WorldWideScience

Sample records for erythrocyte glucose 6-phosphate

  1. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  2. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  3. A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual erythrocytes. I. Optimalization of the staining procedure

    NARCIS (Netherlands)

    van Noorden, C. J.; Vogels, I. M.; James, J.; Tas, J.

    1982-01-01

    A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual human erythrocytes is described. This staining method can be used for the rapid routine discrimination of patients with a deficiency of the enzyme in its homozygote or heterozygote form, but also

  4. A sensitive cytochemical staining method for glucose-6-phosphate dehydrogenase activity in individual erythrocytes. II. Further improvements of the staining procedure and some observations with glucose-6-phosphate dehydrogenase deficiency

    NARCIS (Netherlands)

    van Noorden, C. J.; Vogels, I. M.

    1985-01-01

    A cytochemical method for staining glucose-6-phosphate dehydrogenase (G6PD) activity in individual erythrocytes as reported previously has been optimized further by the incorporation of a number of technical improvements. Analysis of the enzyme content in erythrocytes of normal individuals as well

  5. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Science.gov (United States)

    2010-04-01

    ... used in the diagnosis and treatment of nonspherocytic congenital hemolytic anemia or drug-induced hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device... ultraviolet kinetics. (b) Classification. Class II (performance standards). [45 FR 60616, Sept. 12, 1980] ...

  6. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glucose 6-phosphate dehydrogenase activity

    International Nuclear Information System (INIS)

    Sahin, Ali; Senturk, Murat; Ciftci, Mehmet; Varoglu, Erhan; Kufrevioglu, Omer Irfan

    2010-01-01

    Aim: The inhibitory effects of thallium-201 ( 201 Tl) solution on human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) activity were investigated. Methods: For this purpose, erythrocyte G6PD was initially purified 835-fold at a yield of 41.7% using 2',5'-Adenosine diphosphate sepharose 4B affinity gel chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the 201 Tl solution including Tl + , Fe +3 and Cu +2 metals and the in vitro effects of the radiation effect of the 201 Tl solution and non-radioactive Tl + , Fe +3 and Cu +2 metals on human erythrocyte G6PD enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at +4 deg. C. Results: 201 Tl solution and radiation exposure had inhibitory effects on the enzyme activity. IC 50 value of 201 Tl solution was 36.86 μl ([Tl + ]: 0.0036 μM, [Cu +2 ]: 0.0116 μM, [Fe +3 ]: 0.0132 μM), of human erythrocytes G6PD. Seven human patients were also used for in vivo studies of 201 Tl solution. Furthermore, non-radioactive Tl + , Fe +3 and Cu +2 were found not to have influenced the enzyme in vitro. Conclusion: Human erythrocyte G6PD activity was inhibited by exposure for up to 10 minutes to 0.057 mCi/kg 201 Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte G6PD enzyme is inhibited due to the radiation effect of 201 Tl solution.

  7. Comparison between the chromate inhibition test and a cytochemical method for the determination of glucose-6-phosphate dehydrogenase deficiency in erythrocytes

    NARCIS (Netherlands)

    Jonges, G. N.; Hagen, H.; van Noorden, C. J.; Weening, R. S.; Roos, D.

    1989-01-01

    The sensitivity and specificity of the chromate inhibition test for the determination of glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes were compared with a cytochemical staining method. Fifty blood samples were used in a double blind study. The samples were selected from 600

  8. Flow cytofluorometric analysis of enzyme reactions based on quenching of fluorescence by the final reaction product: detection of glucose-6-phosphate dehydrogenase deficiency in human erythrocytes

    NARCIS (Netherlands)

    van Noorden, C. J.; Dolbeare, F.; Aten, J. A.

    1989-01-01

    We developed a method for accurate cytofluorometric analysis of the final reaction product of enzyme reactions in individual cells. Glucose-6-phosphate dehydrogenase (G6PD) activity in human erythrocytes was demonstrated cytochemically, and the amount of final reaction product (formazan) per cell

  9. High glucose concentrations partially release hexokinase from inhibition by glucose 6-phosphate.

    OpenAIRE

    Fujii, S; Beutler, E

    1985-01-01

    The phosphorylation of glucose by human erythrocyte hexokinase follows classical Michaelis-Menten kinetics; hexokinase manifests maximum activity at 5 mM glucose, and no further increase in activity can be measured at higher glucose concentrations. However, the erythrocytes of diabetics and normal erythrocytes incubated with high concentrations of glucose contain increased concentrations of glucose 6-phosphate. To elucidate the mechanism of accumulation of glucose 6-phosphate when erythrocyte...

  10. Metabolic Linkage and Correlations to Storage Capacity in Erythrocytes from Glucose 6-Phosphate Dehydrogenase-Deficient Donors

    Directory of Open Access Journals (Sweden)

    Julie A. Reisz

    2018-01-01

    Full Text Available ObjectiveIn glucose 6-phosphate dehydrogenase (G6PD deficiency, decreased NADPH regeneration in the pentose phosphate pathway and subnormal levels of reduced glutathione result in insufficient antioxidant defense, increased susceptibility of red blood cells (RBCs to oxidative stress, and acute hemolysis following exposure to pro-oxidant drugs and infections. Despite the fact that redox disequilibrium is a prominent feature of RBC storage lesion, it has been reported that the G6PD-deficient RBCs store well, at least in respect to energy metabolism, but their overall metabolic phenotypes and molecular linkages to the storability profile are scarcely investigated.MethodsWe performed UHPLC-MS metabolomics analyses of weekly sampled RBC concentrates from G6PD sufficient and deficient donors, stored in citrate phosphate dextrose/saline adenine glucose mannitol from day 0 to storage day 42, followed by statistical and bioinformatics integration of the data.ResultsOther than previously reported alterations in glycolysis, metabolomics analyses revealed bioactive lipids, free fatty acids, bile acids, amino acids, and purines as top variables discriminating RBC concentrates for G6PD-deficient donors. Two-way ANOVA showed significant changes in the storage-dependent variation in fumarate, one-carbon, and sulfur metabolism, glutathione homeostasis, and antioxidant defense (including urate components in G6PD-deficient vs. sufficient donors. The levels of free fatty acids and their oxidized derivatives, as well as those of membrane-associated plasticizers were significantly lower in G6PD-deficient units in comparison to controls. By using the strongest correlations between in vivo and ex vivo metabolic and physiological parameters, consecutively present throughout the storage period, several interactomes were produced that revealed an interesting interplay between redox, energy, and hemolysis variables, which may be further associated with donor

  11. Effect of in vivo ozone exposure to Dorset sheep, an animal model with low levels of erythrocyte glucose-6-phosphate dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.S.; Calabrese, E.J.; Schulz, E.

    1981-02-01

    Considerable interest has recently been directed to the possible extrapulmonary effects caused by exposure to ambient ozone. As a result of ozone induced in vivo alteration of red cell function within human subjects, it has been hypothesized that individuals with an erythrocyte glucose-6-phosphate dehydrogenase (G-6-PD) deficiency would be at increased hemolytic risk to elevated ambient ozone exposure. In order to evaluate such an hypothesis in an experimental setting it would be of great value to have an appropriate animal model with erythrocyte G-6-PD activity similar to the absolute activity range found in the human population. While no such unique animal model is presently known, the literature has revealed that Dorset sheep have an erythrocyte G-6-PD activity comparable in absolute units to a human G-6-PD deficient. Based on this information, we evaluated the mechanisms by which sheep and human G-6-PD deficient red cells handle oxidant stress. We evaluated the effects of in vivo ozone exposure in Dorset sheep over a broad range of concentrations.

  12. The role of erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD) deficiency in the pathogenesis of anemia in patients on hemodialysis.

    Science.gov (United States)

    Ali, Elshazali Widaa; Ahmed, Emad Eldean Mohammed

    2013-11-01

    Anemia is a common feature among patients with chronic renal failure (CRF). Low activity of the erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD), which plays a major role in protecting red blood cells against oxidative agents, has been described as one of the contributing factors to anemia in patients with CRF treated with hemodialysis (HD). In this study, blood samples were randomly collected from 65 patients on HD and investigated for G6PD deficiency using the methemoglobin reduction test. The hemoglobin (Hb) concentration, packed cell volume (PCV), red blood cells (RBCs) count and reticulocyte count were determined in all the samples. Our results showed that 39 of 65 patients (60%) on HD had low G6PD activity and 26 (40%) patients had normal activity; 59% of the patients with low G6PD activity were males. The mean Hb, PCV and RBCs counts were lower in patients with low G6PD activity than in those with normal G6PD activity, but the difference was not statistically significant. Likewise, no statistically significant difference was found in the reticulocyte count in patients with low G6PD activity and in those with normal G6PD activity. The low G6PD activity that was found in a large proportion of patients on HD seems to be the result of enzyme inhibition rather than deficiency. No statistically significant difference was found in anemia parameters between patients with and without G6PD deficiency.

  13. The role of erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD deficiency in the pathogenesis of anemia in patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Elshazali Widaa Ali

    2013-01-01

    Full Text Available Anemia is a common feature among patients with chronic renal failure (CRF. Low activity of the erythrocyte enzyme glucose-6-phosphate dehydrogenase (G6PD, which plays a major role in protecting red blood cells against oxidative agents, has been described as one of the contributing factors to anemia in patients with CRF treated with hemodialysis (HD. In this study, blood samples were randomly collected from 65 patients on HD and investigated for G6PD deficiency using the methemoglobin reduction test. The hemoglobin (Hb concentration, packed cell volume (PCV, red blood cells (RBCs count and reticulocyte count were determined in all the samples. Our results showed that 39 of 65 patients (60% on HD had low G6PD activity and 26 (40% patients had normal activity; 59% of the patients with low G6PD activity were males. The mean Hb, PCV and RBCs counts were lower in patients with low G6PD activity than in those with normal G6PD activity, but the difference was not statistically significant. Likewise, no statistically significant difference was found in the reticulocyte count in patients with low G6PD activity and in those with normal G6PD activity. The low G6PD activity that was found in a large proportion of patients on HD seems to be the result of enzyme inhibition rather than deficiency. No statistically significant difference was found in anemia parameters between patients with and without G6PD deficiency.

  14. Detection of glucose-6-phosphate dehydrogenase deficiency in erythrocytes: a spectrophotometric assay and a fluorescent spot test compared with a cytochemical method

    NARCIS (Netherlands)

    Wolf, B. H.; Weening, R. S.; Schutgens, R. B.; van Noorden, C. J.; Vogels, I. M.; Nagelkerke, N. J.

    1987-01-01

    The results of a quantitative spectrophotometric enzyme assay, a fluorescent spot test and a cytochemical assay for glucose-6-phosphate dehydrogenase deficiency were compared systematically. The high sensitivity of the spectrophotometric assay and the fluorescent spot test in the detection of

  15. Heinz Bodies Demonstration for Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    Blood samples from 100 apparently healthy individuals were screened for glucose-6-phosphate dehydrogenase (G-6-PD) by the demonstration of Heinz bodies. Results were compared to those obtained by methaemoglobin reduction method which is the existing standard procedure in our laboratory. Heinz bodies were ...

  16. Malaria Protection In Glucose-6-Phosphate Dehydrogenase ...

    African Journals Online (AJOL)

    The high frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency gene in malaria endemic regions is believed to be due to the enzyme deficiency advantage against fatal malaria. However, the mechanism of this protection is not well understood and therefore was investigated by comparing differences in ...

  17. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  18. Assessment of the activity of glucose-6-phosphate dehydrogenase ...

    African Journals Online (AJOL)

    Glucose-6-phosphate dehydrogenase (G-6-PD) is an enzyme in the pentose phosphate pathway (PPP) which reduces NADP to NADPH while oxidizing glucose-6-phosphate. In turn, NADPH then provides reducing equivalents needed for the conversion of oxidized glutathione to reduced glutathione, which protects against ...

  19. Glucose and fructose 6-phosphate cycle in humans

    International Nuclear Information System (INIS)

    Karlander, S.; Roovete, A.; Vranic, M.; Efendic, S.

    1986-01-01

    We have determined the rate of glucose cycling by comparing turnovers of [2- 3 H]- and [6- 3 H]glucose under basal conditions and during a glucose infusion. Moreover, the activity of the fructose 6-phosphate cycle was assessed by comparing [3- 3 H]- and [6- 3 H]glucose. The study included eight lean subjects with normal glucose tolerance. They participated in two randomly performed investigations. In one experiment [2- 3 H]- and [6- 3 H]glucose were given simultaneously, while in the other only [3- 3 H]glucose was given. The basal rate of glucose cycling was 0.32 +/- 0.08 mg X kg-1 X min-1 or 17% of basal glucose production (P less than 0.005). During glucose infusion the activity of endogenous glucose cycling did not change but since glucose production was suppressed it amounted to 130% of glucose production. The basal fructose 6-phosphate cycle could be detected only in three subjects and was suppressed during glucose infusion. In conclusion, the glucose cycle is active in healthy humans both in basal conditions and during moderate hyperglycemia. In some subjects, the fructose 6-phosphate cycle also appears to be active. Thus it is preferable to use [6- 3 H]glucose rather than [3- 3 H]glucose when measuring glucose production and particularly when assessing glucose cycle

  20. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... Meta-analysis;. Prevalence. Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects ...

  1. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects approximately 400 million people worldwide.

  2. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  3. Glucose-6-phosphate dehydrogenase deficiency; the single most ...

    African Journals Online (AJOL)

    Introduction: Glucose- 6-phosphate dehydrogenase deficiency is the most common enzymatic disorder of the red cell and an important risk factor for neonatal jaundice. Methodology: The aim of the study was to determine the incidence of G-6-PD deficiency among jaundiced neonates, and describe the associated morbidity ...

  4. Prevalence of Sickle Cell Trait and Glucose 6 Phosphate ...

    African Journals Online (AJOL)

    Blood donation from sickle cell trait (SCT) and glucose-6-phosphate dehydrogenase (G6PD)-deficient donors might alter the quality of the donated blood during processing, storage or in the recipients' circulatory system. The aim of this study was to determine the prevalence of SCT and G6PD deficiency among blood ...

  5. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase

    NARCIS (Netherlands)

    van Noorden, C. J.

    1984-01-01

    Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The

  6. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    Abstract. Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in ...

  7. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    African Journals Online (AJOL)

    Identification of glucose 6 phosphate dehydrogenase mutations by single strand conformation polymorphism and gene sequencing analysis. ... Subject: Six DNA samples from Turkish males confirmed to have G-6-PD deficiency where available for the study. Results: One subject was found to have an abnormal mobility shift ...

  8. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in patients ...

    African Journals Online (AJOL)

    This is a study of Glucose-6-phosphate dehydrogenase(G6PD) deficiency in sickle cell anaemia patients attending the haematology clinic of the Jos University Teaching Hospital (JUTH), Jos- Nigeria. The prevalence of G6PD deficiency among the 130 sickle cell anaemia patients studied was found to be 18.5%. G6PD ...

  9. Glucose-6-phosphate Dehydrogenase Deficiency and Malaria: Cytochemical Detection of Heterozygous G6PD Deficiency in Women

    NARCIS (Netherlands)

    Peters, Anna L.; van Noorden, Cornelis J. F.

    2009-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient

  10. Bilateral cataracts associated with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Nair, V; Hasan, S U; Romanchuk, K; Al Awad, E; Mansoor, A; Yusuf, K

    2013-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) has an essential role in the defense against cellular oxidative injury. In neonates, the most common manifestation of G6PD deficiency is jaundice and hemolysis due to factors causing oxidative stress. Less known are the ocular associations described with G6PD deficiency, including cataracts. Oxidative injury is involved in the pathogenesis of almost all forms of cataracts, causing the lens proteins to undergo modifications, denaturation and form insoluble aggregates resulting in cataracts. Although cataracts in adult males have been reported in several studies, there are few reports of cataracts in infants with G6PD deficiency. We describe a preterm male neonate with G6PD deficiency who developed bilateral cataracts following an episode of neonatal sepsis and severe hemolysis necessitating an exchange blood transfusion.

  11. Fluorometric determination of free glucose and glucose 6-phosphate in cows' milk and other opaque matrices

    DEFF Research Database (Denmark)

    Larsen, Torben

    2015-01-01

    Analyses of free glucose and glucose 6-phosphate in milk have until now been dependent upon several time consuming and troublesome procedures. This has limited investigations in the area. The present article presents a new, reliable, analytical procedure, based on enzymatic degradation and fluoro......Analyses of free glucose and glucose 6-phosphate in milk have until now been dependent upon several time consuming and troublesome procedures. This has limited investigations in the area. The present article presents a new, reliable, analytical procedure, based on enzymatic degradation...... and fluorometric detection. Standards and control materials were based on milk that was stripped of intrinsic glucose and glucose 6-phosphate in order to obtain standards and samples based on the same matrix. The analysis works without pre-treatment of the samples, e.g. without centrifugation and precipitation...

  12. A novel glucose 6-phosphate isomerase from Listeria monocytogenes.

    Science.gov (United States)

    Cech, David L; Wang, Pan-Fen; Holt, Melissa C; Assimon, Victoria A; Schaub, Jeffrey M; Holler, Tod P; Woodard, Ronald W

    2014-10-01

    D-Arabinose 5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose 5-phosphate and D-arabinose 5-phosphate (A5P). A5P is an intermediate in the biosynthesis of 3-deoxy-D-manno-octulosonate (Kdo), an essential component of lipopolysaccharide, the lipopolysaccharide found in the outer membrane of Gram-negative bacteria. The genome of the Gram-positive pathogen Listeria monocytogenes contains a gene encoding a putative sugar isomerase domain API, Q723E8, with significant similarity to c3406, the only one of four APIs from Escherichia coli CFT073 that lacks a cystathionine-β-synthase domain. However, L. monocytogenes lacks genes encoding any of the other enzymes of the Kdo biosynthesis pathway. Realizing that the discovery of an API in a Gram-positive bacterium could provide insight into an alternate physiological role of A5P in the cell, we prepared and purified recombinant Q723E8. We found that Q723E8 does not possess API activity, but instead is a novel GPI (D-glucose 6-phosphate isomerase). However, the GPI activity of Q723E8 is weak compared with previously described GPIS. L. monocytogenes contains an ortholog of the well-studied two-domain bacterial GPI, so this maybe redundant. Based on this evidence glucose utilization is likely not the primary physiological role of Q723E8.

  13. Early neonatal bilirubin, hematocrit, and glucose-6-phosphate dehydrogenase status.

    Science.gov (United States)

    Badejoko, Bolaji O; Owa, Joshua A; Oseni, Saheed B A; Badejoko, Olusegun; Fatusi, Adesegun O; Adejuyigbe, Ebunoluwa A

    2014-10-01

    To document the patterns of bilirubin and hematocrit values among glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD-normal Nigerian neonates in the first week of life, in the absence of exposure to known icterogenic agents. The G6PD status of consecutive term and near-term neonates was determined, and their bilirubin levels and hematocrits were monitored during the first week of life. Infants were stratified into G6PD deficient, intermediate, and normal on the basis of the modified Beutler's fluorescent spot test. Means of total serum bilirubin (TSB) and hematocrits of the 3 groups of infants were compared. The 644 neonates studied comprised 353 (54.8%) boys and 291 (45.2%) girls and 540 (83.9%) term and 104 (16.1%) near-term infants. They consisted of 129 (20.0%) G6PD-deficient, 69 (10.7%) G6PD-intermediate, and 446 (69.3%) G6PD-normal neonates. The G6PD-deficient and G6PD-intermediate infants had higher mean TSB than their G6PD-normal counterparts at birth and throughout the first week of life (P hematocrits at birth were similar in the 3 G6PD groups. However, G6PD-deficient and -intermediate infants had higher declines in hematocrit, bilirubin levels, and need for phototherapy than G6PD-normal infants (P < .001). The G6PD-deficient and G6PD-intermediate neonates had a higher risk of neonatal hyperbilirubinemia and would therefore need greater monitoring in the first week of life, even without exposure to known icterogenic agents. Copyright © 2014 by the American Academy of Pediatrics.

  14. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  15. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos.

    Science.gov (United States)

    Arámbula, E; Aguilar L, J C; Vaca, G

    2000-08-01

    In a screening for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 1985 unrelated male subjects from the general population (Groups A and B) belonging to four states of the Pacific coast, 21 G-6-PD-deficient subjects were detected. Screening for mutations at the G-6-PD gene by PCR-restriction enzyme in these 21 G-6-PD-deficient subjects as well as in 14 G-6-PD-deficient patients with hemolytic anemia belonging to several states of Mexico showed two common G-6-PD variants: G-6-PD A-(202A/376G) (19 cases) and G-6-PD A-(376G/968C) (9 cases). In 7 individuals the mutations responsible for the enzyme deficiency remain to be determined. Furthermore, four silent polymorphic sites at the G-6-PD gene (PvuII, PstI, 1311, and NlaIII) were investigated in the 28 individuals with G-6-PD A- variants and in 137 G-6-PD normal subjects. As expected, only 10 different haplotypes were observed. To date, in our project aiming to determine the molecular basis of G-6-PD deficiency in Mexico, 60 unrelated G-6-PD-deficient Mexican males-25 in previous studies and 35 in the present work-have been studied. More than 75% of these individuals are from states of the Pacific coast (Sinaloa, Nayarit, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas). The results show that although G-6-PD deficiency is heterogeneous at the DNA level in Mexico, only three polymorphic variants have been observed: G-6-PD A-(202A/376G) (36 cases), G-6-PD A-(376G/968C) (13 cases), and G-6-PD Seattle(844C) (2 cases). G-6-PD A- variants are relatively distributed homogeneously and both variants explain 82% of the overall prevalence of G-6-PD deficiency. The variant G-6-PD A-(202A/376G) represents 73% of the G-6-PD A- alleles. Our data also show that the variant G-6-PD A-(376G/968C)-which has been observed in Mexico in the context of two different haplotypes-is more common than previously supposed. The three polymorphic variants that we observed in Mexico are on the same haplotypes as found in subjects from

  16. Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis.

    Science.gov (United States)

    Fan, Lie Ying; Zong, Ming; Wang, Qiang; Yang, Lin; Sun, Li Shan; Ye, Qin; Ding, Yuan Yuan; Ma, Jian Wei

    2010-12-14

    Although glucose-6-phosphate isomerase (G6PI), anti-G6PI antibodies and G6PI-containing immune complexes (G6PI-CIC) have proved high expression in patients with rheumatoid arthritis (RA), comprehensive evaluation of the G6PI-derived markers, G6PI antigen, anti-G6PI Abs, G6PI-CIC and G6PI mRNA, in the diagnosis of RA remains necessary. We measured G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC as well as anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) in serum and concomitantly synovial fluid (SF) by ELISA in RA, other rheumatic diseases and healthy controls. The G6PI mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed with real-time PCR. As compared with non-RA patients, RA patients had increased levels of G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC and G6PI mRNA expression in sera or PBMCs, and increased levels of G6PI and C1q/G6PI-CIC in SF. The serum G6PI levels in RA patients positively correlated with anti-G6PI Abs, C1q/G6PI-CIC, G6PI mRNA, anti-CCP Abs, RF, CRP and ESR, respectively. The area under curve analyses demonstrated that serum G6PI had the best discriminating power for RA and active RA followed by C1q/G6PI-CIC, anti-G6PI Abs and G6PI mRNA. The simultaneous use of serum G6PI and anti-CCP Abs assays in the form of either of them tested positive gave improved sensitivities of 88.1% for RA and 95.8% for active RA. Despite the elevated expression of all G6PI-derived markers in RA, the serum G6PI has the best discriminating power among the four G6PI-derived markers. The serum G6PI determination either alone or in combination with anti-CCP Abs improves the diagnosis of RA. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Vitamin C Inhibits Aggravated Eryptosis by Hydrogen Peroxide in Glucose-6-Phosphated Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Feng Shan

    2016-09-01

    Full Text Available Background/Aims: The study was aimed to investigate if vitamin C could exert protective effects on development of eryptosis caused by glucose-6-phosphate dehydrogenase (G6PD deficiency and hydrogen peroxide. Methods: Isolated erythrocytes with different G6PD activity (normal or deficient were divided into various groups treated by either Vitamin C or H2O2. Phosphatidylserine (PS extroversion rate was detected by Annexin V binding. The intracellular Ca2+ concentration was detected by Fluo3-fluorescence, and western blot was used to detect the expression of apoptosis factor caspase 3. Results: Compared with the blank group, the PS extroversion rate (P 2+ concentration (P P 2O2. Then the index of eryptosis significantly decreased after erythrocytes were treated with Vitamin C (1 mg/ml for 30 min (all P Conclusion: Vitamin C could effectively inhibit the eryptosis contributed by H2O2 oxidative stress, and the suppression on eryptosis with G6PD normal activity was more effective than that with G6PD deficiency.

  18. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Cossio de Gurrola Gladys

    2008-05-01

    Full Text Available Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in naphthalene-impregnated garments, resulting in reduced psychomotor development, neurosensory hypoacousia, absence of speech and poor reflex of the pupil to light. Conclusion Mutational analysis revealed the glucose-6-phosphate dehydrogenase Mediterranean polymorphic variant, which explained the development of kernicterus after exposition of naphthalene. As the use of naphthalene in stored clothes is a common practice, glucose-6-phosphate dehydrogenase testing in neonatal screening could prevent severe clinical consequences.

  19. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  20. Ozone: a possible cause of hemolytic anemia in glucose-6-phosphate dehydrogenase deficient individuals

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (School of Health Sciences, Amherst, MA); Kojola, W.H.; Carnow, B.W.

    1977-01-01

    A theoretical model is described that predicts that individuals with a glucose-6-phosphate dehydrogenase deficiency may experience acute hemolysis on exposure to ozone at levels reached in certain urban centers.

  1. Influence of sickle heterozygous status and glucose-6-phosphate ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    immunity to malaria, genotype and pregnancy, and by the species, virulence, strain and perhaps the geographic origin of the parasite12. Anaemia in P. falciparum ..... Glucose Homeostasis in Children with falciparum Malaria: Precursor Supply. Limits Gluconeogenesis and Glucose. Production. J. Clin. Endocrinol Metab.

  2. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism: A Review of the Literature and Case Report

    Directory of Open Access Journals (Sweden)

    Daniela Hernández-Pérez

    2015-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management.

  3. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  4. Study of Glucose-6-phosphate Dehydrogenase (G6PD Status in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Kazi Salma Binte Faruky

    2010-04-01

    Full Text Available Background: Glucose-6-phosphate dehydrogenase (G6PD deficiency is one of the common enzymopathy and may be one of the risk factor for complicated pregnancy. Objectives: To measure erythrocyte G6PD level in pregnant women with preeclampsia in order to observe this enzyme status and also to measure Hb, TC of RBC, serum bilirubin, reticulocyte count to observe hemolytic status. In addition, to correlate this enzyme level with all these hematological parameters in order to find out any relationships among them. Methods: This cross sectional study was carried out in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU, Shahbag, Dhaka from January to December 2008. For this, 30 pregnant women with preeclampsia, age ranged from 20 to 34 years during their third trimester (>24th weeks were studied (group B. They were selected from the Obstetric and Gynae Out Patient Department (OPD of BSMMU and Bangladesh Medical College Hospital (BMCH of Dhaka City. For comparison age matched 30 apparently normal pregnant women of the same gestational age (control group - group A were also studied. They were selected by personal contact. Erythrocyte G6PD level was measured by Spectrophotometric method using kit of Randox. Serum bilirubin, hemoglobin concentration, total count of RBC and reticulocyte count were measured by standard laboratory techniques. For statistical analysis ANOVA, independent sample t test, Chi-square test and Pearson's correlation coefficient test were performed by using SPSS for windows version-12 as applicable. Results: In this study, erythrocyte G6PD level was significantly lower in preeclampsia in comparison to that of control but their percentages of involvement was not statistically significant. In addition, hemoglobin concentration and RBC count were significantly lower and serum bilirubin and reticulicyte count were significantly higher in the study group than those of control group. On the other hand

  5. Glucose-6-phosphate dehydrogenase activity decreases during storage of leukoreduced red blood cells

    NARCIS (Netherlands)

    Peters, Anna L.; van Bruggen, Robin; de Korte, Dirk; van Noorden, Cornelis J. F.; Vlaar, Alexander P. J.

    2016-01-01

    During storage, the activity of the red blood cell (RBC) antioxidant system decreases. Glucose-6-phosphate dehydrogenase (G6PD) is essential for protection against oxidative stress by producing NADPH. G6PD function of RBC transfusion products is reported to remain stable during storage, but activity

  6. In situ glucose-6-phosphate dehydrogenase activity during development of pre-implantation mouse embryos

    NARCIS (Netherlands)

    de Schepper, G. G.; Vander Perk, C.; Westerveld, A.; Oosting, J.; van Noorden, C. J.

    1993-01-01

    Glucose-6-phosphate dehydrogenase activity was analysed cytophotometrically in oocytes and pre-implantation embryos of mice. A bimodal distribution pattern was not found. Therefore, female and male embryos could not be discriminated on the basis of linkage of the enzyme with the X-chromosome during

  7. Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides.

    Science.gov (United States)

    Yoon, Ran-Young; Yeom, Soo-Jin; Park, Chang-Su; Oh, Deok-Kun

    2009-05-01

    We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg(-1). The activity of the glucose-6-phosphate isomerase for L: -talose isomerization was optimal at pH 7.0, 95 degrees C, and 1.5 mM Co(2+). The half-lives of the enzyme at 65 degrees C, 75 degrees C, 85 degrees C, and 95 degrees C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. L: -Talose and D: -ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. L: -Talose was converted to L: -tagatose and L: -galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas D: -ribulose was converted to D: -ribose and D: -arabinose with 53% and 8% conversion yields after about 240 min, respectively.

  8. Biochemical and cytochemical evaluation of heterozygote individuals with glucose-6-phosphate dehydrogenase deficiency

    NARCIS (Netherlands)

    Gurbuz, Nilgun; Aksu, Tevfik Aslan; van Noorden, Cornelis J. F.

    2005-01-01

    The aim of this study was to diagnose heterozygous glucose-6-phosphate dehydrogenase (G6PD) deficient females by an inexpensive cytochemical G6PD staining method that is easy to perform, allowing diagnosis of G6PD deficiency without cumbersome genetic analysis. Three subject groups were included in

  9. Intravenous immunoglobulin to treat hyperbilirubinemia in neonates with isolated Glucose-6-Phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Wadah Khriesat

    2017-04-01

    Full Text Available Background Glucose-6-phosphate dehydrogenase deficiency alone or concomitant with ABO isoimmunisation is a widespread indication for neonatal exchange transfusion. Aims To evaluate the effectiveness of Intravenous Immunoglobulin in the treatment of neonatal hyperbilirubinemia due to glucose-6-phosphate dehydrogenase deficiency. Methods A retrospective cohort study was conducted between 2006 and 2014 at the Jordan University of Science and technology. The medical records of 43 infants admitted to the neonatal intensive care unit for isolated glucose-6- phosphate dehydrogenase deficiency hemolytic disease of the newborns were reviewed. Patients were divided into two groups. Group I, a historical cohort, included newborns born between 2006 and 2010, Treatment included phototherapy and exchange transfusion. Group II included newborns born between 2011 and 2014, where, in addition to phototherapy, intravenous immunoglobulin was administered. The duration of phototherapy and number of exchange transfusions were evaluated. Results Of 412 newborns that were admitted with neonatal hyperbilirubinemia, Glucose-6-phosphate dehydrogenase deficiency was present in 43. Of these, 22, did not receive intravenous immunoglobulin and served as a control group. The other 21 newborns received intravenous immunoglobulin. There was no difference in the demographic characteristics between the two groups. Infants in the control group were significantly more likely to receive exchange blood transfusion than infants in the immunoglobulin treatment group, but were significantly less likely to need phototherapy. Conclusion Intravenous immunoglobulin is an effective alternative to exchange transfusion in infants with glucose-6-phosphate dehydrogenase deficiency hemolytic disease of the newborn. It is suggested that intravenous immunoglobulin may be beneficial as a prophylaxis for infants with hyperbilirubinemia.

  10. Glucose-6-phosphate-dehydrogenase deficiency as a risk factor for pterygium.

    Science.gov (United States)

    Peiretti, Enrico; Mandas, Antonella; Cocco, Pierluigi; Norfo, Claudia; Abete, Claudia; Angius, Fabrizio; Pani, Alessandra; Vascellari, Sarah; Del Fiacco, Guido; Cannas, Dolores; Diaz, Giacomo; Dessì, Sandra; Fossarello, Maurizio

    2010-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an important site of metabolic control in the pentose phosphate pathway (PPP), providing reducing power (NADPH) and pentose phosphates. The purpose of this study was to investigate the possible involvement of G6PD deficiency (G6PD-) in the pathogenesis of pterygium. Erythrocyte G6PD activity was evaluated in 123 pterygium patients and in 112 age-matched control patients. Enzyme activity, mRNA, rate of growth, green autofluorescence, response to oxidative stress, and cholesterol metabolism were determined in pterygium fibroblasts (PFs) and in normal conjunctival fibroblasts (NCFs) isolated from G6PD normal (NCFs+ and PFs+) and G6PD- (NCFs- and PFs-) patients. Higher prevalence of G6PD- was found in patients affected by primary pterygium than in control subjects, both men and women, suggesting that this enzymatic defect may be a predisposing factor for pterygium. G6PD activity was significantly lower in NCFs- than in NCFs+, but not in PFs- than in PFs+. In PFs-, G6PD mRNA levels were significantly higher than in PFs+. Growth-stimulated NCFs- grew at half the rate of NCFs+, although PFs- and PFs+ grew at the same rate. Increased green autofluorescence and susceptibility to oxidative stress were observed in PFs (+/-) and in NCFs-, but not in NCFs+. Moreover, ex vivo PFs (+/-) accumulated more lipids than corresponding NCFs. The results of this study, although restricted to a limited group of subjects (i.e., those of Sardinian ancestry), suggest that G6PD- not only does not protect against pterygium, but may even be considered a risk factor for the development of this disorder.

  11. External quality assurance programme for newborn screening of glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Chiang, Szu-Hui; Fan, Mei-Ling; Hsiao, Kwang-Jen

    2008-12-01

    The nationwide neonatal screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency in Taiwan was started on 1 July 1987. A network of G6PD referral hospitals distributed all around Taiwan was organised for follow-up, confirmatory testing, medical care and genetic counselling. To assess the reliability of confirmatory and screening tests, an external quality assurance (QA) programme for G6PD assay was developed. Lyophilised quality control (QC) materials and dried blood spots were prepared from erythrocytes and whole blood for confirmatory and screening tests, respectively. The external QA surveys were carried out every 1 to 2 months. The QA results were evaluated and compared to the consensus result and reference value. The test results were submitted through internet by participating laboratories and the summary reports were published on a webpage (http:// www.g6pd.tw) within 2 weeks. Twenty-one referral laboratories in Taiwan and 16 screening laboratories in Germany, Lebanon, Mainland China, Philippines, Thailand, Taiwan, Turkey, and Vietnam have been participating in the QA programme. From 1988 to 2007, 144 QA surveys for confirmatory testing were sent to referral laboratories. Among the 2,622 reports received, 292 (11.1%) were found to be abnormal. Interlaboratory coefficient of variation (CV) for the confirmatory test has reached below 10% in recent years. The significant improvement in interlaboratory CV was found to be correlated with the preventive site visits to the referral laboratories since November 2004. From 1999 to 2007, 52 external QA surveys for the screening test were performed. Among 504 reports received, 97 (19.2%) were found to be abnormal. From the 5040 blood spots tested by the screening laboratories, 95 false negative (1.9%) and 187 false positive (3.7%) results were reported. The external QA programme has been useful for monitoring the performance of the referral hospitals and screening laboratories and helpful for the participating

  12. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming V. [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Chen, Weiqin [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Harmancey, Romain N. [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Taegtmeyer, Heinrich [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Chan, Lawrence, E-mail: lchan@bcm.tmc.edu [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); St. Luke' s Episcopal Hospital, Houston, TX 77030 (United States)

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  13. Post-irradiation repairing processes of glucose-6-phosphate dehydrogenase and catalase from Hansenula Polymorpha yeast

    International Nuclear Information System (INIS)

    Postolache, Carmen; Postolache, Cristian; Dinu, Diana; Dinischiotu, Anca; Sahini, Victor Emanuel

    2002-01-01

    The post-irradiation repairing mechanisms of two Hansenula Polymorpha yeast enzymes, glucose-6-phosphate dehydrogenase and catalase, were studied. The kinetic parameters of the selected enzymes were investigated over one month since the moment of γ-irradiation with different doses in the presence of oxygen. Dose dependent decrease of initial reaction rates was noticed for both enzymes. Small variation of initial reaction rate was recorded for glucose-6-phosphate dehydrogenase over one month, with a decreasing tendency. No significant electrophoretic changes of molecular forms of this enzyme were observed after irradiation. Continuous strong decrease of catalase activity was evident for the first 20 days after irradiation. Partial recovery process of the catalytic activity was revealed by this study. (authors)

  14. Ozone: a possible cause of hemolytic anemia in glucose-6-phosphate dehydrogenase deficient individuals

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (School of Health Sciences, Amherst, MA); Kojola, W.H.; Carnow, B.W.

    1977-01-01

    A series of recently reported experiments have indicated that inhaled ozone may induce several physical and biochemical changes affecting the membrane stability of red blood cells of normal human individuals. These biochemical modifications are similar to those that occur in glucose-6-phosphate dehydrogenase (G-6-PD) deficient individuals who experience acute hemolysis several days after exposure to ''oxidant stress'' in the form of various drugs, including the antimalarials, sulfur drugs, analgesics, antibacterials, and numerous miscellaneous types. The paper indicates the possibility of atmospheric ozone exposure as a causative agent of acute hemolysis in G-6-PD deficient individuals. A theoretical model is described that predicts that individuals with a glucose-6-phosphate dehydrogenase deficiency may experience acute hemolysis on exposure to ozone at levels reached in certain urban centers. (MU)

  15. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in Jeddah, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Azhar Essam

    2011-10-01

    Full Text Available Abstract Background The development of polymerase chain reaction (PCR-based methods for the detection of known mutations has facilitated detecting specific red blood cell (RBC enzyme deficiencies. We carried out a study on glucose-6-phosphate dehydrogenase (G6PD deficient subjects in Jeddah to evaluate the molecular characteristics of this enzyme deficiency and the frequency of nucleotide1311 and IVS-XI-93 polymorphisms in the glucose-6-phosphate dehydrogenase gene. Results A total of 1584 unrelated Saudis (984 neonates and 600 adults were screened for glucose-6-phosphate dehydrogenase deficiency. The prevalence of glucose-6-phosphate dehydrogenase deficiency was 6.9% (n = 110. G6PD Mediterranean mutation was observed in 98 (89.1% cases, G6PD Aures in 11 (10.0% cases, and G6PD Chatham in 1 (0.9% case. None of the samples showed G6PD A‾ mutation. Samples from 29 deficient subjects (25 males and 4 females were examined for polymorphism. The association of two polymorphisms of exon/intron 11 (c.1311T/IVS-XI-93C was observed in 14 (42.4% of 33 chromosomes studied. This association was found in 9 (31.0% carriers of G6PD Mediterranean and in 4 (13.8% carriers of G6PD Aures. Conclusions The majority of mutations were G6PD Mediterranean, followed by G6PD Aures and G6PD Chatham. We conclude that 1311T is a frequent polymorphism in subjects with G6PD Mediterranean and Aures variants in Jeddah.

  16. D-glucose-6-phosphate dehydrogenase (Entner-Doudoroff enzyme) from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Lessmann, D.; Schimz, K.L.; Kurz, G.

    1975-01-01

    The existence of two different D-glucose-6-phosphate dehydrogenases in Pseudomonas fluorescens has been demonstrated. Based on their different specificity and their different metabolic regulation one enzyme is appointed to the Entner-Doudoroff pathway and the other to the hexose monophosphate pathway. A procedure is described for the isolation of that D-glucose-6-phosphate dehydrogenase which forms part of the Entner-Doudoroff pathway (Entner-Doudoroff enzyme). A 950-fold purification was achieved with an overall yield of 44%. The final preparation, having a specific activity of about 300μmol NADH formed per min per mg protein, was shown to be homogeneous. The molecular weight of the Entner-Doudoroff enzyme has been determined to be 220,000 by gel permeation chromatography, and that of the other enzyme (Zwischenferment) has been shown to be 265,000. The pI of the Entner-Doudoroff enzyme has been shown to be 5.24 and that of the Zwischenferment 4.27. The Entner-Doudoroff enzyme is stable in the range of pH 6 to 10.5 and shows its maximal acivity at pH 8.9. The Entner-Doudoroff enzyme showed specificity for NAD + as well as for NADP + and exhibited homotropic effects for D-glucose 6-phosphate. It is inhibited by ATP which acts as a negative allosteric effector. Other nucleoside triphosphates as well as ADP are also inhibitory. The enzyme catalyzes the transfer of the axial hydrogen at carbon-1 of β-D-glucopyranose 6-phosphate to the si face of carbon-4 of the nicotinamide ring and must be classified as B-side stereospecific dehydrogenase. (orig.) [de

  17. An optimised system for refolding of human glucose 6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Engel Paul C

    2009-03-01

    Full Text Available Abstract Background Human glucose 6-phosphate dehydrogenase (G6PD, active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP, providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins. Results The effects of different chemical and physical variables on the refolding of human recombinant G6PD have been extensively investigated. L-Arg, NADP+ and DTT are all major positive influences on refolding, and temperature, protein concentration, salt types and other additives also have significant impacts. With the method described here, ~70% enzyme activity could be regained, with good reproducibility, after denaturation with Gdn-HCl, by rapid dilution of the protein, and the refolded enzyme displays kinetic and CD properties indistinguishable from those of the native protein. Refolding under these conditions is relatively slow, taking about 7 days to complete at room temperature even in the presence of cyclophilin A, a peptidylprolyl isomerase reported to increase refolding rates. The refolded protein intermediates shift from dominant monomer to dimer during this process, the gradual emergence of dimer correlating well with the regain of enzyme activity. Conclusion L-Arg is the key player in the refolding of human G6PD, preventing the aggregation of folding intermediate, and NADP+ is essential for the folding intermediate to adopt native structure. The refolding protocol can be applied to produce high recovery yield of folded protein with

  18. NMR studies on mechanism of isomerisation of fructose 6-phosphate to glucose 6-phosphate catalysed by phosphoglucose isomerase from Thermococcus kodakarensis.

    Science.gov (United States)

    Abbas, Shahzada Nadeem; Mok, Kenneth Hun; Rashid, Naeem; Xie, Yongjing; Ruether, Manuel; O'Brien, John; Akhtar, Muhammad

    2016-06-01

    The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women.

    Science.gov (United States)

    Peters, Anna L; Van Noorden, Cornelis J F

    2009-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries.

  20. Erythrocyte glucose-6-phosphate dehydrogenase deficiency in male newborn babies and its relationship with neonatal jaundice Deficiência de glicose-6-fosfato desidrogenase eritrocitária em recém-nascidos do sexo masculino e sua relação com a icterícia neonatal

    Directory of Open Access Journals (Sweden)

    Marli Auxiliadora C. Iglessias

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency, the commonest red cell enzymopathy in humans, has an X-linked inheritance. The major clinical manifestations are drug induced hemolytic anemia, neonatal jaundice and chronic nonspherocytic hemolytic anemia. The incidence of neonatal hyperbilirubinemia is much greater in G6PD-deficient neonates than babies without this deficiency. The aim of this study was to ascertain the presence of neonatal jaundice in erythrocyte G6PD-deficient male newborns. Samples of umbilical cord blood from a total of 204 male newborns of the Januário Cicco School Maternity located in Natal, Rio Grande do Norte, Brazil were analyzed. The G6PD deficiency was identified by the methemoglobin reduction test (Brewer's test. The deficiency was confirmed by quantitative spectrophotometric assay for enzyme activity and cellulose acetate electrophoresis was used to identify the G6PD variant. Eight newborns were found to be G6PD deficient with four of them exhibiting jaundice during the first 48 hours after birth with bilirubin levels higher than 10 mg/dL. All deficient individuals presented the G6PD A- variant at electrophoresis. Our findings confirmed the association between G6PD deficiency and neonatal jaundice. Hence, early diagnosis of the deficiency at birth is essential to control the appearance of jaundice and to prevent the exposure of these newborns to known hemolytic agents.A deficiência de glicose-6-fosfato desidrogenase (G6PD é a anormalidade enzimática hereditária mais frequente. É transmitida como caráter recessivo ligado ao cromossomo X e as principais manifestações clínicas são hemólise induzida por fármacos, icterícia neonatal e anemia hemolítica não esferocítica. O objetivo do estudo foi determinar a presença de icterícia neonatal em recém-nascidos do sexo masculino deficientes de glicose-6-fosfato desidrogenase. Foram analisadas 204 amostras de sangue umbilical de recém-nascidos do sexo

  1. Possible Association between Glucose-6-Phosphate Dehydrogenase Deficiency and the Development of Preeclampsia

    OpenAIRE

    Omid R. Zekavat; Maryam Eskandary; Behia Namavar Jahromi; Athar Rasekh; Sara Barzegar; Nasrin Ized Panahy; Mehran Karimi

    2010-01-01

    Glucose-6-Phosphate dehydrogenase (G6PD) deficiency is acommon enzyme deficiency in the world. It's Prevalence inIran is about 12% in male & about 1% in female. The presentstudy did examine the relation between the development ofpreeclampsia and G6PD deficiency. It was investigatedwhether or not the risk of preeclampsia in G6PD deficientwomen is higher than that in normal pregnant women.A total of 400 pregnant patients with an age range of 20-34years were selected in the cities of Shiraz and ...

  2. Glucose-6-Phosphate Dehydrogenase Deficiency and Adrenal Hemorrhage in a Filipino Neonate with Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Akira Ohishi

    2013-05-01

    Full Text Available We report on a Filipino neonate with early onset and prolonged hyperbilirubinemia who was delivered by a vacuum extraction due to a prolonged labor. Subsequent studies revealed adrenal hemorrhage and glucose-6-phosphate dehydrogenase (G6PD deficiency. It is likely that asphyxia and resultant hypoxia underlie the occurrence of adrenal hemorrhage and the clinical manifestation of G6PD deficiency and that the presence of the two events explains the early onset and prolonged hyperbilirubinemia of this neonate. Our results represent the importance of examining possible underlying factors for the development of severe, early onset, or prolonged hyperbilirubinemia.

  3. Treatment of pediatric burn patient having glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Vijay Y Bhatia

    2016-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common red cell enzymopathy found in humans. It clearly has an X-linked recessive inheritance with its prevalence varying from 0% to 27% in a different caste, ethnic, and linguistic groups. This deficiency may result in hemolytic anemia during stress, infection, and use of certain drugs. The use of topical silver sulfadiazine can produce hemolysis in patients having G6PD deficiency. Here, we describe one case successfully treated of pediatric burn of 25% of body surface area who was a known case of G6PD deficiency.

  4. Fed-Batch Production of Glucose 6-Phosphate Dehydrogenase Using Recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Das Neves, Luiz Carlos Martins; Pessoa, Adalberto; Vitolo, Michele

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L l-tryptophan, 0.02 g/L l-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30°C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (l-tryptophan, l-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 μmol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.

  5. Immune Thrombocytopenia Resolved by Eltrombopag in a Carrier of Glucose-6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Laura Scaramucci

    2016-03-01

    Full Text Available Eltrombopag, a thrombopoietin mimetic peptide, may provide excellent clinical efficacy in steroid-refractory patients with immune thrombocytopenic purpura (ITP [1,2]. Eltrombopag is generally well tolerated. However, its use in the particular setting of glucose-6-phosphate dehydrogenase (G6PD and history of acute hemolytic anemia (AHA has not been reported so far. A 51-year-old female was diagnosed as having ITP in September 2014. She was not taking any medication and her past history was negative, apart from having been diagnosed a carrier (heterozygous of G6PD deficiency (Mediterranean variant after a familial screening by molecular and biochemical methods. She presented with only slightly reduced (about 50% enzyme level, belonging to World Health Organization-defined class 3 [3,4]. In the following years, the patient experienced some episodes of AHA, which were managed at outside institutions; in particular, a severe episode of AHA, probably triggered by urinary infection and antibiotics [5], had complicated her second and last delivery. The hemolytic episodes were selflimiting and resolved without sequelae. No other causes of hemolysis were documented. When the case came to our attention, a diagnosis of ITP was made; hemolytic parameters were normal, although the G6PD enzyme concentration was not measured. Oral prednisone (1 mg/kg was given with only a transient benefit. The patient was then a candidate for elective splenectomy. However, given her extremely low platelet count, she was started in October 2014 on eltrombopag at 50 mg/day as a bridge to splenectomy. Given that, to the best of our knowledge, the use of this drug has never been reported in the particular setting of G6PD deficiency, the patient was constantly monitored. A prompt platelet increase (178x109/L was observed 1 week after the start of treatment. After she achieved the target platelet count, the dose of eltrombopag was tapered to the lowest effective dose. The patient

  6. Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase.

    Science.gov (United States)

    Hirota, Tomoya; Tsuboi, Hiroto; Iizuka-Koga, Mana; Takahashi, Hiroyuki; Asashima, Hiromitsu; Yokosawa, Masahiro; Kondo, Yuya; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-05-01

    To investigate the effects of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI-induced arthritis (GIA). We generated transgenic rice expressing T-cell epitope of hGPI 325-339 and APL12 contained in the seed endosperm. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined for IL-17 production in splenocytes and inguinal lymph node (iLN) cells, and analyzed the expression levels of functional molecules in splenocytes. Prophylactic treatment of GIA mice with APL12 transgenic (APL12-TG) rice seeds significantly reduced the severity of arthritis and titers of serum anti-GPI antibodies compared with non-transgenic (Non-TG) rice-treated mice. APL12-TG and hGPI 325-339 transgenic (hGPI 325-339 -TG) rice seeds improved the histopathological arthritis scores and decreased IL-17 production compared with non-TG rice-treated mice. APL12-TG rice-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4  +  CD25  +  Foxp3 +  cells in the spleen compared with non-TG rice- and hGPI 325-339 -TG rice-treated mice. APL12-TG rice seeds improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on Treg cells in spleen.

  7. Glucose-6-phosphate dehydrogenase deficiency: an unusual cause of acute jaundice after paracetamol overdose.

    Science.gov (United States)

    Phillpotts, Simon; Tash, Elliot; Sen, Sambit

    2014-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest human enzyme defect causing haemolytic anaemia after exposure to specific triggers. Paracetamol-induced haemolysis in G6PD deficiency is a rare complication and mostly reported in children. We report the first case (to the best of our knowledge) of acute jaundice without overt clinical features of a haemolytic crisis, in an otherwise healthy adult female following paracetamol overdose, due to previously undiagnosed G6PD deficiency. It is important that clinicians consider this condition when a patient presents following a paracetamol overdose with significant and disproportionate jaundice, without transaminitis or coagulopathy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Glucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Shreedhara Gupta

    2011-01-01

    Full Text Available In trypanosomatids, glucose-6-phosphate dehydrogenase (G6PDH, the first enzyme of the pentosephosphate pathway, is essential for the defense of the parasite against oxidative stress. Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana G6PDHs have been characterized. The parasites' G6PDHs contain a unique 37 amino acid long N-terminal extension that in T. cruzi seems to regulate the enzyme activity in a redox-state-dependent manner. T. brucei and T. cruzi G6PDHs, but not their Leishmania spp. counterpart, are inhibited, in an uncompetitive way, by steroids such as dehydroepiandrosterone and derivatives. The Trypanosoma enzymes are more susceptible to inhibition by these compounds than the human G6PDH. The steroids also effectively kill cultured trypanosomes but not Leishmania and are presently considered as promising leads for the development of new parasite-selective chemotherapeutic agents.

  9. Molecular analysis of glucose-6-phosphate dehydrogenase variants in the Solomon Islands

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, A.; Ishii, A.; Hirono, K.; Miwa, S. [National Institute of Health, Tokyo (Japan); Kere, N. [Medical Research and Training Institute, Honiara (Japan); Fujii, H. [Tokyo Women`s Medical College, Tokyo (Japan)

    1995-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most prevalent genetic disorders, and >100 million people are considered to have mutant genes. G6PD deficiency is frequent in the area where plasmodium falciparum infection is endemic, probably because the G6PD-deficient subjects are resistant to the parasite. Falciparum and vivax malarias have been highly endemic in the Solomon Islands, and a high frequency of G6PD deficiency has also been expected. A recent investigation showed that the frequency of G6PD deficiency in the Solomon Islands was 8.4%-14.4%. Although >80 G6PD variants from various populations have been molecularly analyzed, little is known about those in Melanesians. G6PD Maewo, which was originally found in Vanuatu, has so far been the only Melanesian variant whose structural abnormality was determined. 14 refs., 1 fig.

  10. Protocol for Dental Management in a Patient with Glucose6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Ramachandran Anil Kumar

    2017-10-01

    Full Text Available Glucose-6-Phosphate Dehydrogenase (G6PD enzyme deficiency is the most common inherited genetic disorder affecting RBCs in humans. The disorder is characterised by inability of RBC to maintain a balanced redox state when challenged by oxidative stresses like drugs, infections and certain food substances leading to severe haemolytic anaemia which complicates any therapeutic management in these patients. This article reports on a successful endodontic management of a 36-year-old class III G6PD deficient male patient with deep carious lesion in left mandibular first molar tooth (36. Considering there is no protocol precedence in dental literature, in consultation with the physician/haemotologist a three step protocol for safe and efficient dental management is proposed.

  11. Anaesthetic management in patients with glucose-6-phosphate dehydrogenase deficiency undergoing neurosurgical procedures

    Directory of Open Access Journals (Sweden)

    Sebastian Valiaveedan

    2011-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G-6-PD deficiency is an X-linked recessive enzymopathy responsible for acute haemolysis following exposure to oxidative stress. Drugs which induce haemolysis in these patients are often used in anaesthesia and perioperative pain management. Neurosurgery and few drugs routinely used during these procedures are known to cause stress situations. Associated infection and certain foodstuffs are also responsible for oxidative stress. Here, we present two patients with G-6-PD deficiency who underwent uneventful neurosurgical procedures. The anaesthetic management in such patients should focus on avoiding the drugs implicated in haemolysis, reducing the surgical stress with adequate analgesia, and monitoring for and treating the haemolysis, should it occur.

  12. Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenasee

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, M.P. (Rush Medical College, Chicago, IL); Wald, N.; Diloy-Puray, M.

    1980-03-01

    X radiation of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells causes distinct shortening of their survival time. This is accompanied by significant lowering of reduced glutathione content and is not observed in similarly prepared and treated normal cells. The damage is most likely related to irradiation-induced formation of activated oxygen products and to their subsequent effects on the cells. Neither methemoglobin increases nor Heinz body formation were observed, suggesting that hemolysis occurred prior to these changes. The study provides a model for examining the effects of irradiation and activated oxygen on red cells and suggests that patients with G6PD deficiency who receive irradiation could develop severe hemolysis in certain clinical settings.

  13. Glucose-6-phosphate dehydrogenase (G6PD) deficiency in nonarteritic anterior ischemic optic neuropathy in a Sardinian population, Italy.

