WorldWideScience

Sample records for erwinia carotovora elicitors

  1. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bentancor Marcel

    2007-10-01

    Full Text Available Abstract Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora and Botrytis cinerea (B. cinerea, could infect Physcomitrella, and ii whether B. cinerea, elicitors of a harpin (HrpN producing E.c. carotovora strain (SCC1 or a HrpN-negative strain (SCC3193, could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1, resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193 produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1 or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B

  2. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Mattinen, Laura; Tshuikina, Marina; Mäe, Andres; Pirhonen, Minna

    2004-12-01

    Erwinia carotovora subsp. carotovora is a gram-negative bacterium that causes soft rot disease of many cultivated crops. When a collection of E. carotovora subsp. carotovora isolates was analyzed on a Southern blot using the harpin-encoding gene hrpN as probe, several harpinless isolates were found. Regulation of virulence determinants in one of these, strain SCC3193, has been characterized extensively. It is fully virulent on potato and in Arabidopsis thaliana. An RpoS (SigmaS) mutant of SCC3193, producing elevated levels of secreted proteins, was found to cause lesions resembling the hypersensitive response when infiltrated into tobacco leaf tissue. This phenotype was evident only when bacterial cells had been cultivated on solid minimal medium at low pH and temperature. The protein causing'the cell death was purified and sequenced, and the corresponding gene was cloned. The deduced sequence of the necrosis-inducing protein (Nip) showed homology to necrosis- and ethylene-inducing elicitors of fungi and oomycetes. A mutant strain of E. carotovora subsp. carotovora lacking the nip gene showed reduced virulence in potato tuber assay but was unaffected in virulence in potato stem or on other tested host plants.

  3. Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi.

    Science.gov (United States)

    Avrova, Anna O; Hyman, Lizbeth J; Toth, Rachel L; Toth, Ian K

    2002-04-01

    The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (clusters 1 to 4) resulted. Cluster 1 contained Erwinia carotovora subsp. carotovora (subclusters 1a and 1b) and Erwinia carotovora subsp. odorifera (subcluster 1c) strains, while cluster 2 contained Erwinia carotovora subsp. atroseptica (subcluster 2a) and Erwinia carotovora subsp. betavasculorum (subcluster 2b) strains. Clusters 3 and 4 contained Erwinia carotovora subsp. wasabiae and E. chrysanthemi strains, respectively. While E. carotovora subsp. carotovora and E. chrysanthemi showed a high level of molecular diversity (23 to 38% mean similarity), E. carotovora subsp. odorifera, E. carotovora subsp. betavasculorum, E. carotovora subsp. atroseptica, and E. carotovora subsp. wasabiae showed considerably less (56 to 76% mean similarity), which may reflect their limited geographical distributions and/or host ranges. The species- and subspecies-specific banding profiles generated from the AFLPs allowed rapid identification of unknown isolates and the potential for future development of diagnostics. AFLP fingerprinting was also found to be more differentiating than other techniques for typing the soft rot erwinias and was applicable to all strain types, including different serogroups.

  4. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora

    OpenAIRE

    Sjöblom, Solveig

    2009-01-01

    Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc ...

  5. PENGARUH SUMBER MINERAL TERHADAP PENEKANAN Erwinia carotovora OLEH PSEUDOMONAS PENDAR-FLUOR SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Hardian Susilo Addy .

    2012-02-01

    Full Text Available Antimicrobial Stimulation of Fluorescent Pseudomonad to Inhibit Soft-rot Pathogen Caused by Erwinia carotovora subsp. Carotovora. This research was conducted to study effect of mineral sources on inhibition Erwinia carotovora by fluorescent pseudomonad. We used several mineral sources to stimulate antimicrobial substances from fluorescent pseudomonad that responsible to inhibit E. carotovora subsp. carotovora in vitro. The results showed that zinc 0,5 mM were the best to increase antagonistics of fluorescent psudomonad againts E. carotovora. Zinc were increased antimicrobial substances twohold compared with control without stimulant agent. Detection of antimicrobial substance using TLC showed that only one antimicrobial was detected with retention factor (Rf of 0,68 – 0,72. However, identification and characterization of that substance is still needed.

  6. Novas ocorrências de Erwinia carotovora subsp. carotovora e de E. chrysanthemi

    Directory of Open Access Journals (Sweden)

    Irene M. G. Almeida

    1997-05-01

    Full Text Available Em continuidade a trabalhos de caracterização de bactérias pectinolíticas do gênero Eruia ocorrendo no Brasil, são relacionadas novas ocorrências dessas fitobactérias em plantios comerciais, que ocasionam podridão mole em cinco espécies de plantas ornamentais. Testes bioquímicas, fisiológicos, culturais e de patogenicidade permitiram comprovar a ocorrência de Erwinia carotovora subsp. carotovora em plantas de afelandra, amarílis e copo-de-leite, e de Erwiniachr santhemiemcordilineekalanchoe.

  7. Two Genomic Regions Involved in Catechol Siderophore Production by Erwinia carotovora

    Science.gov (United States)

    Bull, Carolee T.; Ishimaru, Carol A.; Loper, Joyce E.

    1994-01-01

    Two regions involved in catechol biosynthesis (cbs) of Erwinia carotovora W3C105 were cloned by functional complementation of Escherichia coli mutants that were deficient in the biosynthesis of the catechol siderophore enterobactin (ent). A 4.3-kb region of genomic DNA of E. carotovora complemented the entB402 mutation of E. coli. A second genomic region of 12.8 kb complemented entD, entC147, entE405, and entA403 mutations of E. coli. Although functions encoded by catechol biosynthesis genes (cbsA, cbsB, cbsC, cbsD, and cbsE) of E. carotovora were interchangeable with those encoded by corresponding enterobactin biosynthesis genes (entA, entB, entC, entD, and entE), only cbsE hybridized to its functional counterpart (entE) in E. coli. The cbsEA region of E. carotovora W3C105 hybridized to genomic DNA of 21 diverse strains of E. carotovora but did not hybridize to that of a chrysobactin-producing strain of Erwinia chrysanthemi. Strains of E. carotovora fell into nine groups on the basis of sizes of restriction fragments that hybridized to the cbsEA region, indicating that catechol biosynthesis genes were highly polymorphic among strains of E. carotovora. PMID:16349193

  8. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc).

    Science.gov (United States)

    Andersson, R A; Eriksson, A R; Heikinheimo, R; Mäe, A; Pirhonen, M; Kõiv, V; Hyytiäinen, H; Tuikkala, A; Palva, E T

    2000-04-01

    The production of the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the extracellular cell wall-degrading enzymes, is partly controlled by the diffusible signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). OHHL is synthesized by the product of the expI/carI gene. Linked to expI we found a gene encoding a putative transcriptional regulator of the LuxR-family. This gene, expR(Ecc), is transcribed convergently to the expI gene and the two open reading frames are partially overlapping. The ExpR(Ecc) protein showed extensive amino acid sequence similarity to the repressor EsaR from Pantoea stewartii subsp. stewartii (formerly Erwinia stewartii subsp. stewartii) and to the ExpR(Ech) protein of Erwinia chrysanthemi. Inactivation of the E. carotovora subsp. carotovora expR(Ecc) gene caused no decrease in virulence or production of virulence determinants in vitro. In contrast, there was a slight increase in the maceration capacity of the mutant strain. The effects of ExpR(Ecc) were probably mediated by changes in OHHL levels. Inactivation of expR(Ecc) resulted in increased OHHL levels during early logarithmic growth. In addition, overexpression of expR(Ecc) caused a clear decrease in the production of virulence determinants and part of this effect was likely to be caused by OHHL binding to ExpR(Ecc). ExpR(Ecc) did not appear to exhibit transcriptional regulation of expI, but the effect on OHHL was apparently due to other mechanisms.

  9. Erwinia carotovora extracellular proteases : characterization and role in soft rot

    OpenAIRE

    Kyöstiö, Sirkka R. M.

    1990-01-01

    Erwinia carotovora subsp. carotovora (Ecc) strain EC14, a Gram-negative bacterium, causes soft rot on several crops, including potato. Maceration of potato tuber tissue is caused by secreted pectolytic enzymes. Other cell-degrading enzymes may also have roles in pathogenesis, including cellulases, phospholipases, and protease(s). The objectives of this research were to (1) characterize Ecc extracellular protease (Prt) and (2) elucidate its role in potato soft rot. A gene enc...

  10. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.).

    Science.gov (United States)

    Smadja, Bruno; Latour, Xavier; Trigui, Sameh; Burini, Jean François; Chevalier, Sylvie; Orange, Nicole

    2004-01-01

    Erwinia carotovora subsp. atroseptica and Erwinia carotovora subsp. carotovora can cause substantial damage to economically important plant crops and stored products. The occurrence of the disease and the scale of the damage are temperature dependent. Disease development consists first of active multiplication of the bacteria in the infection area and then production of numerous extracellular enzymes. We investigated the effects of various temperatures on these two steps. We assayed the specific growth rate and the pectate lyase and protease activities for eight strains belonging to E. carotovora subsp. atroseptica and E. carotovora subsp. carotovora in vitro. The temperature effect on growth rate and on pectate lyase activity is different for the two subspecies, but protease activity appears to be similarly thermoregulated. Our results are in agreement with ecological data implicating E. carotovora subsp. atroseptica in disease when the temperature is below 20 degrees C. The optimal temperature for pathogenicity appears to be different from the optimal growth temperature but seems to be a compromise between this temperature and temperatures at which lytic activities are maximal.

  11. Podridão em cravo causada por Erwinia carotovora subsp. carotovora no Brasil.

    Directory of Open Access Journals (Sweden)

    Irene M. G. Almeida

    2000-05-01

    Full Text Available De fevereiro a abril de 1999, coletaram-se estacas e mudas de cravo (Dianthus caryophyllus em propriedades dos municípios paulistas de Atibaia e Santo Antônio de Posse. Esse material apresentava sintomas caracterizados por não-emissão de raízes ou por podridão de raízes, colo e folhas basais, diferindo daqueles da doença denominada "slow wilt" e dos de escurecimento de vasos e necrose na região do colo, haste e folhas, já relatados em cravo. A partir de material com tais sintomas, isolaram-se bactérias, caracterizadas, mediante testes bioquímicos, culturais, fisiológicos e de patogenicidade, como Erwinia carotovora subsp. carotovora. Trata-se do primeiro relato desse patógeno em cravo no Brasil.

  12. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Eriksson, A R; Andersson, R A; Pirhonen, M; Palva, E T

    1998-08-01

    Production of extracellular, plant cell wall degrading enzymes, the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, is coordinately controlled by a complex regulatory network. Insertion mutants in the exp (extracellular enzyme production) loci exhibit pleiotropic defects in virulence and the growth-phase-dependent transcriptional activation of genes encoding extracellular enzymes. Two new exp mutations, designated expA and expS, were characterized. Introduction of the corresponding wild-type alleles to the mutants complemented both the lack of virulence and the impaired production of plant cell wall degrading enzymes. The expA gene was shown to encode a 24-kDa polypeptide that is structurally and functionally related to the uvrY gene product of Escherichia coli and the GacA response regulator of Pseudomonas fluorescens. Functional similarity of expA and uvrY was demonstrated by genetic complementation. The expA gene is organized in an operon together with a uvrC-like gene, identical to the organization of uvrY and uvrC in E. coli. The unlinked expS gene encodes a putative sensor kinase that shows 92% identity to the recently described rpfA gene product from another E. carotovora subsp. carotovora strain. Our data suggest that ExpS and ExpA are members of two-component sensor kinase and response regulator families, respectively. These two proteins might interact in controlling virulence gene expression in E. carotovora subsp. carotovora.

  13. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    OpenAIRE

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled tra...

  14. Molecular cloning and characterization of an Erwinia carotovora subsp. carotovora pectin lyase gene that responds to DNA-damaging agents.

    OpenAIRE

    McEvoy, J L; Murata, H; Chatterjee, A K

    1990-01-01

    recA-mediated production of pectin lyase (PNL) and the bacteriocin carotovoricin occurs in Erwinia carotovora subsp. carotovora 71 when this organism is subjected to agents that damage or inhibit the synthesis of DNA. The structural gene pnlA was isolated from a strain 71 cosmid gene library following mobilization of the cosmids into a moderate PNL producer, strain 193. The cosmid complemented pnl::Tn5 but not ctv::Tn5 mutations. A constitutive level of PNL activity was detected in RecA+ and ...

  15. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    OpenAIRE

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-01-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that en...

  16. Application of Amplified Fragment Length Polymorphism Fingerprinting for Taxonomy and Identification of the Soft Rot Bacteria Erwinia carotovora and Erwinia chrysanthemi

    OpenAIRE

    Avrova, Anna O.; Hyman, Lizbeth J.; Toth, Rachel L.; Toth, Ian K.

    2002-01-01

    The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (c...

  17. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    Science.gov (United States)

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum. PMID:2543291

  18. Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M

    1999-12-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.

  19. Is Erwinia te beheersen? Een literatuurstudie over rotproblemen in diverse gewassen om met deze kennis Erwinia in bolgewassen beter te kunnen aanpakken

    NARCIS (Netherlands)

    Doorn, van J.; Wolf, J.

    2005-01-01

    Het meeste onderzoek aan Erwinia-bacteriën is uitgevoerd bij aardappel. In dit gewas worden drie ziekteverwekkende Erwinia-soorten gevonden: Erwinia carotovora subsp. atroseptica (Eca), Erwinia chrysanthemi (Echr) en Erwinia carotovora subsp. carotovora (Ecc). Eca speelt in gematigde

  20. Derivation of Mutants of Erwinia carotovora subsp. betavasculorum Deficient in Export of Pectolytic Enzymes with Potential for Biological Control of Potato Soft Rot

    Science.gov (United States)

    Costa, José M.; Loper, Joyce E.

    1994-01-01

    Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316

  1. [The influence of colonizing methylobacteria on morphogenesis and resistance of sugar beet and white cabbage plants to Erwinia carotovora].

    Science.gov (United States)

    Pigoleva, S V; Zakharchenko, N S; Pigolev, A V; Trotsenko, Iu A; Bur'ianov, Ia I

    2009-01-01

    The influence of colonization of sugar beet (Beta vulgaris var. saccharifera (Alef) Krass) and white cabbage (Brassica oleracea var. capitata L.) plants by methylotrophic bacteria Methylovorus mays on the growth, rooting, and plant resistance to phytopathogen bacteria Erwinia carotovora was investigated. The colonization by methylobacteria led to their steady association with the plants which had increased growth speed, root formation and photosynthetic activity. The colonized plants had increased resistance to Erwinia carotovora phytopathogen and were better adapted to greenhouse conditions. The obtained results showed the perspectives for the practical implementation of methylobacteria in the ecologically clean microbiology substances used as the plant growth stimulators and for the plant protection from pathogens.

  2. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis.

    Science.gov (United States)

    Laasik, Eve; Ojarand, Merli; Pajunen, Maria; Savilahti, Harri; Mäe, Andres

    2005-02-01

    As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.

  3. Cloning and study of the pectate lyase gene of Erwinia carotovora

    International Nuclear Information System (INIS)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.; Syarinskii, M.A.; Strel'chenko, P.P.; Yankovski, N.K.; Alikhanyan, S.I.; Fomichev, Yu.K.; Debabov, V.G.

    1986-01-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector λ 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representative gene libraries on phage vectors from no less than 1 μg of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, λ 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it

  4. Erwinia carotovora contamination of Finnish seed potatoes and the prevalence of bacterial subspecies and serogroups

    Directory of Open Access Journals (Sweden)

    Pirkko Harju

    1993-07-01

    Full Text Available Symptomless contamination with the rot-inducing bacterium Erwinia carotovora was detectable by the tuber incubation method in 82% of the commercial seed potato stocks surveyed. E. carotovora subsp. atroseptica (Eca was more common than E. carotovora subsp. carotovora (Ecc among the tuber contaminants. In a four-year survey of ten meristem-based seed stocks, recontamination with both Eca and Ecc occurred typically during the second field generation, but three stocks remained free of detectable contamination throughout the survey period. The first blackleg symptoms occurred typically during the third field generation. The serogroup distribution of Finnish Eca isolates was different from that reported from other countries. The predominant serogroup, I, constituted only 74% of all Eca isolates, since serogroups XXXV and XLI occurred relatively frequently. Serogroup I was more common among isolates from diseased stems than among those from latently contaminated tubers. The results also suggest that serogroup I is more dominant in the southern than in the northern parts of the country.

  5. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato.

    Science.gov (United States)

    Montesano, M; Kõiv, V; Mäe, A; Palva, E T

    2001-11-01

    summary Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in the isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly equivalent (91-99%), most likely constituting a family of related receptors. All PRKs and four other plant RLKs share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting that they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF), both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.

  6. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Norman, C; Vidal, S; Palva, E T

    1999-07-01

    Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.

  7. Regulatory Network Controlling Extracellular Proteins in Erwinia carotovora subsp. carotovora: FlhDC, the Master Regulator of Flagellar Genes, Activates rsmB Regulatory RNA Production by Affecting gacA and hexA (lrhA) Expression▿

    OpenAIRE

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K.

    2008-01-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA produc...

  8. The effect of disinfectants on Clavibacter michiganensis subsp. sepedonicus and Erwinia carotovora subsp. atroseptica on different surface materials

    Directory of Open Access Journals (Sweden)

    Hilkka Koponen

    1992-12-01

    Full Text Available The effect of seven disinfectants on Clavibacter michiganensis subsp. sepedonicus and Erwinia carotovora subsp. atroseptica was tested on metal, plastic and wood surfaces in laboratory trials. lobac P was the most effective disinfectant in the control of E. carotovora on clean and dirty surfaces. Ipasept and Menno-Ter-forte were effective on plastic surfaces, but dirt reduced their efficacy. The least effective preparations were Deskem-1, Virkon S and Korsolin. lobac P, Korsolin and Virkon S were the most effective disinfectants against C. michiganensis. The efficacy of Ipasept and Menno-Ter-forte was reduced by dirt. The least effective preparation was Deskem-1.

