (PC) were detected from both types of worn lenses. SM (16:0) (m/z 703) and PC (34:2) (m/z 758) were the major phospholipids detected in the lens extracts. Phospholipids did not alter the adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). Phospholipids (0.1 mg/mL) showed no effect on the growth of P. aeruginosa 6294 or S. aureus 031. Phospholipids adsorb/absorb to contact lenses during wear, however, the major types of phospholipids adsorbed to lenses do not alter bacterial adhesion or growth.

  7. Adsorption of GST-PI3Kγ at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid Monolayers

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-01-01

    The recruitment of phosphoinositide 3-kinase γ (PI3Kγ) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kγ is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kγ to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kγ to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change. PMID:19186139

  8. Adsorption of GST-PI3Kgamma at the air-buffer interface and at substrate and nonsubstrate phospholipid monolayers.

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-02-01

    The recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kgamma is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kgamma to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kgamma to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change.

  9. Metallic mercury uptake by catalase Part 1 In Vitro metallic mercury uptake by various kind of animals' erythrocytes and purified human erythrocyte catalase

    OpenAIRE

    劒持,堅志

    1980-01-01

    The uptake of metallic mercury was studied using erythrocytes with different catalase activities taken from various kind of animals. The results were: 1) The uptake of metallic mercury by erythrocytes paralleled the activity of catalase in the erythrocytes with and without hydrogen peroxide, suggesting that the erythrocyte catalase activity is related to the uptake of metallic mercury. 2) The uptake of metallic mercury occurred not only with purified human erythrocyte catalase but also with h...

  10. The Uremic Toxin Acrolein Promotes Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Mohamed Siyabeldin E. Ahmed

    2013-05-01

    Full Text Available Background: Anemia is a major complication of end stage renal disease. The anemia is mainly the result of impaired formation of erythrocytes due to lack of erythropoietin and iron deficiency. Compelling evidence, however, points to the contribution of accelerated erythrocyte death, which decreases the life span of circulating erythrocytes. Erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i. Erythrocytes could be sensitized to cytosolic Ca2+ by ceramide. In end stage renal disease, eryptosis may possibly be stimulated by uremic toxins. The present study explored, whether the uremic toxin acrolein could trigger eryptosis. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ceramide from fluorescent antibodies. Results: A 48 h exposure to acrolein (30 - 50 µM did not significantly modify [Ca2+]i but significantly decreased forward scatter and increased annexin-V-binding. Acrolein further triggered slight, but significant hemolysis and increased ceramide formation in erythrocytes. Acrolein (50 µM induced annexin-V-binding was significantly blunted in the nominal absence of extracellular Ca2+. Acrolein augmented the annexin-V-binding following treatment with Ca2+ ionophore ionomycin (1 µM. Conclusion: Acrolein stimulates suicidal erythrocyte death or eryptosis, an effect at least in part due to stimulation of ceramide formation with subsequent sensitisation of the erythrocytes to cytosolic Ca2+.

  11. Invasion of erythrocytes by Babesia bovis

    NARCIS (Netherlands)

    Gaffar, Fasila Razzia

    2004-01-01

    In this thesis we investigated the invasion of erythrocytes taking place during the asexual erythrocytic blood stage of the apicomplexan parasites Babesia bovis parasite. Host cell invasion by apicomplexan parasites is a complex process requiring multiple receptor-ligand interactions, involving

  12. Enzymatic modification of phospholipids forfunctional applications and human nutrition

    DEFF Research Database (Denmark)

    Guo, Zheng; Vikbjerg, Anders / Falk; Xu, Xuebing

    2005-01-01

    analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification...... design. This will of course provide fundamental bases also for the development of enzymatic technology to produce structured or modified phospholipids....

  13. Effect of C2 ceramide on the inositol phospholipid metabolism (uptake of 32P, 3H-serine and 3H-palmitic acid) and apoptosis-related morphological changes in Tetrahymena

    International Nuclear Information System (INIS)

    Kovacs, P.; Hegyesi, H.; Koehidai, L.; Nemes, P.; Csaba, G.

    1999-01-01

    Sphingomyelin metabolites have significant role in the regulation of many life processes of mammalian cells. In the present experiments the influence of phospholipid turnover and apoptosis related morphologic signs by one of this metabolite, C 2 ceramide was studied, and compared to the control, untreated cells, in the unicellular Tetrahymena. The incorporation of phospholipid head group components (serine, phosphorus) show a clear time-dependence; while the incorporation of fatty acid component (palmitic acid) is very fast: no significant alterations were found between 5- and 60-min incubations. C 2 ceramide treatment didn't alter 3 H-palmitic acid incorporation into phospholipids, however 3 H-serine incorporation was mainly inhibited. The amount of total incorporated 32 P was also decreased, on the other hand the lover concentration C 2 ceramide (10 μM) elevated the synthesis of inositol phospholipids. The higher concentration of C 2 ceramide (50 μM) had inhibitory effect on the synthesis of each phospholipids examined. This means that in the presence of the C 2 ceramide the synthesis, recovery and turnover of phospholipids, participating in signal transduction, are altered. However these observations were based the uptake of labeled phospholipid precursors, which gives information on the dynamics of the process, without using lipid mass measurements. C 2 ceramide also caused the rounding off the cells, DNA degradation and nuclear condensation. These latter observations point to morphological signs of apoptosis. The results call attention to the role of sphingomyelin metabolites on signalization of unicellulars, to the cross-talk between the inositol phospholipids and sphingomyelin metabolites, and the role of these molecules in the apoptotic processes at a low evolutionary level. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further......, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic...

  15. Measurement of total phospholipids in urine of patients treated with gentamicin.

    Science.gov (United States)

    Saunders, D A; Begg, E J; Kirkpatrick, C M; Yeo, J; Graham, G G; Bailey, R R

    1997-04-01

    The excretion of phospholipids in urine may be a marker of the early renal toxicity of the aminoglycoside antibiotics. Urinary phospholipids are formed in myeloid bodies which develop in the lysosomes of proximal tubules during treatment with the aminoglycosides, and overflow into the urine. Published assays were modified in order to measure the total phospholipid concentrations in human urine. Phospholipids were extracted from freeze-dried urine samples, digested in concentrated sulphuric acid, and the inorganic phosphorus content determined by complexing with ammonium molybdate and measuring the absorbance at 820 nm. Ten septicaemic patients treated with gentamicin for 5-7 days had significantly higher urine phospholipid concentrations than 10 healthy untreated control subjects (P < 0.0001). There was a negative linear relationship between phospholipid excretion and creatinine clearance (r2 = 0.71). In 34 patients with acute pyelonephritis, increased phospholipid concentrations were observed prior to treatment compared with healthy controls (P < 0.001) and did not alter during treatment with gentamicin. However, the phospholipid concentrations decreased significantly after treatment was completed (P < 0.03). These studies suggest that urinary phospholipids may indicate early aminoglycoside toxicity but with poor specificity, as many of the infections being treated may themselves be associated with phospholipiduria.

  16. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Paired Chicken and Mammalian Erythrocyte Indicator Systems for ...

    African Journals Online (AJOL)

    Three levels of erythrocytes suspensions, 1.5%, 1% and 0.5% respectively from goat and guinea pig, were compared to conventional 0.5% chicken erythrocytes, in an attempt to investigate the suitability for the two sources of mammalian erythrocytes as indicators for Newcastle disease virus haemagglutination (HA) tests.

  18. Experimental study on quantitative evaluation of fatty liver by computed tomography

    International Nuclear Information System (INIS)

    Kunieda, Tokuro; Kawata, Ryo; Hayashi, Koki; Nishiwaki, Tsutomu; Kunieda, Katsuyuki; Saji, Shigetoyo; Sakata, Kazuki

    1984-01-01

    Biochemical, histological and CT examinations of the liver were perfiormed in 32 rabbits on significance of measuring CT values in the diagnosis of fatty liver. In 2 groups of rabbits, in which 2g/kg/day and 4g/kg/day of fat emulsion were adminstered intravenously for 4 weeks respectively, post-treatment reduction in CT value of light dergree was observed. In a group, in which 8g/kg/day were given, there was a sufficient reduction in CT value for giving diagnosis of fatty liver of moderate degree. Significant correlation was found between changes in CT value of the liver on the one hand and contents of triglyceride, total cholesterol and cholesterol ester in the liver on the other hand, while there was no significant correlation between changes in CT value and contents of phospholipid, protein and water. Significcant correlation was found between changes in CT value of the liver and degress of histological fat accumulation in the liver cells. It has been evidenced experimentally that prolonged administration of fat emulsion may cause fatty liver, and that measurement of CT values of the liver is a non-aggressive method of diagnosing fatty liver. (author)

  19. Protective role of 20-OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Naresh Kumar, Rajendran; Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2013-01-05

    Hyperlipidemia is an associated complication of diabetes mellitus. The association of hyperglycemia with an alteration of lipid parameters presents a major risk for cardiovascular complications in diabetes. The present study was designed to examine the antihyperlipidemic effect of 20-OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats. The levels of blood glucose, cholesterol, triglycerides, free fatty acids, phospholipids, low density lipoprotein, very low density lipoprotein, high density lipoprotein, lipoprotein lipase, lecithin cholesterol acyl transferase, 3-hydroxy 3-methylglutaryl coenzyme A reductase and fatty acid composition were estimated in plasma, liver and kidneys of control and experimental groups of rats. Oral administration of 20-OH ecdysone at a dose of 5mg/kg bodyweight per day to STZ-induced diabetic rats for a period of 30 days resulted in a significant reduction in fasting blood glucose, cholesterol, triglycerides, free fatty acids, phospholipids, low density lipoprotein, very low density lipoprotein, 3-hydroxy 3-methylglutaryl coenzyme A reductase and elevation of high density lipoprotein, lipoprotein lipase and lecithin cholesterol acyl transferasein comparison with diabetic untreated rats. Moreover, administration of 20-OH ecdysone to diabetic rats also decreased the concentrations of fatty acids, viz., palmitic, stearic (16:1) and oleic acid (18:1), whereas linolenic (18:3) and arachidonic acid (20:4) were elevated. The antihyperlipidemic effect of 20-OH ecdysone was compared with glibenclamide a well-known antihyperglycemic drug. The result of the present study indicates that 20-OH ecdysone showed an antihyperlipidemic effect in addition to its antidiabetic effect in experimental diabetes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    Science.gov (United States)

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Enzymatic assay for methotrexate in erythrocytes

    DEFF Research Database (Denmark)

    Schrøder, H; Heinsvig, E M

    1985-01-01

    Methotrexate (MTX) accumulates in erythrocytes in MTX-treated patients. We present a modified enzymatic assay measuring MTX concentrations between 10 and 60 nmol/l in erythrocytes, adapted for a centrifugal analyser (Cobas Bio). About 40 patient's samples could be analysed within 1 h. The detection...

  2. Negative confounding by essential fatty acids in methylmercury neurotoxicity associations

    DEFF Research Database (Denmark)

    Choi, Anna L; Mogensen, Ulla Brasch; Bjerve, Kristian S

    2014-01-01

    acid concentrations in the analysis (-22.0, 95% confidence interval [CI]=-39.4, -4.62). In structural equation models, poorer memory function (corresponding to a lower score in the learning trials and short delay recall in CVLT) was associated with a doubling of prenatal exposure to methylmercury after...... concentrations of fatty acids were determined in cord serum phospholipids. Neuropsychological performance in verbal, motor, attention, spatial, and memory functions was assessed at 7 years of age. Multiple regression and structural equation models (SEMs) were carried out to determine the confounder......-adjusted associations with methylmercury exposure. RESULTS: A short delay recall (in percent change) in the California Verbal Learning Test (CVLT) was associated with a doubling of cord blood methylmercury (-18.9, 95% confidence interval [CI]=-36.3, -1.51). The association became stronger after the inclusion of fatty...

  3. Effect of high-dose growth hormone and glutamine on body composition, urine creatinine excretion, fatty acid absorption, and essential fatty acids status in short bowel patients - A randomized, double-blind, crossover, placebo-controlled study

    DEFF Research Database (Denmark)

    Jeppesen, P.B.; Szkudlarek, J.; Høy, Carl-Erik

    2001-01-01

    Background: Positive effects of high dose growth hormone and glutamine (GH+GLN) on body composition in short bowel patients have been described. Lack of effects on intestinal absorption found in some studies has been ascribed to concomitant essential fatty acid (EFA) deficiency. This study...... describes changes in body weight (BW) and composition, 24-h urine creatinine excretion, intestinal fatty acid absorption (total, saturated, unsaturated and EFA), and EFA status in relation to treatment with GH+GLN in s short bowel patients. Methods: A double-blind, crossover study between placebo and growth...... with baseline. Twenty-four-hour urine creatinine excretion did not differ between study periods. No changes in intestinal absorption of fatty acids were seen, and no changes in EFAs measured in plasma phospholipids were observed. Only 1 of 8 patients, who did not receive parenteral lipids, had a Holman index...

  4. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  5. AT32P-dependent estimation of nanomoles of fatty acids: Its use in the assay of phospholipase A2 activity

    International Nuclear Information System (INIS)

    Sarafianos, S.G.; Nair, P.P.; Kumar, S.

    1990-01-01

    A procedure for the assay of free fatty acids which has been adapted for the assay of phospholipase A2 is described. This consists of the conversion of long chain fatty acids to fatty acyl-CoA using the Mg2(+)-dependent fatty acyl-CoA synthetase, [alpha-32P]ATP and coenzyme A. In order to ensure the complete conversion of the acid to its CoA ester pyrophosphatase is also added to the incubation mixture. AM32P formed in stoichiometric amounts is separated from the remaining AT32P by polyethyleneimine-cellulose thin-layer chromatography and the fatty acid content is calculated from the specific radioactivity of AT32P. As little as 1 to 3 nmol of fatty acids hydrolyzed from any phospholipid using nanogram amounts of phospholipase A2 can be estimated with reliability. The real advantage of the method is that it combines the sensitivity of a radiochemical procedure without having to use radiolabeled substrates for the assay of phospholipases

  6. Radioiodinated fatty acid carnitine ester: synthesis and biodistribution of 15-(p-iodo[131I]-phenyl)pentadecanoyl-D,L-carnitine chloride

    International Nuclear Information System (INIS)

    Eisenhut, M.; Liefhold, J.

    1986-01-01

    After the uptake into heart muscle cells long chain fatty acids enter predominantly into the triglyceride and phospholipid pool before they are degraded in the mitochondria by β-oxidation. Therefore the formation of fatty acid esters with glycerine obscures the functional ability of the heart namely to catabolize free fatty acids. The sum of the two reaction pathways are visualized by sequential heart scintigraphy with e.g. 131 I labeled 15-(p-iodo-phenyl)-pentadecanoic acid (IPPA). Before the fatty acids can be degraded by β-oxidation they are bound to carnitine for mitochondrial membrane transport. Thus IPPA would not participate in lipid formation, if it is offered as 15-(p-iodo[ 131 I]-phenyl)-pentadecanoyl-D,L-carnitine chloride (IPPA-CE) to the heart muscle cells. Additionally carnitine esters of fatty acids are known to be better substrates for β-oxidation than free fatty acids. We were therefore interested in the biochemical fate of radioiodinated IPPA-CE in rats. (author)

  7. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis

    Science.gov (United States)

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expressi...

  8. Dietary structured lipids for post-weaning piglets: fat digestibility, nitrogen retention and fatty acid profiles of tissues

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Danielsen, V.; Høy, Carl-Erik

    2006-01-01

    In four groups of post-weaning piglets the effects of triacylglycerol structure and fatty acid profiles of four dietary fats on apparent faecal nutrient digestibility, nitrogen retention and fatty acid profiles of platelet and erythrocyte membranes, liver, adipose tissue and skeletal muscle were...... examined. Dietary fats included as 10% (w/w) of the diets were two structured fats of rapeseed oil interesterified with tridecanoin (R1) or coconut oil (R2), respectively, one mixture of rapeseed oil and coconut oil (R3) and rapeseed oil as control (R4). Faeces and urine from piglets weaned at 28 days...