    Science.gov (United States)

    Pinna, Antonio; Solinas, Giuliana; Masia, Carlo; Zinellu, Angelo; Carru, Ciriaco; Carta, Arturo

    2008-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, with a high prevalence in Sardinia, Italy. Evidence indicates that G6PD-deficient patients are protected against ischemic heart and cerebrovascular disease and retinal vein occlusion. The purpose of this study was to assess the frequency of G6PD deficiency in Sardinian patients with nonarteritic anterior ischemic optic neuropathy (NAION) and ascertain whether G6PD deficiency may offer protection against NAION. Erythrocyte G6PD activity was determined by using a quantitative assay in 140 patients with NAION and 280 age- and gender-matched comparison patients. Conditional logistic regression models were used to investigate the association between G6PD deficiency and NAION. G6PD deficiency was found in 7 (5%) patients with NAION and 34 (12.1%) control subjects. Differences between cases and controls were statistically significant (P = 0.02). Conditional logistic regression analysis, including as covariates G6PD deficiency, hypertension, diabetes, and hypercholesterolemia, revealed that G6PD deficiency was significantly associated with decreased risk for NAION (odds ratio [OR] = 0.4, 95% confidence interval [CI] = 0.17-0.94, P = 0.035). Conditional logistic regression analyses, including systolic or diastolic blood pressure and plasma glucose and cholesterol levels confirmed that G6PD deficiency was associated with a decreased risk for NAION, but the ORs were not significant at the 0.05 significance level (P = 0.085 and P = 0.071). Models including gender x G6PD deficiency interaction disclosed that gender was not an effect modifier of G6PD deficiency (P > 0.20). The frequency of G6PD deficiency in patients with NAION was significantly lower than expected. Results suggest that G6PD-deficient patients in the Sardinian population have a significantly decreased risk of having NAION.

  14. Glucose-6-Phosphate Dehydrogenase Deficiency and Diabetes Mellitus with Severe Retinal Complications in a Sardinian Population, Italy

    Science.gov (United States)

    Pinna, Antonio; Contini, Emma Luigia; Carru, Ciriaco; Solinas, Giuliana

    2013-01-01

    Background: Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, with a high prevalence in Sardinia, Italy. Evidence indicates that G6PD-deficient patients are protected against vascular disease. Little is known about the relationship between G6PD deficiency and diabetes mellitus. The purpose of this study was to compare G6PD deficiency prevalence in Sardinian diabetic men with severe retinal vascular complications and in age-matched non-diabetic controls and ascertain whether G6PD deficiency may offer protection against this vascular disorder. Methods: Erythrocyte G6PD activity was determined using a quantitative assay in 390 diabetic men with proliferative diabetic retinopathy (PDR) and 390 male non-diabetic controls, both aged ≥50 years. Conditional logistic regression models were used to investigate the association between G6PD deficiency and diabetes with severe retinal complications. Results: G6PD deficiency was found in 21 (5.4 %) diabetic patients and 33 (8.5 %) controls (P=0.09). In a univariate conditional logistic regression model, G6PD deficiency showed a trend for protection against diabetes with PDR, but the odds ratio (OR) fell short of statistical significance (OR=0.6, 95% confidence interval=0.35-1.08, P=0.09). In multivariate conditional logistic regression models, including as covariates G6PD deficiency, plasma glucose, and systemic hypertension or systolic or diastolic blood pressure, G6PD deficiency showed no statistically significant protection against diabetes with PDR. Conclusions: The prevalence of G6PD deficiency in diabetic men with PDR was lower than in age-matched non-diabetic controls. G6PD deficiency showed a trend for protection against diabetes with PDR, but results were not statistically significant. PMID:24324368

  15. Possible Association between Glucose-6-Phosphate Dehydrogenase Deficiency and the Development of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Omid R. Zekavat

    2010-12-01

    Full Text Available Glucose-6-Phosphate dehydrogenase (G6PD deficiency is acommon enzyme deficiency in the world. It's Prevalence inIran is about 12% in male & about 1% in female. The presentstudy did examine the relation between the development ofpreeclampsia and G6PD deficiency. It was investigatedwhether or not the risk of preeclampsia in G6PD deficientwomen is higher than that in normal pregnant women.A total of 400 pregnant patients with an age range of 20-34years were selected in the cities of Shiraz and Jahrom, Iran,They were on 24 weeks inside their first or second pregnancy.There were 4 cases of G6PD deficiency in preeclamtic womencompared to two cases in normal pregnant women. (OR=2.02,CI: 0.37-11.02. Although the relation between G6PD deficiencyand preeclamsia did not reach statistical significance,the higher incidence of the deficiency in preecclamtic womenmight suggest that the test for G6PD deficiency might be usedas a screening tool for preeclamsia.Iran J Med Sci 2010; 35(4: 323-326.

  16. Antioxidant vitamins and glucose-6-phosphate dehydrogenase deficiency in full-term neonates

    Directory of Open Access Journals (Sweden)

    Obediat, Ahmad D.

    2008-09-01

    Full Text Available Objective: The mechanism by which glucose-6-phosphate dehydrogenase (G6PD deficiency causes neonatal hyperbilirubinemia is not completely understood. However, the genetic disorder G6PD deficiency predisposes red blood cells to oxidative stress. The aim of this study was to establish the relationship between plasma antioxidant vitamin (E and C levels and the development of hyperbilirubinemia in full-term neonates with deficient G6PD. Methods: A total of 196 live birth neonates of healthy mothers were included in this study. Twelve of them were deficient in G6PD. In addition to demographic data, serum total bilirubin, hemoglobin, hematocrit, and vitamin E and C levels were measured on the first day after birth.Results: Neonates with G6PD deficiency (n=7 who did not develop hyperbilirubinemia (mean serum bilirubin level of 70.8±23 µmol/l, median 71.8 and neonates with G6PD deficiency (n=4 who developed hyperbilirubinemia (mean serum bilirubin level of 226.7±79 µmol/l, median 233.4 on the first day of life had similar gestational weights and age. The second group, however, had lower hemoglobin and hematocrit as well as plasma vitamin C and E levels. None of these results showed significant difference. Conclusion: The results of the present study indicate that red blood cell hemolysis as a result of inadequate antioxidants system in G6PD-deficient neonates is not the only contributing factor for hyperbilirubinemia.

  17. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence.

    Science.gov (United States)

    Kwok, Man Ki; Leung, Gabriel M; Schooling, C Mary

    2016-01-01

    To examine the association of glucose-6-phosphate dehydrogenase (G6PD) deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported. In a population-representative Chinese birth cohort: "Children of 1997" (n = 8,327), we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting. Among 5,520 screened adolescents (66% follow-up), 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI) gain (-0.38 z-score, 95% confidence interval (CI) -0.57, -0.20), adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050). G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence. G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation.

  18. Screening for glucose-6-phosphate dehydrogenase deficiency can prevent severe neonatal jaundice.

    Science.gov (United States)

    Mallouh, A A; Imseeh, G; Abu-Osba, Y K; Hamdan, J A

    1992-01-01

    Infants with the severe variant of glucose-6-phosphate dehydrogenase (G6PD) deficiency may develop hyperbilirubinaemia sufficiently severe to cause kernicterus and death, acute haemolysis on exposure to oxidant stress, congenital non-spherocytic haemolytic anaemia and, rarely, increased susceptibility to bacterial infection. In spite of these potential problems, G6PD deficiency is often not included among screening programmes for inherited disorders. In a comprehensive screening and educational programme, we tested around 34,000 infants for G6PD deficiency. Of the total group, 18.4% (24.5% boys and 11.8% girls) were deficient. Forty-two of the 6246 (0.67%) G6PD-deficient infants required exchange transfusion. None of them developed kernicterus. By contrast, of 4755 infants who had not been screened because they were born at home, three developed kernicterus. In addition, four G6PD-deficient infants had developed kernicterus in the 20-month period prior to the screening programme. None of the hyperbilirubinaemic infants had blood group incompatibility or any other identifiable cause of hyperbilirubinaemia. To avoid this disastrous result, we believe that neonatal screening for G6PD deficiency, together with a comprehensive education programme, is advisable in those parts of the world where the severe variant of G6PD deficiency is prevalent.

  19. Glucose-6-phosphate dehydrogenase (G6PD) deficiency among tribal populations of India - Country scenario.

    Science.gov (United States)

    Mukherjee, Malay B; Colah, Roshan B; Martin, Snehal; Ghosh, Kanjaksha

    2015-05-01

    It is believed that the tribal people, who constitute 8.6 per cent of the total population (2011 census of India), are the original inhabitants of India. Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is an X-linked genetic defect, affecting around 400 million people worldwide and is characterized by considerable biochemical and molecular heterogeneity. Deficiency of this enzyme is highly polymorphic in those areas where malaria is/has been endemic. G6PD deficiency was reported from India more than 50 years ago. t0 he prevalence varies from 2.3 to 27.0 per cent with an overall prevalence of 7.7 per cent in different tribal groups. Since the tribal populations live in remote areas where malaria is/has been endemic, irrational use of antimalarial drugs could result in an increased number of cases with drug induced haemolysis. Therefore, before giving antimalarial therapy, routine screening for G6PD deficiency should be undertaken in those tribal communities where its prevalence is high.

  20. Radiation target analyses of free and immobilized glucose 6-phosphate dehydrogenase

    International Nuclear Information System (INIS)

    Kempner, E.S.; Miller, J.H.

    2010-01-01

    The sensitivity of the enzyme glucose 6-phosphate dehydrogenase to ionizing radiation was examined under several conditions, including the presence of several free-radical scavengers. The enzyme was also irradiated when covalently bound to polyacrylamide beads whose structure is very similar to the polypeptide backbone of proteins. All the enzyme forms were irradiated in the frozen state with high-energy electrons from a linear accelerator. Surviving enzyme activity and surviving monomers were determined; the data were analyzed by target theory. Free-radical scavengers reduced the radiation target size of both the activity and monomers of the free enzyme, but not that of the immobilized enzyme activity. The target size of the activity of the free enzyme was that of a dimer mass, but in the case of the immobilized enzyme it was equal to the smaller mass of the monomer. Free-radical scavengers reduce the target size by modifying radiation energy transfer. The target size of the polyacrylamide-bound enzyme activity was expected to be very large since the connection between polyacrylamide and protein is a peptide bond which permits transfer of radiation-deposited energy. Several explanations concerning energy transfer are suggested for this result.

  1. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2016-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC. Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.

  2. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence.

    Directory of Open Access Journals (Sweden)

    Man Ki Kwok

    Full Text Available To examine the association of glucose-6-phosphate dehydrogenase (G6PD deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported.In a population-representative Chinese birth cohort: "Children of 1997" (n = 8,327, we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting.Among 5,520 screened adolescents (66% follow-up, 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI gain (-0.38 z-score, 95% confidence interval (CI -0.57, -0.20, adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050. G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence.G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation.

  3. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  4. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency in the neonatal period.

    Science.gov (United States)

    Keihanian, F; Basirjafari, S; Darbandi, B; Saeidinia, A; Jafroodi, M; Sharafi, R; Shakiba, M

    2017-06-01

    Considering the high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborns, different screening methods have been established in various countries. In this study, we aimed to assess the prevalence of G6PD deficiency among newborns in Rasht, Iran, and compare G6PD activity in cord blood samples, using quantitative and qualitative tests. This cross-sectional, prospective study was performed at five largest hospitals in Rasht, Guilan Province, Iran. The screening tests were performed for all the newborns, referred to these hospitals. Specimens were characterized in terms of G6PD activity under ultraviolet light, using the kinetic method and the qualitative fluorescent spot test (FST). We also determined the sensitivity, specificity, negative predictive value, and positive predictive value of the qualitative assay. Blood samples were collected from 1474 newborns. Overall, 757 (51.4%) subjects were male. As the findings revealed, 1376 (93.4%) newborns showed normal G6PD activity, while 98 (6.6%) had G6PD deficiency. There was a significant difference in the mean G6PD level between males and females (P = 0.0001). Also, a significant relationship was detected between FST results and the mean values obtained in the quantitative test (P < 0.0001). According to the present study, FST showed acceptable sensitivity and specificity for G6PD activity, although it appeared inefficient for diagnostic purposes in some cases. © 2017 John Wiley & Sons Ltd.

  5. Inhibition of glucose-6-phosphate dehydrogenase protects hepatocytes from aluminum phosphide-induced toxicity.

    Science.gov (United States)

    Salimi, Ahmad; Paeezi, Maryam; Yousefsani, Bahareh Sadat; Shadnia, Shahin; Hassanian-Moghaddam, Hossein; Zamani, Nasim; Pourahmad, Jalal

    2017-11-01

    Aluminum phosphide (AlP) poisoning is a severe toxicity with 30-70% mortality rate. However, several case reports presented AlP-poisoned patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and extensive hemolysis who survived the toxicity. This brought to our mind that maybe G6PD deficiency could protect the patients from severe fatal poisoning by this pesticide. In this research, we investigated the protective effect of 6-aminonicotinamide (6-AN)- as a well-established inhibitor of the NADP + - dependent enzyme 6-phosphogluconate dehydrogenase- on isolated rat hepatocytes in AlP poisoning. Hepatocytes were isolated by collagenase perfusion method and incubated into three different flasks: control, AlP, and 6-AN+ALP. Cellar parameters such as cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential collapse (MMP), lysosomal integrity, content of reduced (GSH) and oxidized glutathione (GSSG) and lipid peroxidation were assayed at intervals. All analyzed cellular parameters significantly decreased in the third group (6-AN+AlP) compared to the second group (AlP), showing the fact that G6PD deficiency induced by 6-AN had a significant protective effect on the hepatocytes. It was concluded that G6PD deficiency significantly reduced the hepatotoxicity of AlP. Future drugs with the power to induce such deficiency may be promising in treatment of AlP poisoning. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Genetic variants in glucose-6-phosphate isomerase gene as prognosis predictors in hepatocellular carcinoma.

    Science.gov (United States)

    Lyu, Zhuomin; Chen, Yibing; Guo, Xu; Zhou, Feng; Yan, Zhaoyong; Xing, Jinliang; An, Jiaze; Zhang, Hongxin

    2016-12-01

    Metabolic reprogramming is an important hallmark of cancer cells, including the alterations of activity and expression of enzymes in glucose metabolism. Previous studies have demonstrated the critical role of glucise-6-phosphate isomerase (GPI) in cancer initiation, metastasis and progression. However, the significance of single nucleotide polymorphisms (SNPs) in GPI gene has not been investigated in hepatocellular carcinoma (HCC). In this study, a total of 3 functional SNPs in GPI gene were genotyped in 492 HCC patients with surgical treatment. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the analysis of overall survival (OS) and recurrence-free survival (RFS). The homozygous variant genotypes of rs7248411 in mRNA splice sites of GPI gene were significantly associated with an increased risk of death in the multivariate analysis (Hazard ratio [HR], 2.07; 95% confidence interval [95% CI]: 1.16-3.68 in a recessive model). In stratified analysis, the association remained significant in patients with high α-fetal protein (AFP) level (HR=2.37, 95% CI 1.25-4.49). Moreover, we identified the interaction between rs7248411 and AFP level in predicting the prognosis of HCC patients (P for interaction<0.001). Our data suggest that GPI gene polymorphism may serve as potential biomarkers to predict the OS of HCC. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway.

    Directory of Open Access Journals (Sweden)

    Nicholas A Stover

    Full Text Available Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD and 6-phosphogluconolactonase (6PGL, have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms.

  8. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern Indonesian populations.

    Science.gov (United States)

    Tantular, Indah S; Matsuoka, Hiroyuki; Kasahara, Yuichi; Pusarawati, Suhintam; Kanbe, Toshio; Tuda, Josef S B; Kido, Yasutoshi; Dachlan, Yoes P; Kawamoto, Fumihiko

    2010-12-01

    We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  9. Three-dimensional modeling of glucose-6-phosphate dehydrogenase-deficient variants from German ancestry.

    Directory of Open Access Journals (Sweden)

    Farooq Kiani

    2007-07-01

    Full Text Available Loss of function of dimeric glucose-6-phosphate dehydrogenase (G6PD represents the most common inborn error of metabolism throughout the world affecting an estimated 400 million people. In Germany, this enzymopathy is very rare.On the basis of G6PD crystal structures, we have analyzed six G6PD variants of German ancestry by three-dimensional modeling. All mutations present in the German population are either close to one of the three G6P or NADP(+ units or to the interface of the two monomers. Two of the three mutated amino acids of G6PD Vancouver are closer to the binding site of NADP(+. The G6PD Aachen mutation is also closer to the second NADP(+ unit. The G6PD Wayne mutation is closer to the G6P binding region. These mutations may affect the binding of G6P and NADP(+ units. Three mutations, i.e. G6PD Munich, G6PD Riverside and G6PD Gastonia, lie closer to the interface of the two monomers. These may also affect the interface of two monomers.None of these G6PD variants share mutations with the common G6PD variants known from the Mediterranean, Near East, or Africa indicating that they have developed independently. The G6PD variants have been compared with mutants from other populations and the implications for survival of G6PD variants from natural selection have been discussed.

  10. Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies

    DEFF Research Database (Denmark)

    Warny, Marie; Klausen, Tobias Wirenfeldt; Petersen, Jesper

    2015-01-01

    Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigran...

  11. Reaction rate studies of glucose-6-phosphate dehydrogenase activity in sections of rat liver using four tetrazolium salts

    NARCIS (Netherlands)

    Butcher, R. G.; van Noorden, C. J.

    1985-01-01

    The reaction rate of glucose-6-phosphate dehydrogenase activity in liver sections from fed and starved rats has been monitored by the continuous measurement at 37 degrees C of the reaction product as it is formed using scanning and integrating microdensitometry. Control media lacked either substrate

  12. What is the role of the second "structural" NADP+-binding site in human glucose 6-phosphate dehydrogenase?

    Science.gov (United States)

    Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M S; Engel, Paul C

    2008-08-01

    Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable "structural" NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of "stripped" enzyme by gel filtration was approximately 100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for "catalytic" NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37 degrees C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4 degrees C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The Kd values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of Kd constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations.

  13. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  14. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nguyen, Trinh Thi My; Kitajima, Sakihito; Izawa, Shingo

    2014-09-01

    Vanillin is derived from lignocellulosic biomass and, as one of the major biomass conversion inhibitors, inhibits yeast growth and fermentation. Vanillin was recently shown to induce the mitochondrial fragmentation and formation of mRNP granules such as processing bodies and stress granules in Saccharomyces cerevisiae. Furfural, another major biomass conversion inhibitor, also induces oxidative stress and is reduced in an NAD(P)H-dependent manner to its less toxic alcohol derivative. Therefore, the pentose phosphate pathway (PPP), through which most NADPH is generated, plays a role in tolerance to furfural. Although vanillin also induces oxidative stress and is reduced to vanillyl alcohol in a NADPH-dependent manner, the relationship between vanillin and PPP has not yet been investigated. In the present study, we examined the importance of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the rate-limiting NADPH-producing step in PPP, for yeast tolerance to vanillin. The growth of the null mutant of G6PDH gene (zwf1Δ) was delayed in the presence of vanillin, and vanillin was efficiently reduced in the culture of wild-type cells but not in the culture of zwf1Δ cells. Furthermore, zwf1Δ cells easily induced the activation of Yap1, an oxidative stress responsive transcription factor, mitochondrial fragmentation, and P-body formation with the vanillin treatment, which indicated that zwf1Δ cells were more susceptible to vanillin than wild type cells. These findings suggest the importance of G6PDH and PPP in the response of yeast to vanillin. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Prevalence of glucose-6-phosphate dehydrogenase deficiency and sickle cell trait among blood donors in Riyadh

    Directory of Open Access Journals (Sweden)

    Alabdulaali Mohammed

    2010-01-01

    Full Text Available Background and Aims: Blood donation from glucose-6-phosphate dehydrogenase (G6PD-deficient and sickle cell trait (SCT donors might alter the quality of the donated blood during processing, storage or in the recipient′s circulatory system. The aim of this study was to determine the prevalence of G6PD deficiency and SCT among blood donors coming to King Khalid University Hospital (KKUH in Riyadh. It was also reviewed the benefits and risks of transfusing blood from these blood donors. Materials and Methods: This cross-sectional study was conducted on 1150 blood samples obtained from blood donors that presented to KKUH blood bank during the period April 2006 to May 2006. All samples were tested for Hb-S by solubility test, alkaline gel electrophoresis; and for G6PD deficiency, by fluorescent spot test. Results: Out of the 1150 donors, 23 (2% were diagnosed for SCT, 9 (0.78% for G6PD deficiency and 4 (0.35% for both conditions. Our prevalence of SCT and G6PD deficiency is higher than that of the general population of Riyadh. Conclusion: We recommend to screen all units for G6PD deficiency and sickle cell trait and to defer donations from donors with either of these conditions, unless if needed for special blood group compatibility, platelet apheresis or if these are likely to affect the blood bank inventory. If such blood is to be used, special precautions need to be undertaken to avoid complications in high-risk recipients.

  16. Purification and Characterization of Glucose-6-Phosphate Dehydrogenase from Camel Liver

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Ibrahim

    2014-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase from camel liver was purified to homogeneity by ammonium sulfate precipitation and a combination of DEAE-cellulose, Sephacryl S-300 gel filtration, and 2′, 5′ ADP Sepharose 4B affinity chromatography columns. The specific activity of camel liver G6PD is increased to 1.80438 units/mg proteins with 63-fold purification. It turned out to be homogenous on both native PAGE and 12% SDS PAGE, with a molecular weight of 64 kDa. The molecular weight of the native form of camel liver G6PD was determined to be 194 kDa by gel filtration indicating a trimeric protein. The Km value was found to be 0.081 mM of NADP+. Camel liver G6PD displayed its optimum activity at pH 7.8 with an isoelectric point (pI of pH 6.6–6.8. The divalent cations MgCl2, MnCl2, and CoCl2 act as activators; on the other hand, CaCl2 and NiCl2 act as moderate inhibitors, while FeCl2, CuCl2, and ZnCl2 are potent inhibitors of camel liver G6PD activity. NADPH inhibited camel liver G6PD competitively with Ki value of 0.035 mM. One binding site was deduced for NADPH on the enzyme molecule. This study presents a simple and reproducible purification procedure of G6PD from the camel liver.

  17. Correlation between Hemolysis and Jaundice in Glucose 6-Phosphate Dehydrogenase Deficient Neonates

    Directory of Open Access Journals (Sweden)

    Marzban Asghar

    2009-10-01

    Full Text Available Glucose 6-phosphate dehydrogenase (G6PD deficiency is an enzyme deficiency of the red blood cells and the most important disease of hexose monophosphate pathway. The role of hemolysis in the pathophysiology of neonatal jaundice due to G6PD deficiency is in contencious. Our aim is to study the role of hemolysis in neonatal jaundice associated with G6PD deficiency. This prospective descriptive study has been done on 244 neonates who were admitted with the symptoms and signs of icter to the Ali-Asghar Children Hospital, affiliated to Iran University of Medical Sciences, Tehran, Iran, during April 2006 to April 2007. Two groups of the babies, G6PD-defcient with neonatal jaundice and G6PD-normal with neonatal jaundice, were compared based on the parameters related to hemolysis such as hemoglobin, reticulocyte count and bilirubin level. The criteria of hemolysis in our study were reticulocyte count more than >5% and hemoglobin less than <14 mg/dl. Our data have shown that 14 (5.7% of 244 neonates with the chief complain of icter suffered G6PD-deficiency with high male to female ratio (3.6 to 1. The mean hemoglobin levels and reticulocyte counts (16.72 vs. 16.97 and %2.48 vs. %2.79 respectively did not differ significantly between both groups (P>0.05. The present study indicate, G6PD- deficiency as a major cause of neonatal jaundice "nand hemolysis is not a main determinant of neonatal jaundice in G6PD-deficient babies and most of them have non hemolytic jaundice.

  18. The Prevalence of Mediterranean Mutation of Glucose-6-Phosphate Dehydrogenase (G6PD in Zahedan

    Directory of Open Access Journals (Sweden)

    Alireza Nakhaee

    2012-03-01

    Full Text Available Background: glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common genetic defects in the world, so that more than 400 million people in worldwide are affected with it, but its prevalence varies from 1-65% in different populations. Clinical manifestation of this defect is acute hemolytic anemia, neonatal hyperbilirubinemia and chronic nonspherocytic haemolytic anaemia. So far, almost 140 mutations have been identified in the gene of G6PD enzyme. Mediterranean is the most common mutation. The purpose of this study is to determine the prevalence of G6PD Mediterranean mutation in the deficient people in the city of Zahedan.Materials and Methods: In this descriptive cross-sectional study, blood samples of 1440 male individuals, who were referred to Zahedan Reference Laboratory for premarital testing, were examined for G6PD deficiency using fluorescent spot test. Genomic DNA from blood of people with G6PD deficiency was extracted by DNA extraction kit. Mediterranean mutation was identified using PCR-RFLP method.Results: 101 out of 1440 subjects had G6PD deficiency. Therefore prevalence of G6PD deficiency in Zahedan city was estimated about 7%. Mediterranean mutation frequency in patients with defect of G6PD was estimated 84.2% (85 out of 101 patients and 15.8% (16 out of 101 patients did not have mutation Mediterranean. The frequency of G6PD deficiency was expressed as a percentage of total cases and Mediterranean mutation prevalence was expressed as a percentage of total impaired individuals.Conclusion: The result of this study showed that the frequency of G6PD deficiency in Zahedan city is lower than other cities of sistan and baluchestan province. Dominant mutation in present study was Mediterranean type and its frequency was very similar with prevalence of this mutation in other parts of Iran.

  19. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis

    Science.gov (United States)

    Mbanefo, Evaristus Chibunna; Ahmed, Ali Mahmoud; Titouna, Afaf; Elmaraezy, Ahmed; Trang, Nguyen Thi Huyen; Phuoc Long, Nguyen; Hoang Anh, Nguyen; Diem Nghi, Tran; The Hung, Bui; Van Hieu, Mai; Ky Anh, Nguyen; Huy, Nguyen Tien; Hirayama, Kenji

    2017-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency overlaps with malaria endemicity although it predisposes carriers to hemolysis. This fact supports the protection hypothesis against malaria. The aim of this systematic review is to assess the presence and the extent of protective association between G6PD deficiency and malaria. Thirteen databases were searched for papers reporting any G6PD alteration in malaria patients. Twenty-eight of the included 30 studies were eligible for the meta-analysis. Results showed absence of negative association between G6PD deficiency and uncomplicated falciparum malaria (odds ratio (OR), 0.77; 95% confidence interval (CI), 0.59–1.02; p = 0.07). However, this negative association happened in Africa (OR, 0.59; 95% CI, 0.40–0.86; p = 0.007) but not in Asia (OR, 1.24; 95% CI, 0.96–1.61; p = 0.10), and in the heterozygotes (OR, 0.70; 95% CI, 0.57–0.87; p = 0.001) but not the homo/hemizygous (OR, 0.70; 95% CI, 0.46–1.07; p = 0.10). There was no association between G6PD deficiency and total severe malaria (OR, 0.82; 95% CI, 0.61–1.11; p = 0.20). Similarly, there was no association with other malaria species. G6PD deficiency can potentially protect against uncomplicated malaria in African countries, but not severe malaria. Interestingly, this protection was mainly in heterozygous, being x-linked thus related to gender. PMID:28382932

  20. Glucose 6-Phosphate Dehydrogenase Deficiency Increases Redox Stress and Moderately Accelerates the Development of Heart Failure

    Science.gov (United States)

    Hecker, Peter A.; Lionetti, Vincenzo; Ribeiro, Rogerio F.; Rastogi, Sharad; Brown, Bethany H.; O’Connell, Kelly A.; Cox, James W.; Shekar, Kadambari C.; Gamble, Dionna; Sabbah, Hani N.; Leopold, Jane A.; Gupte, Sachin A.; Recchia, Fabio A.; Stanley, William C.

    2013-01-01

    Background Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency in the world. In failing hearts, G6PD is upregulated and generates NADPH that is used by the glutathione pathway to remove reactive oxygen species (ROS), but also as a substrate by ROS-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and ROS production. Methods and Results This hypothesis was evaluated in a mouse model of human G6PD deficiency (G6PDX mice, ~40% normal activity). Myocardial infarction with 3 months followup resulted in LV dilation and dysfunction in both WT and G6PDX mice, but significantly greater end diastolic volume and wall thinning in G6PDX mice. Similarly, pressure overload induced by transverse aortic constriction (TAC) for 6 weeks caused greater LV dilation in G6PDX mice than WT. We further stressed TAC mice by feeding a high fructose diet to increase flux through G6PD and ROS production, and again observed worse LV remodeling and a lower ejection fraction in G6PDX than WT mice. Tissue content of lipid peroxidation products was increased in G6PDX mice in response to infarction and aconitase activity was decreased with TAC, suggesting that G6PD deficiency increases myocardial oxidative stress and subsequent damage. Conclusions Contrary to our hypothesis, G6PD deficiency increased redox stress in response to infarction or pressure overload. However, we found only a modest acceleration of LV remodeling, suggesting that, in individuals with G6PD deficiency and concurrent hypertension or myocardial infarction, the risk for developing heart failure is higher, but limited by compensatory mechanisms. PMID:23170010

  1. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease

    Science.gov (United States)

    Hecker, Peter A.; Leopold, Jane A.; Gupte, Sachin A.; Recchia, Fabio A.

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes. PMID:23241320

  2. Glucose-6-Phosphate Dehydrogenase Regulation in Anoxia Tolerance of the Freshwater Crayfish Orconectes virilis

    Directory of Open Access Journals (Sweden)

    Benjamin Lant

    2011-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH, the enzyme which catalyzes the rate determining step of the pentose phosphate pathway (PPP, controls the production of nucleotide precursor molecules (R5P and powerful reducing molecules (NADPH that support multiple biosynthetic functions, including antioxidant defense. G6PDH from hepatopancreas of the freshwater crayfish (Orconectes virilis showed distinct kinetic changes in response to 20 h anoxic exposure. Km values for both substrates decreased significantly in anoxic crayfish; Km NADP+ dropped from 0.015±0.008 mM to 0.012±0.008 mM, and Km G6P decreased from 0.13±0.02 mM to 0.08±0.007 mM. Two lines of evidence indicate that the mechanism involved is reversible phosphorylation. In vitro incubations that stimulated protein kinase or protein phosphatase action mimicked the effects on anoxia on Km values, whereas DEAE-Sephadex chromatography showed the presence of two enzyme forms (low- and high-phosphate whose proportions changed during anoxia. Incubation studies implicated protein kinase A and G in mediating the anoxia-responsive changes in G6PDH kinetic properties. In addition, the amount of G6PDH protein (measured by immunoblotting increased by ∼60% in anoxic hepatopancreas. Anoxia-induced phosphorylation of G6PDH could contribute to modifying carbon flow through the PPP under anoxic conditions, potentially maintaining NADPH supply for antioxidant defense during prolonged anoxia-induced hypometabolism.

  3. Glucose-6 phosphate dehydrogenase mutations and haplotypes in various ethnic groups.

    Science.gov (United States)

    Xu, W; Westwood, B; Bartsocas, C S; Malcorra-Azpiazu, J J; Indrák, K; Beutler, E

    1995-01-01

    Mutations that produce glucose-6-phosphate dehydrogenase (G6PD) deficiency have been identified in samples from patients with hemolytic disease in the United States, and in G6PD-deficient samples from Greece, the Canary Islands, the Czech and Slovak Republics, South China, and in samples from the Coriell Cell Repository. Eight new mutations are described. Particularly unusual were a nonsense mutation ("G6PD Georgia"1284A), a deletion of six bases ("G6PD Stony Brook" 724-729 del) coding for two amino acids, and a deletion of the invariant dinucleotide ApG at the 3' acceptor splice site in the highly conserved sequence between intron 10 and exon 11 ("G6PD Varnsdorf"). In addition, five new missense point mutations were identified: "G6PD Cleveland"820A creates a deduced AA 274 Glu-->Lys; "G6PD West Virginia"910T AA 303 Val-->Phe; "G6PD Fushan"1004A, AA 335 Ala-->Asp; "G6PD Olomouc"1141C AA 381 Leu-->Phe; and "G6PD Praha"1166G AA 389 Glu-->Gly. All of the new mutations except for "G6PD Fushan"1004A were found in patients with hereditary nonspherocytic hemolytic anemia. A coincidental finding in the case of G6PD "West Virginia" was a C-->T transition at nucleotide 1,191. This silent mutation, Asn-->Asn, appears to be rare. Haplotype analysis of mutations in samples from the Canary Islands and South China agreed with previous findings.

  4. Five novel glucose-6-phosphate dehydrogenase deficiency haplotypes correlating with disease severity

    Directory of Open Access Journals (Sweden)

    Dallol Ashraf

    2012-09-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is caused by one or more mutations in the G6PD gene on chromosome X. An association between enzyme levels and gene haplotypes remains to be established. Methods In this study, we determined G6PD enzyme levels and sequenced the coding region, including the intron-exon boundaries, in a group of individuals (163 males and 86 females who were referred to the clinic with suspected G6PD deficiency. The sequence data were analysed by physical linkage analysis and PHASE haplotype reconstruction. Results All previously reported G6PD missense changes, including the AURES, MEDITERRANEAN, A-, SIBARI, VIANGCHAN and ANANT, were identified in our cohort. The AURES mutation (p.Ile48Thr was the most common variant in the cohort (30% in males patients followed by the Mediterranean variant (p.Ser188Phe detectable in 17.79% in male patients. Variant forms of the A- mutation (p.Val68Met, p.Asn126Asp or a combination of both were detectable in 15.33% of the male patients. However, unique to this study, several of such mutations co-existed in the same patient as shown by physical linkage in males or PHASE haplotype reconstruction in females. Based on 6 non-synonymous variants of G6PD, 13 different haplotypes (13 in males, 8 in females were identified. Five of these were previously unreported (Jeddah A, B, C, D and E and were defined by previously unreported combinations of extant mutations where patients harbouring these haplotypes exhibited severe G6PD deficiency. Conclusions Our findings will help design a focused population screening approach and provide better management for G6PD deficiency patients.

  5. Frequency of malaria and glucose-6-phosphate dehydrogenase deficiency in Tajikistan

    Directory of Open Access Journals (Sweden)

    Saipphudin Karimov

    2006-06-01

    Full Text Available Abstract Background During the Soviet era, malaria was close to eradication in Tajikistan. Since the early 1990s, the disease has been on the rise and has become endemic in large areas of southern and western Tajikistan. The standard national treatment for Plasmodium vivax is based on primaquine. This entails the risk of severe haemolysis for patients with glucose-6-phosphate dehydrogenase (G6PD deficiency. Seasonal and geographical distribution patterns as well as G6PD deficiency frequency were analysed with a view to improve understanding of the current malaria situation in Tajikistan. Methods Spatial and seasonal distribution was analysed, applying a risk model that included key environmental factors such as temperature and the availability of mosquito breeding sites. The frequency of G6PD deficiency was studied at the health service level, including a cross-sectional sample of 382 adult men. Results Analysis revealed high rates of malaria transmission in most districts of the southern province of Khatlon, as well as in some zones in the northern province of Sughd. Three categories of risk areas were identified: (i zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should be taken at all stages of the transmission cycle; (ii zones at relatively high malaria risk with low current incidence rates, where malaria prevention measures are recommended; and (iii zones at intermediate or low malaria risk with low current incidence rates where no particular measures appear necessary. The average prevalence of G6PD deficiency was 2.1% with apparent differences between ethnic groups and geographical regions. Conclusion The study clearly indicates that malaria is a serious health issue in specific regions of Tajikistan. Transmission is mainly determined by temperature. Consequently, locations at lower altitude are more malaria-prone. G6PD deficiency frequency is too moderate to require

  6. Final Report for research on The Glucose 6-Phosphate Shunt Around the Calvin-Benson Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D. [Michigan State Univ., East Lansing, MI (United States)

    2017-10-30

    In this research, photosynthetic carbon metabolism was studied to identify mechanisms by which plants store energy from sunlight as carbon compounds, especially sugars. Conditions were identified in which carbon appeared to flow backwards from outside the photosynthetic compartment (chloroplast) back into it. A specific gene product was manipulated to make the flow bigger or smaller. Preventing the flow (by eliminating the gene) had little effect on plant growth but increasing the flow, by overexpressing the gene, caused the plants to become extremely sensitive to changes in light. Plants with the gene overexpressed had high rates of cyclic electron flow, the photosynthetic electron transport pathway that occurs when plants need more of the energy molecule ATP. These and other observations led us to conclude that a metabolic pathway that is normally turned off because it is counter-productive during photosynthesis, in fact occurs at about 10% of the rate of normal photosynthesis. This creates an inefficiency but may stabilize photosynthesis allowing it to cope with the very large and rapid changes that leaves experience such as the hundred-fold changes in light intensity that can occur in seconds on a partly cloudy day. We also concluded that the back flow of carbon into chloroplasts could be important at high rates of photosynthesis allowing increased rates of starch synthesis. Starch synthesis allows plants to store sugars during the day for use at night. At high rates of photosynthesis starch synthesis becomes very important to protect against end-product inhibition of photosynthesis. This research identified two metabolic pathways that extend the primary carbon fixation pathway called the Calvin-Benson cycle. These pathway extensions are now called the cytosolic bypass and the glucose 6-phosphate shunt. This improvement in our understanding of carbon metabolism of photosynthesis will guide efforts to increase photosynthesis to increase production of food, fuel

  7. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities.

    Science.gov (United States)

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Zhang, Dong-Jie; Guo, Zhen-Hua; Guo, Yun-Yun; Zhu, Meng; Bai, Jing

    2015-12-01

    The in vitro maturation (IVM) efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+) oocytes with low glucose-6-phosphate dehydrogenase (G6PDH) activity have shown superior quality than BCB negative (-) oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG) migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9) and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB- oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

  8. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

    Directory of Open Access Journals (Sweden)

    Bo Fu

    2015-12-01

    Full Text Available The in vitro maturation (IVM efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+ oocytes with low glucose-6-phosphate dehydrogenase (G6PDH activity have shown superior quality than BCB negative (− oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9 and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB− oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

  9. Proglycogen, macroglycogen, glucose, and glucose-6-phosphate concentrations in skeletal muscles of horses with polysaccharide storage myopathy performing light exercise.

    Science.gov (United States)

    Bröjer, Johan T; Essén-Gustavsson, Birgitta; Annandale, Erin J; Valberg, Stephanie J

    2006-09-01

    To determine concentrations of proglycogen (PG), macroglycogen (MG), glucose, and glucose-6-phosphate (G-6-P) in skeletal muscle of horses with polysaccharide storage myopathy (PSSM) before and after performing light submaximal exercise. 6 horses with PSSM and 4 control horses. Horses with PSSM completed repeated intervals of 2 minutes of walking followed by 2 minutes of trotting on a treadmill until muscle cramping developed. Four untrained control horses performed a similar exercise test for up to 20 minutes. Serum creatine kinase (CK) activity was measured before and 4 hours after exercise. Concentrations of total glycogen (G(t)), PG, MG, G-6-P, free glucose, and lactate were measured in biopsy specimens of gluteal muscle obtained before and after exercise. Mean serum CK activity was 26 times higher in PSSM horses than in control horses after exercise. Before exercise, muscle glycogen concentrations were 1.5, 2.2, and 1.7 times higher for PG, MG, and G(t), respectively, in PSSM horses, compared with concentrations in control horses. No significant changes in G(t), PG, MG, G-6-P, and lactate concentrations were detected after exercise. However, free glucose concentrations in skeletal muscle increased significantly in PSSM horses after exercise. Analysis of the results suggests that glucose uptake in skeletal muscle is augmented in horses with PSSM after light exercise. There is excessive storage of PG and MG in horses with PSSM, and high concentrations of the 2 glycogen fractions may affect functional interactions between glycogenolytic and glycogen synthetic enzymes and glycosomes.

  10. In vitro effects of radioactive properties of 99mTc and 99mTc-MDP on human glucose 6-phosphate dehydrogenase activity

    Science.gov (United States)

    Sahin, Ali; Senturk, Murat

    2017-04-01

    The inhibitory effects of Na99mTcO4 (Sodium pertechnetate) and Na99mTcO4-metilendifosfonat (MDP) on human erythrocyte glucose 6-phosphate dehydrogenase (hG6PD) activity were investigated. For this purpose, hG6PD was initially purified 557-fold at a yield of 51.43% using 2',5'-adenosine diphosphate (ADP) sepharose 4B affinity gel chromatography. The in vitro effects of these compounds on hG6PD enzyme were studied. It was detected in in vitro studies that the hG6PD enzyme is inhibited due to Na99mTcO4 and Na99mTcO4-metilendifosfonat (MDP).

  11. Efficient regeneration of NADPH in a 3-enzyme cascade reaction by in situ generation of glucose 6-phosphate from glucose and pyrophosphate

    NARCIS (Netherlands)

    Hartog, A.F.; van Herk, T.; Wever, R.

    2011-01-01

    We report here a promising method to regenerate NADPH (nicotinamide adenine dinucleotide phosphate) using the intermediate formation of glucose 6-phosphate (G6P) from glucose and pyrophosphate (PPi) catalyzed by the acid phosphatase from Shigella flexneri (PhoN-Sf). The G6P formed is used in turn by

  12. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals.

    Directory of Open Access Journals (Sweden)

    Suprovath Kumar Sarker

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is a common X-linked human enzyme defect of red blood cells (RBCs. Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly in six samples, c.G487A substitution (exon-6:Gly163Ser in five samples and c.G949A substitution (exon-9: Glu317Lys of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

  13. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border

    Science.gov (United States)

    Liu, Rong; Luo, Lan; Yang, Yuling; Zhang, Lu; Liu, Huaie; Zhang, Wen; Fan, Zhixiang; Yang, Zhaoqing; Cui, Liwang; He, Yongshu

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (PT/IVS11nt93T>C SNPs. Further

  14. [Significance of glucose-6-phosphate isomerase assay in early diagnosis of rheumatoid arthritis].

    Science.gov (United States)

    Xu, J; Liu, J; Zhu, L; Zhang, X W; Li, Z G

    2016-12-18

    To explore the titer of glucose-6-phosphate isomerase (GPI) for early diagnosis of the outpatient with rheumatoid arthritis (RA) in real life, and to analyze its relationship with disease activity. In the study, 1 051 patients with arthritis were collected in the group who had joints tender and swelling, and 90 cases of healthy people as a control group. ELISA method was used to detect the serum level of GPI, and according to clinical features and laboratory test, all the patients including 525 RA patients, the other patients including osteoarthritis (OA), 134 cases of seronegative spine joint disease (SpA), 104 cases of systemic lupus erythematosus (SLE), 31 cases of primary Sjogren syndrome (pSS), 24 cases of gout arthritis (GA), 22 cases of other connective tissue diseases (including polymyalgia rheumatica, dermatomyositis, systemic sclerosis, adult Still disease) and 46 cases of other diseases (including 165 cases of osteoporosis, avascular necrosis of the femoral head, traumatic osteomyelitis, bone and joint disease, juvenile rheumatoid arthritis, tumor). The diagnostic values of GPI were assessed, and the differences between the GPI positive and negative groups of the RA patients in clinical characteristics, disease activity, severity and inflammatory index analyzed. The positive rate of serum GPI in the patients with RA was 55.4%, contrasting to other autoimmune diseases (14.3%) and healthy controls (7.78%)(P<0.001). Compared with the OA and SpA patients, the RA group was increased more significantly, and the difference was statistically significant (P<0.001). The diagnostic value of GPI alone for RA was 0.39 mg/L, the sensitivity was 54.2%, and specificity was 87.3%. The positive rate of GPI in RF negative patients was 36.1%; the positive rate of GPI in anti-CCP antibody negative patients was 34.2%; the positive rate of GPI in RF and anti-CCP antibody negative patients was 24.1%. The level of GPI had positive correlation (P<0.05) with ESR, RF, anti

  15. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2018-02-01

    Full Text Available ObjectiveTransfusion of fresh frozen plasma (FFP helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs, numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc. are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD−, the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD− cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD− males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels.MethodsThe quality of n = 12 G6PD− and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools.ResultsHigher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD− FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD−. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD− FFPs compared with control.ConclusionOur results point

  16. Evaluation of Glucose-6-Phosphate Dehydrogenase stability in stored blood samples.

    Science.gov (United States)

    Jalil, Norunaluwar; Azma, Raja Zahratul; Mohamed, Emida; Ithnin, Azlin; Alauddin, Hafiza; Baya, Siti Noor; Othman, Ainoon

    2016-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the commonest cause of neonatal jaundice in Malaysia. Recently, OSMMR2000-D G6PD Assay Kit has been introduced to quantitate the level of G6PD activity in newborns delivered in Universiti Kebangsaan Malaysia Medical Centre (UKMMC). As duration of sample storage prior to analysis is one of the matters of concern, this study was conducted to identify the stability of G6PD enzyme during storage. A total of 188 cord blood samples from normal term newborns delivered at UKMMC were selected for this study. The cord bloods samples were collected in ethylene-diamine-tetra-acetic acid (EDTA) tubes and refrigerated at 2-8 °C. In addition, 32 out of 188 cord blood samples were spotted on chromatography paper, air-dried and stored at room temperature. G6PD enzyme activities were measured daily for 7 days using the OSMMR2000-D G6PD Assay Kit on both the EDTA blood and dried blood samples. The mean value for G6PD activity was compared between days of analysis using Student Paired T-Test. In this study, 172 out of 188 cord blood samples showed normal enzyme levels while 16 had levels corresponding to severe enzyme deficiency. The daily mean G6PD activity for EDTA blood samples of newborns with normal G6PD activity showed a significant drop on the fourth day of storage (p samples with severely deficient G6PD activity, significant drop was seen on third day of storage (p = 0.002). Analysis of dried cord blood showed a significant reduction in enzyme activity as early as the second day of storage (p = 0.001). It was also noted that mean G6PD activity for spotted blood samples were lower compared to those in EDTA tubes for all days (p = 0.001). Thus, EDTA blood samples stored at 2-8 °C appeared to have better stability in terms of their G6PD enzyme level as compared to dried blood samples on filter paper, giving a storage time of up to 3 days.

  17. [Significance of antibodies to the citrullinated glucose-6-phosphate isomerase peptides in rheumatoid arthritis].

    Science.gov (United States)

    Wu, D; Sun, L; Li, C H; Yang, L; Zhao, J X; Liu, X Y

    2016-12-18

    To detect the anti-citrullinated glucose-6-phosphate isomerase (GPI) 70-88 peptide antibody (anti-C-GPI(70-88) antibody), anti-citrullinated GPI 435-453 peptide antibody (anti-C-GPI(435-453) antibody), anti-GPI 70-88 peptide antibody (anti-GPI(70-88) antibody) and anti-GPI 435-453 peptide antibody(anti-GPI(435-453) antibody) in the serum of rheumatoid arthritis (RA) patients, and examine the diagnostic values of the anti-C-GPI peptide antibodies in RA. The anti-C-GPI(70-88) antibody, anti-C-GPI(435-453) antibody, anti-GPI(70-88) antibody and anti-GPI(435-453) antibody were detected by enzyme-linked immunosorbent assay (ELISA) in 191 RA patients, 129 other rheumatic diseases and 74 healthy controls. The clinical and laboratory data of the patients with RA were collected, and the values of anti-C-GPI peptide antibodies in the diagnosis of RA and the relationships of anti-C-GPI peptide antibodies with the clinical and laboratory parameters analyzed. (1) The mean titers of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody in the RA patients (respectively, 68.71 ± 4.20 and 51.78 ± 3.13) were significantly higher than those with other rheumatic diseases and healthy individuals (P <0.05). However, the mean titers of the anti-GPI(70-88) antibody and anti-GPI(435-453) antibody in the RA patients were similar to those with other rheumatic diseases and healthy individuals. (2) The diagnostic sensitivity and specificity of the anti-C-GPI(70-88) antibody for RA were 41.88% and 84.50% respectively; and the diagnostic sensitivity and specificity of the anti-C-GPI(435-453) antibody for RA were 46.05% and 86.05% respectively. The sensitivity of combined detection of the two anti-C-GPI peptide antibodies was 50.79%, and the specificity was 81.40%. (3) The positive rates of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody were 35% and 45% respectively in those patients with negative anti-cyclic citrullinated peptide antibody, anti

  18. Glucose-6-phosphate dehydrogenase deficiency in people living in malaria endemic districts of Nepal.

    Science.gov (United States)

    Ghimire, Prakash; Singh, Nihal; Ortega, Leonard; Rijal, Komal Raj; Adhikari, Bipin; Thakur, Garib Das; Marasini, Baburam

    2017-05-23

    Glucose-6-phosphate dehydrogenase (G6PD) is a rate limiting enzyme of the pentose phosphate pathway and is closely associated with the haemolytic disorders among patients receiving anti-malarial drugs, such as primaquine. G6PD deficiency (G6PDd) is an impending factor for radical treatment of malaria which affects the clearance of gametocytes from the blood and subsequent delay in the achievement of malaria elimination. The main objective of this study was to assess the prevalence of G6PD deficiency in six malaria endemic districts in Southern Nepal. A cross-sectional population based prevalence survey was conducted in six malaria endemic districts of Nepal, during April-Dec 2013. A total of 1341 blood samples were tested for G6PDd using two different rapid diagnostic test kits (Binax-Now ® and Care Start™). Equal proportions of participants from each district (n ≥ 200) were enrolled considering ethnic and demographic representation of the population groups. Out of total 1341 blood specimens collected from six districts, the overall prevalence of G6PDd was 97/1341; 7.23% on Binax Now and 81/1341; 6.0% on Care Start test. Higher prevalence was observed in male than females [Binax Now: male 10.2%; 53/521 versus female 5.4%; 44/820 (p = 0.003) and Care Start: male 8.4%; 44/521 versus female 4.5%; 37/820 (p = 0.003)]. G6PDd was higher in ethnic groups Rajbanshi (11.7%; 19/162) and Tharu (5.6%; 56/1005) (p = 0.006), major inhabitant of the endemic districts. Higher prevalence of G6PDd was found in Jhapa (22/224; 9.8%) and Morang districts (18/225; 8%) (p = 0.031). In a multivariate analysis, male were found at more risk for G6PDd than females, on Binax test (aOR = 1.97; CI 1.28-3.03; p = 0.002) and Care Start test (aOR = 1.86; CI 1.16-2.97; p = 0.009). The higher prevalence of G6PDd in certain ethnic group, gender and geographical region clearly demonstrates clustering of the cases and ascertained the risk groups within the population. This is the

  19. The Preterm Infant: A High-Risk Situation for Neonatal Hyperbilirubinemia Due to Glucose-6-Phosphate Dehydrogenase Deficiency.

    Science.gov (United States)

    Kaplan, Michael; Hammerman, Cathy; Bhutani, Vinod K

    2016-06-01

    Prematurity and glucose-6-phosphate dehydrogenase (G6PD) deficiency are risk factors for neonatal hyperbilirubinemia. The 2 conditions may interact additively or synergistically, contributing to extreme hyperbilirubinemia, with the potential for bilirubin neurotoxicity. This hyperbilirubinemia is the result of sudden, unpredictable, and acute episodes of hemolysis in combination with immaturity of bilirubin elimination, primarily of conjugation. Avoidance of contact with known triggers of hemolysis in G6PD-deficient individuals will prevent some, but not all, episodes of hemolysis. All preterm infants with G6PD deficiency should be vigilantly observed for the development of jaundice both in hospital and after discharge home. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of High-Dose Vitamin C Infusion in a Glucose-6-Phosphate Dehydrogenase-Deficient Patient

    Science.gov (United States)

    Gerber, Bryan; Kenyon, Katharine; Muthukanagaraj, Purushothaman

    2017-01-01

    Vitamin C supplementation is generally regarded as benign. There has been a resurgence of interest in the general medical community regarding the use of vitamin C most notably in the care of sepsis. Nonetheless, caution must be taken if supraphysiologic vitamin C supplementation is being administered as it should be considered a medication just like any other. We present a case of hemolysis in a glucose-6-phosphate dehydrogenase- (G6PD-) deficient patient receiving high-dose vitamin C infusions for his rheumatoid arthritis. PMID:29317868

  1. B cell depletion reduces the number of autoreactive T helper cells and prevents glucose-6-phosphate isomerase-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Oliver Frey

    Full Text Available The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI. The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells.

  2. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets

    Science.gov (United States)

    Hecker, Peter A.; Mapanga, Rudo F.; Kimar, Charlene P.; Ribeiro, Rogerio F.; Brown, Bethany H.; O'Connell, Kelly A.; Cox, James W.; Shekar, Kadambari C.; Asemu, Girma; Essop, M. Faadiel

    2012-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects. PMID:22829586

  3. Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Bayliak, M; Gospodaryov, D; Semchyshyn, H; Lushchak, V

    2008-04-01

    The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers' yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed.

  4. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Vulliamy, T.J.; D' Urso, M.; Battistuzzi, G.; Estrada, M.; Foulkes, N.S.; Martini, G.; Calabro, V.; Poggi, V.; Giordano, R.; Town, M.; Luzzatto, L.; Persico, M.G. (Royal Postgraduate Medical School, London (England))

    1988-07-01

    Glucose-6-phosphate dehydrogenase deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise molecular basis has remained unknown. The authors have cloned and sequenced seven mutant G6PD alleles. In the nondeficient polymorphic African variant G6PD A they have found a single point mutation. The other six mutants investigated were all associated with enzyme deficiency. The mutations observed show a striking predominance of C {yields} T transitions, with CG doublets involved in four of seven cases. Thus, diverse point mutations may account largely for the phenotypic heterogeneity of G6PD deficiency.

  5. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal

    2003-01-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  6. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  7. Labelling of the pineal gland with 99mTc-glucose-6-phosphate

    International Nuclear Information System (INIS)

    Ribeiro, M.J.; Santos, A.C.; De Lima, J.J.P.

    1998-01-01

    Lately, the pineal body has been the subject of a large variety of studies. Only recently it has been understood the role played by this endocrine gland to maintain the balance of the human body and also in animal models. Although small in dimensions, the pineal body is a very active organ, able to transmit precise temporal information. It probably participates in the synchronization of several organic functions. The present work aims to study a possible use of 99m Tc-glucose-6-P as a tracer for the pineal gland. Histoautoradiographic studies have been performed in Wistar rats. Tomoscintigraphic studies were acquired in patients and in albine rabbits (oryctolagus cuniculus hyplus). The labelling efficiency and the radiochemical purity of the labelled products have always been tested. Animal and human SPECT exams, show an activity focus projected over the area corresponding to the pineal body localization. Autoradiographic studies using [1- 14 C]-glucose-6-P did not reveal a more relevant activity at the pineal level, probably due to its hepatic conversion to 14 C-glucose. (author)

  8. Dexmedetomidine-based intravenous anesthesia of a pediatric patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency: A case report.

    Science.gov (United States)

    Takahashi, Nanae; Ogawa, Takashi; Wajima, Zen'ichiro; Omi, Akibumi

    2017-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect, resulting in deficits in nicotinamide adenine dinucleotide phosphate production, an important intracellular antioxidant enzyme. G6PD-deficient subjects present with a susceptibility of erythrocytes to oxidative stress and hemolysis, and should avoid drugs or stressors that have oxidative actions. Dexmedetomidine is an anesthetic agent with antioxidant actions. A 5-year-old boy with G6PD deficiency. The patient was diagnosed with G6PD deficiency at birth. His red blood cell levels were indicating Class II G6PD activity by the World Health Organization (WHO) classification, but had no history of hemolytic anemia. Because of the patient's anxiety and hyperactivity prior to an operation for upper labial frenum resection, we performed perioperative management using intravenous sedation with dexmedetomidine, which provides upper airway patency and has an antioxidant action. There was no abnormal breathing observed during anesthesia, and arousal was smooth with stable hemodynamics. The patient had no symptoms of hemolytic anemia up to 1 week postsurgery. Antioxidant sedatives such as dexmedetomidine may be useful for reducing the risk of hemolysis after surgery in infant G6PD deficiency cases.

  9. Metabolic impact of an NADH-producing glucose-6-phosphate dehydrogenase in Escherichia coli

    DEFF Research Database (Denmark)

    Olavarria, K.; De Ingeniis, J.; Zielinski, D. C.