  9. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.

    OpenAIRE

    Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T

    1993-01-01

    Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and function...

  10. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    Science.gov (United States)

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  11. Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Hyytiäinen, H; Montesano, M; Palva, E T

    2001-08-01

    The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.

  12. Partitioning of the variance in the growth parameters of Erwinia carotovora on vegetable products.

    Science.gov (United States)

    Shorten, P R; Membré, J-M; Pleasants, A B; Kubaczka, M; Soboleva, T K

    2004-06-01

    The objective of this paper was to estimate and partition the variability in the microbial growth model parameters describing the growth of Erwinia carotovora on pasteurised and non-pasteurised vegetable juice from laboratory experiments performed under different temperature-varying conditions. We partitioned the model parameter variance and covariance components into effects due to temperature profile and replicate using a maximum likelihood technique. Temperature profile and replicate were treated as random effects and the food substrate was treated as a fixed effect. The replicate variance component was small indicating a high level of control in this experiment. Our analysis of the combined E. carotovora growth data sets used the Baranyi primary microbial growth model along with the Ratkowsky secondary growth model. The variability in the microbial growth parameters estimated from these microbial growth experiments is essential for predicting the mean and variance through time of the E. carotovora population size in a product supply chain and is the basis for microbiological risk assessment and food product shelf-life estimation. The variance partitioning made here also assists in the management of optimal product distribution networks by identifying elements of the supply chain contributing most to product variability. Copyright 2003 Elsevier B.V.

  13. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora

    DEFF Research Database (Denmark)

    Manefield, M.; Welch, M.; Givskov, Michael Christian

    2001-01-01

    The plant pathogen Erwinia carotovora regulates expression of virulence factors and antibiotic production via an N-3- oxohexanoyl-L-homoserine lactone (3-oxo-C6-HSL) dependent quorum sensing mechanism. The marine alga Delisea pulchra produces halogenated furanones known to antagonise 3-oxo-C6-HSL...

  14. Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression.

    Science.gov (United States)

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K

    2008-07-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA

  15. Regulatory Network Controlling Extracellular Proteins in Erwinia carotovora subsp. carotovora: FlhDC, the Master Regulator of Flagellar Genes, Activates rsmB Regulatory RNA Production by Affecting gacA and hexA (lrhA) Expression▿

    Science.gov (United States)

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K.

    2008-01-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC− mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (HarpinEcc) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC+ plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC− mutant are responsible for the inhibition of rsmB RNA production

  16. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    Science.gov (United States)

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-07-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration.

  17. The response regulator expM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (sigma s).

    Science.gov (United States)

    Andersson, R A; Palva, E T; Pirhonen, M

    1999-07-01

    The main virulence factors of Erwinia carotovora subsp. carotovora, the secreted, extracellular cell-wall-degrading enzymes, are controlled by several regulatory mechanisms. We have isolated transposon mutants with reduced virulence on tobacco. One of these mutants, with a mutation in a gene designated expM, was characterized in this study. This mutant produces slightly reduced amounts of extracellular enzymes in vitro and the secretion of the enzymes is also affected. The expM wild-type allele was cloned together with an upstream gene, designated expL, that has an unknown function. The expM gene was sequenced and found to encode a protein with similarity to the RssB/SprE protein of Escherichia coli and the MviA protein of Salmonella typhimurium. These proteins belong to a new type of two-component response regulators that negatively regulate the stability of the Sigma factor RpoS (sigma s) at the protein level. The results of this study suggest that ExpM has a similar function in E. carotovora subsp. carotovora. We also provide evidence that the overproduction of RpoS in the expM mutant is an important factor for the reduced virulence phenotype and that it partly causes the observed phenotype seen in vitro. However, an expM/rpoS double mutant is still affected in secretion of extracellular enzymes, suggesting that ExpM in addition to RpoS also acts on other targets.

  18. Protocollering van toetsen op Erwinia

    NARCIS (Netherlands)

    Dees, R.H.L.; Martin, W.S.; Doorn, van J.

    2009-01-01

    De problemen in de bloembollenteelt zijn de laatste tien jaar sterk toegenomen. Voorheen was de aanwezigheid van Erwinia carotovora subsp. carotovora (Ecc, nu Pectobacterium caotovorum) als witsnot in vooral hyacint bekend, maar gaf vrijwel nooit grote uitval in de teelt. Er zijn momenteel geen

  19. Soft rot erwiniae: from genes to genomes.

    Science.gov (United States)

    Toth, Ian K; Bell, Kenneth S; Holeva, Maria C; Birch, Paul R J

    2003-01-01

    SUMMARY The soft rot erwiniae, Erwinia carotovora ssp. atroseptica (Eca), E. carotovora ssp. carotovora (Ecc) and E. chrysanthemi (Ech) are major bacterial pathogens of potato and other crops world-wide. We currently understand much about how these bacteria attack plants and protect themselves against plant defences. However, the processes underlying the establishment of infection, differences in host range and their ability to survive when not causing disease, largely remain a mystery. This review will focus on our current knowledge of pathogenesis in these organisms and discuss how modern genomic approaches, including complete genome sequencing of Eca and Ech, may open the door to a new understanding of the potential subtlety and complexity of soft rot erwiniae and their interactions with plants. The soft rot erwiniae are members of the Enterobacteriaceae, along with other plant pathogens such as Erwinia amylovora and human pathogens such as Escherichia coli, Salmonella spp. and Yersinia spp. Although the genus name Erwinia is most often used to describe the group, an alternative genus name Pectobacterium was recently proposed for the soft rot species. Ech mainly affects crops and other plants in tropical and subtropical regions and has a wide host range that includes potato and the important model host African violet (Saintpaulia ionantha). Ecc affects crops and other plants in subtropical and temperate regions and has probably the widest host range, which also includes potato. Eca, on the other hand, has a host range limited almost exclusively to potato in temperate regions only. Disease symptoms: Soft rot erwiniae cause general tissue maceration, termed soft rot disease, through the production of plant cell wall degrading enzymes. Environmental factors such as temperature, low oxygen concentration and free water play an essential role in disease development. On potato, and possibly other plants, disease symptoms may differ, e.g. blackleg disease is associated

  20. Nieuwe Erwinia-varianten vragen meer kennis en specifieke toetsen

    NARCIS (Netherlands)

    Wolf, van der J.M.

    2015-01-01

    Lange tijd kenden we in Nederland twee soorten Erwinia bacteriën namelijk Erwinia carotovora subsp. atroseptica en Erwinia chrysanthemi. Deze zijn/waren verantwoordelijk voor de aardappelziekten zwartbenigheid en stengelnatrot. De naamgeving van deze ziekteverwekkende bacteriën is echter op de schop

  1. Role of Antibiosis in Competition of Erwinia Strains in Potato Infection Courts

    Science.gov (United States)

    Axelrood, Paige E.; Rella, Manuela; Schroth, Milton N.

    1988-01-01

    Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant−) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections. PMID:16347633

  2. Resistance to Erwinia spp. in potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Allefs, S.

    1995-01-01

    Blackleg is a disease of potato, Solanum tuberosum , which is caused by the bacteria Erwinia carotovora subsp. carotovora ( Ecc ), E.c. subsp. atroseptica ( Eca ) or

  3. A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Flego, D; Marits, R; Eriksson, A R; Kõiv, V; Karlsson, M B; Heikinheimo, R; Palva, E T

    2000-04-01

    Genes coding for the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the plant cell wall-degrading enzymes, are under the coordinate control of global regulator systems including both positive and negative factors. In addition to this global control, some virulence determinants are subject to specific regulation. We have previously shown that mutations in the pehR locus result in reduced virulence and impaired production of one of these enzymes, an endopolygalacturonase (PehA). In contrast, these pehR strains produce essentially wild-type levels of other extracellular enzymes including pectate lyases and cellulases. In this work, we characterized the pehR locus and showed that the DNA sequence is composed of two genes, designated pehR and pehS, present in an operon. Mutations in either pehR or pehS caused a Peh-negative phenotype and resulted in reduced virulence on tobacco seedlings. Complementation experiments indicated that both genes are required for transcriptional activation of the endopolygalacturonase gene, pehA, as well as restoration of virulence. Structural characterization of the pehR-pehS operon demonstrated that the corresponding polypeptides are highly similar to the two-component transcriptional regulators PhoP-PhoQ of both Escherichia coli and Salmonella typhimurium. Functional similarity of PehR-PehS with PhoP-PhoQ of E. coli and S. typhimurium was demonstrated by genetic complementation.

  4. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki

    1987-02-26

    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  5. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T

    1993-06-01

    Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions.

  6. Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Kõiv, V; Mäe, A

    2001-04-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora (Ecc) causes disease mainly by means of a number of extracellular plant cell wall-degrading enzymes (PCWDEs), also referred to as virulence factors. The production of PCWDEs is coordinately activated by the diffusible signal molecule N-acyl-homoserine lactone (HSL) in a population density-dependent manner ("quorum sensing"). ExpI is the enzyme responsible for the synthesis of HSL. The Rsm system negatively regulates the production of PCWDEs. It includes three components: RsmA is an RNA-binding protein which promotes mRNA decay; rsmB is a unique regulator RNA, and RsmC regulates expression of rsmA positively and of rsmB negatively. We report here that in an expI knockout mutant of Ecc strain SCC3193, the levels of rsmA and rsmB RNA are remarkably enhanced in comparison to the wild-type strain, while the level of the rsmC transcript is not affected. The increase in transcription of rsmA in the expI strain represses production of PCWDEs, which in turn leads to the avirulent phenotype of this mutant. In the expI- mutant, addition of exogenous HSL caused repression of rsmA and rsmB transcription to the wild-type level, whereas the expression of rsmC was not affected. Taken together, these data suggest that HSL affects the expression of rsmA, and that this effect is not mediated by RsmC. This specific effect and the previous demonstration that HSL is required for PCWDE production in Ecc support the hypothesis that regulation by quorum sensing in Ecc, in contrast to most other systems already described, requires HSL to repress rsmA transcription, which in turn leads to the activation of PCWDE production. A model is presented that explains how HSL controls the production of PCWDEs by modulating the expression of rsmA.

  7. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.

    Science.gov (United States)

    Norman-Setterblad, C; Vidal, S; Palva, E T

    2000-04-01

    We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.

  8. A novel plant ferredoxin-like protein and the regulator Hor are quorum-sensing targets in the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Sjöblom, Solveig; Harjunpää, Heidi; Brader, Günter; Palva, E Tapio

    2008-07-01

    Quorum sensing (QS), a population-density-sensing mechanism, controls the production of the main virulence determinants, the plant cell-wall-degrading enzymes (PCWDEs) of the soft-rot phytopathogen Erwinia carotovora subsp. carotovora. In this study, we used random transposon mutagenesis with a gusA reporter construct to identify two new QS-controlled genes encoding the regulator Hor and a plant ferredoxin-like protein, FerE. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and mediated by the global repressor RsmA. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production. Our results showed that FerE contributes to oxidative stress tolerance and in planta fitness of the bacteria and suggest that QS could be central to control of oxidative stress tolerance. The presence of the FerE protein appears to be rather unique in heterotrophic bacteria and suggests an acquisition of the corresponding gene from plant host by horizontal gene transfer.

  9. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    International Nuclear Information System (INIS)

    Wikman, Linnea E. K.; Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N.; Papageorgiou, Anastassios C.

    2005-01-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2 1 , with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml −1 purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2 1 space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment

  10. Erwinia chrysanthemi: pectolytic bacterium causing soft rot outbreaks of arracacha in Brazil Erwinia chrysanthemi: bactéria pectolítica envolvida na "mela" da mandioquinha-salsa no Brasil

    Directory of Open Access Journals (Sweden)

    Gilmar Paulo Henz

    2006-10-01

    Full Text Available The objetive of this work was to identify the pectolytic bacteria associated with soft rot of arracacha roots in Brazil. From 1998 to 2001, 227 isolates of Erwinia spp. were obtained from arracacha roots and identified by biochemical and physiological tests (pectolytic activity, lecithinase, a-methyl glucoside, phosphatase, erythromycin sensivity, growth at 37ºC. Of these isolates, 89.9% were identified as E. chrysanthemi (Ech, 9.7% as E. carotovora subsp. carotovora (Ecc and 0.5% as E. carotovora subsp. atroseptica. The identity of seventeen out of twenty representative isolates of Ech and Ecc was confirmed by PCR (primers '149f', 'L1r', 'ADE1', 'ADE2'.O objetivo deste trabalho foi identificar as bactérias pectolíticas envolvidas na podridão-mole de raízes de mandioquinha-salsa no Brasil. De 1998 a 2001, 227 isolados de Erwinia spp. foram obtidos de raízes de mandioquinha-salsa e identificados por testes bioquímicos e fisiológicos (atividade pectolítica, lecitinase, a-methyl glucosídeo, fosfatase, sensibilidade à eritromicina, crescimento a 37ºC. Destes isolados, 89,9% foram identificados como E. chrysanthemi (Ech, 9,7% como E. carotovora subsp. carotovora (Ecc e somente 0,5% como E. carotovora subsp. atroseptica. A identidade de 20 isolados representativos de Ech e Ecc foi confirmada por PCR (primers '149f', 'L1r', 'ADE1', 'ADE2', com exceção de dois isolados de Ech e um de Ecc.

  11. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Linnea E. K. [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N. [Institute for Biomedical Chemistry, Russian Academy of Medical Sciences, 559-B, 10 Pogodinskay St, Moscow 119121 (Russian Federation); Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)

    2005-04-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.

  12. Purification, Characterization, and Effect of Thiol Compounds on Activity of the Erwinia carotovora L-Asparaginase

    Directory of Open Access Journals (Sweden)

    Suchita C. Warangkar

    2010-01-01

    Full Text Available L-asparaginase was extracted from Erwinia carotovora and purified by ammonium sulfate fractionation (60–70%, Sephadex G-100, CM cellulose, and DEAE sephadex chromatography. The apparent Mr of enzyme under nondenaturing and denaturing conditions was 150 kDa and 37±0.5 kDa, respectively. L-asparaginase activity was studied in presence of thiols, namely, L-cystine (Cys, L-methionine (Met, N-acetyl cysteine (NAC, and reduced glutathione (GSH. Kinetic parameters in presence of thiols (10–400 M showed an increase in Vmax values (2000, 2223, 2380, 2500, and control 1666.7 moles mg−1min−1 and a decrease in K values (0.086, 0.076, 0.062, 0.055 and control 0.098 mM indicating nonessential mode of activation. KA values displayed propensity to bind thiols. A decrease in Vmax/K ratio in concentration plots showed inverse relationship between free thiol groups (NAC and GSH and bound thiol group (Cys and Met. Enzyme activity was enhanced in presence of thiol protecting reagents like dithiothreitol (DTT, 2-mercaptoethanol (2-ME, and GSH, but inhibited by p-chloromercurybenzoate (PCMB and iodoacetamide (IA.

  13. Nucleotide sequence, organization and expression of rdgA and rdgB genes that regulate pectin lyase production in the plant pathogenic bacterium Erwinia carotovora subsp. carotovora in response to DNA-damaging agents.

    Science.gov (United States)

    Liu, Y; Chatterjee, A; Chatterjee, A K

    1994-12-01

    In most soft-rotting Erwinia spp., including E. carotovora subsp. carotovora strain 71 (Ecc71), production of the plant cell wall degrading enzyme pectin lyase (Pnl) is activated by DNA-damaging agents such as mitomycin C (MC). Induction of Pnl production in Ecc71 requires a functional recA gene and the rdg locus. DNA sequencing and RNA analyses revealed that the rdg locus contains two regulatory genes, rdgA and rdgB, in separate transcriptional units. There is high homology between RdgA and repressors of lambdoid phages, specially phi 80. RdgB, however, has significant homology with transcriptional activators of Mu phage. Both RdgA and RdgB are also predicted to possess helix-turn-helix motifs. By replacing the rdgB promoter with the IPTG-inducible tac promoter, we have determined that rdgB by itself can activate Pnl production in Escherichia coli. However, deletion analysis of rdg+ DNA indicated that, when driven by their native promoters, functions of both rdgA and rdgB are required for the induction of pnlA expression by MC treatment. While rdgB transcription occurs only after MC treatment, a substantial level of rdgA mRNA is detected in the absence of MC treatment. Moreover, upon induction with MC, a new rdgA mRNA species, initiated from a different start site, is produced at a high level. Thus, the two closely linked rdgA and rdgB genes, required for the regulation of Pnl production, are expressed differently in Ecc71.

  14. Phenotypic and Genetic Characterization of Erwiniua carotovora spp. carotovora (JOnes Bergey et al. Isolates from Grafted Tomato in Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    M. Fiori

    2005-04-01

    Full Text Available A disease symptomatically similar to that caused by Erwinia carotovora occurred on “Cuore di Bue” and “Cencara” tomato plants grafted on “Beaufort” and “He-Man”, or ungrafted, in greenhouses in Sardinia (Italy. Symptoms were: dark brown/black longitudinal stem lesions, soft stem rot, pith breakdown of the stems, hollow stems, vascular tissue discoloration, wilting and collapse of the plants. Numerous bacterial colonies from stem tissues were isolated on yeast extract salts (YS medium. Seven isolates (DPP As-1, DPP As-2, DPP As-3, DPP As-14, DPP Pu6, DPP Pu7 e DPP Pu8 were selected on the basis of their ability to cause rot on potato pieces and a hypersensitivity reaction in “White burley” tobacco leaves. Pathogenicity tests revealed that five of these isolates infected artichoke, basil, dwarf bean, fennel, marrow, melon, pepper, eggplant, grafted and ungrafted tomato, and white cabbage. Of the remaining two isolates, one (DPP As-1 did not infect white cabbage, and the other (DPP Pu8 did not infect basil, marrow or white cabbage. Phenotypic properties and ELISA, also performed on naturally infected tissues, revealed that all the isolates were E. c. ssp. carotovora (Jones Bergey et al. PCR-RFLP analysis placed two (DPP As-2 and DPP As-3 of the seven isolates in RFLP group 8. Five isolates belonged to a hitherto unknown RFLP group. Prevention and control measures for this disease are suggested.