  9. Oxidative Stability of Marine Phospholipids in the Liposomal Form and Their Applications

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Timm-Heinrich, M.

    2011-01-01

    Marine phospholipids (MPL) have attracted a great deal of attention recently as they are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil) from the same...... source. Due to their tight intermolecular packing conformation at the sn-2 position and their synergism with α-tocopherol present in MPL extracts, they can form stable liposomes which are attractive ingredients for food or feed applications. However, MPL are still susceptible to oxidation as they contain...... large amounts polyunsaturated fatty acids and application of MPL in food and aquaculture industries is therefore a great challenge for researchers. Hence, knowledge on the oxidative stability of MPL and the behavior of MPL in food and feed systems is an important issue. For this reason, this review...

  10. Determination of phospholipids extracted from Tsukamurella paurometabola C-924 after freeze-drying and during the subsequent storage [abstract

    Directory of Open Access Journals (Sweden)

    Coulibaly, I.

    2010-01-01

    Full Text Available The total lipids of Tsukamurella paurometabola C-924 were analyzed after freeze-drying. Seven individual lipids classes were identified namely neutral lipids (NLs, fatty acids (FAs, phospholipids (PLs, sterol ester (SEs, triglycerides (TGs, diglycerides (DGs and monoglycerides (MGs. The principal fatty acids identified in most lipid classes were palmitic (C16:0, palmitoleic (C16:1, oleic (C18:1, linoleic (C18:2, and linolenic (C18:3. PLs were the major constituents and accounted for 50-60% of the total lipids. PLs were fractionated. PLs of Tsukamurella paurometabola content phosphatidic acid (PA, phosphatidylethanolamine (PE, phosphatidylinositol (PI, phosphatidylcholine (PC, sphingomyelin (SM, lysophosphatidylcholine (LPC and phosphatidylglycerol (PG. It was observed that PG had the highest proportion at most points relative to other PLs and was the predominant component of PLs (30%-56%. Evolution of individual rate was followed during storage at 20°C and 40°C with or without lithothamne400®, respectively.

  11. Identification and Characterization of Phospholipids with Very Long Chain Fatty Acids in Brewer's Yeast

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kolouchová, I.; Gharwalová, L.; Palyzová, Andrea; Sigler, Karel

    2017-01-01

    Roč. 52, č. 12 (2017), s. 1007-1017 ISSN 0024-4201 R&D Projects: GA ČR(CZ) GA17-00027S Institutional support: RVO:61388971 Keywords : Yeast * Very long chain fatty acids * Negative electrospray ionization Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.934, year: 2016

  12. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients

    Directory of Open Access Journals (Sweden)

    Calder P.C.

    2003-01-01

    Full Text Available Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6. Linoleic acid is the precursor of arachidonic acid (20:4n-6. In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

  13. Role of phospholipids in the pathophysiology of the gut-liver axis

    NARCIS (Netherlands)

    Petruzzelli, M.

    2010-01-01

    Phospholipids represent essential components of bile. Together with bile acids and cholesterol, phospholipids form “mixed micelles”. If sufficient amounts of phospholipids are available, no simple bile acid micelles are present, with prevention of bile acid toxicity and cholesterol crystallization.

  14. Establishment of the fatty acid profile of the brain of the king penguin (Aptenodytes patagonicus) at hatch: effects of a yolk that is naturally rich in n-3 polyunsaturates.

    Science.gov (United States)

    Speake, Brian K; Decrock, Frederic; Surai, Peter F; Wood, Nicholas A R; Groscolas, René

    2003-01-01

    Because the yolk lipids of the king penguin (Aptenodytes patagonicus) contain the highest concentrations of long-chain n-3 polyunsaturated fatty acids yet reported for an avian species, the consequences for the establishment of the brain's fatty acid profile in the embryo were investigated. To place the results in context, the fatty acid compositions of yolk lipid and brain phospholipid of the king penguin were compared with those from three other species of free-living birds. The proportions of docosahexaenoic acid (22:6n-3; DHA) in the total lipid of the initial yolks for the Canada goose (Branta canadensis), mallard (Anas platyrhynchos), moorhen (Gallinula chloropus), and king penguin were (% w/w of fatty acids) 1.0+/-0.1, 1.9+/-0.2, 3.3+/-0.1, and 5.9+/-0.2, respectively. The respective concentrations of DHA (% w/w of phospholipid fatty acids) in brains of the newly hatched chicks of these same species were 18.5+/-0.2, 19.6+/-0.7, 16.9+/-0.4, and 17.6+/-0.1. Thus, the natural interspecies diversity in yolk fatty acid profiles does not necessarily produce major differences in the DHA content of the developing brain. Only about 1% of the amount of DHA initially present in the yolk was recovered in the brain of the penguin at hatch. There was no preferential uptake of DHA from the yolk during development of the king penguin.

  15. Fatty acid profiles in tissues of mice fed conjugated linoleic acid

    DEFF Research Database (Denmark)

    Gøttsche, Jesper; Straarup, Ellen Marie

    2006-01-01

    The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11- and t10,c12-CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols...... (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11- and t10,c12-CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11-CLA was indicated by our results, as both fatty acids were...... incorporated into all the analyzed tissues when a diet containing VA but not c9,t11-CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the CA group. Thus, CLA increased n-3 polyunsaturated...

  16. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  17. Polyunsaturated fatty acids and calcaneal ultrasound parameters among Inuit women from Nuuk (Greenland): a longitudinal study.

    Science.gov (United States)

    Paunescu, Alexandra-Cristina; Ayotte, Pierre; Dewailly, Eric; Dodin, Sylvie; Pedersen, Henning S; Mulvad, Gert; Côté, Suzanne

    2013-01-01

    The traditional diet of Inuit people comprises large amounts of fish and marine mammals that are rich in omega-3 polyunsaturated fatty acids (PUFAs). Results from in vitro studies, laboratory animal experiments and population studies suggest that omega-3 PUFA intake and a high omega-3/omega-6 ratio exert a positive effect on bone health. This longitudinal study was conducted to examine the relationship between omega-3 and omega-6 PUFA status and quantitative ultrasound (QUS) parameters in Greenlandic Inuit women. The study included 118 Inuit women from Nuuk (Greenland), aged 49-64 years, whose QUS parameters measured at baseline (year 2000), along with PUFA status and covariates, and follow-up QUS measurements 2 years later (year 2002). QUS parameters [speed of sound (SOS); broadband ultrasound attenuation (BUA)] were measured at the right calcaneus with a water-bath Lunar Achilles instrument. Omega-3 and omega-6 PUFA contents of erythrocyte membrane phospholipids were measured after transmethylation by gas chromatography coupled with a flame ionization detector. Relationships between QUS parameters and different PUFAs were studied in multiple linear regression models. Increasing values of EPA, DHA and the omega-3/omega-6 PUFA ratio were associated with increased BUA values measured at follow-up (year 2002). These associations were still present in models adjusted for several confounders and covariates. We found little evidence of associations between PUFAs and SOS values. The omega-3 PUFA intake from marine food consumption seems to have a positive effect on bone intrinsic quality and strength, as revealed by higher BUA values in this group of Greenlandic Inuit women.

  18. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  19. Molecular mechanisms of erythrocyte photo-irradiation

    International Nuclear Information System (INIS)

    Ferreira, W.T.; Souza, M.C.

    1985-01-01

    The role of singlet oxygen and the lipid peroxidation of erythrocyte membrane are studied. The irradiation of erythrocytes with visible light in the presence of a photodynamic mediator (toluidine blue) is reported. A system of light application by optical fiber, connected to a catheter is suggested for local instillation of the photosensitizing agent. (M.A.C.) [pt

  20. Oxidative Stability of Dispersions Prepared from Purified Marine Phospholipid and the Role of α-Tocopherol

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    , respectively, during 32 days of storage at 2 °C. Nonenzymatic browning was investigated through measurement of Strecker aldehydes, color changes, and pyrrole content. Dispersions containing α-tocopherol or higher levels of purified marine PL showed a lower increment of volatiles after 32 days storage......The objective of this study was to investigate the oxidative stability of dispersions prepared from different levels of purified marine phospholipid (PL) obtained by acetone precipitation, with particular focus on the interaction between α-tocopherol and PL in dispersions. This also included...... the investigation of nonenzymatic browning in purified marine PL dispersions. Dispersions were prepared by high-pressure homogenizer. The oxidative and hydrolytic stabilities of dispersions were investigated by determination of hydroperoxides, secondary volatile oxidation products, and free fatty acids...

  1. Control of phospholipid flip-flop by transmembrane peptides

    International Nuclear Information System (INIS)

    Kaihara, Masanori; Nakao, Hiroyuki; Yokoyama, Hirokazu; Endo, Hitoshi; Ishihama, Yasushi; Handa, Tetsurou; Nakano, Minoru

    2013-01-01

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity

  2. Hepatic or splenic targeting of carrier erythrocytes: a murine model

    International Nuclear Information System (INIS)

    Zocchi, E.; Guida, L.; Benatti, U.; Canepa, M.; Borgiani, L.; Zanin, T.; De Flora, A.

    1987-01-01

    Carrier mouse erythrocytes, i.e., red cells, subjected to a dialysis technique involving transient hypotonic hemolysis and isotonic resealing were treated in vitro in three different ways: (a) energy depletion by exposure for 90 min at 42 degrees C; (b) desialylation by incubation with neuroaminidase; and (c) oxidative stress by incubation with H 2 O 2 and NaN3. Procedure (c) afforded maximal damage, as shown by analysis of biochemical properties of the treated erythrocytes. Reinfusion in mice of the variously manipulated erythrocytes following their 51 Cr labeling showed extensive fragilization as indicated by rapid clearance of radioactivity from the circulation. Moreover, both the energy-depleted and the neuraminidase-treated erythrocytes showed a preferential liver uptake, reaching 50 and 75%, respectively, within 2 h. On the other hand, exposure of erythrocytes to the oxidant stress triggered a largely splenic removal, accounting for almost 40% of the reinjected cells within 4 h. Transmission electron microscopy of liver from mice receiving energy-depleted erythrocytes demonstrated remarkable erythrocyte congestion within the sinusoids, followed by hyperactivity of Kupffer cells and by subsequent thickening of the perisinusoidal Disse space. Concomitantly, levels of serum transaminase activities were moderately increased. Each of the three procedures of manipulation of carrier erythrocytes may prove applicable under conditions where selective targeting of erythrocyte-encapsulated chemicals and drugs to either the liver or the spleen has to be achieved

  3. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus.

    Science.gov (United States)

    Sertoglu, Erdim; Kurt, Ismail; Tapan, Serkan; Uyanik, Metin; Serdar, Muhittin A; Kayadibi, Huseyin; El-Fawaeir, Saad

    2014-02-01

    In this study, we aimed to compare the serum lipid profile and fatty acid (FA) compositions of erythrocyte membrane (EM) and plasma in three different patient groups (group 1: type 2 diabetes mellitus (T2DM)+end-stage renal disease (ESRD), group 2: ESRD, group 4: T2DM) and healthy controls (group 3) simultaneously. 40 ESRD patients treated with hemodialysis (HD) in Gulhane School of Medicine (20 with T2DM) and 32 controls (17 with T2DM, 15 healthy controls) were included in the study. Plasma and EM FA concentrations were measured by gas chromatography-flame ionization detector (GC-FID). Plasma and EM palmitic acid (PA) and stearic acid (SA) levels were significantly higher in T2DM patients compared to controls (p=0.040 and p=0.002 for plasma, p=0.001 and p=0.010 for EM, respectively). EM docosahexaenoic acid (DHA) levels were also significantly lower in patients with ESRD+T2DM and ESRD compared to controls (p=0.004 and p=0.037, respectively). Patients with insulin resistance display a pattern of high long chain saturated FAs (PA, SA and arachidic acids). However, while there are no recognized standards for normal EM DHA content, decreased levels of EM DHA in ESRD patient groups (groups 1 and 2) suggest that there may be reduced endogenous synthesis of DHA in HD subjects, due to the decreased functionality of desaturase and elongase enzymes. Because membrane PUFA content affects membrane fluidity and cell signaling, these findings are worthy of further investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Human erythrocytes inhibit complement-mediated solubilization of immune complexes by human serum

    International Nuclear Information System (INIS)

    Dorval, B.L.

    1987-01-01

    The aim of this study was to develop an autologus human system to evaluate the effects of human erythrocytes on solubilization of immune complex precipitates (IC) by human serum. Incubation of IC with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed erythrocytes were added to human serum or guinea pig serum binding of IC to the erythrocyte occurred and IC solubilization was inhibited significantly (p <.025). Sheep erythrocytes did not bind IC or inhibit IC solubilization. To evaluate the role of human erythrocyte complement receptor (CR1) on these findings, human erythrocytes were treated with trypsin or anti-CR1 antibodies. Both treatments abrogated IC binding to human erythrocytes but did not affect the ability of the human erythrocyte to inhibit IC solubilization. Radioimmunoassay was used to measure C3, C4 and C5 activation in human serum after incubation with IC, human erythrocytes, human erythrocytes plus IC, whole blood or in whole blood plus IC

  5. Growth on Octane Alters the Membrane Lipid Fatty Acids of Pseudomonas oleovorans due to the Induction of alkB and Synthesis of Octanol

    NARCIS (Netherlands)

    Chen, Qi; Janssen, Dick B.; Witholt, Bernard

    1995-01-01

    Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the

  6. Kinetics of viral load and erythrocytic inclusion body formation in pacific herring artificially infected with erythrocytic necrosis virus

    Science.gov (United States)

    Glenn, Jolene A.; Emmenegger, Eveline J.; Grady, Courtney A.; Roon, Sean R.; Gregg, Jacob L.; Conway, Carla M.; Winton, James R.; Hershberger, Paul K.

    2012-01-01

    Viral erythrocytic necrosis (VEN) is a condition that affects marine and anadromous fish species, including herrings and salmonids, in the Atlantic and Pacific oceans. Infection is frequently associated with severe anemia and causes episodic mortality among wild and hatchery fish when accompanied by additional stressors; VEN can be presumptively diagnosed by (1) light microscopic identification of a single characteristic—a round, magenta-colored, 0.8-μm-diameter inclusion body (IB) within the cytoplasm of erythrocytes and their precursors on Giemsa-stained blood films; or (2) observation (via transmission electron microscopy [TEM]) of the causative iridovirus, erythrocytic necrosis virus (ENV), within erythrocytes or their precursors. To better understand the kinetics of VEN, specific-pathogen-free Pacific herring Clupea pallasii were infected with ENV by intraperitoneal injection. At 1, 4, 7, 10, 14, 21, and 28 d postexposure, samples of blood, spleen, and kidney were collected and assessed (1) via light microscopy for the number of intracytoplasmic IBs in blood smears and (2) via TEM for the number of virions within erythrocytes. The mean prevalence of intracytoplasmic IBs in the blood cells increased from 0% at 0–4 d postexposure to 94% at 28 d postexposure. Viral load within circulating red blood cells peaked at 7 d postexposure, fell slightly, and then reached a plateau. However, blood cells observed within the kidney and spleen tissues demonstrated high levels of ENV between 14 and 28 d postexposure. The results indicate that the viral load within erythrocytes does not correlate well with IB prevalence and that the virus can persist in infected fish for more than 28 d.

  7. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial.

    Science.gov (United States)

    Widenhorn-Müller, Katharina; Schwanda, Simone; Scholz, Elke; Spitzer, Manfred; Bode, Harald

    2014-01-01

    To determine whether supplementation with the long-chain omega-3 polyunsaturated fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) affects behavioral symptoms and cognitive impairments in children 6-12 years of age diagnosed with attention-deficit/hyperactivity disorder (ADHD). The randomized, double-blind placebo-controlled 16 weeks trial was conducted with 95 children diagnosed with ADHD according to DSM-IV criteria. Behavior was assessed by parents, teachers and investigators using standardized rating scales and questionnaires. Further outcome variables were working memory, speed of information processing and various measures of attention. For a subgroup of 81 participants, erythrocyte membrane fatty acid composition was analyzed before and after the intervention. Supplementation with the omega-3 fatty acid mix increased EPA and DHA concentrations in erythrocyte membranes and improved working memory function, but had no effect on other cognitive measures and parent- and teacher-rated behavior in the study population. Improved working memory correlated significantly with increased EPA, DHA and decreased AA (arachidonic acid). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Thermodynamics of Indomethacin Adsorption to Phospholipid Membranes.