    2014-01-01

    In Escherichia coli, the oxidative branch of the pentose phosphate pathway (oxPPP) is one of the major sources of NADPH when glucose is the sole carbon nutrient. However, unbalanced NADPH production causes growth impairment as observed in a strain lacking phosphoglucoisomerase (Δpgi). In this work......PDH(R46E,Q47E). Through homologous recombination, the zwf loci (encoding G6PDH) in the chromosomes of WT and Δpgi E. coli strains were replaced by DNA encoding LmG6PDH(R46E,Q47E). Contrary to some predictions performed with flux balance analysis, the replacements caused a substantial effect...

  10. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  11. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Segeja, M D; Mmbando, Bruno Paul; Kamugisha, M L

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure by the dise......Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure...

  12. Hyperbilirubinaemia and erythrocytic glucose 6 phosphate dehydrogenase deficiency in Malaysian children.

    Science.gov (United States)

    Hon, A T; Balakrishnan, S; Ahmad, Z

    1989-03-01

    Cord blood from 8,975 babies delivered in Hospital Sultanah Aminah Johor Bahru over a period of eight months (1st August 1985 to 31st March 1986) were screened for G6PD deficiency. The overall incidence was 4.5% in Chinese, 3.5% in Malays and 1.5% in Indian babies. One hundred of these babies were observed in the nursery for seven days and their daily serum bilirubin recorded. The serum bilirubin peaked at 96 hours to a value of 12mg%. None of the babies in the nursery developed a serum bilirubin level of more than 15mg%. Six of the babies with G6PD deficiency that were sent home were readmitted with hyperbilirubinaemia that needed exchange transfusion.

  13. Single Cell Cytochemistry Illustrated by the Demonstration of Glucose-6-Phosphate Dehydrogenase Deficiency in Erythrocytes

    NARCIS (Netherlands)

    Peters, Anna L.; van Noorden, Cornelis J. F.

    2017-01-01

    Cytochemistry is the discipline that is applied to visualize specific molecules in individual cells and has become an essential tool in life sciences. Immunocytochemistry was developed in the sixties of last century and is the most frequently used cytochemical application. However, metabolic mapping

  14. Inhibition of Glucose-6-Phosphate Dehydrogenase Reverses Cisplatin Resistance in Lung Cancer Cells via the Redox System

    Science.gov (United States)

    Hong, Weipeng; Cai, Peiheng; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2018-01-01

    The pentose phosphate pathway (PPP), which branches from glycolysis, is correlated with cancer cell proliferation, survival and senescence. In this study, differences in the metabolic profile of the PPP and the redox status of human lung carcinoma A549 cells and cisplatin-induced multidrug-resistant A549/DDP cells were analyzed and evaluated. The results showed that A549/DDP cells exhibited differential PPP-derived metabolic features and redox-related molecules. A549/DDP cells exhibited increased expression and enzymatic activity of PPP enzyme glucose-6-phosphate dehydrogenase (G6PD). Furthermore, as demonstrated by the apoptotic rate, cell viability, and colony formation, inhibition of G6PD by siRNA or an inhibitor sensitized A549/DDP cells to cisplatin. Additionally, inhibition of G6PD restored the cisplatin sensitivity of A549/DDP cells by influencing redox homeostasis. In conclusion, overcoming cisplatin resistance through inhibition of G6PD could improve the understanding of the mechanisms underlying cisplatin-induced resistance in human lung cancer and may provide insights into the therapeutic potential of this treatment to combat resistance. PMID:29445340

  15. High prevalence of Dapsone-induced oxidant hemolysis in North American SCT recipients without glucose-6-phosphate-dehydrogenase deficiency.

    Science.gov (United States)

    Olteanu, H; Harrington, A M; George, B; Hari, P N; Bredeson, C; Kroft, S H

    2012-03-01

    Dapsone (4-4'-diaminodiphenylsulfone) is commonly used for Pneumocystis jirovecii pneumonia (PCP) prophylaxis in immunocompromised patients. Oxidant hemolysis is a known complication of dapsone, but its frequency in adult patients who have undergone a SCT for hematological malignancies is not well established. We studied the presence of oxidant hemolysis, by combining examination of RBC morphology and laboratory data, in 30 patients who underwent a SCT and received dapsone for PCP prophylaxis, and compared this group with 26 patients who underwent a SCT and received trimethoprim-sulfamethoxazole (TMP-SMX) for PCP prophylaxis. All patients had normal glucose-6-phosphate dehydrogenase (G6PDH) enzymatic activity. In SCT patients, dapsone compared with TMP-SMX for PCP prophylaxis was associated with a high incidence of oxidant hemolysis (87 vs 0%, PSCT patients is 20-fold higher than the reported rate in the population of HIV-infected patients, and thus much higher than the prevalence of G6PDH variants in the general population. In our patients, it manifested clinically as a lower Hb that was not significant enough to result in increased packed RBC transfusions.

  16. PCR-based allelic discrimination for glucose-6-phosphate dehydrogenase (G6PD) deficiency in Ugandan umbilical cord blood.

    Science.gov (United States)

    Hsu, Jennifer; Fink, Deanna; Langer, Erica; Carter, Michelle L; Bengo, Derrik; Ndidde, Susan; Slusher, Tina; Ross, Julie A; Lund, Troy C

    2014-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common X-linked disorder in the world. G6PD deficiency puts children at risk for hyperbilirubinemia and kernicterus during the newborn period and an increased risk of severe hemolysis after exposure to many antimalarial medications. A laboratory diagnosis of G6PD deficiency is rare in the developing world due to limited resources. We developed a TaqMan-based allele-specific assay to rapidly determine rates of G6PD deficiency contributing alleles (G202A and A376G) in East Africa. We tested umbilical cord blood from 100 Ugandan newborns and found that the overall allele frequency of G202A was .13 and A376G was .32. The overall incidence of G6PD A- (G202A/A376G) was 6%; all A- variants were males. There was no correlation between G6PD deficiency and umbilical cord blood hemoglobin, white blood count, platelet count, or other hematologic parameters. Allele-specific PCR can serve as a rapid method to determine specific G6PD deficiency allele frequencies in a given population and as a diagnostic tool in a hospital setting in which laboratory resources are present.

  17. G6PD-MutDB: a mutation and phenotype database of glucose-6-phosphate (G6PD) deficiency.

    Science.gov (United States)

    Zhao, Xin; Li, Zuofeng; Zhang, Xiaoyan

    2010-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary enzymatic disorder of red blood cells in humans due to mutations in the G6PD gene. The G6PD enzyme catalyzes the first step in the pentose phosphate pathway to protect cells against oxidative stress. Mutations in the G6PD gene will cause functional variants with various biochemical and clinical phenotypes. So far, about 160 mutations along with more than 400 biochemical variants have been described. G6PD-MutDB is a disease-specific resource of G6PD deficiency, collecting and integrating G6PD mutations with biochemical and clinical phenotypes. Data of G6PD deficiency is manually extracted from published papers, focusing primarily on variants with identified mutation and well-described quantitative phenotypes. G6PD-MutDB implements an approach, CNSHA predictor, to help identify a potential chronic non-spherocytic hemolytic anemia (CNSHA) phenotype of an unknown mutation. G6PD-MutDB is believed to facilitate analysis of relationship between molecular mutation and functional phenotype of G6PD deficiency owing to convenient data resource and useful tools. This database is available from http://202.120.189.88/mutdb.

  18. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso.

    Science.gov (United States)

    Ouattara, Abdoul Karim; Bisseye, Cyrille; Bazie, Bapio Valery Jean Télesphore Elvira; Diarra, Birama; Compaore, Tegwindé Rebeca; Djigma, Florencia; Pietra, Virginio; Moret, Remy; Simpore, Jacques

    2014-08-01

    To investigate 4 combinations of mutations responsible for glucose-6-phosphate dehydrogenase (G6PD) deficiency in a rural community of Burkina Faso, a malaria endemic country. Two hundred individuals in a rural community were genotyped for the mutations A376G, G202A, A542T, G680T and T968C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism. The prevalence of the G6PD deficiency was 9.5% in the study population. It was significantly higher in men compared to women (14.3% vs 6.0%, P=0.049). The 202A/376G G6PD A- was the only deficient variant detected. Plasmodium falciparum asymptomatic parasitaemia was significantly higher among the G6PD-non-deficient persons compared to the G6PD-deficient (P<0.001). The asymptomatic parasitaemia was also significantly higher among G6PD non-deficient compared to G6PD-heterozygous females (P<0.001). This study showed that the G6PD A- variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.

  19. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the Mediterranean C563T mutation screening.

    Science.gov (United States)

    Molou, Elina; Schulpis, Kleopatra H; Thodi, Georgia; Georgiou, Vassiliki; Dotsikas, Yannis; Papadopoulos, Konstantinos; Biti, Sofia; Loukas, Yannis L

    2014-04-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) gene is located at the X-chromosome at Xq28 and the disease is recessively inherited predominantly in males. More than 400 variants have been proposed based on clinical and enzymatic studies. The aim of the current study was to identify C563T mutation in G6PD-deficient newborns and to correlate the enzyme residual activity with the presence of the mutation. Some 1189 full-term neonates aged 3-5 days old were tested for G6PD activity in dried blood spots from Guthrie cards using a commercial kit. DNA extraction from Guthrie cards and mutation identification among the deficient samples were performed with current techniques. A total of 92 (7.7%) newborns were G6PD-deficient. In 46 (50%), the mutation C563T was identified. The residual activity in C563T hemizygote males (n = 28) was statistically significantly lower (1.23 ± 0.93 U/g Hb) than that in non-C563T G6PD-deficient males (n = 25) (4.01 ± 1.20 U/g Hb, p G6PD deficiency and severe neonatal jaundice. G6PD activity showed statistically significant correlation with total bilirubin blood levels.

  20. Engineering a thermostable highly active glucose 6-phosphate dehydrogenase and its application to hydrogen production in vitro.

    Science.gov (United States)

    Huang, Rui; Chen, Hui; Zhou, Wei; Ma, Chunling; Zhang, Y-H Percival

    2018-04-01

    Glucose 6-phosphate dehydrogenase (G6PDH) is one of the most important dehydrogenases responsible for generating reduced NADPH for anabolism and is also the rate-limiting enzyme in the Entner-Doudoroff pathway. For in vitro biocatalysis, G6PDH must possess both high activity and good thermostability due to requirements of efficient use and low expense of biocatalyst. Here, we used directed evolution to improve thermostability of the highly active G6PDH from Zymomonas mobilis. Four generations of random mutagenesis and Petri-dish-based double-layer screening evolved the thermolabile wild-type enzyme to the thermostable mutant Mut 4-1, which showed a more than 124-fold increase in half-life time (t 1/2 ) at 60 °C, a 3.4 °C increase in melting temperature (T m ), and a 5 °C increase in optimal temperature (T opt ), without compromising the specific activity. In addition, the thermostable mutant was conducted to generate hydrogen from maltodextrin via in vitro synthetic biosystems (ivSB), gaining a more than 8-fold improvement of productivity rate with 76% of theoretical yield at 60 °C. Thus, the engineered G6PDH has been shown to effectively regenerate NADPH at high temperatures and will be applicable for NAD(P)H regeneration in numerous in vitro biocatalysis applications.

  1. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  2. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  3. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability.

    Science.gov (United States)

    Jiang, Xu-ping; Wang, Shang-qian; Wang, Wei; Xu, Yang; Xu, Zhen; Tang, Jing-yuan; Sun, Hong-yong; Wang, Zeng-jun; Zhang, Wei

    2015-08-01

    Sperm cryopreservation is a method to preserve sperm samples for a long period. However, the fertility of sperm decreases markedly after freezing and thawing in a certain amount of samples. The aim of the present study was to find useful and reliable predictive biomarkers of the capacity to withstand the freeze-thawing process in human ejaculates. Previous researches have shown that enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are closely related to spermatozoa quality. We chose the two proteins as probable markers of sperm freezing capacity. Ejaculate samples were separated into good freezability ejaculates (GFE) and poor freezability ejaculates (PFE) according to progressive motility of the sperm after thawing. Before starting cryopreservation protocols, the two proteins from each group were compared using western blot analysis and immunofluorescence. Results showed that normalized content of ENO1 (P<0.05) and GPI (P<0.01) were both significantly higher in GFE than in PFE. The association of ENO1 and GPI with postthaw sperm viability and motility was confirmed using Pearson's linear correlation. In conclusion, ENO1 and GPI can be used as markers of human sperm freezability before starting the cryopreservation procedure. Copyright © 2015. Published by Elsevier Inc.

  4. Glucose-6-phosphate isomerase promotes the proliferation and inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis.

    Science.gov (United States)

    Zong, Ming; Lu, Tianbao; Fan, Shasha; Zhang, Hui; Gong, Ruhan; Sun, Lishan; Fu, Zhiyan; Fan, Lieying

    2015-04-14

    Fibroblast-like synoviocytes (FLS) play an important role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to investigate the role of glucose 6-phosphate isomerase (GPI) in the proliferation of RA-FLS. The distribution of GPI in synovial tissues from RA and osteoarthritis (OA) patients was examined by immunohistochemical analysis. FLS were isolated and cultured, cellular GPI level was detected by real-time polymerase chain reaction (PCR) and Western blot analysis, and secreted GPI was detected by Western blot and enzyme-linked immunosorbent assay (ELISA). Doxorubicin (Adriamycin, ADR) was used to induce apoptosis. Cell proliferation was determined by MTS assay. Flow cytometry was used to detect cell cycle and apoptosis. Secreted pro-inflammatory cytokines were measured by ELISA. GPI was abundant in RA-FLS and was an autocrine factor of FLS. The proliferation of both RA and OA FLS was increased after GPI overexpression, but was decreased after GPI knockdown. Meanwhile, exogenous GPI stimulated, while GPI antibody inhibited, FLS proliferation. GPI positively regulated its receptor glycoprotein 78 and promoted G1/S phase transition via extracellular regulated protein kinases activation and Cyclin D1 upregulation. GPI inhibited ADR-induced apoptosis accompanied by decreased Fas and increased Survivin in RA FLS. Furthermore, GPI increased the secretion of tumor necrosis factor-α and interleukin-1β by FLS. GPI plays a pathophysiologic role in RA by stimulating the proliferation, inhibiting the apoptosis, and increasing pro-inflammatory cytokine secretion of FLS.

  5. Peptidylarginine deiminase type 4 deficiency reduced arthritis severity in a glucose-6-phosphate isomerase-induced arthritis model.

    Science.gov (United States)

    Seri, Yu; Shoda, Hirofumi; Suzuki, Akari; Matsumoto, Isao; Sumida, Takayuki; Fujio, Keishi; Yamamoto, Kazuhiko

    2015-08-21

    Peptidyl arginine deiminase 4 (PAD4) is an enzyme that is involved in protein citrullination, and is a target for anti-citrullinated peptide antibodies (ACPAs) in rheumatoid arthritis (RA). Genetic polymorphisms in the PADI4 gene encoding PAD4 are associated with RA susceptibility. We herein analyzed the roles of PADI4 in inflammatory arthritis using a glucose-6-phosphate isomerase (GPI)-induced arthritis (GIA) model in Padi4 knockout (KO) mice. Arthritis severity, serum anti-GPI antibody titers, and IL-6 concentrations were significantly reduced in Padi4 KO mice. The frequency of Th17 cells was decreased in GPI-immunized Padi4 KO mice, whereas WT and Padi4-deficient naïve CD4(+) T cells displayed the same efficiencies for Th17 cell differentiation in vitro. In addition, the numbers of myeloid lineage cells were reduced with the increased expression of pro-apoptotic genes in GPI-immunized Padi4 KO mice. Furthermore, the survival of Padi4-deficient neutrophils was impaired in vitro. Our results suggest that PADI4 exacerbates arthritis with diverse immunological modifications.

  6. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    Science.gov (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  7. Identification of point mutations in Glucose-6-Phosphate Dehydrogenase gene in Timor Island people : A preliminary report

    Directory of Open Access Journals (Sweden)

    Widanto Hardjowasito

    2001-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD deficiency is common in malaria endemic region, however no molecular study has been performed on G6PD deficiency in Timor Island, Indonesia a malarial hyperendemic area which Proto Malay is the majority of the people in that island. To observe the frequency and molecular type of mutations in G6PD deficient Proto Malay people, 118 native people were screened using formazan ring test. Mutation in the G6PD gene were determined by MPTP (Multiple PCR using Multiple Tandem Forward Primers and a common Reserve Pimer method and confirmed by automatic sequencer. This study shows that three males have lower G6PD activity. Using MPTP method, a point mutation could be indicated in the two cases. Sequencing of the amplified products in 2 G6PD patients disclosed mutations of T383C in exon 5 and C 592 T in exon 6 in respective case. Our result documents point mutations in exon 5 and exon 6 in the G6PD gene of two Proto Malay people in Timor. These mutations are common in Asia region. (Med J Indones 2001; 10: 210-3Keywords: mutations, G6PD, Proto Malay.

  8. Inhibition of Glucose-6-Phosphate Dehydrogenase Could Enhance 1,4-Benzoquinone-Induced Oxidative Damage in K562 Cells

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2016-01-01

    Full Text Available Benzene is a chemical contaminant widespread in industrial and living environments. The oxidative metabolites of benzene induce toxicity involving oxidative damage. Protecting cells and cell membranes from oxidative damage, glucose-6-phosphate dehydrogenase (G6PD maintains the reduced state of glutathione (GSH. This study aims to investigate whether the downregulation of G6PD in K562 cell line can influence the oxidative toxicity induced by 1,4-benzoquinone (BQ. G6PD was inhibited in K562 cell line transfected with the specific siRNA of G6PD gene. An empty vector was transfected in the control group. Results revealed that G6PD was significantly upregulated in the control cells and in the cells with inhibited G6PD after they were exposed to BQ. The NADPH/NADP and GSH/GSSG ratio were significantly lower in the cells with inhibited G6PD than in the control cells at the same BQ concentration. The relative reactive oxygen species (ROS level and DNA oxidative damage were significantly increased in the cell line with inhibited G6PD. The apoptotic rate and G2 phase arrest were also significantly higher in the cells with inhibited G6PD and exposed to BQ than in the control cells. Our results suggested that G6PD inhibition could reduce GSH activity and alleviate oxidative damage. G6PD deficiency is also a possible susceptible risk factor of benzene exposure.

  9. Estimation of risk of glucose 6-phosphate dehydrogenase-deficient red cells to ozone and nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, M.A.; Ryer, J.; Easton, D.; Witz, G.; Goldstein, B.D.

    1986-07-01

    It has been suggested that the more than 1 million black Americans with the A- variant of glucose-6-phosphate dehydrogenase deficiency (G6PD) are at risk for adverse hematologic effects due to inhalation of ambient levels of oxidant gases. To evaluate this hypothesis studies were performed that included direct exposure of human G6PD-deficient red cells, and of mouse strains with different G6PD levels, to the oxidant gases ozone and nitrogen dioxide. Using the oxidant drug phenylhydrazine in part as a point of comparison, conservative extrapolation of the data indicates that exposure to levels of ozone or nitrogen dioxide at least one and probably two orders of magnitude above the LD50 would be required for any hematologic effect to be observed of pertinence to G6PD deficiency. It is concluded that there is no reason to remove or preclude from the workplace black employees with the common A- variant of red cell G6PD deficiency who potentially are exposed to oxidant gases.

  10. Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency revealed by single-strand conformation and sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Calabro, V.; Mason, P.J.; Luzzatto, L. (Hammersmith Hospital, London (United Kingdom)); Filosa, S.; Martini, G. (CNR, Naples (Italy)); Civitelli, D.; Cittadella, R.; Brancati, C. (CNR, Cosenza (Italy))

    1993-03-01

    The authors have carried out a systematic study of the molecular basis of glucose-6-phosphate dehydrogenase (G6PD) deficiency on a sample of 53 male subjects from Calabria, in southern Italy. Their sequential approach consisted of the following steps: (1) Partial biochemical characterization was used to pinpoint candidate known variants. The identity of these was then varified by restriction-enzyme or allele-specific oligonucleotide hybridization analysis of the appropriate PCR-amplified fragment. (2) On samples for which there was no obvious candidate mutation, they proceeded to amplify the entire coding region in eight fragments, followed by single-strand conformation polymorphism (SSCP) analysis of each fragment. (3) The next step was M13 phage cloning and sequencing of those individual fragments that were found to be abnormal by SSCP. Through this approach they have identified the molecular lesion in 51 of the 53 samples. In these they found a total of nine different G6PD-deficient variants, five of which (G6PD Mediterranean, G6PD A[sup [minus

  11. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    Directory of Open Access Journals (Sweden)

    Misako Taniguchi

    2016-01-01

    Full Text Available Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine to examine relationship between glutathione (GSH levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD and malic enzyme (ME, in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule.

  12. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method

    DEFF Research Database (Denmark)

    Enevold, Anders; Vestergaard, Lasse S; Lusingu, John

    2005-01-01

    BACKGROUND: Mutations in the haemoglobin beta-globin (HbB) and glucose-6-phosphate dehydrogenase (G6PD) genes cause widespread human genetic disorders such as sickle cell diseases and G6PD deficiency. In sub-Saharan Africa, a few predominant polymorphic variants of each gene account for a majority...

  13. Quantitative aspects of the cytochemical demonstration of glucose-6-phosphate dehydrogenase with tetrazolium salts studied in a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.; Sanders, J. A.

    1981-01-01

    The enzyme cytochemical demonstration of glucose-6-phosphate dehydrogenase (G6PDH) with several tetrazolium salts has been studied with an artificial model of polyacrylamide films in corporated with the enzyme, which enabled teh correlation of cytochemical and biochemical data. In the model films no

  14. Quantitative aspects of the cytochemical demonstration of glucose-6-phosphate dehydrogenase with tetranitro BT studied in a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.

    1980-01-01

    The cytochemical determination of the activity of glucose-6-phosphate dehydrogenase (G6PDH) with tetranitro blue tetrazolium (TNBT) was studied with model films of polyacrylamide gel incorporating purified enzyme. This model system enabled a quantitative study to be made of different parameters

  15. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females

    NARCIS (Netherlands)

    Peters, Anna L.; Veldthuis, Martijn; van Leeuwen, Karin; Bossuyt, Patrick M. M.; Vlaar, Alexander P. J.; van Bruggen, Robin; de Korte, Dirk; van Noorden, Cornelis J. F.; van Zwieten, Rob

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for

  16. Deletion of leucine 61 in glucose-6-phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections

    NARCIS (Netherlands)

    van Bruggen, Robin; Bautista, José M.; Petropoulou, Theoni; de Boer, Martin; van Zwieten, Rob; Gómez-Gallego, Felíx; Belohradsky, Bernd H.; Hartwig, Nico G.; Stevens, David; Mason, Philip J.; Roos, Dirk

    2002-01-01

    In this study the blood cells of 4 male patients from 2 unrelated families with chronic nonspherocytic anemia and recurrent bacterial infections were investigated. The activity of glucose-6-phosphate dehydrogenase (G6PD) in the red blood cells and in the granulocytes of these patients was below

  17. Glucose-6-phosphate dehydrogenase status and risk of hemolysis in Plasmodium falciparum-infected African children receiving single-dose primaquine

    NARCIS (Netherlands)

    Eziefula, A.C.; Pett, H. van; Grignard, L.; Opus, S.; Kiggundu, M.; Kamya, M.R.; Yeung, S.; Staedke, S.G.; Bousema, T.; Drakeley, C.

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) enzyme function and genotype were determined in Ugandan children with uncomplicated falciparum malaria enrolled in a primaquine trial after exclusion of severe G6PD deficiency by fluorescent spot test. G6PD A- heterozygotes and hemizygotes/homozygotes

  18. Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections

    NARCIS (Netherlands)

    Roos, D.; van Zwieten, R.; Wijnen, J. T.; Gómez-Gallego, F.; de Boer, M.; Stevens, D.; Pronk-Admiraal, C. J.; de Rijk, T.; van Noorden, C. J.; Weening, R. S.; Vulliamy, T. J.; Ploem, J. E.; Mason, P. J.; Bautista, J. M.; Khan, P. M.; Beutler, E.

    1999-01-01

    We have investigated the blood cells from a woman with a low degree of chronic nonspherocytic hemolytic anemia and frequent bacterial infections accompanied by icterus and anemia, The activity of glucose 6-phosphate dehydrogenase (G6PD) in her red blood cells (RBCs) was below detection level, and in

  19. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension

    Science.gov (United States)

    Chettimada, Sukrutha; Gupte, Rakhee; Rawat, Dhwajbahadur; Gebb, Sarah A.; McMurtry, Ivan F.

    2014-01-01

    Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension. PMID:25480333

  20. Identification and Characterization of the Glucose-6-Phosphate Dehydrogenase Gene Family in the Para Rubber Tree, Hevea brasiliensis.

    Science.gov (United States)

    Long, Xiangyu; He, Bin; Fang, Yongjun; Tang, Chaorong

    2016-01-01

    As a key enzyme in the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) provides nicotinamide adenine dinucleotide phosphate (NADPH) and intermediary metabolites for rubber biosynthesis, and plays an important role in plant development and stress responses. In this study, four Hevea brasiliensis (Para rubber tree) G6PDH genes (HbG6PDH1 to 4) were identified and cloned using a genome-wide scanning approach. All four HbG6PDH genes encode functional G6PDH enzymes as shown by heterologous expression in E. coli. Phylogeny analysis and subcellular localization prediction show that HbG6PDH3 is a cytosolic isoform, while the other three genes (HbG6PDH1, 2 and 4) are plastidic isoforms. The subcellular locations of HbG6PDH3 and 4, two latex-abundant isoforms were further verified by transient expression in rice protoplasts. Enzyme activity assay and expression analysis showed HbG6PDH3 and 4 were implicated in PPP during latex regeneration, and to influence rubber production positively in rubber tree. The cytosolic HbG6PDH3 is a predominant isoform in latex, implying a principal role for this isoform in controlling carbon flow and NADPH production in the PPP during latex regeneration. The expression pattern of plastidic HbG6PDH4 correlates well with the degree of tapping panel dryness, a physiological disorder that stops the flow of latex from affected rubber trees. In addition, the four HbG6PDHs responded to temperature and drought stresses in root, bark, and leaves, implicating their roles in maintaining redox balance and defending against oxidative stress.

  1. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in southeast Iran: implications for malaria elimination.

    Science.gov (United States)

    Tabatabaei, Seyed Mehdi; Salimi Khorashad, Alireza; Sakeni, Mohammad; Raeisi, Ahmad; Metanat, Zahra

    2015-03-15

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is an X-linked genetic disorder with a relatively high frequency in malaria-endemic regions. It is an obstacle to malaria elimination, as primaquine administered in the treatment of malaria can cause hemolysis in G6PD-deficient individuals. This study presents information on the prevalence of G6PD deficiency in Sistan and Balouchetsan province, which hosts more than 90% of Plasmodium vivax malaria cases in Iran. This type of information is needed for a successful malaria elimination program. A total of 526 students were randomly recruited through schools located in southeast Iran. Information was collected by interviewing the students using a structured questionnaire. Blood samples taken on filter papers were examined for G6PD deficiency using the fluorescent spot test. Overall, 72.8% (383/526) of the subjects showed normal G6PD enzyme function. Mild and severe G6PD deficiency was observed in 14.8% (78) and 12.2% (64) of subjects, respectively. A total 193/261 males (73.9%) and 190/265 (72%) females had normal enzyme activity. Mild G6PD deficiency was observed in 10.8% (28) and 18.9% (50) of male and female subjects, respectively. However, in comparison with females, a greater proportion of males showed severe enzyme deficiency (15.3% versus 9.1%). All these differences were statistically significant (p G6PD deficiency is highly prevalent in southeast Iran. G6PD-deficient individuals are susceptible to potentially severe and life-threatening hemolytic reactions after primaquine treatment. In order to achieve malaria elimination goals in the province, G6PD testing needs to be made routinely available within the health system.

  2. Effects of fescue and clover forage on serum lactate dehydrogenase and glucose 6-phosphate dehydrogenase isoenzymic profiles in steers.

    Science.gov (United States)

    Rosenkrans, C F; Coffey, K P; Paria, B C; Tarn, C Y; Johnson, Z B; Moyer, J L

    2000-12-01

    We determined the effects of forage type on isoenzymes of lactate dehydrogenase (LDH) and glucose 6-phosphate dehydrogenase (G6PDH). Forty-eight crossbred steers were randomly allotted to replicated pastures consisting of fungus-infected (Neotyphodium coenophialum) fescue or fungus-free fescue each with or without ladino clover overseeding. At the end of the 180-d grazing period, serum was harvested from the steers. Steers were finished in a feedlot and slaughtered after approximately 150 d in the feedlot. Isoenzymes for LDH and G6PDH were separated using PAGE. Five LDH isoenzymes (L1-15) were typically detected. Isoenzyme L1 (most anodic) had the greatest area percent as detected by laser densitometry (72, 12, 10, 5, and 7%, respectively, for L1, L2, L3, L4, and L5). Four proteins had G6PDH activity (G1-G4) with G2 having the greatest area percent (15, 52, 27, and 14, respectively, for G1, G2, G3, and G4). Isoenzymes within a dehydrogenase were correlated (P < .05). In addition, area percentage of L1 was correlated (P < .05; r = .34) with area percentage of G2, and area percentage of L4 was correlated (P < .07; r = .73) with area percentage of G1. Area percentages of L1, L2, and L3 were affected by an interaction (P < .09) of forage types. Body weight gains for steers grazing endophyte-infected fescue were depressed (P < .05); however, steers compensated with increased (P < .05) weight gains during the finishing phase. Fungal toxins produced by Neotyphodium coenophialum may alter an animal's metabolism, growth, and development via shifts in reducing equivalents (NADH).

  3. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37.

    Science.gov (United States)

    Kainulainen, Veera; Loimaranta, Vuokko; Pekkala, Anna; Edelman, Sanna; Antikainen, Jenni; Kylväjä, Riikka; Laaksonen, Maiju; Laakkonen, Liisa; Finne, Jukka; Korhonen, Timo K

    2012-05-01

    Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.

  4. A novel c.197T ® A variant among Brazilian neonates with glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    José Pereira de Moura Neto

    2008-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 deficiency is the most common enzyme deficiency worldwide, causing a spectrum of diseases including neonatal hyperbilirubinemia and acute or chronic hemolysis. We used the methemoglobin reduction test and G6PD electrophoresis to screen 655 neonates (354 females and 301 males for common G6PD mutations in the city of Salvador in the Northeastern Brazilian state Bahia and found that 66 (10.1% were G6PD-deficient (41 females and 25 males. The 66 (10.1% G6PD-deficient neonates were assessed for the c.376 A -> G (exon 5 and c.202 G -> A (exon 4 mutations using the polymerase chain reaction and restriction enzyme fragment length polymorphism (PCR-RFLP analysis and the results validated by DNA sequencing. Of the 66 G6PD-deficient neonates investigated we found that 54 (81.8% presented the c.376 A -> G (p.Asn126Asp and c.202 G -> A (p.Val68Met mutations, two (3% had the c.376 A -> G mutation only, two (3% had the c.202 G -> A mutation only, five (7.6% exhibited a previously unrecorded 197T -> A (p.Phe66Thr substitution in exon 4 and three showed no mutations at any of these sites. Of the five neonates exhibiting the new 197T -> A (p.Phe66Thr substitution, four (6.1% also presented the c.202 G -> A and c.376 A -> G mutations and one (1.5% had the c.[197T -> A / 202 G -> A] combination. We propose to name the new variant G6PD Bahia.

  5. Glucose-6-phosphate dehydrogenase (G6PD-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Hsieh

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key enzyme in the pentose phosphate pathway and provides reducing energy to all cells by maintaining redox balance. The most common clinical manifestations in patients with G6PD deficiency are neonatal jaundice and acute hemolytic anemia. The effects of microbial infection in patients with G6PD deficiency primarily relate to the hemolytic anemia caused by Plasmodium or viral infections and the subsequent medication that is required. We are interested in studying the impact of bacterial infection in G6PD-deficient cells. G6PD knock down A549 lung carcinoma cells, together with the common pathogen Staphylococcus aureus, were employed in our cell infection model. Here, we demonstrate that a lower cell viability was observed among G6PD-deficient cells when compared to scramble controls upon bacterial infection using the MTT assay. A significant increase in the intracellular ROS was detected among S. aureus-infected G6PD-deficient cells by observing dichlorofluorescein (DCF intensity within cells under a fluorescence microscope and quantifying this signal using flow cytometry. The impairment of ROS removal is predicted to enhance apoptotic activity in G6PD-deficient cells, and this enhanced apoptosis was observed by annexin V/PI staining under a confocal fluorescence microscope and quantified by flow cytometry. A higher expression level of the intrinsic apoptotic initiator caspase-9, as well as the downstream effector caspase-3, was detected by Western blotting analysis of G6PD-deficient cells following bacterial infection. In conclusion, we propose that bacterial infection, perhaps the secreted S. aureus α-hemolysin in this case, promotes the accumulation of intracellular ROS in G6PD-deficient cells. This would trigger a stronger apoptotic activity through the intrinsic pathway thereby reducing cell viability when compared to wild type cells.

  6. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply.

    Science.gov (United States)

    Xue, Jiao; Balamurugan, Srinivasan; Li, Da-Wei; Liu, Yu-Hong; Zeng, Hao; Wang, Lan; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2017-05-01

    Oleaginous microalgae have great prospects in the fields of feed, nutrition, biofuel, etc. However, biomass and lipid productivity in microalgae remain a major economic and technological bottleneck. Here we present a novel regulatory target, glucose-6-phosphate dehydrogenase (G6PD) from the pentose phosphate pathway (PPP), in boosting microalgal lipid accumulation. G6PD, involved in the formation of NADPH demanded in fatty acid biosynthesis as reducing power, was characterized in oleaginous microalga Phaeodactylum tricornutum. In G6PD overexpressing microalgae, transcript abundance of G6PD increased by 4.4-fold, and G6PD enzyme activity increased by more than 3.1-fold with enhanced NADPH production. Consequently, the lipid content increased by 2.7-fold and reached up to 55.7% of dry weight, while cell growth was not apparently affected. The fatty acid composition exhibited significant changes, including a remarkable increase in monounsaturated fatty acids C16:1 and C18:1 concomitant with a decrease in polyunsaturated fatty acids C20:5 and C22:6. G6PD was localized to the chloroplast and its overexpression stimulated an increase in the number and size of oil bodies. Proteomic and metabolomic analyzes revealed that G6PD play a key role in regulating pentose phosphate pathway and subsequently upregulating NADPH consuming pathways such as fatty acid synthesis, thus eventually leading to lipid accumulation. Our findings show the critical role of G6PD in microalgal lipid accumulation by enhancing NADPH supply and demonstrate that G6PD is a promising target for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti.

    Science.gov (United States)

    von Fricken, Michael E; Weppelmann, Thomas A; Eaton, Will T; Alam, Meer T; Carter, Tamar E; Schick, Laura; Masse, Roseline; Romain, Jean R; Okech, Bernard A

    2014-07-01

    Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%-24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Field Trial of the CareStart Biosensor Analyzer for the Determination of Glucose-6-Phosphate Dehydrogenase Activity in Haiti.

    Science.gov (United States)

    Weppelmann, Thomas A; von Fricken, Michael E; Wilfong, Tara D; Aguenza, Elisa; Philippe, Taina T; Okech, Bernard A

    2017-10-01

    Throughout many developing and tropical countries around the world, malaria remains a significant threat to human health. One barrier to malaria elimination is the ability to safely administer primaquine chemotherapy for the radical cure of malaria infections in populations with a high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the current study, a field trial of the world's first quantitative, point-of-care assay for measuring G6PD activity was conducted in Haiti. The performance of the CareStart Biosensor Analyzer was compared with the gold standard spectrophotometric assay and genotyping of the G6PD allele in schoolchildren ( N = 343) from the Ouest Department of Haiti. In this population, 19.5% of participants (67/343) had some form of G6PD deficiency (< 60% residual activity) and 9.9% (34/343) had moderate-to-severe G6PD deficiency (< 30% residual activity). Overall, 18.95% of participants had the presence of the A-allele (65/343) with 7.87% (27/343) considered at high risk for drug-induced hemolysis (hemizygous males and homozygous females). Compared with the spectrophotometric assay, the sensitivity and specificity to determine participants with < 60% residual activity were 53.7% and 94.6%, respectively; for participants with 30% residual activity, the sensitivity and specificity were 5.9% and 99.7%, respectively. The biosensor overestimated the activity in deficient individuals and underestimated it in participants with normal G6PD activity, indicating the potential for a systematic measurement error. Thus, we suggest that the current version of the biosensor lacks adequate sensitivity and should be improved prior to its use as a point-of-care diagnostic for G6PD deficiency.

  9. Screening for glucose-6-phosphate dehydrogenase deficiency in neonates: a comparison between cord and peripheral blood samples.

    Science.gov (United States)

    AlSaif, Saif; Ponferrada, Ma Bella; AlKhairy, Khalid; AlTawil, Khalil; Sallam, Adel; Ahmed, Ibrahim; Khawaji, Mohammed; AlHathlol, Khalid; Baylon, Beverly; AlSuhaibani, Ahmed; AlBalwi, Mohammed

    2017-07-11

    The use of cord blood in the neonatal screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency is being done with increasing frequency but has yet to be adequately evaluated against the use of peripheral blood sample which is usually employed for confirmation. We sought to determine the incidence and gender distribution of G6PD deficiency, and compare the results of cord against peripheral blood in identifying G6PD DEFICIENCY neonates using quantitative enzyme activity assay. We carried out a retrospective and cross-sectional study employing review of primary hospital data of neonates born in a tertiary care center from January to December 2008. Among the 8139 neonates with cord blood G6PD assays, an overall incidence of 2% for G6PD deficiency was computed. 79% of these were males and 21% were females with significantly more deficient males (p blood samples (n = 1253) showed a significantly higher mean G6PD value for peripheral than cord blood (15.12 ± 4.52 U/g and 14.52 ± 4.43 U/g, respectively, p = 0.0008). However, the proportion of G6PD deficient neonates did not significantly differ in the two groups (p = 0.79). Sensitivity of cord blood in screening for G6PD deficiency, using peripheral G6PD assay as a gold standard was 98.6% with a NPV of 99.5%. There was no difference between cord and peripheral blood samples in discriminating between G6PD deficient and non-deficient neonates. A significantly higher mean peripheral G6PD assay reinforces the use of cord blood for neonatal screening since it has substantially low false negative results.

  10. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells.

    Science.gov (United States)

    Das, Mahua R; Bag, Arup K; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S

    2016-02-24

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  11. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    International Nuclear Information System (INIS)

    Das, Mahua R.; Bag, Arup K.; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K.; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S.

    2016-01-01

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  12. Icterícia neonatal e deficiência de glicose-6-fosfato desidrogenase Neonatal jaundice and glucose-6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Amauri Antiquera Leite

    2010-01-01

    Full Text Available A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase in newborn babies may be responsible for neonatal jaundice. There is a concern of many authors from other countries in respect to complications in neonates with hyperbilirubinemia; some authors even propose screening for glucose-6-phosphate dehydrogenase deficiency in newborn babies. A scientific report on this subject is published in this issue.

  13. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies.

    Science.gov (United States)

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  14. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria

    Science.gov (United States)

    Isaac, IZ; Mainasara, AS; Erhabor, Osaro; Omojuyigbe, ST; Dallatu, MK; Bilbis, LS; Adias, TC

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human enzyme deficiencies in the world. It is particularly common in populations living in malaria-endemic areas, affecting more than 400 million people worldwide. This present study was conducted with the aim of determining the prevalence of G6PD deficiency among children visiting the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital for pediatric-related care. The study included 118 children, made up of 77 (65.3%) males and 41 (34.7%) females aged ≤5 years with mean age of 3.26 ± 1.90 years. Randox G6PD quantitative in vitro test screening was used for the diagnosis of G6PD deficiency. Of the 118 children tested, 17 (14.4%) were G6PD-deficient. Prevalence of G6PD deficiency was concentrated predominantly among male children (22.1%). Male sex was significantly correlated with G6PD deficiency among the children studied (r = 7.85, P = 0.01). The highest prevalence occurred among children in the 2- to 5-year age-group. Of the 17 G6PD-deficient children, twelve (70.2%) were moderately deficient, while five (29.4%) were severely deficient. Blood film from G6PD-deficient children indicated the following morphological changes; Heinz bodies, schistocytes, target cells, nucleated red cells, spherocytes, and polychromasia. This present study has shown a high prevalence of G6PD deficiency among children residing in Sokoto in the northwestern geopolitical zone of Nigeria. The study indicated a male sex bias in the prevalence of G6PD deficiency among the children studied. There is a need for the routine screening of children for G6PD deficiency in our environment, to allow for evidence-based management of these children and to ensure the avoidance of food, drugs, and infective agents that can potentially predispose these children to oxidative stress as well as diseases that deplete micronutrients that protect against oxidative stress. There is need to build capacity in our

  15. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus.

    Science.gov (United States)

    Jovanović, Marina D; Jelenković, Ankica; Stevanović, Ivana D; Bokonjić, Dubravko; Colić, Miodrag; Petronijević, Natasa; Stanimirović, Danica B

    2014-06-01

    Aluminum (Al) toxicity is closely linked to the pathogenesis of Alzheimer's disease (AD). This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx), hippocampus and basal forebrain (BF). Seven days after intra-hippocampal (CA1 sector) injection of AlCl3 into adult male Wistar rats they were subjected to two-way active avoidance (AA) tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE) and glucose-6-phosphate dehydrogenase (G6PDH) were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl3-treated rats but was moderate in G6PDH/AlCl3-treated rats. Strong tau staining was noted bilaterally in AlCl3-treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl3-treated rats. Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl3-treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential therapeutic benefit. The present model could serve as a useful tool in AD investigations.

  16. Activation of Invariant NKT cells with glycolipid ligand α-galactosylceramide ameliorates glucose-6-phosphate isomerase peptide-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Masanobu Horikoshi

    Full Text Available OBJECTIVE: Invariant natural killer T (iNKT cells regulate collagen-induced arthritis (CIA when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer. Glucose-6-phosphate isomerase (GPI-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339 can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis. METHODS: Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells. RESULTS: α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells. CONCLUSION: α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.

  17. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Isaac IZ

    2013-07-01

    Full Text Available IZ Isaac,1 AS Mainasara,2 Erhabor Osaro,1 ST Omojuyigbe,1 MK Dallatu,3 LS Bilbis,3 TC Adias4 1Department of Haematology and Transfusion Medicine, 2Department of Chemical Pathology, 3Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria; 4Bayelsa State College of Health Technology, Ogbia, Nigeria Abstract: Glucose-6-phosphate dehydrogenase (G6PD deficiency is one of the most common human enzyme deficiencies in the world. It is particularly common in populations living in malaria-endemic areas, affecting more than 400 million people worldwide. This present study was conducted with the aim of determining the prevalence of G6PD deficiency among children visiting the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital for pediatric-related care. The study included 118 children, made up of 77 (65.3% males and 41 (34.7% females aged ≤5 years with mean age of 3.26 ± 1.90 years. Randox G6PD quantitative in vitro test screening was used for the diagnosis of G6PD deficiency. Of the 118 children tested, 17 (14.4% were G6PD-deficient. Prevalence of G6PD deficiency was concentrated predominantly among male children (22.1%. Male sex was significantly correlated with G6PD deficiency among the children studied (r = 7.85, P = 0.01. The highest prevalence occurred among children in the 2- to 5-year age-group. Of the 17 G6PD-deficient children, twelve (70.2% were moderately deficient, while five (29.4% were severely deficient. Blood film from G6PD-deficient children indicated the following morphological changes; Heinz bodies, schistocytes, target cells, nucleated red cells, spherocytes, and polychromasia. This present study has shown a high prevalence of G6PD deficiency among children residing in Sokoto in the northwestern geopolitical zone of Nigeria. The study indicated a male sex bias in the prevalence of G6PD deficiency among the children studied. There is a need for the routine screening of children for G6PD

  18. Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq

    Directory of Open Access Journals (Sweden)

    Jamal Shakir AR

    2010-07-01

    Full Text Available Abstract Background Glucose-6-Phosphate dehydrogenase (G6PD is a key enzyme of the pentose monophosphate pathway, and its deficiency is the most common inherited enzymopathy worldwide. G6PD deficiency is common among Iraqis, including those of the Kurdish ethnic group, however no study of significance has ever addressed the molecular basis of this disorder in this population. The aim of this study is to determine the prevalence of this enzymopathy and its molecular basis among Iraqi Kurds. Methods A total of 580 healthy male Kurdish Iraqis randomly selected from a main regional premarital screening center in Northern Iraq were screened for G6PD deficiency using methemoglobin reduction test. The results were confirmed by quantitative enzyme assay for the cases that showed G6PD deficiency. DNA analysis was performed on 115 G6PD deficient subjects, 50 from the premarital screening group and 65 unrelated Kurdish male patients with documented acute hemolytic episodes due to G6PD deficiency. Analysis was performed using polymerase chain reaction/restriction fragment length polymorphism for five deficient molecular variants, namely G6PD Mediterranean (563 C→T, G6PD Chatham (1003 G→A, G6PD A- (202 G→A, G6PD Aures (143 T→C and G6PD Cosenza (1376 G→C, as well as the silent 1311 (C→T mutation. Results Among 580 random Iraqi male Kurds, 63 (10.9% had documented G6PD deficiency. Molecular studies performed on a total of 115 G6PD deficient males revealed that 101 (87.8% had the G6PD Mediterranean variant and 10 (8.7% had the G6PD Chatham variant. No cases of G6PD A-, G6PD Aures or G6PD Cosenza were identified, leaving 4 cases (3.5% uncharacterized. Further molecular screening revealed that the silent mutation 1311 was present in 93/95 of the Mediterranean and 1/10 of the Chatham cases. Conclusions The current study revealed a high prevalence of G6PD deficiency among Iraqi Kurdish population of Northern Iraq with most cases being due to the G6PD

  19. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Directory of Open Access Journals (Sweden)

    Marina D Jovanovic

    2014-01-01

    Full Text Available Background & objectives: Aluminum (Al toxicity is closely linked to the pathogenesis of Alzheimer′s disease (AD. This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx, hippocampus and basal forebrain (BF. Methods: Seven days after intra-hippocampal (CA1 sector injection of AlCl 3 into adult male Wistar rats they were subjected to two-way active avoidance (AA tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE and glucose-6-phosphate dehydrogenase (G6PDH were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl 3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl 3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl 3 -treated rats but was moderate in G6PDH/AlCl 3 -treated rats. Strong tau staining was noted bilaterally in AlCl 3 -treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl 3 -treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl 3 -treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential

  20. A trade off between catalytic activity and protein stability determines the clinical manifestations of glucose-6-phosphate dehydrogenase (G6PD) deficiency

    OpenAIRE

    Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Junkree, Thanyaphorn; Day, Nicholas P.J.; White, Nicholas J.; Imwong, Mallika

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common polymorphism and enzymopathy in humans, affecting approximately 400 million people worldwide. It is responsible for various clinical manifestations, including favism, hemolytic anemia, chronic non-spherocytic hemolytic anemia, spontaneous abortion, and neonatal hyperbilirubinemia. Understanding the molecular mechanisms underlying the severity of G6PD deficiency is of great importance but that of many G6PD variants are stil...

  1. Regulation and control of glucose overutilization in erythrocytes by vanadate.

    Science.gov (United States)

    Baquer, N Z; Saxena, A K; Srivastava, P

    The insulin mimetic effect of vanadate in in vitro incubation of erythrocytes with high glucose concentrations showed an increase in sorbitol accumulation and glucose utilization using U-14C-glucose. Aldose reductase inhibitors and vanadate addition reversed the sorbitol accumulation, whereas insulin could not reverse it. Increased glucose utilization was also normalized with vanadium compounds. Increased activity of aldose reductase and sorbitol levels in diabetic animals were also normalized with vanadate treatment.

  2. Disrupting glucose-6-phosphate isomerase fully suppresses the "Warburg effect" and activates OXPHOS with minimal impact on tumor growth except in hypoxia.

    Science.gov (United States)

    de Padua, Monique Cunha; Delodi, Giulia; Vučetić, Milica; Durivault, Jérôme; Vial, Valérie; Bayer, Pascale; Noleto, Guilhermina Rodrigues; Mazure, Nathalie M; Ždralević, Maša; Pouysségur, Jacques

    2017-10-20

    As Otto Warburg first observed, cancer cells largely favor fermentative glycolysis for growth even under aerobic conditions. This energy paradox also extends to rapidly growing normal cells indicating that glycolysis is optimal for fast growth and biomass production. Here we further explored this concept by genetic ablation of fermentative glycolysis in two fast growing cancer cell lines: human colon adenocarcinoma LS174T and B16 mouse melanoma. We disrupted the upstream glycolytic enzyme, glucose-6-phosphate isomerase ( GPI ), to allow cells to re-route glucose-6-phosphate flux into the pentose-phosphate branch. Indeed, GPI -KO severely reduced glucose consumption and suppressed lactic acid secretion, which reprogrammed these cells to rely on oxidative phosphorylation and mitochondrial ATP production to maintain viability. In contrast to previous pharmacological inhibition of glycolysis that suppressed tumor growth, GPI -KO surprisingly demonstrated only a moderate impact on normoxic cell growth. However, hypoxic (1% O 2 ) cell growth was severely restricted. Despite in vitro growth restriction under hypoxia, tumor growth rates in vivo were reduced less than 2-fold for both GPI -KO cancer cell lines. Combined our results indicate that exclusive use of oxidative metabolism has the capacity to provide metabolic precursors for biomass synthesis and fast growth. This work and others clearly indicate that metabolic cancer cell plasticity poses a strong limitation to anticancer strategies.

  3. Molecular genetics of the glucose-6-phosphate dehydrogenase (G6PD) Mediterranean variant and description of a new G6PD mutant, G6PD Andalus1361A.

    OpenAIRE

    Vives-Corrons, J L; Kuhl, W; Pujades, M A; Beutler, E

    1990-01-01

    Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has b...

  4. Identification of human basic fetoprotein as glucose-6-phosphate isomerase by using N- and C-terminal sequence tags and terminal tag database.

    Science.gov (United States)

    Kuyama, Hiroki; Yoshizawa, Akiyasu C; Nakajima, Chihiro; Hosako, Mutsumi; Tanaka, Koichi

    2015-08-10

    Human basic fetoprotein (BFP), found in fetal serum and tissue extracts as well as in extracts of various cancer tissues, has long been known as a marker protein for cancers; however, the primary sequence has not yet been reported. This paper describes the identification of BFP using the N- and C-terminal amino acid sequence tags (Ac-AALTRDPQFQ and QQREARVQ, respectively) clarified by mass spectrometry-based methods, and a terminal tag database (ProteinCarta). In this study, BFP was identified as glucose-6-phosphate isomerase (G6PI_HUMAN). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2016-09-01

    Full Text Available This article contains data on the variation in several physiological parameters of red blood cells (RBCs donated by eligible glucose-6-phosphate dehydrogenase (G6PD deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD+ cells. Intracellular reactive oxygen species (ROS generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in “Glucose 6-phosphate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells” [1]. Keywords: G6PD deficiency, Red blood cell storage lesion, Oxidative stress, Cell fragility, Microparticles

  6. Investigation of Cosenza Mutation in Patients with Deficiency of Glucose-6-Phosphate Dehydrogenase (G6PD in North West of Iran

    Directory of Open Access Journals (Sweden)

    Omolbanin Javadi Javadi

    2015-02-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a greatly polymorphic enzyme encoded by human X-linked gene. G6PD deficit is the most public enzymopathy in human with about 400 million people affected globally. It is the main controlling enzyme in the hexose monophosphate shunt catalase the oxidation of glucose-6-phosphate  to 6-phosphogluconolacton and the creation of reducing equals in the form of NADPH to meet the cellular redox formal and its absence origin hemolytic anemia - favism and newborn jaundice. Mutation in this enzyme cause three major types of unusual phenotype, including Mediterranean, Chatham and Cosenza. In this study, by Rapid Genomic DNA Extraction (RGDE method, from 90 blood samples of unrelated male and female patients with genetic deficiency of G6PD, DNA was removed and next digestion by Eco81I enzymes, in order to research for Cosenza mutation, they were analyzed by means of PCR-RFLP. Sequencing methods were used. Of 90 patients, one patient had a Cosenza mutation frequency of 1.01%. Eighty-nine patients (98.99% were not affected by the Cosenza-type mutation. Accordingly, Cosenza mutation is not regarded as the most common mutation in Iranian North-west population.   

  7. Investigation of Cosenza Mutation in Patients with Deficiency of Glucose-6-Phosphate Dehydrogenase (G6PD in North West of Iran

    Directory of Open Access Journals (Sweden)

    Omolbanin Javadi

    2015-03-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a greatly polymorphic enzyme encoded by human X-linked gene. G6PD deficit is the most public enzymopathy in human with about 400 million people affected globally. It is the main controlling enzyme in the hexose monophosphate shunt catalase the oxidation of glucose-6-phosphate  to 6-phosphogluconolacton and the creation of reducing equals in the form of NADPH to meet the cellular redox formal and its absence origin hemolytic anemia - favism and newborn jaundice. Mutation in this enzyme cause three major types of unusual phenotype, including Mediterranean, Chatham and Cosenza. In this study, by Rapid Genomic DNA Extraction (RGDE method, from 90 blood samples of unrelated male and female patients with genetic deficiency of G6PD, DNA was removed and next digestion by Eco81I enzymes, in order to research for Cosenza mutation, they were analyzed by means of PCR-RFLP. Sequencing methods were used. Of 90 patients, one patient had a Cosenza mutation frequency of 1.01%. Eighty-nine patients (98.99% were not affected by the Cosenza-type mutation. Accordingly, Cosenza mutation is not regarded as the most common mutation in Iranian North-west population.   

  8. Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice

    NARCIS (Netherlands)

    Bandsma, RHJ; Grefhorst, A; van Dijk, TH; van der Sluijs, FH; Hammer, A; Reijngoud, DJ; Kuipers, F

    2004-01-01

    Aims/hypothesis. Leptin-deficient ob/ob mice are hyperinsulinaemic and hyperglycaemic; however, the cause of hyperglycaemia remains largely unknown. Methods. Glucose metabolism in vivo in 9-h fasted ob/ob mice and lean littermates was studied by infusing [U-C-13]-glucose, [2-C-13]-glycerol,

  9. Discovery and characterization of an F420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1.

    Science.gov (United States)

    Nguyen, Quoc-Thai; Trinco, Gianluca; Binda, Claudia; Mattevi, Andrea; Fraaije, Marco W

    2017-04-01

    Cofactor F 420 , a 5-deazaflavin involved in obligatory hydride transfer, is widely distributed among archaeal methanogens and actinomycetes. Owing to the low redox potential of the cofactor, F 420 -dependent enzymes play a pivotal role in central catabolic pathways and xenobiotic degradation processes in these organisms. A physiologically essential deazaflavoenzyme is the F 420 -dependent glucose-6-phosphate dehydrogenase (FGD), which catalyzes the reaction F 420 + glucose-6-phosphate → F 420 H 2 + 6-phospho-gluconolactone. Thereby, FGDs generate the reduced F 420 cofactor required for numerous F 420 H 2 -dependent reductases, involved e.g., in the bioreductive activation of the antitubercular prodrugs pretomanid and delamanid. We report here the identification, production, and characterization of three FGDs from Rhodococcus jostii RHA1 (Rh-FGDs), being the first experimental evidence of F 420 -dependent enzymes in this bacterium. The crystal structure of Rh-FGD1 has also been determined at 1.5 Å resolution, showing a high similarity with FGD from Mycobacterium tuberculosis (Mtb) (Mtb-FGD1). The cofactor-binding pocket and active-site catalytic residues are largely conserved in Rh-FGD1 compared with Mtb-FGD1, except for an extremely flexible insertion region capping the active site at the C-terminal end of the TIM-barrel, which also markedly differs from other structurally related proteins. The role of the three positively charged residues (Lys197, Lys258, and Arg282) constituting the binding site of the substrate phosphate moiety was experimentally corroborated by means of mutagenesis study. The biochemical and structural data presented here provide the first step towards tailoring Rh-FGD1 into a more economical biocatalyst, e.g., an F 420 -dependent glucose dehydrogenase that requires a cheaper cosubstrate and can better match the demands for the growing applications of F 420 H 2 -dependent reductases in industry and bioremediation.