  15. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    Science.gov (United States)

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-02-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged.

  16. The Cultivation of Antagonistic Bacteria in Irradiated Sludge for Biological Control of Soft Rot Erwinias : Screening of Antagonistic Bacteria for biological Control of Soft Rot Erwinias

    International Nuclear Information System (INIS)

    Sermkiattipong, Ng.; Sangsuk, L; Rattanapiriyakul, P; Dejsirilert, S.; Thaveechai, N.

    1998-01-01

    Pure cultures of 57 bacterial isolates for antagonistic activity screening were isolated from three areas of soft rot infested vegetable soil and 58 isolates were obtained from commercial seed compost and seed compost product of Division of Soil and Water Conservation, Department of Land Development. A total of 115 bacterial isolates were evaluated for antagonizing activity against Erwinia carotovora subsp. atroceptica in vitro. Out of them, 18 isolates were antagonists by showing zone of inhibition ranging from 1 to 17 mm by diameter. Most of antagonistic bacteria were identified as Bacillus spp. whereas only one isolate was Pseudomonas vesicularis

  17. Effect of degradation of xylan constituent in Mitsumata (Edgeworthia papyrifera Sieb. et Zucc. ) bast on its pulping by pectinolytic enzymes form Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroyuki; Matsuo, Ryukichi; Kobayashi, Yoshinari

    1988-01-01

    Pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by the crude enzyme from a bacterium Erwinia carotovora FERM P-7576, was more effective by a stepwise treatment at pH 6.5 and subsequently at pH 9.5 and eluted greater amount of xylose constituent than a constant pH treatment at pH 9.5 where only the maceration enzymes, endo-pectate lyase and endo-pectin lyase, among the crude enzyme are operative. The crude enzymes obtained from the cultivation of this bacterial strain on mitsumata bast fibers were more effective for the stepwise pH pulping method than those from the cultivation on soluble pectin. Xylanase activity in the mitsumata bast-induced enzyme at pH 6.5 was twice as high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, however, independent on the inducing materials. Purified exo-type xylanase prepared from the crude enzyme acted comparably to the entire crude enzyme in the first step of the combination pulping, but the xylanase per se showed no maceration activity. These results suggests that the degradation of xylan constituent within the bast fibers effects the acceleration of the subsequent enzymatic pulping by the pectinolytic maceration enzymes. The maceration mechanism involving xylan degradation was also discussed.

  18. ORF Alignment: NC_004547 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004547 gi|50121570 >1iwlA 1 182 22 203 1e-59 ... ref|YP_050737.1| outer-membrane lipoproteins...oproteins carrier protein [Erwinia ... carotovora subsp. atroseptica SCRI104... carrier protein [Erwinia carotovora ... subsp. atroseptica SCRI1043] emb|CAG75546.1| ... outer-membrane lip

  19. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica.

    Science.gov (United States)

    Kang, Ji Eun; Han, Jae Woo; Jeon, Byeong Jun; Kim, Beom Seok

    2016-03-01

    To discover potential inhibitors of the quorum sensing (QS) system, a library of microbial culture extracts was screened with Chromobacterium violaceumCV026 strain. The culture extract of Streptomyces xanthocidicus KPP01532 contained quorum-sensing inhibitors (QSIs) of the CV026 strain. The active constituents of the culture extract of strain KPP01532 were purified using a series of chromatographic procedures, and based on data from NMR and mass spectroscopy, piericidin A and glucopiericidin A were identified. Erwinia carotovora subsp. atroseptica (Eca) is a plant pathogen that causes blackleg and soft rot diseases on potato stems and tubers. The virulence factors of Eca are regulated by QS. The expression of virulence genes (pelC, pehA, celV and nip) under the control of QS was monitored using quantitative real-time PCR (qRT-PCR). The transcription levels of the four genes were significantly lower when Eca was exposed to piericidin A or glucopiericidin A. These two compounds displayed similar control efficacies against soft rot caused by Eca in potato slices as furanone C-30. Therefore, piericidin A and glucopiericidin A are potential QSIs that suppress the expression of the virulence genes of Eca, suggesting that they could have potential use as control agents of soft rot disease on potato tubers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an E. carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Laing, E; Pretorius, I S

    1993-05-01

    A pectate lyase (PL)-encoding gene (pelE) from Erwinia chrysanthemi and a polygalacturonase (PG)-encoding gene (peh1) from E. carotovora were each inserted between a novel yeast expression-secretion cassette and a yeast gene terminator, and cloned separately into a yeast-centromeric shuttle vector (YCp50), generating recombinant plasmids pAMS12 and pAMS13. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of PL and PG was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1s). A pectinase cassette comprising ADC1P-MF alpha 1s-pelE-TRP5T and ADC1P-MF alpha 1s-peh1-TRP5T was subcloned into YCp50, generating plasmid pAMS14. Subsequently, the dominant selectable Geneticin G418-resistance (GtR) marker, APH1, inserted between the yeast uridine diphosphoglucose 4-epimerase gene promoter (GAL10P) and yeast orotidine-5'-phosphate carboxylase gene terminator (URA3T), was cloned into pAMS14, resulting in plasmid pAMS15. Plasmids pAMS12, pAMS13 and pAMS14 were transformed into a laboratory strain of Saccharomyces cerevisiae, whereas pAMS15 was stably introduced into two commercial wine yeast strains. DNA-DNA and DNA-RNA hybridization analyses revealed the presence of these plasmids, and the pelE and peh1 transcripts in the yeast transformants, respectively. A polypectate agarose assay indicated the extracellular production of biologically active PL and PG by the S. cerevisiae transformants and confirmed that co-expression of the pelE and peh1 genes synergistically enhanced pectate degradation.

  1. Species-specific detection of Dickeya sp. (Pectobacterium ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... (Pectobacterium chrysanthemi) in infected banana tissues .... tetraacetic (EDTA) disodium salt pH 8.0, 100 mm NaCl and 1% .... lane 7, Erwinia carotovora subsp. carotovora; lane 8, Xanthomonas campestris pv.musacearum;.

  2. Drosophila larvae food intake cessation following exposure to Erwinia contaminated media requires odor perception, Trpa1 channel and evf virulence factor.

    Science.gov (United States)

    Keita, Seydou; Masuzzo, Ambra; Royet, Julien; Kurz, C Leopold

    2017-05-01

    When exposed to microorganisms, animals use several protective strategies. On one hand, as elegantly exemplified in Drosophila melanogaster, the innate immune system recognizes microbial compounds and triggers an antimicrobial response. On the other hand, behaviors preventing an extensive contact with the microbes and thus reducing the risk of infection have been described. However, these reactions ranging from microbes aversion to intestinal transit increase or food intake decrease have been rarely defined at the molecular level. In this study, we set up an experimental system that allowed us to rapidly identify and quantify food intake decreases in Drosophila larvae exposed to media contaminated with bacteria. Specifically, we report a robust dose-dependent food intake decrease following exposure to the bacteria Erwinia carotovora carotovora strain Ecc15. We demonstrate that this response does not require Imd innate immune pathway, but rather the olfactory neuronal circuitry, the Trpa1 receptor and the evf virulence factor. Finally, we show that Ecc15 induce the same behavior in the invasive pest insect Drosophila suzukii. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Members of the amylovora group of Erwinia are cellulolytic and possess genes homologous to the type II secretion pathway.

    Science.gov (United States)

    Riekki, R; Palomäki, T; Virtaharju, O; Kokko, H; Romantschuk, M; Saarilahti, H T

    2000-07-01

    A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50 degrees C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.

  4. Discovery of a quorum sensing modulator pharmacophore by 3D small-molecule microarray screening

    DEFF Research Database (Denmark)

    Marsden, David M; Nicholson, Rebecca L; Skindersoe, Mette E

    2010-01-01

    ligand-binding domains of the LuxR homolog CarR from Erwinia carotovora subsp. carotovora. The 3D microarray platform was used to discover the biologically active chloro-pyridine pharmacophore, which was validated using a fluorometric ligand binding assay and ITC. Analogs containing the chloro...

  5. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  6. Pathogen-Induced Defense Signaling and Signal Crosstalk in Arabidopsis

    OpenAIRE

    Kariola, Tarja

    2006-01-01

    Erwinia carotovora subsp. carotovora is a bacterial phytopathogen that causes soft rot in various agronomically important crop plants. A genetically specified resistance to E. carotovora has not been defined, and plant resistance to this pathogen is established through nonspecific activation of basal defense responses. This, together with the broad host range, makes this pathogen a good model for studying the activation of plant defenses. Production and secretion of plant cell wall-degrading ...

  7. ORF Alignment: NC_004547 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available erase ... [Erwinia carotovora subsp. atroseptica SCRI1043] ... Length = 142 ... Query: 10 ... RPEYKDRAIHYFQRHWASDETLILYEDCISH...CIDAENPLPDWYLMEKEGDIIGGAGLITN 69 ... RPEYKDRAIHYFQRHWASDETLILYEDCISH...CIDAENPLPDWYLMEKEGDIIGGAGLITN Sbjct: 1 ... RPEYKDRAIHYFQRHWASDETLILYEDCISHCIDAENPLPDWYLMEKE

  8. The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations.

    Science.gov (United States)

    Whitehead, Neil A; Byers, Joseph T; Commander, Paul; Corbett, Mark J; Coulthurst, Sarah J; Everson, Lee; Harris, Abigail K P; Pemberton, Clare L; Simpson, Natalie J L; Slater, Holly; Smith, Debra S; Welch, Martin; Williamson, Neil; Salmond, George P C

    2002-08-01

    Erwinia carotovora is a Gram-negative bacterial phytopathogen that causes soft-rot disease and potato blackleg. The organism is environmentally widespread and exhibits an opportunistic plant pathogenesis. The ability to secrete multiple plant cell wall-degrading enzymes is a key virulence trait and exoenzyme production is responsive to multiple environmental and physiological cues. One important cue is the cell population density of the pathogen. Cell density is monitored via an acylated homoserine lactone (acyl HSL) signalling molecule, which is thought to diffuse between Erwinia cells in a process now commonly known as 'quorum sensing'. This molecule also acts as the chemical communication signal controlling production of a broad-spectrum beta-lactam antibiotic (1-carbapen-2-em-3-carboxylic acid; carbapenem) synthesised in concert with exoenzyme elaboration, possibly for niche defence. In antibiotic production control, quorum sensing acts at the level of transcriptional activation of the antibiotic biosynthetic cluster. This is achieved via a dedicated LuxR-type protein, CarR that is bound to the signalling molecule. The molecular relay connecting acyl HSL production and exoenzyme induction is not clear, despite the identification of a multitude of global regulatory genes, including those of the RsmA/rsmB system, impinging on enzyme synthesis. Quorum sensing control mediated by acyl HSLs is widespread in Gram-negative bacteria and is responsible for the regulation of diverse phenotypes. Although there is still a paucity of meaningful information on acyl HSL availability and in-situ biological function, there is growing evidence that such molecules play significant roles in microbial ecology.

  9. ORF Alignment: NC_004547 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004547 gi|50121646 >1kmoA 14 661 37 705 8e-56 ... ref|YP_050813.1| exogenous ferri...c siderophore TonB-dependent receptor [Erwinia ... carotovora subsp. atroseptica SCRI1043] emb|CAG75622.1| ... exogenou

  10. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1

    DEFF Research Database (Denmark)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter

    2014-01-01

    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing...

  11. New Erwinia-Like Organism Causing Cervical Lymphadenitis▿

    Science.gov (United States)

    Shin, Sang Yop; Lee, Mi Young; Song, Jae-Hoon; Ko, Kwan Soo

    2008-01-01

    The first case of cervical lymphadenitis due to infection by a new Erwinia-like organism is reported. The organism was identified initially as Pantoea sp. by a Vitek 2-based assessment but was finally identified as a member of the genus Erwinia by 16S rRNA gene sequence analysis. The isolate displayed 98.9% 16S rRNA gene sequence similarity to that of E. tasmaniensis and showed phenotypic characteristics that were different from other Erwinia species. PMID:18614665

  12. Characterization of the causal organism of blackleg and soft rot of potato, and management of the disease with balanced fertilization

    International Nuclear Information System (INIS)

    Ali, H.F.; Bibi, A.; Ahmad, M.; Junaid, M.; Ali, A.; Alam, S.

    2014-01-01

    Based upon colony morphology, physio-biochemical tests and polymerase chain reaction (using species or subspecies-specific primers) studies, 20 isolates (out of a total of 42) were found to be Erwinia carotovora subspecies atroseptica (Eca), 19 were identified as Erwinia carotovora subspecies carotovora (Ecc), and 3 as Erwinia chrysanthemi (Ech). Results of the subspecies-differentiating biochemical tests indicated that majority of the candidate Ecc isolates did not produce acid from methyle glucoside (as expected) but their reaction to the production of reducing substances from sucrose was variable. Likewise, some of our Eca and Ecc strains (unexpectedly) were sensitive to erythromycin. Also, most of our Eca strains unexpectedly grew at 36 degree C. Our strains slightly deviate from the standard description in some of their minor characteristics but they still remain the valid members of the Eca, Ecc or Ech group as similar variations in minor characteristics have been found by other workers. The occurrence of intermediate forms of Eca and Ecc (sharing some of the characteristics of both the groups) indicates variability happening among these strains. This variability indicates the potential ability of the pathogen to break the resistance of the host. The results of the effect of balanced nutrition in controlling blackleg and soft rot of potatoes indicated that the fertilizer combination of N3P1K3 (262/252/262 kg.ha-1) which is slightly higher than the normally practiced dose (247/247/247 kg.ha-1) was the best in bringing the disease to a minimum and subsequently increasing the yield. (author)

  13. Op weg naar een Erwinia-vrije pootgoedteelt

    NARCIS (Netherlands)

    Velvis, H.; Haar, van der J.; Wolf, van der J.M.

    2006-01-01

    De laatste jaren zijn er toenemende problemen in de pootgoedteelt met de bacterieziekten zwartbenigheid en stengelnatrot, veroorzaakt door Erwinia's. Een dieptepunt was 2003, toen 15,8% van het areaal pootgoed door de NAK werd verlaagd vanwege bacterieziek (Erwinia), waarvan 4% afgekeurd. In 2005

  14. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F; Velvis, H; Zachow, C; Berg, G; Van Elsas, JD; Sessitsch, A

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  15. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F.; Velvis, H.; Zachow, C.; Berg, G.; Elsas, van J.D.; Sessitsch, A.

    2006-01-01

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  16. Simultaneous Detection of Brown Rot- and Soft Rot-Causing Bacterial Pathogens from Potato Tubers Through Multiplex PCR.

    Science.gov (United States)

    Ranjan, R K; Singh, Dinesh; Baranwal, V K

    2016-11-01

    Ralstonia solanacearum (Smith) Yabuuchi et al. and Erwinia carotovora subsp. carotovora (Jones) Bergey et al. (Pectobacterium carotovorum subsp. carotovorum) are the two major bacterial pathogens of potato causing brown rot (wilt) and soft rot diseases, respectively, in the field and during storage. Reliable and early detection of these pathogens are keys to avoid occurrence of these diseases in potato crops and reduce yield loss. In the present study, multiplex polymerase chain reaction (PCR) protocol was developed for simultaneous detection of R. solanacearum and E. carotovora subsp. carotovora from potato tubers. A set of oligos targeting the pectatelyase (pel) gene of E. carotovora subsp. carotovora and the universal primers based on 16S r RNA gene of R. solanacearum were used. The standardized multiplex PCR protocol could detect R. solanacearum and E. carotovora subsp. carotovora up to 0.01 and 1.0 ng of genomic DNA, respectively. The protocol was further validated on 96 stored potato tuber samples, collected from different potato-growing states of India, viz. Uttarakhand, Odisha, Meghalaya and Delhi. 53.1 % tuber samples were positive for R. solanacearum, and 15.1 % of samples were positive for E. carotovora subsp. carotovora, and both the pathogens were positive in 26.0 % samples when BIO-PCR was used. This method offers sensitive, specific, reliable and fast detection of two major bacterial pathogens from potato tubers simultaneously, particularly pathogen-free seed certification in large scale.

  17. Bio-physicochemical characterization and applied studies of carotovoricin na5 (crna5) on blb affected rice plants

    International Nuclear Information System (INIS)

    Jabeen, N.; Rasool, S.A.; Naz, S.A.

    2014-01-01

    Erwinia carotovora is a common soil borne plant pathogen, which generally infects plants of family Solanacea. In the present study, bacteriocin (CrNA5), produced by an indigenously isolated E. carotovora NA5 has been characterized and its possible anti phytopathogenic potential was shown in the field studies. CrNA5 showed its antimicrobial activity against many gram-positive and gram-negative bacteria including those associated with the plant diseases. The bacteriocin showed substantial stability against wide range of temperatures and pH. Additionally, it was also found resistant to the treatment of metal ions, organic solvents and non-proteolytic enzymes. Conversely, its inactivation by proteinase K and protease suggested its protein nature. Mode of action studies revealed that CrNA5 is bactericidal, particularly against Xanthomonas oryzae oryzae. The electron micrograph of CrNA5 revealed spherical particle (empty head) like structures implicating the vestigial bacteriophage based origin of carotovoricin. In silico analyses were also conducted in order to deduce the plausible ratio of the amino acids present in the protein. The In vivo experiments showed the efficacy of CrNA5 against X. oryzae oryzae (Xoo), the causative agent of bacterial leaf blight (BLB) of rice, both in controlled conditions (green house) as well as in field trials. To the best of our knowledge, the present study is the first of its kind with the bacteriocin of Erwinia origin (tested against the BLB infected plants in the field). It is expected that the present study will help visit new insights of the bacteriocins produced by Erwinia carotovora and their potential (application) as anti phytopathogenic agent. (author)

  18. Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia).