    Science.gov (United States)

    Fearon, Amanda D; Stokes, Grace Y

    2017-11-22

    Using second-harmonic generation, we directly monitored adsorption of indomethacin, a nonsteroidal anti-inflammatory drug, to supported lipid bilayers composed of phospholipids of varying phase, cholesterol content, and head group charge without the use of extrinsic labels at therapeutically relevant aqueous concentrations. Indomethacin adsorbed to gel-phase lipids with a high binding affinity, suggesting that like other arylacetic acid-containing drugs, it preferentially interacts with ordered lipid domains. We discovered that adsorption of indomethacin to gel-phase phospholipids was endothermic and entropically driven, whereas adsorption to fluid-phase phospholipids was exothermic and enthalpically driven. As temperature increased from 19 to 34 °C, binding affinities to gel-phase lipids increased by 7-fold but relative surface concentration decreased to one-fifth of the original value. We also compared our results to the entropies reported for indomethacin adsorbed to surfactant micelles, which are used in drug delivery systems, and assert that adsorbed water molecules in the phospholipid bilayer may be buried deeper into the acyl chains and less accessible for disruption. The thermodynamic studies reported here provide mechanistic insight into indomethacin interactions with mammalian plasma membranes in the gastrointestinal tract and inform studies of drug delivery, where indomethacin is commonly used as a prototypical, hydrophobic small-molecule drug.

  9. Lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii Weber-van Bosse from Bali Island, Indonesia.

    Science.gov (United States)

    Illijas, Muhammad I; Indy, Jeane R; Yasui, Hajime; Itabashi, Yutaka

    2009-01-01

    The lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii from Bali Island, Indonesia were determined for fresh and frozen-thawed samples using thin-layer chromatography, gas-liquid chromatography, and high-performance liquid chromatography. Glycoglycerolipids, which mainly consisted of mongalactosyldiacylglycerols (MGDG) and digalactosyldiacylglycerols (DGDG), were the predominant lipid components, accounting for 67% and 56% of the total polar lipid content in the fresh and frozen-thawed samples, respectively. Phospholipids, including phosphatidylcholines (PC) and phosphatidylglycerols (PG), were detected with lesser amounts in both samples (16-17% of the total polar lipid content). Free fatty acids (FFA), sterols and triacylglycerols (TAG) were also detected in minor quantities; however, the FFA content in the frozen-thawed sample increased to up to 20% of the total lipid content, suggesting that hydrolysis of the membrane lipids had occurred. A crude enzyme preparation from the alga showed activities for hydrolyzing the acyl groups of the phospholipids and glycoglycerolipids. Palmitic acid (16:0) and arachidonic acid (20:4n-6) were the major fatty acids in both the total lipid and in individual polar lipid classes as well as the dominant fatty acids released from the membrane lipids by enzymatic hydrolysis. The high level of 20:4n-6 (29%) in the total lipid and the presence of considerable amounts of PC (11% of the total polar lipid) and PG (6.2%) support classification of E. wentii into the Division Rhodophyta.

  10. Induction of transient radioresistance in human erythrocytes

    International Nuclear Information System (INIS)

    Krokosz, Anita; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%), were irradiated with γ-rays with single and split doses under air or N 2 O in order to determine the physicochemical changes caused by the dose inducing an increase in resistance to radiation-induced hemolysis. The obtained results showed that under the applied irradiation conditions, the dose of 0.4 kGy induced changes in erythrocytes, which were responsible for temporary resistance of erythrocytes to hemolysis. We concluded that the observed resistance is caused mainly by the structural changes in proteins

  11. Annexin-Phospholipid Interactions. Functional Implications

    Directory of Open Access Journals (Sweden)

    Javier Turnay

    2013-01-01

    Full Text Available Annexins constitute an evolutionary conserved multigene protein superfamily characterized by their ability to interact with biological membranes in a calcium dependent manner. They are expressed by all living organisms with the exception of certain unicellular organisms. The vertebrate annexin core is composed of four (eight in annexin A6 homologous domains of around 70 amino acids, with the overall shape of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and phospholipid-binding sites are located on the convex side while the N-terminus links domains I and IV on the concave side. The N-terminus region shows great variability in length and amino acid sequence and it greatly influences protein stability and specific functions of annexins. These proteins interact mainly with acidic phospholipids, such as phosphatidylserine, but differences are found regarding their affinity for lipids and calcium requirements for the interaction. Annexins are involved in a wide range of intra- and extracellular biological processes in vitro, most of them directly related with the conserved ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton anchorage, ion channel activity and regulation, as well as antiinflammatory and anticoagulant activities. However, the in vivo physiological functions of annexins are just beginning to be established.

  12. Screening for the drug-phospholipid interaction: correlation to phospholipidosis

    DEFF Research Database (Denmark)

    Alakoskela, Juha-Matti; Vitovic, Pavol; Kinnunen, Paavo K J

    2009-01-01

    Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic...

  13. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  14. Erythrocyte metallothionein as an index of zinc status in humans

    International Nuclear Information System (INIS)

    Grider, A.; Bailey, L.B.; Cousins, R.J.

    1990-01-01

    Metallothionein concentrations in erythrocyte lysates derived from human subjects were measured by an ELISA procedure. IgG obtained from serum of sheep injected with human metallothionein 1 was used in this competitive assay. Subjects were fed a semipurified zinc-deficient diet for an 8-day depletion period after 3 days of acclimation. Fasting plasma zinc concentrations were reduced ∼7%. Metallothionein in the erythrocyte lysates was significantly decreased to 59% of the initial level by the end of the depletion period. Supplementation of these depleted subjects with zinc did not increase erythrocyte metallothionein levels within 24 hr. Daily supplementation of control subjects with zinc increased erythrocyte metallothionein to a 7-fold maximum within 7 days. These levels were reduced by 61% within 14 days after zinc supplementation was terminated. Incubation of rat [ 35 S]metallothionein with human erythrocyte lysate showed a time-dependent increase in 35 S soluble in 20% trichloroacetic acid, indicating degradation of the labeled protein, presumably via protease activity in the lysate. It is proposed that zinc supplementation induces erythrocyte metallothionein during erythropoiesis and that low zinc intake decreases synthesis and/or accelerates degradation of the protein in reticulocytes/erythrocytes. Metallothionein levels in erythrocytes may provide a useful index upon which to assess zinc status in humans

  15. Transcriptomic Analysis of Young and Old Erythrocytes of Fish

    Directory of Open Access Journals (Sweden)

    Miriam Götting

    2017-12-01

    Full Text Available Understanding gene expression changes over the lifespan of cells is of fundamental interest and gives important insights into processes related to maturation and aging. This study was undertaken to understand the global transcriptome changes associated with aging in fish erythrocytes. Fish erythrocytes retain their nuclei throughout their lifetime and they are transcriptionally and translationally active. However, they lose important functions during their lifespan in the circulation. We separated rainbow trout (Oncorhynchus mykiss erythrocytes into young and old fractions using fixed angle-centrifugation and analyzed transcriptome changes using RNA sequencing (RNA-seq technology and quantitative real-time PCR. We found 930 differentially expressed between young and old erythrocyte fractions; 889 of these showed higher transcript levels in young, while only 34 protein-coding genes had higher transcript levels in old erythrocytes. In particular genes involved in ion binding, signal transduction, membrane transport, and those encoding various enzyme classes are affected in old erythrocytes. The transcripts with higher levels in old erythrocytes were associated with seven different GO terms within biological processes and nine within molecular functions and cellular components, respectively. Our study furthermore found several highly abundant transcripts as well as a number of differentially expressed genes (DEGs for which the protein products are currently not known revealing the gaps of knowledge in most non-mammalian vertebrates. Our data provide the first insight into changes involved in aging on the transcriptional level and thus opens new perspectives for the study of maturation processes in fish erythrocytes.

  16. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    Science.gov (United States)

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  17. The preparation of functional lipid liposomes by γ-ray irradiation and its application

    International Nuclear Information System (INIS)

    Hosoi, Fumio; Akama, Kazuhiro.

    1997-01-01

    Encapsulation of the erythrocyte with polymerized phospholipid might improve the conventional erythrocyte preparations and liposome-encapsulated preparation. Therefore, production of an artificial erythrocyte was attempted using polymeric phospholipid. The behaviors of polymerization for several polymeric phospholipids following γ-ray irradiation were briefly described and the previous reports on the liposome polymerization was reviewed. In addition, the membranes thus obtained were characterized by kinetic assays and LB-membrane procedures in regards to the arrangement of membrane molecules and the interactions among hydrophobic groups in the domain. The polymerization of 1,2-bis-(2,4-octadecadienoyl)-sn-glycero-3-phosphocholine (DODPC) by γ-ray radiation was found superior to that by UV-radiation method. Since the generation of polymerization initiating molecule was not dependent on reaction temperature, it was possible to perform the polymerization at a low temperature, resulting that the heat denaturation of bioactive substances included into the liposome and also their leaks could be greatly repressed. (M.N.)

  18. Inverse association between serum phospholipid oleic acid and insulin resistance in subjects with primary dyslipidaemia.

    Science.gov (United States)

    Sala-Vila, A; Cofán, M; Mateo-Gallego, R; Cenarro, A; Civeira, F; Ortega, E; Ros, E

    2011-10-01

    Data on intake of oleic acid (OA) and insulin resistance (IR) are inconsistent. We investigated whether OA in serum phosphatidylcholine relates to surrogate measures of IR in dyslipidaemic subjects from a Mediterranean population. Cross-sectional study of 361 non-diabetic subjects (205 men, 156 women; mean age 44 and 46 y, respectively; BMI 25.7 kg/m(2)). IR was diagnosed by BMI and HOMA values using published criteria validated against the euglycemic clamp. Alternatively, IR was defined by the 75th percentile of HOMA-IR of our study population. The fatty acid composition of serum phosphatidylcholine was determined by gas-chromatography. The mean (±SD) proportion of OA was 11.7 ± 2.0%. Ninety-two subjects (25.5%) had IR. By adjusted logistic regression, including the proportions of other fatty acids known to relate to IR, the odds ratios (OR) (95% confidence intervals) for IR were 0.75 (0.62-0.92) for 1% increase in OA and 0.84 (0.71-0.99) for 1% increase in linoleic acid. Other fatty acids were unrelated to IR. When using the alternate definition of IR, OA remained a significant predictor (0.80 [0.65-0.99]). Higher phospholipid proportions of OA relate to less IR, suggesting an added benefit of increasing olive oil intake within the Mediterranean diet. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria.

    Science.gov (United States)

    Adewuyi, Adewale; Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  20. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2014-01-01

    Full Text Available The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72±0.2%, Albizia lebbeck  (6.40±0.60%, and Caesalpinia pulcherrima  (7.2±0.30%. The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  1. Haemato-protective influence of dietary fenugreek (Trigonella foenum-graecum L.) seeds is potentiated by onion (Allium cepa L.) in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Pradeep, Seetur R; Srinivasan, Krishnapura

    2018-02-01

    We have recently reported the beneficial modulation of metabolic abnormalities and oxidative stress in diabetic rats by dietary fenugreek seeds and onion. This investigation evaluated the protective influence of dietary fenugreek seeds (100 g kg -1 ) and onion (30 g kg -1 ) on erythrocytes of streptozotocin-induced diabetic rats, through modulation of reduced haematological indices and antisickling potency. This study also evaluated the altered erythrocyte membrane lipid profile and beneficial countering of increased lipid peroxidation, osmotic fragility, along with reduced membrane fluidity and deformability, nitric oxide production and echinocyte formation. Dietary fenugreek seeds and onion appeared to counter the deformity and fragility of erythrocytes partially in diabetic rats by their antioxidant potential and hypocholesterolemic property. The antisickling potency of these spices was accomplished by a substantial decrease in echinocyte population and AGEs in diabetic rats. Further insight into the factors that might have reduced the fluidity of erythrocytes in diabetic rats revealed changes in the cholesterol: phospholipid ratio, fatty acid profile, and activities of membrane-bound enzymes. Dietary fenugreek seeds and onion offered a beneficial protective effect to the red blood cells, the effect being higher with fenugreek + onion. This is the first report on the hemato-protective influence of a nutraceutical food component in diabetic situation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Co-assembly of chitosan and phospholipids into hybrid hydrogels

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Shekarforoush, Elhamalsadat; Engwer, Christoph

    2016-01-01

    Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties...

  3. Decreased erythrocyte superoxide dismutase in elderly men with early nuclear cataract

    Directory of Open Access Journals (Sweden)

    Rose Rose

    2015-12-01

    Full Text Available BACKGROUND Imbalance between oxidative processes and antioxidant defenses has been considered to play a role in cataractogenesis, particularly in diabetes patients. Superoxide dismutase (SOD is an important precursor for oxidative stress in the human lens, and its activity is mainly dependent on the copper and zinc levels in the body. The aim of this study was to compare erythrocyte SOD, erythrocyte zinc and total serum testosterone levels in male patients with early senile nuclear cataract and evaluate the correlations between the parameters in all subjects. METHODS A community-based study of cross-sectional design was conducted at Cilandak District Primary Health Center where 52 adult and 17 elderly men with early senile nuclear cataract were chosen as the study subjects. Erythrocyte SOD, erythrocyte zinc, serum testosterone, and fasting blood glucose (FBG levels were measured in all subjects. Nuclear cataract stage was assessed with the Pentacam® instrument (Oculus, Germany. Independent Student t test and Pearson’s correlation were used to analyze the results. RESULTS Erythrocyte SOD level was significantly decreased in elderly men compared to adult men (p=0.014. Erythrocyte zinc, serum testosterone and FBG did not differ significantly in adult and elderly males (at p=0.304; p=0.145;and p=0.376, respectively. Erythrocyte SOD activity was significantly associated with erythrocyte zinc level (r=0.486; p=0.048. CONCLUSIONS Lower erythrocyte SOD activity was found in elderly males than in adult males with early nuclear cataract. There was a relationship between erythrocyte SOD and erythrocyte zinc level in elderly males with early nuclear cataract.

  4. Decreased erythrocyte superoxide dismutase in elderly men with early nuclear cataract

    Directory of Open Access Journals (Sweden)

    Rose

    2014-04-01

    Full Text Available BACKGROUND Imbalance between oxidative processes and antioxidant defenses has been considered to play a role in cataractogenesis, particularly in diabetes patients. Superoxide dismutase (SOD is an important precursor for oxidative stress in the human lens, and its activity is mainly dependent on the copper and zinc levels in the body. The aim of this study was to compare erythrocyte SOD, erythrocyte zinc and total serum testosterone levels in male patients with early senile nuclear cataract and evaluate the correlations between the parameters in all subjects. METHODS A community-based study of cross-sectional design was conducted at Cilandak District Primary Health Center where 52 adult and 17 elderly men with early senile nuclear cataract were chosen as the study subjects. Erythrocyte SOD, erythrocyte zinc, serum testosterone, and fasting blood glucose (FBG levels were measured in all subjects. Nuclear cataract stage was assessed with the Pentacam® instrument (Oculus, Germany. Independent Student t test and Pearson’s correlation were used to analyze the results. RESULTS Erythrocyte SOD level was significantly decreased in elderly men compared to adult men (p=0.014. Erythrocyte zinc, serum testosterone and FBG did not differ significantly in adult and elderly males (at p=0.304; p=0.145;and p=0.376, respectively. Erythrocyte SOD activity was significantly associated with erythrocyte zinc level (r=0.486; p=0.048. CONCLUSIONS Lower erythrocyte SOD activity was found in elderly males than in adult males with early nuclear cataract. There was a relationship between erythrocyte SOD and erythrocyte zinc level in elderly males with early nuclear cataract.