  10. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Segeja, M D; Mmbando, Bruno Paul; Kamugisha, M L

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure...... by the disease. In November-December 2003, we conducted a cross-sectional survey to determine the prevalence of G6PD deficiency and HbS in the population and relate these to malaria infection and haemoglobin levels in lowland and highland areas of differing malaria transmission patterns of Muheza, Tanzania....... Blood samples from 1959 individuals aged 6 months to 45 years were collected. A total of 415 (21%) and 1181 (60%) samples were analysed for G6PD deficiency and HbS, respectively. Malarial parasite prevalence was 17.2% (114/1959) in the highlands and 39.6% (49/1959) in the lowlands. Lowlands had higher...

  11. Antiplatelet and invasive treatment in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and acute coronary syndrome. The safety of aspirin.

    Science.gov (United States)

    Kafkas, N V; Liakos, C I; Mouzarou, A G

    2015-06-01

    Aspirin is an important drug in acute coronary syndromes (ACS) and percutaneous coronary interventions (PCI). However, its use is contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency (risk for haemolytic anaemia). We report the management of 2 patients with class II G6PD deficiency and non-ST-segment elevation ACS (NSTE-ACS). The two patients were safely and efficiently treated with dual antiplatelet treatment (DAPT, aspirin plus ticagrelor) and PCI using new-generation drug-eluting stent (DES) despite G6PD deficiency. NSTE-ACS management with DAPT and DES is probably safe and effective in class II G6PD-deficient patients. © 2015 John Wiley & Sons Ltd.

  12. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  13. Patients with inflammatory arthritic diseases harbor elevated serum and synovial fluid levels of free and immune-complexed glucose-6-phosphate isomerase (G6PI)

    DEFF Research Database (Denmark)

    Schaller, Monica; Stohl, William; Benoit, Vivian

    2006-01-01

    In K/BxN mice, anti-glucose-6-phosphate isomerase (G6PI) IgG antibodies (Abs) cause joint-specific inflammation and destruction. Anti-G6PI Abs are also present in humans with inflammatory arthritis, especially among patients with rheumatoid arthritis (RA). A contributing factor to the induction...... of such autoantibodies may be upregulated expression of the corresponding antigen G6PI in affected tissues and/or increased levels of G6PI in the circulation. To determine G6PI levels and the presence of free G6PI and/or G6PI-containing immune complexes in sera and synovial fluids (SF) of patients with different...

  14. Neonatal screening for sickle cell disease, Glucose-6-PhosphateDehydrogenase deficiency and Alpha-Thalassemia in Qatif and Al-Hasa

    International Nuclear Information System (INIS)

    Nasserullah, Z.; Srair, Hussain Abu; Al-Jame, A.; Mokhtar, M.; Al-Qatari, G.; Al-Naim, S.; Al-Aqib, A.

    1998-01-01

    Screening programs to determine the frequency of sickle cell,glucose-6-phosphate dehydrogenase deficiency and alpha-thalassemia gene areavailable in Saudi Arabia, although not used frequently. Greater use of theseprograms will decrease the morbidity and mortality of Saudi children affectedby these disorders. Neonatal hemoglobin electrophoresis andglucose-6-dehydrogenase fluorescent spot tests were performed on new bornbabies delivered between December 1992 and December 1993 at the Qatif CentralHospital and at the King Fahd Hospital in Al-Hasa. Cord blood samples werecollected from babies born in these two hospitals. Babies born in otherhospitals had blood collected in their first visit to Qatif primary carecenters at the time of vaccination. All specimens were sent to Dammam CentralLaboratory. The diagnosis of sickle cell and alpha-thalassemia was based oncellulose acetate electrophoresis and confirmed by agar gel electrophoresisand glucose-6-phosphate dehydrgenase was confirmed by fluorescent spot test.A total of 12,220 infants, including 11,313 Saudis (92.6%), were screenedover a 12-month period. The common phenotype detected in these infantsincluded AF, SFA, SFA Bart's, FS and FS Bart's. In Saudi infants, homozygoussickle cell disease was detected in 2.35% and 1.08% in Qatif and Al-Hasa,respectively. The frequencies of sickle cell gene were 0.1545% and 0.1109% inQatif and Al-Hasa. Alpha-thalassemia genes based on an elevated level of HbBart's were 28% and 16.3% in Qatif and Al-Hasa. The screening for G6PDdeficiency revealed a high prevalence of 30.6% and 14.7% in Qatif andAl-Hasa. In the non-Saudi infants the frequencies were low. The outcome ofthis study indicates that the Saudi populations in Qatif and Al-Hasa are atrisk for hemoglobinopathies and G6PD. Neonatal screening programs areessential and cost effective and should be maintained as a routine practice.(author)

  15. Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage.

    Science.gov (United States)

    Rolletschek, Hardy; Nguyen, Thuy H; Häusler, Rainer E; Rutten, Twan; Göbel, Cornelia; Feussner, Ivo; Radchuk, Ruslana; Tewes, Annegret; Claus, Bernhard; Klukas, Christian; Linemann, Ute; Weber, Hans; Wobus, Ulrich; Borisjuk, Ljudmilla

    2007-08-01

    The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.

  16. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs.

    Science.gov (United States)

    Eltahan, Rana; Guo, Fengguang; Zhang, Haili; Xiang, Lixin; Zhu, Guan

    2018-01-25

    Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (K m  = 0.309 mM, V max  = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC 50  = 8.33 μM; K i  = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC 50  = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC 50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17.  Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors inSana’a City, Yemen

    Directory of Open Access Journals (Sweden)

    Molham AL-Habori

    2012-01-01

    Full Text Available  Objectives: To determine the prevalence of Glucose-6-phosphatedehydrogenase (G-6-PD deficiency among Yemeni people fromdifferent regions of the country living in the capital city, Sana’a,giving an indication of its overall prevalence in Yemen.Methods: A cross-sectional study was conducted among Yemenimale blood donors attending the Department of Blood Bank atthe National Centre of the Public Health Laboratories in thecapital city, Sana’a, Yemen. Fluorescent spot method was used forscreening, spectrophotometeric estimation of G-6-PD activityand separation by electrophoresis was done to determine the G-6-PD phenotype.Results: Of the total 508 male blood donors recruited into thestudy, 36 were G-6-PD deficient, giving a likely G-6-PD deficiencyprevalence of 7.1�20None of these deficient donors had history ofanemia or jaundice. Thirty-five of these deficient cases (97.2�howed severe G-6-PD deficiency class II (<10�0of normalactivity, and their phenotyping presumptively revealed a G-6-PDMediterraneanvariant.Conclusion: The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiencytype in these blood donors in Sana’a City, which could representan important health problem through occurrence of hemolyticanemia under oxidative stress. A larger sample size is needed todetermine the overall prevalence of G-6-PD deficiency, and shouldbe extended to include DNA analysis to identify its variants in Yemen.

  18. Nonradioisotope assay of glucose uptake activity in rat skeletal muscle using enzymatic measurement of 2-deoxyglucose 6-phosphate in vitro and in vivo.

    Science.gov (United States)

    Ueyama, A; Sato, T; Yoshida, H; Magata, K; Koga, N

    2000-01-01

    We investigated a nonradioisotope method for the evaluation of glucose uptake activity using enzymatic measurement of 2-deoxyglucose 6-phosphate (2DG6P) content in isolated rat soleus muscle in vitro and in vivo. The 2DG6P content in isolated rat soleus muscle after incubation with 2-deoxyglucose (2DG) was increased in a dose-dependent manner by insulin (ED(50) = 0.6 mU/ml), the maximum response being about 5 times that of the basal content in vitro. This increment was completely abolished by wortmannin (100 nM), with no effect on basal 2DG6P content. An insulin-mimetic compound, vanadium, also increased 2DG6P content in a dose-dependent manner. In isolated soleus muscle of Zucker fa/fa rats, well known as an insulin-resistant model, insulin did not increase 2DG6P content. The 2DG6P content in rat soleus muscle increased after 2DG (3 mmol/kg) injection in vivo, and conversely, the 2DG concentration in plasma was decreased in a dose-dependent manner by insulin (ED(50) = 0.11 U/kg). The maximum response of the accumulation of 2DG6P in soleus muscle was about 4 times that of the basal content. This method could be useful for evaluating glucose uptake (transport plus phosphorylation) activity in soleus muscle in vitro and in vivo without using radioactive materials. Copyright 2000 S. Karger AG, Basel.

  19. Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease.

    Science.gov (United States)

    Haller, Jorge F; Krawczyk, Sarah A; Gostilovitch, Lubov; Corkey, Barbara E; Zoeller, Raphael A

    2011-11-01

    Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescence microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients. 2011 Elsevier B.V. All rights reserved.

  20. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  1. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression

    Directory of Open Access Journals (Sweden)

    Desgagnés Julie

    2006-03-01

    Full Text Available Abstract Background Chlorogenic acid (CHL, the most potent functional inhibitor of the microsomal glucose-6-phosphate translocase (G6PT, is thought to possess cancer chemopreventive properties. It is not known, however, whether any G6PT functions are involved in tumorigenesis. We investigated the effects of CHL and the potential role of G6PT in regulating the invasive phenotype of brain tumor-derived glioma cells. Results RT-PCR was used to show that, among the adult and pediatric brain tumor-derived cells tested, U-87 glioma cells expressed the highest levels of G6PT mRNA. U-87 cells lacked the microsomal catalytic subunit glucose-6-phosphatase (G6Pase-α but expressed G6Pase-β which, when coupled to G6PT, allows G6P hydrolysis into glucose to occur in non-glyconeogenic tissues such as brain. CHL inhibited U-87 cell migration and matrix metalloproteinase (MMP-2 secretion, two prerequisites for tumor cell invasion. Moreover, CHL also inhibited cell migration induced by sphingosine-1-phosphate (S1P, a potent mitogen for glioblastoma multiform cells, as well as the rapid, S1P-induced extracellular signal-regulated protein kinase phosphorylation potentially mediated through intracellular calcium mobilization, suggesting that G6PT may also perform crucial functions in regulating intracellular signalling. Overexpression of the recombinant G6PT protein induced U-87 glioma cell migration that was, in turn, antagonized by CHL. MMP-2 secretion was also inhibited by the adenosine triphosphate (ATP-depleting agents 2-deoxyglucose and 5-thioglucose, a mechanism that may inhibit ATP-mediated calcium sequestration by G6PT. Conclusion We illustrate a new G6PT function in glioma cells that could regulate the intracellular signalling and invasive phenotype of brain tumor cells, and that can be targeted by the anticancer properties of CHL.

  2. INFLUENCE OF pH, TEMPERATURE AND DISSOLVED OXYGEN CONCENTRATION ON THE PRODUCTION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE AND INVERTASE BY Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    J. Abrahão-Neto

    1997-03-01

    Full Text Available The effect of pH (from 4.0 to 5.0, temperature (T (from 30 oC to 40 oC and dissolved oxygen concentration (DO (from 0.2 to 6.0 mg O2/L on glucose 6-phosphate dehydrogenase (G6PDH (EC 1.1.1.49 and Invertase (EC 3.2.1.26 formation by S. cerevisiae were studied. The best culture conditions for G6PDH and Invertase formation were: 2.55 L culture medium (yeast extract, 3.0 g/L; 5peptone, 5.0 g/L; glucose, 2.0 g/L; sucrose, 15.0 g/L; Na2HPO4.12 H2O, 2.4 g/L; (NH42SO4, 5.1 g/L and MgSO4. 7H2O, 0.075 g/L; 0.45 L inoculum (0.70 g dry cell/L; pH = 4.5; T = 35 oC and DO = 4.0 mg/L. G6PDH was highly sensitive to pH, T and DO variation. The increase in G6PDH production was about three times when the DO ranged from 0.2 to 4.0 mg O2/L. Moreover, by shifting pH from 5.0 to 4.5 and temperature from 30 oC to 35 oC, G6PDH formation increased by 57% and 70%, respectively. Invertase activity (IA of whole cells decreased at least 50% at extremes values of DO (2.0 and 6.0 mg O2/L and pH (4.0 and 5.0. Furthermore, IA oscillated during the fermentation due to the glucose repression/derepression mechanism

  3. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... certain chemicals in food or medicine, or to stress. Symptoms are more common in men and may include: Dark urine Enlarged spleen Fatigue Pallor Rapid heart rate Shortness of breath Yellow skin color ( jaundice ) Exams and Tests A blood test can be done ...

  4. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency, and the G6PD Santa Maria and A+ (less severe deficiency (Class I, II and III, respectively affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.

  5. Glucose-6-phosphate dehydrogenase deficiency in an endemic area for malaria in Manaus: a cross-sectional survey in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Marli Stela Santana

    Full Text Available BACKGROUND: There is a paucity of information regarding glucose-6-phosphate dehydrogenase (G6PD deficiency in endemic areas for malaria in Latin America. METHODOLOGY/PRINCIPAL FINDINGS: This study determined the prevalence of the G6PD deficiency in 200 male non-consanguineous individuals residing in the Ismail Aziz Community, on the outskirts of Manaus (Brazilian Amazon. Six individuals (3% were deficient using the qualitative Brewer's test. Gel electrophoresis showed that five of these patients were G6PD A(-. The deficiency was not associated with the ethnic origin (P = 0.571. In a multivariate logistic regression analysis, G6PD deficiency protected against three or more episodes of malaria (P = 0.049, independently of the age, and was associated with a history of jaundice (P = 0.020 and need of blood transfusion (P = 0.045 during previous treatment for malarial infection, independently of the age and the previous malarial exposure. CONCLUSIONS/SIGNIFICANCE: The frequency of G6PD deficiency was similar to other studies performed in Brazil and the finding of a predominant G6PD A(- variant will help the clinical management of patients with drug-induced haemolysis. The history of jaundice and blood transfusion during previous malarial infection may trigger the screening of patients for G6PD deficiency. The apparent protection against multiple malarial infections in an area primarily endemic for Plasmodium vivax needs further investigation.

  6. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  7. Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogenase onto polyethylenimine-porous agarose polymeric composite using γ irradiation to use in biotechnological processes

    International Nuclear Information System (INIS)

    Atia, K.S.

    2005-01-01

    The co-immobilization of cyclohexanone monooxygenase (CHMO) and glucose-6-phosphate dehydrogenase (G6PDH) was optimized by completely coating, via covalent immobilization, the surface aldehyde groups of porous agarose (glyoxyl-agarose) with amine groups of polyethylenimine (PEI). The highest immobilization efficiency (∼87%) (activity of enzyme per amount of immobilized enzyme) was obtained with a CHMO/G6PDH ratio 2:1. The effects of different ratios of the support to the amount of enzymes (CHMO:G6PDH=2:1), the optimum incubation pH and the incubation time on the enzymatic activity of the enzymes were determined and found to be 5:1, 8.5 and 30 min, respectively. Subjecting the co-immobilized enzymes to doses of γ-radiation (5-100 kGy) resulted in complete loss in the activity of the free enzymes at a dose of 40 kGy, while the co-immobilized ones showed relatively high resistance to γ-radiation up to a dose of 50 kGy

  8. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  9. Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems.

    Science.gov (United States)

    Gurpilhares, Daniela B; Pessoa, Adalberto; Roberto, Inês C

    2015-07-01

    Remaining cells of Candida guilliermondii cultivated in hemicellulose-based fermentation medium were used as intracellular protein source. Recovery of glucose-6-phosphate dehydrogenase (G6PD) was attained in conventional aqueous two-phase systems (ATPS) was compared with integrated process involving mechanical disruption of cells followed by ATPS. Influences of polyethylene glycol molar mass (M PEG) and tie line lengths (TLL) on purification factor (PF), yields in top (Y T ) and bottom (Y B ) phases and partition coefficient (K) were evaluated. First scheme resulted in 65.9 % enzyme yield and PF of 2.16 in salt-enriched phase with clarified homogenate (M PEG 1500 g mol(-1), TLL 40 %); Y B of 75.2 % and PF B of 2.9 with unclarified homogenate (M PEG 1000 g mol(-1), TLL 35 %). The highest PF value of integrated process was 2.26 in bottom phase (M PEG 1500 g mol(-1), TLL 40 %). In order to optimize this response, a quadratic model was predicted for the response PFB for process integration. Maximum response achieved was PFB = 3.3 (M PEG 1500 g mol(-1), TLL 40 %). Enzyme characterization showed G6P Michaelis-Menten constant (K M ) equal 0.07-0.05, NADP(+) K M 0.02-1.98 and optimum temperature 70 °C, before and after recovery. Overall, our data confirmed feasibility of disruption/extraction integration for single-step purification of intracellular proteins from remaining yeast cells.

  10. Changes in ATP, glucose-6-phosphate and NAD(P)H cellular levels during the proliferation and maturation phases of Abies alba Mill. embryogenic cultures.

    Science.gov (United States)

    Krajnáková, Jana; Bertolini, Alberto; Zoratti, Laura; Gömöry, Dusan; Häggman, Hely; Vianello, Angelo

    2013-10-01

    The aim of the present study was to evaluate the adenosine triphospate (ATP), glucose-6-phosphate (glu-6P) and reduced form of nicotinamide adenine dinucleotide phosphate (NAD(P)H) cellular levels during the proliferation and maturation phases of Abies alba Mill. somatic embryos. For a better understanding of the dynamics of these parameters during the proliferation cycle, four embryonic cell lines were tested. During the maturation period, three independent experiments were conducted, focused on the effects of PEG-4000 (5 or 10% (w/v)) and abscisic acid (16, 32 or 64 μM) applied together (Experiments A and B) or with addition of gibberellic acid (Experiment C) on the dynamics of bio-energetic molecules and on the mean number of cotyledonary somatic embryos. Our results demonstrated that the cellular levels of bio-energetic molecules strongly depended on the composition of maturation media. Generally, the higher the number of cotyledonary embryos produced, the higher the level of ATP observed after a 2-week maturation period. The cellular level of ATP, glu-6P and NAD(P)H increased, particularly after the transition from the proliferation to the maturation phase when the differentiation and growth of somatic embryos occurred.

  11. The transcriptional regulator NtrC controls glucose-6-phosphate dehydrogenase expression and polyhydroxybutyrate synthesis through NADPH availability in Herbaspirillum seropedicae.

    Science.gov (United States)

    Sacomboio, Euclides Nenga Manuel; Kim, Edson Yu Sin; Correa, Henrique Leonardo Ruchaud; Bonato, Paloma; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Müller-Santos, Marcelo

    2017-10-19

    The NTR system is the major regulator of nitrogen metabolism in Bacteria. Despite its broad and well-known role in the assimilation, biosynthesis and recycling of nitrogenous molecules, little is known about its role in carbon metabolism. In this work, we present a new facet of the NTR system in the control of NADPH concentration and the biosynthesis of molecules dependent on reduced coenzyme in Herbaspirillum seropedicae SmR1. We demonstrated that a ntrC mutant strain accumulated high levels of polyhydroxybutyrate (PHB), reaching levels up to 2-fold higher than the parental strain. In the absence of NtrC, the activity of glucose-6-phosphate dehydrogenase (encoded by zwf) increased by 2.8-fold, consequently leading to a 2.1-fold increase in the NADPH/NADP + ratio. A GFP fusion showed that expression of zwf is likewise controlled by NtrC. The increase in NADPH availability stimulated the production of polyhydroxybutyrate regardless the C/N ratio in the medium. The mutant ntrC was more resistant to H 2 O 2 exposure and controlled the propagation of ROS when facing the oxidative condition, a phenotype associated with the increase in PHB content.

  12. Definitive localization of intracellular proteins: Novel approach using CRISPR-Cas9 genome editing, with glucose 6-phosphate dehydrogenase as a model.

    Science.gov (United States)

    Spencer, Netanya Y; Yan, Ziying; Cong, Le; Zhang, Yulong; Engelhardt, John F; Stanton, Robert C

    2016-02-01

    Studies to determine subcellular localization and translocation of proteins are important because subcellular localization of proteins affects every aspect of cellular function. Such studies frequently utilize mutagenesis to alter amino acid sequences hypothesized to constitute subcellular localization signals. These studies often utilize fluorescent protein tags to facilitate live cell imaging. These methods are excellent for studies of monomeric proteins, but for multimeric proteins, they are unable to rule out artifacts from native protein subunits already present in the cells. That is, native monomers might direct the localization of fluorescent proteins with their localization signals obliterated. We have developed a method for ruling out such artifacts, and we use glucose 6-phosphate dehydrogenase (G6PD) as a model to demonstrate the method's utility. Because G6PD is capable of homodimerization, we employed a novel approach to remove interference from native G6PD. We produced a G6PD knockout somatic (hepatic) cell line using CRISPR-Cas9 mediated genome engineering. Transfection of G6PD knockout cells with G6PD fluorescent mutant proteins demonstrated that the major subcellular localization sequences of G6PD are within the N-terminal portion of the protein. This approach sets a new gold standard for similar studies of subcellular localization signals in all homodimerization-capable proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Efficacy of combination treatment with fingolimod (FTY720) plus pathogenic autoantigen in a glucose-6-phosphate isomerase peptide (GPI325-339)-induced arthritis mouse model.

    Science.gov (United States)

    Yoshida, Yuya; Tsuji, Takumi; Watanabe, Sayaka; Matsushima, Ayane; Matsushima, Yuki; Banno, Rie; Fujita, Tetsuro; Kohno, Takeyuki

    2013-01-01

    Fingolimod (FTY720) is known to have a significant therapeutic effect in various autoimmune disease models. Here, we examined FTY720 in a model of rheumatoid arthritis, induced by immunizing DBA/1 mice with a peptide consisting of residues 325 through 339 of glucose-6-phosphate isomerase (GPI325-339). The efficacy was evaluated in terms of macroscopic findings, inflammatory cell infiltration and autoantibody level. Prophylactic administration of FTY720 from the day of immunization significantly suppressed the development of paw swelling, but therapeutic administration of FTY720 from onset of symptoms on day 8-9 was less effective. Interestingly, however, combination treatment with FTY720 plus GPI325-339 for 5 d after onset of symptoms significantly reduced the severity of symptoms in all mice, and no relapse occurred after booster immunization. Taking into account the reported mechanism of action of FTY720, these results indicate that combination treatment with FTY720 plus pathogenic autoantigen might efficiently induce immune tolerance by sequestering circulating autoantigen-specific lymphocytes from blood and peripheral tissues to the secondary lymphoid tissues. Combination treatment with FTY720 plus pathogenic autoantigen may become a breakthrough treatment for remission-induction in patients with autoimmune diseases including rheumatoid arthritis.

  14. Hereditary nonspherocytic hemolytic anemia caused by red cell glucose-6-phosphate isomerase (GPI) deficiency in two Portuguese patients: Clinical features and molecular study.

    Science.gov (United States)

    Manco, Licínio; Bento, Celeste; Victor, Bruno L; Pereira, Janet; Relvas, Luís; Brito, Rui M; Seabra, Carlos; Maia, Tabita M; Ribeiro, M Letícia

    2016-09-01

    Glucose-6-phosphate isomerase (GPI) deficiency cause hereditary nonspherocytic hemolytic anemia (HNSHA) of variable severity in individuals homozygous or compound heterozygous for mutations in GPI gene. This work presents clinical features and genotypic results of two patients of Portuguese origin with GPI deficiency. The patients suffer from a mild hemolytic anemia (Hb levels ranging from 10 to 12.7g/mL) associated with macrocytosis, reticulocytosis, hyperbilirubinemia, hyperferritinemia and slight splenomegaly. Genomic DNA sequencing revealed in one patient homozygosity for a new missense mutation in exon 3, c.260G>C (p.Gly87Ala), and in the second patient compound heterozygosity for the same missense mutation (p.Gly87Ala), along with a frameshift mutation resulting from a single nucleotide deletion in exon 14, c.1238delA (p.Gln413Arg fs*24). Mutation p.Gln413Arg fs*24 is the first frameshift null mutation to be described in GPI deficiency. Molecular modeling suggests that the structural change induced by the p.Gly87Ala pathogenic variant has direct impact in the structural arrangement of the region close to the active site of the enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A new glucose-6-phosphate dehydrogenase variant, G6PD Orissa (44 Ala{yields}Gly), is the major polymorphic variant in tribal populations in India

    Energy Technology Data Exchange (ETDEWEB)

    Kaeda, J.S.; Bautista, J.M.; Stevens, D. [Univ. College London Medical School (United Kingdom)] [and others

    1995-12-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been epidemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala{yields}Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser{yields}Phe) variant. The K{sup NADP}{sub m} of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. 37 refs., 2 figs., 3 tabs.

  16. Effects of temperature, pH-values and sodium chloride concentrations on the glucose-6-phosphate dehydrogenase activity by thermotolerant Bacillus strains

    Directory of Open Access Journals (Sweden)

    HAZEM AQEL

    2012-01-01

    Full Text Available Thirteen new isolated thermotolerant Bacillus strains and four known Bacillus species were used to evaluate the effect of growth temperature, pH-values and NaCl concentrations on the intracellular glucose-6-phosphate dehydrogenase (G6PDH activity. Results had shown a significant difference in G6PDH production among all species at all used temperatures (p<0.05. The response of individual new isolates and controls for production of G6PDH under growth conditions was variable. The optimal growth conditions did not correspond to the optimal cultivation conditions for maximum G6PDH production. The growth temperature showed the most significant effect on G6PDH activity. The combined effect of temperature and NaCl on the G6PDH activity was strongly pronounced in comparison with the combined effect of temperature and pH or pH and NaCl. Thermal stability at 53ºC and electrophoretic mobility were also investigated. G6PDH from HUTB41 was the most thermostable G6PDH enzyme with T50% of more than 360 minutes. Electrophoretic study demonstrated that G6PDH was composed of two isoenzymes for all strains except B. marinus and B. schlegelii that had three isoenzymes.

  17. Association of glucose-6-phosphate dehydrogenase activity with oocyte cytoplasmic lipid content, developmental competence, and expression of candidate genes in a sheep model.

    Science.gov (United States)

    Mohammadi-Sangcheshmeh, Abdollah; Veshkini, Arash; Hajarizadeh, Athena; Jamshidi-Adegani, Fatemeh; Zhandi, Mahdi; Abazari-Kia, Amir Hossein; Cinar, Mehmet Ulas; Soleimani, Masoud; Gastal, Eduardo L

    2014-08-01

    To evaluate associations of glucose-6-phosphate dehydrogenase (G6PDH) activity in sheep oocytes with cytoplasmic lipid content, maturational competence, developmental competence to the blastocyst stage, and gene expression of certain molecular markers. Before brilliant cresyl blue (BCB) staining test, oocytes were classified as high, middle, and low cytoplasmic lipid content (HCLC, MCLC, and LCLC) and after the test as having low or high G6PDH-activity (BCB(+) and BCB(-), respectively). After maturation in vitro, a group of oocytes were subjected to IVF followed by in vitro embryo culture and another group was used for evaluation of expression of candidate genes. The cleavage and blastosyst rates were lowest (P BCB(+), and higher (P BCB(+) oocytes than the BCB(-) oocytes. Our gene expression data indicated that mRNA transcript abundance of ITGB2, pZP3, BMP15, and GDF9 genes was similar between BCB oocytes groups. However, the expression of ATP1A1 was higher (P BCB(+) oocytes compared to BCB(-) oocytes. In addition, BAX transcript abundance was similar (P > 0.05) among BCB(+), BCB(-), and control groups, before and after maturation in vitro. Activity of G6PDH in sheep oocytes is highly associated with lipid content, and compared with the morphological parameters might be a more precise and objective predictor for subsequent developmental competence in vitro.

  18. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD-null): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress.

    NARCIS (Netherlands)

    P.P. Pandolfi; F. Sonati; R. Rivi; P. Mason; F.G. Grosveld (Frank); L. Luzzatto

    1995-01-01

    textabstractGlucose 6-phosphate dehydrogenase (G6PD) is a housekeeping enzyme encoded in mammals by an X-linked gene. It has important functions in intermediary metabolism because it catalyzes the first step in the pentose phosphate pathway and provides reductive potential in the form of NADPH. In

  19. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...

  20. Sequence analysis and molecular characterization of Clonorchis sinensis hexokinase, an unusual trimeric 50-kDa glucose-6-phosphate-sensitive allosteric enzyme.

    Directory of Open Access Journals (Sweden)

    Tingjin Chen

    Full Text Available Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis, is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK, the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small

  1. Population screening for glucose-6-phosphate dehydrogenase deficiencies in Isabel Province, Solomon Islands, using a modified enzyme assay on filter paper dried bloodspots

    Directory of Open Access Journals (Sweden)

    Landry Losi

    2010-08-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase deficiency poses a significant impediment to primaquine use for the elimination of liver stage infection with Plasmodium vivax and for gametocyte clearance, because of the risk of life-threatening haemolytic anaemia that can occur in G6PD deficient patients. Although a range of methods for screening G6PD deficiency have been described, almost all require skilled personnel, expensive laboratory equipment, freshly collected blood, and are time consuming; factors that render them unsuitable for mass-screening purposes. Methods A published WST8/1-methoxy PMS method was adapted to assay G6PD activity in a 96-well format using dried blood spots, and used it to undertake population screening within a malaria survey undertaken in Isabel Province, Solomon Islands. The assay results were compared to a biochemical test and a recently marketed rapid diagnostic test. Results Comparative testing with biochemical and rapid diagnostic test indicated that results obtained by filter paper assay were accurate providing that blood spots were assayed within 5 days when stored at ambient temperature and 10 days when stored at 4 degrees. Screening of 8541 people from 41 villages in Isabel Province, Solomon Islands revealed the prevalence of G6PD deficiency as defined by enzyme activity Conclusions The assay enabled simple and quick semi-quantitative population screening in a malaria-endemic region. The study indicated a high prevalence of G6PD deficiency in Isabel Province and highlights the critical need to consider G6PD deficiency in the context of P. vivax malaria elimination strategies in Solomon Islands, particularly in light of the potential role of primaquine mass drug administration.

  2. A trade off between catalytic activity and protein stability determines the clinical manifestations of glucose-6-phosphate dehydrogenase (G6PD) deficiency.

    Science.gov (United States)

    Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Junkree, Thanyaphorn; Day, Nicholas P J; White, Nicholas J; Imwong, Mallika

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common polymorphism and enzymopathy in humans, affecting approximately 400 million people worldwide. It is responsible for various clinical manifestations, including favism, hemolytic anemia, chronic non-spherocytic hemolytic anemia, spontaneous abortion, and neonatal hyperbilirubinemia. Understanding the molecular mechanisms underlying the severity of G6PD deficiency is of great importance but that of many G6PD variants are still unknown. In this study, we report the construction, expression, purification, and biochemical characterization in terms of kinetic properties and stability of five clinical G6PD variants-G6PD Bangkok, G6PD Bangkok noi, G6PD Songklanagarind, G6PD Canton+Bangkok noi, and G6PD Union+Viangchan. G6PD Bangkok and G6PD Canton+Bangkok noi showed a complete loss of catalytic activity and moderate reduction in thermal stability when compared with the native G6PD. G6PD Bangkok noi and G6PD Union+Viangchan showed a significant reduction in catalytic efficiency, whereas G6PD Songklanagarind showed a catalytic activity comparable to the wild-type enzyme. The Union+Viangchan mutation showed a remarkable effect on the global stability of the enzyme. In addition, our results indicate that the location of mutations in G6PD variants affects their catalytic activity, stability, and structure. Hence, our results provide a molecular explanation for clinical manifestations observed in individuals with G6PD deficiency. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Dengue virus type 2 (DENV2-induced oxidative responses in monocytes from glucose-6-phosphate dehydrogenase (G6PD-deficient and G6PD normal subjects.

    Directory of Open Access Journals (Sweden)

    Abdullah Ahmed Al-Alimi

    2014-03-01

    Full Text Available BACKGROUND: Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals. METHODOLOGY: Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO, superoxide anions (O2-, and oxidative stress were determined and compared with normal controls. PRINCIPAL FINDINGS: Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O2- in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O2- were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings. CONCLUSIONS/SIGNIFICANCE: Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.

  4. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report

    Science.gov (United States)

    2013-01-01

    The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here. PMID:23537118

  5. Genetic polymorphisms in paraoxonase 1 and G protein-coupled receptor 77, and the risk of glucose-6-phosphate dehydrogenase deficiency in a Saudi population

    Science.gov (United States)

    Alharbi, Khalid K.

    2015-01-01

    Objectives: To investigate the role of amino acid substitution variants Q192R and C698T in the development of glucose-6-phosphate dehydrogenase (G6PD) deficiency in a Saudi male population. Methods: This case-control study was carried out in 200 Saudi male individuals: 100 patients with G6PD deficiency, and 100 control subjects collected between July and August 2011 in the Taif region of Saudi Arabia. A total of 2100 male Saudi individuals were screened by a fluorescence spot test, and 100 with G6PD deficiency were selected. Two common variants PON1 (rs662) and C5L2 (rs149572881) were genotyped using polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results: The results showed that the R allele and QR genotype were associated with the Q192R polymorphism in PON1 (R versus Q odds ratio [OR], 1.72; 95% confidence interval [95% CI], 1.1-2.6; p=0.01; and QR versus QQ: OR, 1.98; 95% CI, 1.1-3.6; p=0.02). All the C698T genotypes and allele frequencies in C5L2 were almost similar in both the cases and controls (CT versus CC: OR, 2.04; 95% CI, 0.3-11.4; p=0.40; and T versus C: OR, 2.02; 95% CI, 0.3-11.1; p=0.41). Conclusions: These findings suggest the association of PON1 with G6PD deficiency in the Saudi male population studied herein. Future studies, including correlation analyses between the clinical features and genotypes in populations of different ethnicities, are warranted to confirm the disease association with these genetic mutations. PMID:25935173

  6. First evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in vivax malaria endemic regions in the Republic of Korea.

    Science.gov (United States)

    Goo, Youn-Kyoung; Ji, So-Young; Shin, Hyun-Il; Moon, Jun-Hye; Cho, Shin-Hyung; Lee, Won-Ja; Kim, Jung-Yeon

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK). Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test) were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK. Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants. No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.

  7. Red cell glucose 6-phosphate dehydrogenase deficiency in the northern region of Turkey: is G6PD deficiency exclusively a male disease?

    Science.gov (United States)

    Albayrak, Canan; Albayrak, Davut

    2015-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive genetic defect that can cause hemolytic crisis. However, this disease affects both males and females. In Turkey, the frequency of this enzyme deficiency was reported to vary, from 0.25 to 18%, by the geographical area. Its prevalence in the northern Black Sea region of Turkey is unknown. The aims of this study were to assess the prevalence of G6PD deficiency in the northern region Turkey in children and adults with hyperbilirubinemia and hemolytic anemia. This report included a total of 976 G6PD enzyme results that were analyzed between May 2005 and January 2014. G6PD deficiency was detected in 5.0% of all patients. G6PD deficiency was significantly less frequent in females (1.9%, 6/323) than in males (6.6%, 43/653). G6PD deficiency was detected in 3.7% of infants with hyperbilirubinemia, 9.2% of children, and 4.5% of adults with hemolytic anemia. In both the newborn group and the group of children, G6PD deficiency was significantly more frequent in males. In the combined group of children (groups I and II), the proportion of males was 74% and 67% in all groups (P = .0008). In conclusion, in northern region of Turkey, G6PD deficiency is an important cause of neonatal hyperbilirubinemia and hemolytic crisis in children and adults. This study suggests that most pediatricians thought that G6PD deficiency is exclusively a male disease. For this reason, some female patients may have been undiagnosed.

  8. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation.

    Science.gov (United States)

    Zhao, Chengzhou; Wang, Xiaomin; Wang, Xiaoyu; Wu, Kunlun; Li, Ping; Chang, Ning; Wang, Jianfeng; Wang, Feng; Li, Jiaolong; Bi, Yurong

    2015-06-01

    In this study, a new mechanism involving glucose-6-phosphate dehydrogenase (G6PDH) and alternative pathways (AP) in salt pretreatment-induced tolerance of highland barley to UV-B radiation was investigated. When highland barley was exposed to UV-B radiation, the G6PDH activity decreased but the AP capacity increased. In contrast, under UV-B+NaCl treatment, the G6PDH activity was restored to the control level and the maximal AP capacity and antioxidant enzyme activities were reached. Glucosamine (Glucm, an inhibitor of G6PDH) obviously inhibited the G6PDH activity in highland barley under UV-B + NaCl treatment and a similar pattern was observed in reduced glutathione (GSH) and ascorbic acid (Asc) contents. Similarly, salicylhydroxamic acid (SHAM, an inhibitor of AOX) significantly reduced the AP capacity in highland barley under UV-B + NaCl treatment. The UV-B-induced hydrogen peroxide (H2O2) accumulation was also followed. Further studies indicated that non-functioning of G6PDH or AP under UV-B+NaCl + Glucm or UV-B + NaCl + SHAM treatment also caused damages in photosynthesis and stomatal movement. Western blot analysis confirmed that the alternative oxidase (AOX) and G6PDH were dependent each other in cross tolerance to UV-B and salt. The inhibition of AP or G6PDH activity resulted in a significant accumulation or reduction of NADPH content, respectively, under UV-B+NaCl treatment in highland barley leaves. Taken together, our results indicate that AP and G6PDH mutually regulate and maintain photosynthesis and stomata movement in the cross adaptation of highland barley seedlings to UV-B and salt by modulating redox homeostasis and NADPH content. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report.

    Science.gov (United States)

    von Seidlein, Lorenz; Auburn, Sarah; Espino, Fe; Shanks, Dennis; Cheng, Qin; McCarthy, James; Baird, Kevin; Moyes, Catherine; Howes, Rosalind; Ménard, Didier; Bancone, Germana; Winasti-Satyahraha, Ari; Vestergaard, Lasse S; Green, Justin; Domingo, Gonzalo; Yeung, Shunmay; Price, Ric

    2013-03-27

    The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here.

  10. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females.

    Science.gov (United States)

    Peters, Anna L; Veldthuis, Martijn; van Leeuwen, Karin; Bossuyt, Patrick M M; Vlaar, Alexander P J; van Bruggen, Robin; de Korte, Dirk; Van Noorden, Cornelis J F; van Zwieten, Rob

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for detection of G6PD deficiency in females. Blood samples from females more than 3 months of age were used for spectrophotometric measurement of G6PD activity and for determination of the percentage G6PD-negative RBCs by cytofluorometry. An additional sample from females suspected to have G6PD deficiency based on the spectrophotometric G6PD activity was used for measuring chromate inhibition and sequencing of the G6PD gene. Of 165 included females, 114 were suspected to have heterozygous deficiency. From 75 females, an extra sample was obtained. In this group, mutation analysis detected 27 heterozygously deficient females. The sensitivity of spectrophotometry, cytofluorometry, and chromate inhibition was calculated to be 0.52 (confidence interval [CI]: 0.32-0.71), 0.85 (CI: 0.66-0.96), and 0.96 (CI: 0.71-1.00, respectively, and the specificity was 1.00 (CI: 0.93-1.00), 0.88 (CI: 0.75-0.95), and 0.98 (CI: 0.89-1.00), respectively. Heterozygously G6PD-deficient females with a larger percentage of G6PD-sufficient RBCs are missed by routine methods measuring total G6PD activity. However, the majority of these females can be detected with both chromate inhibition and cytofluorometry.

  11. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shukla Shreya

    2011-10-01

    Full Text Available Abstract Background Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. Results Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. Conclusions Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off

  12. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    Science.gov (United States)

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H 2 O 2 . We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H 2 O 2 , which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H 2 O 2 . After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H 2 O 2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H 2 O 2 , and viability decreased in both groups in 40, 60, 80, and 120 µM H 2 O 2 . However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H 2 O 2 , and the reducing equivalents necessary for protection against H 2 O 2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  13. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method

    Directory of Open Access Journals (Sweden)

    Theander Thor G

    2005-12-01

    Full Text Available Abstract Background Mutations in the haemoglobin beta-globin (HbB and glucose-6-phosphate dehydrogenase (G6PD genes cause widespread human genetic disorders such as sickle cell diseases and G6PD deficiency. In sub-Saharan Africa, a few predominant polymorphic variants of each gene account for a majority of these deficiencies. Examining at a larger scale the clinical importance of these independent genetic disorders, their possible association with malaria pathogenesis and innate resistance, and their relevance for antimalarial drug treatment, would be easier if an accurate screening method with limited costs was available. Methods A simple and rapid technique was developed to detect the most prominent single nucleotide polymorphisms (SNPs in the HbB and G6PD genes. The method is able to detect the different haemoglobin polymorphisms A, S, C and E, as well as G6PD polymorphisms B, A and A- based on PCR-amplification followed by a hybridization step using sequence-specific oligonucleotide probes (SSOPs specific for the SNP variants and quantified by ELISA. Results The SSOP-ELISA method was found to be specific, and compared well to the commonly used PCR-RFLP technique. Identical results were obtained in 98% (haemoglobin and 95% (G6PD of the tested 90 field samples from a high-transmission area in Tanzania, which were used to validate the new technique. Conclusion The simplicity and accuracy of the new methodology makes it suitable for application in settings where resources are limited. It would serve as a valuable tool for research purposes by monitoring genotype frequencies in relation to disease epidemiology.

  14. Survey of the Prevalence of Glucose-6-Phosphate Dehydrogenase (G6PD Deficiency in Admitted Men for Premarriage Tests in Zahedan-Iran Reference Laboratory

    Directory of Open Access Journals (Sweden)

    Nakhaee Ali Reza

    2009-09-01

    Full Text Available Background: GLucose-6-phosphate dehydrogenase (G6PD deficiency is the most common known enzymopathy in human. G6PD deficiency is usually asymptomatic, however, deficient individuals are at increased risk of developing acute hemolytic anemia and hyperbilirubinemia following intake of oxidative agents and fava. The objective of present study was to detect prevalence of G6PD deficiency in admitted males for premarriage tests in Zahedan Reference Laboratory. Also, we compared blood indices of normal and G6PD deficient individuals.Materials and Methods: This descriptive study was carried out on 1340 admitted males in Zahedan Reference Laboratory from February 2008 to March 2009. G6PD activity was determined in EDTA containing blood samples by qualitative fluorescence spot test, then G6PD deficiency was confirmed by quantitative spectrophotometric method. Total leukocyte count and RBC indices of G6PD deficient samples and the same number of normal samples were compared. The differences between two groups were compared using Sigmaplot software and t-Student test. A P-value less than 0.05 was considered statistically significant.Results: G6PD deficiency was found in 84 individuals of total 1340 by fluorescence spot test and confirmed in 79 by quantitative method. Therefore, prevalence of G6PD deficiency in Zahedan was estimated to be 5.9%. Comparison of deficient and normal individuals did not show significant difference in WBC count, RBC count, hemoglobin concentration, hematocrit, mean corpuscular hemoglobin (MCH and RDW-SD. However, mean corpuscular volume (MCV was significantly high and mean corpuscular hemoglobin concentration (MCHC and RDW-CV were significantly low in G6PD deficient individuals compared to those with normal enzyme level.Discussion: Present study revealed that the prevalence of G6PD deficiency in Zahedan is 5.9%. Severity of G6PD deficiency in quantitative assay indicated that class I and II are probably dominant variants in

  15. Comparative analysis of glucose-6-phosphate dehydrogenase levels in pre-term and term babies delivered at University of Ilorin Teaching Hospital, Nigeria

    Directory of Open Access Journals (Sweden)

    Temitope Olorunsola Obasa

    2012-03-01

    Full Text Available Glucose-6-phosphate (G6P is an enzyme in the hexose monophosphate shunt required for the production of reducing equivalents needed to mop up free radicals. thereby keeping hemoglobin in its free state. Deficiency of the enzyme can cause severe neonatal jaundice. The aim of this study was to compare G6PD levels in pre-term and term babies, and evaluate the extent to which G6PD deficiency determines the severity of jaundice in various gestational age groups. Samples of cord blood collected from consecutively delivered babies in the University of Ilorin Teaching Hospital, Nigeria, were assayed for G6PD levels, and the babies were observed for jaundice during the first week of life. Those who developed jaundice had serial serum bilirubin measured. Nine hundred and thirty-three babies had G6PD assayed, with 348 being G6PD deficient, giving a hospital based prevalence of 37.3%. Of the 644 who were followed up, 143 (22.2% were pre-term and 501(77.8% were term babies. Babies with gestational age (GA 27-29 weeks had the highest G6PD levels. However, there was no significant variation among the different gestational age groups (F=0.64, P=0.64. Jaundice occurred more in pre-term compared to term babies with a relative risk of 2.41 (χ2=60.95, P=0.00001. Occurrence of jaundice in pre-term babies was irrespective of G6PD status (χ2=0.2, P=0.66, RR=1.09, CI=0.83

  16. Prevalence of glucose-6-phosphate dehydrogenase (G6PD defiiency in malaria endemic region of Iran (Sistan and Baluchestan Province: Epidemiological profie and trends over time

    Directory of Open Access Journals (Sweden)

    Alireza Ansari-Moghaddam

    2017-10-01

    Full Text Available Objective: To estimate the prevalence of glucose-6-phosphate dehydrogenase (G6PD deficiency in a malarious region of Sistan and Baluchestan Province in south-east of Iran. Methods: A total of 2 997 subjects were selected through a multistage random sampling method from 14 districts of the province. Data were collected by trained interviewers and blood samples taken on filter papers by lab technicians. Filter papers were examined for deficiency of G6PD using the fluorescent spot test. Results: The combined prevalence rate of partial or severe G6PD deficiency was 12% (95% CI: 10.9–13.3 among participants. Prevalence of G6PD deficiency differed by sex, age and residency of participants. Ratio of male to female with G6PD deficiency was 1.4. Age-groups of 40–49 years [13.4% (95% CI: 10.3–17.1] and 50–59 years [13.8% (95% CI: 10.7–17.5] had the highest prevalence of G6PD deficiency in comparison to newborns with prevalence lower than 10% [8.40% (95% CI: 4.4–14.3]. The prevalence rates of G6PD deficiency varied from 3.30% (95% CI: 1.4–6.7 in Zahedan to 17.9% (95% CI: 13.8–22.4 in Chabahar. Conclusions: The present study provided valuable data for health policy makers and those who are involved in malaria elimination program.

  17. First evaluation of glucose-6-phosphate dehydrogenase (G6PD deficiency in vivax malaria endemic regions in the Republic of Korea.

    Directory of Open Access Journals (Sweden)

    Youn-Kyoung Goo

    Full Text Available BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK. METHODS: Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK. RESULTS: Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants. CONCLUSIONS: No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.

  18. Nine different glucose-6-phosphate dehydrogenase (G6PD) variants in a Malaysian population with Malay, Chinese, Indian and Orang Asli (aboriginal Malaysian) backgrounds.

    Science.gov (United States)

    Wang, Jichun; Luo, Enjie; Hirai, Makoto; Arai, Meiji; Abdul-Manan, Eas; Mohamed-Isa, Zaleha; Hidayah, Ni; Matsuoka, Hiroyuki

    2008-10-01

    The Malaysian people consist of several ethnic groups including the Malay, the Chinese, the Indian and the Orang Asli (aboriginal Malaysians). We collected blood samples from outpatients of 2 hospitals in the State of Selangor and identified 27 glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects among these ethnic groups. In the Malay, G6PD Viangchan (871GA, 1311CT, IVS11 nt93TC) and G6PD Mahidol (487GA) types, which are common in Cambodia and Myanmar, respectively, were detected. The Malay also had both subtypes of G6PD Mediterranean:the Mediterranean subtype (563CT, 1311CT, IVS11 nt93TC) and the Indo-Pakistan subtype (563CT, 1311C, IVS11 nt93T). In Malaysians of Chinese background, G6PD Kaiping (1388GA), G6PD Canton (1376GT) and G6PD Gaohe (95AG), which are common in China, were detected. Indian Malaysians possessed G6PD Mediterranean (Indo-Pakistan subtype) and G6PD Namoru (208TC), a few cases of which had been reported in Vanuatu and many in India. Our findings indicate that G6PD Namoru occurs in India and flows to Malaysia up to Vanuatu. We also discovered 5 G6PD-deficient cases with 2 nucleotide substitutions of 1311CT and IVS11 nt93TC, but without amino-acid substitution in the G6PD molecule. These results indicate that the Malaysian people have incorporated many ancestors in terms of G6PD variants.

  19. Kinetic Behaviour of Glucose 6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase in Different Tissues of Rainbow Trout (Oncorhynchus mykiss Exposed to Non-Lethal Concentrations of Cadmium

    Directory of Open Access Journals (Sweden)

    Olcay Hisar

    2009-01-01

    Full Text Available The effects of cadmium (Cd on the enzymatic activities of glucose 6-phosphate dehydrogenase (G6PD and 6-phosphogluconate dehydrogenase (6PGD were investigated in the gill, liver and kidney tissues of rainbow trout (Oncorhynchus mykiss. Three test groups of fish were subjected to increasing concentrations (1, 3 and 5 mg/l of cadmium (Cd in vivo, respectively. The G6PD and 6PGD activities in the gill, liver, and kidney tissues of each group of fish were measured on days 1, 3, 5 and 7. G6PD and 6PGD enzyme activities, measured in gill, liver and kidney homogenates, were stimulated by various concentrations (1, 3, and 5 mg/l of cadmium. Although the dose-response pattern of G6PD enzyme activities in liver and kidney tissue was very similar, that in gill was different from both other tissues. The enzyme activity of G6PD enzyme was significantly stimulated after three days (Day 3 in liver and kidney tissues at a dose of 1 mg/l Cd (p p p p p p < 0.05 in liver and kidney tissues at the doses of 3 and 1 mg/l Cd. The stimulation effect of cadmium on the three tissues studied was also calculated; for both of the enzymes (G6PD and 6PGD, the enzyme activity levels were stimulated by approximately 60% and 38% in gills, 68% and 44% in liver, and 67% and 41% in kidneys, respectively, over the base-line enzyme activity of the control groups during the sevenday experimental period. These findings indicate that tissue G6PD and 6PGD enzymes function to protect against cadmium toxicity.

  20. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α and GTPase myxovirus resistance 1 (MX1—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E and enterovirus 71 (EV71 infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.

  1. High prevalence of hemoglobin disorders and glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Republic of Guinea (West Africa).

    Science.gov (United States)

    Millimono, Tamba S; Loua, Kovana M; Rath, Silvia L; Relvas, Luis; Bento, Celeste; Diakite, Mandiou; Jarvis, Martin; Daries, Nathalie; Ribeiro, Leticia M; Manco, Licínio; Kaeda, Jaspal S

    2012-01-01

    Reliable and accurate epidemiological data is a prerequisite for a cost effective screening program for inherited disorders, which however, is lacking in a number of developing countries. Here we report the first detailed population study in the Republic of Guinea, a sub-Saharan West African country, designed to assess the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies, including screening for thalassemia. Peripheral blood samples from 187 Guinean adults were screened for hemoglobin (Hb) variants by standard hematological methods. One hundred and ten samples from males were screened for G6PD deficiency by the fluorescent spot test. Molecular analysis was performed for the most common α-thalassemia (α-thal) deletions, β-globin gene mutations, G6PD variants B (376A), A (376G), A- (376G/202A) and Betica (376G/968C), using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) or sequencing. Of the 187 subjects screened, 36 were heterozygous for Hb S [β6(A3)Glu→Val, GAG>GTG] (allele frequency 9.62%). Sixty-four subjects were heterozygous and seven were homozygous for the -α(3.7) kb deletion (allele frequency 20.85%). β-Thalassemia alleles were detected in five subjects, four with the -29 (A>G) mutation (allele frequency 1.07%) and one with codon 15 (TGG>TAG) (allele frequency 0.96%). The G6PD A- and G6PD Betica deficient variants were highly prevalent with a frequency of 5.7 and 3.3%, respectively. While we did not test for ferritin levels or α(0)-thal, four females (5.2%) had red cell indices strongly suggestive of iron deficient anemia: Hb 19.8%. Our results are consistent with high frequency of alleles such as Hb S, α-thal and G6PD deficient alleles associated with malaria resistance. Finding a 9.6% Hb S allele frequency supports the notion for a proficient neonatal screening to identify the sickle cell patients, who might benefit from early prophylactic treatment for infections. The

  2. Co-inheritance of glucose-6-phosphate dehydrogenase deficiency mutations and hemoglobin E in a Kachin population in a malaria-endemic region of Southeast Asia

    Science.gov (United States)

    He, Lijun; Li, Qing; Wu, Yanrui; Luo, Lan; Li, Hong; Ma, Limei; Yang, Zhaoqing; He, Yongshu; Cui, Liwang

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobin E (HbE, β26 Glu-Lys) are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (G6PD deficiency (>1.2–4.5 U/g Hb). Among the 24 G6PD-deficient subjects, 22 (92%) had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes), while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females), including 15 HbEE (seven males and eight females) and 24 HbAE (13 males and 11 females). Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE). Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P G6PD deficiency with HbAE in the Kachin ethnicity, and a potential interaction of the G6PD Mahidol 487G>A and HbAE in males leading to severe anemia. The presence of 6% males with severe G6PD deficiency raised a major concern in the use of primaquine for radical cure of vivax malaria. PMID:28531196

  3. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Van Malderen Carine

    2012-07-01

    Full Text Available Abstract Background Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA was a promising artemisinin-based combination therapy (ACT, but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children Methods This case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases within the first four days (days 0, 1, 2, and 3, were compared with those without an Hb drop (controls. Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model. Results G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117 in cases and 6.8% (16/234 in controls (p = 0.56. The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR: 0.81; p = 0.76 or CDA treatment (AOR: 1.28; p = 0.37 alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25 of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals

  4. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria

    Science.gov (United States)

    2012-01-01

    Background Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children <5 years of age with uncomplicated malaria. Methods This case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model. Results G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p = 0.56). The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p = 0.76) or CDA treatment (AOR: 1.28; p = 0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25) of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G

  5. Anti-citrullinated glucose-6-phosphate isomerase peptide antibodies in patients with rheumatoid arthritis are associated with HLA-DRB1 shared epitope alleles and disease activity.

    Science.gov (United States)

    Umeda, N; Matsumoto, I; Ito, I; Kawasaki, A; Tanaka, Y; Inoue, A; Tsuboi, H; Suzuki, T; Hayashi, T; Ito, S; Tsuchiya, N; Sumida, T

    2013-04-01

    To identify and characterize anti-citrullinated glucose-6-phosphate isomerase (GPI) peptide antibodies in patients with rheumatoid arthritis (RA). Nine GPI arginine-bearing peptides in human GPI protein were selected and cyclic citrullinated GPI peptides (CCG-1-9) were constructed. Samples were obtained from RA (n = 208), systemic lupus erythematosus (SLE) (n = 101), Sjögren's syndrome (SS; n = 101) and healthy controls (n = 174). Antibodies against CCG-1-9 were measured, and anti-citrullinated α-enolase-1 (CEP-1), -cyclic citrullinated peptides (CCP) and -GPI proteins antibodies were also examined. Patients with RA were genotyped for HLA-DRB1. The numbers of shared epitope (SE) alleles were counted and compared with those of the autoantibodies. Rabbit GPI was citrullinated with rabbit peptidylarginine deiminase and immunoblot analysis of RA sera performed. The levels of autoantibodies were compared before and after treatment with TNF antagonists in 58 RA patients. Anti-CCG-2, -4 and -7 antibodies were detected in 25·5, 33·2 and 37·0% patients with RA, respectively, and these antibodies were very specific for RA (specificity, 98·1-99·7%). Altogether, 44·2, 86·1 and 13·9% of RA sera were positive for anti-CEP-1, -CCP and -GPI protein antibodies, respectively. Anti-CCG-2, -4 and -7 antibodies were correlated with anti-CCP and anti-CEP-1 antibodies and with the presence of HLA-DRB1 SE alleles. Citrullinated GPI protein was detected using RA sera. Treatment with tumour necrosis factor antagonists reduced significantly the levels of anti-CCG-2 and -7 but not of anti-CEP-1 antibodies. This is the first report documenting the presence of anti-CCG antibodies in RA. Anti-CCG-2 and -7 antibodies could be considered as markers for the diagnosis of RA and its disease activity. © 2012 British Society for Immunology.