    Science.gov (United States)

    Campillo, Tony; Luna, Emily; Portier, Perrine; Fischer-Le Saux, Marion; Lapitan, Nora; Tisserat, Ned A; Leach, Jan E

    2015-10-01

    Short, Gram-negative-staining, rod-shaped bacteria were isolated from crushed bodies of Russian wheat aphid [Diuraphis noxia (Kurdjumov)] and artificial diets after Russian wheat aphid feeding. Based on multilocus sequence analysis involving the 16S rRNA, atpD, infB, gyrB and rpoB genes, these bacterial isolates constitute a novel clade in the genus Erwinia, and were most closely related to Erwinia toletana. Representative distinct strains within this clade were used for comparisons with related species of Erwinia. Phenotypic comparisons using four distinct strains and average nucleotide identity (ANI) measurements using two distinct draft genomes revealed that these strains form a novel species within the genus Erwinia. The name Erwinia iniecta sp. nov. is proposed, and strain B120T ( = CFBP 8182T = NCCB 100485T) was designated the type strain. Erwinia iniecta sp. nov. was not pathogenic to plants. However, virulence to the Russian wheat aphid was observed.

  19. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL- production kinetics

    DEFF Research Database (Denmark)

    Ravn, L.; Christensen, Allan Beck; Molin, Søren

    2001-01-01

    and enabled an assessment of the kinetics of AHL- production of 3 strains (Serratia proteamaculans strain B5a, Erwinia carotovora ATCC 39048 and V. fischeri strain MJ-1). As expected, the production of AHL (OHHL) and luminescence in Vibrio fischeri strain MJ-1 increased faster than growth indicating up...

  20. Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells.

    Science.gov (United States)

    Lecourieux, David; Lamotte, Olivier; Bourque, Stéphane; Wendehenne, David; Mazars, Christian; Ranjeva, Raoul; Pugin, Alain

    2005-12-01

    We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.

  1. Bacterieziekte Erwinia groeiend probleem

    NARCIS (Netherlands)

    Wolf, van der J.M.

    2012-01-01

    Het grootste probleem van Nederlandse pootgoedtelers is tegenwoordig de bacterieziekte Erwinia. Het is een sluipmoordenaar waar nog geen bestrijdingsmiddelen tegen bestaan. Maar onderzoekers komen steeds meer over de bacterie te weten.

  2. Overleving van Erwinia in grond en op materialen onderzocht : onderzoek : Erwinia

    NARCIS (Netherlands)

    Doorn, van J.; Kampen, van D.; Jollinger, van T.; Zouwen, van der P.S.; Speksnijder, A.G.C.L.; Wolf, van der J.M.

    2007-01-01

    In Nederland veroorzaken Erwiniabacteriën veel schade in bloembollen, aardappel, ui, witlof en bloemisterijgewassen. Er heerst nog steeds veel onduidelijkheid over de vraag waar deze Erwinia's vandaan komen. Ook is onduidelijk hoe lang deze kunnen overleven in grond, water of op materialen die in de

  3. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    International Nuclear Information System (INIS)

    Schmidt, W.E.; Ebel, J.

    1987-01-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a β-1,3-[ 3 H] glucan elicitor fraction from Phytophthora megasperma f.sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent K/sub d/ value for β-glucan elicitor binding is ≅ 0.2 x 10 -6 M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies the [ 3 H]glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched β-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay

  4. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available A bacterial isolate (SCU-B244T was obtained in China from crickets (Teleogryllus occipitalis living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T, which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52% between SCU-B244T and Erwinia oleae (DSM 23398T confirmed that SCU-B244T and Erwinia oleae (DSM 23398T represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%. The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T.

  5. 'Preventie belangrijkste troef tegen Erwinia'

    NARCIS (Netherlands)

    Doorn, van J.

    2012-01-01

    De bollenteelt en -handel ondervindt aanzienlijke schade van de bacterieziekte Erwinia. Onderzoek wijst uit dat preventie het belangrijkste wapen is. Mogelijk bieden ook stofjes die de afweer van planten verbeteren een oplossing.

  6. Deltaplan Erwinia C : praktijkgericht (C-) onderzoek aan Erwinia-problemen in bloembolgewassen 2009-2013

    NARCIS (Netherlands)

    Doorn, van J.; Vreeburg, P.J.M.; Leeuwen, van P.J.; Martin, W.S.; Dees, R.H.L.

    2013-01-01

    Erwinia vormt een groot probleem in bloembolgewassen als hyacint, iris, Dahlia en Zantedeschia. Geschat wordt (precieze cijfers ontbreken) dat de economische schade door o.a. uitval van aangetaste bollen en kosten als gevolg van extra uitzoeken ongeveer 5- 8 miljoen euro op jaarbasis bedraagt. Daar

  7. Reports of the Shikoku National Industrial Research Institute, Vol. 25, No. 1, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    ;Contents: Transient Characteristics of Model-Following Servo System; A Basic Study of Tensioning Effect on Rotating Disk Vibration; Development of Alginate Fibers and Their Use in High Performance Paper Products; Modified Activated Sludge Treatment of Waste Water from Waste Paper Recovery Process; Structural Characterization of Lipid A Component of Erwinia Carotovora Lipopolysaccharide; Alloying of Zn/Ni Double Coated Films by CO2-Laser

  8. Isolation and Identification of L-asparaginase producing Erwinia strains which isolated from Potato Farms

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2016-09-01

    Full Text Available Introduction: L-Asparaginase can be effectively used for the treatment of lymphoblastic leukemia. The rapid growth of cancer cells are needed for L-asparagine abundant storage. L-asparaginase catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. The purpose of this study was to isolate and identify the L-asparaginase producing Erwinia strains from the potato farms of Jiroft. Materials and methods: Pectolytic Erwinia species isolated from crumbling potato in M9 medium. The desired L-asparaginase producing bacteria were isolated based on the color changes. Biochemical-microbial and the plant pathogenicity tests of these strains were also investigated with potato and geranium. The L-asparaginase production and molecular detection of these Erwinia strains were also investigated. Results: In this study, L-asparaginase producing Erwinia was isolated on the CVP and M9 mediums. The inoculation of Erwinia strains on the potato and geranium plants showed that Er8 and Er11 species have the ability to cause plant pathogenicity. Results showed that the maximum pathogenicity of Er8 and Er11 was observed after 48 and 15 h of inoculation in potato and geranium plants, respectively. 16S rDNA sequencing and phylogenetic analyses exhibited that Er8 and Er11 strains were similar to Erwinia chrysanthemi with 98% homology. Discussion and conclusion: Because of several applications of the Erwinia L-asparaginase in various fields, isolated Erwinia and their L-asparaginase can be suitable for applied utilization.

  9. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management

    Directory of Open Access Journals (Sweden)

    Guy Blomme

    2017-07-01

    Full Text Available Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis and Fusarium wilt (Fusarium oxysporum f. sp. cubense. However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1 Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis; (2 Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3 Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi, bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca. Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed. This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset.

  10. Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison.

    Science.gov (United States)

    Chakraborty, Nilanjan; Ghosh, Sudeepa; Chandra, Swarnendu; Sengupta, Sarban; Acharya, Krishnendu

    2016-07-01

    Improvement of the host resistance by using hazard free chemical elicitors is emerging as an alternative approach in the field of plant disease management. In our present work, we have screened the efficacy and possible mechanism of abiogenic elicitors like Dipotassium hydrogen orthophosphate ( K 2 HPO 4 ), Oxalic acid (OA), Isonicotinic acid (INA), Salicylic acid (SA), Acetylsalicylate (AS), Arachidonic acid (AA) and Calcium chloride (CaCl 2 ) to stimulate innate immune responses in Lycopersicum esculentum Mill. Excised tomato leaves, treated with elicitors at three different concentrations, were found to stimulate defense and antioxidative enzymes, total phenol and flavonoid content after 24 h of incubation. CaCl 2 (0.5 %) followed by INA (2.5 mM) were found most effective in activation of all such defense molecules in tomato leaves. Furthermore, nitric oxide (NO), a key gaseous mediator in plant defense signaling, was also measured after subsequent elicitor application. Higher doses of elicitors showed an elevated level of reactive oxygen species (ROS) generation, enhanced lipid peroxidation rate and proline content, which indicates the extent of abiotic stress generation on the leaves. However, ROS production, lipid peroxidation rate and proline concentration remain significantly reduced as a result of CaCl 2 (0.5 %) and INA (2.5 mM) application. A sharp increase of total chlorophyll content was also recorded due to treatment of CaCl 2 (0.5 %). These results demonstrate the effects of different abiogenic elicitors to regulate the production of defense molecules. Results also suggest that among all such chemicals, CaCl 2 (0.5 %) and INA (2.5 mM) can be used as a potential elicitor in organic farming of tomato.

  11. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients

    NARCIS (Netherlands)

    Sassen, Sebastiaan D. T.; Mathôt, Ron A. A.; Pieters, Rob; Kloos, Robin Q. H.; de Haas, Valérie; Kaspers, Gertjan J. L.; van den Bos, Cor; Tissing, Wim J. E.; te Loo, Maroeska; Bierings, Marc B.; Kollen, Wouter J. W.; Zwaan, Christian M.; van der Sluis, Inge M.

    2017-01-01

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough

  12. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients

    NARCIS (Netherlands)

    Sassen, Sebastiaan D. T.; Mathot, Ron A. A.; Pieters, Rob; Kloos, Robin Q. H.; de Haas, Valerie; Kaspers, Gertjan J. L.; van den Bos, Cor; Tissing, Wim J. E.; te Loo, D. Maroeska W. M.; Bierings, Marc B.; Kollen, Wouter J. W.; Zwaan, Christian M.; van der Sluis, Inge M.

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough

  13. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor

    International Nuclear Information System (INIS)

    Chappell, J.; Nable, R.

    1987-01-01

    Large amounts of the sesquiterpenoid capsidiol accumulated in the media of tobacco (Nicotiana tabacum L. cv KY14) cell suspension cultures upon addition of fungal elicitor. Capsidiol accumulation was proportional to the amount of elicitor added. The accumulation of capsidiol was preceded by a transient increase in the capsidiol de novo synthesis rate as measured by the incorporation of exogenous [ 14 C]acetate. Changes in 3-hydroxy-3-methylglutaryl-CoA reductase activity, an enzyme of general isoprenoid metabolism, paralleled the changes in [ 14 C]acetate incorporation into capsidiol. Incubation of the cell cultures with mevinolin, a potent in vitro inhibitor of the tobacco HMGR enzyme activity, inhibited the elicitor-induced capsidiol accumulation in a concentration dependent manner. [ 14 C]Acetate incorporation into capsidiol was likewise inhibited by mevinolin treatment. Unexpectedly, [ 3 H] mevalonate incorporation into capsidiol was also partially inhibited by mevinolin, suggesting that mevinolin may effect secondary sites of sesquiterpenoid biosynthesis in vivo beyond HMGR. The data indicated the importance of the induced HMGR activity for capsidiol production in elicitor-treated tobacco cell suspension cultures

  14. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence.

    Science.gov (United States)

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-09-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  16. Proteomics analysis of Bacillus licheniformis in response to oligosaccharides elicitors.

    Science.gov (United States)

    Reffatti, Patricia Fernanda; Roy, Ipsita; Odell, Mark; Keshavarz, Tajalli

    2014-01-01

    The role of oligosaccharides as biotic elicitors has been recognised in the enhanced production of antibiotics from fungal and bacterial cultures. The yield of bacitracin A in cultures of Bacillus licheniformis was increased after supplementation with oligoguluronate (OG), and mannan oligosaccharides (MO) and its mechanism at transcription level been established already. However, the elicitation mechanism at post transcriptional level has not been reported so far. In this paper we investigate changes in proteomics of B. licheniformis in presence of the oligosaccharide elicitors OG and MO. Differentially expressed proteins were examined using 2D-PAGE stained with colloidal Coomassie and were further identified by LC-MS/MS. We identified 19 differentially expressed proteins including those involved in carbon metabolism, energy generation, amino acid biosynthesis, oxidative and general stress response. The novel findings of this work, together with previous reports, contribute to the unravelling of the overall mechanism of elicitation in B. licheniformis cultures and reliability of the use of these elicitors for potential industrial application. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Goed om uitgangsmateriaal op Erwinia te testen (interview met Jan van der Wolf)

    NARCIS (Netherlands)

    Dwarswaard, A.; Bovenkamp, van den G.; Wolf, van der J.M.

    2012-01-01

    Bloembollen en aardappelen. Ze hebben in ieder geval één ziekte gemeen: bacterierot, veroorzaakt door Erwinia. In beide teelten zorgen deze bacterieziekten voor veel schade. In het Deltaplan Erwinia werken de bloembollen- en aardappelwereld samen op onderzoeksgebied. In twee artikelen staat de vraag

  18. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    International Nuclear Information System (INIS)

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-01-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. ( 14 C]-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using ( 3 H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results

  19. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  20. Use of elicitors as an approach for sustainable agriculture

    African Journals Online (AJOL)

    Yomi

    2010-12-29

    Dec 29, 2010 ... elicitors act in cellular defense mechanism of crops, to improve protection and management for sustainable ... mechanisms governing resistance to plant diseases and therefore could ..... Emerging MAP kinase pathways in ...

  1. Plant Defense Response to Fungal Pathogens (Activation of Host-Plasma Membrane H+-ATPase by Elicitor-Induced Enzyme Dephosphorylation).

    Science.gov (United States)

    Vera-Estrella, R.; Barkla, B. J.; Higgins, V. J.; Blumwald, E.

    1994-01-01

    Elicitor preparations containing the avr5 gene products from race 4 of Cladosporium fulvum and tomato (Lycopersicon esculentum L.) cells near isogenic for the resistance gene Cf5 were used to investigate events following the treatment of host plasma membranes with elicitor. A 4-fold increase in H+-ATPase activity, coincident with the acidification of the extracellular medium, was detected immediately after elicitor treatment. The elicitor-induced stimulation of the plasma membrane H+-ATPase was inhibited by okadaic acid but not by staurosporine, suggesting that protein dephosphorylation was required for increased H+-ATPase activity. This observation was confirmed by [gamma]-32P labeling and immunodetection of the plasma membrane H+-ATPase. Effects of guanidine nucleotide analogs and mastoparan on the ATPase activity suggested the role of GTP-binding proteins in mediating the putative elicitor-receptor binding, resulting in activation of a phosphatase(s), which in turn stimulates the plasma membrane H+-ATPase by dephosphorylation. PMID:12232073

  2. The application of biotic elicitor on Artemisia annua L. to increase artemisinin content

    Science.gov (United States)

    Darwati, I.; Manohara, D.; Rohimatun; Nurhayati, H.

    2018-01-01

    Artemisinin-based Combination Therapy (ACT) has been recommended by WHO as an alternative to treat malaria overcoming drug resistance. The secondary metabolic products in plants, including artemisinin, can be increased by utilizing biotic elicitor from fungi. The research was conducted in Gunung Putri Research Installation, Cipanas, West Java from 2010 to 2011. Phytophthora sp. from eggplant and Colletotrichum sp. from Artemisia annua were applied as biotic elicitor. The types of biotic elicitor applied to the plants were 1) the medium of potato dextrose broth were inoculated with fungi and harvested after 10 days (filtrate), 2) powdery mycelium of both fungi. There were 16 treatments: control negative, control positive (uninoculated medium) 1%, 2%, 3% (v/v)], Phytophthora sp. filtrate [1, 2% and 3% (v/v)], Colletotrichum sp. filtrate [1, 2% and 3% (v/v)], Phytophthora sp. mycelium [1%, 2% and 3% (w/v)], Colletotrichum sp mycelium [1%, 2% and 3% (w/v)]. The elicitor application increased plant production by 26.21% and artemisinin yield by 72% compared to control. Furthermore, the artemisinin production of the plants treated with medium inoculated with 2% filtrate of Phytophthora sp (FP2) (25.19 kg/ha) and 1% powdery mycelium of Colletotrichum sp (MC1) (26.42 kg/ha) were higher than control (K) (11.17 kg/ha).

  3. Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison

    OpenAIRE

    Chakraborty, Nilanjan; Ghosh, Sudeepa; Chandra, Swarnendu; Sengupta, Sarban; Acharya, Krishnendu

    2016-01-01

    Improvement of the host resistance by using hazard free chemical elicitors is emerging as an alternative approach in the field of plant disease management. In our present work, we have screened the efficacy and possible mechanism of abiogenic elicitors like Dipotassium hydrogen orthophosphate (K2HPO4), Oxalic acid?(OA), Isonicotinic acid (INA), Salicylic acid?(SA), Acetylsalicylate?(AS), Arachidonic acid (AA)?and Calcium chloride (CaCl2) to stimulate innate immune responses in Lycopersicum es...

  4. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2.

    Science.gov (United States)

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  5. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2

    Directory of Open Access Journals (Sweden)

    Mengjie Liu

    2016-07-01

    Full Text Available The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The 3-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI. To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and 8 truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  6. [Phytopathogenic bacteria of couch-grass in the crops of wheat].

    Science.gov (United States)

    Iakovleva, L M; Patyka, V F; Gvozdiak, R I; Shcherbina, T N

    2009-01-01

    Bacterialdiseases of weeds in the crops of wheat on the fields of Kyiv and Vinnytsya regions of Ukraine Elytrigia repens (L.) Nevski Agropyrum repens L. were revealed. The following symptoms of bacterial affections: the leaves wither, oval or hatched necrotic spots on green leaves, necroses on the stalks, empty-ears, partial blackening of the ear axes, awns, caryopsises, scales, water-soaked or dark brown with violet shade spots on the rhizomes were found. During the vegetation period bacteria were isolated from the affected plants which caused pathological process in the couch-grass and wheat. The pathogenic bacteria were identified as Pseudomonas syringae, P. viridiflava, Pseudomonas sp., Erwinia carotovora pv. carotovora, Pantoea agglomerans, the part of yellow-pigmentary isolates were not identified. Some Psyringae were isolated from the rhizomes during winterthawing. The paper is presented in Ukrainian.