  5. Erythrocyte membrane ATPase and calcium pumping activities in porcine malignant hyperthermia

    International Nuclear Information System (INIS)

    Thatte, H.S.; Mickelson, J.R.; Addis, P.B.; Louis, C.F.

    1987-01-01

    To investigate possible abnormalities in erythrocyte membrane enzyme activities in the pharmacogenetic disorder MH, membrane ATPase activities have been examined in erythrocyte ghosts prepared from red blood cells of MHS and normal swine. While no differences were noted in Mg2+-ATPase activities, the (Na+, K+)-ATPase activity of MHS erythrocyte ghosts was less than that of normal ghosts. Ca2+-ATPase activity exhibited low- and high-affinity Ca2+-binding sites in both types of erythrocyte ghost. While the Km for Ca2+ was greater for normal than for MHS erythrocyte ghosts at the high-affinity Ca2+-binding site, the reverse was true at the low-affinity Ca2+-binding site. Irrespective of the type of calcium binding site occupied, the Vmax for normal erythrocyte ghost Ca2+-ATPase activity was greater than that for MHS ghosts. In the presence of calmodulin, there was now no difference between MHS and normal erythrocyte ghosts in either the Km for Ca2+ or the Vmax of the Ca2+-ATPase activity. To determine if the calcium pumping activity of intact MHS and normal pig erythrocytes differed, calcium efflux from the 45 Ca-loaded erythrocytes was determined; this activity was significantly greater for MHS than for normal erythrocytes. Thus, the present study confirms that there are abnormalities in the membranes of MHS pig red blood cells. However, we conclude that these abnormalities are unlikely to result in an impaired ability of MHS erythrocytes to regulate their cytosolic Ca2+ concentration

  6. Erythrocyte zinc levels in children with bronchial asthma.

    Science.gov (United States)

    Arik Yilmaz, E; Ozmen, S; Bostanci, I; Misirlioglu, E Dibek; Ertan, U

    2011-12-01

    Zinc deficiency may be suspected to play a role in the pathogenesis, control, and severity of asthma because of its antioxidant, antiapoptotic, and anti-inflammatory effects. We aimed to investigate whether there was any relationship between erythrocyte zinc levels and childhood asthma. The erythrocyte zinc levels of 67 asthmatic and 45 healthy children were analyzed in this case-control study. The mean concentrations of erythrocyte zinc were 1215.8 ± 145.1 µg/dl in asthma patients and 1206.9 ± 119.5 µg/dl in controls with no significant difference (P = 0.472). The erythrocyte zinc level was below 1,000 µg/dl in 6 asthmatic patients (8.9%) and 2 control group patients (4.4%). There was no relationship between erythrocyte zinc levels and duration of follow-up, severity, and control of the asthma (P > 0.05). On the other hand, patients hospitalized for an asthma attack had significantly lower erythrocyte zinc levels compared with nonhospitalized patients and the control group (P = 0.000 and P = 0.004 respectively). This study's findings indicate that asthmatic children are not a risk group for zinc deficiency. We emphasize that checking zinc levels in children who are hospitalized for an asthma attack may be useful. Copyright © 2011 Wiley Periodicals, Inc.

  7. Altitude Acclimatization and Blood Volume: Effects of Exogenous Erythrocyte Volume Expansion

    National Research Council Canada - National Science Library

    Sawka, M

    1996-01-01

    ...: (a) altitude acclimatization effects on erythrocyte volume and plasma volume; (b) if exogenous erythrocyte volume expansion alters subsequent erythrocyte volume and plasma volume adaptations; (c...

  8. Effect of fatty acids on self-assembly of soybean lecithin systems.

    Science.gov (United States)

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015

  9. Deformability of Erythrocytes and Oxidative Damage in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Mukerrem Betul Yerer

    2012-04-01

    Full Text Available Purpose: A lowered cerebral perfusion as a consequence of hemodynamic microcirculatory insufficiency is one of the factors underlying in Alzheimer's disease, which is a neurodegenerative disorder leading to progressive cognitive impairment. Erythrocyte deformability is one of the major factors affecting the microcirculatory hemodynamics which is closely related to the oxidative damage. The aim of this study is to investigate the relationship between the erythrocyte deformability, nitric oxide levels and oxidative stress in Alzheimer's disease. Methods: The blood samples of 30 elderly people in three groups consisting of healthy control and different severities of the disease (low and severe were used. Then the erythrocytes were isolated and the deformability of erythrocytes was determined by Rheodyne SSD evaluating the elongation indexes of the erythrocytes under different shear stress. The catalase, glutathione peroxidase and plasma nitric oxide levels were measured spectrophotometric ally. Results: The plasma nitric oxide levels, catalase activities were found significantly higher and glutathione peroxidase activity was significantly lower in severe Alzheimer's disease patients compared to the control group. However, the deformability of erythrocytes was not significantly affected from these alterations. Conclusion: the oxidant-antioxidant status is dramatically changed in Alzheimer's disease patients with the severity of the disease and similar alterations were seen in the nitric oxide levels without any significant change in erythrocyte deformability. [Cukurova Med J 2012; 37(2.000: 65-75

  10. A randomized study of the effect of fish oil on n-3 fatty acid incorporation and nutritional status in lung cancer patients

    DEFF Research Database (Denmark)

    Andersen, Jens Rikardt; Dannerfjord, Stina Hjerrild; Nørgaard, Michael

    2015-01-01

    Long-chain n-3 polyunsaturated fatty acids (n-3 LCPUFA) have been proposed to have beneficial effect on cancer cachexia. The aims of the present study were to a) determine the incorporation of n-3 LCPUFA in erythrocytes (RBC) as a measurement of compliance to fish oil (FO)-supplement in lung cancer...

  11. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    International Nuclear Information System (INIS)

    Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A.; Rezende, K.R.; Alonso, A.

    2013-01-01

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO 4 /H 2 O 2 , in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO 4 /H 2 O 2 , whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO 4 /H 2 O 2 . The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation

  12. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    Science.gov (United States)

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  13. Influence of β-adrenoceptor stimulation on the metabolism of C 18 unsaturated fatty acids in isolated heart of rat

    International Nuclear Information System (INIS)

    Makdissi, Samar

    1993-02-01

    The influence of stimulating β receptors on the metabolism of 18:1 n-9, 18:2 n-6 and 18:3 n-3 acids in an isolated perfused heart of a rat was studied. Experiments were carried out in two stages. In the first stage, each fatty acid was entered solely in Krebs liquid labelled with C 14 and complexed with albumin. In the second stage, isoproterenol (10 -4 M) was added to the previous mixture in order to stimulate the cardiac β-receptors. It appeared that the heart extracts each of 18:1 and 18:3 in a rate that exceeds the rate of extracting 18:2 and that the oxidation rate of 18:1 was the highest among the three studied acids which were alike in their esterification so they were all entered mainly in the triglycerid group (65-66%) and to less extend in the phospholipids (16-18%). While, the diglycerid and the free fatty acids did only form secondary compounds that would soon convert to the other groups that are more stable the reactions of double bond breakage for the 18:1 acid that converts to triple bond derivatives and 18:3 that converts to tetra, penta and hexa derivatives in the triglycerid were noticed. The 18:3 acid was the least influenced by the stimulation of β. The uptake rate of 18:2 acid was increased slightly while the 18:1 was decreased would indicate a competition between this acid ant the stored one in the cell. Also, the oxidation rate of 18:1 acid as well as the rate of entering it in the triglycerid and the phospholipids increased. In the same way, the oxidation rate of 18:2 acid increased, but its esterification turned in a way that the rate of entering it among the phospholipids increased, while the rate of entering it in the triglycerid decreased. According to what has been mentioned above, it can be said that the 18:1 plays an essential role in the production of direct power besides its role as a component of phospholipids that are deposited in the cellular membranes, while the metabolism of 18:2 acid turns-largely towards the phospholipids

  14. Nanomechanics of electrospun phospholipid fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  15. Nanomechanics of electrospun phospholipid fiber

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Nikogeorgos, Nikolaos; Lee, Seunghwan

    2015-01-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 +/- 2.7 mu m. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 +/- 1MPa....... At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip....... The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h. (c) 2015 AIP Publishing LLC....

  16. Ferrokinetic and erythrocyte survival studies in healthy and anemic cats

    Energy Technology Data Exchange (ETDEWEB)

    Madewell, B.R.; Holmes, P.H.; Onions, D.E.

    1983-03-01

    Erythrocyte survival and ferrokinetic studies were adapted to the cat. For 5 clinically healthy 4- to 9-month-old cats, mean /sup 51/Cr-labeled erythrocyte survival was 144 hours, and mean plasma /sup 59/Fe-labeled transferrin disappearance halftime was 51 minutes. Erythrocyte use of radioiron was rapid and efficient, with 50% to 80% of labeled iron incorporated into the erythron by 100 hours after injection into the cat. Six cats with feline leukemia virus infection were studied. For 2 cats with erythroid aplasia associated with C subgroup of feline leukemia virus, erythrocyte survival times were similar to those determined for the healthy cats, but plasma radioiron disappearance half time and erythrocyte use of radioiron were markedly diminished.

  17. Ferrokinetic and erythrocyte survival studies in healthy and anemic cats

    International Nuclear Information System (INIS)

    Madewell, B.R.; Holmes, P.H.; Onions, D.E.

    1983-01-01

    Erythrocyte survival and ferrokinetic studies were adapted to the cat. For 5 clinically healthy 4- to 9-month-old cats, mean 51 Cr-labeled erythrocyte survival was 144 hours, and mean plasma 59 Fe-labeled transferrin disappearance halftime was 51 minutes. Erythrocyte use of radioiron was rapid and efficient, with 50% to 80% of labeled iron incorporated into the erythron by 100 hours after injection into the cat. Six cats with feline leukemia virus infection were studied. For 2 cats with erythroid aplasia associated with C subgroup of feline leukemia virus, erythrocyte survival times were similar to those determined for the healthy cats, but plasma radioiron disappearance half time and erythrocyte use of radioiron were markedly diminished

  18. Morphological characteristics of urine erythrocytes in children with erythrocyturia

    Directory of Open Access Journals (Sweden)

    V.A. Minakova

    2017-09-01

    Full Text Available Background. Nephropathies with erythrocyturia make up about 1/3 of all diseases of the kidneys and the urinary system, and they have some difficulties in differential diagnostics. Quite often, erythrocyturia is the only symptom of these diseases. In connection with this, determination of its origin is an important task in forming the correct diagnosis. Erythrocyturia in most diseases of the lower urinary tract is not accompanied by proteinuria or the presence of cylinders in the urine. The presence of proteinuria (more than 0.3 g/l or 1 g protein in urine per day, along with the appearance of erythrocytic cylinder in the urine sediment, raises suspicion in favor of glomerular or tubular diseases. Glomerular erythrocytes may be detected by means of urea concentration factor (UCF in the urinary sediment as a preliminary test for the determination of the erythrocyturia site. Erythrocytes that pass through the glomerular membrane have a changed form (dysmorphic. Determination of acanthocytes in the urine (ring-shaped erythrocytes with one or several bulges in the form of bubbles of different sizes and types is a more precise criterion of glomerular nephropathy than the presence of dysmorphic erythrocytes. The purpose of the study was to determine the morphological characteristics of urine erythrocytes in children with erythrocyturia, to improve the quality of differential diagnosis. Materials and methods. Determination of the morphological characteristics of urinary erythrocytes using UCF in 73 patients aged 1 to 18 years, of which 45 (61.6 % are patients with hematuric form of glomerulonephritis, 23 (31.5 % — with hereditary nephritis, and 5 (6.8 % — with dysmetabolic nephropathy. Detection of 50 to 80 % of dysmorphic erythrocytes in the urine sediment and finding in urine of more than 5 % of acanthocytes is a highly sensitive and specific diagnostic criterion for glomerular hematuria. Results. In children with a clinical diagnosis

  19. Epicardial and Subcutaneous Adipose Tissue Fatty Acids Profiles in Diabetic and Non-Diabetic Patients Candidate for Coronary Artery Bypass Graft

    Directory of Open Access Journals (Sweden)

    Masoud Pezeshkian

    2013-01-01

    Full Text Available Introduction: We have recently shown that in high cholesterol-fed rabbits, the sensitivity of epicardial adipose tissue to changes in dietary fat is higher than that of subcutaneous adipose tissue. Although the effects of diabetes on epicardial adipose tissue thickness have been studied, the influence of diabetes on profile of epicardial free fatty acids (FFAs has not been studied. The aim of this study is to investigate the effect of diabetes on the FFAs composition in serum and in the subcutaneous and epicardial adipose tissues in patients undergoing coronary artery bypass graft (CABG. Methods: Forty non-diabetic and twenty eight diabetic patients candidate for CABG with > 75% stenosis participated in this study.Fasting blood sugar (FBS and lipid profiles were assayed by auto analyzer. Phospholipids and non-estrified FFA of serum and the fatty acids profile of epicardial and subcutaneous adipose tissues were determined using gas chromatography method. Results: In the phospholipid fraction of diabetic patients’ serum, the percentage of 16:0, 18:3n-9, 18:2n-6 and monounsaturated fatty acids (MUFAs was lower than the corresponding values of the non-diabetics; whereas, 18:0 value was higher. A 100% increase in the amount of 18:0 and 35% decrease in the level of 18:1n-11 was observed in the diabetic patients’ subcutaneous adipose tissue. In epicardial adipose tissue, the increase of 18:0 and conjugated linolenic acid (CLA and decrease of 18:1n-11, ω3 (20:5n-3 and 22:6n-3 were significant; but, the contents of arachidonic acid and its precursor linoleic acid were not affected by diabetes. Conclusion: The fatty acids’ profile of epicardial and subcutaneous adipose tissues is not equally affected by diabetes. The significant decrease of 16:0 and ω3 fatty acids and increase of trans and conjugated fatty acids in epicardial adipose tissue in the diabetic patients may worsen the formation of atheroma in the related arteries.

  20. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability.

    Science.gov (United States)

    Yu, Yang; Guo, Shoudong; Feng, Yumei; Feng, Lei; Cui, Yingjie; Song, Guohua; Luo, Tian; Zhang, Ke; Wang, Yiwei; Jiang, Xian-Cheng; Qin, Shucun

    2014-02-01

    Sphingosine-1-phosphate (S1P) is an amphiphilic signaling molecule, which is enriched in functional high density lipoprotein (HDL) and shows arterial protection. The distribution of S1P is changed with increased plasma phospholipid transfer protein (PLTP) activity and impaired HDL function in patients with coronary heart diseases. Therefore, we hypothesized that PLTP might transfer S1P among cells or lipoproteins. We found that plasma S1P contents were decreased by 60.1 % in PLTP knockout mice (PLTP-/-, N = 5) compared with their wild type littermates (WT, N = 5) (151.70 ± 38.59 vs. 379.32 ± 59.90 nmol/l, PS1P content in HDL fraction (HDL-S1P) from PLTP-/- was decreased by 64.7 % compared with WT (49.36 ± 1.49 vs. 139.76 ± 2.94 nmol/l, PS1P transfer assay indicated that PLTP could facilitate S1P transport from erythrocytes to HDL at 37 °C in D-Hanks buffer. Plasma content of apolipoprotein M, a specific adaptor of S1P, was not changed in PLTP-/- compared with WT. Therefore, we concluded that PLTP was a key factor to maintain plasma HDL-S1P, and PLTP deficiency could decrease the S1P content in plasma lipoproteins, which involves its capability of transferring S1P from erythrocyte to HDL.