  6. Co-inheritance of glucose-6-phosphate dehydrogenase deficiency mutations and hemoglobin E in a Kachin population in a malaria-endemic region of Southeast Asia.

    Directory of Open Access Journals (Sweden)

    Zeshuai Deng

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency and hemoglobin E (HbE, β26 Glu-Lys are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (1.2-4.5 U/g Hb. Among the 24 G6PD-deficient subjects, 22 (92% had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes, while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females, including 15 HbEE (seven males and eight females and 24 HbAE (13 males and 11 females. Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE. Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P A and HbAE in males leading to severe anemia. The presence of 6% males with severe G6PD deficiency raised a major concern in the use of primaquine for radical cure of vivax malaria.

  7. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study

    Science.gov (United States)

    Uyoga, Sophie; Ndila, Carolyne M; Macharia, Alex W; Nyutu, Gideon; Shah, Shivang; Peshu, Norbert; Clarke, Geraldine M; Kwiatkowski, Dominic P; Rockett, Kirk A; Williams, Thomas N

    2015-01-01

    Summary Background The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya. Methods We did this study in Kilifi County, Kenya, where the G6PD c.202T allele is the only significant cause of G6PD deficiency. We tested the associations between G6PD deficiency and severe and complicated Plasmodium falciparum malaria through a case-control study of 2220 case and 3940 control children. Cases were children aged younger than 14 years, who visited the high dependency ward of Kilifi County Hospital with severe malaria between March 1, 1998, and Feb 28, 2010. Controls were children aged between 3–12 months who were born within the same study area between August 2006, and September 2010. We assessed the association between G6PD deficiency and both uncomplicated malaria and other common diseases of childhood in a cohort study of 752 children aged younger than 10 years. Participants of this study were recruited from a representative sample of households within the Ngerenya and Chonyi areas of Kilifi County between Aug 1, 1998, and July 31, 2001. The primary outcome measure for the case-control study was the odds ratio for hospital admission with severe malaria (computed by logistic regression) while for the cohort study it was the incidence rate ratio for uncomplicated malaria and non-malaria illnesses (computed by Poisson regression), by G6PD deficiency category. Findings 2863 (73%) children in the control group versus 1643 (74%) in the case group had the G6PD normal genotype, 639 (16%) versus 306 (14%) were girls heterozygous for G6PD c.202T, and 438 (11%) versus 271 (12%) children were either homozygous girls or hemizygous boys. Compared with boys and girls without G6PD deficiency, we found significant

  8. Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials

    Directory of Open Access Journals (Sweden)

    Duparc Stephan

    2011-08-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase (G6PD deficiency is common in populations living in malaria endemic areas. G6PD genotype and phenotype were determined for malaria patients enrolled in the chlorproguanil-dapsone-artesunate (CDA phase III clinical trial programme. Methods Study participants, aged > 1 year, with microscopically confirmed uncomplicated Plasmodium falciparum malaria, and haemoglobin ≥ 70 g/L or haematocrit ≥ 25%, were recruited into two clinical trials conducted in six African countries (Burkina Faso, Ghana, Kenya, Nigeria, Tanzania, Mali. G6PD genotype of the three most common African forms, G6PD*B, G6PD*A (A376G, and G6PD*A- (G202A, A542T, G680T and T968C, were determined and used for frequency estimation. G6PD phenotype was assessed qualitatively using the NADPH fluorescence test. Exploratory analyses investigated the effect of G6PD status on baseline haemoglobin concentration, temperature, asexual parasitaemia and anti-malarial efficacy after treatment with CDA 2/2.5/4 mg/kg or chlorproguanil-dapsone 2/2.5 mg/kg (both given once daily for three days or six-dose artemether-lumefantrine. Results Of 2264 malaria patients enrolled, 2045 had G6PD genotype available and comprised the primary analysis population (1018 males, 1027 females. G6PD deficiency prevalence was 9.0% (184/2045; 7.2% [N = 147] male hemizygous plus 1.8% [N = 37] female homozygous, 13.3% (273/2045 of patients were heterozygous females, 77.7% (1588/2045 were G6PD normal. All deficient G6PD*A- genotypes were A376G/G202A. G6PD phenotype was available for 64.5% (1319/2045 of patients: 10.2% (134/1319 were G6PD deficient, 9.6% (127/1319 intermediate, and 80.2% (1058/1319 normal. Phenotype test specificity in detecting hemizygous males was 70.7% (70/99 and 48.0% (12/25 for homozygous females. Logistic regression found no significant effect of G6PD genotype on adjusted mean baseline haemoglobin (p = 0.154, adjusted mean baseline temperature (p = 0

  9. Co-production of hydrogen and ethanol from glucose inEscherichia coliby activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd).

    Science.gov (United States)

    Sundara Sekar, Balaji; Seol, Eunhee; Park, Sunghoon

    2017-01-01

    Biologically, hydrogen (H 2 ) can be produced through dark fermentation and photofermentation. Dark fermentation is fast in rate and simple in reactor design, but H 2 production yield is unsatisfactorily low as glucose. To address this challenge, simultaneous production of H 2 and ethanol has been suggested. Co-production of ethanol and H 2 requires enhanced formation of NAD(P)H during catabolism of glucose, which can be accomplished by diversion of glycolytic flux from the Embden-Meyerhof-Parnas (EMP) pathway to the pentose-phosphate (PP) pathway in Escherichia coli . However, the disruption of pgi ( p hospho g lucose i somerase) for complete diversion of carbon flux to the PP pathway made E. coli unable to grow on glucose under anaerobic condition. Here, we demonstrate that, when glucose-6-phosphate dehydrogenase (Zwf) and 6-phosphogluconate dehydrogenase (Gnd), two major enzymes of the PP pathway, are homologously overexpressed, E. coli Δ pgi can recover its anaerobic growth capability on glucose. Further, with additional deletions of Δ hycA , Δ hyaAB , Δ hybBC , Δ ldhA , and Δ frdAB , the recombinant Δ pgi mutant could produce 1.69 mol H 2 and 1.50 mol ethanol from 1 mol glucose. However, acetate was produced at 0.18 mol mol -1 glucose, indicating that some carbon is metabolized through the Entner-Doudoroff (ED) pathway. To further improve the flux via the PP pathway, heterologous zwf and gnd from Leuconostoc mesenteroides and Gluconobacter oxydans , respectively, which are less inhibited by NADPH, were overexpressed. The new recombinant produced more ethanol at 1.62 mol mol -1 glucose along with 1.74 mol H 2  mol -1 glucose, which are close to the theoretically maximal yields, 1.67 mol mol -1 each for ethanol and H 2 . However, the attempt to delete the ED pathway in the Δ pgi mutant to operate the PP pathway as the sole glycolytic route, was unsuccessful. By deletion of pgi and overexpression of heterologous zwf and gnd in E. coli Δ hyc

  10. Inhibition of glycolysis by L-sorbose in dog erythrocytes.

    Science.gov (United States)

    Kistler, A; Keller, P

    1978-06-15

    We have demonstrated previously that in vitro L-sorbose acts directly on dog erythrocytes to induce hemolysis. Here we report that L-sorbose depresses lactate formation in dog hemolysates from glucose, mannose and fructose but not from glucose-6-phosphate and galactose, suggesting that L-sorbose interacts with glycolysis at the level of the hexokinase.

  11. Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.

    Science.gov (United States)

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-03-01

    Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.

  12. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase; Sintese e modificacoes de derivados heterociclicos de d-arabinose: potenciais inibidores de glicose-6-fosfato isomerase e de glicosamina-6-fosfato sintase

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos]. E-mail: ricardodylan@farmacia.ufmg.br

    2008-07-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  13. Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    Science.gov (United States)

    2015-01-01

    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations

  14. Next-generation sequencing unravels homozygous mutation in glucose-6-phosphate isomerase, GPIc.1040G>A (p.Arg347His) causing hemolysis in an Indian infant.

    Science.gov (United States)

    Jamwal, Manu; Aggarwal, Anu; Das, Anirban; Maitra, Arindam; Sharma, Prashant; Krishnan, Shekhar; Arora, Neeraj; Bansal, Deepak; Das, Reena

    2017-05-01

    Inherited anemias diagnostic workup requires a step-wise algorithm. Causal genes implicated in congenital hemolytic anemia are numerous, making a gene-by-gene approach by Sanger sequencing time consuming, expensive and labour intensive. Targeted resequencing can be of great use in explaining these cases. Six months female presented with neonatal jaundice and negative family history. Clinical and laboratory evidences were suggestive of hemolytic anemia. G6PD deficiency, thalassemias, hemoglobinopathies, autoimmune hemolytic anemia, hereditary spherocytosis and pyruvate kinase deficiency were excluded. Targeted resequencing on Illumina MiSeq using TruSight One sequencing panel was performed to identify the causative mutations. 35-40% of RBCs were acanthocytes and echinocytes. A missense homozygous mutation was found inglucose-6-phosphate isomerase, GPI [c.1040G>A (p.Arg347His), rs137853583] which results in nonspherocytic hemolytic anemia. This study describes GPI p.Arg347His mutation for the first time from India and is the first report of red cell GPI deficiency diagnosed using NGS-based resequencing and highlights the potential of this technique in clinical practice. Copyright © 2017. Published by Elsevier B.V.

  15. Functional and Biochemical Analysis of Glucose-6-Phosphate Dehydrogenase (G6PD Variants: Elucidating the Molecular Basis of G6PD Deficiency

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2017-05-01

    Full Text Available G6PD deficiency is the most common enzymopathy, leading to alterations in the first step of the pentose phosphate pathway, which interferes with the protection of the erythrocyte against oxidative stress and causes a wide range of clinical symptoms of which hemolysis is one of the most severe. The G6PD deficiency causes several abnormalities that range from asymptomatic individuals to more severe manifestations that can lead to death. Nowadays, only 9.2% of all recognized variants have been related to clinical manifestations. It is important to understand the molecular basis of G6PD deficiency to understand how gene mutations can impact structure, stability, and enzymatic function. In this work, we reviewed and compared the functional and structural data generated through the characterization of 20 G6PD variants using different approaches. These studies showed that severe clinical manifestations of G6PD deficiency were related to mutations that affected the catalytic and structural nicotinamide adenine dinucleotide phosphate (NADPH binding sites, and suggests that the misfolding or instability of the 3D structure of the protein could compromise the half-life of the protein in the erythrocyte and its activity.

  16. Effect of erythropoietin on the glucose transport of rat erythrocytes and bone marrow cells

    International Nuclear Information System (INIS)

    Ghosal, J.; Chakraborty, M.; Biswas, T.; Ganguly, C.K.; Datta, A.G.

    1987-01-01

    The effect of Ep on radioactive glucose and methyl-alpha-D-glucoside transport by rat erythrocytes and bone marrow cells were studied. There is initial linearity followed by saturation kinetics of [ 14 C]glucose transport by the erythrocytes of starved and starved plus Ep-treated rats at different concentrations of glucose. Starvation caused slight inhibition of glucose transport which increased markedly on Ep administration to starved rats. Normal animals failed to show any significant change in glucose transport after Ep treatment. Methyl-alpha-D-glucoside inhibited the Ep-stimulated glucose transport significantly. Ep also stimulated the transport of radioactive methyl-alpha-D-glucoside which was competitively inhibited in presence of D-glucose. Glucose transport in erythrocytes was found to be sensitive to metabolic inhibitors like azide and DNP. A sulfhydryl reagent and ouabain also inhibited the transport process. Ep stimulated glucose and methyl-alpha-D-glucoside transport in the bone marrow cells of starved rats. The sugar analog competitively inhibited the glucose transport in bone marrow cells and vice versa

  17. Dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Dynamics of glucose concentration in human organism is an important diagnostic characteristic for it's parameters correlate significantly with the severity of metabolic, vessel and perfusion disorders. 36 patients with stable angina pectoris of II and III functional classes were involved in this study. All of them were men in age range of 45-59 years old. 7 patients hospitalized with acute myocardial infarction (aged from 49 to 59 years old) form the group of compare. Control group (n = 5) was of practically healthy men in comparable age. To all patients intravenous glucose solution (40%) in standard loading dose was injected. Capillary and vein blood samples were withdrawn before, and 5, 60, 120, 180 and 240 minutes after glucose load. At these time points blood pressure and glucose concentration were measured. In prepared blood smears shape, deformability and sizes of erythrocytes, quantity and degree of shear stress resistant erythrocyte aggregates were studied. Received data were approximated by polynomial of high degree to receive concentration function of studied parameters, which first derivative elucidate velocity characteristics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease and practically healthy persons. Received data show principle differences in dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease as a possible mechanism of coronary blood flow destabilization.

  18. Combined Effect of L-Cysteine and Vitamin E Injected Pre-Irradiation on Glucose-6-Phosphate Dehydrogenase Activity and Certain products of Glycolysis in Blood of Female Rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.; Kafafy, Y.A.; Ashry, O.M.

    1999-01-01

    The present work aims to evaluate the protective limits of L-cysteine and vitamin E combination against deleterious effects of gamma radiation on glucose-6-phosphate dehydrogenase activity, liver glycogen, blood glucose, pyruvic and lactic acids and their correlations in adult female rats. Mature female white rats were divided into four groups: 1- Control group. 2- Whole body gamma irradiated group at a dose level two Gy. 3-Group injected with 120 mg/100 g b.wt. L-cysteine+10 mg/100 g b.wt. vitamin E. 4- Group injected with cysteine+ vitamin E one hour before irradiation at 2 Gy dose level. Results revealed that combined administration of cysteine and vitamin E before gamma-irradiation have accelerated the radiation injury on liver glycogen, plasma glucose and G 6 Pd activity, while they showed a protective effect on lactic and pyruvic acids. This could be due to different mechanisms or a biphasic mechanism related to hormonal (like E 2 , T 3 and insulin), enzymatic or metabolic (e.g. oxidation/reduction, catabolic, anabolic factors) control

  19. Derivativation of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label

    Energy Technology Data Exchange (ETDEWEB)

    Wadzinski, B.; Shanahan, M.; Ruoho, A.

    1987-05-01

    An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin (IAPS-Fsk), has been synthesized, purified, and characterized. The K/sub i/ for inhibition of 3-0-methylglucose transport by TAPS-Fsk in human erythrocytes was found to be 0.1 uM. The carrier-free radioiodinated label has been shown to be a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes with 1-10 nM (I-125)IAPS-Fsk and analysis by SDS-PAGE showed specific derivatization of a broad band with an apparent molecular weight of 40-70 kDa. Photoincorporation using 2 nM (I-125)IAPS-Fsk was protected with D-glucose, cytochalasin B, and forskolin. No protection was observed with L-glucose. Endo-B-galactosidase digestion and trypsinization of (I-125)IAPS-Fsk labelled erythrocytes reduced the specifically radiolabelled transporter to 40 kDa and 18 kDa respectively. (I-125)-IAPS-Fsk will be used to study the structural aspects of the glucose transporter.

  20. Atividade da 6-fosfogliconato desidrogenase em deficientes de glicose-6-fosfato desidrogenase Activity of 6-phosphogluconate dehydrogenase in glucose-6-phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Daniela B. Nicolielo

    2006-06-01

    Full Text Available As enzimas G6PD e 6PGD são responsáveis pela geração do aporte de NADPH, necessário para a detoxificação dos agentes oxidantes produzidos pelo estresse oxidativo metabólico nos eritrócitos. Devido à alta prevalência de deficiência de G6PD na população mundial, principalmente de origem negróide africana, muitos estudos têm sido realizados na tentativa de conhecer melhor a atuação destas enzimas. O objetivo deste estudo foi avaliar a atividade enzimática da 6PGD, nos deficientes de G6PD, para verificar a existência de aumento da atividade desta enzima, correlacionando com um possível aumento do número de reticulócitos ou presença de alterações da série vermelha. A pesquisa em 2.657 indivíduos do sexo masculino resultou em 97 deficientes de G6PD, determinando uma prevalência de 3,65% para a região de Bauru (SP, com atividade enzimática média de G6PD de 1,74 UI.g Hb-1. min-1 a 37ºC, 14,4% da atividade da G6PD normal. A atividade enzimática média da 6PGD foi de 9,5 UI.g Hb-1. min-1 a 37ºC, estando aumentada em 47,4% dos deficientes de G6PD. Os resultados não confirmaram que a hipótese do aumento da atividade enzimática da 6PGD, em deficientes de G6PD, seja decorrente da presença de um número aumentado de reticulócitos na corrente circulatória, faixa etária ou alterações eritrocitométricas que denotem anemia. O mais provável é que a hemólise autolimitada, imposta pelos processos oxidativos, preserve os eritrócitos mais jovens, que possuem atividade enzimática mais elevada, uma vez que naturalmente ocorre diminuição da atividade destas enzimas com o envelhecimento celular.The G6PD and 6PGD enzymes are responsible for the generation of NADPH supply necessary for the detoxification of the oxidant agents produced during the oxidative metabolic stress on erythrocytes. Due to the high prevalence of the deficiency of G6PD on world population, especially on Afro descents, many studies have been done trying

  1. Use of a simplified spectrophotometric method for quantitative determination of glucose-6-phosphate dehydrogenase activity in normal children from two day-care centers of the city of São Paulo

    Directory of Open Access Journals (Sweden)

    Roberto Muller

    2003-06-01

    Full Text Available Objective: To evaluate the applicability of a simplified method forquantitative determination of glucose-6-phosphate dehydrogenaseactivity in normal children; to determine the mean, standarddeviation and threshold value under which the enzyme activity isconsidered deficient. Methods: Blood samples were collected from201 children from two day-care centers in the city of São Paulo.The subjects were considered normal based on physicalexamination and laboratory tests. The enzyme activity wasdetermined in red blood cells of normal children using the “TestCombination G-6-PDH®” kit. The following statistical analyses werecarried out: the results were submitted to Student’s t test,Kolmogorov-Smirnov test, lower confidence interval (one-tailedtest and Spearman’s correlation coefficient. Results: The meanhemoglobin value for girls was slightly higher than the mean valuefor boys, but this difference was not statistically significant. Therewas no statistical difference in mean enzyme activities for Caucasianand non-Caucasian children. There was no significant correlation amongenzyme activity levels, red blood cells, hemoglobin levels,hematocrit, reticulocytes, white blood cells and age of patients.The mean enzyme activity for boys was 4.448 U/g Hb, standarddeviation = 1.380 U/g Hb. For girls, the mean enzyme activity was4.531 U/g Hb, standard deviation = 1.386 U/g Hb, and the differencewas not statistically significant. Therefore, the two populationgroups were considered as one single population, presenting amean enzyme activity of 4.490 U/g Hb, standard deviation = 1.380 U/g Hb.Since the distribution curve of enzyme activity values was normal,a lower confidence interval was determined (one-tailed test, witha cutoff point of 2.227 U/g Hb. Conclusion: The method used bySolem proved to be simple, fast, very accurate and useful to detectglucose-6-phosphate dehydrogenase activity and to identifychildren with enzyme deficiency.

  2. D-glucose transport and glycolytic enzyme activities in erythrocytes of dogs, pigs, cats, horses, cattle and sheep.

    Science.gov (United States)

    Arai, T; Washizu, T; Sagara, M; Sako, T; Nigi, H; Matsumoto, H; Sasaki, M; Tomoda, I

    1995-03-01

    The activities of D-glucose transport (D-GT) and the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), were measured in the erythrocytes of dogs, pigs, cats, horses, cattle and sheep. The erythrocytes of dogs had the highest activities of D-GT, HK and PK, significantly higher than the activities in the erythrocytes of the herbivores. The activities of D-GT and HK in cat erythrocytes were significantly lower than in those of dogs. The differences between the activities of D-GT in the erythrocytes of the different species followed the differences in activities of HK but not those in the activities of PK or in the blood glucose concentrations. It is considered that the activity of HK provides a convenient measurement of the relative rates of glucose oxidation in erythrocytes.

  3. Partial purification of glucose-6-phosphate dehydrogenase by aqueous two-phase poly(ethyleneglycol/phosphate systems Purificação parcial de glucose-6-fosfato desidrogenase por sistemas de duas fases aquosas poli (etilenoglicol/fosfato

    Directory of Open Access Journals (Sweden)

    Marcela Zanella Ribeiro

    2007-03-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH is an important enzyme used in biochemical and medical studies and in several analytical methods that have industrial and commercial application. This work evaluated the extraction of G6PDH in aqueous two-phase system (ATPS of poly(ethyleneglycol (PEG/phosphate buffer, using as enzyme source a medium prepared through commercial baker's yeast disruption. Firstly, the effects of PEG molar mass on the enzyme partition and of homogenization and rest on the system equilibrium were investigated. Afterwards, several ATPS were prepared using statistical analysis (2² factorial design. The results, including kinetic and thermodynamic parameters for the G6PDH activity, showed partial purification of this enzyme in ATPS composed of 17.5% (w/w PEG400 and 15.0% (w/w phosphate. A high enzymatic recovery value (97.7%, a high partition coefficient (351, and an acceptable purification factor (2.28 times higher than in cell homogenate were attained from the top phase. So, it was possible to attain an effective enzyme pre-purification by separating some contaminants with a simple method such as liquid-liquid extraction in aqueous two-phase systems (ATPS.Glicose-6-fosfato desidrogenase (G6PDH é uma importante enzima usada em estudos bioquímicos e médicos, bem como em diversos métodos analíticos com aplicação comercial e industrial. Neste trabalho foi avaliado a extração da G6PDH em sistemas de duas fases aquosas (ATPS constituídos por poli(etilenoglicol (PEG/tampão fosfato, usando como fonte de enzima um meio preparado por rompimento de leveduras de panificação comercial. Inicialmente foram investigados os efeitos da massa molar do PEG na partição da enzima e da homogeneização e repouso no equilíbrio do sistema. Na sequência, diversos ATPS foram preparados usando análise estatística (planejamento fatorial 2². Os resultados, incluindo parâmetros cinéticos e termodinâmicos para a atividade da G6PDH

  4. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    G6PD) variants and their associated enzyme deficiencies among different age groups of individuals in Abu Dhabi, United Arab Emirates (UAE). Methods: A total of 15,995 patients (6302 UAE nationals and 9693 non-UAE nationals) who ...

  5. A role for glucose-6-phosphate dehydrogenase

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    -phosphate dehydrogenase activity in male rats. Twelve (12) male rats were divided into two groups of six (6) rats each. Group 1 rats were control rats which received normal saline while group 2 rats were treated with.

  6. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    G6PD) deficiency among staff and students of a university community in Malaysia as well as to identify molecular genetics by determination of G6PD mutations. Methods: Cross-sectional and experimental studies were carried out on the staff ...

  7. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    HP

    and the Mediterranean region. It affects about one-tenth of African-American males in the. United States. The worldwide distribution of this disorder is remarkably similar to that of malaria. [1]. G6PD enzyme protects RBCs from harmful by-products that are produced as a result of taking certain medications or when the body is.

  8. Molecular Characterization of Glucose-6-Phosphate ...

    African Journals Online (AJOL)

    restriction fragment length polymorphism (PCR-RFLP), denaturing high performance liquid chromatography (DHPLC) and DNA sequencing were utilized to identify common mutations in individuals with G6PD deficiency. Results: The prevalence of G6PD deficiency among UAE nationals was 7.4% and non-UAE nationals.

  9. Glycogen storage disease type 1b: an early onset severe phenotype associated with a novel mutation (IVS4) in the glucose 6-phosphate translocase (SLC37A4) gene in a Turkish patient.

    Science.gov (United States)

    Oguz, M M; Aykan, E; Yilmaz, G; Aytekin, C; Karaer, K; Açoğlu, E A

    2014-01-01

    Glycogen storage disease type I (GSD-I) is a group of autosomal recessive disorders that include types Ia and Ib. GSD-Ib is caused by a deficiency in the glucose-6-phosphate transporter (G6PT) caused by a mutation in the SLC37A4 gene coding for G6PT. Glycogen storage disease is characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver and chronic neutropenia. Herein we describe a 4-month-old Turkish patient with early onset and severe typical clinical features of GSD-1b in which a novel mutation in the SLC37A4 gene was detected. After the bone marrow examination parenteral antibiotic therapy and subcutaneous granulocyte colony-stimulating factor (G-CSF) were started. Due to the severe neutropenia the patient had developed nosocomial sepsis and the dose of G-CSF was increased. After 2 months later from the initial treatment of the G-CSF he developed splenomegaly and urinary complications. Despite maximal therapy he had an extremely poor quality of life and life-threatening complications due to impaired bone marrow function. As the patient required continual hospitalization he was schedule for bone marrow transplantation.

  10. Functional Mechanism(s) of the Inhibition of Disease Progression by Combination Treatment with Fingolimod Plus Pathogenic Antigen in a Glucose-6-phosphate Isomerase Peptide-Induced Arthritis Mouse Model.

    Science.gov (United States)

    Yoshida, Yuya; Mikami, Norihisa; Matsushima, Yuki; Otani, Fumiya; Miyawaki, Mai; Takatsuji, Miku; Banno, Rie; Tsuji, Takumi; Fujita, Tetsuro; Tsujikawa, Kazutake; Kohno, Takeyuki

    2015-01-01

    We previously reported that combination treatment with fingolimod (FTY720) plus antigenic peptide of glucose-6-phosphate isomerase (residues 325-339) (GPI325-339) from the onset of symptoms significantly inhibited disease progression in a mouse model of GPI325-339-induced arthritis. In this study, we investigated the mechanism(s) involved. The model mice were treated from arthritis onset with FTY720 alone, GPI325-339 alone, or the combination of FTY720 plus GPI325-339. At the end of treatment, inguinal lymph nodes (LNs) were excised and examined histologically and in flow cytometry. Levels of apoptotic cells, programmed death-1-expressing CD4(+)forkhead box P3(-) nonregulatory T cells (non-Tregs), and cytotoxic T-lymphocyte antigen 4-expressing non-Tregs in inguinal LNs were markedly increased in the combination treatment group mice. Regulatory T cells (Tregs) were also increased. These results indicate that combination treatment with FTY720 plus GPI325-339 inhibits the progression of arthritis by inducing clonal deletion and anergy of pathogenic T cells and also by immune suppression via Tregs.

  11. Two novel mutations (p.(Ser160Pro) and p.(Arg472Cys)) causing glucose-6-phosphate isomerase deficiency are associated with erythroid dysplasia and inappropriately suppressed hepcidin.

    Science.gov (United States)

    Mojzikova, Renata; Koralkova, Pavla; Holub, Dusan; Saxova, Zuzana; Pospisilova, Dagmar; Prochazkova, Daniela; Dzubak, Petr; Horvathova, Monika; Divoky, Vladimir

    2018-03-01

    Glucose-6-phosphate isomerase (GPI) deficiency, a genetic disorder responsible for chronic nonspherocytic hemolytic anemia, is the second most common red blood cell glycolytic enzymopathy. We report three patients from two unrelated families of Czech and Slovak origin with macrocytic hemolytic anemia due to GPI deficiency. The first patient had 15% of residual GPI activity resulting from two new heterozygous missense mutations c.478T>C and c.1414C>T leading to substitutions p.(Ser160Pro) and p.(Arg472Cys). Two other patients (siblings) inherited the same c.1414C>T p.(Arg472Cys) mutation in a homozygous constitution and lost approximately 89% of their GPI activity. Erythroid hyperplasia with dysplastic features was observed in the bone marrow of all three patients. Low hepcidin/ferritin ratio and elevated soluble transferrin receptor detected in our GPI-deficient patients suggest disturbed balance between erythropoiesis and iron metabolism contributing to iron overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    Science.gov (United States)

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...... and a low-affinity binding site with Ka2 2.9 +/- 1.1 x 10(8) L.mol-1 and MBC2 124.7 +/- 22.1 fmol/mg DNA (n = 6). Incubation of cells with 6 nmol/L T3 for 20 hours reduced NBT3 to 62.2% +/- 15.7% (P less than .01, n = 11). The Ka estimated from kinetic studies was reduced to 6.7 x 10(7) L.mol-1......, and the scatchard plots were linear, with Ka 4.5 +/- 1.6 x 10(8) L.mol-1 and MBC 137.0 +/- 44.6 fmol/mg DNA (n = 3) of the same magnitude as the low-affinity binding site in cells incubated without T3 (NS). The reduction in NBT3 was reversible and maximal at T3 concentrations saturating the high-affinity binding...

  14. Novel oxolane derivative DMTD mitigates high glucose-induced erythrocyte apoptosis by regulating oxidative stress.

    Science.gov (United States)

    Jagadish, Swamy; Hemshekhar, Mahadevappa; NaveenKumar, Somanathapura K; Sharath Kumar, Kothanahally S; Sundaram, Mahalingam S; Basappa; Girish, Kesturu S; Rangappa, Kanchugarakoppal S

    2017-11-01

    Chronic hyperglycemia is one of the characteristic conditions associated with Diabetes Mellitus (DM), which often exerts deleterious effects on erythrocyte morphology and hemodynamic properties leading to anemia and diabetes-associated vascular complications. High glucose-induced over production of reactive oxygen species (ROS) can alter the blood cell metabolism and biochemical functions subsequently causing eryptosis (red blood cell death), yet another complication of concern in DM. Therefore, blocking high glucose-induced oxidative damage and subsequent eryptosis is of high importance in the better management of DM and associated vascular complications. In this study, we synthesized an oxolane derivative 1-(2,2-dimethyltetrahydrofuro[2,3][1,3]dioxol-5-yl)ethane-1,2-diol (DMTD), and demonstrated its efficacy to mitigate hyperglycemia-induced ROS generation and subsequent eryptosis. We showed that DMTD effectively inhibits high glucose-induced ROS generation, intracellular calcium levels, phosphaditylserine (PS) scrambling, calpain and band 3 activation, LDH leakage, protein glycation and lipid peroxidation, meanwhile enhances the antioxidant indices, osmotic fragility and Na + /K + -ATPase activity in erythrocytes. DMTD dose dependently decreased the glycated hemoglobin level and enhances the glucose utilization by erythrocytes in vitro. Further, DMTD alleviated the increase in ROS production, intracellular Ca 2+ level and PS externalization in the erythrocytes of human diabetic subjects and enhanced the Na + /K + -ATPase activity. Taken together, the synthesized oxolane derivative DMTD could be a novel synthetic inhibitor of high glucose-induced oxidative stress and eryptosis. Considering the present results DMTD could be a potential therapeutic to treat DM and associated complications and open new avenues in developing synthetic therapeutic targeting of DM-associated complications. Copyright © 2017. Published by Elsevier Inc.

  15. Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro

    Science.gov (United States)

    Pazzini, Camila Eliza Fernandes; Colpo, Ana Ceolin; Poetini, Márcia Rósula; Pires, Cauê Ferreira; de Camargo, Vanessa Brum; Mendez, Andreas Sebastian Loureiro; Azevedo, Miriane Lucas; Soares, Júlio César Mendes; Folmer, Vanderlei

    2015-01-01

    The literature indicates that red wine presents in its composition several substances that are beneficial to health. This study has investigated the antioxidant effects of Tannat red wine on oxidative stress induced by glucose and fructose in erythrocytes in vitro, with the purpose to determine some of its majoritarian phenolic compounds and its antioxidant capacity. Erythrocytes were incubated using different concentrations of glucose and fructose in the presence or absence of wine. From these erythrocytes were determined the production of thiobarbituric acid reactive species (TBARS), glucose consumption, and osmotic fragility. Moreover, quantification of total phenolic, gallic acid, caffeic acid, epicatechin, resveratrol, and DPPH scavenging activity in wine were also assessed. Red wine showed high levels of polyphenols analyzed, as well as high antioxidant potential. Erythrocytes incubated with glucose and fructose had an increase in lipid peroxidation and this was prevented by the addition of wine. The wine increased glucose uptake into erythrocytes and was able to decrease the osmotic fragility of erythrocytes incubated with fructose. Altogether, these results suggest that wine leads to a reduction of the oxidative stress induced by high concentrations of glucose and fructose. PMID:26078708

  16. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism.

    Science.gov (United States)

    Chen, Tzu-Ling; Yang, Hung-Chi; Hung, Cheng-Yu; Ou, Meng-Hsin; Pan, Yi-Yun; Cheng, Mei-Ling; Stern, Arnold; Lo, Szecheng J; Chiu, Daniel Tsun-Yee

    2017-01-12

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a commonly pervasive inherited disease in many parts of the world. The complete lack of G6PD activity in a mouse model causes embryonic lethality. The G6PD-deficient Caenorhabditis elegans model also shows embryonic death as indicated by a severe hatching defect. Although increased oxidative stress has been implicated in both cases as the underlying cause, the exact mechanism has not been clearly delineated. In this study with C. elegans, membrane-associated defects, including enhanced permeability, defective polarity and cytokinesis, were found in G6PD-deficient embryos. The membrane-associated abnormalities were accompanied by impaired eggshell structure as evidenced by a transmission electron microscopic study. Such loss of membrane structural integrity was associated with abnormal lipid composition as lipidomic analysis revealed that lysoglycerophospholipids were significantly increased in G6PD-deficient embryos. Abnormal glycerophospholipid metabolism leading to defective embryonic development could be attributed to the increased activity of calcium-independent phospholipase A 2 (iPLA) in G6PD-deficient embryos. This notion is further supported by the fact that the suppression of multiple iPLAs by genetic manipulation partially rescued the embryonic defects in G6PD-deficient embryos. In addition, G6PD deficiency induced disruption of redox balance as manifested by diminished NADPH and elevated lipid peroxidation in embryos. Taken together, disrupted lipid metabolism due to abnormal redox homeostasis is a major factor contributing to abnormal embryonic development in G6PD-deficient C. elegans.

  17. Antigen-specific over-expression of human cartilage glycoprotein 39 on CD4+ CD25+ forkhead box protein 3+ regulatory T cells in the generation of glucose-6-phosphate isomerase-induced arthritis.

    Science.gov (United States)

    Tanaka, Y; Matsumoto, I; Inoue, A; Umeda, N; Takai, C; Sumida, T

    2014-08-01

    Human cartilage gp-39 (HC gp-39) is a well-known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp-39 in RA are unknown. Therefore, using a glucose-6-phosphate isomerase (GPI)-induced model of arthritis, we investigated these aspects of HC gp-39 in arthritis. The rise in serum HC gp-39 levels was detected on the early phase of GPI-induced arthritis (day 7) and the HC gp-39 mRNA was increased significantly on splenic CD4(+) T cells on day7, but not on CD11b(+) cells. Moreover, to identify the characterization of HC gp-39(+) CD4(+) T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp-39 was expressed dominantly in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) refulatory T cells (T(reg)), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp-39 to CD4(+) T cells, T cell proliferation assay and cytokine production from CD4(+) T cells using recombinant HC gp-39 was assessed. We found that GPI-specific T cell proliferation and interferon (IFN)-γ or interleukin (IL)-17 production were clearly suppressed by addition of recombinant HC gp-39. Antigen-specific over-expression of HC gp-39 in splenic CD4(+) CD25(+) FoxP3(+) T(reg) cells occurs in the induction phase of GPI-induced arthritis, and addition of recombinant HC gp-39 suppresses antigen-specific T-cell proliferation and cytokine production, suggesting that HC gp-39 in CD4(+) T cells might play a regulatory role in arthritis. © 2014 British Society for Immunology.

  18. Reciprocal effects of epidermal growth factor on key lipogenic enzymes in primary cultures of adult rat hepatocytes. Induction of glucose-6-phosphate dehydrogenase and suppression of malic enzyme and lipogenesis.

    Science.gov (United States)

    Yoshimoto, K; Nakamura, T; Ichihara, A

    1983-10-25

    In primary cultured hepatocytes of adult rats epidermal growth factor (EGF) caused 2- to 3-fold induction of glucose-6-phosphate dehydrogenase (EC 1.1.1.49, G6P dehydrogenase) within 2 days. The effect of EGF was additive with a similar effect of insulin. The half-maximum dose of EGF for the induction was 1 ng/ml. Induction of this enzyme by these hormones was shown by immunotitration to be due to increase of the amount of enzyme. Furthermore, this increase in the amount of enzyme was found to result from increase of syntheses of mRNA and enzyme protein. In contrast, the induction of malic enzyme (EC 1.1.1.40, L-malate:NADP+) oxidoreductase) by insulin plus triiodothyronine was strongly suppressed by the concomitant addition of EGF. Induction of G6P dehydrogenase by EGF, like that by insulin, was not suppressed by either glucagon or dibutyryl cAMP, whereas that of malic enzyme was suppressed additively by EGF and dibutyryl cAMP. EGF also suppressed stimulation of lipogenesis by insulin, measured as incorporation of [1-14C]acetate into triglycerides and phospholipids. Another difference between the inductions of G6P dehydrogenase and malic enzyme was in their dependence on cell density; G6P dehydrogenase induction by insulin and EGF was high at low cell density (3 X 10(4) cells/cm2) and less at higher cell density (13 X 10(4) cells/cm2), whereas induction of malic enzyme was high at higher cell density and less at lower cell density. These results are consistent with the dual role of G6P dehydrogenase in lipogenesis in resting cells and in synthesis of nucleic acid in growing cells. Malic enzyme plays a role only for lipogenesis in mature hepatocytes.

  19. Trehalose-6-Phosphate: connecting plant metabolism and development

    Directory of Open Access Journals (Sweden)

    Jathish ePonnu

    2011-11-01

    Full Text Available Beyond their metabolic roles, sugars can also act as messengers in signal transduction. Trehalose, a sugar found in many species of plants and animals, is a non-reducing disaccharide composed of two glucose moieties. Its synthesis in plants is a two-step process, involving the production of trehalose-6-phosphate (T6P catalyzed by TREHALOSE-6-PHOSPHATE SYNTHASE (TPS and its consecutive dephosphorylation to trehalose, catalyzed by TREHALOSE-6-PHOSPHATE PHOSPHATASE (TPP. T6P has recently emerged as an important signaling metabolite, regulating carbon assimilation and sugar status in plants. In addition, T6P has also been demonstrated to play an essential role in plant development. This review recapitulates the recent advances in our understanding the role of T6P in coordinating diverse metabolic and developmental processes.

  20. Risks of Hemolysis in Glucose-6-Phosphate Dehydrogenase Deficient Infants Exposed to Chlorproguanil-Dapsone, Mefloquine and Sulfadoxine-Pyrimethamine as Part of Intermittent Presumptive Treatment of Malaria in Infants.

    Science.gov (United States)

    Poirot, Eugenie; Vittinghoff, Eric; Ishengoma, Deus; Alifrangis, Michael; Carneiro, Ilona; Hashim, Ramadhan; Baraka, Vito; Mosha, Jacklin; Gesase, Samwel; Chandramohan, Daniel; Gosling, Roland

    2015-01-01

    Chlorproguanil-dapsone (CD) has been linked to hemolysis in symptomatic glucose-6-phosphate dehydrogenase deficient (G6PDd) children. Few studies have explored the effects of G6PD status on hemolysis in children treated with Intermittent Preventive Treatment in infants (IPTi) antimalarial regimens. We sought to examine the joint effects of G6PD status and IPTi antimalarial treatment on incidence of hemolysis in asymptomatic children treated with CD, sulfadoxine-pyrimethamine (SP), and mefloquine (MQ). A secondary analysis of data from a double-blind, placebo-controlled trial of IPTi was conducted. Hemoglobin (Hb) measurements were made at IPTi doses, regular follow-up and emergency visits. G6PD genotype was determined at 9 months looking for SNPs for the A- genotype at coding position 202. Multivariable linear and logistic regression models were used to examine hemolysis among children with valid G6PD genotyping results. Hemolysis was defined as the absolute change in Hb or as any post-dose Hb <8 g/dL. These outcomes were assessed using either a single follow-up Hb on day 7 after an IPTi dose or Hb obtained 1 to 14 or 28 days after each IPTi dose. Relative to placebo, CD reduced Hb by approximately 0.5 g/dL at day 7 and within 14 days of an IPTi dose, and by 0.2 g/dL within 28 days. Adjusted declines in the CD group were larger than in the MQ and SP groups. At day 7, homo-/hemizygous genotype was associated with higher odds of Hb <8 g/dL (adjusted odds ratio = 6.7, 95% CI 1.7 to 27.0) and greater absolute reductions in Hb (-0.6 g/dL, 95% CI -1.1 to 0.003). There was no evidence to suggest increased reductions in Hb among homo-/hemizygous children treated with CD compared to placebo, SP or MQ. While treatment with CD demonstrated greater reductions in Hb at 7 and 14 days after an IPTi dose compared to both SP and MQ, there was no evidence that G6PD deficiency exacerbated the adverse effects of CD, despite evidence for higher hemolysis risk among G6PDd infants.

  1. [The regulation of glucose-6-phosphate dehydrogenase and glycogen synthase activities by insulin superfamily peptides in myometrium of pregnant women and its impairments under different types of diabetes mellitus].

    Science.gov (United States)

    Kuznetsova, L A; Chistiakova, O V

    2009-01-01

    The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10(-9) M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10(-9) M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women

  2. Incremento de la glucosa-6-fosfato-deshidrogenasa eritrocitaria en jóvenes con síndrome de Down tras un programa de actividad física de 12 semanas A 12-week physical activity program increases glucose-6-phosphate-dehydrogenase activity in Down syndrome adolescents

    Directory of Open Access Journals (Sweden)

    Francisco J. Ordóñez

    2005-12-01

    Full Text Available Recientemente se ha publicado que las células trisómicas presentan una mayor sensibilidad al daño oxidativo, que podría justificar la frecuente asociación de síndrome de Down a aterosclerosis, envejecimiento precoz, etc. Para conocer el posible papel de la actividad física moderada en la mejora de la capacidad antioxidante se estudió el comportamiento de la enzima glucosa-6-fosfato-deshidrogenasa (G6PDH eritrocitaria en 31 adolescentes varones (16.3 ± 1.1 años tras desarrollar un programa de 12 semanas con tres sesiones (45-60 minutos y una intensidad del 60-75% frecuencia cardíaca máxima teórica. Nuestros resultados indican una mayor actividad de G6PDH en individuos con síndrome de Down cuando se compara con controles sin trisomía ajustados a su sexo, edad e índice de masa corporal. Asimismo observamos un incremento significativo de su actividad tras completar nuestro programa de 12 semanas. Podemos concluir que la actividad física moderada mejora la capacidad antioxidante en jóvenes con síndrome de Down.In recent years it has been claimed that trisomic cells are more sensitive to oxidative stress since there is an imbalance in the hydrogen peroxide metabolism. We designed the present study to assess the activity level of antioxidant enzyme glucose-6-phosphate-dehydrogenase (G6PDH of erythrocytes in 31 male adolescents with Down syndrome (mean age 16.3 ± 1.1 after performing a 12 week aerobic training program. First of all, a significant increase of 14.9% in the catalytic activity of G6PDH was observed in male adolescents with Down syndrome when compared with age, sex and body mass-matched controls without trisomy. After 12-wk program its activity increased significantly compared to baseline value in Down syndrome individuals. Our data are consistent with previous evidence of the existence of higher oxidative stress in adolescents with Down syndrome when compared to the general population. We may also conclude that G6PDH

  3. Deficiencia de glucosa 6-fostato deshidrogenasa en hombres sanos y en pacientes maláricos; Turbo (Antioquia, Colombia Deficiency of glucose-6-phosphate dehydrogenase in healthy men and malaria patients; Turbo (Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Carmona-Fonseca

    2008-06-01

    Full Text Available INTRODUCCIÓN: En América Latina la deficiencia de glucosa 6-fosfato deshidrogenasa (d-G6PD ha sido poco estudiada y en Colombia solo conocemos tres publicaciones antiguas. Urge conocer más la prevalencia de d-G6PD, sobre todo ahora que el tratamiento de la malaria vivax plantea aumentar la dosis diaria o total de primaquina. OBJETIVO: Medir la prevalencia de d-G6PD en poblaciones masculina sana y de enfermos con malaria por Plasmodium vivax, en Turbo (Urabá, departamento de Antioquia, Colombia. METODOLOGÍA: Encuestas de prevalencia, para evaluar la G6PD en dos poblaciones de Turbo (Antioquia: hombres sanos; hombres y mujeres con malaria vivax. Se trabajó con muestras diseñadas con criterios estadístico-epidemiológicos. La actividad enzimática se midió con el método normalizado de Beutler para valorar la G6PD en hemolizados. RESULTADOS: Entre los hombres sanos (n = 508, el intervalo de confianza 95% para el promedio (IC95% estuvo entre 4,15 y 4,51 UI/g hemoglobina y 14,8% presentaron valores por debajo del "límite normal" de INTRODUCTION: Glucose-6-phosphate dehydrogenase (G6PD deficiency in Latin America has not been fully studied and in Colombia only three outdated publications are known. Recent information on the prevalence of G6PD deficiency is required now, because the recommended treatment of vivax malaria requires higher daily or total doses of primaquine. OBJECTIVE: To measure the prevalence of G6PD in a healthy male population and in a Plasmodium vivax infected population in Turbo (Urabá, Antioquia Department, Colombia. METHOD: Prevalence survey to evaluate G6PD in two populations of Turbo (Antioquia: healthy male; male and female with vivax malaria. The work was carried out on population samples selected using statistical and epidemiological criteria. Enzyme activity was measured using Beutler's normalized method to evaluate G6PD after hemolysis. RESULTS: For the healthy male group (n = 508, and with a 95% confidence

  4. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    Science.gov (United States)

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (PPiracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis. PMID:15148255

  5. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport.

    Science.gov (United States)

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-06-01

    1 Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. 2 The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (Paniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. 4 There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. 5 Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis.

  6. The impact of hemodialysis on erythrocyte membrane cytoskeleton proteins

    Directory of Open Access Journals (Sweden)

    Maria Olszewska

    2015-02-01

    Full Text Available Background: Hemodialysis (HD is one of the methods of renal replacement therapy, but it also contributes to an increase in oxidative stress. Hemodialysis leads to changes in the erythrocyte cytoskeleton structure, whilst the presence of glucose in the dialysis fluid which activates the pentose phosphate pathway contributes to the intensification of oxidative stress. Available literature lacks reports on the effect of glucose in the dialytic fluid on the composition of proteins of the cell membrane cytoskeleton.Material/Methods: Red blood cells for this analysis were collected from patients with chronic renal failure treated with hemodialysis using both glucose-containing and glucose-free dialysis fluid. Following the preparation of membranes, the electrophoretic separation of proteins was performed in denaturing conditions according to Laemmli. The level of tryptophan in membranes was determined by spectrofluorimetry, whilst the activity of glucose-6-phosphate dehydrogenase was determined by measuring the reduction of oxidated NADP.Results: Hemodialysis in both groups of patients resulted in a statistically significant reduction of tryptophan as an oxidative stress indicator when compared to the control group. Moreover, the activity of glucose-6-phosphate dehydrogenase in the group of patients was higher than in the control group, and following the HD procedure it decreased, which may have been caused by a reduced concentration of dialyzed glucose. The HD procedure affects the structure of the erythrocyte membrane cytoskeleton, which is reflected in the concentration changes in individual proteins and in their mutual relationships corresponding to vertical and horizontal interactions stabilizing the structure of the erythrocyte membrane cytoskeleton. These changes may contribute to the shortening of cell lifespan.

  7. Erythrocyte oxidative stress markers in children with sickle cell disease.

    Science.gov (United States)

    Hermann, Priscila Bacarin; Pianovski, Mara Albonei Dudeque; Henneberg, Railson; Nascimento, Aguinaldo José; Leonart, Maria Suely Soares

    2016-01-01

    To determine eight parameters of oxidative stress markers in erythrocytes from children with sickle cell disease and compare with the same parameters in erythrocytes from healthy children, since oxidative stress plays an important role in the pathophysiology of sickle cell disease and because this disease is a serious public health problem in many countries. Blood samples were obtained from 45 children with sickle cell disease (21 males and 24 females with a mean age of 9 years; range: 3-13 years) and 280 blood samples were obtained from children without hemoglobinopathies (137 males and 143 females with a mean age of 10 years; range: 8-11 years), as a control group. All blood samples were analyzed for methemoglobin, reduced glutathione, thiobarbituric acid reactive substances, percentage of hemolysis, reactive oxygen species, and activity of the enzymes glucose 6-phosphate dehydrogenase, superoxide dismutase, and catalase. Data were analyzed using Student's t-test and were expressed as the mean±standard deviation. A p-value of sickle cell disease and the control group for the parameters methemoglobin, thiobarbituric acid reactive substances, hemolysis, glucose 6-phosphate dehydrogenase activity, and reactive oxygen species, with higher levels in the patients than in the controls. Oxidative stress parameters in children's erythrocytes were determined using simple laboratory methods with small volumes of blood; these biomarkers can be useful to evaluate disease progression and outcomes in patients. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  8. Analysis of trehalose-6-phosphate control over carbon allocation and growth in plants

    NARCIS (Netherlands)

    Aghdasi, M.

    2007-01-01

    Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesic precursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth, carbon utilization and alters photosynthetic capacity but its mode of action is not underestood. This thesis

  9. Erythrocyte survival in sheep exposed to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.S.; Calabrese, E.J.; Labato, F.J.

    1981-07-01

    Erythrocyte survival studies in the Dorset ewe using chromium 51 were performed. The purpose of the study was to determine if ozone exposure produces decreased cell survival which may be the result of premature erythrocyte aging. This strain of sheep has an erythrocyte glucose-6-phosphate dehydrogenase (G6PD) activity that is very low, being comparable to human A-variants with G6PD deficiency. Ozone exposure may produce hemolytic effects in G6PD deficients more readily than in erythrocytes with normal activity. A decrease in hematocrit was observed in the ozone exposed groups. With respect to red cell destruction, ozone does not appear to act immediately, but rather there appears to be a delayed effect. At 0.25 ppM ozone, the group reached the 50% remaining level an average of 1 day sooner than the control group. There was no significant difference between control and exposed groups at the 0.50 ppM and 0.70 ppM levels. Also, the results demonstrate a net decrease in hematocrit which is greater for 0.25 ppM ozone than any other exposure level. (RJC)

  10. Incidence of Glucose-6-Phosphate Dehydrogenase (G-6-PD ...

    African Journals Online (AJOL)

    A community based study of the incidence of G-6-PD deficiency in apparently healthy individuals in Jos South (Plateau State) and Jaba (Kaduna State) Local Government Areas (LGAs) of North Central Nigeria was carried-out. The screening of G-6-PD deficiency was performed on 270 subjects which comprised 120 ...

  11. Prevalence of glucose-6-phosphate dehydrogenase deficiency and ...

    African Journals Online (AJOL)

    HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure by the disease.

  12. Molecular Aspects of Glucose-6-Phosphate Dehydrogenase Deficiency in Iran

    Directory of Open Access Journals (Sweden)

    Ali Dehghanifard

    2012-07-01

    Full Text Available Background: G6PD deficiency is the most common hereditary enzyme deficiency that affected more than 400 million people worldwide. This enzyme deficiency is caused by a spectrum of mutations in the gene encoding G6PD on chromosome X. Epidemiologically; G6PD deficiency has been specially considered in Middle East countries including Iran, Oman and Saudi Arabia.Materials and Methods: This study has reviewed more than 70 papers related to the epidemiological significance and various diagnostic strategies of G6PD deficiency from 1956 to 2010.Results: The results showed a higher prevalence of Mediterranean variant followed by Chatham and Cosenza compared to other variants in Iran.Conclusion: Accurate identification of G6PD deficiency variants in areas with high prevalence of this disease will help to screen patients and their families with risk level when faced with oxidant agents.

  13. Glucose -6- phosphate dehydrogenase (g6pd) activity and ...

    African Journals Online (AJOL)

    The enzyme activity was determined quantitatively by spectrophotometer assay method. The activity of red cell G6PD enzyme was subnormal in 20% of the population studied. This agrees with previous report of the prevalence of G6PD deficiency in Nigerian males from the Western region of the country which is between 20 ...

  14. Prevalence of sickle cell, malaria and glucose-6-phosphate ...

    African Journals Online (AJOL)

    PD) deficiency are relatively common genetic disorders in population exposed to malaria in sub-Saharan Africa. The prevalence of these two genetic disorders differs between different malaria transmission areas. Objectives: This cross ...

  15. assessment of the activity of glucose-6-phosphate dehydrogenase

    African Journals Online (AJOL)

    Uwaifoh

    2012-10-31

    Oct 31, 2012 ... The Type 2 DM; which was previously referred to as non insulin- dependent diabetes mellitus (NIDDM) or "adult-onset diabetes" is said to results from insulin resistance, a condition in which cells fail to use insulin properly, sometimes combined with an absolute insulin deficiency or relatively reduced insulin ...

  16. Molecular genetics of glucose-6-phosphate dehydrogenase deficiency in Mexico.

    Science.gov (United States)

    Medina, M D; Vaca, G; Lopez-Guido, B; Westwood, B; Beutler, E

    1997-01-01

    Several studies carried out between 1965 and 1985 showed that G-6-PD deficiency in Mexico is heterogeneous at the biochemical level and that the G-6-PD A- phenotype is relatively common. We have now investigated the molecular basis of G-6-PD deficiency in Mexico. Up-to-date 60 chromosomes with G6PD mutations have been studied, 16 in previous studies and 44 in the present work. Molecular analysis of DNA from G-6-PD deficient Mexican mestizos and their relatives show that G-6-PD A- genotypes are relatively common but also that in Mexico G-6-PD deficiency is heterogeneous at the DNA level. Thus, five different genotypes have been observed: G-6-PD A-(202A/376G) (41 chromosomes), G-6-PD A-(376G/968C) (14 chromosomes), G-6-PD Seattle844C (3 chromosomes), G-6-PD "Mexico City"680A (1 chromosome) and G-6-PD Guadalajara1159T (1 chromosome). The G-6-PD A-(202A/376G), G-6-PD A-(376G/968C) and G-6-PD Seattle844C mutations in Mexico are on the same Pvu II/ Pst I/ 1311 / Nla III haplotypes as found in individuals from Africa, Spain and the Canary Islands. Consequently, these mutations were probably imported to Mexico through African slaves and/or the Spanish immigrants during and after the colonization.

  17. G6PD Deficiency (Glucose-6-Phosphate Dehydrogenase) (For Parents)

    Science.gov (United States)

    ... People of Mediterranean heritage, including those of Italian, Greek, Arabic, and Sephardic Jewish backgrounds, also are commonly ... be at risk because of either a family history or your ethnic background, talk to your doctor ...

  18. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    Sigma #119 Fracc. 20 de Noviembre II, 34220 Durango, México; Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan México, D.F. C.P. 14610, México; Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, ...

  19. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochem- ically screened for G6PD deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% (n = 1993); ...

  20. The status of antioxidant defences in Glucose-6-phosphate ...

    African Journals Online (AJOL)

    The aim of this study was to clarify the role of G6PD in cellular antioxidant defense; the level of glutathione, catalase, NADPH and estimate the level of malondialdehyde which reflect the oxidative stress across the cell membrane. Also to study the effect of antioxidant treatment (vitamins C and E) to ameliorate high sensitivity ...