  7. Aspergoterpenins A–D: Four New Antimicrobial Bisabolane Sesquiterpenoid Derivatives from an Endophytic Fungus Aspergillus versicolor

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Guo

    2018-05-01

    Full Text Available Aspergoterpenins A–D (1–4, four new bisabolane sesquiterpenoid derivatives, were obtained from the endophytic fungus, Aspergillus versicolor, together with eight known compounds (5–12, and their structures were elucidated by a comprehensive analysis of their NMR (Nuclear Magnetic Resonance, MS (Mass Spectrum and CD (Circular Dichroism spectra. Aspergoterpenin A (1 was the first example with a characteristic ketal bridged-ring part in the degraded natural bisabolane-type sesquiterpene structures. The compounds 1–12 displayed no significant activities against four cancer cell lines (A549, Caski, HepG2 and MCF-7. Further, the antimicrobial activities to Erwinia carotovora sub sp. Carotovora were evaluated, and the results showed that compounds 1–12 displayed antimicrobial activities with MIC values ranging from 15.2 to 85.2 μg/mL.

  8. Modification of plasma membrane electron transport in cultured rose cells by UV-C radiation and fungal elicitor

    International Nuclear Information System (INIS)

    Murphy, T.M.; Auh, C.K.; Schorr, R.; Grobe, C.

    1991-01-01

    Previous experiments have shown that treatments of suspension-cultured cells of Rosa damascena Mill. with UV radiation or with fungal elicitors stimulates the synthesis of H 2 O 2 by the cells. To test the hypothesis that this synthesis involves reduction of O 2 at the plasma membrane and to identify the mechanism of the reduction, we have determined the effects of UV and elicitor on redox reactions associated with the plasma membrane. Elicitor prepared from cell walls of Phytophthora sp. (14 μg solids/ml) inhibited the reduction of ferricyanide by intact cells by 98%; UV-C (primarily 254 nm, up to 19,500 J/m 2 ) inhibited this reduction by 40%. Neither treatment inhibited the reduction of Fe(III)-EDTA by intact cells. Intact cells oxidized NADH in the absence of external oxidizing agent, and the rate of oxidation was increased by UV and elicitor. Cells that were poisoned with arsenite and CCCP catalyzed the reduction of Fe(III)-EDTA in the presence of external NADH, and this ability was slightly stimulated by UV and elicitor. UV irradiation (6,480 J/m 2 ) of cells resulted in a 27% inhibition of the specific activity of NADH-ferricyanide oxidoreductase in plasma membrane isolated from those cells. Elicitor treatment of cells for at least 90 min resulted in a 50% inhibition of the enzyme's specific activity in isolated plasma membrane; this inhibition was reversed by addition of Triton-X100 in the assay mixture. The results suggest that UV and elicitor alter the flow of electrons in the plasma membrane, reversibly inhibiting NADH-cytochrome b reductase, the putative key enzyme in the pathway of ferricyanide reduction, and stimulating (or at least not inhibiting) the pathway of Fe(III)-EDTA reduction

  9. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  10. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees.

    Science.gov (United States)

    Rezzonico, Fabio; Smits, Theo H M; Born, Yannick; Blom, Jochen; Frey, Jürg E; Goesmann, Alexander; Cleenwerck, Ilse; de Vos, Paul; Bonaterra, Anna; Duffy, Brion; Montesinos, Emilio

    2016-03-01

    A survey to obtain potential antagonists of pome fruit tree diseases yielded two yellow epiphytic bacterial isolates morphologically similar to Pantoea agglomerans , but showing no biocontrol activity. Whole-cell MALDI-TOF mass spectrometry and analysis of 16S rRNA gene and gyrB sequences suggested the possibility of a novel species with a phylogenetic position in either the genus Pantoea or the genus Erwinia . Multi-locus sequence analysis (MLSA) placed the two strains in the genus Erwinia and supported their classification as a novel species. The strains showed general phenotypic characteristics typical of this genus and results of DNA-DNA hybridizations confirmed that they represent a single novel species. Both strains showed a DNA G+C content, as determined by HPLC, of 54.5 mol% and could be discriminated from phylogenetically related species of the genus Erwinia by their ability to utilize potassium gluconate, potassium 2-ketogluconate, maltose, melibiose and raffinose. Whole-genome sequencing of strain EM595 T revealed the presence of a chromosomal carotenoid biosynthesis gene cluster similar to those found in species of the genera Cronobacter and Pantoea that explains the pigmentation of the strain, which is atypical for the genus Erwinia . Additional strains belonging to the same species were recovered from different plant hosts in three different continents, revealing the cosmopolitan nature of this epiphyte. The name Erwinia gerundensis sp. nov. is proposed, with EM595 T ( = LMG 28990 T  = CCOS 903 T ) as the designated type strain.

  11. Genetic islands in pome fruit pathogenic and nonpathogenic Erwinia species and related plasmids

    Directory of Open Access Journals (Sweden)

    Pablo eLlop

    2015-08-01

    Full Text Available New pathogenic bacteria species belonging to the genus Erwinia associated with pome fruit trees (Erwinia pyrifoliae, E. piriflorinigrans, E. uzenensis have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc. show a high intraspecies homogeneity (i.e. among E. amylovora strains and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with nonpathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  12. FIRE BLIGHT SUSCEPTIBILITY OF SOME PEAR VARIETIES (ERWINIA AMYLOVORA, BURILL

    Directory of Open Access Journals (Sweden)

    Zsolt Jakab- Ilyefalv

    2012-01-01

    Full Text Available At Bistriţa Fruit Research and Development Station, in a pear collection, planted with 44 varieties, there has been studied the susceptibility to fire blight (Erwinia amylovora,Burill. During the vegetation period, phytosanitary treatments to control the disease have been applied using copper based products (copper sulfate, Champion, Funguran, Kocide. Erwinia amylovora infections have been influenced by the rainfall registered in April (70.9 mm and May (104.7 mm and the temperature fluctuations in April-May. The field observations on Erwinia amylvora attack demonstrate that the pear varieties have a different susceptibility to this dangerous bacterium. Evaluation of attack level in the pear collection was done using an evaluation scale with 9 scores using a reference resistance scale for : ‘Highly resistant’ , ‘Moderately resistant’, ‘Susceptible’, ‘Very susceptible’ cultivars . The most sensitive pear varieties in the collection were: ‘De Noiembrie’, ‘Abatele Fetel’, ’Daciana’, ’Triumf’, ’Williams Boway’, ’Margareta Marillat’, ’Beauty Tomme’, ‘Williams rosu’, ’Aromata de Bistrita’, ’Jeanne d`Arc’, ’Aramiu de Somes’, ’Belle des Arbres’, ’Zorka’ representing 13.64% of the total pear varieties. In several cultivars there have been observed increased symptoms, a very high susceptibility of infections leading to complete scorching of trees: Jeanne d`Arc’, Williams rosu’, ‘Triumf’, ‘Aromata de Bistrita’, ‘Zorka’. Strong attack symtoms were observed at the pear cultivars ‘Cure’, ‘Euras, ’Ciuda’ ‘Highland’, ‘Precoce Morettini’, ’Monica’, ’Cadillac’, ’Juliana’, ’Somesan’, ’Beurré Hardenpont’ these cultivars being susceptible to Erwinia amylovora , representing 40.91 % of total genotypes . Cultivars ‘Untoasa Geoagiu’, ‘Beurre Hardy’, ‘Trivale’ manifested a certain tolerance to Erwinia amylovora , no attack symptoms being

  13. Elicitor and nitrogen applications to Garnacha, Graciano and Tempranillo vines: effect on grape amino acid composition.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Portu, Javier; López, Rosa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2018-04-01

    Elicitors and nitrogen foliar applications to vineyards could regulate grape nitrogen composition, which has an important effect on grape and wine quality. Thus the aim of this research was to study the effect of foliar elicitor treatments, methyl jasmonate (MeJ) and yeast extract (YE), and foliar nitrogen applications, urea (Ur) and phenylalanine (Phe), to Garnacha, Graciano and Tempranillo vines on grape amino acid composition. The results showed that elicitor and nitrogen foliar applications to Garnacha and Tempranillo grapevines decreased the must amino acid concentration. However, Phe application to these two grapevines increased the must Phe content. The treatments applied to Graciano grapevines barely effected the grape amino acid content. According to the percentage of variance attributable, the variety had a higher impact on the must amino acid composition than the treatments and their interaction, except in certain amino acids such as Phe. The influence of elicitor and nitrogen foliar applications to grapevines on grape amino acid concentration was strongly conditioned by the variety. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Fysische, chemische en biologische bestrijding van pectinolytische Erwinia's

    NARCIS (Netherlands)

    Wolf, van der J.M.; Doorn, van J.

    2006-01-01

    Rotveroorzakende bacteriën, met name pectinolytische Erwinia spp., zijn verantwoordelijk voor veel schade in de diverse gewassen, vooral in de teelt van aardappelen en de bloembolgewassen hyacint, zantedeschia en iris. In deze literatuurstudie worden de beschikbare gegevens nog eens nader bekeken

  15. UV-induced filamentation in bacteria of the generum Erwinia

    Energy Technology Data Exchange (ETDEWEB)

    Prokulevich, V A; Tomichev, Yu K

    1988-09-01

    It is experimentally shown that cells of 56 pectolytic Erwinia strains isolated at different tomus in different states from various natural sources are converted into filaments under UV-light effect in relatively low doses which allows one to refer them to natural Fil/sup +/ - organisms. Ability to filamentation in Erwinia bacterium correlates with secretion process to the environment of pectolytic enzymes. Bacteria of 9 E.herbicola strains investigated (without pectatlyase secretion) after irradiation do not form stretched cells. Based on the results obtained a conclusion is drawn that increased ENA49 E.chrysanthemic cell sensitivity to UV light results from its natural defect in the system, providing for cell division processes like the one revealed in E.CoLiB and Lon/sup -/ - mutants of E.Coli K-12.

  16. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    Science.gov (United States)

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  17. Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content

    OpenAIRE

    Farag, Mohamed A.; Al-Mahdy, Dalia A.; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A.

    2017-01-01

    The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl2, glutathione and ?-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggestin...

  18. Application of radiation processing to produce biotic elicitor for sugarcane in Vietnam

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien; Tran, Tich Canh; Truong, Thi Hanh; Vo, Thi Kim Lang; Dang, Van Phu; Cao, Anh Duong

    2007-01-01

    Sugarcane is the main raw material for production of sugar and ethanol. In Vietnam, it was reported in 1998 that the area for sugarcane growth was about 257,000ha. Up to now, the biotic elicitor, oligosaccharide has not been used for sugarcane yet. This study has been carried out to investigate the elicitation and the growth promotion effect of irradiated chitosan (oligochitosan) for sugarcane. The field test results indicated that alpha chitosan (shrimp shell) and beta chitosan (squid pen) samples with the content of water soluble oligomer of about 70% were the most effective. The disease ratio of sugarcane tree-trunk treated with irradiated chitosan before harvesting time decreased to 30-40% compared to non-treated one (100%). In addition, the productivity of sugarcane increased to about 20%. The combination of metal ion (Zn ++ , Cu ++ ) with oligochitosan did not show the synergic elicitation effect. The results revealed that biotic elicitor made from chitosan by radiation degradation method is very promising for field application not only for protection of disease infection but also for growth promotion of plants. It is believed that this biotic elicitor could be largely used for safe and sustainable development of agriculture. (author)

  19. Erwinia chrysanthemi ook bij ploffers in Dahlia boosdoener

    NARCIS (Netherlands)

    Leeuwen, van P.J.; Trompert, J.P.T.

    2006-01-01

    Sinds een aantal jaren komt bij de stekproduktie van Dahlia veel uitval voor door ploffers. Na het verhogen van de kastemperatuur vallen de knollen natrot weg. Bovendien kan verdere besmetting snel om zich heen grijpen. Onderzoek heeft aangetoond dat de bacterie Erwinia chrysanthemi de veroorzaker

  20. Erwinia besmet de plant ook via de wortels

    NARCIS (Netherlands)

    Wolf, van der J.M.; Czajkowski, R.L.; Velvis, H.; Doorn, van J.

    2008-01-01

    Door een viertal Nederlandse wetenschappers is onlangs aanvullend onderzoek verricht naar besmettingen van Erwinia chrysanthemi in plantenwortels. Daaruit is gebleken dat de bacterie veel makkelijker de plant binnenkomt en zich in de plant verspreidt dan ooit gedacht. Binnen één dag kan de bacterie

  1. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1.

    Science.gov (United States)

    Lim, Jeong-A; Jee, Samnyu; Lee, Dong Hwan; Roh, Eunjung; Jung, Kyusuk; Oh, Changsik; Heu, Sunggi

    2013-08-01

    Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

  2. Synthesis and biological evaluation of a backbone-modified phytoalexin elicitor

    NARCIS (Netherlands)

    Timmers, CM; Turner, JJ; Ward, CM; vanderMarel, GA; Kouwijzer, MLCE; Grootenhuis, PDJ; vanBoom, JH

    Two suitably protected building blocks (11 and 33) for the preparation of amide-linked heptaglucoside mimetic 2, an analogue of the naturally occurring phytoalexin elicitor 1a, were readily accessible by glycal chemistry. Sequential elongation of terminal glucuronide 21 with laminaribiosyl

  3. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae

    OpenAIRE

    Valente, Rita S.; Xavier, Karina B.

    2015-01-01

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify reg...

  4. Roadmap Towards Registration and Technology Transfer of Radiation Processed Plant Growth Promoters/Elicitors: The Philippine Experience. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L. V.; Aranilla, C. T. [Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines); Magsino, G. L. [National Crop Protection Center, UP Los Baños College, Laguna (Philippines); Asis, C. A. [Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija (Philippines)

    2014-07-15

    Pot experiments to test the effectivity of radiation-processed oligocarrageenans as a plant growth promoter/elicitor have been done on rice, soybean, tomatoes, and corn. Though many data from IAEA RCA and CRP participating countries have proven the efficacy of radiation modified oligomers as bio-stimulants and elicitor, certain R & D gaps need to be addressed in order that these products can reach the commercialization stage. A more integrated and systematic study of each crop with the following components need to be conducted: a) timing of application (plant growth stages such as seedling, active, vegetative, and reproductive stages); b) dosage (concentration of oligomers and volume of spray); c) effect in different seasons of the year (dry or wet); d) efficacy in photosynthetic activities (greening of leaves); and e) induction of resistance to pests and diseases (sturdiness, color of leaves, plant height, enzyme systems etc.). Some R & D work on the effect of radiation processed oligocarrageenans as plant growth promoter/elicitor are discussed. It also discusses R & D gaps that need to be addressed to make these oligomers reach the market. The Fertilizer and Pesticide Authority of the Philippines categorizes plant growth promoters and elicitors as fertilizers, requiring very stringent regulations for its registration. The paper proposes a roadmap towards the commercialization of plant growth promoter/elicitors. (author)

  5. Preparation and Characterizations of Chitosan/Citral Nanoemulsions and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Gehan I. Kh. Marei

    2018-03-01

    Full Text Available Background and Objective: The antimicrobial activity of essential oils has been long recognized, however, they easily evaporate and/or decompose during preparation, owing to direct exposure to heat, pressure and light. The current study deals with the formulation and characterization of bio-based oil in water nanoemulsions and their antimicrobial activity against plant pathogens.Material and Methods: Citral oil and low molecular weight chitosan were used for preparation of nanoemulsions in the presence of sodium tripolyphosphate. Nanoemulsions were prepared by adding dropwise citral at different ratios into an aqueous solution containing chitosan, sodium tripolyphosphate and surfactant with continuous stirring and then ultrasonication. The success of formulation was confirmed by dynamic light scattering and scanning electron microscopy techniques. Physical stability and viscosity were investigated in details. The antimicrobial activity was evaluated against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer. Results and Conclusion: The nanoemulsions had a polydispersity index ranged from 0.508 to 0.614 and particle size from 27 to 1283 nm. The highest antimicrobial activity was observed with F1 formulation (EC50 = 23, 278 and 221 mg L-1, against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer, respectively. Based on the antimicrobial activity, the prepared chitosan/citral nanoemulsions can be a cost-effective way to protect crops from microbial pathogens. Because such formulations contain bioactive products, the development of resistant pathogens can be delayed.Conflict of Interest: The authors declare no conflict of interest. 

  6. Extraction and Study of Bacteriophages, Used against Agents of Potato Soft Rot

    Directory of Open Access Journals (Sweden)

    Magda D. Davitashvili

    2012-12-01

    Full Text Available The use of specific bacteriophages and their complex mixtures against bacterial diseases is very effective. As for causative agent of potato soft rot Erwinia carotovora, specific phages (25 phages in total were extracted from diseased potato, soil and sewage. The study of their biological properties showed the diversity of phages in terms of lytic action, virion plaque and morphology, as well as in relation to different environmental factors. Phages showed explicit antibacterial activity in vitro in liquid and solid media, as well as during model tests of potato tubers artificial inoculation.

  7. A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene.

    Science.gov (United States)

    Raventós, D; Jensen, A B; Rask, M B; Casacuberta, J M; Mundy, J; San Segundo, B

    1995-01-01

    Transient gene expression assays in barley aleurone protoplasts were used to identify a cis-regulatory element involved in the elicitor-responsive expression of the maize PRms gene. Analysis of transcriptional fusions between PRms 5' upstream sequences and a chloramphenicol acetyltransferase reporter gene, as well as chimeric promoters containing PRms promoter fragments or repeated oligonucleotides fused to a minimal promoter, delineated a 20 bp sequence which functioned as an elicitor-response element (ERE). This sequence contains a motif (-246 AATTGACC) similar to sequences found in promoters of other pathogen-responsive genes. The analysis also indicated that an enhancing sequence(s) between -397 and -296 is required for full PRms activation by elicitors. The protein kinase inhibitor staurosporine was found to completely block the transcriptional activation induced by elicitors. These data indicate that protein phosphorylation is involved in the signal transduction pathway leading to PRms expression.