  1. Herpes simplex virus 1 induces de novo phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Esther [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Oliveira, Anna Paula de; Tobler, Kurt [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Sonda, Sabrina [Institute of Parasitology, University of Zuerich (Switzerland); Kaech, Andres [Center for Microscopy and Image Analysis, University of Zuerich (Switzerland); Lucas, Miriam S. [Electron Microscopy ETH Zuerich (EMEZ), Swiss Federal Institute of Technology, Zuerich (Switzerland); Ackermann, Mathias [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Wild, Peter, E-mail: pewild@access.uzh.ch [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland)

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  2. Lipid metabolism in streptozotocin induced experimental diabetes and it’s correction with niacin-oxyethylidendiphosphonatogermanate

    Directory of Open Access Journals (Sweden)

    N. V. Kresyun

    2017-08-01

    Full Text Available Introduction. The development of approaches for effective control of diabetes-induced deterioration of lipid metabolism and plasma glucose level could be implemented by the applying of germanium-contained biologically active substances. Among others such compound as niacin – oxyethylidendiphosphonatogermanate (MIGU-4 should be mentioned, which is able to correct effectively the lipid layers of liver mitochondrial membranes on models of streptozotocin – induced diabetes. Aim. To investigate the dynamic changes of the total cholesterol, total phospholipids level along with their molar ratio; fractions of phospholipids of both erythrocyte membranes and liver mitochondria membranes in experimental diabetes mellitus and to investigate the mentioned indices under conditions of complex correction by MIGU-4 and insulin. Materials and Methods. Diabetes was induced in male Wistar rats with streptozotocin injection (50.0 mg/kg., i. p.. ED50 of MIGU-4 (25.0 mg/kg, i. p. was used. Cellular membranes were obtained from erythrocytes, and mitochondrial membranes were obtained through differential centrifugation of liver tissue. Lipid extracts were isolated from 1 g of erythrocyte mass and from 200 mg of liver tissue; phospholipids fractionation was carried out by method of ascending one-dimensional thin-layer chromatography. Content of certain phospholipids was estimated by method of spots “burning out” using the 72 % chloride acid at 200 0С up to their complete bleaching with the consequent determination of lipids phosphate. The level of total phospholipids was calculated by summing up all fractions content. Results. The total cholesterol level substantially elevated along with the decreasing of phospholipids content in both erythrocyte and mitochondrial membranes obtained from liver tissue in two weeks after experimental streptozotocin diabetes induction in rats. It resulted in an increase of the cholesterol/ phospholipids ratio. These changes

  3. Phospholipid Complex Technique for Superior Bioavailability of Phytoconstituents

    Directory of Open Access Journals (Sweden)

    Kattamanchi Gnananath

    2017-04-01

    Full Text Available Phytoconstituents have been utilized as medicines for thousands of years, yet their application is limited owing to major hurdles like deficit lipid solubility, large molecular size and degradation in the gastric environment of gut. Recently, phospholipid-complex technique has unveiled in addressing these stumbling blocks either by enhancing the solubilizing capacity or its potentiating ability to pass through the biological membranes and it also protects the active herbal components from degradation. Hence, this phospholipid-complex-technique can enable researchers to deliver the phytoconstituents into systemic circulation by using certain conventional dosage forms like tablets and capsules. This review highlights the unique property of phospholipids in drug delivery, their role as adjuvant in health benefits, and their application in the herbal medicine systems to improve the bioavailability of active herbal components. Also we summarize the prerequisites for phytosomes preparation like the selection of type of phytoconstituents, solvents used, various methods employed in phytosomal preparation and its characterization. Further we discuss the key findings of recent research work conducted on phospholipid-based delivery systems which can enable new directions and advancements to the development of herbal dosage forms.

  4. Impact of water temperature on the growth and fatty acid profiles of juvenile sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Yu, Haibo; Zhang, Cheng; Gao, Qinfeng; Dong, Shuanglin; Ye, Zhi; Tian, Xiangli

    2016-08-01

    The present study determined the changes in the fatty acid (FA) profiles of juvenile sea cucumber Apostichopus japonicus in response to the varied water temperature. Sea cucumbers with similar size (4.02±0.11g) were cultured for 8 weeks at 14°C, 18°C, 22°C and 26°C, respectively. At the end of the experiment, the specific growth rate (SGR) and the profiles of FAs in neutral lipids and phospholipids of the juvenile sea cucumbers cultured at different temperatures were determined. The SGRs of the sea cucumbers cultured at 26°C significantly decreased 46.3% compared to thos cultured at 18°C. Regression analysis showed that the SGR-temperature (T) relationship can be expressed as SGR=-0.0073T(2)+0.255T -1.0231 (R(2)=0.9936) and the highest SGR was predicted at 17.5°C. For the neutral lipids, the sum of saturated FAs (SFAs), monounsaturated FAs (MUFAs) or polyunsaturated FAs (PUFAs) of the sea cucumbers that were cultured at the water temperature from 18°C-26°C did not change significantly, indicating the insensitivity of FA profiles for the neutral lipids of sea cucumbers in response to increasing water temperature. For phospholipids, the sum of PUFAs in the sea cucumbers dramatically decreased with the gradually increased water temperature. The sum of SFAs and MUFAs of sea cucumbers, however, increased with the gradually elevated water temperature. In particular, the contents of highly unsaturated fatty acids (HUFAs), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA), in the phospholipids of the sea cucumbers decreased 37.2% and 26.1%, respectively, when the water temperature increased from 14°C to 26°C. In summary, the sea cucumbers A. japonicus can regulate the FA compositions, especially the contents of EPA and DHA, in the phospholipids so as to adapt to varied water temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy

    Science.gov (United States)

    Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin

    2017-11-01

    Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.

  6. Double-chain phospholipid end-capped polyurethanes: Synthesis, characterization and platelet adhesion study

    International Nuclear Information System (INIS)

    Tan Dongsheng; Zhang Xiaoqing; Li Jiehua; Tan Hong; Fu Qiang

    2012-01-01

    A novel phospholipid containing double chains and phosphotidylcholine polar head groups, 2-(10-(2-aminoethylamino)-10-oxodecanamido)-3-(decyloxy)-3-oxopropyl phosphorylcholine (ADDPC), was synthesized and characterized. Two kinds of double-chain phospholipid end-capped polyurethanes with different soft segments were prepared. The structure of prepared polyurethanes was characterized by X-ray photoelectron spectroscopic (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometry and atomic force microscope (AFM), which indicated that the double-chain phospholipids enriched onto the top surface of the prepared polyurethane films. The preliminary evaluation of blood compatibility showed that these novel phospholipid end-capped polyurethanes could suppress platelet adhesion and activation effectively. This property did not depend on the chemical structure of polyurethanes. In addition, according to tensile test results, the phospholipid polyurethanes kept good mechanical properties in comparison with original polyurethanes. It is suggested that double-chain phospholipid end-caption has good potential for achieving both hemocompatibility and good mechanical properties simultaneously for polyurethanes.

  7. Direct interaction between EgFABP1, a fatty acid binding protein from Echinococcus granulosus, and phospholipid membranes.

    Directory of Open Access Journals (Sweden)

    Jorge L Porfido

    Full Text Available Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious.We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs.This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite.

  8. Does supplementation of formula with evening primrose and fish oils augment long chain polyunsaturated fatty acid status of low birthweight infants to that of breast-fed counterparts?

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Schaafsma, A; Okken, A; Muskiet, FAJ

    We investigated whether formulae with evening primrose and fish oils raise long chain polyunsaturated fatty acids (LCPUFA) in plasma cholesterol esters (CE), erythrocytes (RSC) and platelets (PLT) to levels encountered in breast-fed infants. Low birthweight infants (less than or equal to 2500 g)

  9. Experiment study and FEM simulation on erythrocytes under linear stretching of optical micromanipulation

    Science.gov (United States)

    Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi

    2017-08-01

    The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.

  10. Influence of styryl dyes on blood erythrocytes

    Science.gov (United States)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  11. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Deanna M. Schmitt

    2017-05-01

    Full Text Available Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes, dotU, or iglC (two genes encoding T6SS machinery severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus, which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks.

  12. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    Science.gov (United States)

    Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A.; Rezende, K.R.; Alonso, A.

    2013-01-01

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation. PMID:24068194

  13. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, K. S.; Silva, A. H.M.; Mendanha, S. A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil); Rezende, K. R. [Laboratório de Biofarmácia e Farmacocinética de Substâncias Bioativas, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO (Brazil); Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2013-09-06

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO{sub 4}/H{sub 2}O{sub 2}, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO{sub 4}/H{sub 2}O{sub 2}, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO{sub 4}/H{sub 2}O{sub 2}. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.

  14. Evolution of phospholipid contents during the production of quark cheese from buttermilk.

    Science.gov (United States)

    Ferreiro, T; Martínez, S; Gayoso, L; Rodríguez-Otero, J L

    2016-06-01

    We report the evolution of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) contents during the production of quark cheese from buttermilk by successive ultrafiltration concentration, enrichment with cream, concurrent homogenization and pasteurization, fermentative coagulation, and separation of quark from whey by further ultrafiltration. Buttermilk is richer than milk itself in phospholipids that afford desirable functional and technological properties, and is widely used in dairy products. To investigate how phospholipid content is affected by end-product production processes such as ultrafiltration, homogenization, pasteurization or coagulation, we measured the phospholipids at several stages of each of 5 industrial-scale quark cheese production runs. In each run, 10,000L of buttermilk was concentrated to half volume by ultrafiltration, enriched with cream, homogenized, pasteurized, inoculated with lactic acid bacteria, incubated to coagulation, and once more concentrated to half volume by ultrafiltration. Phospholipid contents were determined by HPLC with evaporative light scattering detection in the starting buttermilk, concentrated buttermilk, ultrafiltrate, cream-enriched concentrated buttermilk (both before and after concurrent homogenization and pasteurization), coagulate, and quark, and also in the rinsings obtained when the ultrafiltration equipment was washed following initial concentration. The average phospholipid content of buttermilk was approximately 5 times that of milk, and the phospholipid content of buttermilk fat 26 to 29 times that of milk fat. Although phospholipids did not cross ultrafiltration membranes, significant losses occurred during ultrafiltration (due to retention on the membranes) and during the homogenization and pasteurization process. During coagulation, however, phospholipid content rose, presumably as a consequence of the proliferation of the

  15. Interaction of abscisic acid with phospholipid membranes

    International Nuclear Information System (INIS)

    Stillwell, W.; Brengle, B.; Hester, P.; Wassall, S.T.

    1989-01-01

    The plant hormone abscisic acid (ABA) is shown, under certain conditions, to greatly enhance the permeability of phospholipid bilayer membranes to the nonelectrolyte erythritol (followed spectrophotometrically by osmotic swelling) and the anion carboxyfluorescein (followed by fluorescence). The hormone is ineffective with single- and mixed-component phosphatidylcholine membranes in the liquid-crystalline or gel states. In contrast, substantial ABA-induced permeability is measured for two-component membranes containing lipids with different polar head groups or containing phosphatidylcholines with different acyl chains at temperatures where gel and liquid-crystalline phases coexist. Despite the large ABA-induced enhancement in bilayer permeability, no evidence for a substantial change at the molecular level was seen in the membranes by magnetic resonance techniques. 13 C NMR spin-lattice relaxation times, T 1 , in sonicated unilamellar vesicles and ESR of spin-labeled fatty acids intercalated into membranes showed negligible effect on acyl chain order and dynamics within the bilayer, while 31 P NMR of sonicated unilamellar vesicles indicated negligible effect on molecular motion and conformation in the head-group region. The authors propose that, instead of causing a general nonspecific perturbation to the membrane, the hormone acts at membrane defects formed due to mismatch in molecular packing where two different head groups or acyl chain states interface. Increased membrane disruption by ABA at these points of membrane instability could then produce an enhancement in permeability

  16. Deformation of phospholipid vesicles in an optical stretcher

    OpenAIRE

    Delabre , Ulysse; Feld , Kasper; Crespo , Eleonore; Whyte , Graeme; Sykes , Cecile; Seifert , Udo; Guck , Jochen

    2015-01-01

    International audience; Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelength...

  17. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli.

    Science.gov (United States)

    Martin, Audrey; Daniel, Jaiyanth

    2018-02-05

    Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Erythrocyte Membrane Failure by Electromechanical Stress

    Directory of Open Access Journals (Sweden)

    E Du

    2018-01-01

    Full Text Available We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  19. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    Science.gov (United States)

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  20. Triggers, Inhibitors, Mechanisms, and Significance of Eryptosis: The Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2015-01-01

    Full Text Available Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16. Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson’s disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.

  1. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  2. Paired Chicken and Mammalian Erythrocyte Indicator Systems for ...

    African Journals Online (AJOL)

    A retrospective flock health analysis revealed that the higher titres were associated with confirmable Newcastle Disease (ND) outbreaks in the affected flocks. These findings therefore suggested that the use of standardised guinea pig erythrocytes in parallel with chicken erythrocytes as indicators, might facilitate field ND ...

  3. Erythrocyte survival studies in a rat myelogenous leukemia

    International Nuclear Information System (INIS)

    Derelanko, M.J.; Meagher, R.C.; Lobue, J.; Khouri, J.A.; Gordon, A.S.

    1982-01-01

    To determine the extent intrinsic erythrocyte defects and/or extrinsic factors were involved in anemia of rats bearing Shay chloroleukemia (SCL), survival of 3 H-DFP labeled erythrocytes was studied in leukemic and nonleukemic hosts. Red blood cells labeled before induction of leukemia, were rapidly lost from the peripheral circulation of SCL rats in terminal stages of disease. However, labeled erythrocytes from terminal SCL animals displayed normal lifespans when transfused into nonleukemic controls. Thus the anemia of this leukemia probably resulted from extrinsic factors associated with the leukemic process. Hemorrhage appeared to be primarily responsible for the anemia of this disease

  4. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  5. Changes in phosphatidylcholine fatty acid composition are associated with altered skeletal muscle insulin responsiveness in normal man.

    Science.gov (United States)

    Clore, J N; Harris, P A; Li, J; Azzam, A; Gill, R; Zuelzer, W; Rizzo, W B; Blackard, W G

    2000-02-01

    The fatty acid composition of skeletal muscle cell membrane phospholipids (PLs) is known to influence insulin responsiveness in man. We have recently shown that the fatty acid composition of phosphatidylcholine (PC), and not phosphatidylethanolamine (PE), from skeletal muscle membranes is of particular importance in this relationship. Efforts to alter the PL fatty acid composition in animal models have demonstrated induction of insulin resistance. However, it has been more difficult to determine if changes in insulin sensitivity are associated with changes in the skeletal muscle membrane fatty acid composition of PL in man. Using nicotinic acid (NA), an agent known to induce insulin resistance in man, 9 normal subjects were studied before and after treatment for 1 month. Skeletal muscle membrane fatty acid composition of PC and PE from biopsies of vastus lateralis was correlated with insulin responsiveness using a 3-step hyperinsulinemic-euglycemic clamp. Treatment with NA was associated with a 25% increase in the half-maximal insulin concentration ([ED50] 52.0 +/- 7.5 to 64.6 +/- 9.0 microU/mL, P insulin sensitivity. Significant changes in the fatty acid composition of PC, but not PE, were also observed after NA administration. An increase in the percentage of 16:0 (21% +/- 0.3% to 21.7% +/- 0.4%, P insulin resistance with NA is associated with changes in the fatty acid composition of PC in man.

  6. In Vitro Protective Effect of Phikud Navakot Extraction on Erythrocyte

    Directory of Open Access Journals (Sweden)

    Kanchana Kengkoom

    2016-01-01

    Full Text Available Phikud Navakot (PN, Thai herbal remedy in National List of Essential Medicines, has been claimed to reduce many cardiovascular symptoms especially dizziness and fainting. Apart from blood supply, erythrocyte morphology, in both shape and size, is one of the main consideration factors in cardiovascular diseases and may be affected by vascular oxidative stress. However, little is known about antioxidative property of PN on erythrocyte to preserve red blood cell integrity. In this study, 1,000 μM hydrogen peroxide-induced oxidative stress was conducted on sheep erythrocyte. Three doses of PN (1, 0.5, and 0.25 mg/mL and 10 μM of ascorbic acid were compared. The released hemoglobin absorbance was measured to demonstrate hemolysis. Electron microscopic and immunohistochemical studies were also performed to characterize dysmorphic erythrocyte and osmotic ability in relation to aquaporin- (AQP- 1 expression, respectively. The results revealed that all doses of PN and ascorbic acid decreased the severity of dysmorphic erythrocyte, particularly echinocyte, acanthocyte, knizocyte, codocyte, clumping, and other malformations. However, the most effective was 0.5 mg/mL PN dosage. In addition, hydrostatic pressure may be increased in dysmorphic erythrocyte in association with AQP-1 upregulation. Our results demonstrated that PN composes antioxidative effect to maintain the integrity and osmotic ability on sheep erythrocyte.