  1. Glucose-6-phosphate dehydro- genase deficiency; the single most ...

    African Journals Online (AJOL)

    2017-03-10

    Mar 10, 2017 ... Laboratory investigations on all the jaundiced neonates were as follows; Blood typing (ABO and Rhesus groups) for mothers and the babies, blood cultures when indicated. Total and direct reacting serum bilirubin (SB) using the modified method of Winsten and Cehelyk13. Using an auto analyzer (Express ...

  2. Prevalência da deficiência da glicose-6-fosfato desidrogenase em doadores de sangue de Mossoró, Rio Grande do Norte Prevalence of glucose-6-phosphate dehydrogenase deficiency in blood donors of Mossoró, Rio Grande do Norte

    Directory of Open Access Journals (Sweden)

    Ulysses Madureira Maia

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy. It affects as many as 330 million individuals worldwide. This deficiency may determine neonatal jaundice, chronic nonspherocytic hemolytic anemia and acute hemolytic anemia induced by drugs, infections and broad bean ingestion. The efficacy of blood transfusion is decreased when the donor is G6PD deficient. In this study, we aimed at determining the prevalence of G6PD deficiency in blood donors of Mossoro, Brazil. Samples of 714 blood donors (576 men and 138 women; 343 white and 371 non-white with ages ranging from 18 to 62 years and that accepted to participate in the study were analyzed. All participants answered a standard questionnaire. G6PD activity was analyzed by the methemoglobin reduction test with deficiency being confirmed by the semiquantitative test. The overall prevalence of G6PD deficiency in blood donors was 3.8%, similar to the rate described for others regions of Brazil. There was no significant statistical difference in the frequency of G6PD deficiency between men and women, nor between white and non-white blood donors. This relatively high frequency of G6PD deficiency highlights a need to screen blood donors for this condition.

  3. Alterações clínicolaboratoriais em pacientes com malária por Plasmodium vivax e deficiência de glicose-6-fosfato desidrogenase tratados com 0,50mg/kg/dia de primaquina Clinical and laboratorial alterations in Plasmodium vivax malaria patients and glucose-6-phosphate dehydrogenase deficiency treated with primaquine at 0.50mg/kg/day

    Directory of Open Access Journals (Sweden)

    Mônica C.M. Silva

    2004-06-01

    Full Text Available O efeito adverso da primaquina na dose de 0,50mg/kg/dia foi investigado em onze pacientes com malária vivax (três com deficiência de glicose-6-fosfato desidrogenase. Alterações clínicas e laboratoriais indicaram hemólise aguda apenas nos enzimopênicos, o que fez com que o tratamento fosse interrompido. Nossos resultados sugerem a necessidade do emprego de um teste de triagem para a deficiência de G6PD em áreas endêmicas de malária vivax a fim de se evitar complicações causadas pelo uso da primaquina.The adverse effects of primaquine (0.50mg/kg/day were investigated in eleven patients with vivax malaria (three patients with glucose-6-phosphate dehydrogenase deficiency. Clinical and laboratorial alterations indicated acute hemolysis in only the enzymopenic patients and treatment was interrupted. Our results suggest that screening for G6PD deficiency should be carried out in patients with vivax malaria infection in order to avoid complications due to primaquine.

  4. Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death.

    Science.gov (United States)

    Lang, Elisabeth; Lang, Florian

    2015-01-01

    Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.

  5. Triggers, Inhibitors, Mechanisms, and Significance of Eryptosis: The Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2015-01-01

    Full Text Available Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16. Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson’s disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.

  6. The effect of temperature on the competitive inhibition of glucose transfer in human erythrocytes by phenolphthalein, phloretin and stilboestrol

    Science.gov (United States)

    Forsling, Mary L.; Widdas, W. F.

    1968-01-01

    1. Phenolphthalein, like other diphenols, has been shown to be a competitive inhibitor of the facilitated transfer system for glucose in the human erythrocyte. 2. The concentration producing 50% inhibition is lower at low temperatures and increases steadily over the temperature range 10-40° C. An Arrhenius plot of the results gives a slope of 19,300 cal/mole. 3. The effect of temperature on inhibition by phloretin and stilboestrol has also been studied. The temperature variation of the concentration of phloretin giving 50% inhibition is similar to that for phenolphthalein, but that for stilboestrol is much less. 4. There is a high cell/medium distribution ratio for stilboestrol, and the possibility that this may affect the temperature dependence of the aqueous concentrations required to give 50% inhibition is discussed. PMID:5639367

  7. Effects of Three Kinds of Curcuminoids on Anti-Oxidative System and Membrane Deformation of Human Peripheral Blood Erythrocytes in High Glucose Levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-01-01

    Full Text Available Background/Aims: Curcuminoids are the main bioactive constituents of the rhizome of turmeric. Erythrocytes lesions in diabetes are probably related to hyperglycemia and protein glycation. It has been reported that curcumin prevent lipid peroxidation. However, reports on the effects of demethoxycurcumin and bis-demethoxycurcumin on human erythrocytes at high glucose levels are scarce. Our aim is to investigate the effect of curcuminoids on oxidative stress and membrane of erythrocytes exposed to hyperglycemic condition. Methods: In this study, the different blood samples were treated with two doses of glucose (10 or 30 mM to mimic hyperglycemia in the presence or absence of three kinds of curcuminoids (5 or 10 μM in a medium at 37 °C for 24 h (Each experiment consists of 20 blood samples from 10 male and 10 female volunteers. The malondialdehyde was checked by HPLC, antioxidase (GSH and GSSG were measured by LC/MS, SOD was checked by WST-1 kit, morphology and phospholipid symmetry were detected by flow cytometry, confocal scanning microscope and scanning electron microscope. Results: The results illustrated that all three curcuminoids reduce oxidative stress damage on the membrane and maintain a better profile for erythrocytes. Furthermore, three curcuminoids had benefit effects on antioxidase. Conclusion: The three kinds of curcuminoids supplementation may prevent lipid peroxidation at different intensity and membrane dysfunction of human erythrocytes in hyperglycemia.

  8. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

    Science.gov (United States)

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2015-01-01

    Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739

  9. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  10. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants.

    Science.gov (United States)

    Hartman, Matías D; Figueroa, Carlos M; Arias, Diego G; Iglesias, Alberto A

    2017-01-01

    Glucitol, also known as sorbitol, is a major photosynthetic product in plants from the Rosaceae family. This sugar alcohol is synthesized from glucose-6-phosphate by the combined activities of aldose-6-phosphate reductase (Ald6PRase) and glucitol-6-phosphatase. In this work we show the purification and characterization of recombinant Ald6PRase from peach leaves. The recombinant enzyme was inhibited by glucose-1-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate and orthophosphate. Oxidizing agents irreversibly inhibited the enzyme and produced protein precipitation. Enzyme thiolation with oxidized glutathione protected the enzyme from insolubilization caused by diamide, while incubation with NADP+ (one of the substrates) completely prevented enzyme precipitation. Our results suggest that Ald6PRase is finely regulated to control carbon partitioning in peach leaves. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Oxidative stress and suicidal erythrocyte death.

    Science.gov (United States)

    Lang, Florian; Abed, Majed; Lang, Elisabeth; Föller, Michael

    2014-07-01

    Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional

  12. Antioxidant status of erythrocytes and their response to oxidative challenge in humans with argemone oil poisoning

    International Nuclear Information System (INIS)

    Babu, Challagundla K.; Khanna, Subhash K.; Das, Mukul

    2008-01-01

    Oxidative damage of biomolecules and antioxidant status in erythrocytes of humans from an outbreak of argemone oil (AO) poisoning in Kannauj (India) and AO intoxicated experimental animals was investigated. Erythrocytes of the dropsy patients and AO treated rats were found to be more susceptible to 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced peroxidative stress. Significant decrease in RBC glutathione (GSH) levels (46, 63%) with concomitant enhancement in oxidized glutathione (172, 154%) levels was noticed in patients and AO intoxicated animals. Further, depletion of glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G-6-PDH) and glutathione-S-transferase (GST) (42-52%) was observed in dropsy patients. Oxidation of erythrocyte membrane lipids and proteins was increased (120-144%) in patients and AO treated animals (112-137%) along with 8-OHdG levels in whole blood (180%) of dropsy patients. A significant reduction in α-tocopherol content (68%) was noticed in erythrocytes of dropsy patients and hepatic, plasma and RBCs of AO treated rats (59-70%) thereby indicating the diminished antioxidant potential to scavenge free radicals or the limited transport of α-tocopherol from liver to RBCs leading to enhanced oxidation of lipids and proteins in erythrocytes. These studies implicate an important role of erythrocyte degradation in production of anemia and breathlessness in epidemic dropsy

  13. Infleunce of pH on the partition of glucose-6-phosphate dehydrogenase and hexokinase in aqueous two-phase system Influência do pH na partição da glicose 6-fosfato desidrogenase e hexoquinase em sistema de duas fases aquosas

    Directory of Open Access Journals (Sweden)

    Daniel Pereira da Silva

    2002-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH and hexokinase (HK are important enzymes used in biochemical and medical studies and in several analytical methods. Aqueous two-phase system (ATPS formed by a polymer solution and an electrolyte solution provides a method for the separation and purification of enzymes with several advantages, including biocompatibility and easy scale up of the process. In this work, the effects of different pH values on the storage stability and partitioning behavior (K, partition coefficient of the enzymes G6PDH and HK from baker's yeast extract were investigated in ATPS. The results, obtained from the 17.5% PEG 400 : 15.0% phosphate system, showed that when the pH was increased from 5.0 to 8.8, the K HK increased 26-fold and the K G6PDH 2.2-fold. In the 20.0% PEG 1500 : 17.5% phosphate system, the K HK and K G6PDH increased 13 and 1.2-fold, when the pH value was increased from 3.8 to 8.8, respectively. This leads to the conclusion that the partition coefficient for both enzymes is favored by high pH values. A statistical analysis of the results was conducted to confirm this conclusion.Glicose-6-fosfato desidrogenase (G6PDH e hexoquinase (HK são importantes enzimas usadas em estudos bioquímicos e médicos e em diversos métodos analíticos. Sistema de duas fases aquosas (SDFA formado por uma solução polimérica e uma solução eletrolítica proporciona um método para separação e purificação de enzimas com diversas vantagens, incluindo biocompatibilidade, que pode ser facilmente escalonado para nível industrial. Neste trabalho, os efeitos de diferentes valores de pH na estabilidade e na partição (K, coeficiente de partição por SDFA das enzimas G6PDH e HK, obtidas através de levedura de panificação, foram investigados. Os resultados, obtidos do sistema constituído por 17,5% de PEG 400 e 15,0% de fosfato, mostraram que com a elevação do pH de 5,0 para 8,8, o K HK aumentou 26 vezes e o K G6PDH 2,2 vezes

  14. Anestesia em paciente portador de deficiência de glicose-6-fosfato-desidrogenase: relato de caso Anestesia en paciente portador de deficiencia de glicosa-6-fosfato-desidrogenasa: relato de caso Anesthesia in glucose 6-phosphate dehydrogenase-deficient patient: case report

    Directory of Open Access Journals (Sweden)

    Múcio Paranhos de Abreu

    2002-11-01

    caso relatado, la anestesia subaracnóidea con bupivacaína asociada a anestesia venosa total con propofol, mostró que es una técnica segura en pacientes portadores de deficiencia de G6PD.BACKGROUND AND OBJECTIVES: Glucose 6-phosphate dehydrogenase (G6PD deficiency is a relatively common enzymopathy, but there are few publications relating such condition to anesthesia. This report aimed at presenting a case of a G6PD-deficient patient, submitted to Achilles tendon tenotomy under intravenous anesthesia associated to spinal block. CASE REPORT: Male patient, 9 years old, 48 kg, with G6PD deficiency and peripheral polineuropathy, submitted to Achilles tendon tenotomy under general intravenous anesthesia with midazolam, propofol and fentanyl, associated to spinal block with 0.5% hyperbaric bupivacaine. At surgery completion patient awakened relaxed, without pain or other complaints, had a good evolution and was discharged without intercurrences. CONCLUSIONS: According to the evolution of this case, spinal anesthesia with bupivacaine associated to total intravenous anesthesia with propofol has shown to be a safe technique for G6PD-deficient patients.

  15. Identification of the trehalose-6-phosphate synthase gene family in ...

    Indian Academy of Sciences (India)

    2015-03-04

    Mar 4, 2015 ... Abstract. Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in plants. Trehalose contents are poten- tially modulated by trehalose-6-phosphate synthase (TPS), which is a key enzyme in the trehalose biosynthetic pathway. Using available wheat expressed sequence tag ...

  16. Effect of adjuvant recombinant EPO therapy on neural functional recovery, inflammation and erythrocyte glucose metabolism in patients with severe craniocerebral injury

    Directory of Open Access Journals (Sweden)

    Zeng Lu

    2017-02-01

    Full Text Available Objective: To study the effect of adjuvant recombinant EPO therapy on neural functional recovery, inflammation and erythrocyte glucose metabolism in patients with severe craniocerebral injury. Methods: A total of 78 patients with severe craniocerebral injury treated in our hospital between May 2013 and March 2016 were selected and randomly divided into the EPO group and control group who received recombinant human erythropoietin (rhEPO combined with conventional therapy and conventional therapy respectively. Before treatment as well as 7 d and 14 d after treatment, the degree of brain tissue hypoxia, nerve injury and inflammation as well as erythrocyte glucose metabolism were evaluated respectively. Results: PbtO2 levels, serum NGB and HGB content as well as PFK activity of both groups 7 d and 14 d after treatment were significantly higher than those before treatment while serum NF-H, NF-L, NF-M, NSE, S100β, IL-2, P-selectin and sICAM-1 content as well as G-6PD and AR activity were significantly lower than those before treatment; PbtO2 levels, serum NGB and HGB content as well as PFK activity of EPO group 7 d and 14 d after treatment were significantly higher than those of control group while serum NF-H, NF-L, NF-M, NSE, S100 β, IL-2, P-selectin and sICAM-1 content as well as G-6PD and AR activity were significantly lower than those of control group. Conclusion: Adjuvant recombinant EPO therapy can inhibit inflammation and improve erythrocyte glucose metabolism to reduce the nerve injury degree in patients with severe craniocerebral injury.

  17. Sodium Nitrate Induces Reactive Oxygen Species That Lower the Antioxidant Power, Damage the Membrane, and Alter Pathways of Glucose Metabolism in Human Erythrocytes.

    Science.gov (United States)

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2015-12-09

    Nitrate salts are widely used as food additives and nitrogenous fertilizers and are present as contaminants in drinking water supplies. The effect of different concentrations (1-15 mM) of sodium nitrate (NaNO3) on human erythrocytes was studied under in vitro conditions. Treatment of erythrocytes with NaNO3 resulted in increases in methemoglobin levels, lipid peroxidation, and protein oxidation and a decrease in glutathione content. There were changes in the activities of all major antioxidant defense enzymes, and the pathways of glucose metabolism were also affected. Increased generation of reactive oxygen species (ROS) took place while the antioxidant power was impaired. The osmotic fragility of cells was increased, and membrane-bound enzymes were greatly inhibited. All changes were statistically significant at a probability level of P < 0.05 at all concentrations of NaNO3 except the lowest (1 mM). Thus, NaNO3 generates ROS that cause significant damage to human erythrocytes and interfere in normal cellular pathways.

  18. Avaliação da incidência da deficiência de Glicose-6-Fosfato Desidrogenase (G6PD e perfil hematológico em indivíduos de uma região de Rondônia Incidence evaluation of Glucose-6-Phosphate Dehydrogenase and hematological profile in Rondonia

    Directory of Open Access Journals (Sweden)

    Tony H. Katsuragawa

    2004-12-01

    Full Text Available O estudo compreendeu a avaliação da deficiência de Glicose-6-Fosfato Desidrogenase (G6PD e perfil hematológico em 122 indivíduos (69 homens e 53 mulheres, com idade variando entre 3 a 84 anos, selecionados conforme a aceitação em participação no estudo, residentes na área urbana e rural do município de Porto Velho, Rondônia, Brasil, no período de julho de 2003 a agosto de 2004. A análise foi realizada utilizando-se o método da glicose NaNO2, e hemograma completo. Foram detectados quatro indivíduos do sexo masculino com deficiência da G6PD, sendo 5,8% entre os homens e 3,3% do total analisado. Dos indivíduos com deficiência da G6PD nenhum apresentava malária, através de diagnóstico realizado pela gota espessa corado pelo Giemsa. Entre os homens, 19 (27,5% apresentaram malária, sendo 15 por Plasmodium vivax e quatro por Plasmodium falciparum; 48 (69,5% apresentaram valores de hemoglobina abaixo de 14,0 g/dl, e 26 (37,6% apresentaram valores eritrocitários abaixo do 4,5 milhões/mm³. Entre as mulheres apenas duas (3,7% apresentaram malária por Plasmodium vivax; 24 (45,2% apresentaram valores de hemoglobina abaixo de 12,0 g/dl, e 12 (22,6% apresentaram massa eritrocitária abaixo de 4,0 milhões/mm³. A eosinofilia esteve presente em 47 (68,1% dos homens e em 34 (64,1% das mulheres. A incidência de deficiência da G6PD foi significativa na população masculina que procurou assistência médica devido a sintomas febris. Considerando que a primaquina é utilizada para o tratamento da malária vivax e falciparum, o risco de ocorrência de hemólise intravascular grave entre os indivíduos é significante. O teste utilizado é muito simples e de baixo custo e sugerimos a adoção desta metodologia na rotina dos laboratórios de atendimento público em áreas endêmicas de malária.This study consisted of evaluations of glucose-6-phosphate dehydrogenase (G6PD deficiency and the hematologic profile of 122 individuals (69 men

  19. Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production.

    Directory of Open Access Journals (Sweden)

    Sujan Sigdel

    Full Text Available The BaM6PI gene encoding a mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8 was cloned from Bacillus amyloliquefaciens DSM7 and overexpressed in Escherichia coli. The enzyme activity of BaM6PI was optimal at pH and temperature of 7.5 and 70°C, respectively, with a kcat/Km of 13,900 s-1 mM-1 for mannose-6-phosphate (M6P. The purified BaM6PI demonstrated the highest catalytic efficiency of all characterized M6PIs. Although M6PIs have been characterized from several other sources, BaM6PI is distinguished from other M6PIs by its wide pH range and high catalytic efficiency for M6P. The binding orientation of the substrate M6P in the active site of BaM6PI shed light on the molecular basis of its unusually high activity. BaM6PI showed 97% substrate conversion from M6P to fructose-6-phosphate demonstrating the potential for using BaM6PI in industrial applications.

  20. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    OpenAIRE

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide...

  1. Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases.

    Science.gov (United States)

    Liu, Chunliang; Dunaway-Mariano, Debra; Mariano, Patrick S

    2017-03-10

    In some organisms, environmental stress triggers trehalose biosynthesis that is catalyzed collectively by trehalose 6-phosphate synthase, and trehalose 6-phosphate phosphatase (T6PP). T6PP catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to trehalose and inorganic phosphate and is a promising target for the development of antibacterial, antifungal and antihelminthic therapeutics. Herein, we report the design, synthesis and evaluation of a library of aryl d-glucopyranoside 6-sulfates to serve as prototypes for small molecule T6PP inhibitors. Steady-state kinetic techniques were used to measure inhibition constants (K i ) of a panel of structurally diverse T6PP orthologs derived from the pathogens Brugia malayi, Ascaris suum, Mycobacterium tuberculosis, Shigella boydii and Salmonella typhimurium. The binding affinities of the most active inhibitor of these T6PP orthologs, 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (9a), were found to be in the low micromolar range. The K i of 9a with the B. malayi T6PP ortholog is 5.3 ± 0.6 μM, 70-fold smaller than the substrate Michaelis constant. The binding specificity of 9a was demonstrated using several representative sugar phosphate phosphatases from the HAD enzyme superfamily, the T6PP protein fold family of origin. Lastly, correlations drawn between T6PP active site structure, inhibitor structure and inhibitor binding affinity suggest that the aryl d-glucopyranoside 6-sulfate prototypes will find future applications as a platform for development of tailored second-generation T6PP inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    Science.gov (United States)

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (Pgrape juices (PGrape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-{sup 19}F-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, Elizabeth, E-mail: elizabeth.dickinson@york.ac.uk [University of York, Department of Chemistry (United Kingdom); Arnold, John R. P. [Selby College (United Kingdom); Fisher, Julie [University of Leeds, School of Chemistry (United Kingdom)

    2017-02-15

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using {sup 19}F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  4. Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Imrie Heather J

    2008-01-01

    Full Text Available Abstract Background The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of seroconversion to infected-erythrocyte variant surface antigens (VSA should be seen in different host genotypes. Methods To test this hypothesis, P. falciparum parasitaemia and anti-VSA antibody levels were measured in a cohort of 555 asymptomatic children from an area of intense malaria transmission in Papua New Guinea. Linear mixed models were used to investigate the effect of α+-thalassaemia, complement receptor-1 and south-east Asian ovalocytosis, as well as glucose-6-phosphate dehydrogenase deficiency and ABO blood group on parasitaemia and age-specific seroconversion to VSA. Results No host polymorphism showed a significant association with both parasite prevalence/density and age-specific seroconversion to VSA. Conclusion Host erythrocyte polymorphisms commonly found in Papua New Guinea do not effect exposure to blood stage P. falciparum infection. This contrasts with data for sickle cell trait and highlights that the above-mentioned polymorphisms may confer protection against malaria via distinct mechanisms.

  5. Activation of muscle fibers in individual motor units revealed by 2-deoxyglucose-6-phosphate.

    Science.gov (United States)

    Nemeth, P M; Norris, B J; Lowry, O H; Gordon, D A; Enoka, R M; Stuart, D G

    1988-11-01

    Motor units of the cat tibialis posterior muscle were selectively activated by prolonged electrical stimulation of functionally isolated motor axons in situ. During the activation, the glucose analog 2-deoxyglucose (DG) was administered systemically. Single muscle fibers were subsequently examined for accumulation of the metabolite 2-deoxyglucose-6-phosphate (DG6P) by an analytical assay and for depletion of glycogen by a PAS glycogen-specific staining reaction (periodic acid Schiff; PAS). In general, levels of DG6P were 20 times greater in unstained (PAS-negative) fibers compared with stained (PAS-positive) fibers. However, some glycogen-depleted fibers, particularly in putative ischemic fascicles of the muscle, did not have elevated DG6P, suggesting that depletion of glycogen is not always a reliable indicator of fiber activation. Furthermore, the PAS-staining reaction was not necessarily indicative of quantitative glycogen levels in single fibers. Thus, this report shows that DG6P accumulation enhances the identification of motor-unit fibers selectively activated via their common motor-nerve axon. Evidence is also presented for differential glucose uptake in muscle fibers of different phenotype, thereby indicating that the DG6P measurement in muscle has broad applicability to the investigation of cellular glucose utilization.

  6. Trehalose 6-phosphate signal is closely related to sorbitol in apple (Malus domestica Borkh. cv. Gala

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2017-02-01

    Full Text Available Trehalose-6-phosphate (Tre6P is a precursor of trehalose, which is widespread in nature and greatly influences plant growth and development. Tre6P acts as a signal of carbon availability in many plants, but little is known about the function of Tre6P in rosaceous plants, which have specific sorbitol biosynthesis and transportation pathways. In the present study, Tre6P levels and Sorbitol:Tre6P ratios were analyzed in apple (Malus domestica, Borkh. cv. Gala. Tre6P levels were positively correlated with sorbitol content but negatively correlated with sucrose, glucose, and fructose content in developing fruit. However, under sorbitol-limited conditions, Tre6P levels were positively correlated with both sorbitol and sucrose. In the presence of different exogenous sugar supply, Tre6P levels increased corresponding with sorbitol, but this was not the case with sucrose. In addition, Tre6P content and sorbitol:Tre6P ratios were more highly correlated with ADP-glucose levels under sorbitol-limited conditions and fruit development stages, respectively. These results suggest that Tre6P is more closely related to sorbitol than other soluble sugars and has an important role in influencing carbon metabolism in apple.

  7. Resolving futile glucose cycling and glycogenolytic contributions to plasma glucose levels following a glucose load

    NARCIS (Netherlands)

    Nunes, P.M.; Jarak, I.; Heerschap, A.; Jones, J.G.

    2014-01-01

    PURPOSE: After a glucose load, futile glucose/glucose-6-phosphate (G6P) cycling (FGC) generates [2-(2) H]glucose from (2) H2 O thereby mimicking a paradoxical glycogenolytic contribution to plasma glucose levels. Contributions of load and G6P derived from gluconeogenesis, FGC, and glycogenolysis to

  8. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.

    Science.gov (United States)

    Taguchi, Yodai; Saburi, Wataru; Imai, Ryozo; Mori, Haruhide

    2017-08-01

    Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.

  9. Trehalose-6-phosphate synthase and stabilization of yeast glycolysis

    DEFF Research Database (Denmark)

    Fraenkel, Dan; Nielsen, Jens

    2016-01-01

    ‘Lost in transition: Startup of glycolysis yields subpopulations of nongrowing cells…’ (‘LIT’, van Heerden et al. 2014) is a massive paper from groups in Amsterdam and Delft, which deals with broad issues in metabolism and cell heterogeneity, as addressed for the predominant metabolic pathway......, glycolysis, in the context of a long studied but incompletely understood yeast mutant which is impaired in use of glucose without evident direct defects in the pathway. The primary approach is the quite original one of predicting, for the mutant, the dynamics of metabolism upon glucose addition, based...

  10. Source/ sink interactions underpin crop yield: the case for trehalose 6-phosphate/ SnRK1 in improvement of wheat

    Directory of Open Access Journals (Sweden)

    Matthew ePaul

    2014-08-01

    Full Text Available Considerable interest has been evoked by the analysis of the regulatory pathway in carbohydrate metabolism and cell growth involving trehalose (TRE. TRE is at small concentrations in mesophytes such as Triticum aestivum. Studies of TRE metabolism, and genetic modification of it, have shown a very wide and important role of the pathway in regulation of many processes in development, growth and photosynthesis. It has now been established that trehalose 6-phosphate (T6P, is formed from glucose-6-phosphate and UDP-glucose, derived from sucrose, by the action of trehalose phosphate synthase (TPS and broken down by trehalose-6-phosphate phosphatase (TPP providing for subtle regulation. The concentration of T6P increases with sucrose concentration. Many of the effects of T6P on metabolism and growth occur via the interaction of T6P with the SnRK1 protein kinase system. A large concentration of sucrose increases T6P and thereby inhibits SnRK1, so stimulating growth of cells and their metabolism. The T6P/SnRK1 mechanism offers an important new view of how the distribution of assimilates to organs, such as developing cereal grains, is achieved. Changing T6P concentrations by genetically modifying TPS and TPP has altered photosynthesis, sugar metabolism, growth and development which affect responses to, and recovery from, environmental factors. This review briefly summarizes the factors determining, and limiting, yield of wheat, particularly mass/grain which is highly conserved. The interactions between the source and sink relations are addressed together with how T6P/SnRK1 might function to determine grain number, size, and yield. The possibility of how these might be increased by modifying trehalose metabolism is considered. Cereal yields globally are not increasing and careful targeting of T6P may offer a way of optimizing grain growth and thus increasing yield in wheat.

  11. Cellular properties of human erythrocytes preserved in saline-adenine-glucose-mannitol in the presence of L-carnitine.

    Science.gov (United States)

    Arduini, Arduino; Minetti, Giampaolo; Ciana, Annarita; Seppi, Claudio; Brovelli, Augusta; Profumo, Antonella; Vercellati, Cristina; Zappa, Manuela; Zanella, Alberto; Dottori, Secondo; Bonomini, Mario

    2007-01-01

    L-Carnitine (LC) in the preservation medium during storage of red blood cells (RBC) can improve the mean 24-hr percent recovery in vivo and increase RBC life-span after reinfusion. The purpose of the study was to investigate the differences in the biochemical properties of RBCs stored in the presence or absence of LC, and the cell-age related responses to storage conditions and to LC. RBC concentrates in saline-adenine-glucose-mannitol (SAG-M) were stored in the presence or absence of 5 mM LC at 4 degrees C for up to 8 weeks. RBC subpopulations of different densities were prepared by centrifugation on Stractan density gradient. Cells were sampled at 0, 3, 6, and 8 weeks, and hematological and cellular properties analyzed (MCV, MCHC, 4.1a/4.1b ratio as a cell age parameter, intracellular Na(+) and K(+)). After 6 weeks, MCV of RBC stored in the presence of LC was lower than that of controls (6 weeks MCV: controls 95.4 +/- 1.8 fl; LC 91.5 +/- 2.0 fl; n = 6; P < 0.005). This was due to swelling of control cells, and affected mainly older RBCs. LC appeared to reduce or retard cell swelling. Among the osmotically active substances whose changes during storage could contribute to cell swelling, only intracellular Na(+) and K(+) differed between stored control RBCs and LC-treated cells. LC reduces the swelling of older cells during storage at 4 degrees C in SAG-M, possibly by acting on the permeability of cell membrane to monovalent cations.

  12. [Intermediates of erythrocyte glycolysis during three days hypercapnia in the dog (author's transl)].

    Science.gov (United States)

    Hartemann, D; Horsky, P; Garcia Carmona, T; Hannhart, B; Saunier, C

    1976-01-01

    Ten mongrel dogs (mean weight: 27 kg) awake and with an implanted femoral catheter have been maintained for three days in a controlled chamber (10% CO2 and 21% O2). Arterial blood samples, taken before admission and after one, two, four, six, 24, 48 and 72 hours of exposure, allowed to study blood gases and acid-base equilibrium. Glycemia, phosphatemia, erythrocyte concentration of glucose-6-phosphate (G-6-P), fructose-6-phosphate (F-6-P), fructose-1,6-diphosphate (F-1,6-DP), 2,3-diphosphoglycerate (2,3-DPG), pyruvate, lactate and ATP were also titrated by various enzymatic methods. In addition, nine reference subjects were studied in air (without CO2). During the hypercapnia, [H+] rapidly increases to 70 nmol/1, then progressively decreases after 24 hours, while [HCO3-] slowly rises. The glycemia stays high during the whole exposure. There is also an increase in inorganic phosphate, G-6-P and F-6-P, but during the first 24 hours only. F-1,6-DP, pyruvate and lactate remain lowered during the whole exposure. The 2,3-DPG diminishes after the sixth hour. These phenomena, related to the acidosis and probably to the phosphofructokinase inhibition don't arise in the reference subjects. However the latter present after a two and four hour-stay in the chamber a small decrease in pyruvicemia and lactacidemia.

  13. Las poblaciones de Phytophthora infestans presentes en papa en el altiplano Cundiboyacense en 1996 son monomórficas para la enzima glucosa-6-fosfato Isomerasa Populations of Phytophthora infestans present on potato in the Cundinamarca and Boyacá plateau in 1996 are monomorphic for glucose-6-phosphate isomerase

    Directory of Open Access Journals (Sweden)

    Gualtero Cúellar Elsa Janeth

    1998-06-01

    ólo genotipo. Esta homogeneidad, en lo que se refiere a GPI en la población, permite concluir que en esta zona predomina la reproducción asexual, a través de la cual la variación genética es mínima o no se presenta. Resultados alternativos como la aparición de genotipos nuevos apoyarían la existencia de migraciones de otras poblaciones o la recombinación sexual explicada por la presencia de los tipos de apareamiento A1 y A2.
    Potato late blight, a disease caused by the Oomycete Phytophthora infestans, is responsible in great proportion for severe decrements in potato production in the Cundinamarca and Boyacá plateaus. Until now, late blight control has been done mainly with fungicides. The widened genetic variability in populations of this organism for a number of traits, including sensitivity to commercially available fungicides, observed in a world-wide perspective, has shown the need to research the genetic structure of local populations. This study was launched to characterize the populations of P. infestans in Cundinamarca and Boyacá through the polymorphism of glucose-6-phosfate isomerase (GPI. The results pointed at a clonal nature of these populations. All the local isolates were homozygous monomorphic for GPI, with genotype 100/100. Isolate Ro showed genotype 86/100 that corresponds to lineage US-1. Isolate MT2 showed genotype 84/100. These iso lates correspond to heterozygous populations that may have resulted from sexual reproduction. Isolate HIN had genotype 100/100, coinciding with local isolates. This isolate belongs to mating type A1 and corresponds to lineage US-6. This lineage represents one of the earliest migrations from Mexico to the United States, Europe and the rest of the world. Prior to the migrations of mating type A2. Results indicate that local populations are not too diverse, and suggest a clonal orrqtn. These results agree with the evaluation of this same population as regards sensitivity to metalaxil and mating type (Gonzalez, 1997

  14. Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes

    NARCIS (Netherlands)

    Gustafson, L. A.; Neeft, M.; Reijngoud, D. J.; Kuipers, F.; Sauerwein, H. P.; Romijn, J. A.; Herling, A. W.; Burger, H. J.; Meijer, A. J.

    2001-01-01

    We studied the influence of glucose/glucose 6-phosphate cycling on glycogen deposition from glucose in fasted-rat hepatocytes using S4048 and CP320626, specific inhibitors of glucose-6-phosphate translocase and glycogen phosphorylase respectively. The effect of amino acids and oleate was also

  15. Correlation of nucleotides and carbohydrates metabolism with pro-oxidant and antioxidant systems of erythrocytes depending on age in patients with colorectal cancer.

    Science.gov (United States)

    Zuikov, S A; Borzenko, B G; Shatova, O P; Bakurova, E M; Polunin, G E

    2014-06-01

    To examine the relationship between metabolic features of purine nucleotides and antioxidant system depending on the age of patients with colorectal cancer. The activity of adenosine deaminase, xanthine oxidase, glutathione peroxidase, superoxide dismutase and glucose-6-phosphate dehydrogenase, the NOx concentration and the oxidative modification of proteins were determined spectrophotometricaly in 50 apparently healthy people and 26 patients with colorectal cancer stage -III---IV, aged 40 to 79 years. Increase of pro-oxidant system of erythrocytes with the age against decrease in level of antioxidant protection in both healthy individuals and colorectal cancer patients was determined. A significant increase of pro-ducts of oxidative proteins modification in erythrocytes with ageing was shown. Statistically significant correlation between enzymatic and non enzymatic markers pro-oxidant system and the activity of antioxidant defense enzymes in erythrocytes of patient with colorectal cancer was determined. Obtained results have demonstrated the imbalance in the antioxidant system of erythrocytes in colorectal cancer patients that improve the survival of cancer cells that is more distinctly manifested in ageing.

  16. Glycosidases Interact Selectively With Mannose-6-Phosphate Receptors of Bull Spermatozoa.

    Science.gov (United States)

    Aguilera, Andrea C; Boschin, Verónica; Carvelli, Lorena; Cavicchia, Juan C; Sosa, Miguel A

    2016-11-01

    Glycosidases may play a role in sperm maturation during epididymal transit. In this work, we describe the interaction of these enzymes with bull spermatozoa. We found that β-galactosidase associated to spermatozoa can be released under low ionic strength conditions, whereas the interaction of N-acetyl-β-D-glucosaminidase and β-glucuronidase with spermatozoa appeared to be stronger. On the other hand, α-mannosidase and α-fucosidase cannot be removed from the gametes. In addition, part of N-acetyl-β-D-glucosaminidase, β-galactosidase, and β-glucuronidase can also be released by mannose-6-phosphate. Taking into account these data, we explored the presence of cation-independent- and cation-dependent-mannose-6-phosphate receptors in the spermatozoa and found that cation-independent mannose-6-phosphate receptor is highly expressed in bull spermatozoa and cation-dependent-mannose-6-phosphate receptor is expressed at a lesser extent. In addition, by immunofluorescence, we observed that cation-independent-mannose-6-phosphate receptor is mostly located at the acrosomal zone, whereas cation-dependent-mannose-6-phosphate receptor presents a different distribution pattern on spermatozoa during the epididymal transit. N-acetyl-β-D-glucosaminidase and β-glucuronidase isolated from epididymal fluid interacted mostly with cation-independent-mannose-6-phosphate receptor, while β-galactosidase was recognized by both receptors. We concluded that glycosidases might play different roles in bull spermatozoa and that mannos-6-phosphate receptors may act as recruiters of some enzymes. J. Cell. Biochem. 117: 2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. The glucose 6-phosphate shunt around the Calvin-Benson cycle.

    Science.gov (United States)

    Sharkey, Thomas D; Weise, Sean E

    2016-07-01

    It is just over 60 years since a cycle for the regeneration of the CO2-acceptor used in photosynthesis was proposed. In this opinion paper, we revisit the origins of the Calvin-Benson cycle that occurred at the time that the hexose monophosphate shunt, now called the pentose phosphate pathway, was being worked out. Eventually the pentose phosphate pathway was separated into two branches, an oxidative branch and a non-oxidative branch. It is generally thought that the Calvin-Benson cycle is the reverse of the non-oxidative branch of the pentose phosphate pathway but we describe crucial differences and also propose that some carbon routinely passes through the oxidative branch of the pentose phosphate pathway. This creates a futile cycle but may help to stabilize photosynthesis. If it occurs it could explain a number of enigmas including the lack of complete labelling of the Calvin-Benson cycle intermediates when carbon isotopes are fed to photosynthesizing leaves. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M. [Department of Biochemistry, West Virginia University, Morgantown, WV (United States); Salati, Lisa M., E-mail: lsalati@hsc.wvu.edu [Department of Biochemistry, West Virginia University, Morgantown, WV (United States)

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  19. Phylogeny and Origin of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency Mutations in Indonesia

    OpenAIRE

    Omega, Maria; Barnard, Ross T.

    2015-01-01

    The aim of this study is to analyze the relationship between the types of G6PD mutations found in Indonesia and the relationships of mutations found in Indonesia to those found in other countries. We summarize the distribution of G6PDs in West Indonesia and East Indonesia. Moreover, we use bioinformatics methods to construct phylogenetic trees and compare the sequences containing the regions amplifi ed by the commonly used PCR primer pairs. Previous work has shown that Mediterranean G6PD and ...

  20. GLUCOSE -6- PHOSPHATE DEHYDROGENASE DEFICIENCY AND HAEMOGLOBINOPHATIES IN RESIDENT OF ARSO PIR, IRIAN JAYA

    Directory of Open Access Journals (Sweden)

    Trevor R. Jones

    2012-09-01

    Full Text Available Telah dilakukan penelitian tentang defisiensi glukose —6- fosfatase dehidrogenase G-6-PD dan haemoglobinopati dengan populasi 223 penduduk yang terdiri atas 102 suku Jawa dan 121 suku Irian Jaya. Enam orang dari Suku Irian Jaya, ditemukan dengan defisiensi tingkat G-6-PD. Tingkat G-6-PD pada orang-orang ini berkisar antara 4 sampai 50% dari nilai nominal minimum. Ditemukan pula 5 kasus haemoglobinopati. Pada satu orang dari suku Irian Jaya ditemukan haemoglobinopati yang konsisten dengan hemoblobin Lepore-Hollandia. Tiga orang dari suku Jawa menunjukkan suatu varian hemoglobin E dan seorang dari suku Jawa lainnya menunjukkan satu varian yang konsisten dengan hemoglobin fetal. Sementara penemuan ini menunjukkan adanya varian hematologi dalam populasi penelitian yang mungkin berperan dalam kerentanan terhadap malaria, tetapi persentase subyek dengan varian tidak cukup besar untuk mempengaruhi secara berarti angka transmisi malaria di dalam populasi.

  1. GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY IN IRAN AND ITS RELATION TO PHYSIO-PHATHOLOGICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Peter Beaconsfield

    1966-01-01

    Full Text Available A survey was set up to study the problem of G-6 _ PD deficiency in Iran. The deficient subjects underwent a detailed haematological investigation, and their geneological tree was drawn and studied. A registry has been started to enable a follow_up of the deficients revealed by the survey. It is proposed to increase the size and scope of the survey gradual stages so that a statistical analysis of the disease patterns of the deficient subjects can be made. A control group of subjects with normal G-6_PD levels will be studied in parallel

  2. Glucose-6-phosphate dehydrogenase (G6PD mutations and haemoglobinuria syndrome in the Vietnamese population

    Directory of Open Access Journals (Sweden)

    Day Nick

    2009-07-01

    Full Text Available Abstract Background In Vietnam the blackwater fever syndrome (BWF has been associated with malaria infection, quinine ingestion and G6PD deficiency. The G6PD variants within the Vietnamese Kinh contributing to the disease risk in this population, and more generally to haemoglobinuria, are currently unknown. Method Eighty-two haemoglobinuria patients and 524 healthy controls were screened for G6PD deficiency using either the methylene blue reduction test, the G-6-PDH kit or the micro-methaemoglobin reduction test. The G6PD gene variants were screened using SSCP combined with DNA sequencing in 82 patients with haemoglobinuria, and in 59 healthy controls found to be G6PD deficient. Results This study confirmed that G6PD deficiency is strongly associated with haemoglobinuria (OR = 15, 95% CI [7.7 to 28.9], P G6PD variants were identified in the Vietnamese population, of which two are novel (Vietnam1 [Glu3Lys] and Vietnam2 [Phe66Cys]. G6PD Viangchan [Val291Met], common throughout south-east Asia, accounted for 77% of the variants detected and was significantly associated with haemoglobinuria within G6PD-deficient ethnic Kinh Vietnamese (OR = 5.8 95% CI [114-55.4], P = 0.022. Conclusion The primary frequency of several G6PD mutations, including novel mutations, in the Vietnamese Kinh population are reported and the contribution of G6PD mutations to the development of haemoglobinuria are investigated.

  3. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  4. Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat.

    OpenAIRE

    Iwami, Y; Yamada, T

    1985-01-01

    The biochemical mechanisms of the acidogenic potential of Streptococcus sanguis ATCC 10556 grown in glucose-excess and glucose-limited continuous culture were studied. The rate of acid production during the glucose metabolism by the cells grown under glucose limitation (glucose-limited cells) was 2.1 to 2.6 times that by the cells grown in an excess of glucose (glucose-excess cells). When the glucose-limited cells were metabolizing glucose, intracellular concentrations of glucose 6-phosphate,...

  5. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon.

    Science.gov (United States)

    Nissen, Lorenzo; Pérez-Martínez, Gaspar; Yebra, María J

    2005-08-01

    Sorbitol is claimed to have important health-promoting effects and Lactobacillus casei is a lactic acid bacterium relevant as probiotic and used as a cheese starter culture. A sorbitol-producing L. casei strain might therefore be of considerable interest in the food industry. A recombinant strain of L. casei was constructed by the integration of a d-sorbitol-6-phosphate dehydrogenase-encoding gene (gutF) in the chromosomal lactose operon (strain BL232). gutF expression in this strain followed the same regulation as that of the lac genes, that is, it was repressed by glucose and induced by lactose. (13)C-nuclear magnetic resonance analysis of supernatants of BL232 resting cells demonstrated that, when pre-grown on lactose, cells were able to synthesize sorbitol from glucose. Inactivation of the l-lactate dehydrogenase gene in BL232 led to an increase in sorbitol production, suggesting that the engineered route provides an alternative pathway for NAD(+) regeneration.

  6. Disruption of the Candida albicans TPS1 Gene Encoding Trehalose-6-Phosphate Synthase Impairs Formation of Hyphae and Decreases Infectivity†

    Science.gov (United States)

    Zaragoza, Oscar; Blazquez, Miguel A.; Gancedo, Carlos

    1998-01-01

    The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30°C was indistinguishable from that of the wild type. However, at 42°C it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37°C, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42°C, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 106 CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476

  7. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Science.gov (United States)

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  8. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  9. Characterization and expression of glucosamine-6-phosphate synthase from Saccharomyces cerevisiae in Pichia pastoris.

    Science.gov (United States)

    Wang, Sheng; Li, Piwu; Su, Jing; Wu, Xiangkun; Liang, Rongrong

    2014-10-01

    Glucosamine-6-phosphate (GlcN-6-P) synthase from Saccharomyces cerevisiae was expressed in Pichia pastoris SMD1168 GIVING maximum activity of 96 U ml(-1) for the enzyme in the culture medium. By SDS-PAGE, the enzyme, a glycosylated protein, had an apparent molecular mass of 90 kDa. The enzyme was purified by gel exclusion chromatography to near homogeneity, with a 90 % yield and its properties were characterized. Optimal activities were at pH 5.5 and 55 °C, respectively, at which the highest specific activity was 6.8 U mg protein (-1). The enzyme was stable from pH 4.5 to 5.5 and from 45 to 60 °C. The Km and Vmax of the GlcN-6-P synthase towards D-fructose 6-phosphate were 2.8 mM and 6.9 μmol min(-1) mg(-1), respectively.

  10. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2017-07-01

    Full Text Available The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1 catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes.

  11. Insulin binding to erythrocytes after acute 16-methyleneprednisolone ingestion.

    Science.gov (United States)

    Dwenger, A; Holle, W; Zick, R; Trautschold, I

    1982-10-01

    The binding of [125I]insulin to erythrocytes, glucose and insulin were determined before and 1, 7 and 35 days after ingestion of 2 X 60-methyleneprednisolone. None of two groups of volunteers (7 males, 4 females showed clear alterations of the insulin binding parameters (Ka and R0), or of the fasting cortisol, glucose and insulin concentrations. These results exclude the possibility that the diabetogenic effect of glucocorticoides is accompanied by an alteration of the insulin receptor characteristics of erythrocytes.

  12. Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.

    2013-01-01

    The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

  13. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation.

    Science.gov (United States)

    Tellone, Ester; Ficarra, Silvana; Russo, Annamaria; Bellocco, Ersilia; Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Pirolli, Davide; De Rosa, Maria Cristina; Giardina, Bruno; Galtieri, Antonio

    2012-02-01

    The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation-deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine-haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO(2) thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane. Furthermore caffeine destabilizes the haeme-protein interactions within the haemoglobin molecule and triggers the production of superoxide and met-haemoglobin. However this damaging effect is almost balanced by the surprising scavenger action of the alkaloid with respect to the hydroxyl radical. These experimental findings are supported by in silico docking and molecular dynamics studies and by what we may call the "caspase silence"; in fact, there is no evidence of any caspase 3 activity enhancement; this is likely due to the promotion of positive metabolic conditions which result in an increase of the cellular reducing power. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate1[W][OPEN

    Science.gov (United States)

    Martins, Marina Camara Mattos; Hejazi, Mahdi; Fettke, Joerg; Steup, Martin; Feil, Regina; Krause, Ursula; Arrivault, Stéphanie; Vosloh, Daniel; Figueroa, Carlos María; Ivakov, Alexander; Yadav, Umesh Prasad; Piques, Maria; Metzner, Daniela; Stitt, Mark; Lunn, John Edward

    2013-01-01

    Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by β-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night. PMID:24043444

  15. Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice.

    Directory of Open Access Journals (Sweden)

    Jan Korte

    2016-12-01

    Full Text Available Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors.

  16. Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae.

    Science.gov (United States)

    Ozer Uyar, Ebru; Yücel, Meral; Hamamcı, Haluk

    2016-05-01

    Trehalose is a reducing disaccharide acting as a protectant against environmental stresses in many organisms. In fungi, Trehalose-6-phosphate synthase 1 (TPS1) plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Rhizopus oryzae encoding TPS1 (designated as RoTPS1) was isolated. The RoTPS1 cDNA is composed of 2505 nucleotides and encodes a protein of 834 amino acids with a molecular mass of 97.8 kDa. The amino acid sequence of RoTPS1 has a relatively high homology with the TPS1s in several other filamentous fungi. RoTPS1 was cloned into Saccharomyces cerevisiae and secretively expressed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-01-01

    Full Text Available The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS and trehalose-6-phosphate phosphatase (TPP pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.

  18. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications

    Science.gov (United States)

    Tang, Bin; Wang, Su; Wang, Shi-Gui; Wang, Hui-Juan; Zhang, Jia-Yong; Cui, Shuai-Ying

    2018-01-01

    The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects. PMID:29445344

  19. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    Science.gov (United States)

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  20. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria: A meta-analysis and trial sequential analysis

    Science.gov (United States)

    Sun, Fengmei; Zhang, Juan; Pu, Yuepu

    2017-10-01

    This study is designed to perform a meta-analysis and trial sequential analysis (TSA) to investigate whether people with G6PD deficiency suffered less malarial infection. We searched from PubMed, Science Direct, Springer Link, CNKI, and Wan Fang databases for case-control study, cohort study or cross section study until April 2017. TSA was used to determine the state of evidence and calculate the required sample size. Eight case-control studies and five cross-sectional studies (30,683participants) were included in this meta-analysis. Compared with normal control group, we found significant protection from severe malaria (OR 0.644, 95% CI [0.493-0.842]; P=0.001) among people with decreasing G6PD activity. People with variations of G6PD gene at nucleotide 202(G6PD A-) were also found to be associated with resistance on severe malaria pooled (OR 0.851, 95% CI [0.779-0.930]; P =0.0001). Sex-stratified test suggested that protection of severe malaria is conferred to both G6PD A-males and heterozygous females (with a single copy of the variant). In conclusion, our study found a significant protection from severe malaria among G6PD deficient people compared to the

  1. Three new mutations account for the prevalence of glucose 6 phosphate deshydrogenase (G6PD) deficiency in Tunisia.

    Science.gov (United States)

    Bendaoud, B; Hosni, I; Mosbahi, I; Hafsia, R; Prehu, C; Abbes, S

    2013-04-01

    A previous study on G6PD deficiency carried out on Tunisian population, led to the finding of seven different mutations with the prevalence of G6PD A- variant. This present study reports 23 new unrelated deficient subjects studied at the molecular level to determine the mutation that causes G6PD deficiency. Using PCR-SSCP of coding regions followed by direct sequencing of abnormal pattern, three new mutations were detected. Two of them are polymorphic intronic mutations. The first is IVS-V 655C-->C/T, found in four female subjects with mild deficiency of class III variant. The second is IVS-VIII 43 G-->A, found in three male subjects with mild deficiency of class III variant. The third mutation is in the exon region so that it changes the primary structure of the molecule. It is cited for the first time and named G6PD Tunisia. This variant affects the exon 7 of the gene at genomic position 15435 G→T. Its cDNA position is 93 G→G/T, it changes arg 246 to leu. This mutation was found in one heterozygote female with deficiency of class II who have had hemolytic anemia due to ingestion of fava beans. Finally, G6PD Med variant, reported before in three cases, was also found in five other cases (four heterozygote females and one male hemizygote). These findings first enlarge the spectre of mutations to be ten variant mutations, characterizing the Tunisian population and also contribute with hemoglobin gene research in our laboratory to trace the whole genetic map of Tunisian population. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Glucose-6-phosphate dehydrogenase (G6PD) deficiency and senile cataract in a Sardinian male population, Italy.

    Science.gov (United States)

    Pinna, Antonio; Pes, Adele; Zinellu, Angelo; Carta, Arturo; Solinas, Giuliana

    2009-01-01

    There is still no general agreement on the role of G6PD deficiency in the pathogenesis of cataract. The purpose of this study was to determine the prevalence of G6PD deficiency in men with senile cataract from Northern Sardinia, Italy, and to compare it with the prevalence rate of G6PD deficiency in the general population of the same area. G6PD activity was determined by using a quantitative method. G6PD blood levels were measured in 1,620 men with cataract. The control group consisted of 1,646 apparently healthy male subjects from the same area. All patients were of Sardinian origin. The Z or Student's t test was used, when appropriate, to determine differences between groups. The odds ratio (OR) with 95% confidence interval was used to evaluate the association between age-related cataract and G6PD deficiency. G6PD deficiency was found in 133 (8.2%) out of 1,620 patients with cataract and in 120 (7%) out of 1,646 control subjects. Differences in G6PD prevalence between cataract patients and controls were not statistically significant (P=0.64). There was no age-related statistical difference between G6PD deficient and normal patients with cataract. No statistically significant association between age-related cataract and G6PD deficiency was found (OR=1.14; 95% confidence interval: 0.88-1.47). The results of this large study suggest that male patients with G6PD deficiency in the Sardinian population do not have a higher risk of developing presenile cataract. G6PD deficiency does not represent a pathogenetic factor for early cataract formation, at least not in the Northern part of Sardinia.

  3. Glucose-6-phosphate dehydrogenase, ribonucleases and esterases upon tobacco mosaic virus infection and benzothiodiazole treatment in tobacco

    Czech Academy of Sciences Publication Activity Database

    Šindelářová, Milada; Šindelář, Luděk; Burketová, Lenka

    2002-01-01

    Roč. 45, č. 3 (2002), s. 423-432 ISSN 0006-3134 R&D Projects: GA ČR GA522/99/1264 Institutional research plan: CEZ:AV0Z5038910 Keywords : chlorophyll * Nicotiana tabacum * PAGE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.583, year: 2002

  4. Prediction of oocyte developmental competence in ovine using glucose-6-phosphate dehydrogenase (G6PDH) activity determined at retrieval time.

    Science.gov (United States)

    Mohammadi-Sangcheshmeh, Abdollah; Soleimani, Masoud; Deldar, Hamid; Salehi, Mohammad; Soudi, Sara; Hashemi, Seyed Mahmoud; Schellander, Karl; Hoelker, Michael

    2012-02-01

    To determine whether G6PDH-activity measured by Brilliant Cresyl Blue known as BCB dye, predicts developmental competence within cohorts of ovine oocytes. Ovine oocytes were exposed to BCB staining and categorized into two groups: BCB+ (blue cytoplasm, low G6PDH-activity) and BCB- (colorless cytoplasm, high G6PDH-activity). After maturation in vitro, oocytes were subjected to fertilization followed by in vitro embryo culture. We observed a significant difference in oocyte diameter considering BCB+ and BCB- oocytes. BCB+ and Control groups showed significantly higher maturation rates compared to BCB- group. There were significantly more cleaved embryos in BCB+ and control groups than in BCB- group. Blastocyst rate was significantly higher for BCB+ group compared to control and BCB- groups with control group being significantly higher than BCB- group. G6PDH-activity is a strong predictive marker of oocyte competence and may be useful in identifying oocytes with a good prognosis for further develop.

  5. Mediterranean glucose-6-phosphate dehydrogenase (G6PDC563T) mutation among jordanian females with acute hemolytic crisis

    International Nuclear Information System (INIS)

    Jabbar, A.A.; Kanakiri, N.; Kamil, M.; Rimawi, H.S.A.