  8. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.

    Science.gov (United States)

    Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H

    2017-11-16

    Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.

  9. Molecular effects of resistance elicitors from biological origin and their potential for crop protection

    Directory of Open Access Journals (Sweden)

    Lea eWiesel

    2014-11-01

    Full Text Available Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonising internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance towards non-adapted pathogens they can also be described as ‘defence elicitors’. In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defence elicitors in the absence of pathogens can promote plant resistance by uncoupling defence activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.

  10. Studies towards the Intrinsic Function of the AVR4 and AVR9 Elicitors of the Fungal Tomato Pathogen Cladosporium fulvum

    NARCIS (Netherlands)

    Burg, van den H.A.

    2003-01-01

    Recognition of the extracellular race-specific elicitor proteins AVR4 and AVR9 produced by the pathogenic fungus Cladosporium fulvum is mediated by the tomato resistance genes Cf-4 and Cf-9 , respectively. Recognition of these elicitors triggers host defense responses

  11. Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid.

    Science.gov (United States)

    van Aubel, Géraldine; Cambier, Pierre; Dieu, Marc; Van Cutsem, Pierre

    2016-06-01

    Plant innate immunity offers considerable opportunities for plant protection but beside flagellin and chitin, not many molecules and their receptors have been extensively characterized and very few have successfully reached the field. COS-OGA, an elicitor that combines cationic chitosan oligomers (COS) with anionic pectin oligomers (OGA), efficiently protected tomato (Solanum lycopersicum) grown in greenhouse against powdery mildew (Leveillula taurica). Leaf proteomic analysis of plants sprayed with COS-OGA showed accumulation of Pathogenesis-Related proteins (PR), especially subtilisin-like proteases. qRT-PCR confirmed upregulation of PR-proteins and salicylic acid (SA)-related genes while expression of jasmonic acid/ethylene-associated genes was not modified. SA concentration and class III peroxidase activity were increased in leaves and appeared to be a cumulative process dependent on the number of sprayings with the elicitor. These results suggest a systemic acquired resistance (SAR) mechanism of action of the COS-OGA elicitor and highlight the importance of repeated applications to ensure efficient protection against disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Anti-Erwinia asparaginase antibodies during treatment of childhood acute lymphoblastic leukemia and their relationship to outcome

    DEFF Research Database (Denmark)

    Albertsen, BK; Schmiegelow, Kjeld; Schrøder, Henrik

    2002-01-01

    PURPOSE: A case-control study was performed to determine whether patients who had been treated with Erwinia asparaginase as part of their treatment for childhood acute lymphoblastic leukemia (ALL) and who showed relapsed of their disease more often developed anti-asparaginase antibodies than...... (median follow-up 70 months). Anti- Erwinia asparaginase antibodies were measured (ELISA method) during maintenance therapy after asparaginase treatment (30,000 IU/m(2) daily for 10 days in all patients plus twice weekly for 2 weeks in intermediate-risk and high-risk ALL patients). RESULTS: The overall...... incidence of anti- Erwinia asparaginase antibodies was 8% (3 of 39 patients). There was no statistically significant difference in the incidence of antibody formation between patients who had suffered relapse (1 of 13) and those who had not (2 of 26). In two of the three patients who developed antibodies...

  13. The specifics of elicitor effect on Triticum aestivum macromorphogenesis under simultaneous lesion by Septoria tritici and Puccinia recondita

    Directory of Open Access Journals (Sweden)

    I.V. Zhuk

    2016-06-01

    Full Text Available Phytopathogenic fungi interrupt the macromorphogenesis of wheat (Triticum aestivum but biotic elicitors stimulate the nonspecific tolerance, growth and development of plant stems. It is shown that oxalic acid as a biotic elicitor and donor of nitric oxide signal molecule (sodium nitroprusside stimulate stem growth in height and last leaves length, as well as grain quantity and productivity both in cv. ‘Poliska 90’ and cv. ‘Stolychna’ under Septoria tritici and Puccinia recondita infection in field trials. It is detected that the degree of infected leaf area decreased in both treated cultivars under Saari-Prescott scale. Cv. ‘Poliska 90’ is more sensitive to both fungal pathogens than cv. ‘Stolychna’, but elicitor influence on its architectonics was no less than on cv. ‘Stolychna’.

  14. The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells

    OpenAIRE

    Takahashi, Hideyuki; Matsumura, Hideo; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2008-01-01

    An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycl...

  15. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors.

    Science.gov (United States)

    Liñeiro, Eva; Chiva, Cristina; Cantoral, Jesús M; Sabido, Eduard; Fernández-Acero, Francisco Javier

    2016-06-01

    Phosphorylation is one of the main post-translational modification (PTM) involved in signaling network in the ascomycete Botrytis cinerea , one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW). A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099). Further interpretation and discussion of these data are provided in our research article entitled "Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors" (Liñeiro et al., 2016) [1].

  16. Besmetting en erwinia-vrij pootgoed uit diverse bronnen : een literatuuroverzicht

    NARCIS (Netherlands)

    Roozen, N.

    1990-01-01

    In dit verslag wordt het risico besproken van diverse potentiële besmettingsbronnen van erwinia-vrij pootgoed. Het doel hiervan is te achterhalen waar de kennis over het risico van de diverse besmettingsbronnen gebreken vertoont en aangevuld dient te worden middels onderzoek. Er zijn criteria

  17. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Vogel Hans J

    2008-01-01

    Full Text Available Abstract Background Opium poppy (Papaver somniferum produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which

  18. Eerste jaar Erwinia-project legt topje van de ijsberg bloot

    NARCIS (Netherlands)

    Velvis, H.; Wolf, van der J.M.

    2006-01-01

    Over de herkomst van de Erwinia bacterie heerst nog altijd veel onduidelijkheid. Daarom is een onderzoek naar deze bacterie gestart. In vier jaar tijd worden diverse aardappelrassen onderzocht in de verschillende stadia van teelt en opslag. Op deze manier hoopt men te achterhalen waar de herkomst

  19. Detection of bacterial infection of agave plants by laser-induced fluorescence

    Science.gov (United States)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  20. Controle de Bipolaris sorokiniana e rendimento de grãos em cevada após aplicação de elicitores e fungicida = Bipolaris sorokiniana control and grain yield in barley after application of elicitors and fungicide

    Directory of Open Access Journals (Sweden)

    Noemir Antoniazzi

    2007-12-01

    Full Text Available A mancha marrom causada pelo fungo Bipolaris sorokiniana é considerada um dos problemas fitossanitários mais importantes na cevada provocando reduções na produtividade e prejuízos na qualidade cervejeira. O objetivo deste trabalho foi avaliar o efeito dos elicitores goma xantana e alicina e do fungicida epoxiconazole + piraclostrobina no controle da mancha marrom em cevada cervejeira, cultivar BRS 195 em dois ciclos de cultivo. O experimento foi conduzido na Fundação Agrária de Pesquisa Agropecuária (FAPA, em Guarapuava, Estado do Paraná, em delineamento de blocos ao acaso, comquatro repetições. A aplicação de elicitores e fungicida resultou em maior peso de mil sementes, sem interferir no teor de proteínas e na classificação comercial. O rendimento de grãos foi superior após duas ou três aplicações de alicina. A incidência e severidade de B.sorokiniana nas folhas de plantas tratadas com elicitores foram semelhantes àquelas com fungicida.The disease spot blotch, caused by the fungi Bipolaris sorokiniana, is considered one of the most important phytosanitary problems ofbarley crop resulting on low productivity and damage on beer quality. The objective of this work was to evaluate the effect of the elicitors xanthan gum and alicin and fungicide epoxiconazole + pyraclostrobin on spot blotch control of barley cultivar BRS 195 during two cultivation cycles. The experiment was carried out at Fundação Agrária de Pesquisa Agropecuária (FAPA, Guarapuava, state of Paraná. The experimental design was in completely randomized blocks, with four replications. Treatment of barley plants withelicitors and fungicide resulted in higher thousand-seed weight without interfering on protein content and commercial classification. The grain yield increased after two or three alicin treatments. Bipolaris sorokiniana incidence and severety on the leaves of plants treated with elicitors were similar to those treated with fungicide.

  1. ORGANOGENESIS OF CYMBIDIUM ORCHID USING ELICITORS

    Directory of Open Access Journals (Sweden)

    Jabun Nahar SYEDA

    2015-12-01

    Full Text Available Elicitors are substances that induce protective responses in plants. In this study, methyl jasmonate (Me-JA and lysozyme elicitation on PLBs culture of Cymbidium insigne in vitro was investigated. Elicitation by 0.1 mg/l Me-JA enhanced maximum PLB, shoot and root formation. The effects of lysozyme under white fluorescent tube, results indicated that every concentrations of lysozyme induced PLB, shoot and root formation and 0.1 mg/l lysozyme enhanced maximum formation of PLB, shoot and root compare with control. Lysozyme is known to play a vital role in medical industry and the present study firstly used lysozyme, as a plant growth regulator in Cymbidium tissue culture.

  2. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-10-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.

  3. Effectieve kolonisatie van aardappelplanten door Dickeya-soorten (Erwinia chrysanthemi) : themanummer fytobacteriologie

    NARCIS (Netherlands)

    Wolf, van der J.M.; Czajkowski, R.L.; Velvis, H.

    2009-01-01

    De bacterieziekten zwartbenigheid en stengelnatrot, veroorzaakt door Pectobacterium en Dickeya (Erwinia)- soorten, berokkenen grote schade aan de pootaardappelteelt. Bij PRI en HZPC wordt onderzoek verricht naar de verspreiding van deze pathogenen tijdens teelt- en (na)oogst. Het was al bekend dat

  4. Investigation of Viability of Pantoea agglomerans (Formerly Erwinia herbicola) After Aerosolization From Media Containing Enriching and Coating Chemicals

    Science.gov (United States)

    2008-02-01

    conducted. 14. ABSTRACT Percent viability of the sensitive bacteria Pantoea agglomerans (ATCC_33243, formerly Erwinia herbicola or Eh), is an important ...effect of several nitrogen and carbon sources on the growth of Eh (strain CPA-2). Synthetic yeast extract enhanced maximum growth and disaccharides...recently-evolved pathogens? Mol. Plant Pathology 2003; 20, pp 307-314. 4. Vanneste, J.L.; Yu, J.; Beer , S.V. Role of antibiotic production by Erwinia

  5. Met goede hygiëne en vochtbeheersing Erwinia in paprika te lijf (onderzoek van Jantineke Hofland-Zijlstra en Rozemarijn de Vries)

    NARCIS (Netherlands)

    Arkesteijn, M.; Hofland-Zijlstra, J.D.; Vries, de R.S.M.

    2012-01-01

    Zomer 2010 had een groot aantal paprikabedrijven verspreid over het hele land last van Erwinia vruchtrot. Waar komt Erwinia vandaan en wat is er tegen te doen? Met deze vragen gingen onderzoekers Jantineke Hofland- Zijlstra en Rozemarijn de Vries aan de slag. Hygiëne, een goede vochtbeheersing en

  6. Penicitroamide, an Antimicrobial Metabolite with High Carbonylization from the Endophytic Fungus Penicillium sp. (NO. 24).

    Science.gov (United States)

    Feng, Zi-Wei; Lv, Meng-Meng; Li, Xue-Shuang; Zhang, Liang; Liu, Cheng-Xiong; Guo, Zhi-Yong; Deng, Zhang-Shuang; Zou, Kun; Proksch, Peter

    2016-10-28

    Penicitroamide ( 1 ), a new metabolite with a new framework, was isolated from the ethyl acetate extract of the PDB (Potato Dextrose Broth) medium of Penicillium sp. (NO. 24). The endophytic fungus Penicillium sp. (NO. 24) was obtained from the healthy leaves of Tapiscia sinensis Oliv. The structure of penicitroamide ( 1 ) features a bicyclo[3.2.1]octane core unit with a high degree of carbonylization (four carbonyl groups and one enol group). The chemical structure of penicitroamide ( 1 ) was elucidated by analysis of 1D-, 2D-NMR and MS data. In bioassays, penicitroamide ( 1 ) displayed antibacterial potency against two plant pathogens, Erwinia carotovora subsp. Carotovora (Jones) Bersey, et al. and Sclerotium rolfsii Sacc. with MIC 50 at 45 and 50 μg/mL. Compound 1 also showed 60% lethality against brine shrimp at 10 μg/mL. Penicitroamide ( 1 ) exhibited no significant activity against A549, Caski, HepG2 and MCF-7 cells with IC 50 > 50 μg/mL. Finally, the possible biosynthetic pathway of penicitroamide ( 1 ) was discussed.

  7. Inhibition of Erwinia chrysanthemi growth to different concentrations of folic acid: possible use of folic acid as bacteriostatic agent and fortifying of Solanum tuberosum potato

    Directory of Open Access Journals (Sweden)

    Andrea Marcelo Correa

    2017-05-01

    Full Text Available Introduction:The enterobacteria of the Erwinia spp genus produce disease in potatoes, which is a tuber of mass consumption. The regulation of DNA methylation can regulate the proliferation of Erwinia in such a way that the concentrations of folic acid may have an effect on the microorganism pathogenic ability. On the other hand, the folic acid prevents the appearance of neural tube defects in humans. Objective: To evaluate folic acid as a bacteriostatic agent of Erwinia and, at the same time, as part of the fortification of mass consumption food such as the potatoes. Materials and methods: The biochemical characterization of the Erwinia chrysanthemi was carried out and its growth compared to different concentrations of folic acid was studied. Results: When increasing the concentrations of the vitamin from 0.3 µg/L up to 6.8 µg/L, the bacterial growth of Erwinia chrysanthemi is inhibited. The vitamin inhibits the growth in cultivation of Erwinia chrysanthemi and acts as a bacteriostatic agent. This aspect is of great importance given that, theoretically, if potatoes were fortified with micro-nutrient, this would act against the infectious agent and, at the same time, contribute to the adequate intake of the vitamin in the general population.

  8. Effects of ozone water on growth of Lactuca sativa var. ramosa Hort and Erwinia carotovora subsp. carotovora

    Directory of Open Access Journals (Sweden)

    Guo Zhenghong

    2017-10-01

    Full Text Available Research on pathogenic bacteria growth of purple lettuce (Lactuca sativa var. ramosa and its photosynthetic physiology by being sprayed ozone water on the surface of the purple lettuce with different concentration during the reproductive stage. However,little is known regarding its concentration effect. In this study,we found that ozone water in a low concentration such as 2 mg/L did not inhibit the growth of pathogenic bacteria that originate from purple lettuce and also not affect the photosynthetic physiology of purple lettuce;in a high concentration,for example,14 mg/L,can completely suppressed the growth of pathogenic bacteria but,significantly influenced the activity of photosynthetic physiology;and in a moderate amount (6 mg/L not only completely impeded the growth of pathogenic bacteria,but also slightly increased the activity of photosynthetic physiology. Based on the above results,we propose that spraying the purple lettuce with a moderate concentration of ozone water is an efficient strategy for green disinfection.

  9. Emotion elicitor or emotion messenger? Subliminal priming reveals two faces of facial expressions.

    Science.gov (United States)

    Ruys, Kirsten I; Stapel, Diederik A

    2008-06-01

    Facial emotional expressions can serve both as emotional stimuli and as communicative signals. The research reported here was conducted to illustrate how responses to both roles of facial emotional expressions unfold over time. As an emotion elicitor, a facial emotional expression (e.g., a disgusted face) activates a response that is similar to responses to other emotional stimuli of the same valence (e.g., a dirty, nonflushed toilet). As an emotion messenger, the same facial expression (e.g., a disgusted face) serves as a communicative signal by also activating the knowledge that the sender is experiencing a specific emotion (e.g., the sender feels disgusted). By varying the duration of exposure to disgusted, fearful, angry, and neutral faces in two subliminal-priming studies, we demonstrated that responses to faces as emotion elicitors occur prior to responses to faces as emotion messengers, and that both types of responses may unfold unconsciously.

  10. EFEKTIFITAS DAYA HAMBAT BAKTERI Streptomyces sp TERHADAP Erwinia sp PENYEBAB PENYAKIT BUSUK REBAH PADA TANAMAN LIDAH BUAYA (Aloe barbadensis Mill

    Directory of Open Access Journals (Sweden)

    SARMILA TASNIM

    2013-05-01

    Full Text Available Streptomyces sp was conducted from December 2010 - June 2011 at the Laboratoryof Microbiology, Biology Department, Math and Science Faculty, UdayanaUniversity Bukit Jimbaran-Bali. Implementation stages of the research consisted ofisolation and testing of the antibiotic activity Streptomyces sp to inhibit growthbacterial pathogens Erwinia sp as a cause of disease in plants fallen foul (Soft rot ofAloe barbadensis Mill.The results of this study have eight isolates of Streptomyces spwith macroscopic and microscopic characters are varied. Furthermore, all isolateswere obtained and then tested against antibiotic activity to inhibit growth the bacteriaErwinia sp. Test results obtained by Streptomyces sp that has the most effective ininhibiting the ability of the bacteria Erwinia sp isolates are Streptomyces sp2for (45%.

  11. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria.