  7. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  8. Efficient discrimination and removal of phospholipids during electromembrane extraction from human plasma samples

    DEFF Research Database (Denmark)

    Vårdal, Linda; Gjelstad, Astrid; Huang, Chuixiu

    2017-01-01

    to be highly efficient for providing phospholipid-free extracts. CONCLUSION: Ultra-HPLC-MS/MS analysis of the donor solutions revealed that the phospholipids principally remained in the plasma samples. This proved that the phospholipids did not migrate in the electrical field and they were prevented from......AIM: For the first time, extracts obtained from human plasma samples by electromembrane extraction (EME) were investigated comprehensively with particular respect to phospholipids using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Thhe purpose...

  9. Cholesterol autoxidation in phospholipid membrane bilayers

    International Nuclear Information System (INIS)

    Sevanian, A.; McLeod, L.L.

    1987-01-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation

  10. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700 Erythrocyte...

  11. Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of exogenous fatty acids.

    Science.gov (United States)

    Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D

    2018-03-26

    Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the

  12. Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells.

    Science.gov (United States)

    Čujová, Sabína; Bednárová, Lucie; Slaninová, Jiřina; Straka, Jakub; Čeřovský, Václav

    2014-11-01

    The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α-helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane-mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan-containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N-phenyl-1-naphthylamine and detecting cytoplasmic β-galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  13. Subcutaneous administration of carrier erythrocytes: slow release of entrapped agent

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Corrier, D.E.

    1988-01-01

    Carrier erythrocytes administered subcutaneously in mice release encapsulated molecules at the injection site and through cells that escape the injection site. One day postinjection, the efflux of encapsulated [ 14 C]sucrose, [ 3 H]inulin, and 51 Cr-hemoglobin from the injection site was 45, 55, and 65%, respectively. Intact carrier erythrocytes escaped the injection site and entered the blood circulation carrying with them the encapsulated molecules. Most of the encapsulated [ 3 H]inulin that reached whole blood circulated within erythrocytes. Small but measurable numbers of encapsulated molecules were trapped within lymph nodes. Subcutaneous injection of carrier erythrocytes may allow for limited extravascular tissue targeting of drugs

  14. Intraspecific variation in erythrocyte sizes among populations of Hypsiboas cordobas (Anura: Hylidae

    Directory of Open Access Journals (Sweden)

    Mariana Baraquet

    2013-12-01

    Full Text Available We studied the morphology and size of erythrocytes of H. cordobae, and analysed the geographic variation of this character along the distribution of the species, in relation to the latitudinal and altitudinal distances. Erythrocyte shape of the H. cordobae is ellipsoidal and the nuclei are also ellipsoidal and centrally oriented. Erythrocyte and nuclear size showed significant differences among populations, with the highest mean size corresponding to the population of Achiras (low altitude site and the lowest mean size to Los Linderos (high altitude site. There was no significant relationship between the latitude of each population and the both erythrocyte and nuclear size. The altitudinal variation in erythrocyte cell size may be attributable to the surface available for gas exchange; a small erythrocyte offers a possibility of greater rate of exchange than a larger one. Our results are consistent with studies of other amphibians, where intraspecific comparisons of populations at different altitudes show that individuals at higher altitudes are characterized by smaller erythrocytes.

  15. Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Cui, Chun-Xue; Deng, Jing-Na; Yan, Li; Liu, Yu-Ying; Fan, Jing-Yu; Mu, Hong-Na; Sun, Hao-Yu; Wang, Ying-Hong; Han, Jing-Yan

    2017-08-17

    Silibinin Capsules (SC) is a silybin-phospholipid complex with silybin as the bioactive component. Silybin accounts for 50-70% of the seed extract of Silybum marianum (L.) Gaertn.. As a traditional medicine, silybin has been used for treatment of liver diseases and is known to provide a wide range of hepatoprotective effects. High fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) is a worldwide health problem. This study was to investigate the role of SC in NAFLD with focusing on its underlying mechanism and likely target. Male hamsters (Cricetidae) received HFD for 10 weeks to establish NAFLD model. NAFLD was assessed by biochemical assays, histology and immunohistochemistry. Proton nuclear magnetic resonance spectroscopy and western blot were conducted to gain insight into the mechanism. Hamsters fed HFD for 10 weeks developed fatty liver accompanying with increased triglyceride (TG) accumulation, enhancing de novo lipogenesis, increase in fatty acid (FA) uptake and reducing FA oxidation and TG lipolysis, as well as a decrease in the expression of phospho-adenosine monophosphate activated protein kinase α (p-AMPKα) and Sirt 1. SC treatment at 50mg/kg silybin and 100mg/kg silybin for 8 weeks protected hamsters from development of fatty liver, reducing de novo lipogenesis and increasing FA oxidation and p-AMPKα expression, while having no effect on FA uptake and TG lipolysis. SC protected against NAFLD in hamsters by inhibition of de novo lipogenesis and promotion of FA oxidation, which was likely mediated by activation of AMPKα. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Validation of fatty acid intakes estimated by a food frequency questionnaire using erythrocyte fatty acid profiling in the Montreal Heart Institute Biobank.

    Science.gov (United States)

    Turcot, V; Brunet, J; Daneault, C; Tardif, J C; Des Rosiers, C; Lettre, G

    2015-12-01

    To improve the prevention, treatment and risk prediction of cardiovascular diseases, genetic markers and gene-diet interactions are currently being investigated. The Montreal Heart Institute (MHI) Biobank is suitable for such studies because of its large sample size (currently, n = 17 000), the availability of biospecimens, and the collection of data on dietary intakes of saturated (SFAs) and n-3 and n-6 polyunsaturated (PUFAs) fatty acids estimated from a 14-item food frequency questionnaire (FFQ). We tested the validity of the FFQ by correlating dietary intakes of these fatty acids with their red blood cell (RBC) content in MHI Biobank participants. Seventy-five men and 75 women were selected from the Biobank. We successfully obtained RBC fatty acids for 142 subjects using gas chromatography coupled to mass spectrometry. Spearman correlation coefficients were used to test whether SFA scores and daily intakes (g day(-1)) of n-3 and n-6 PUFAs correlate with their RBC content. Based on covariate-adjusted analyses, intakes of n-3 PUFAs from vegetable sources were significantly correlated with RBC α-linolenic acid levels (ρ = 0.23, P = 0.007), whereas n-3 PUFA intakes from marine sources correlated significantly with RBC eicosapentaenoic acid (ρ = 0.29, P = 0.0008) and docosahexaenoic acid (ρ = 0.41, P = 9.2 × 10(-7)) levels. Intakes of n-6 PUFAs from vegetable sources correlated with RBC linoleic acid (ρ = 0.18, P = 0.04). SFA scores were not correlated with RBC total SFAs. The MHI Biobank 14-item FFQ can appropriately estimate daily intakes of n-3 PUFAs from vegetable and marine sources, as well as vegetable n-6 PUFAs, which enables the possibility of using these data in future studies. © 2014 The British Dietetic Association Ltd.

  17. Expression of a fatty acid-binding protein in yeast

    International Nuclear Information System (INIS)

    Scholz, H.

    1991-06-01

    The unicellular eukaryotic microorganism, Saccharomyces cerevisiae, transformed with a plasmid containing a cDNA fragment encoding bovine heart fatty acid-binding protein (H-FABP C ) under the control of the inducible yeast GAL10 promoter, expressed FABP during growth on galactose. The maximum level of immunoreactive FABP, identical in size and isoelectric point to native protein, was reached after approximately 16 hours of induction. In contrast, transcription of the gene was induced within half an hour. Both, protein and mRNA were unstable and degraded within 1 h after repression of transcription. Analysis of subcellular fractions showed that FABP was exclusively associated with the cytosol. FABP expressed in yeast cells was functional as was demonstrated by its capacity to bind long chain fatty acids in an in vitro assay. Growth of all transformants on galactose as the carbon source showed no phenotype at temperatures up to 37 deg C, but the growth of FABP-expressing cells at 37 deg C was significantly retarded. Among the biochemical effects of FABP expression on lipid metabolism is a marked reduction of chain elongation and desaturation of exogenously added 14 C-palmitic acid. This effect is most pronounced in triacylglycerols and phospholipids when cells grow at 30 deg C and 37 deg C, respectively. In an in vitro assay determining the desaturation of palmitoyl CoA by microsomal membranes cytosol with or without exo- or endogenous FABP showed the same stimulation of the reaction. The desaturation of exogenously added 14 C-stearic acid, the pattern of unlabelled fatty acids (saturated vs. unsaturated) and the distribution of exogenously added radioactive fatty acids (palmitic, stearic or oleic acid) among lipid classes was not significantly affected. Using high concentrations (1 mM) the uptake of fatty acids was first stimulated and then inhibited when FABP was expressed. (author)

  18. Temperature-dependent binding of cyclosporine to an erythrocyte protein

    International Nuclear Information System (INIS)

    Agarwal, R.P.; Threatte, G.A.; McPherson, R.A.

    1987-01-01

    In this competitive binding assay to measure endogenous binding capacity for cyclosporine (CsA) in erythrocyte lysates, a fixed amount of [ 3 H]CsA plus various concentrations of unlabeled CsA is incubated with aliquots of a test hemolysate. Free CsA is then adsorbed onto charcoal and removed by centrifugation; CsA complexed with a cyclosporine-binding protein (CsBP) remains in the supernate. We confirmed the validity of this charcoal-separation mode of binding analysis by comparison with equilibrium dialysis. Scatchard plot analysis of the results at 4 degrees C yielded a straight line with slope corresponding to a binding constant of 1.9 X 10(7) L/mol and a saturation capacity of approximately 4 mumol per liter of packed erythrocytes. Similar analysis of binding data at 24 degrees C and 37 degrees C showed that the binding constant decreased with increasing temperature, but the saturation capacity did not change. CsBP was not membrane bound but appeared to be freely distributed within erythrocytes. 125 I-labeled CsA did not complex with the erythrocyte CsBP. Several antibiotics and other drugs did not inhibit binding between CsA and CsBP. These findings may explain the temperature-dependent uptake of CsA by erythrocytes in whole blood and suggest that measurement of CsBP in erythrocytes or lymphocytes may help predict therapeutic response or toxicity after administration of CsA

  19. Detection of Occult Erythrocytic Membrane Damages upon Pharmacological Exposures

    Directory of Open Access Journals (Sweden)

    P. Yu. Alekseyeva

    2007-01-01

    Full Text Available Blood administration of pharmaceuticals may cause occult effects of these agents on erythrocytic membranes. These effects may damage and cause additional membrane defects, but may strengthen. The type and degree of the effects of an agent were detected by calibrated irreversible electroporation with a pulsed electric field (PEF. The paper considers the erythrocytic membranous effects of a wide concentration range of agents used in anesthesiology, such as esmerone, tracrium, and mar-caine-adrenaline. Under the action of PEF and esmerone at the normal concentration N, the rate of erythrocytic hemolysis increased by several times as compared with the control. The similar effect also occurred when esmerone was added at the concentration C=10N. Tracrium exerted a fixing effect on erythrocytic membranes. Upon a combined exposure to PEF and tracrium in the normal concentration C=N; erythrocytic hemolysis was slow. So was with the concentration C=10N. The rate of hemolysis of the red blood cells subjected to a combined action of marcaine adrenaline at the normal concentration C=N and even at the concentration C=10N and PEF was comparable with the hemolytic rate of the reference suspension. 

  20. [The toxic effect of methylmercuric chloride on the organism in light of research on the hematopoietic system and metabolism of carbohydrates and lipids in heart and liver].

    Science.gov (United States)

    Janik, A

    1991-01-01

    The purpose of our experiments was to demonstrate possible changes in the activities of the hematopoietic system and the metabolism of the cardiac muscle and liver in the condition of the subacute poisoning with the methylmercuric acid. The tests were performed on 310 rats. The animals were administered the methylmercuric chloride per os in three different doses during three weeks. The activity of the hematopoietic system was analysed on the basis of selected factors concerning the erythrocytic system (the number of reticulocytes and erythrocytes, hematocrit, hemoglobin concentration and the osmotic resistance of erythrocytes), the leukocytic system (number, percentage composition and the osmotic resistance of leukocytes), and the thrombocytes. The alterations in the cardiac muscle and the liver were analysed on the basis of selected elements of the carbohydrate and lipid metabolisms. The indicators of the carbohydrate metabolism were glycogen, pyruvic, lactic, and citric acids. For the lipid metabolism we determined the concentration of free fatty acids, triglycerides, cholesterol and phospholipids. A tendency to increase the minimum osmotic resistance of erythrocytes appeared under the influence of the methylmercuric chloride, probably as a result of the binding between the absorbed methylmercury with lipids and with the proteins of the erythrocyte cell membranes. As to the percentage composition of leukocytes, we observed the reduction of the number of eosinophils in the peripheral blood. The rats poisoned with the methylmercuric chloride reacted to the administered foreign toxic substance with the excitation of their reticuloendothelial systems which was demonstrated by a very clear increase of the reticular cells number. We found a reduction of the content of the basic energy substrate in the cardiac muscle, i.e. the free fatty acids, with the parallel increase of triglyceride concentration. The reductions of the glycogen and lactic acid concentrations were

  1. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Hempel, Casper

    2017-01-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions...

  2. Plasmodium falciparum-infected erythrocytes do not adhere well to C32 melanoma cells or CD36 unless rosettes with uninfected erythrocytes are first disrupted.

    OpenAIRE

    Handunnetti, S M; Hasler, T H; Howard, R J

    1992-01-01

    Plasmodium falciparum malaria parasites modify the human erythrocytes in which they grow so that some parasitized erythrocytes (PE) can cytoadhere (C+) to host vascular endothelial cells or adhere in rosettes (R+) to uninfected erythrocytes. These C+ and R+ adherence properties of PE appear to mediate much of the pathogenesis of severe malaria infections, in part by blocking blood flow in microvessels. From one parasite strain, PE were selected in vitro for C+ R+ or C+ R- adherence properties...

  3. Evaluation of Marine Microalga Diacronema vlkianum Biomass Fatty Acid Assimilation in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Cristina de Mello-Sampayo

    2017-07-01

    Full Text Available Diacronema vlkianum is a marine microalgae for which supposed health promoting effects have been claimed based on its phytochemical composition. The potential use of its biomass as health ingredient, including detox-shakes, and the lack of bioavailability studies were the main concerns. In order to evaluate the microalgae-biomass assimilation and its health-benefits, single-dose (CD1-mice studies were followed by 66-days repeated-dose study in Wistar rats with the highest tested single-dose of microalgae equivalent to 101 mg/kg eicosapentaenoic acid + docosahexaenoic acid (EPA+DHA. Microalgae-supplementation modulated EPA and docosapentaenoic acid enrichment at arachidonic acid content expenditure in erythrocytes and liver, while increasing EPA content of heart and adipose tissues of rats. Those fatty acid (FA changes confirmed the D. vlkianum-biomass FA assimilation. The principal component analyses discriminated brain from other tissues, which formed two other groups (erythrocytes, liver, and heart separated from kidney and adipose tissues, pointing to a distinct signature of FA deposition for the brain and for the other organs. The improved serum lipid profile, omega-3 index and erythrocyte plasticity support the cardiovascular benefits of D. vlkianum. These results bolster the potential of D. vlkianum-biomass to become a “heart-healthy” food supplement providing a safe and renewable source of bioavailable omega-3 FA.

  4. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume

    2013-04-14

    The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.

  5. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.