    2010-01-01

    To evaluate the G6PDC563T Mediterranean mutation among Jordanian females who were admitted to Princess Rahma Teaching Hospital (PRTH) with/or previous history of favism. Study Design: A descriptive study. Place and Duration of Study: Jordanian University of Science and Technology and PRTH, from October 2003 to October 2004. Methodology: After obtaining approval from the Ethics Committee of Jordanian University of Science and Technology, a total of 32 females were included in this study. Samples from 15 healthy individual females were used as a negative control. Blood samples from these patients were collected and analyzed by allele-specific polymerase chain reaction (AS-PCR) to determine the G6PDC563T mutation. Results: Twenty one out of 32 patients were found to be G6PDC563T Mediterranean mutation (65.6%) positive. Three out of 21 patients were homozygous and remaining 18 were heterozygous for G6PDC563T Mediterranean mutation. Eleven (34.4%) out of 32 patients were found to be negative for G6PDC563T mutation indicating the presence of other G6PD mutations in the study sample. Conclusion: G6PDC563T Mediterranean mutation accounted for 65.6% of the study sample with favism in the North of Jordan. There is likely to be another G6PD deficiency variant implicated in acute hemolytic crisis (favism). (author)

  6. HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling

    International Nuclear Information System (INIS)

    Kumar, Manjeet; Kaur, Supinder; Nazir, Aamir; Tripathi, Raj Kamal

    2016-01-01

    HIV-1 Nef modulates cellular function that enhances viral replication in vivo which culminate into AIDS pathogenesis. With no enzymatic activity, Nef regulates cellular function through host protein interaction. Interestingly, trans-cellular introduction of recombinant Nef protein in Caenorhabditis elegans results in AIDS like pathogenesis which might share common pathophysiology because the gene sequence of C. elegans and humans share considerable homology. Therefore employing C. elegans based initial screen complemented with sequence based homology search we identified GCC185 as novel host protein interacting with HIV-1 Nef. The detailed molecular characterization revealed N-terminal EEEE 65 acidic domain of Nef as key region for interaction. GCC185 is a tethering protein that binds with Rab9 transport vesicles. Our results show that Nef-GCC185 interaction disrupts Rab9 interaction resulting in delocalization of CI-MPR (cation independent Mannose 6 phosphate receptor) resulting in elevated secretion of hexosaminidase. In agreement with this, our studies identified novel host GCC185 protein that interacts with Nef EEEE65 acidic domain interfering GCC185-Rab9 vesicle membrane fusion responsible for retrograde vesicular transport of CI-MPR from late endosomes to TGN. In light of existing report suggesting critical role of Nef-GCC185 interaction reveals valuable mechanistic insights affecting specific protein transport pathway in docking of late endosome derived Rab9 bearing transport vesicle at TGN elucidating role of Nef during viral pathogenesis. -- Highlights: •Nef, an accessory protein of HIV-1 interacts with host factor and culminates into AIDS pathogenesis. •Using Caenorhabditis elegans based screen system, novel Nef interacting cellular protein GCC185 was identified. •Molecular characterization of Nef and human protein GCC185 revealed Nef EEEE 65 key region interacted with full length GCC185. •Nef impeded the GCC185-Rab 9 interaction and perturb

  7. HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manjeet; Kaur, Supinder; Nazir, Aamir; Tripathi, Raj Kamal, E-mail: rajkamalcdri@gmail.com

    2016-05-20

    HIV-1 Nef modulates cellular function that enhances viral replication in vivo which culminate into AIDS pathogenesis. With no enzymatic activity, Nef regulates cellular function through host protein interaction. Interestingly, trans-cellular introduction of recombinant Nef protein in Caenorhabditis elegans results in AIDS like pathogenesis which might share common pathophysiology because the gene sequence of C. elegans and humans share considerable homology. Therefore employing C. elegans based initial screen complemented with sequence based homology search we identified GCC185 as novel host protein interacting with HIV-1 Nef. The detailed molecular characterization revealed N-terminal EEEE{sub 65} acidic domain of Nef as key region for interaction. GCC185 is a tethering protein that binds with Rab9 transport vesicles. Our results show that Nef-GCC185 interaction disrupts Rab9 interaction resulting in delocalization of CI-MPR (cation independent Mannose 6 phosphate receptor) resulting in elevated secretion of hexosaminidase. In agreement with this, our studies identified novel host GCC185 protein that interacts with Nef EEEE65 acidic domain interfering GCC185-Rab9 vesicle membrane fusion responsible for retrograde vesicular transport of CI-MPR from late endosomes to TGN. In light of existing report suggesting critical role of Nef-GCC185 interaction reveals valuable mechanistic insights affecting specific protein transport pathway in docking of late endosome derived Rab9 bearing transport vesicle at TGN elucidating role of Nef during viral pathogenesis. -- Highlights: •Nef, an accessory protein of HIV-1 interacts with host factor and culminates into AIDS pathogenesis. •Using Caenorhabditis elegans based screen system, novel Nef interacting cellular protein GCC185 was identified. •Molecular characterization of Nef and human protein GCC185 revealed Nef EEEE{sub 65} key region interacted with full length GCC185. •Nef impeded the GCC185-Rab 9 interaction and

  8. Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Moriyama, Takashi; Tajima, Naoyuki; Sekine, Kohsuke; Sato, Naoki

    2015-01-01

    Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) is a key enzyme in the central carbohydrate metabolism in heterofermentative bacteria, in which enzymatic property of Xfps is well characterized. This is not the case in other microbes. The cyanobacterium Anabaena sp. PCC 7120 possesses three putative genes encoding Xfp, all1483, all2567, and alr1850. We purified three putative Xfps as recombinant proteins. The results of gel filtration indicated that these proteins form homomultimer complex. All1483 and All2567 showed phosphoketolase activity, whereas Alr1850 did not show the activity. Kinetic analyses demonstrated that substrates, fructose 6-phosphate and inorganic phosphate, are cooperatively bound to enzymes positively and negatively, respectively.

  9. Cloning and Comparative Studies of Seaweed Trehalose-6-Phosphate Synthase Genes

    Science.gov (United States)

    Wang, Guoliang; Zhao, Ge; Feng, Yanbin; Xuan, Jinsong; Sun, Jianwei; Guo, Baotai; Jiang, Guoyong; Weng, Manli; Yao, Jianting; Wang, Bin; Duan, Delin; Liu, Tao

    2010-01-01

    The full-length cDNA sequence (3219 base pairs) of the trehalose-6-phosphate synthase gene of Porphyra yezoensis (PyTPS) was isolated by RACE-PCR and deposited in GenBank (NCBI) with the accession number AY729671. PyTPS encodes a protein of 908 amino acids before a stop codon, and has a calculated molecular mass of 101,591 Daltons. The PyTPS protein consists of a TPS domain in the N-terminus and a putative TPP domain at the C-terminus. Homology alignment for PyTPS and the TPS proteins from bacteria, yeast and higher plants indicated that the most closely related sequences to PyTPS were those from higher plants (OsTPS and AtTPS5), whereas the most distant sequence to PyTPS was from bacteria (EcOtsAB). Based on the identified sequence of the PyTPS gene, PCR primers were designed and used to amplify the TPS genes from nine other seaweed species. Sequences of the nine obtained TPS genes were deposited in GenBank (NCBI). All 10 TPS genes encoded peptides of 908 amino acids and the sequences were highly conserved both in nucleotide composition (>94%) and in amino acid composition (>96%). Unlike the TPS genes from some other plants, there was no intron in any of the 10 isolated seaweed TPS genes. PMID:20714424

  10. Cloning and Comparative Studies of Seaweed Trehalose-6-Phosphate Synthase Genes

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2010-07-01

    Full Text Available The full-length cDNA sequence (3219 base pairs of the trehalose-6-phosphate synthase gene of Porphyra yezoensis (PyTPS was isolated byRACE-PCR and deposited in GenBank (NCBI with the accession number AY729671. PyTPS encodes a protein of 908 amino acids before a stop codon, and has a calculated molecular mass of 101,591 Daltons. The PyTPS protein consists of a TPS domain in the N-terminus and a putative TPP domain at the C-terminus. Homology alignment for PyTPS and the TPS proteins from bacteria, yeast and higher plants indicated that the most closely related sequences to PyTPS were those from higher plants (OsTPS and AtTPS5, whereas the most distant sequence to PyTPS was from bacteria (EcOtsAB. Based on the identified sequence of the PyTPS gene, PCR primers were designed and used to amplify the TPS genes from nine other seaweed species. Sequences of the nine obtained TPS genes were deposited in GenBank (NCBI. All 10 TPS genes encoded peptides of 908 amino acids and the sequences were highly conserved both in nucleotide composition (>94% and in amino acid composition (>96%. Unlike the TPS genes from some other plants, there was no intron in any of the 10 isolated seaweed TPS genes.

  11. High prevalence of anaemia among African migrants in Germany persists after exclusion of iron deficiency and erythrocyte polymorphisms.

    Science.gov (United States)

    Müller, Sophie A; Amoah, Stephen K B; Meese, Stefanie; Spranger, Joachim; Mockenhaupt, Frank P

    2015-09-01

    Haematological parameters differ between individuals of African and European ancestry. However, respective data of first-generation African migrants are virtually absent. We assessed these in Ghanaian migrants living in Berlin, compared them with reference data from Germany and Ghana, and estimated the role of iron deficiency (ID) and erythrocyte polymorphisms in anaemia. A total of 576 Ghanaians (median age, 45 years) were analysed. Blood counts were performed, haemoglobinopathies and glucose-6-phosphate dehydrogenase (G6PD) deficiency were genotyped, and concentrations of ferritin and C-reactive protein were measured to define ID. Most individuals had resided in Germany for more than a decade (median, 18 years). By WHO definition, anaemia was present in 30.9% of females and 9.4% of males. Median haemoglobin (Hb) levels were lower than among Germans (women, -0.8 g/dl, men, -0.7 g/dl). However, applying reference values from Ghana, only 1.9% of the migrants were considered anaemic. Alpha-thalassaemia, Hb variants and G6PD deficiency were observed in 33.9%, 28.3% and 23.6%, respectively. ID was highly prevalent in women (32.0%; men, 3.9%). The population fraction of anaemia cases attributable to ID was 29.0% (alpha-thalassaemia, 13.6%; G6PD deficiency, 13.5%). Nevertheless, excluding ID, alpha-thalassaemia, G6PD deficiency and sickle cell disease, anaemia prevalence remained high (women, 18.4%; men, 6.5%), and was also high when applying uncensored thresholds proposed for African Americans (females, 19.3%; males, 7.8%). Iron deficiency and erythrocyte polymorphisms are common among first-generation Ghanaian migrants but explain only part of the increased prevalence of anaemia. Common Hb thresholds for the definition of anaemia may not be appropriate for this group. © 2015 John Wiley & Sons Ltd.

  12. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells

    DEFF Research Database (Denmark)

    Siupka, Piotr; Hersom, Maria N. S.; Lykke-Hartmann, Karin

    2017-01-01

    in the process. Here, we elucidate the endosomal trafficking of the retrograde transported cation-independent mannose-6-phosphate receptor (MPR300) in primary cultures of brain endothelial cells (BECs) of porcine and bovine origin. Receptor expression and localisation of MPR300 in the endo-lysosomal system...

  13. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, Giri; Sagurthi, Someswar Rao [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  14. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1.

    Science.gov (United States)

    Deroover, Sofie; Ghillebert, Ruben; Broeckx, Tom; Winderickx, Joris; Rolland, Filip

    2016-06-01

    Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Protein preparation and preliminary X-ray crystallographic analysis of a putative glucosamine 6-phosphate deaminase from Streptococcus mutants

    International Nuclear Information System (INIS)

    Hu, Guan-Jing; Li, Lan-Fen; Li, Dan; Liu, Cong; Wei, Shi-Cheng; Liang, Yu-He; Su, Xiao-Dong

    2007-01-01

    A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å

  16. Protein preparation and preliminary X-ray crystallographic analysis of a putative glucosamine 6-phosphate deaminase from Streptococcus mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Guan-Jing; Li, Lan-Fen; Li, Dan; Liu, Cong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Wei, Shi-Cheng, E-mail: kqsc-wei@bjmu.edu.cn [Peking University School of Stomatology, Beijing 100081 (China); Liang, Yu-He, E-mail: kqsc-wei@bjmu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China)

    2007-09-01

    A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å.

  17. The Nitrogen Regulatory PII Protein (GlnB) andN-Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli.

    Science.gov (United States)

    Rodionova, Irina A; Goodacre, Norman; Babu, Mohan; Emili, Andrew; Uetz, Peter; Saier, Milton H

    2018-03-01

    Amino sugars are good sources of both ammonia and fructose-6-phosphate, produced by the glucosamine 6-phosphate deaminase, NagB. NagB is known to be allosterically regulated by N -acetylglucosamine 6-phosphate (GlcNAc-6P) and the phosphocarrier protein of the bacterial phosphotransferase system, HPr, in Escherichia coli We provide evidence that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein (U-PII) also allosterically activate NagB by direct protein-protein interactions. NanE is essential for neuraminic acid (NANA) and N -acetylmannosamine (ManNAc) utilization, and PII is known to be a central metabolic nitrogen regulator. We demonstrate that uridylylated PII (but not underivatized PII) activates NagB >10-fold at low concentrations of substrate, whereas NanE increases NagB activity >2-fold. NanE activates NagB in the absence or presence of GlcNAc-6P, but HPr and U-PII activation requires the presence of GlcNAc-6P. Activation of NagB by HPr and uridylylated PII, as well as by NanE and HPr (but not by NanE and U-PII), is synergistic, and the modeling, which suggests specific residues involved in complex formation, provides possible explanations. Specific physiological functions for the regulation of NagB by its three protein activators are proposed. Each regulatory agent is suggested to mediate signal transduction in response to a different stimulus. IMPORTANCE The regulation of amino sugar utilization is important for the survival of bacteria in a competitive environment. NagB, a glucosamine 6-phosphate deaminase in Escherichia coli , is essential for amino sugar utilization and is known to be allosterically regulated by N -acetylglucosamine 6-phosphate (GlcNAc-6P) and the histidine-phosphorylatable phosphocarrier protein, HPr. We provide evidence here that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein allosterically activate NagB by direct protein-protein interactions. NanE is essential for N -acetylneuraminic acid (NANA) and N

  18. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs.

    Directory of Open Access Journals (Sweden)

    Jeremiah D Farelli

    2014-07-01

    Full Text Available Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible.

  19. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of β-glucuronidase

    International Nuclear Information System (INIS)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-01-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human β-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3% of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of β-glucuronidase. At pH 7.5, the rate of endocytosis was only 14% the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized β-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized β-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor

  20. In vitro silencing of Brugia malayi trehalose-6-phosphate phosphatase impairs embryogenesis and in vivo development of infective larvae in jirds.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available The trehalose metabolic enzymes have been considered as potential targets for drug or vaccine in several organisms such as Mycobacterium, plant nematodes, insects and fungi due to crucial role of sugar trehalose in embryogenesis, glucose uptake and protection from stress. Trehalose-6-phosphate phosphatase (TPP is one of the enzymes of trehalose biosynthesis that has not been reported in mammals. Silencing of tpp gene in Caenorhabditis elegans revealed an indispensable functional role of TPP in nematodes.In the present study, functional role of B. malayi tpp gene was investigated by siRNA mediated silencing which further validated this enzyme to be a putative antifilarial drug target. The silencing of tpp gene in adult female B. malayi brought about severe phenotypic deformities in the intrauterine stages such as distortion and embryonic development arrest. The motility of the parasites was significantly reduced and the microfilarial production as well as their in vitro release from the female worms was also drastically abridged. A majority of the microfilariae released in to the culture medium were found dead. B. malayi infective larvae which underwent tpp gene silencing showed 84.9% reduced adult worm establishment after inoculation into the peritoneal cavity of naïve jirds.The present findings suggest that B. malayi TPP plays an important role in the female worm embryogenesis, infectivity of the larvae and parasite viability. TPP enzyme of B. malayi therefore has the potential to be exploited as an antifilarial drug target.

  1. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yi; Tenor, Jennifer L.; Toffaletti, Dena L.; Maskarinec, Stacey A.; Liu, Jiuyu; Lee, Richard E.; Perfect, John R.; Brennan, Richard G.; Hendrickson, Wayne A.

    2017-07-25

    ABSTRACT

    The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 fromCandida albicansandAspergillus fumigatusare essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes.

    IMPORTANCEInvasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in

  2. Identification of four amino acid substitutions in hexokinase II and studies of relationships to NIDDM, glucose effectiveness, and insulin sensitivity

    DEFF Research Database (Denmark)

    Echwald, Søren Morgenthaler; Bjørbaek, C; Hansen, Torben

    1995-01-01

    Human hexokinase (HK) II, a glucose phosphorylating enzyme in muscle tissue, plays a central role in glucose metabolism. Since reduced insulin-stimulated glucose uptake and reduced glucose-6-phosphate content in muscle have been demonstrated in pre-non-insulin-dependent diabetes mellitus (pre...

  3. Hypoxanthine transport through human erythrocyte membranes

    International Nuclear Information System (INIS)

    Capuozzo, E.; Crifo, C.; Gigante, M.C.; Salerno, C.

    1986-01-01

    The authors report the kinetics of 14-C hypoxanthine uptake by intact human erythrocytes suspended in a phosphate-free medium, i.e. in conditions which make negligible 14-C hypoxanthine phosphoribosylation. Human erythrocytes were prepared from blood freshly drawn in heparin and washed three times with isotonic glucose-NaCl solution. In the absence of inorganic phosphate in the suspending medium, hypoxanthine receptor appears to be saturated by relatively low purine base concentration. When the cells are suspended in a medium containing inorganic phosphate, and thus, phosphoribosylpyrophosphate becomes available for nucleotide synthesis, hypoxanthine in phosphoribosylted to IMP. It can be suggested that under these conditions the receptor gets rid of hypoxanthine, crosses the cell membrane, and takes up new exogenous purine base

  4. Oxidative Hemolysis of Erythrocytes

    Science.gov (United States)

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  5. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    Energy Technology Data Exchange (ETDEWEB)

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  6. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism.

    Science.gov (United States)

    Miallau, Linda; Hunter, William N; McSweeney, Sean M; Leonard, Gordon A

    2007-07-06

    High resolution structures of Staphylococcus aureus d-tagatose-6-phosphate kinase (LacC) in two crystal forms are herein reported. The structures define LacC in apoform, in binary complexes with ADP or the co-factor analogue AMP-PNP, and in a ternary complex with AMP-PNP and D-tagatose-6-phosphate. The tertiary structure of the LacC monomer, which is closely related to other members of the pfkB subfamily of carbohydrate kinases, is composed of a large alpha/beta core domain and a smaller, largely beta "lid." Four extended polypeptide segments connect these two domains. Dimerization of LacC occurs via interactions between lid domains, which come together to form a beta-clasp structure. Residues from both subunits contribute to substrate binding. LacC adopts a closed structure required for phosphoryl transfer only when both substrate and co-factor are bound. A reaction mechanism similar to that used by other phosphoryl transferases is proposed, although unusually, when both substrate and co-factor are bound to the enzyme two Mg(2+) ions are observed in the active site. A new motif of amino acid sequence conservation common to the pfkB subfamily of carbohydrate kinases is identified.

  7. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Mieskes, G; Issinger, O G

    1993-01-01

    The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation and the phosphorylat......The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation...... and the phosphorylation sites the entire coding sequence of the cytoplasmic tail was expressed in Escherichia coli. The isolated cytoplasmic domain was used as a substrate for four purified serine/threonine kinases [casein kinase II (CK II), protein kinase A (PKA), protein kinase C and Ca2+/calmodulin kinase]. All...... kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR...

  8. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... Breme K, Laspe P, Muirhead H, Davies C, Winkler H, Schröter W, Lakomek M. Molecular basis of ... 4):450-4. Citation on PubMed Lakomek M, Winkler H. Erythrocyte pyruvate kinase- and glucose phosphate isomerase ...

  9. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    Science.gov (United States)

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  10. Inhibition of Suicidal Erythrocyte Death by Reversine

    Directory of Open Access Journals (Sweden)

    Mohamed Jemaà

    2017-04-01

    Full Text Available Background/Aims: The A3 adenosine receptor antagonist reversine (2-(4-morpholinoanilino-6-cyclohexylaminopurine influences cellular differentiation, inhibits cell proliferation, induces cell-cycle arrest, triggers apoptosis, causes cell swelling with polyploidy and stimulates autophagy. The effect on apoptosis involves mitochondria and caspases. Erythrocytes are lacking mitochondria but express caspases and are, similar to apoptosis of nucleated cells, able to enter suicidal erythrocyte death or eryptosis. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, energy depletion and oxidative stress. The present study explored, whether reversine influences eryptosis. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding and cell volume from forward scatter. Measurements were made without or with energy depletion (glucose deprivation for 48 hours, Ca2+ loading (30 minutes treatment with 1 µM Ca2+ ionophore ionomycin, or oxidative stress (15 min exposure to 0.3 mM tert-butylhydroperoxide. Results: A 48 hours exposure of human erythrocytes to reversine (1-10 µM did not significantly modify the percentage of annexin-V-binding cells and forward scatter. Energy depletion, Ca2+ loading, and oxidative stress were each followed by profound and significant increase of the percentage annexin-V-binding erythrocytes and a significant decrease of forward scatter. The effects of each, Ca2+ loading, energy depletion and oxidative stress on annexin-V-binding were significantly blunted in the presence of reversine (1-10 µM. The effect of ionomycin, but not the effects of energy depletion and oxidative stress on forward scatter were again significantly blunted in the presence of reversine (≥1 µM]. Conclusions: Reversine is a powerful inhibitor of cell membrane scrambling following energy depletion, Ca2+ loading and oxidative stress.

  11. Trehalose metabolism in the blue crab Callinectes sapidus: isolation of multiple structural cDNA isoforms of trehalose-6-phosphate synthase and their expression in muscles.

    Science.gov (United States)

    Shi, Q; Chung, J Sook

    2014-02-15

    Adult blue crab Callinectes sapidus exhibit behavioral and ecological dimorphisms: females migrating from the low salinity water to the high salinity area vs. males remaining in the same areas. The flesh basal muscle of the swimming paddle shows a dimorphic color pattern in that levator (Lev) and depressor (Dep) of females tend to be much darker than those of males, while both genders have the same light colored remoter (Rem) and promoter (Pro). The full-length cDNA sequence of four structural isoforms of trehalose-6-phosphate synthase (TPS) is isolated from chela muscles of an adult female, C. sapidus. Two isoforms of the C. sapidus TPS encode functional domains of TPS and trehalose-6-phosphorylase (TPP) in tandem as a fused gene product of Escherichia coli Ost A and Ost B. The other two isoforms contain only a single TPS domain. In both males and females, the darker (Lev+Dep) muscles exhibit greater amounts of trehalose, TPS and trehalase activities than the light colored (Rem+Pro). The fact that adult females show higher levels of trehalase activity in the basal muscles and of glucose in Lev+Dep than those of adult males suggests that there may be a metabolic dimorphism. Moreover, the involvement of trehalose in energy metabolism that was examined under the condition of strenuous swimming activity mimicked in adult females demonstrates the intrinsic trehalose metabolism in Lev+Dep, which subsequently results in hemolymphatic hyperglycemia and hyperlactemia. Our data support that trehalose serves as an additional carbohydrate source of hemolymphatic hyperglycemia in this species. Behavioral and ecological dimorphisms of C. sapidus adults may be supported by a functional dimorphism in energy metabolism. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A review of metabolism of labeled glucoses for use in measuring glucose recycling

    International Nuclear Information System (INIS)

    Russell, R.W.; Young, J.W.

    1990-01-01

    The fate of tritium from each carbon of D-glucose and the metabolism of L-glucose and 2-deoxy-D-glucose are known. Differences in metabolism of labeled glucoses can be used to quantify physical and chemical recycling of glucose. Only physical recycling is measured by [1- 3 H]-L-glucose, whereas [U- 14 C]-D-glucose measures total recycling. The difference between [1- 3 H]-L-glucose and [U- 14 C]-D-glucose, therefore, is chemical recycling. Recycling from extracellular binding sites and hepatic glucose 6-phosphate can be measured by difference between [1,2- 3 H]-2-deoxy-D-glucose and [1- 3 H]-L-glucose, and the difference in irreversible loss of the two will measure extrahepatic uptake of D-glucose. Recycling via Cori-alanine cycle plus CO 2 is the difference in irreversible loss measured by using [6- 3 H]-glucose and [U- 14 C]-D-glucose. Recycling via the hexose monophosphate pathway can be determined by difference in irreversible loss between [1- 3 H]-D-glucose and [6- 3 H]-D-glucose. Recycling via CO 2 and glycerol must be measured directly with [U- 14 C]glucose, bicarbonate, and glycerol. Recycling via hepatic glycogen can be estimated by subtracting all other measured chemical recycling from total chemical recycling. This review describes means to quantify glucose recycling in vivo, enabling studies of mechanisms for conservation and utilization of glucose. 54 references

  13. Beneficial Effect of Sugar Osmolytes on the Refolding of Guanidine Hydrochloride-Denatured Trehalose-6-phosphate Hydrolase from Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Jiau-Hua Chen

    2015-01-01

    Full Text Available The influence of three sugar osmolytes on the refolding of guanidine hydrochloride- (GdnHCl- denatured trehalose-6-phosphate hydrolase of Bacillus licheniformis (BlTreA was studied by circular dichroism (CD spectra, fluorescence emission spectra, and the recovery of enzymatic activity. These experimental results clearly indicated that sorbitol, sucrose, and trehalose at a concentration of 0.75 M improved the refolding yields of GdnHCl-denatured  BlTreA, probably due to the fact that these sugars favored the formation of tertiary architectures. Far-UV CD measurements demonstrated the ability of sugar osmolytes to shift the secondary structure of GdnHCl-denatured enzyme towards near-native conformations. ANS fluorescence intensity measurements revealed a reduction of exposed hydrophobic surfaces upon the treatment of denatured enzyme with sugar osmolytes. These observations suggest that sugar osmolytes possibly play a chaperone role in the refolding of chemically denatured BlTreA.

  14. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase.

    Science.gov (United States)

    An, Ming-Zhe; Tang, Yue-Qin; Mitsumasu, Kanako; Liu, Ze-Shen; Shigeru, Morimura; Kenji, Kida

    2011-07-01

    The effect of overexpression of the trehalose-6-phosphate (T6P) synthase gene (TPS1) on ethanol fermentation of Saccharomyces cerevisiae has been studied at 30 and 38°C. The activity of T6P synthase and the accumulation of trehalose during ethanol fermentation were significantly improved by overexpression of TPS1, and especially at 38°C. Ethanol produced by transformants with and without TPS1 gene overexpression at 38°C was approx. 60 and 37 g/l, respectively. The fermentation efficiency of transformants with TPS1 gene overexpression at 38°C was similar to that at 30°C. The critical growth temperature was increased from 36 to 42°C by TPS1 gene overexpression. These results indicated that overexpression of the TPS1 gene had a beneficial effect on the fermentation capacity of the title yeast strain at high temperatures.

  15. Expression Profiles of the Trehalose-6-Phosphate Synthase Gene Associated With Thermal Stress in Ostrinia furnacalis (Lepidoptera: Crambidae)

    Science.gov (United States)

    Jin, Tingting; Gao, Yulin; He, Kanglai

    2018-01-01

    Abstract Trehalose is the major blood sugar in insects. Physiological significance of this compound has been extensively reported. Trehalose-6-phosphate synthase (TPS) is an important enzyme in the trehalose biosynthesis pathway. Full-length cDNAs of TPS (Of tps) and its alternative splicing isoform (Of tps_isoformI) were cloned from the Asian corn borer (ACB), Ostrinia furnacalis (Guenée; Lepidoptera: Crambidae) larvae. The Of tps and Of tps_isoformI transcripts were 2913 and 1689 bp long, contained 2529 and 1293 bp open reading frames encoding proteins of 842 and 430 amino acids with a molecular mass of 94.4 and 48.6 kDa, respectively. Transcriptional profiling and response to thermal stress of Of tps gene were determined by quantitative real-time PCR showing that the Of tps was predominantly expressed in the larval fat body, significantly enhanced during molting and transformation; and thermal stress also induced Of tps expression. Gene structure analysis is indicating that one TPS domain and one trehalose-6-phosphate phosphatase (TPP) domain were located at the N- and C-termini of Of        TPS, respectively, while only the TPS domain was detected in OfTPS_isoformI. Three-dimensional modeling and heterologous expression were developed to predict the putative functions of OfTPS and Of   TPS_isoformI. We infer that the expression of Of tps gene is thermally induced and might be crucial for larvae survival.

  16. Erythrocyte stability under imposed fields

    Indian Academy of Sciences (India)

    tribpo

    Critical monitoring of the volumes, ion fluxes and related measures in erythrocytes exposed to a ... The erythrocyte offered an excellent tool since its lysis can be monitored readily. A systematic investigation led to a number of insights ... The consequent increase in self potential of the charged 'sphere' would account for a ...

  17. Plasma lipids profile and erythrocytes system in patients with coronary heart disease

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatyana P.

    2006-08-01

    Erythrocytes system study can provide a framework for detailed exploration of blood cell-cell and cell-vessel wall interactions, one of the key patterns in blood and vascular pathophysiology. Our objective was to explore erythrocytes system in patients with stable angina pectoris II f.c. (Canadian classification). The participants (N = 56, age 40 - 55 years) without obesity, glucose tolerance violations, lipid lowering drugs treating, heart failure of II and more functional classes (NYHA), coronary episode at least 6 months before study were involved in the study. Blood samples were incubated with glucose solutions of increasing concentrations (from 2.5% to 20% with 2.5% step) during 60 mm (36° C). In prepared blood smears erythrocyte's sizes were studied. Plasma total cholesterol, triglyceride and glucose levels were also measured. Received data were approximated by polynomials of high degree, with after going first and second derivations. Erythrocytes system "behavior" was studied by means of phase pattern constructing. By lipids levels all the patient were divided into five groups: 1) patients with normal lipids levels, 2) patients with borderline total cholesterol level, 3) patients with isolated hypercholesterolemia, 4) patients with isolated hypertriglyceridemia and 5) patients with combined hyperlipidemia. Erythrocytes size lowering process was of set of "stages", which characteristics differ significantly (p > 0.05) in all five groups. Their rate and acceleration characteristics allow us to detect type of lipid profile in patients. Erythrocyte system disturbing by glucose concentration increase show to be most resistant in group of patients with isolated hypercholesterolemia.

  18. Increased muscle glucose uptake after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ploug, Thorkil; Galbo, Henrik

    1985-01-01

    It has recently been shown that insulin sensitivity of skeletal muscle glucose uptake and glycogen synthesis is increased after a single exercise session. The present study was designed to determine whether insulin is necessary during exercise for development of these changes found after exercise....... Diabetic rats and controls ran on a treadmill and their isolated hindquarters were subsequently perfused at insulin concentrations of 0, 100, and 20,000 microU/ml. Exercise increased insulin sensitivity of glucose uptake and glycogen synthesis equally in diabetic and control rats, but insulin...... responsiveness of glucose uptake was noted only in controls. Analysis of intracellular glucose-6-phosphate, glucose, glycogen synthesis, and glucose transport suggested that the exercise effect on responsiveness might be due to enhancement of glucose disposal. After electrical stimulation of diabetic...

  19. Glucose 6 phosphatase dehydrogenase (G6PD and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Manju Tiwari

    2017-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD is a key and rate limiting enzyme in the pentose phosphate pathway (PPP. The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH. There are preponderance research findings that demonstrate the enzyme (G6PD role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted from G6PD deficiency. The X-linked genetic deficiency of G6PD and associated non-immune hemolytic anemia have been studied widely across the globe. Recent advancement in biology, more precisely neuroscience has revealed that G6PD is centrally involved in many neurological and neurodegenerative disorders. The neuroprotective role of the enzyme (G6PD has also been established, as well as the potential of G6PD in oxidative damage and the Reactive Oxygen Species (ROS produced in cerebral ischemia. Though G6PD deficiency remains a global health issue, however, a paradigm shift in research focusing the potential of the enzyme in neurological and neurodegenerative disorders will surely open a new avenue in diagnostics and enzyme therapeutics. Here, in this study, more emphasis was made on exploring the role of G6PD in neurological and inflammatory disorders as well as non-immune hemolytic anemia, thus providing diagnostic and therapeutic opportunities.

  20. Absence of 633-nm laser irradiation-induced effects on glucose phosphorylation by hexokinase

    NARCIS (Netherlands)

    Heger, Michal; Heemskerk, Anthonius A. M.; van der Zwan, Gert

    2010-01-01

    In a paper by Amat et al. (Modification of the intrinsic fluorescence and biochemical behavior of adenosine triphosphate ATP after irradiation with visible and near-infrared laser light, J. Photochem. Photobiol. B 81 (2005) 26-32) it was shown that the conversion of glucose to glucose-6-phosphate by

  1. Modification of oxidative status in Plasmodium berghei-infected erythrocytes by E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl-2'-methyliden]-quinoline compared to chloroquine

    Directory of Open Access Journals (Sweden)

    Juan Rodrigues

    2009-09-01

    Full Text Available E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl-2'-methyliden]-quinoline (IQ is a new quinoline derivative which has been reported as a haemoglobin degradation and ß-haematin formation inhibitor. The haemoglobin proteolysis induced by Plasmodium parasites represents a source of amino acids and haeme, leading to oxidative stress in infected cells. In this paper, we evaluated oxidative status in Plasmodium berghei-infected erythrocytes in the presence of IQ using chloroquine (CQ as a control. After haemolysis, superoxide dismutase (SOD, catalase, glutathione cycle and NADPH + H+-dependent dehydrogenase enzyme activities were investigated. Lipid peroxidation was also assayed to evaluate lipid damage. The results showed that the overall activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were significantly diminished by IQ (by 53.5% and 100%, respectively. Glutathione peroxidase activity was also lowered (31% in conjunction with a higher GSSG/GSH ratio. As a compensatory response, overall SOD activity increased and lipid peroxidation decreased, protecting the cells from the haemolysis caused by the infection. CQ shared most of the effects showed by IQ; however it was able to inhibit the activity of isocitrate dehydrogenase and glutathione-S-transferase. In conclusion, IQ could be a candidate for further studies in malaria research interfering with the oxidative status in Plasmodium berghei infection.

  2. Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde.

    Science.gov (United States)

    Szekrenyi, Anna; Soler, Anna; Garrabou, Xavier; Guérard-Hélaine, Christine; Parella, Teodor; Joglar, Jesús; Lemaire, Marielle; Bujons, Jordi; Clapés, Pere

    2014-09-22

    D-Fructose-6-phosphate aldolase (FSA) is a unique catalyst for asymmetric cross-aldol additions of glycolaldehyde. A combination of a structure-guided approach of saturation mutagenesis, site-directed mutagenesis, and computational modeling was applied to construct a set of FSA variants that improved the catalytic efficiency towards glycolaldehyde dimerization up to 1800-fold. A combination of mutations in positions L107, A129, and A165 provided a toolbox of FSA variants that expand the synthetic possibilities towards the preparation of aldose-like carbohydrate compounds. The new FSA variants were applied as highly efficient catalysts for cross-aldol additions of glycolaldehyde to N-carbobenzyloxyaminoaldehydes to furnish between 80-98 % aldol adduct under optimized reaction conditions. Donor competition experiments showed high selectivity for glycolaldehyde relative to dihydroxyacetone or hydroxyacetone. These results demonstrate the exceptional malleability of the active site in FSA, which can be remodeled to accept a wide spectrum of donor and acceptor substrates with high efficiency and selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Circulating levels of insulin-like growth factor-II/mannose-6-phosphate receptor in obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Jeyaratnaganthan, Nilani; Højlund, Kurt; Kroustrup, Jens Peter

    2010-01-01

    diabetes (T2D) and weight loss on circulating levels of IGF-II and its soluble receptor. METHODS: Twenty-three morbidly obese non-diabetic subjects were studied before and after gastric banding (GB), reducing their BMI from 59.3+/-1.8 to 52.7+/-1.6 kg/m(2). Lean controls (n=10, BMI 24.2+/-0.5 kg/m(2......OBJECTIVE: The extracellular domain of the insulin-like growth factor II/mannose-6-phosphate receptor (IGF-II/M6P-R) is present in the circulation, but its relationship with plasma IGF-II is largely unknown. As IGF-II appears to be nutritionally regulated, we studied the impact of obesity, type 2......)), moderately obese controls (n=21, BMI 31.8+/-1.0 kg/m(2)) and obese T2D patients (n=20, BMI 32.3+/-0.8 kg/m(2)) were studied before and after a hyperinsulinaemic euglycaemic clamp. RESULTS: Morbidly obese subjects had elevated IGF-II/M6P-R and IGF-II levels, which both decreased following GB (IGF-II/M6P...

  4. Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli.

    Science.gov (United States)

    King, Jason R; Woolston, Benjamin M; Stephanopoulos, Gregory

    2017-07-21

    The 2C-methyl-d-erythritol-4-phosphate (MEP) pathway in Escherichia coli has been highlighted for its potential to provide access to myriad isoprenoid chemicals of industrial and therapeutic relevance and discover antibiotic targets to treat microbial human pathogens. Here, we describe a metabolic engineering strategy for the de novo construction of a biosynthetic pathway that produces 1-dexoxy-d-xylulose-5-phosphate (DXP), the precursor metabolite of the MEP pathway, from the simple and renewable starting materials d-arabinose and hydroxyacetone. Unlike most metabolic engineering efforts in which cell metabolism is reprogrammed with enzymes that are highly specific to their desired reaction, we highlight the promiscuous activity of the native E. coli fructose-6-phosphate aldolase as central to the metabolic rerouting of carbon to DXP. We use mass spectrometric isotopomer analysis of intracellular metabolites to show that the engineered pathway is able to support in vivo DXP biosynthesis in E. coli. The engineered DXP synthesis is further able to rescue cells that were chemically inhibited in their ability to produce DXP and to increase terpene titers in strains harboring the non-native lycopene pathway. In addition to providing an alternative metabolic pathway to produce isoprenoids, the results here highlight the potential role of pathway evolution to circumvent metabolic inhibitors in the development of microbial antibiotic resistance.

  5. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells.

    Science.gov (United States)

    Siupka, Piotr; Hersom, Maria Ns; Lykke-Hartmann, Karin; Johnsen, Kasper B; Thomsen, Louiza B; Andresen, Thomas L; Moos, Torben; Abbott, N Joan; Brodin, Birger; Nielsen, Morten S

    2017-07-01

    Brain capillary endothelium mediates the exchange of nutrients between blood and brain parenchyma. This barrier function of the brain capillaries also limits passage of pharmaceuticals from blood to brain, which hinders treatment of several neurological disorders. Receptor-mediated transport has been suggested as a potential pharmaceutical delivery route across the brain endothelium, e.g. reports have shown that the transferrin receptor (TfR) facilitates transcytosis of TfR antibodies, but it is not known whether this recycling receptor itself traffics from apical to basal membrane in the process. Here, we elucidate the endosomal trafficking of the retrograde transported cation-independent mannose-6-phosphate receptor (MPR300) in primary cultures of brain endothelial cells (BECs) of porcine and bovine origin. Receptor expression and localisation of MPR300 in the endo-lysosomal system and trafficking of internalised receptor are analysed. We also demonstrate that MPR300 can undergo bidirectional apical-basal trafficking in primary BECs in co-culture with astrocytes. This is, to our knowledge, the first detailed study of retrograde transported receptor trafficking in BECs, and the study demonstrates that MPR300 can be transported from the luminal to abluminal membrane and reverse. Such trafficking of MPR300 suggests that retrograde transported receptors in general may provide a mechanism for transport of pharmaceuticals into the brain.

  6. Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Kosmas, Sotirios A; Argyrokastritis, Alexandros; Loukas, Michael G; Eliopoulos, Elias; Tsakas, Spyros; Kaltsikes, Pantouses J

    2006-01-01

    Due to the important role of cotton drought-tolerant varieties and the reported involvement in this trait of trehalose-6-phosphate-synthase, the respective gene (TPS) was isolated and characterized from cultivated cotton, Gossypium hirsutum (ZETA 2 cultivar), using a chromosome-walking technique. TPS has three exons comprising the coding region. Southern blot analysis indicated that the Gossypium genomes (A and D) contain a single copy of TPS per genome. In addition, the expression of this gene was studied in different plant tissues. Plants of the Australian cotton variety Siokra L23, known for its drought tolerance, were subjected to drought stress (using PEG 6,000 solution, for 4 h during the dark period of the day and for four consecutive days); leaves, stems and roots were collected after the end of the stress period. Total extracted RNA was examined for the presence of transcripts, in the above-mentioned tissues of stressed and well-watered plants, by reverse transcription-polymerase chain reaction (RT-PCR). The expression levels, determined semi-quantitatively, indicated that the gene was expressed in all plant tissues under both water availability conditions. However, increased expression levels of TPS were observed mainly in stressed leaves and roots compared to those of the well-watered control. This finding is in agreement with the fact that TPS participates in trehalose biosynthesis, known for its participation in stress signal transduction in higher plants.

  7. Fructose 6-phosphate phosphoketolase activity in wild-type strains of Lactobacillus, isolated from the intestinal tract of pigs.

    Science.gov (United States)

    Bolado-Martínez, E; Acedo-Félix, E; Peregrino-Uriarte, A B; Yepiz-Plascencia, G

    2012-01-01

    Phosphoketolases are key enzymes of the phosphoketolase pathway of heterofermentative lactic acid bacteria, which include lactobacilli. In heterofermentative lactobacilli xylulose 5-phosphate phosphoketolase (X5PPK) is the main enzyme of the phosphoketolase pathway. However, activity of fructose 6-phosphate phosphoketolase (F6PPK) has always been considered absent in lactic acid bacteria. In this study, the F6PPK activity was detected in 24 porcine wild-type strains of Lactobacillus reuteri and Lactobacillus mucosae, but not in the Lactobacillus salivarius or in L. reuteri ATCC strains. The activity of F6PPK increased after treatment of the culture at low-pH and diminished after porcine bile-salts stress conditions in wild-type strains of L. reuteri. Colorimetric quantification at 505 nm allowed to differentiate between microbial strains with low activity and without the activity of F6PPK. Additionally, activity of F6PPK and the X5PPK gene expression levels were evaluated by real time PCR, under stress and nonstress conditions, in 3 L. reuteri strains. Although an exact correlation, between enzyme activity and gene expression was not obtained, it remains possible that the xpk gene codes for a phosphoketolase with dual substrate, at least in the analyzed strains of L. reuteri.

  8. Cloning of a cDNA encoding the human cation-dependent mannose 6-phosphate-specific receptor

    International Nuclear Information System (INIS)

    Pohlmann, R.; Nagel, G.; Schmidt, B.

    1987-01-01

    Complementary DNA clones for the human cation-dependent mannose 6-phosphate-specific receptor have been isolated from a human placenta library in λgt11. The nucleotide sequence of the 2463-base-pair cDNA insert includes a 145-base-pair 5' untranslated region, an open reading frame of 831 base pairs corresponding to 277 amino acids, and a 1487-base-pair 3' untranslated region. The deduced amino acid sequence is colinear with that determined by amino acid sequencing of the N-terminus peptide (41 residues) and nine tryptic peptides (93 additional residues). The receptor is synthesized as a precursor with a signal peptide of 20 amino acids. The hydrophobicity profile of the receptor indicates a single membrane-spanning domain, which separates an N-terminal region containing five potential N-glycosylation sites from a C-terminal region lacking N-glycosylation sites. Thus the N-terminal (M/sub r/ = 18,299) and C-terminal (M/sub r/ ≤ 7648) segments of the mature receptor are assumed to be exposed to the extracytosolic and cytosolic sides of the membrane, respectively. Analysis of a panel of somatic cell (mouse-human) hybrids shows that the gene for the receptor is located on human chromosome 12

  9. Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sánchez-López, Juan Francisco; González-Ibarra, Joaquín; Álvarez-Vargas, Aurelio; Milewski, Slawomir; Villagómez-Castro, Julio César; Cano-Canchola, Carmen; López-Romero, Everardo

    2015-06-01

    Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is an essential enzyme involved in cell wall biogenesis that has been proposed as a strategic target for antifungal chemotherapy. Here we describe the cloning and functional characterization of Sporothrix schenckii GFA1 gene which was isolated from a genomic library of the fungus. The gene encodes a predicted protein of 708 amino acids that is homologous to GlcN-6-P synthases from other sources. The recombinant enzyme restored glucosamine prototrophy of the Saccharomyces cerevisiae gfa1 null mutant. Purification and biochemical analysis of the recombinant enzyme revealed some differences from the wild type enzyme, such as improved stability and less sensitivity to UDP-GlcNAc. The sensitivity of the recombinant enzyme to the selective inhibitor FMDP [N(3)-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid] and other properties were similar to those previously reported for the wild type enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Takifugu rubripes cation independent mannose 6-phosphate receptor: Cloning, expression and functional characterization of the IGF-II binding domain.

    Science.gov (United States)

    A, Ajith Kumar; Nadimpalli, Siva Kumar

    2018-01-31

    Mannose 6-phosphate/IGF-II receptor mediated lysosomal clearance of insulin-like growth factor-II is significantly associated with the evolution of placental mammals. The protein is also referred to as the IGF-II receptor. Earlier studies suggested relatively low binding affinity between the receptor and ligand in prototherian and metatherian mammals. In the present study, we cloned the IGF-II binding domain of the early vertebrate fugu fish and expressed it in bacteria. A 72000Da truncated receptor containing the IGF-II binding domain was obtained. Analysis of this protein (covering domains 11-13 of the CIMPR) for its affinity to fish and human IGF-II by ligand blot assays and ELISA showed that the expressed receptor can specifically bind to both fish and human IGF-II. Additionally, a peptide-specific antibody raised against the region of the IGF-II binding domain also was able to recognize the IGF-II binding regions of mammalian and non-mammalian cation independent MPR protein. These interactions were further characterized by Surface Plasma resonance support that the receptor binds to fish IGF-II, with a dissociation constant of 548nM. Preliminary analysis suggests that the binding mechanism as well as the affinity of the fish and human receptor for IGF-II may have varied according to different evolutionary pressures. Copyright © 2018. Published by Elsevier B.V.

  11. Enhanced Efficacy of Enzyme Replacement Therapy in Pompe Disease Through Mannose-6-Phosphate Receptor Expression in Skeletal Muscle

    Science.gov (United States)

    Koeberl, Dwight D.; Luo, Xiaoyan; Sun, Baodong; McVie-Wylie, Alison; Dai, Jian; Li, Songtao; Banugaria, Suhrad G.; Chen, Y-T; Bali, Deeksha S.

    2011-01-01

    Enzyme replacement therapy (ERT) with acid α-glucosidase has become available for Pompe disease; however, the response of skeletal muscle, as opposed to the heart, has been attenuated. The poor response of skeletal muscle has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle compared to heart. To further understand the role of CI-MPR in Pompe disease, muscle-specific CI-MPR conditional knockout (KO) mice were crossed with GAA-KO (Pompe disease) mice. We evaluated the impact of CI-MPR-mediated uptake of GAA by evaluating ERT in CI-MPR-KO/GAA-KO (double KO) mice. The essential role of CI-MPR was emphasized by the lack of efficacy of ERT as demonstrated by markedly reduced biochemical correction of GAA deficiency and of glycogen accumulations in double KO mice, in comparison with administration of the same therapeutic doses in GAA-KO mice. Clenbuterol, a selective β2-agonist, enhanced CI-MPR expression in skeletal tissue and also increased efficacy from GAA therapy, thereby confirming the key role of CI-MPR with regard to enzyme replacement therapy in Pompe disease. Biochemical correction improved in both muscle and non-muscle tissues, indicating that therapy could be similarly enhanced in other lysosomal storage disorders. In summary, enhanced CI-MPR expression might improve the efficacy of enzyme replacement therapy in Pompe disease through enhancing receptor-mediated uptake of GAA. PMID:21397538

  12. The Class II trehalose 6-phosphate synthase gene PvTPS9 modulates trehalose metabolism in Phaseolus vulgaris nodules.

    Directory of Open Access Journals (Sweden)

    Aarón Barraza

    2016-11-01

    Full Text Available Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS of common bean (Phaseolus vulgaris, was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1% of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant.

  13. Is primaquine useful and safe as true exo-erythrocytic merontocidal, hypnozoitocidal and gametocidal antimalarial drug?

    Directory of Open Access Journals (Sweden)

    López-Antuñano Francisco Javier

    1999-01-01

    Full Text Available The main objective of this paper is to make available in a single document, a sequence of events that have been published on the biology of malaria parasites and their interaction with the human host, looking for arguments for effective and save treatment: what we know and what we would like to know about the effects of primaquine in order to justify its use in clinical and public health practice. The practicioner should be aware that the antimalarial activity, hemolytic and methemoglobinemic side effects, and detoxification of primaquine are all thought to depend on various biotransformation products of the drug. In spite of the universal use during over six decades, their site and mechanism of formation and degradation and their specific biologic effects remain very poorly understood in human beings. The mature gametocytes of P. falciparum are naturally resistant to chloroquine and other blood merontocides, but they are usually eliminated with a single dose of 1.315 mg/kg per os (p.o. of primaquine phosphate (equivalent to 0.75 mg-base. Rather than empirically, related with relapses frequency, dosage schedules should only be determined through consideration of the kinetics and dynamics of the drug and its effect on sporozoites, pre and exo-erythrocytic merontes, hypnozoites and gametocytes of P. vivax. Where medical care services are not available or not capable to detect glucose -6- phosphate dehydrogenese- (G-6-PD deficiencies and deleterious effects of the drug, we recommend not to use primaquine. Both, P. vivax primary clinical attack and P. vivax relapses, as and when they occur should be treated with a course of 10 mg/kg chloroquine-base p.o. Prevention of relapses is probably related to strain characteristics of P. vivax hypnozoites populations envolved. If well informed and qualified medical care workers decide to use primaquine in the absence of enzime defficiencies and are able to follow-up the clinical, toxicological and parasitic

  14. Glucose cycling in islets from healthy and diabetic rats

    International Nuclear Information System (INIS)

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Loew, H.L.; Landau, B.R.; Efendic, S.

    1990-01-01

    Pancreatic islets from healthy (control) and neonatally streptozocin-induced diabetic (STZ-D) rats, a model for non-insulin-dependent diabetes mellitus, were incubated with 3 H 2 O and 5.5 or 16.7 mM glucose. At 5.5 mM glucose, no detectable [ 3 H]glucose was formed. At 16.7 mM, 2.2 patom.islet-1.h-1 of 3 H was incorporated into glucose by the control islets and 5.4 patom.islet-1.h-1 by STZ-D islets. About 75% of the 3 H was bound to carbon-2 of the glucose. Glucose utilization was 35.3 pmol.islet-1.h-1 by the control and 19.0 pmol.islet-1.h-1 by the STZ-D islets. Therefore, 4.5% of the glucose-6-phosphate formed by the control islets and 15.7% by the STZ-D islets was dephosphorylated. This presumably occurred in the beta-cells of the islets catalyzed by glucose-6-phosphatase. An increased glucose cycling, i.e., glucose----glucose-6-phosphate----glucose, in islets of STZ-D rats may contribute to the decreased insulin secretion found in these animals

  15. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  16. Decreased erythrocyte superoxide dismutase in elderly men with early nuclear cataract

    Directory of Open Access Journals (Sweden)

    Rose Rose

    2015-12-01

    Full Text Available BACKGROUND Imbalance between oxidative processes and antioxidant defenses has been considered to play a role in cataractogenesis, particularly in diabetes patients. Superoxide dismutase (SOD is an important precursor for oxidative stress in the human lens, and its activity is mainly dependent on the copper and zinc levels in the body. The aim of this study was to compare erythrocyte SOD, erythrocyte zinc and total serum testosterone levels in male patients with early senile nuclear cataract and evaluate the correlations between the parameters in all subjects. METHODS A community-based study of cross-sectional design was conducted at Cilandak District Primary Health Center where 52 adult and 17 elderly men with early senile nuclear cataract were chosen as the study subjects. Erythrocyte SOD, erythrocyte zinc, serum testosterone, and fasting blood glucose (FBG levels were measured in all subjects. Nuclear cataract stage was assessed with the Pentacam® instrument (Oculus, Germany. Independent Student t test and Pearson’s correlation were used to analyze the results. RESULTS Erythrocyte SOD level was significantly decreased in elderly men compared to adult men (p=0.014. Erythrocyte zinc, serum testosterone and FBG did not differ significantly in adult and elderly males (at p=0.304; p=0.145;and p=0.376, respectively. Erythrocyte SOD activity was significantly associated with erythrocyte zinc level (r=0.486; p=0.048. CONCLUSIONS Lower erythrocyte SOD activity was found in elderly males than in adult males with early nuclear cataract. There was a relationship between erythrocyte SOD and erythrocyte zinc level in elderly males with early nuclear cataract.

  17. Glycogen autophagy in glucose homeostasis.

    Science.gov (United States)

    Kotoulas, O B; Kalamidas, S A; Kondomerkos, D J

    2006-01-01

    Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.

  18. Inhibition of Suicidal Erythrocyte Death by Indirubin-3'-Monoxime.

    Science.gov (United States)

    Liu, Chunqiu; Jiang, Peipei; Xu, Yuanhong; Zheng, Meijuan; Qiao, Jinpin; Zhou, Xueyong; Huang, Dake; Bian, Maohong

    2018-01-01

    Qing Dai is a prized traditional Chinese medicine whose major component, indirubin, and its derivative, indirubin-3'-monoxime (IDM), have inhibitory effects on the growth of many human tumor cells and pronounced anti-leukemic activities. However, the effects of IDM on mature human erythrocytes are unclear. This study aimed to evaluate the potential impact of IDM on erythrocytes and the mechanisms underlying that impact. Utilizing flow cytometry and confocal laser scanning microscopy, phosphatidylserine exposure at the cell surface was estimated by annexin V-fluorescein isothiocyanate (FITC). The relative cell size, expressed in arbitrary units, was evaluated by forward scatter in a flow cytometer. Fluo-3 fluorescence was used to bewrite changes in cytosolic Ca2+ activity, reactive oxygen species (ROS) formation was assessed by 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence, and ceramide abundance was evaluated by FITC-conjugated specific antibodies. The 24-h exposure of human erythrocytes to IDM (12 µM) significantly decreased the percentage of annexin V-binding erythrocytes and the intracellular calcium concentration ([Ca2+]i). IDM (3-12 µM) did not significantly modify the ceramide level or DCFH-DA fluorescence. Energy depletion (removal of glucose for 24 hours) significantly increased annexin V binding and Fluo-3 fluorescence and diminished forward scatter, and these effects were significantly mitigated by IDM (12 µM). Moreover, the Ca2+ ionophore ionomycin (1 µM, 60 min) and oxidative stress (30 min exposure to 0.05 mM tert-butyl hydroperoxide, t-BHP) similarly triggered eryptosis, which was also significantly suppressed by IDM. IDM is a novel inhibitor of suicidal erythrocyte death following ionomycin treatment, t-BHP treatment and energy depletion. Thus, IDM may counteract anemia and impairment of microcirculation, at least in part, by inhibition of Ca2+ entry into erythrocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Novel mode of inhibition by D-tagatose 6-phosphate through a Heyns rearrangement in the active site of transaldolase B variants.

    Science.gov (United States)

    Stellmacher, Lena; Sandalova, Tatyana; Schneider, Sarah; Schneider, Gunter; Sprenger, Georg A; Samland, Anne K

    2016-04-01

    Transaldolase B (TalB) and D-fructose-6-phosphate aldolase A (FSAA) from Escherichia coli are C-C bond-forming enzymes. Using kinetic inhibition studies and mass spectrometry, it is shown that enzyme variants of FSAA and TalB that exhibit D-fructose-6-phosphate aldolase activity are inhibited covalently and irreversibly by D-tagatose 6-phosphate (D-T6P), whereas no inhibition was observed for wild-type transaldolase B from E. coli. The crystal structure of the variant TalB(F178Y) with bound sugar phosphate was solved to a resolution of 1.46 Å and revealed a novel mode of covalent inhibition. The sugar is bound covalently via its C2 atom to the ℇ-NH2 group of the active-site residue Lys132. It is neither bound in the open-chain form nor as the closed-ring form of D-T6P, but has been converted to β-D-galactofuranose 6-phosphate (D-G6P), a five-membered ring structure. The furanose ring of the covalent adduct is formed via a Heyns rearrangement and subsequent hemiacetal formation. This reaction is facilitated by Tyr178, which is proposed to act as acid-base catalyst. The crystal structure of the inhibitor complex is compared with the structure of the Schiff-base intermediate of TalB(E96Q) formed with the substrate D-fructose 6-phosphate determined to a resolution of 2.20 Å. This comparison highlights the differences in stereochemistry at the C4 atom of the ligand as an essential determinant for the formation of the inhibitor adduct in the active site of the enzyme.