    Science.gov (United States)

    Halgren, A; Azevedo, M; Mills, D; Armstrong, D; Thimmaiah, M; McPhail, K; Banowetz, G

    2011-10-01

     The germination-arrest factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4-formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. This study was undertaken to determine whether GAF has antimicrobial activity in addition to its inhibitory effects on grass seed germination. Culture filtrate from Ps. fluorescens WH6 had little or no effect on 17 species of bacteria grown in Petri dish lawns, but the in vitro growth of Erwinia amylovora, the causal agent of the disease of orchard crops known as fire blight, was strongly inhibited by the filtrate. The anti-Erwinia activity of WH6 culture filtrate was shown to be due to its GAF content, and a commercially available oxyvinylglycine, 4-aminoethoxyvinylglycine (AVG), exhibited anti-Erwinia activity similar to that of GAF. The effects of GAF on Erwinia were reversed by particular amino acids. The biological properties of GAF include a rather specific antimicrobial activity against Erw. amylovora. This may be a general property of oxyvinylglycines as AVG exhibited similar activity. The ability of particular amino acids to reverse GAF inhibition is consistent with a potential effect of this compound on the activity of aminotransferases. The results presented here demonstrate a novel antimicrobial activity of oxyvinylglycines and suggest that GAF and/or GAF-producing bacteria may have potential for the control of fire blight. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  12. Effect of Different Elicitors and Preharvest Day Application on the Content of Phytochemicals and Antioxidant Activity of Butterhead Lettuce (Lactuca sativa var. capitata) Produced under Hydroponic Conditions.

    Science.gov (United States)

    Moreno-Escamilla, Jesús Omar; Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Núñez-Gastélum, José Alberto; González-Aguilar, Gustavo A; Rodrigo-García, Joaquín

    2017-07-05

    The effect of four elicitors on phytochemical content in two varieties of lettuce was evaluated. The best preharvest day for application of each elicitor was chosen. Solutions of arachidonic acid (AA), salicylic acid (SA), methyl jasmonate (MJ), and Harpin protein (HP) were applied by foliar aspersion on lettuce leaves while cultivating under hydroponic conditions. Application of elicitors was done at 15, 7, 5, 3, or 1 day before harvest. Green lettuce showed the highest increase in phytochemical content when elicitors (AA, SA, and HP) were applied on day 7 before harvest. Similarly, antioxidant activity rose in all treatments on day 7. In red lettuce, the highest content of bioactive molecules occurred in samples treated on day 15. AA, SA, and HP were the elicitors with the highest effect on phytochemical content for both varieties, mainly on polyphenol content. Antioxidant activity also increased in response to elicitation. HPLC-MS showed an increase in the content of phenolic acids in green and red lettuce, especially after elicitation with SA, suggesting activation of the caffeic acid pathway due to elicitation.

  13. Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Noriha Mat Amin

    2010-12-01

    Full Text Available Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414. Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.

  14. Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.)

    OpenAIRE

    Ramachandran Kogeethavani; Manaf Uyub Abdul; Zakaria Latiffah

    2015-01-01

    The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.).The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered...

  15. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard.

    Science.gov (United States)

    Delaunois, Bertrand; Farace, Giovanni; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-04-01

    Development and optimisation of alternative strategies to reduce the use of classic chemical inputs for protection against diseases in vineyard is becoming a necessity. Among these strategies, one of the most promising consists in the stimulation and/or potentiation of the grapevine defence responses by the means of elicitors. Elicitors are highly diverse molecules both in nature and origins. This review aims at providing an overview of the current knowledge on these molecules and will highlight their potential efficacy from the laboratory in controlled conditions to vineyards. Recent findings and concepts (especially on plant innate immunity) and the new terminology (microbe-associated molecular patterns, effectors, etc.) are also discussed in this context. Other objectives of this review are to highlight the difficulty of transferring elicitors use and results from the controlled conditions to the vineyard, to determine their practical and effective use in viticulture and to propose ideas for improving their efficacy in non-controlled conditions.

  16. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Sassen, Sebastiaan D T; Mathôt, Ron A A; Pieters, Rob; Kloos, Robin Q H; de Haas, Valérie; Kaspers, Gertjan J L; van den Bos, Cor; Tissing, Wim J E; Te Loo, Maroeska; Bierings, Marc B; Kollen, Wouter J W; Zwaan, Christian M; van der Sluis, Inge M

    2017-03-01

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough concentrations to ensure adequate asparaginase activity (≥100 IU/L). The aim of this study was to describe the population pharmacokinetics of intravenous Erwinia asparaginase to quantify and gather insight into inter-individual and inter-occasion variability. The starting dose was evaluated on the basis of the derived population pharmacokinetic parameters. In a multicenter prospective observational study, a total of 714 blood samples were collected from 51 children (age 1-17 years) with acute lymphoblastic leukemia. The starting dose was 20,000 IU/m 2 three times a week and adjusted according to trough levels from week three onwards. A population pharmacokinetic model was developed using NONMEM ® A 2-compartment linear model with allometric scaling best described the data. Inter-individual and inter-occasion variability of clearance were 33% and 13%, respectively. Clearance in the first month of treatment was 14% higher ( P <0.01). Monte Carlo simulations with our pharmacokinetic model demonstrated that patients with a low weight might require higher doses to achieve similar concentrations compared to patients with high weight. The current starting dose of 20,000 IU/m 2 might result in inadequate concentrations, especially for smaller, lower weight patients, hence dose adjustments based on individual clearance are recommended. The protocols were approved by the institutional review boards. (Registered at NTR 3379 Dutch Trial Register; www.trialregister.nl). Copyright© Ferrata Storti Foundation.

  17. High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Øbro, Jens; Sørensen, Iben; Derkx, Patrick

    2009-01-01

    the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime...

  18. Two rice GRAS family genes responsive to N -acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells.

    Science.gov (United States)

    Day, R Bradley; Tanabe, Shigeru; Koshioka, Masaji; Mitsui, Toshiaki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Kaku, Hanae; Shibuya, Naoto; Minami, Eiichi

    2004-01-01

    In this study, we present data showing that two members of the GRAS family of genes from rice, CIGR1 and CIGR2 (chitin-inducible gibberellin-responsive), inducible by the potent elicitor N -acetylchitooligosaccharide (GN), are rapidly induced by exogenous gibberellins. The pattern of mRNA accumulation was dependent on the dose and biological activity of the gibberellins, suggesting that the induction of the genes by gibberellin is mediated by a biological receptor capable of specific recognition and signal transduction upon perception of the phytoactive compounds. Further pharmacological analysis revealed that the CIGR1 and CIGR2 mRNA accumulation by treatment with gibberellin is dependent upon protein phosphorylation/dephosphorylation events. In rice calli derived from slender rice 1, a constitutive gibberellin-responsive mutant, or d1, a mutant deficient in the alpha -subunit of the heterotrimeric G-protein, CIGR1 and CIGR2 were induced by a GN elicitor, yet not by gibberellin. Neither gibberellin nor GN showed related activities in defense or development, respectively. These results strongly suggested that the signal transduction cascade from gibberellin is independent of that from GN, and further implied that CIGR1 and CIGR2 have dual, distinct roles in defense and development.

  19. A Novel Protein Elicitor BAR11 From Saccharothrix yanglingensis Hhs.015 Improves Plant Resistance to Pathogens and Interacts With Catalases as Targets

    OpenAIRE

    Yanan Zhang; Yanan Zhang; Xia Yan; Xia Yan; Hongmei Guo; Hongmei Guo; Feiyang Zhao; Feiyang Zhao; Lili Huang; Lili Huang

    2018-01-01

    Previously, we reported the biocontrol effects of Saccharothrix yanglingensis strain Hhs.015 on Valsa mali. Here, we report a novel protein elicitor BAR11 from the biocontrol strain Hhs.015 and its functions in plant defense responses. Functional analysis showed that the elicitor BAR11 significantly stimulated plant systemic resistance in Arabidopsis thaliana to Pseudomonas syringae pv. tomato DC3000. In addition, systemic tissues accumulated reactive oxygen species and deposited callose in a...

  20. Bacterial leaf rot of Aloe vera L., caused byErwinia chrysanthemi biovar 3

    NARCIS (Netherlands)

    Laat, de P.C.A.; Verhoeven, J.T.W.; Danse, J.D.

    1994-01-01

    A severe attack of the bacteriumErwinia chrysantemi biovar 3 on the succulentAloe vera on the Carribean island of Aruba is described. Biochemical and pathological characteristics of strains are presented, including results of successful inoculation experiments onAloe vera. This is the first report

  1. Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Ramachandran Kogeethavani

    2015-12-01

    Full Text Available The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L..The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered in their own taxa and formed monophyletic clades. From the pathogenicity test, all isolates of D. zeae and E. mallotivora showed pathogenic reactions on their respective host plants. Genetic variability of these isolates was assessed using repetitive sequence-based PCR (rep-PCR fingerprinting. The results indicated interspecies, and intraspecies variation in both species’ isolates. There were more polymorphic bands shown by rep-PCR fingerprints than enterobacterial repetitive intergenic consensus (ERIC and BOX- PCRs, however both species’ isolates produced distinguishable banding patterns. Unweighted pair-group method with arithmetic averages (UPGMA cluster analysis indicated that all Dickeya and Erwinia isolates from the same species were grouped in the same main cluster. Similarity among the isolates ranged from 77 to 99%. Sequencing of 16S rRNA using eubacteria fD1 and rP2 primers, and rep-PCR fingerprinting revealed diversity among Dickeya and Erwinia isolates. But this method appears to be reliable for discriminating isolates from pineapple heart rot and papaya dieback.

  2. Assessment of root-associated paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper.

    Science.gov (United States)

    Phi, Quyet-Tien; Park, Yu-Mi; Seul, Keyung-Jo; Ryu, Choong-Min; Park, Seung-Hwan; Kim, Jong-Guk; Ghim, Sa-Youl

    2010-12-01

    Twenty-nine P. polymyxa strains isolated from rhizospheres of various crops were clustered into five genotypic groups on the basis of BOX-PCR analysis. The characteristics of several plant growth-promoting factors among the isolates revealed the distinct attributes in each allocated group. Under gnotobiotic conditions, inoculation of pepper roots with P. polymyxa isolates significantly increased the biomass in 17 of total 29 treated plants with untreated plants. Experiments on induced systemic resistance (ISR) against bacterial spot pathogen Xanthomonas axonopodis pv. vesicatoria in pepper by P. polymyxa strains were conducted and only one isolate (KNUC265) was selected. Further studies into ISR mediation by the KNUC265 strain against the soft-rot pathogen Erwinia carotovora subsp. carotovora in tobacco demonstrated that the tobacco seedlings exposed to either bacterial volatiles or diffusible metabolites exhibited a reduction in disease severity. In conclusion, ISR and plant growth promotion triggered by P. polymyxa isolates were systemically investigated on pepper for the first time. The P. polymyxa KNUC265 strain, which elicited both ISR and plant growth promotion, could be potentially used in improving the yield of pepper and possibly of other crops.

  3. Efecto de la aplicación de elicitores sobre la producción de 4b-hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L

    Directory of Open Access Journals (Sweden)

    Yineth Piñeros-Castro

    2009-04-01

    Full Text Available Effect of elicitor application on the production of 4-b-hydroxy withanolide E by hairy roots of Physalis peruviana. Objectives: Tostudy the metabolite 4-b-hydroxy withanolide E production by the in vitro culture of golden berry (Physalis peruviana L. transformedroots, and to evaluate the effect of different elicitors on the metabolite production. Materials and methods: Hairy roots of Physalisperuviana L were obtained through infection with Agrobacterium rhizogenes C106. Hairy roots were cultured on Murashige & Skoogliquid medium for four weeks, before being exposed to different concentrations of copper sulfate, salicylic acid and jasmonic acid during24 hours. Metabolite contents were quantified using High Performance Liquid Chromatography. Results: The highest amount of 4-b-hydroxy withanolide E in hairy root tissues (0.323 mg/g of dry roots was obtained after exposing the tissues to 10 mM salicylic acid aselicitor. Conclusions: 4-b-hydroxy withanolide E production in hairy roots was improved by using elicitors such as salicylic acid andcopper sulphate. The highest concentration of the metabolite in hairy roots treated with elicitors was 1.538 times the control concentration(without elicitor treatment.

  4. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Science.gov (United States)

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799

  5. Light and Fungal Elicitor Induce 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase mRNA in Suspension Cultured Cells of Parsley (Petroselinum crispum L.) 1

    Science.gov (United States)

    Henstrand, John M.; McCue, Kent F.; Brink, Kent; Handa, Avtar K.; Herrmann, Klaus M.; Conn, Eric E.

    1992-01-01

    Light and fungal elicitor induce mRNA encoding 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase in suspension cultured cells of parsley (Petroselinum crispum L.). The kinetics and dose response of mRNA accumulation were similar for DAHP synthase and phenylalanine ammonia-lyase (PAL). Six micrograms of elicitor from Phytophthora megasperma f. glycinia gave a detectable induction within 1 hour. Induction of DAHP synthase and PAL mRNAs by light was transient, reaching maximal levels at 4 hours and returning to pretreatment levels after 24 hours. Our data suggest that either light or fungal elicitor transcriptionally activate DAHP synthase. A coordinate regulation for key enzymes in the synthesis of primary and secondary metabolites is indicated. ImagesFigure 1 PMID:16668708

  6. Production of glucosyltransferase by Erwinia sp. using experimental design and response surface methodology Produção de glicosiltransferase por Erwinia sp. utilizando planejamento experimental e metodologia de superfície de resposta

    Directory of Open Access Journals (Sweden)

    Haroldo Yukio Kawaguti

    2005-09-01

    Full Text Available Glucosyltransferase produced by strain Erwinia sp. is an intracellular enzyme that catalyzes the formation of isomaltulose from sucrose. Isomaltulose is a non-cariogenic reducing dissacharide commercially used in foods. Response surface methodology and 2³-factorial central composite design were employed to optimize a fermentation medium for the production of glucosyltransferase by Erwinia sp. in shaken flasks at 200 rpm and 30ºC. The three variables involved in this study were sugar cane molasses (SCM, corn steep liquor (CSL and yeast extract Prodex Lac SD (YEP. The statistical analysis of the results showed that, in the range studied, all the factors had a significant effect on glucosyltransferase production and the optimum medium composition for enzyme production was (in g l-1 SCM-100, CSL-60 and YEP-8, which lead to a glucosyltransferase activity of 6.65 U mL-1.A glicosiltransferase obtida pela linhagem Erwinia sp. é uma enzima intracelular que catalisa a conversão de sacarose em isomaltulose. A isomaltulose é um dissacarídeo redutor, não cariogênico e comercialmente utilizado em alimentos como substituto da sacarose. A metodologia de superfície de resposta e planejamento fatorial composto central-2³ foram utilizados para otimizar o meio de cultivo para a produção de glicosiltransferase de Erwinia sp. em frascos sob agitação a 200 rpm e 30ºC. As três variáveis independentes envolvidas no estudo foram o melaço de cana de açúcar, a água de maceração de milho e o extrato de levedura Prodex Lac SD. As análises estatísticas dos resultados mostraram que, dentro da faixa estudada das concentrações dos componentes de meio de cultivo, todas as variáveis apresentaram efeito significativo na produção de glicosiltransferase. O meio de cultivo otimizado foi composto de 100 gL-1 de melaço de cana de açúcar, 60 gL-1 de água de maceração de milho e 8 gL-1 de extrato de levedura Prodex Lac SD, apresentando atividade de

  7. A novel role for the TIR domain in association with pathogen-derived elicitors.

    Directory of Open Access Journals (Sweden)

    Tessa M Burch-Smith

    2007-03-01

    Full Text Available Plant innate immunity is mediated by Resistance (R proteins, which bear a striking resemblance to animal molecules of similar function. Tobacco N is a TIR-NB-LRR R gene that confers resistance to Tobacco mosaic virus, specifically the p50 helicase domain. An intriguing question is how plant R proteins recognize the presence of pathogen-derived Avirulence (Avr elicitor proteins. We have used biochemical cell fraction and immunoprecipitation in addition to confocal fluorescence microscopy of living tissue to examine the association between N and p50. Surprisingly, both N and p50 are cytoplasmic and nuclear proteins, and N's nuclear localization is required for its function. We also demonstrate an in planta association between N and p50. Further, we show that N's TIR domain is critical for this association, and indeed, it alone can associate with p50. Our results differ from current models for plant innate immunity that propose detection is mediated solely through the LRR domains of these molecules. The data we present support an intricate process of pathogen elicitor recognition by R proteins involving multiple subcellular compartments and the formation of multiple protein complexes.

  8. Additions of precursors and elicitors improve geranylgeraniol production in Croton stellatopilosus callus cultures

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2015-02-01

    Full Text Available Strategies for enhancing GGOH production in Croton stellatopilosus callus culture included additions of precursors (sodium acetate-NA, sodium pyruvate-NP, mevalonic acid lactone-MVA and elicitors (methyl jasmonate-MJ, acetylsalicylic acid-ASA, yeast extract-YE. Treated cells were evaluated for their GGOH contents by GC-FID and compared with the nontreated cells as controls. Additions of NA (25 mg/L, NP (50 mg/L and MVA (100 mg/L resulted in an enhancement of GGOH productivity to 0.61 mg/g DW, 0.52 mg/g DW and 0.70 mg/g DW, respectively, compared to the control culture (0.29 mg/g DW. Callus cultures elicited with MJ at 30 mg/L for 24 h stimulated GGOH production to 0.35 mg/g DW compared to the control culture (0.07 mg/g DW. Cells also responded to ASA (20 mg/L, 2 days and YE (0.25 g/L, 4 days and produced GGOH contents of 0.46 mg/g DW and 1.37 mg/g DW, respectively. This study has shown that isoprenoid precursors and conventional elicitors enhanced GGOH production in the C. stellatopilosus callus culture.

  9. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense

    OpenAIRE

    Huffaker, Alisa; Pearce, Gregory; Veyrat, Nathalie; Erb, Matthias; Turlings, Ted C. J.; Sartor, Ryan; Shen, Zhouxin; Briggs, Steven P.; Vaughan, Martha M.; Alborn, Hans T.; Teal, Peter E. A.; Schmelz, Eric A.