    Science.gov (United States)

    Fletcher, M P; Ziboh, V A

    1990-10-01

    Previous data that alimentation with fish oil rich in eicosapentaenoic acid (EPA; 20:n-3) or vegetable oil rich in gamma-linolenic acid (GLA; 18:3n-6) can reduce symptoms of inflammatory skin disorders lead us to determine the effects of dietary supplements of oils rich in EPA or GLA on guinea pig (GP) neutrophil (PMN) membrane potential (delta gamma), secretion, and superoxide (O2-) responses. Weanling GPs were initially fed diets supplemented with olive oil (less than 0.1% EPA; less than 0.1% GLA) for 2 weeks, followed by a crossover by two sets of animals to diets supplemented with fish oil (19% EPA) or borage oil (25% GLA). At 4-week intervals, 12% sterile casein-elicited peritoneal neutrophils (PMN) were assessed for membrane polyunsaturated fatty acid (PUFA) profiles and FMLP-, LTB4-, and PMA-stimulated delta gamma changes, changes in flow cytometrically measured forward scatter (FWD-SC) (shape change), 90 degrees scatter (90 degrees -SC) in cytochalasin B-pretreated-PMN (secretion response), and superoxide responses, GP incorporated EPA and GLA (as the elongation product, dihomo-GLA or DGLA) into their PMN phospholipids by 4 weeks. The peritoneal PMN of all groups demonstrated broad resting FWD-SC and poor activation-related FWD-SC increases, suggesting in vivo activation. While secretion was comparable in the three groups in response to FMLP, there was a trend toward inhibition of LTB4-stimulated 90 degrees -SC loss in both fish and borage oil groups. This was significant only with borage oil (21.7 +/- 2.1 vs 15.3 +/- 1.2% loss of baseline 90 degrees -SC, olive vs borage: P = 0.03). PMN from borage- and fish oil-fed GPs showed a progressively lower O2- response to FMLP than the olive oil group (73.9 +/- 3.9 and 42.9 +/- 6.8% of olive oil response for borage and fish oils, respectively; P less than 0.005 and P less than 0.01, respectively, at 12 weeks), while PMA-stimulated O2- was inhibited only in the fish oil-fed group and only at 12 weeks (62.0 +/- 2

  6. Delayed effects of radiation on enzymes in erythrocytes

    International Nuclear Information System (INIS)

    Li Jinying; Zhang Weiping; Liu Benti

    1998-01-01

    Objective: To study the delayed effects of radiation on the enzymes in erythrocytes. Methods: The activity of 8 enzymes, related glycolysis, hexose monophosphate shunt, nucleotide metabolism, redox reaction and esterase in erythrocytes of five patients with bone marrow form of acute radiation sickness (ARS) were assayed at 1,2,3 and 6 years after exposure to 60 Co radiation. Results: The decreased activities of glucose-6-phosphate dehydrogenase (G6PD), pyruvate kinase (PK), NADH-methemoglobin reductase (MR) during the stage of crisis and of acetylcholinesterase (ACE) during the stage of convalescence were recovered to varying extent, whereas the lowered activities of the first three enzymes in some cases remained unchanged. There was no correlation between the enzyme activity and the radiation dose as well as the age of the patients. Conclusion: It is demonstrated that the delayed effects of radiation damage to erythrocyte enzymes are most significant in PK of glycolysis, G6PD of hexose monophosphate shunt and MR of redox reaction. It is suggested that the genes related to the synthesis of erythrocyte enzymes may be damaged by radiation

  7. Isolation of low-molecular-weight lead-binding protein from human erythrocytes

    International Nuclear Information System (INIS)

    Raghavan, S.R.V.; Gonick, H.C.

    1977-01-01

    In blood, lead is mainly associated with erythrocytes and only a very small amount is found in plasma. Previously it was thought that the lead was bound to the erythrocyte cell membrane but more recently it has been observed that lead is bound primarily to the cell contents, ostensibly hemoglobin. In examining the lead-binding properties of normal human erythrocytes and those of lead-exposed industrial workers, we have found that, whereas lead binds only to hemoglobin in normal erythrocytes, there is also appreciable binding of lead to a low-molecular weight-protein in erythrocytes from lead-exposed workers. The synthesis of this protein may be induced by lead exposure. The 10,000 molecular weight protein may act as a storage site and mechanism for segregating lead in a non-toxic form

  8. Effects of Glucomannan-Enriched, Aronia Juice-Based Supplement on Cellular Antioxidant Enzymes and Membrane Lipid Status in Subjects with Abdominal Obesity

    Directory of Open Access Journals (Sweden)

    Nevena Kardum

    2014-01-01

    Full Text Available The aim of this study was to analyze the effects of a 4-week-long consumption of glucomannan-enriched, aronia juice-based supplement on anthropometric parameters, membrane fatty acid profile, and status of antioxidant enzymes in erythrocytes obtained from postmenopausal women with abdominal obesity. Twenty women aged 45–65 with a mean body mass index (BMI of 36.1 ± 4.4 kg/m2 and waist circumference of 104.8 ± 10.1 cm were enrolled. Participants were instructed to consume 100 mL of supplement per day as part of their regular diet. A significant increase in the content of n-3 (P<0.05 polyunsaturated fatty acids in membrane phospholipids was observed, with a marked increase in the level of docosahexaenoic fatty acid (P<0.05. Accordingly, a decrease in the n-6 and n-3 fatty acids ratio was observed (P<0.05. The observed effects were accompanied with an increase in glutathione peroxidase activity (P<0.05. Values for BMI (P<0.001, waist circumference (P<0.001, and systolic blood pressure (P<0.05 were significantly lower after the intervention. The obtained results indicate a positive impact of tested supplement on cellular oxidative damage, blood pressure, and anthropometric indices of obesity.

  9. Adenosine deaminase activity of erythrocytes in hyperuricemia

    International Nuclear Information System (INIS)

    Krueger, W.; Richter, V.; Beenken, O.; Weinhold, D.; Hirschberg, K.; Rotzsch, W.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1982-01-01

    Erythrocytic adenosine deaminase (ADA) activity was determined in 55 patients with primary hyperuricemia and in 37 healthy control persons. Unlike the controls, the ADA activity in the patient group showed a two-peak response. Hyperuricemia patients with high ADA activity also exhibited increased uric acid excretion and elevated 15 N incorporation into uric acid. High activity values of erythrocytic ADA can be interpreted as an uric acid overproduction, giving hints for a therapeutic plan. (author)

  10. Early enteral feeding in postsurgical cancer patients. Fish oil structured lipid-based polymeric formula versus a standard polymeric formula.

    Science.gov (United States)

    Kenler, A S; Swails, W S; Driscoll, D F; DeMichele, S J; Daley, B; Babineau, T J; Peterson, M B; Bistrian, B R

    1996-01-01

    OBJECTIVES: The authors compared the safety, gastrointestinal tolerance, and clinical efficacy of feeding an enteral diet containing a fish oil/medium-chain triglyceride structured lipid (FOSL-HN) versus an isonitrogenous, isocaloric formula (O-HN) in patients undergoing major abdominal surgery for upper gastrointestinal malignancies. SUMMARY BACKGROUND DATA: Previous studies suggest that feeding with n-3 fatty acids from fish oil can alter eicosanoid and cytokine production, yielding an improved immunocompetence and a reduced inflammatory response to injury. The use of n-3 fatty acids as a structured lipid can improve long-chain fatty acid absorption. METHODS: This prospective, blinded, randomized trial was conducted in 50 adult patients who were jejunally fed either FOSL-HN or O-HN for 7 days. Serum chemistries, hematology, urinalysis, gastrointestinal complications, liver and renal function, plasma and erythrocyte fatty acid analysis, urinary prostaglandins, and outcome parameters were measured at baseline and on day 7. Comparisons were made in 18 and 17 evaluable patients based a priori on the ability to reach a tube feeding rate of 40 mL/hour. RESULTS: Patients receiving FOSL-HN experienced no untoward side effects, significant incorporation of eicosapentaenoic acid into plasma and erythrocyte phospholipids, and a 50% decline in the total number of gastrointestinal complications and infections compared with patients given O-HN. The data strongly suggest improved liver and renal function during the postoperative period in the FOSL-HN group. CONCLUSION: Early enteral feeding with FOSL-HN was safe and well tolerated. Results suggest that the use of such a formula during the postoperative period may reduce the number of infections and gastrointestinal complications per patient, as well as improve renal and liver function through modulation of urinary prostaglandin levels. Additional clinical trials to fully quantify clinical benefits and optimize nutritional

  11. Foraging at wastewater treatment works affects brown adipose tissue fatty acid profiles in banana bats

    Directory of Open Access Journals (Sweden)

    Kate Hill

    2016-02-01

    Full Text Available In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW, such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa. Brown adipose tissue (BrAT mass was lower in WWTW bats than in reference site bats. We found lower levels of saturated phospholipid fatty acids and higher levels of mono- and polyunsaturated fatty acids in WWTW bats than in reference site bats, while C18 desaturation and n-6 to n-3 ratios were higher in the WWTW bats. This was not associated with high lipid peroxidation levels in pectoral and cardiac muscle. Combined, these results indicate that WWTW bats rely on iBrAT as an energy source, and opportunistic foraging on abundant, pollutant-tolerant prey may change fatty acid profiles in their tissue, with possible effects on mitochondrial functioning, torpor and energy usage.

  12. Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-02-01

    Full Text Available Background/Aim: Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca2+-activity ([Ca2+]i. Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca2+]i from Fluo3-fluorescence. Results: Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM. The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca2+]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca2+ to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca2+, by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. Conclusion: Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca2+ concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.

  13. Morphological and Physical Analysis of Natural Phospholipids-Based Biomembranes

    OpenAIRE

    Jacquot, Adrien; Francius, Grégory; Razafitianamaharavo, Angelina; Dehghani, Fariba; Tamayol, Ali; Linder, Michel; Arab-Tehrany, Elmira

    2014-01-01

    International audience; Background: Liposomes are currently an important part of biological, pharmaceutical, medical and nutritional research, as they are considered to be among the most effective carriers for the introduction of various types of bioactive agents into target cells.Scope of Review: In this work, we study the lipid organization and mechanical properties of biomembranes made of marine and plant phospholipids. Membranes based on phospholipids extracted from rapeseed and salmon ar...

  14. Exit-strategies - smart ways to release phospholipid vesicle cargo

    OpenAIRE

    Mellal Denia; Zumbuehl Andreas

    2014-01-01

    This highlight describes recent trends in fundamental phospholipid research towards possible future drug delivery technology. In particular it focuses on synthetic phospholipids and their vesicular constructs and describes selected “smart” ways to release cargo from liposomes. Various chemical and physical release triggers are discussed such as temperature changes, application of ultrasound, enzyme degradation, changes in pH, redox reactions, photochemical reactions, as well as the effects of...

  15. Physiological variations in levels of 2,3-diphosphoglycerate in horse erythrocytes.

    Science.gov (United States)

    Lewis, I M; McLan, J G

    1975-03-01

    The levels of 2,3-diphosphoglycerate (2,3-DPG), which affects the transport of oxygen by haemoglobin, were examined in horse blood. Resting levels of erythrocyte 2,3-DPG were established in thoroughbred horses, and levels of 2,3-DPG together with haemoglobin levels, were examined in a variety of conditions. A negative correlation was observed between erythrocyte 2,3-DPG and haemoglobin levels. Mares had higher erythrocyte 2,3-DPG levels was observed during training, and this variation may have a significant effect on haemoglobin oxygen transport. Erythrocyte 2,3-DPG levels were not affected by age or exercise.

  16. Desickling of Sickle Cell Erythrocytes by Pulsed RF Fields.

    Science.gov (United States)

    1986-09-16

    spectrophotometery. Field induced menbrane potential which causes the L partyl breakdown of the memrbrane and the formation of pores was calculated... plasma . Fig.5 shows the photographs of sickled and desickled SS erythrocytes which are suspended in Hank’s solution. As shown, desickled erythrocytes

  17. Soft contact lens biomaterials from bioinspired phospholipid polymers.

    Science.gov (United States)

    Goda, Tatsuro; Ishihara, Kazuhiko

    2006-03-01

    Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.

  18. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hui Shi

    Full Text Available Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM. We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  19. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    Science.gov (United States)

    Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck

    2013-01-01

    Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  20. Milk phospholipid's protective effects against UV damage in skin equivalent models

    Science.gov (United States)

    Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.

    2012-03-01

    Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.

  1. The role of the erythrocyte in antitumour drug transport

    NARCIS (Netherlands)

    Dumez, Herlinde

    2005-01-01

    The area of research on the substance-carrier capacity of the erythrocyte is rather limited and it remains difficult to estimate the impact of erythrocyte drug level monitoring in the clinic. Although equilibrium between blood and tissues based on the dissolution of compounds in the plasma water

  2. Flow cytometric determination of osmotic behaviour of animal erythrocytes toward their engineering for drug delivery

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2015-01-01

    Full Text Available Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.

  3. Insulin radioreceptor assay on murine splenic leukocytes and peripheral erythrocytes

    International Nuclear Information System (INIS)

    Shimizu, F.; Kahn, R.

    1982-01-01

    Insulin radioreceptor assays were developed using splenic leukocytes and peripheral erythrocytes from individual mice. Splenic leukocytes were prepared using an NH 4 Cl buffer which did not alter insulin binding, but gave much higher yields than density gradient methods. Mouse erythrocytes were isolated from heparinized blood by three passages over a Boyum gradient, and a similar buffer was used to separate cells from free [ 125 I]iodoinsulin at the end of the binding incubation. Insulin binding to both splenic leukocytes and peripheral erythrocytes had typical pH, temperature, and time dependencies, and increased linearly with an increased number of cells. Optimal conditions for the splenic leukocytes (6 x 10 7 /ml) consisted of incubation with [ 125 I]iodoinsulin at 15 C for 2 h in Hepes buffer, pH 8.0. In cells from 20 individual mice, the specific [ 125 I]iodoinsulin binding was 2.6 +/- 0.1% (SEM), and nonspecific binding was 0.3 +/- 0.04% (10.6% of total binding). Erythrocytes (2.8 x 10 9 /ml) were incubated with [ 125 ]iodoinsulin at 15 C for 2 h in Hepes buffer, pH 8.2. In cells from 25 individual mice, the specific [ 125 I]iodoinsulin binding was 4.5 +/- 0.2%, and nonspecific binding was 0.7 +/- 0.03% (13.6% of total binding). In both splenic leukocytes and peripheral erythrocytes, analysis of equilibrium binding data produced curvilinear Scatchard plots with approximately 3500 binding sites/leukocyte and 20 binding sites/erythrocyte. These data demonstrate that adequate numbers of splenic leukocytes and peripheral erythrocytes can be obtained from individual mice to study insulin binding in a precise and reproducible manner

  4. Specific uptake of DHA by the brain from a structured phospholipid, AceDoPC®

    Directory of Open Access Journals (Sweden)

    Bernoud-Hubac Nathalie

    2017-03-01

    Full Text Available Docosahexaenoic acid (DHA; 22:6 ω-3 is highly enriched in the brain and is required for proper brain development and function. Its deficiency has been shown to be linked with the emergence of neurological diseases. Dietary ω-3 fatty acid supplements including DHA have been suggested to improve neuronal development and enhance cognitive functions. Findings suggested that DHA is better incorporated into the brain when esterified at the sn-2 position of a lysophosphatidylcholine (LysoPC-DHA. AceDoPC® is a structured phospholipid or acetyl-LysoPC-DHA. As previously shown for LysoPC-DHA, AceDoPC® is a specific and preferred carrier of DHA to the brain. When AceDoPC® was injected to rats that were subjected to an ischemic stroke, it prevents the extension of brain lesions. Regarding the essential role of DHA for cerebral functions, targeting the brain with specific carriers of DHA might provide novel therapeutic approaches to neurodegenerative diseases.

  5. Partial recovery of erythrocyte glycogen in diabetic rats treated with phenobarbital

    Directory of Open Access Journals (Sweden)

    da-Silva C.A.