  20. Trehalose-6-phosphate and SNF1-related protein kinase 1 are involved in the first-fruit inhibition of cucumber.

    Science.gov (United States)

    Zhang, ZhiPing; Deng, Yukun; Song, Xingxing; Miao, Minmin

    2015-04-01

    In cucumber (Cucumis sativus L.), the preexisting fruits inhibit the growth of subsequent fruits. To study the mechanism underlying this phenomenon, we examined the sink activity, the level of free sugars, and the activity of SNF1-related protein kinase 1 (SnRK1) in the peduncles of two types of fruits. In the two-fruit cucumber plants, the growth rate and sink activity [evaluated by alkaline alpha-galactosidase (CsAGA) activity in the peduncle] of the first fruit were greater than those of the second fruit. The (14)C-labeling experiment revealed that assimilates produced by the leaves closer to the second fruit tended to move to the first fruit. Sucrose and trehalose-6-phosphate (T6P) levels in the peduncle of the first fruit were higher than those in the peduncle of the second fruit. The SnRK1 activity was lower in the peduncle of the first fruit than in that of the second fruit at 0-8 days after anthesis. The growth rate and sink activity of the second fruit were enhanced after the removal of the first fruit or after treatment with 6-benzyl aminopurine, as determined by comparison with an increase in the sucrose and T6P levels and a decrease in the SnRK1 activity in its peduncle. The SnRK1 activity was inhibited by T6P in an in vitro kinase assay, and the mRNA level of CsAGA1 in cucumber calli was up-regulated by exogenous trehalose treatment, confirming that the SnRK1 activity and CsAGA1 expression can be regulated by T6P levels. Our results suggest that the T6P- and SnRK1-mediated signaling functions are involved in the regulation of first-fruit inhibition in cucumber plants. Copyright © 2015. Published by Elsevier GmbH.

  1. Immunization of Mastomys coucha with Brugia malayi recombinant trehalose-6-phosphate phosphatase results in significant protection against homologous challenge infection.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available Development of a vaccine to prevent or reduce parasite development in lymphatic filariasis would be a complementary approach to existing chemotherapeutic tools. Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP represents an attractive vaccine target due to its absence in mammals, prevalence in the major life stages of the parasite and immunoreactivity with human bancroftian antibodies, especially from endemic normal subjects. We have recently reported on the cloning, expression, purification and biochemical characterization of this vital enzyme of B. malayi. In the present study, immunoprophylactic evaluation of Bm-TPP was carried out against B. malayi larval challenge in a susceptible host Mastomys coucha and the protective ability of the recombinant protein was evaluated by observing the adverse effects on microfilarial density and adult worm establishment. Immunization caused 78.4% decrease in microfilaremia and 71.04% reduction in the adult worm establishment along with sterilization of 70.06% of the recovered live females. The recombinant protein elicited a mixed Th1/Th2 type of protective immune response as evidenced by the generation of both pro- and anti-inflammatory cytokines IL-2, IFN-γ, TNF-α, IL-4 and an increased production of antibody isotypes IgG1, IgG2a, IgG2b and IgA. Thus immunization with Bm-TPP conferred considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccine candidate against lymphatic filariasis (LF.

  2. Effects of 5,8-dimethylthieno[2,3-b]quinoline-2-carboxylic acid on the antioxidative defense and lipid membranes in Plasmodium berghei-infected erythrocytes.

    Science.gov (United States)

    Gamboa de Domínguez, N D; Charris, J; Domínguez, J; Monasterios, M; Angel, J; Rodrigues, J

    2015-08-01

    Plasmodium parasites degrade hemoglobin producing reactive oxygen species as toxic byproducts which are detoxified by a series of antioxidant mechanisms. Quinoline compounds have demonstrated activity against hemoglobin degradation with 5,8-dimethylthieno[2,3-b]quinoline-2-carboxylic acid (TQCA) representing a recent compound inhibiting this process. Thus, this study was undertaken to determine the ability of TQCA to modify the oxidative status in Plasmodium berghei-infected erythrocytes. After hemolysis, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and dehydrogenase enzymes as well as lipid peroxidation were investigated by spectrophotometry. Saturated and unsaturated fatty acids were determined by gas-liquid chromatography and the in vivo effects of TQCA were confirmed by a malaria murine model (Rane test). The activity of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in infected cells was diminished by this compound compared to control infection in 75.1 ± 3.5% and 26.5 ± 0.3%, respectively, while that of GPx and GR was also lowered (p quinoline derivate in 49.2 ± 1.32% and 37 ± 0.06%, respectively, protecting the cells from hemolysis caused by the infection. The in vitro results were in concordance with the potential in vivo activity of this compound in an established malaria murine model in which TQCA showed significant decrease in the parasitemia levels and increased the mean survival days of infected mice. In conclusion, the antioxidant defense represents a biochemical target for TQCA actions as a potent antimalarial whose effects were also confirmed in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Multiple roles of glucose-6-phosphatases in pathophysiology: state of the art and future trends.

    Science.gov (United States)

    Marcolongo, Paola; Fulceri, Rosella; Gamberucci, Alessandra; Czegle, Ibolya; Banhegyi, Gabor; Benedetti, Angelo

    2013-03-01

    The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate to glucose and inorganic phosphate. The enzyme is a part of a multicomponent system that includes several integral membrane proteins; the catalytic subunit (G6PC) and transporters for glucose-6-phosphate, inorganic phosphate and glucose. The G6PC gene family presently includes three members, termed as G6PC, G6PC2, and G6PC3. Although the three isoforms show a moderate amino acid sequence homology, their membrane topology and catalytic site are very similar. The isoforms are expressed differently in various tissues. Mutations in all three genes have been reported to be associated with human diseases. The present review outlines the biochemical features of the G6PC gene family products, the regulation of their expression, their role in the human pathology and the possibilities for pharmacological interventions. G6PCs emerge as integrators of extra- and intracellular glucose homeostasis. Beside the well known key role in blood glucose homeostasis, the members of the G6PC family seem to play a role as sensors of intracellular glucose and of intraluminal glucose/glucose-6-phosphate in the endoplasmic reticulum. Since mutations in the three G6PC genes can be linked to human pathophysiological conditions, the better understanding of their functioning in connection with genetic alterations, altered expression and tissue distribution has an eminent importance.

  4. Structural basis for substrate specificity in phosphate binding (beta/alpha)8-barrels: D-allulose 6-phosphate 3-epimerase from Escherichia coli K-12.

    Science.gov (United States)

    Chan, Kui K; Fedorov, Alexander A; Fedorov, Elena V; Almo, Steven C; Gerlt, John A

    2008-09-09

    Enzymes that share the (beta/alpha) 8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal (beta/alpha) 2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth beta-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, DeltaT196, DeltaS197 and DeltaG198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in k cat/ K m are dominated by changes in k cat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE

  5. Structural Basis for Substrate Specificity in Phosphate Binding (β/α)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12†

    Science.gov (United States)

    Chan, Kui K.; Fedorov, Alexander A.; Fedorov, Elena V.; Almo, Steven C.; Gerlt, John A.

    2008-01-01

    Enzymes that share the (β/α)8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal (β/α)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of D-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates D-ribulose 5-phosphate and D-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493–2503]. We now report functional and structural studies of D-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates D-allulose 6-phosphate and D-fructose 6-phosphate in a catabolic pathway for D-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other’s substrate. The active sites (RPE complexed with D-xylitol 5-phosphate and ALSE complexed with D-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth β-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ΔT196, ΔS197 and ΔG198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that D-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate group

  6. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the

  7. The evaluation of the activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase under different patho-physiological conditions : a combined enzyme histochemical and biochemical approach

    NARCIS (Netherlands)

    E.A. Elias (Ezzat); R.O. van der Heul

    1988-01-01

    textabstractThis thesis is based on a series of metabolic studies conducted on material obtained from human and experimental animal tissues and cells. The studies are essentially enzyme histochemical complemented when thought necessary with biochemical investigations performed on tissue

  8. Prevalence and distribution of glucose-6-phosphate dehydrogenase (G6PD variants in Thai and Burmese populations in malaria endemic areas of Thailand

    Directory of Open Access Journals (Sweden)

    Phompradit Papichaya

    2011-12-01

    Full Text Available Abstract Background G6PD deficiency is common in malaria endemic regions and is estimated to affect more than 400 million people worldwide. Treatment of malaria patients with the anti-malarial drug primaquine or other 8-aminoquinolines may be associated with potential haemolytic anaemia. The aim of the present study was to investigate the prevalence of G6PD variants in Thai population who resided in malaria endemic areas (western, northern, north-eastern, southern, eastern and central regions of Thailand, as well as the Burmese population who resided in areas along the Thai-Myanmar border. Methods The ten common G6PD variants were investigated in dried blood spot samples collected from 317 Thai (84 males, 233 females and 183 Burmese (11 males, 172 females populations residing in malaria endemic areas of Thailand using PCR-RFLP method. Results Four and seven G6PD variants were observed in samples collected from Burmese and Thai population, with prevalence of 6.6% (21/317 and 14.2% (26/183, respectively. Almost all (96.2% of G6PD mutation samples collected from Burmese population carried G6PD Mahidol variant; only one sample (3.8% carried G6PD Kaiping variant. For the Thai population, G6PD Mahidol (8/21: 38.1% was the most common variant detected, followed by G6PD Viangchan (4/21: 19.0%, G6PD Chinese 4 (3/21: 14.3%, G6PD Canton (2/21: 9.5%, G6PD Union (2/21: 9.5%, G6PD Kaiping (1/21: 4.8%, and G6PD Gaohe (1/21: 4.8%. No G6PD Chinese 3, Chinese 5 and Coimbra variants were found. With this limited sample size, there appeared to be variation in G6PD mutation variants in samples obtained from Thai population in different regions particularly in the western region. Conclusions Results indicate difference in the prevalence and distribution of G6PD gene variants among the Thai and Burmese populations in different malaria endemic areas. Dosage regimen of primaquine for treatment of both Plasmodium falciparum and Plasmodium vivax malaria may need to be optimized, based on endemic areas with supporting data on G6PD variants. Larger sample size from different malaria endemic is required to obtain accurate genetic mapping of G6PD variants in Burmese and Thai population residing in malaria endemic areas of Thailand.

  9. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobin Drop after Sulphadoxine-Pyrimethamine Use for Intermittent Preventive Treatment of Malaria during Pregnancy in Ghana - A Cohort Study.

    Directory of Open Access Journals (Sweden)

    Ruth Owusu

    Full Text Available Sulphadoxine-Pyrimethamine (SP is still the only recommended antimalarial for use in intermittent preventive treatment of malaria during pregnancy (IPTp in some malaria endemic countries including Ghana. SP has the potential to cause acute haemolysis in G6PD deficient people resulting in significant haemoglobin (Hb drop but there is limited data on post SP-IPTp Hb drop. This study determined the difference, if any in proportions of women with significant acute haemoglobin drop between G6PD normal, partial deficient and full deficient women after SP-IPTp.Prospectively, 1518 pregnant women who received SP for IPTp as part of their normal antenatal care were enrolled. Their G6PD status were determined at enrollment followed by assessments on days 3, 7,14 and 28 to document any adverse effects and changes in post-IPTp haemoglobin (Hb levels. The three groups were comparable at baseline except for their mean Hb (10.3 g/dL for G6PD normal, 10.8 g/dL for G6PD partial deficient and 10.8 g/dL for G6PD full defect women.The prevalence of G6PD full defect was 2.3% and 17.0% for G6PD partial defect. There was no difference in the proportions with fractional Hb drop ≥ 20% as compared to their baseline value post SP-IPTp among the 3 groups on days 3, 7, 14. The G6PD full defect group had the highest median fractional drop at day 7. There was a weak negative correlation between G6PD activity and fractional Hb drop. There was no statistical difference between the three groups in the proportions of those who started the study with Hb ≥ 8g/dl whose Hb level subsequently fell below 8g/dl post-SP IPTp. No study participant required transfusion or hospitalization for severe anaemia.There was no significant difference between G6PD normal and deficient women in proportions with significant acute haemoglobin drop post SP-IPTp and lower G6PD enzyme activity was not strongly associated with significant acute drug-induced haemoglobin drop post SP-IPTp but a larger study is required to confirm consistency of findings.

  10. Population study of 1311 C/T polymorphism of Glucose 6 Phosphate Dehydrogenase gene in Pakistan – an analysis of 715 X-chromosomes

    Directory of Open Access Journals (Sweden)

    Naqvi Zulfiqar

    2009-07-01

    Full Text Available Abstract Background Nucleotide 1311 polymorphism at exon 11 of G6PD gene is widely prevalent in various populations of the world. The aim of the study was to evaluate 1311 polymorphism in subjects carrying G6PD Mediterranean gene and in general population living in Pakistan. Results Patients already known to be G6PD deficient were tested for 563C-T (G6PD Mediterranean and 1311 C-T mutation through RFLP based PCR and gene sequencing. A control group not known to be G6PD deficient was tested for 1311C/T only. C-T transition at nt 1311 was detected in 60/234 X-chromosomes with 563 C-T mutation (gene frequency of 0.26 while in 130 of normal 402 X-chromosomes (gene frequency of 0.32. Conclusion We conclude that 1311 T is a frequent polymorphism both in general populations and in subjects with G6PD Mediterranean gene in Pakistan. The prevalence is higher compared to most of the populations of the world. The present study will help in understanding genetic basis of G6PD deficiency in Pakistani population and in developing ancestral links of its various ethnic groups.

  11. Excessive fluoride consumption increases haematological alteration in subjects with iron deficiency, thalassaemia, and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency.

    Science.gov (United States)

    Pornprasert, Sakorn; Wanachantararak, Phenphichar; Kantawong, Fahsai; Chamnanprai, Supoj; Kongpan, Chatpat; Pienthai, Nattasit; Yanola, Jintana; Duangmano, Suwit; Prasannarong, Mujalin

    2017-08-01

    Excessive fluoride consumption leads to accelerated red blood cell death and anaemia. Whether that increases the haematological alteration in subjects with haematological disorders (iron deficiency, thalassaemia, and G-6-PD deficiency) is still unclear. The fluoride in serum and urine and haematological parameters of students at Mae Tuen School (fluoride endemic area) were analysed and compared to those of students at Baan Yang Poa and Baan Mai Schools (control areas). Iron deficiency, thalassaemia, and G-6-PD deficiency were also diagnosed in these students. The students at Mae Tuen School had significantly (P fluoride in the serum and urine than those in control areas. In both control and fluoride endemic areas, students with haematological disorders had significantly lower levels of Hb, Hct, MCV, MCH, and MCHC than those without haematological disorders. Moreover, the lowest levels of Hb, MCH, and MCHC were observed in the students with haematological disorders who live in the fluoride endemic area. Thus, the excessive fluoride consumption increased haematological alteration in subjects with iron deficiency, thalassaemia, and G-6-PD deficiency and that may increase the risk of anaemia in these subjects.

  12. Changes in glucose-6-phosphate dehydrogenase, ribonucleases, esterases and contents of viruses in potato virus Y infected tobacco superinfected with tobacco mosaic virus

    Czech Academy of Sciences Publication Activity Database

    Šindelářová, Milada; Šindelář, Luděk

    2003-01-01

    Roč. 47, č. 1 (2003), s. 99-104 ISSN 0006-3134 R&D Projects: GA ČR GA522/99/1264; GA ČR GA522/02/0708 Institutional research plan: CEZ:AV0Z5038910 Keywords : :Nicotiana tabacum * superinfection * virus Subject RIV: CE - Biochemistry Impact factor: 0.919, year: 2003

  13. Erythrocyte potassium and glutathione polymorphism determination ...

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... erythrocyte and hematocrit values (Igbokwe et al., 1998). This study aims to detect the genetic makeup of. Saanen x Malta crossbred goat depending on the gluta- thione and potassium types in erythrocyte and also to find if the association between erythrocyte potassium and some of the blood parameters ...

  14. Glucose metabolism and recycling by hepatocytes of OB/OB and ob/ob mice

    International Nuclear Information System (INIS)

    Lahtela, J.T.; Wals, P.A.; Katz, J.

    1990-01-01

    Hepatocytes were prepared from livers of ob/ob (obese diabetic) mice and their lean (OB/OB) siblings that had been fasted for 24 h. The hepatocytes were incubated with [U-14C, 2-3H]-, [U-14C, 3-3H]-, and [U-14C, 6-3H]glucose at concentrations from 20 to 120 mM. 14C was recovered mainly in CO2, glycogen, and lactate. Tritium was recovered in water and glycogen. The yield in labeled products from [2-3H]glucose ranged from two to three times that from [U-14C]glucose. The yields from [3-3H]- and [6-3H]glucose were similar, and 1.3-1.7 times that from [U-14C]glucose. At 40 mM, total utilization of glucose by obese mice was about twice that for lean mice, but there was little difference at 120 mM. The rate of recycling between glucose and glucose 6-phosphate was calculated. An equation to calculate the rate of recycling of glucose from the 2-3H/U-14C ratio in glycogen is derived in the APPENDIX. Our results show that (1) the utilization of glucose by hepatocytes from obese diabetic mice exceeds that of their lean controls, (2) the rate of glucose phosphorylation in both groups greatly exceeds glucose uptake and the rate of glycogen synthesis, (3) glucose phosphorylation represents a difference between a high glucokinase rate and hydrolysis of glucose 6-phosphate, and (4) recycling of glucose carbon between glucose 6-phosphate and pyruvate occurs within mouse hepatocytes

  15. L-Sorbose but not D-tagatose induces hemolysis of dog erythrocytes in vitro.

    Science.gov (United States)

    Bär, A; Leeman, W R

    1999-04-01

    Previous investigations have demonstrated that L-sorbose induces hemolysis of dog erythrocytes. This effect is probably the consequence of an ATP depletion of the red blood cells subsequent to inhibition of hexokinase, and thus the glycolytic pathway, by sorbose 1-phosphate. In the present study, the susceptibility of dog erythrocytes to D-tagatose, a stereoisomer of L-sorbose, was examined. Washed dog erythrocytes were suspended in Hanks' balanced salt solution (HBSS, containing 5.6 mM glucose) with or without the addition of 0.6, 6, and 60 mM L-sorbose or D-tagatose, or in HBSS with total glucose concentrations of 5.6, 6 and 60 mM D-glucose. After incubation for 24 h at 34 degrees C, the suspensions were centrifuged, and the percentage of hemolysis was determined by measuring the hemoglobin in the sediment and the supernatant. The amount of hemoglobin released in the medium did not differ significantly between the control (HBSS) and the test incubations with glucose or D-tagatose supplementation. In contrast, the addition of 6 and 60 mM L-sorbose resulted in significant hemolysis. At the low dose (0.6 mM), L-sorbose did not have an adverse effect. It is concluded that D-tagatose, unlike L-sorbose, does not have a hemolytic effect on canine erythrocytes. Copyright 1999 Academic Press.

  16. Muscle glucose metabolism following exercise in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N

    1982-01-01

    both, the concentration of insulin that half-maximally stimulated glucose utilization (exercise, 150 muU/ml; control, 480 muU/ml) and modestly increased its maximum effect. The increase in insulin sensitivity persisted for 4 h following exercise, but was not present after 24 h. The rate-limiting step...... diminished synthase activity in situ. The possibility that exercise enhanced the ability of insulin to convert glycogen synthase D to an intermediate form of the enzyme, more sensitive to glucose-6-phosphate, remains to be explored. These results suggest that following exercise, glucose transport...

  17. 51Cr - erythrocyte survival curves

    International Nuclear Information System (INIS)

    Paiva Costa, J. de.

    1982-07-01

    Sixteen patients were studied, being fifteen patients in hemolytic state, and a normal individual as a witness. The aim was to obtain better techniques for the analysis of the erythrocytes, survival curves, according to the recommendations of the International Committee of Hematology. It was used the radiochromatic method as a tracer. Previously a revisional study of the International Literature was made in its aspects inherent to the work in execution, rendering possible to establish comparisons and clarify phonomena observed in cur investigation. Several parameters were considered in this study, hindering both the exponential and the linear curves. The analysis of the survival curves of the erythrocytes in the studied group, revealed that the elution factor did not present a homogeneous answer quantitatively to all, though, the result of the analysis of these curves have been established, through listed programs in the electronic calculator. (Author) [pt

  18. Spectroscopic analysis of irradiated erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Nabila S. [Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo (Egypt); Desouky, Omar S., E-mail: omardesouky@yahoo.com [Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo (Egypt); Ismail, Nagla M.; Dakrory, Amira Z. [Physics Department, Faculty of Girls for Arts, Sciences and Education, Ain Shams University, Cairo (Egypt)

    2011-12-15

    The aim of the present work is to study the effect of gamma radiation on the lipid part of the erythrocyte membrane, and to test the efficiency of lipoic acid as a radioprotector. This effect was evaluated using electron paramagnetic resonance (EPR), and Fourier transform infrared (FT-IR) spectroscopy. The results showed an increase in the number of spin density by 14%, 22% and 65% after exposure to 25, 50 and 100 Gy respectively; whereas there was a decline in the obtained density after incubation with lipoic acid by a factor of approximately 32%. The FT-IR spectra of the irradiated erythrocytes samples showed a marked decrease in the intensity of all characteristic peaks, which increased as the irradiation dose increased. The second-derivative of these spectra, allow the conformationally sensitive membrane acyl chain methylene stretching modes to be separated from the protein (mostly hemoglobin) vibrations that dominate the spectra of intact cells. The 2850 cm{sup -1} band showed changes in the band shape and position after exposure to 50 and 100 Gy. Therefore it can be concluded that the band at 2850 cm{sup -1} only is useful in monitoring the radiation effect of the lipids cell membrane intact cells. - Highlights: > Effect of {gamma} radiation on erythrocyte membrane was studied using EPR and FT-IR. > Efficiency of {alpha}-lipoic acid as radioprotector was tested. > Lipoic acid diminished the free radicals number after gamma irradiation by 32%. > FT-IR spectra of the irradiated erythrocyte showed a decrease in their intensity. > Lipoic acid enhances the membrane to resist the action of gamma radiation.

  19. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2008-01-01

    metabolites glucose-6-phosphate, fructose-1,6-bisphosphate and DHAP in the IL1403 derivatives were essentially unchanged for TPI activities from 26% to 225%. At a TPI activity of 3%, the level of DHAP increased four times. The finding that an increased level of DHAP coincides with an increase in formate...

  20. Glucose-6-fosfaatdehydrogenasedeficiëntie: klinische presentatie en uitlokkende factoren

    NARCIS (Netherlands)

    Dors, N.; Rodrigues Pereira, R.; van Zwieten, R.; Fijnvandraat, K.; Peters, M.

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a hereditary X-linked disorder, is the most common enzymatic disorder of red blood cells in humans, affecting more than 200 million people worldwide. The prevalence is increasing in the Netherlands due to immigration of people from the Middle East

  1. Glucose-l-13C as a tracer for the measurement of systemic glucose production

    International Nuclear Information System (INIS)

    Kalhan, S.C.; Savin, S.M.; Adam, P.A.J.

    1975-01-01

    Glucose-1- 13 C was used as a tracer for the quantitative measurement of systemic glucose production in 4 dogs and one human subject. The C-1 carbon atom of glucose was extracted as CO 2 by enzymatic decarboxylation of glucose with coupled hexokinase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities. The 13 C/ 12 C ratio of the CO 2 was measured using a magnetic deflection, double collector, mass spectrometer. The methods were checked in three normal and one diabetic dog by infusing glucose-1- 14 C and glucose-1- 13 C simultaneously according to the prime-constant-infusion technique. The systemic glucose production rates measured by the two methods were similar. Systemic glucose production rate was also measured in one normal adult man by infusing glucose-1- 13 C at the rate of 5.4 μg/kg min following a prime injection of 22.8 mg. The calculated glucose production rate was 2.1 mg/kg min which is similar to results from previous radioisotope dilution studies in man

  2. Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites

    International Nuclear Information System (INIS)

    Dienel, G.A.; Nelson, T.; Cruz, N.F.; Jay, T.; Crane, A.M.; Sokoloff, L.

    1988-01-01

    Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported. The evidence was an apparent more rapid 3 H than 14 C loss from the glucose pool and faster [2- 3 H]glucose than [U- 14 C]glucose utilization following pulse labeling of the brain with [2- 3 H,U- 14 C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14 C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [ 14 C]glutamine; 2) [ 14 C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14 C-labeled derivatives of [2- 3 H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found

  3. Phosphorylation of the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor is required for the interaction with a cytosolic protein

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1993-01-01

    The cytoplasmic tail of the human 300-kDa mannose 6-phosphate receptor (MPR 300-CT) is an excellent substrate for casein kinase II in vitro. The phosphorylated MPR 300-CT was cross-linked by means of bis(sulfosuccinimidyl)suberate mainly to a cytosolic protein of 35 kDa (referred to as TIP 35...... with TIP 35 is phosphorylation-specific. Furthermore, TIP 35 was only cross-linked to the MPR 300-CT phosphorylated by casein kinase II whereas the MPR 300-CT phosphorylated by protein kinase A failed to cross-link to TIP 35. These results indicate that the cytoplasmic tail of the MPR 300 interacts...

  4. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.

    Science.gov (United States)

    Srivastava, Anubhav; Evans, Krystal J; Sexton, Anna E; Schofield, Louis; Creek, Darren J

    2017-04-07

    A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.

  5. Influence of extracellular media's ionic strength on the osmotic stability of Sahel goat erythrocytes.

    Science.gov (United States)

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2015-03-01

    Heparinised blood was exposed to osmotic lysis in hypotonic buffered saline to evaluate erythrocyte membrane stability. When K3 EDTA blood was used, it added more to the ionic content of blood than heparin. The influence of suspending media's ionic strength on the osmotic stability of Sahel goat erythrocytes was investigated by replacing the ionic saline with non-ionic saccharide (sucrose or glucose) and assessing the effect of using EDTA blood instead of heparinised blood. The erythrocyte osmotic fragility curve in saline was hyperbolic even when the ionic concentration was reduced by 50% with saccharides. Haemolysis was higher with EDTA than heparinised blood at saline concentrations of 90 and 150-180 mosmol/L. The fragility curve was sigmoidal and shifted to the left when saline was completely substituted with a saccharide. The non-ionic saccharides increased erythrocyte osmotic resistance linearly (r=0.88; p90% fragility; and saccharide concentrations were almost non-lytic at comparable saline concentrations evoking <10% haemolysis. Fragilities were neither affected by period (30-60 min) of incubation nor the type of saccharide used. In this study, the variation in osmotic stability of caprine erythrocytes was linked to ionic strength of the suspending extracellular media which seemed to exert an influence through transmembrane ion fluxes and regulatory volume changes in erythrocytes.

  6. Overproduction, crystallization and preliminary X-ray analysis of the putative l-ascorbate-6-phosphate lactonase UlaG from Escherichia coli

    International Nuclear Information System (INIS)

    Garces, Fernando; Fernández, Francisco J.; Pérez-Luque, Rosa; Aguilar, Juan; Baldomà, Laura; Coll, Miquel; Badía, Josefa; Vega, M. Cristina

    2007-01-01

    UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in E. coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized in a monoclinic space group. Crystals were obtained by the sitting-drop vapour-diffusion method at 293 K. A data set diffracting to 3 Å resolution was collected from a single crystal at 100 K. UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in Escherichia coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized. Crystals were obtained by sitting-drop vapour diffusion at 293 K. Preliminary X-ray diffraction analysis revealed that the UlaG crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.52, b = 180.69, c = 112.88 Å, β = 103.26°. The asymmetric unit is expected to contain six copies of UlaG, with a corresponding volume per protein weight of 2.16 Å 3 Da −1 and a solvent content of 43%

  7. Defectos eritrocíticos y densidad de la parasitemia en pacientes con malaria por Plasmodium falciparum en Buenaventura, Colombia Erythrocyte defects and parasitemia density in patients with Plasmodium falciparum malaria in Buenaventura, Colombia

    Directory of Open Access Journals (Sweden)

    Martha Moyano

    2005-07-01

    . falciparum malaria who had gone for consultation at the Program of Tropical Diseases diagnostic center in the city of Buenaventura, Colombia. The parasitemia levels were measured, and also determined was the presence of congenital erythrocyte defects (glucose-6-phosphate dehydrogenase (G6PD deficiency, abnormal hemoglobins, and thalassemias and of other factors possibly related to parasitemia levels. RESULTS: The prevalence of erythrocyte defects was 26.4% (95% confidence interval, 21.0%-32.5%, which was similar to what had been found in previous studies in the same area of Colombia. In the multiple regression models, individuals with sickle cell anemia or a complete deficiency of G6PD had a lower density of parasitemia than did persons without any erythrocyte defect. After adjusting for other variables of interest, the risk of high parasitemias was lower in persons with sickle cell anemia (odds ratio = 0.30 and individuals with a complete deficiency of G6PD (odds ratio = 0.72. CONCLUSIONS: Our results confirm the high prevalence of erythrocyte defects in Colombia's Pacific coastal region, in a population with ethnic characteristics that are similar to those of some populations in West Africa. Our results also lend support for the existence of innate resistance to malaria among carriers of hemoglobin AS and in persons with G6PD deficiency.

  8. Expression and knockdown analysis of glucose phosphate isomerase in chicken primordial germ cells.

    Science.gov (United States)

    Rengaraj, Deivendran; Lee, Sang In; Yoo, Min; Kim, Tae Hyun; Song, Gwonhwa; Han, Jae Yong

    2012-09-01

    Glucose is an important monosaccharide required to generate energy in all cells. After entry into cells, glucose is phosphorylated to glucose-6-phosphate and then transformed into glycogen or metabolized to produce energy. Glucose phosphate isomerase (GPI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. Without GPI activity or fructose-6-phosphate, many steps of glucose metabolism would not occur. The requirement for GPI activity for normal functioning of primordial germ cells (PGCs) needs to be identified. In this study, we first examined the expression of chicken GPI during early embryonic development and germ cell development. GPI expression was strongly and ubiquitously detected in chicken early embryos and embryonic tissues at Embryonic Day 6.5 (E6.5). Continuous GPI expression was detected in PGCs and germ cells of both sexes during gonadal development. Specifically, GPI expression was stronger in male germ cells than in female germ cells during embryonic development and the majority of post-hatching development. Then, we used siRNA-1499 to knock down GPI expression in PGCs. siRNA-1499 caused an 85% knockdown in GPI, and PGC proliferation was also affected 48 h after transfection. We further examined the knockdown effects on 28 genes related to the glycolysis/gluconeogenesis pathway and the endogenous glucose level in chicken PGCs. Among genes related to glycolysis/gluconeogenesis, 20 genes showed approximately 3-fold lower expression, 4 showed approximately 10-fold lower, and 2 showed approximately 100-fold lower expression in knockdown PGCs. The endogenous glucose level was significantly reduced in knockdown PGCs. We conclude that the GPI gene is crucial for maintaining glycolysis and supplying energy to developing PGCs.

  9. Erythrocytes in alternating electric fields

    International Nuclear Information System (INIS)

    Morariu, V.V.; Chifu, A.; Simplaceanu, T.; Frangopol, P.T.

    1983-02-01

    The elastic and inelastic deformation of erythrocytes induced by alternating fields and the suggestion that moderate field intensities (1.2 kV/cm) when continuously applied can cause lysis by a different mechanism compared to the action of short intense field pulses is presented. The different experimental conditions can be used to approach various properties of the membrane such as those related to the dielectric polarization of the membrane or to the interfacial polarization, leading to the inelastic deformation of the cells. (authors)

  10. Cigarette smokers develop altered erythrocyte membrane composition: an investigation unmasking the role of membrane bound integral protein GLUT 1.

    Science.gov (United States)

    Sikdar, Jyotirmoy; Seal, Paromita; Roy, Amartya; Haldar, Rajen

    2017-04-01

    Erythrocytes in cigarette smokers are prone to oxidative damage. Here, we sought to elucidate the facts behind modifications and possible defense system developed in erythrocyte of cigarette smokers. We observed significant increase in stomatocytes and spherocytes, and osmotic fragility of erythrocyte, along with reduced level of protein thiol and increased fluorescence anisotropy in isolated membrane. Denaturing gel electrophoresis indicated alterations in band 3, band 4.2 and band 4.5. Among those, Glut 1 (i.e. band 4.5), which transports glucose (insulin independent) and dehydroascorbate (DHA), was selectively chosen for its long history in reducing reactive oxygen species (ROS). The increased Glut 1 level in smokers was confirmed by immunoblotting and immunocytochemistry. Furthermore, smokers showed significantly higher glucose uptake in whole blood. The intracellular (Ic) ROS (as indicated by 2',7'-dichlorofluorescin) was significantly higher in smokers as evidenced by flow cytometric assay. Glucose and DHA alone or together significantly reduced IcROS at higher rate in smokers. However, in presence of Glut 1 specific blocker, phloretin, neither glucose nor DHA could reduce IcROS in both non-smokers and smokers. This confirms that Glut 1 by transporting glucose or DHA attenuates IcROS. Therefore, we conclude that erythrocytes, although altered morphologically, also develop a defense system by upregulating Glut 1 to combat with enhanced Ic oxidative insult in cigarette smokers.

  11. Invasion of erythrocytes by Babesia bovis

    NARCIS (Netherlands)

    Gaffar, Fasila Razzia

    2004-01-01

    In this thesis we investigated the invasion of erythrocytes taking place during the asexual erythrocytic blood stage of the apicomplexan parasites Babesia bovis parasite. Host cell invasion by apicomplexan parasites is a complex process requiring multiple receptor-ligand interactions, involving

  12. Erythrocyte tagging with radiochromium (51Cr)

    International Nuclear Information System (INIS)

    Schmidt, U.W.

    1978-01-01

    A nomogram was set up which helps to estimate the erythrocyte-bound 51 Cr (E 51 Cr - radiochromium existing as erythrocyte-bound activity in the end product of the labelling process) and NE 51 Cr. With routine labelling conditions(VKZ 10 min, IKZ 77 min), NE 51 Cr values of about 2.5% can be expected. (orig.) [de

  13. Enzymatic assay for methotrexate in erythrocytes

    DEFF Research Database (Denmark)

    Schrøder, H; Heinsvig, E M

    1985-01-01

    Methotrexate (MTX) accumulates in erythrocytes in MTX-treated patients. We present a modified enzymatic assay measuring MTX concentrations between 10 and 60 nmol/l in erythrocytes, adapted for a centrifugal analyser (Cobas Bio). About 40 patient's samples could be analysed within 1 h. The detection...

  14. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer.

    Directory of Open Access Journals (Sweden)

    Sergio Zonszein

    Full Text Available The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P deaminase from Escherichia coli (EcGNPDA as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P. We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with Kt and Kr as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the

  15. Differences in associations between markers of antioxidative defense and asthma are sex specific

    DEFF Research Database (Denmark)

    Malling, Tine Halsen; Sigsgaard, Torben; Andersen, Helle R

    2010-01-01

    on a screening questionnaire, random sampling, or both. Serum selenium concentrations and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase [GPX], glutathione reductase [GR], and glucose-6-phosphate dehydrogenase [G6PD]) in erythrocytes were measured. Asthma was defined as either...

  16. Brain-specific interaction of a 91-kDa membrane-bound protein with the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1996-01-01

    The cytoplasmic tail of the 300 kDa mannose 6-phosphate receptor (MPR 300-CT) is thought to play an important role in sorting and targeting of lysosomal enzymes and the insulin-like growth factor II along the biosynthetic and endocytic pathway. In this study a brain specific 91 kDa protein and a 35...... kDa protein salt-washed from membranes (referred as TIP 91-M and TIP 35-M) were found to interact with the cytoplasmic receptor tail as assayed by cross-linkage with recombinant [32P] labeled MPR 300-CT. Subcellular fractionation revealed a distinct pattern of distribution of TIP 35-M and TIP 91-M...

  17. Modelling studies determing the mode of action of anthelmintics inhibiting in vitro trehalose-6-phosphate phosphatase (TPP) of Anisakis simplex s.l.

    Science.gov (United States)

    Łopieńska-Biernat, Elżbieta; Molcan, Tomasz; Paukszto, Łukasz; Jastrzębski, Jan Paweł; Myszczyński, Kamil

    2018-01-01

    The trehalose-6-phosphate phosphatase (TPP) enzyme is involved in the synthesis of trehalose, the main sugar in the energy metabolism of nematodes. TPP is a member of the HAD-like hydrolase superfamily and shows a robust and specific phosphatase activity for the substrate trehalose-6-phosphate. The presence of conserved active sites of TPP in closely related nematodes and its absence in humans makes it a promising target for antiparasitic drugs. In the present study, homology modeling, molecular docking and MD simulation techniques were used to explore the structure and dynamics of TPP. In the active site, a magnesium ion is stabilized by 3 coordinate bonds formed by D 189 , D 191 and D 400 . The key amino acids involved in ligand binding by the enzyme are C 198 , Y 201 ,T 357 , D 191 and Y 197 . This study relied on docking to select potential inhibitors of TPP which were tested in vitro for sensitivity to anthelmintic drugs such as levamisole and ivermectin targeting Anisakis simplex. The higher toxicity of LEV than IVM was demonstrated after 96 h, 30% of larvae were motile in cultures with 100 μg/ml of LEV and 1000 μg/ml of IVM. We identified drug combination of LEV-IVM against in vitro A. simplex as agonistic effect (CI = 1.1). Levamisole appeared to be a more effective drug which inhibited enzyme activity after 48 h and expression of mRNA after 96 h at a concentration of 10 μg/ml. This preliminary study predicted the structure of TPP, and the results of an in vitro experiment involving A. simplex will contribute to the development of effective inhibitors with potential antiparasitic activity in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Competitive inhibitors of type B ribose 5-phosphate isomerases: design, synthesis and kinetic evaluation of new D-allose and D-allulose 6-phosphate derivatives.

    Science.gov (United States)

    Mariano, Sandrine; Roos, Annette K; Mowbray, Sherry L; Salmon, Laurent

    2009-05-12

    This study reports syntheses of d-allose 6-phosphate (All6P), D-allulose (or D-psicose) 6-phosphate (Allu6P), and seven D-ribose 5-phosphate isomerase (Rpi) inhibitors. The inhibitors were designed as analogues of the 6-carbon high-energy intermediate postulated for the All6P to Allu6P isomerization reaction (Allpi activity) catalyzed by type B Rpi from Escherichiacoli (EcRpiB). 5-Phospho-D-ribonate, easily obtained through oxidative cleavage of either All6P or Allu6P, led to the original synthon 5-dihydrogenophospho-D-ribono-1,4-lactone from which the other inhibitors could be synthesized through nucleophilic addition in one step. Kinetic evaluation on Allpi activity of EcRpiB shows that two of these compounds, 5-phospho-D-ribonohydroxamic acid and N-(5-phospho-D-ribonoyl)-methylamine, indeed behave as new efficient inhibitors of EcRpiB; further, 5-phospho-D-ribonohydroxamic acid was demonstrated to have competitive inhibition. Kinetic evaluation on Rpi activity of both EcRpiB and RpiB from Mycobacterium tuberculosis (MtRpiB) shows that several of the designed 6-carbon high-energy intermediate analogues are new competitive inhibitors of both RpiBs. One of them, 5-phospho-D-ribonate, not only appears as the strongest competitive inhibitor of a Rpi ever reported in the literature, with a K(i) value of 9 microM for MtRpiB, but also displays specific inhibition of MtRpiB versus EcRpiB.

  19. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae).

    Science.gov (United States)

    Xiong, Ke-Cai; Wang, Jia; Li, Jia-Hao; Deng, Yu-Qing; Pu, Po; Fan, Huan; Liu, Ying-Hong

    2016-01-01

    Trehalose is the major blood sugar in insects, which plays a crucial role as an instant source of energy and the starting substrate for chitin biosynthesis. In insects, trehalose is synthesized by catalysis of an important enzyme, trehalose-6-phosphate synthase (TPS). In the present study, a trehalose-6-phosphate synthase gene from Bactrocera minax (BmTPS) was cloned and characterized. BmTPS contained an open reading frame of 2445 nucleotides encoding a protein of 814 amino acids with a predicted molecular weight of 92.05kDa. BmTPS was detectable in all developmental stages of Bactrocera minax and expressed higher in the final- (third-) instar larvae. Tissue-specific expression patterns of BmTPS showed that it was mainly expressed in the fat body. The 20-hydroxyecdysone (20E) induced the expression of BmTPS and three genes in the chitin biosynthesis pathway. Moreover, injection of double-stranded RNA into third-instar larvae successfully silenced the transcription of BmTPS in B. minax, and thereby decreased the activity of TPS and trehalose content. Additionally, silencing of BmTPS inhibited the expression of three key genes in the chitin biosynthesis pathway and exhibited 52% death and abnormal phenotypes. The findings demonstrate that BmTPS is indispensable for larval-pupal metamorphosis. Besides, the establishment of RNAi experimental system in B. minax would lay a solid foundation for further investigation of molecular biology and physiology of this pest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    Science.gov (United States)

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform.

  1. Extracellular histones induce erythrocyte fragility and anemia.

    Science.gov (United States)

    Kordbacheh, Farzaneh; O'Meara, Connor H; Coupland, Lucy A; Lelliott, Patrick M; Parish, Christopher R

    2017-12-28

    Extracellular histones have been shown to play an important pathogenic role in many diseases, primarily through their cytotoxicity toward nucleated cells and their ability to promote platelet activation with resultant thrombosis and thrombocytopenia. In contrast, little is known about the effect of extracellular histones on erythrocyte function. We demonstrate in this study that histones promote erythrocyte aggregation, sedimentation, and using a novel in vitro shear stress model, we show that histones induce erythrocyte fragility and lysis in a concentration-dependent manner. Furthermore, histones impair erythrocyte deformability based on reduced passage of erythrocytes through an artificial spleen. These in vitro results were mirrored in vivo with the injection of histones inducing anemia within minutes of administration, with a concomitant increase in splenic hemoglobin content. Thrombocytopenia and leukopenia were also observed. These findings suggest that histones binding to erythrocytes may contribute to the elevated erythrocyte sedimentation rates observed in inflammatory conditions. Furthermore, histone-induced increases in red blood cell lysis and splenic clearance may be a significant factor in the unexplained anemias seen in critically ill patients. © 2017 by The American Society of Hematology.

  2. Erythrocytes induce proinflammatory endothelial activation in hypoxia.

    Science.gov (United States)

    Huertas, Alice; Das, Shonit R; Emin, Memet; Sun, Li; Rifkind, Joseph M; Bhattacharya, Jahar; Bhattacharya, Sunita

    2013-01-01

    Although exposure to ambient hypoxia is known to cause proinflammatory vascular responses, the mechanisms initiating these responses are not understood. We tested the hypothesis that in systemic hypoxia, erythrocyte-derived H(2)O(2) induces proinflammatory gene transcription in vascular endothelium. We exposed mice or isolated, perfused murine lungs to 4 hours of hypoxia (8% O(2)). Leukocyte counts increased in the bronchoalveolar lavage. The expression of leukocyte adhesion receptors, reactive oxygen species, and protein tyrosine phosphorylation increased in freshly recovered lung endothelial cells (FLECs). These effects were inhibited by extracellular catalase and by the removal of erythrocytes, indicating that the responses were attributable to erythrocyte-derived H(2)O(2). Concomitant nuclear translocation of the p65 subunit of NF-κB and hypoxia-inducible factor-1α stabilization in FLECs occurred only in the presence of erythrocytes. Hemoglobin binding to the erythrocyte membrane protein, band 3, induced the release of H(2)O(2) from erythrocytes and the p65 translocation in FLECs. These data indicate for the first time, to our knowledge, that erythrocytes are responsible for endothelial transcriptional responses in hypoxia.

  3. Induction of transient radioresistance in human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, 90-237 Lodz (Poland)]. E-mail: krokosz@biol.uni.lodz.pl; Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, 90-237 Lodz (Poland)

    2006-09-15

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%), were irradiated with {gamma}-rays with single and split doses under air or N{sub 2}O in order to determine the physicochemical changes caused by the dose inducing an increase in resistance to radiation-induced hemolysis. The obtained results showed that under the applied irradiation conditions, the dose of 0.4 kGy induced changes in erythrocytes, which were responsible for temporary resistance of erythrocytes to hemolysis. We concluded that the observed resistance is caused mainly by the structural changes in proteins.

  4. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  5. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose.

    Science.gov (United States)

    Zhu, Zhiguang; Zhang, Y-H Percival

    2017-01-01

    The direct generation of electricity from the most abundant renewable sugar, glucose, is an appealing alternative to the production of liquid biofuels and biohydrogen. However, enzyme-catalyzed bioelectricity generation from glucose suffers from low yields due to the incomplete oxidation of the six-carbon compound glucose via one or few enzymes. Here, we demonstrate a synthetic ATP- and CoA-free 12-enzyme pathway to implement the complete oxidation of glucose in vitro. This pathway is comprised of glucose phosphorylation via polyphosphate glucokinase, NADH generation catalyzed by glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), electron transfer from NADH to the anode, and glucose 6-phosphate regeneration via the non-oxidative pentose phosphate pathway and gluconeogenesis. The faraday efficiency from glucose to electrons via this pathway was as high as 98.8%, suggesting the generation of nearly 24 electrons per molecule of glucose. The generated current density was greatly increased from 2.8 to 6.9mAcm -2 by replacing a low-activity G6PDH with a high-activity G6PDH and introducing a new enzyme, 6-phosphogluconolactonase, between G6PDH and 6PGDH. These results suggest the great potential of high-yield bioelectricity generation through in vitro metabolic engineering. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. The modified proteins in erythrocytes and regulation of erythrocytes volume in patients with chronic kidney disease.

    Science.gov (United States)

    Muravlyova, L E; Molotov-Luchanskiy, V B; Bakirova, R Y; Kolesnikova, Y A; Nurgaliyeva, A S; Klyuyev, D A

    2015-11-01

    The role of oxidatively modified proteins in progression of chronic kidney disease has been discussed. We have got the results demonstrating the alteration of band 3 protein activity in erythrocytes of patients with chronic kidney disease. We presumed that it might be associated with oxidative damage of intracellular proteins. The purpose of the research was to study the modified proteins (protein reactive carbonyl derivatives, membrane-bounded hemoglobin) in erythrocytes, as well as the regulation of erythrocyte volume in patients with chronic kidney disease. 132 patients with various stages of chronic kidney disease and degree of chronic renal failure were divided into four groups. We enrolled 32 healthy subjects. In erythrocytes modified proteins (protein reactive carbonyl derivatives, membrane-bounded hemoglobin) concentrations and activity of Cl-/HCО3--exchanger have been estimated. the results demonstrated the strong disorder of Cl-/HCО3--exchanger activity in erythrocytes of patients. These data suggested the existence of erythrocytes subpopulations with different activity of Cl-/HCО3--exchangers in bloodstream of patients with chronic kidney disease depending on initial clinical form of the disease. In erythrocytes of all patients, the membrane-bounded hemoglobin concentration and reactive carbonyl derivatives of proteins were significantly higher than in control samples. We have assumed that in erythrocytes oxidized hemoglobin interacts with band 3 protein present on erythrocyte membrane. The membrane-bounded hemoglobin increase leads to increased stiffness of the erythrocyte membranes and affects the volume of erythrocytes. We hypothesized that erythrocytes with changed ability to regulate their volume and high concentration of modified proteins contributed to chronic kidney disease progression.

  7. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  8. Adenosine deaminase activity of erythrocytes in hyperuricemia

    International Nuclear Information System (INIS)

    Krueger, W.; Richter, V.; Beenken, O.; Weinhold, D.; Hirschberg, K.; Rotzsch, W.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1982-01-01

    Erythrocytic adenosine deaminase (ADA) activity was determined in 55 patients with primary hyperuricemia and in 37 healthy control persons. Unlike the controls, the ADA activity in the patient group showed a two-peak response. Hyperuricemia patients with high ADA activity also exhibited increased uric acid excretion and elevated 15 N incorporation into uric acid. High activity values of erythrocytic ADA can be interpreted as an uric acid overproduction, giving hints for a therapeutic plan. (author)

  9. Stimulation of Erythrocyte Death by Phloretin

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2014-12-01

    Full Text Available Background: Phloretin, a natural component of apples, pears and strawberries, has previously been shown to stimulate apoptosis of nucleated cells. Erythrocytes may similarly enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i, ceramide, ATP depletion, and activation of protein kinase C (PKC as well as p38 mitogen activated protein kinase (p38 kinase. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from binding of specific antibodies. Results: A 48 h exposure of human erythrocytes to phloretin significantly increased the percentage of annexin-V-binding cells (≥100 µM without significantly influencing forward scatter. Phloretin did not significantly modify [Ca2+]i and the stimulation of annexin-V-binding by phloretin (300 µM did not require presence of extracellular Ca2+. Phloretin did not significantly modify erythrocyte ATP levels, and the effect of phloretin on annexin-V-binding was not significantly altered by PKC inhibitor staurosporine (1 µM or p38 kinase inhibitor SB2203580 (2 µM. However, phloretin significantly increased the ceramide abundance at the cell surface. Conclusions: Phloretin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to up-regulation of ceramide abundance.

  10. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2017-04-01

    Residual lactose and galactose in fermented dairy foods leads to several industrial and health concerns. There is very little information pertaining to manufacture of fermented dairy foods that are low in lactose and galactose. In the present study, comparative genomic survey demonstrated the constant presence of chromosome-encoded tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group. Lactose/galactose utilization tests and β-galactosidase assay suggest that PTS Gal system, PTS Lac system and T6P pathway are major contributors for lactose/galactose catabolism in this group of organisms. In addition, it was found than lactose catabolism by Lb. casei group accumulated very limited galactose in the MRS-lactose medium and in reconstituted skim milk, whereas Streptococcus thermophilus and Lb. delbrueckii subsp. bulgaricus (Lb. bulgaricus) strains secreted high amount of galactose extracellularly. Moreover, co-culturing Lb. casei group with Str. thermophilus showed significant reduction in galactose content, while co-culturing Lb. casei group with Lb. bulgaricus showed significant reduction in lactose content but significant increase in galactose content in milk. Overall, the present study highlighted the potential of Lb. casei group for reducing galactose accumulation in fermented milks due to its species-specific T6P pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mannose-6-Phosphate Reductase, a Key Enzyme in Photoassimilate Partitioning, Is Abundant and Located in the Cytosol of Photosynthetically Active Cells of Celery (Apium graveolens L.) Source Leaves.

    Science.gov (United States)

    Everard, J. D.; Franceschi, V. R.; Loescher, W. H.

    1993-06-01

    Mannitol, a major photosynthetic product and transport carbohydrate in many plants, accounts for approximately 50% of the carbon fixed by celery (Apium graveolens L.) leaves. Previous subfractionation studies of celery leaves indicated that the enzymes for mannitol synthesis were located in the cytosol, but these data are inconsistent with that published for the sites of sugar alcohol synthesis in other families and taxa, including apple (Malus) and a brown alga (Fucus). Using antibodies to a key synthetic enzyme, NADPH-dependent mannose-6-phosphate reductase (M6PR), and immunocytochemical techniques, we have resolved both the inter-cellular and intracellular sites of mannitol synthesis. In leaves, M6PR was found only in cells containing ribulose-1,5-bisphosphate carboxylase/oxygenase. M6PR was almost exclusively cytosolic in these cells, with the nucleus being the only organelle to show labeling. The key step in transport carbohydrate biosynthesis that is catalyzed by M6PR displays no apparent preferential association with vascular tissues or with the bundle sheath. These results show that M6PR and, thus, mannitol synthesis are closely associated with the distribution of photosynthetic carbon metabolism in celery leaves. The principal role of M6PR is, therefore, in the assimilation of carbon being exported from the chloroplast, and it seems unlikely that this enzyme plays even an indirect role in phloem loading of mannitol.

  12. Inhibition of Suicidal Erythrocyte Death by Indirubin-3’-Monoxime

    Directory of Open Access Journals (Sweden)

    Chunqiu Liu

    2018-02-01

    Full Text Available Background/Aims: Qing Dai is a prized traditional Chinese medicine whose major component, indirubin, and its derivative, indirubin-3’-monoxime (IDM, have inhibitory effects on the growth of many human tumor cells and pronounced anti-leukemic activities. However, the effects of IDM on mature human erythrocytes are unclear. This study aimed to evaluate the potential impact of IDM on erythrocytes and the mechanisms underlying that impact. Methods: Utilizing flow cytometry and confocal laser scanning microscopy, phosphatidylserine exposure at the cell surface was estimated by annexin V-fluorescein isothiocyanate (FITC. The relative cell size, expressed in arbitrary units, was evaluated by forward scatter in a flow cytometer. Fluo-3 fluorescence was used to bewrite changes in cytosolic Ca2+ activity, reactive oxygen species (ROS formation was assessed by 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA fluorescence, and ceramide abundance was evaluated by FITC-conjugated specific antibodies. Results: The 24-h exposure of human erythrocytes to IDM (12 µM significantly decreased the percentage of annexin V-binding erythrocytes and the intracellular calcium concentration ([Ca2+]i. IDM (3-12 µM did not significantly modify the ceramide level or DCFH-DA fluorescence. Energy depletion (removal of glucose for 24 hours significantly increased annexin V binding and Fluo-3 fluorescence and diminished forward scatter, and these effects were significantly mitigated by IDM (12 µM. Moreover, the Ca2+ ionophore ionomycin (1 µM, 60 min and oxidative stress (30 min exposure to 0.05 mM tert-butyl hydroperoxide, t-BHP similarly triggered eryptosis, which was also significantly suppressed by IDM. Conclusions: IDM is a novel inhibitor of suicidal erythrocyte death following ionomycin treatment, t-BHP treatment and energy depletion. Thus, IDM may counteract anemia and impairment of microcirculation, at least in part, by inhibition of Ca2+ entry into erythrocytes.

  13. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state

    International Nuclear Information System (INIS)

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1989-01-01

    The relative contributions of the direct and the indirect pathways to hepatic glycogen formation following a glucose load given to humans four hours after a substantial breakfast have been examined. Glucose loads labeled with [6-( 14 )C]glucose were given to six healthy volunteers along with diflunisal (1 g) or acetaminophen (1.5 g), drugs excreted in urine as glucuronides. Distribution of 14 C in the glucose unit of the glucuronide was taken as a measure of the extent to which glucose was deposited directly in liver glycogen (ie, glucose----glucose-6-phosphate----glycogen) rather than indirectly (ie, glucose----C3-compound----glucose-6-phosphate----glycogen). The maximum contribution to glycogen formation by the direct pathway was estimated to be 77% +/- 4%, which is somewhat higher than previous estimates in humans fasted overnight (65% +/- 1%, P less than 0.05). Thus, the indirect pathway of liver glycogen formation following a glucose load is operative in both the overnight fasted and the fed state, although its contribution may be somewhat less in the fed state

  14. Allosensibilisation to erythrocyte antigens (literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2015-01-01

    Full Text Available In this article literature review of the causes of allosensibilisation to erythrocyte antigens are presented. It is shown that the ability to produce antierythrocyte antibodies is affected by many factors, principal of whom it is difficult to identify. For the allosensibilisation development requires genetically determined differences in erythrocyte antigens phenotypes of donor and recipient, mother and fetus, which can lead to immune response and antibodies production. The biochemical nature of erythrocyte antigens, antigen dose (the amount of transfused doses, the number of antigens determinants on donor and fetus erythrocytes, the number of pregnancies are important. Individual patient characteristics: age, gender, diseases, the use of immunosuppressive therapy and the presence of inflammatory processes, are also relevant. Note that antibody to one erythrocyte antigens have clinical value, and to the other – have no. The actual data about frequency of clinically significant antibodies contribute to the development of post-transfusion hemolytic complications prophylaxis as well as the improvement of laboratory diagnosis of hemolytic disease of the newborn in the presence of maternal antierythrocyte antibodies.

  15. Stimulation of suicidal erythrocyte death by amantadine.

    Science.gov (United States)

    Föll