    1997-01-01

    Full Text Available Erythrocytes may play a role in glucose homeostasis during the postprandial period. Erythrocytes from diabetic patients are defective in glucose transport and metabolism, functions that may affect glycogen storage. Phenobarbital, a hepatic enzyme inducer, has been used in the treatment of patients with non-insulin-dependent diabetes mellitus (NIDDM, increasing the insulin-mediated glucose disposal. We studied the effects of phenobarbital treatment in vivo on glycemia and erythrocyte glycogen content in control and alloxan-diabetic rats during the postprandial period. In control rats (blood glucose, 73 to 111 mg/dl in femoral and suprahepatic veins the erythrocyte glycogen content was 45.4 ± 1.1 and 39.1 ± 0.8 µg/g Hb (mean ± SEM, N = 4-6 in the femoral artery and vein, respectively, and 37.9 ± 1.1 in the portal vein and 47.5 ± 0.9 in the suprahepatic vein. Diabetic rats (blood glucose, 300-350 mg/dl presented low (P<0.05 erythrocyte glycogen content, i.e., 9.6 ± 0.1 and 7.1 ± 0.7 µg/g Hb in the femoral artery and vein, respectively, and 10.0 ± 0.7 and 10.7 ± 0.5 in the portal and suprahepatic veins, respectively. After 10 days of treatment, phenobarbital (0.5 mg/ml in the drinking water did not change blood glucose or erythrocyte glycogen content in control rats. In diabetic rats, however, it lowered (P<0.05 blood glucose in the femoral artery (from 305 ± 18 to 204 ± 45 mg/dl and femoral vein (from 300 ± 11 to 174 ± 48 mg/dl and suprahepatic vein (from 350 ± 10 to 174 ± 42 mg/dl, but the reduction was not sufficient for complete recovery. Phenobarbital also stimulated the glycogen synthesis, leading to a partial recovery of glycogen stores in erythrocytes. In treated rats, erythrocyte glycogen content increased to 20.7 ± 3.8 µg/g Hb in the femoral artery and 30.9 ± 0.9 µg/g Hb in the suprahepatic vein (P<0.05. These data indicate that phenobarbital activated some of the insulin-stimulated glucose metabolism steps which were

  6. Apolipoprotein M mediates sphingosine-1-phosphate efflux from erythrocytes

    DEFF Research Database (Denmark)

    Christensen, Pernille M.; Bosteen, Markus H.; Hajny, Stefan

    2017-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid implicated in e.g. angiogenesis, lymphocyte trafficking, and endothelial barrier function. Erythrocytes are a main source of plasma S1P together with platelets and endothelial cells. Apolipoprotein M (apoM) in HDL carries 70% of plasma S1P, whereas...... 30% is carried by albumin. The current aim was to investigate the role of apoM in export of S1P from human erythrocytes. Erythrocytes exported S1P more efficiently to HDL than to albumin, particularly when apoM was present in HDL. In contrast, export of sphingosine to HDL was unaffected...... by the presence of apoM. The specific ability of apoM to promote export of S1P was independent of apoM being bound in HDL particles. Treatment with MK-571, an inhibitor of the ABCC1 transporter, effectively reduced export of S1P from human erythrocytes to apoM, whereas the export was unaffected by inhibitors...

  7. The effects of polymeric plutonium on erythrocyte survival in mice, (1)

    International Nuclear Information System (INIS)

    Joshima, Hisamasa; Kashima, Masatoshi; Matsuoka, Osamu

    1976-01-01

    The changes in erythrocyte counts, hematocrit, hemoglobin, reticulocyte counts and erythrocyte survival following an intravenous injection of polymeric 239 Pu at the dose level of 15 μCi/kg, 10 μCi/kg and 5 μCi/kg were studied in CF no. 1 male mice in order to investigate the possible pathogenesis of anemia produced by irradiation of polymeric plutonium. The administration of 15 μCi/kg and 10 μCi/kg of polymeric plutonium produced anemia but 5 μCi/kg had no significant effect. Studies with 51 Cr labelled erythrocyte showed a moderate reduction in survival of erythrocyte following a single intraveneous injection of polymeric plutonium. Not only the intracorpuscular effect but also extracorpuscular effect of polymeric plutonium was considered to lead to a reduction in erythrocyte survival, but no clear dose relationship could be observed between the reduction of survival and either intracorpuscular effect or extracorpuscular effect. Although the most important pathogenesis of anemia produced by polymeric plutonium is supposed to be a decreased erythropoiesis, it was believed that both qualitatively impaired erythropoiesis and abnormal erythrocyte destruction might also play some role in the occurrence of anemia. (auth.)

  8. Effect of free cholesterol on incorporation of triolein in phospholipid bilayers

    International Nuclear Information System (INIS)

    Spooner, P.J.R.; Small, D.M.

    1987-01-01

    Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl- 13 C] triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13 C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13 C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentration. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholestery oleate. As with cholesteryl oleate, they suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer

  9. Butter blend containing fish oil improves the level of n-3 fatty acids in biological tissues of hamster

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Overgaard, Jesper; Krogh, Anne Louise

    2007-01-01

    Many studies have shown beneficial effects of long chain n-3 polyunsaturated fatty acids (PUFA) on human health. Regardless of the positive effects of n-3 PUFA, the intake of these fatty acids remains low. An approach to increase the intake of n-3 PUFA in the population is to incorporate fish oil...... Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma...... into food. In the present study, fish oil was incorporated into butter blends by enzymatic interesterification. The aim of the study was to investigate the effects of this butter product in comparison with a commercial butter blend and a product produced by interesterification but without fish oil. Golden...

  10. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Local anesthetics: interaction with human erythrocyte membranes as studied by 1H and 31P nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Fraceto, Leonardo Fernandes; Paula, Eneida de

    2004-01-01

    The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by 1 H and 31 P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipids acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na + -channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia. (author)

  12. Dietary fatty acids were not independently associated with lipoprotein subclasses in elderly women.

    Science.gov (United States)

    Alaghehband, Fatemeh Ramezan; Lankinen, Maria; Värri, Miika; Sirola, Joonas; Kröger, Heikki; Erkkilä, Arja T

    2017-07-01

    Dietary fatty acids are known to affect serum lipoproteins; however, little is known about the associations between consumption of dietary fatty acids and lipoprotein subclasses. In this study, we hypothesized that there is an association between dietary fatty acids and lipoprotein subclasses and investigated the cross-sectional association of dietary fat intake with subclasses of lipoproteins in elderly women. Altogether, 547 women (aged ≥65 years) who were part of OSTPRE cohort participated. Dietary intake was assessed by 3-day food records, lifestyle, and health information obtained through self-administrated questionnaires, and lipoprotein subclasses were determined by nuclear magnetic resonance spectroscopy. To analyze the associations between fatty acids and lipoprotein subclasses, we used Pearson and Spearman correlation coefficients and the analysis of covariance (ANCOVA) test with, adjustment for physical activity, body mass index, age, smoking status, and intake of lipid-lowering drugs. There were significant correlations between saturated fatty acids (SFA; % of energy) and concentrations of large, medium, and small low-density lipoproteins (LDL); total cholesterol in large, medium, and small LDL; and phospholipids in large, medium, and small LDL, after correction for multiple testing. After adjustment for covariates, the higher intake of SFA was associated with smaller size of LDL particles (P = .04, ANCOVA) and lower amount of triglycerides in small very low-density lipoproteins (P = .046, ANCOVA). However, these associations did not remain significant after correction for multiple testing. In conclusion, high intake of SFA may be associated with the size of LDL particles, but the results do not support significant, independent associations between dietary fatty acids and lipoprotein subclasses. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Direct investigation of the vectorization properties of amphiphilic cyclodextrins in phospholipid films.

    Science.gov (United States)

    Javierre, Isabelle; Nedyalkov, Mickael; Petkova, Vera; Benattar, Jean Jacques; Weisse, Sandrine; Auzély-Velty, Rachel; Djedaïni-Pilard, Florence; Perly, Bruno

    2002-10-01

    Recently, new cyclodextrin derivatives were synthesized and shown to exhibit strong amphiphilic properties. In this paper, we study the action of these new amphiphilic cyclodextrins on phospholipids. Mixed phospholipid/cyclodextrin derivative films were prepared and studied using X-ray reflectivity for various phospholipid/cyclodextrin ratios. A molar ratio of 3 provides a highly stable film the molecular structure of which has been investigated in detail. The cholesterol tail of the cyclodextrin molecule was found to be anchored into the phospholipid film. The cyclodextrin moieties exposed to the aqueous medium are prone to the addition of the guest molecule Dosulepin, making them of high interest for drug delivery. For this purpose and as an example of a potential application, this cyclodextrin molecular carrier property is also addressed to this complex film architecture.

  14. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    International Nuclear Information System (INIS)

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.; Klarl, Barbara A.; Niemoeller, Olivier; Wieder, Thomas; Huber, Stephan M.; Duranton, Christophe; Lang, Florian

    2006-01-01

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg 2+ -induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg 2+ in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca 2+ -sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca 2+ activity and/or activate a sphingomyelinase leading to formation of ceramide. Ceramide sensitizes the scramblase to Ca 2+ . The present experiments explored the effect of Hg 2+ ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg 2+ (1 μM) indeed significantly increased annexin binding from 2.3 ± 0.5% (control condition) to 23 ± 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K + -selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by ∼66% (n = 7) after challenge with mercury (1 μM). In conclusion, mercury ions activate a clotrimazole-sensitive K + -selective conductance leading to transient cell shrinkage. Moreover, Hg 2+ increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg 2+

  15. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    Science.gov (United States)

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  16. Quantitative profile of lipid classes in blood by normal phase chromatography with evaporative light scattering detector: application in the detection of lipid class abnormalities in liver cirrhosis.

    Science.gov (United States)

    Chamorro, Laura; García-Cano, Ana; Busto, Rebeca; Martínez-González, Javier; Albillos, Agustín; Lasunción, Miguel Ángel; Pastor, Oscar

    2013-06-05

    The lack of analytical methods specific for each lipid class, particularly for phospholipids and sphyngolipids, makes necessary their separation by preparative techniques before quantification. LC-MS would be the election method but for daily work in the clinical laboratory this is not feasible for different reasons, both economic and time consuming. In the present work, we have optimized an HPLC method to quantify lipid classes in plasma and erythrocytes and applied it to samples from patients with cirrhosis. Lipid classes were analyzed by normal phase liquid chromatography with evaporative light scattering detection. We employed a quaternary solvent system to separate twelve lipid classes in 15 min. Interday, intraday and recovery for quantification of lipid classes in plasma were excellent with our methodology. The total plasma lipid content of cirrhotic patients vs control subjects was decreased with diminished CE (81±33 vs 160±17 mg/dL) and PC (37±16 vs 60±19 mg/dL). The composition of erythrocytes showed a decrease in acidic phospholipids: PE, PI and PS. Present methodology provides a reliable quantification of lipid classes in blood. The lipid profile of cirrhotics showed alterations in the PC/PE plasma ratio and in the phospholipid content of erythrocytes, which might reflect alterations in hepatocyte and erythrocyte membrane integrity. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Transfer of fatty acids from the 1-position of phosphatidyl-ethanolamine to the major outer membrane lipoprotein of E coli

    International Nuclear Information System (INIS)

    Jackowski, S.; Rock, C.O.

    1986-01-01

    The fatty acids esterified to Braun's lipoprotein are derived from the phospholipid pool in E. coli. Mutants lacking acyl-CoA synthetase activity (fadD) incorporated extracellular fatty acids specifically into the 1-position of phosphatidylethanolamine (PtdEtn). This pathway was blocked by chloramphenicol and was depressed by preventing the acylation of the amino terminus of the lipoprotein with globomycin. Transfer of fatty acids to lipoprotein was investigated in fadD mutants harboring hybrid plasmids containing either the lipoprotein gene or a lipoprotein-β-lactamase gene fusion under control of the lactose promoter. Labeling of the 1-position of the PtdEtn pool prior to induction of lipoprotein biosynthesis resulted in the transfer of fatty acids from PtdEtn to the lipoproteins. Induction of lipoprotein synthesis in the presence of exogenous [1- 14 C]palmitate increased the amount of radioactivity entering the PtdEtn pool and efficiently labeled lipoprotein acyl moieties. Lipoprotein fatty acids derived from the 1-position of PtdEtn were resistant to hydroxylamine hydrolysis, and globomycin reduced the incorporation of exogenous [1- 14 C]palmitic acid into lipoproteins by 80% suggesting that the fatty acid is attached to the amino terminus. These data illustrate the metabolic relationship between turnover of fatty acids in the 1-position of PtdEtn and the maturation of the major outer membrane lipoprotein

  18. Phospholipid analogue distributions of Iranian isolates of candida

    International Nuclear Information System (INIS)

    Zarei Mahmoudabadi, A.; Brucker, D.B.

    2004-01-01

    The aim of this study was to analyse polar lipids of candida species isolated from Ahwas (Iran) by fast Atom bombardment mass spectrometry . Nine isolates of Candida Sp. were identified by growth at 45 d ig c , production of chlamydoconidia on cornmeal agar, colonial colour on CHROMagar Candida, germ tube production and ID 32 C kits. Then polar lipids were extracted from freeze-dried cultures and analysed using Fast Atom Bombardment Mass Spectrometry. The most intense carboxylate and phospholipid molecular species anions were of m/z 281 (C 1 8 : 1 ) and m/z 515 (PA 23:2). However, the most intense carboxylate and phospholipid analogues in Candida Parapsilosis were 292 (Un) and 555 (PA 26:3), which differed from other yeasts. Isolates were grouped by single linkage clustering based on correlation coefficient for strain pairs calculated with carboxylate and phospholipid molecular species distributions. Fast Atom Bombardment Mass Spectrometry can differentiate the C. albicans based on analysis of polar lipid distributions.These findings support that differentiation between C. albicans and other species is possible based on polar lipids

  19. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice

    Czech Academy of Sciences Publication Activity Database

    Liisberg, U.; Fauske, K. R.; Kuda, Ondřej; Fjare, E.; Myrmel, L. S.; Norberg, N.; Froyland, L.; Graff, I. E.; Liaset, B.; Kristiansen, K.; Kopecký, Jan; Madsen, L.

    2016-01-01

    Roč. 33, Jul (2016), s. 119-127 ISSN 0955-2863 Institutional support: RVO:67985823 Keywords : diet * dietary lipids * endocannabinoids * fish oil * phospholipids * liver * obesity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.518, year: 2016

  20. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers

    Science.gov (United States)

    Green, Christopher T.; Scow, Kate M.

    This paper reviews published applications of lipid-based biochemical techniques for characterizing microbial communities in aquifers and other deep subsurface habitats. These techniques, such as phospholipid fatty acid (PLFA) analysis, can provide information on a variety of microbial characteristics, such as biomass, physiology, taxonomic and functional identity, and overall community composition. In addition, multivariate statistical analysis of lipid data can relate spatial or temporal changes in microbial communities to environmental factors. The use of lipid-based techniques in the study of groundwater microbiology is advantageous because they do not require culturing and can provide quantitative data on entire communities. However, combined effects of physiological and phylogenetic changes on the lipid composition of a community can confound interpretation of the data, and many questions remain about the validity of various lipid techniques. Despite these caveats, lipid-based research has begun to show trends in community composition in contaminated and pristine aquifers that contribute to our understanding of groundwater microbial ecology and have potential for use in optimization of bioremediation of groundwater pollutants. Résumé Ce papier passe en revue les applications des techniques biochimiques basées sur les lipides pour caractériser les communautés microbiennes présentes dans les aquifères et dans les autres habitats souterrains profonds. Ces techniques, telles que l'analyse des acides gras phospholipidiques (PLFA), peuvent fournir des informations sur un ensemble de caractères microbiens, tels que la biomasse, la physiologie, l'identité taxonomique et fonctionnelle, et surtout la composition de la communauté. En outre, l'analyse statistique multivariée des données sur les lipides peut établir les liens entre des changements spatiaux ou temporels dans la communauté microbienne et des facteurs environnementaux. L'utilisation des