    2013-01-01

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression o...

  10. A paralog of the proteinaceous elicitor sm1 affects colonization of maize roots by Trichoderma virens

    Science.gov (United States)

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs wi...

  11. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes

    International Nuclear Information System (INIS)

    Logemann, E.; Wu ShengCheng; Schröder, J.; Schmelzer, E.; Somssich, I.E.; Hahlbrock, K.

    1995-01-01

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  12. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid.

    Science.gov (United States)

    Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan

    2006-03-01

    Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.

  13. [Effects of elicitors on growth of adventitious roots and contents of secondary metabolites in Tripterygium wilfordii Hook. f].

    Science.gov (United States)

    Li, Yan; Zhao, Lei; Cui, Lei; Lei, Jiamin; Zhang, Xing

    2015-05-01

    To study the effects of the extract of fungal elicitor, AgNO3, MeJA and yeast on the growth and content of secondary metabolites of adventitious roots in Tripterygium wilfordii. The above elicitors were supplemented to the medium, the growth and the content of secondary metabolites were measured. When the medium was supplemented with the elicitor Glomerella cingulata or Collectotrichum gloeosporioides, the content of triptolide was increased by 2.24 and 1.93-fold, the alkaloids content was increased by 2.02 and 2.07-fold, respectively. The optimal concentration of G. cingulata was 50 μg/mL for accumulation of triptolide, alkaloids and for the growth of adventitious roots. AgNO3 inhibited the growth of adventitious roots and the accumulation of the alkaloids, whereas it (at 25 μmol/L) increased the accumulation of triptolide by 1.71-fold compared to the control. The growth of adventitious roots, the contents of triptolide and alkaloids were increased 1.04, 1.64 and 2.12-folds, respectively when MeJA was at 50 μmol/L. When the concentration of yeast reached 2 g/L, the content of triptolide increased 1.48-folds. This research demonstrated that supplementation of AgNO3 and yeast enhanced the biosynthesis of triptolide in adventitious roots and the synergism of G. cingulata and MeJA could promote the biosynthesis of both triptolide and alkaloids.

  14. Complete Genome Sequence of EtG, the First Phage Sequenced from Erwinia tracheiphila.

    Science.gov (United States)

    Andrade-Domínguez, Andrés; Kolter, Roberto; Shapiro, Lori R

    2018-02-22

    Erwinia tracheiphila is the causal agent of bacterial wilt of cucurbits. Here, we report the genome sequence of the temperate phage EtG, which was isolated from an E. tracheiphila -infected cucumber plant. Phage EtG has a linear 30,413-bp double-stranded DNA genome with cohesive ends and 45 predicted open reading frames. Copyright © 2018 Andrade-Domínguez et al.

  15. Comparison of specificity and sensitivity of immunochemical and molecular techniques for reliable detection of Erwinia amylovora

    Czech Academy of Sciences Publication Activity Database

    Kokošková, B.; Mráz, Ivan; Hýblová, Jana

    2007-01-01

    Roč. 52, č. 2 (2007), s. 175-182 ISSN 0015-5632 R&D Projects: GA AV ČR(CZ) 1QS500510558 Institutional research plan: CEZ:AV0Z50510513 Keywords : Erwinia amylovora * detection Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  16. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  17. Estimation of induced secondary metabolites in chickpea tissues in response to elicitor preparation of seaweeds

    International Nuclear Information System (INIS)

    Bi, F.; Iqbal, S.

    2000-01-01

    Disease response of plants in terms of induced browning and phytoalexin (induced secondary metabolites) production were recorded in the tissues of Cicer arietinum (Chick pea) treated with the High Molecular Crude Elicitor Preparations, HMWCEP 'Polysaccharides' of Hypnea musciformis (red algae), Padina tetrastromatica (brown algae) and Ulva lactulus (green algae). A UV-visible spectrophotometric method has been developed for the quantification of induced secondary metabolites with time. (author)

  18. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    KAUST Repository

    Lori, M.; van Verk, M. C.; Hander, T.; Schatowitz, H.; Klauser, D.; Flury, P.; Gehring, Christoph A; Boller, T.; Bartels, S.

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were

  19. Molecular detection of Erwinia psidii in guava plants under greenhouse and field conditions

    Directory of Open Access Journals (Sweden)

    Claudênia Ferreira da Silva

    2016-09-01

    Full Text Available ABSTRACT: Erwinia psidii causes bacterial blight of guava ( Psidium guajava , an important disease of this crop in Brazil. The pathogen affects branches and twigs of guava trees, reducing yield significantly. Bacterial dissemination often occurs through contaminated but asymptomatic propagating plant material. The objectives of this research were to evaluate the use of BIO-PCR and conventional PCR to detect E. psidii in inoculated guava plants grown in a greenhouse and in symptomatic and asymptomatic trees from guava orchards. Erwinia psidii strain IBSBF 1576 was inoculated (107CFU mL-1 into young guava shoots and plant tissue was analysed at 0, 5, 10, and 15 days after inoculation. Symptoms were observed after 5 days and all inoculated shoots were PCR positive at all times, by both BIO-PCR and conventional PCR. Under natural infection conditions, 40 samples were tested by BIO-PCR from each of three guava orchards, 20 showing symptoms and 20 asymptomatic. PCR was positive for 58 out of 60 symptomatic samples (96.7% and for 6.7% of asymptomatic samples, showing that the method can be used to detect the pathogen at early stages of infection. This PCR method may be used as a diagnostic tool to assess bacterial survival, dissemination and disease outbreaks.

  20. Conductimetric detection of Pseudomonas syringae pathover pisi in pea seeds and soft rot Erwinia spp. on potato tubers

    NARCIS (Netherlands)

    Fraaije, B.

    1996-01-01


    Pea bacterial blight and potato blackleg are diseases caused by Pseudomonas syringae pv. pisi ( Psp ) and soft rot Erwinia spp., respectively. The primary source of inoculum for these bacteria is

  1. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    W.H. Tong (Wing); R. Pieters (Rob); G.J. Kaspers (Gertjan); D.M.W.M. Te Loo (D. Maroeska W.); M. Bierings (Marc); C. van den Bos (Cor); W.J.W. Kollen (Wouter); W.C.J. Hop (Wim); C. Lanvers-Kaminsky (Claudia); M.V. Relling (Mary); W.J.E. Tissing (Wim); I.M. van der Sluis (Inge)

    2014-01-01

    textabstractThis study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m2 every 2

  2. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Tong, Wing H.; Pieters, Rob; Kaspers, Gertjan J. L.; te Loo, D. Maroeska W. M.; Bierings, Marc B.; van den Bos, Cor; Kollen, Wouter J. W.; Hop, Wim C. J.; Lanvers-Kaminsky, Claudia; Relling, Mary V.; Tissing, Wim J. E.; van der Sluis, Inge M.

    2014-01-01

    This study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m(2) every 2 weeks) in

  3. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors : interfamily incompatibility of perception but compatibility of downstream signalling

    NARCIS (Netherlands)

    Lori, Martina; van Verk, Marcel C; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A; Boller, Thomas; Bartels, Sebastian

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were also identified and characterized in more detail.

  4. Isolation, Characterization, and Identification of Biological Control Agent for Potato Soft Rot in Bangladesh

    Science.gov (United States)

    Rahman, M. M.; Ali, M. E.; Khan, A. A.; Akanda, A. M.; Uddin, Md. Kamal; Hashim, U.; Abd Hamid, S. B.

    2012-01-01

    A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers. PMID:22645446

  5. Spoilage of vegetable crops by bacteria and fungi and related health hazards.

    Science.gov (United States)

    Tournas, V H

    2005-01-01

    After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. The most common bacterial agents are Erwinia carotovora, Pseudomonas spp., Corynebacterium, Xanthomonas campestris, and lactic acid bacteria with E. carotovora being the most common, attacking virtually every vegetable type. Fungi commonly causing spoilage of fresh vegetables are Botrytis cinerea, various species of the genera Alternaria, Aspergillus, Cladosporium, Colletotrichum, Phomopsis, Fusarium, Penicillium, Phoma, Phytophthora, Pythium and Rhizopus spp., Botrytis cinerea, Ceratocystis fimbriata, Rhizoctonia solani, Sclerotinia sclerotiorum, and some mildews. A few of these organisms show a substrate preference whereas others such as Botrytis cinerea, Colletotrichum, Alternaria, Cladosporium, Phytophthora, and Rhizopus spp., affect a wide variety of vegetables causing devastating losses. Many of these agents enter the plant tissue through mechanical or chilling injuries, or after the skin barrier has been broken down by other organisms. Besides causing huge economic losses, some fungal species could produce toxic metabolites in the affected sites, constituting a potential health hazard for humans. Additionally, vegetables have often served as vehicles for pathogenic bacteria, viruses, and parasites and were implicated in many food borne illness outbreaks. In order to slow down vegetable spoilage and minimize the associated adverse health effects, great caution should be taken to follow strict hygiene, good agricultural practices (GAPs) and good manufacturing practices (GMPs) during cultivation, harvest, storage, transport, and marketing.

  6. Identification and Pathogenicity of Phytopathogenic Bacteria Associated with Soft Rot Disease of Girasole Tuber

    Directory of Open Access Journals (Sweden)

    Mamdoh Ewis ISMAIL

    2012-02-01

    Full Text Available During 2010-2011 growing seasons six bacterial isolates were separated from naturally infected girasole plants tubers (Helianthus tuberosus L. cv. �Balady�, showing soft rot, collected from experimental Farm of the Faculty of Agriculture, in El-Minia University, Egypt. Pathogenicity tests showed various virulence for the bacteria isolated from girasole tubers, found pathogenic. These organisms were characterized as rod-shaped, Gram negative, ?-methyl-d-glucoside medium, reducing substances from sucrose, phos, phatase activity and deep cavities on pectate medium. Otherwise, diagnostic tests suggested that the pathogen was Erwinia carotovora ssp. carotovora. The isolated bacteria caused soft rot of wounded tubers when inoculated into tissues. The bacterial isolates were compared for their degree of pathogenicity as well as for differences in specific symptoms, induced in different hosts. The tested isolates could infect several host ranges, such as fruits of apricot, apple, olive, lemon, squash, eggplant and potato tubers, bulbs and garlic and onion cloves, roots radish, carrot, sweet potato and rape. On the other hand, no symptoms were exhibited on pods of bean and cowpea, faba bean, fruits of pepper and tomato. The extracts of experimentally diseased girasole tubers were active in pectinase and also in caboxymethyl cellulose at pH 6 compared to enzyme activities in healthy tissues. Also, the isolated bacteria increased the total and reducing sugars in infected tissues.

  7. Isolation, Characterization, and Identification of Biological Control Agent for Potato Soft Rot in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2012-01-01

    Full Text Available A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacterium Erwinia carotovora subsp. carotovora (Ecc were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was tested in vitro against the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited the in vitro growth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genus Bacillus and the isolate E-45 as Lactobacillus sp. The stronger antagonistic activity against Ecc P-138 was found in E-65 in vitro screening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5% antagonistic effect of E-65 was observed in the Granola and the lowest (32.7% of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.

  8. One-step Multiplex RT-PCR Method for Simultaneous Detection of Seed Transmissible Bacteria and Viruses in Pepper and Tomato Seeds

    Directory of Open Access Journals (Sweden)

    Kyusik Jeong

    2011-04-01

    Full Text Available The aim of this study was to develop specific and sensitive PCR-based procedures for simultaneous detection of economically important plant seed infection pathogenic bacteria and virus, Xanthomonns campestris pv. vesicatoria (Xcv, Clavibacter michiganensis subsp. michiganensis (Cmm, Erwinia carotovora subsp. carotovora (Ecc, Pepper mild mottle virus (PMMoV and Tobacco mild green mosaic virus (TMGMV in pepper and tomato seeds. Most of pepper and tomato bacterial and virus diseases are responsible for germination and growth obstruction. PCR with arbitral primers: selection of specific primers, performance of PCR with specific primers and determination of the threshold level for pathogens detection. To detect simultaneously the Xcv, Cmm, Ecc, PMMoV and TMGMV in pepper and tomato seeds, five pairs (Cmm-F/R, Ecc-F/R, Xcv-F/R, PMMoV-F/R, TMGMV-F/R of specific primer were synthesized by primer-blast program. The multiplex PCR for the five pathogens in pepper and tomato seeds could detect specially without interference among primers and/or cDNA of plant seeds and other plant pathogens. The PCR result for pathogen detection using 20 commercial pepper and 10 tomato seed samples, Ecc was detected from 4 pepper and 2 tomato seed samples, PMMoV was detected from 1 pepper seed sample, and PMMoV and TMGMV were simultaneously detected from 1 pepper seed sample.

  9. Karakterisasi Erwinia Chrysanthemi Penyebab Penyakit Busuk Bakteri Pada Daun Lidah Buaya (Aloe Vera)

    OpenAIRE

    SUPRIADI,; IBRAHIM, NILDAR; TARYONO,

    2002-01-01

    Characteristics o/Envinia chysanthemi causing bacterial soft rot ofAloe (Aloe VeraJThe bacterial sot rot of aloe, caused by Erwinia chrysanthemi, was first identified in Caibbean Island in 1992. In early 2001, similar symptoms were found on the aloe plants grown in Semplak, Bogor, West Java. Based on its symptom and progressively spread, especially on the leaf and basal stem, it appeared that the disease was serious and therefore threatened the current development of die plants. This study wa...

  10. The Phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) Is a Pathogen of the Pea Aphid†

    OpenAIRE

    Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan

    2006-01-01

    Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, eit...

  11. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    Science.gov (United States)

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  12. Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content.

    Science.gov (United States)

    Farag, Mohamed A; Al-Mahdy, Dalia A; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A

    2017-04-05

    The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl 2 , glutathione and β-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggesting the absence of a remarkable stress on primary production. Chemometric analyses of UPLC-MS data showed clear segregation of SA and ZnCl 2 elicited samples at 24 and 48 h post elicitation. Levels of acetylated diterpene and sterol viz., sarcophytonolide I and cholesteryl acetate, was increased in ZnCl 2 and SA groups, respectively, suggesting an activation of specific acetyl transferases. Post elicitation, sarcophytonolide I level increased 132 and 17-folds at 48 h in 0.1 mM SA and 1 mM ZnCl 2 groups, respectively. Interestingly, decrease in sarcophine, a major diterpene was observed only in response to ZnCl 2 , whereas no change was observed in sesquiterpene content following treatments. To the best of our knowledge, this study provides the first documentation for elicitation effects on a soft corals secondary metabolome and suggests that SA could be applied to increase diterpenoid levels in corals.

  13. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, A K

    2014-02-01

    The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium.

  14. Signaling requirements for Erwinia amylovora-induced disease resistance, callose deposition, and cell growth in the nonhost Arabidopsis thaliana

    Science.gov (United States)

    Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The nonhost plant Arabidopsis serves as a powerful system to dissect mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found ...

  15. Qualidade de uva ‘Isabel’ tratada na pré-colheita com CaCl2 e elicitor à base de biomassa cítrica

    Directory of Open Access Journals (Sweden)

    Leonardo da Silva Santos

    2017-10-01

    Full Text Available O alto índice de degrana e podridão das bagas reduzem a qualidade e elevam as perdas pós-colheita em uvas ‘Isabel’, demandando técnicas de manejo na pré e pós-colheita acessíveis ao pequeno produtor, que mantenham a qualidade e ampliem a vida útil pós-colheita dos cachos. Assim, este trabalho teve por objetivo avaliar o efeito da aplicação na pré-colheita de CaCl2 e elicitor à base de biomassa cítrica em uvas ‘Isabel’ na manutenção da qualidade durante o armazenamento na condição ambiente sob atmosferas ambiente e modificada. O experimento foi conduzido em blocos casualizados a campo, no município de São Vicente Férrer-PE com 8 repetições. Videiras ‘Isabel’ foram tratadas, 28 dias antes da colheita, com: elicitor de Biomassa Cítrica (BC, elicitor de Biomassa Cítrica + CaCl2 (BC+C, CaCl2 (C e Testemunha (T - sem aplicação. Cachos colhidos na maturação comercial foram armazenados em arranjo fatorial 4×2×7, sendo 4 tratamentos (aplicados no campo, 2 condições de armazenamento, atmosferas ambiente (AA e modificada (AM, sob condição ambiente (25±2°C e 75±2% de UR e 7 períodos de avaliação em quatro repetições. A aplicação de CaCl2 e do elicitor BC reduziu o índice de degrana (55 e 75%, respectivamente, a podridão e a perda de massa dos cachos de uva ‘Isabel’. Estes tratamentos, associados ou não, aumentaram a eficiência da AM em manter a qualidade dos cachos. O índice de degrana de uva ‘Isabel’ foi influenciado diretamente pela relação SS/AT, pH e índice de podridão das bagas.

  16. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae in Four Crop Plants.

    Directory of Open Access Journals (Sweden)

    John W Gordy

    Full Text Available Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA, benzothiadiazole (BTH, gibberellic acid (GA, harpin, and jasmonic acid (JA are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith (FAW (Lepidoptera: Noctuidae larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.

  17. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants.

    Science.gov (United States)

    Gordy, John W; Leonard, B Rogers; Blouin, David; Davis, Jeffrey A; Stout, Michael J

    2015-01-01

    Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA), benzothiadiazole (BTH), gibberellic acid (GA), harpin, and jasmonic acid (JA) are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith) (FAW) (Lepidoptera: Noctuidae) larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker)], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.

  18. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Nováková, Miroslava; Kim, P.D.; Šašek, Vladimír; Burketová, Lenka; Jindřichová, Barbora; Šantrůček, J.; Valentová, O.

    2016-01-01

    Roč. 32, č. 4 (2016), s. 918-928 ISSN 8756-7938 R&D Projects: GA ČR GA522/08/1581; GA MZe QH81201; GA MŠk LD14093 Institutional support: RVO:61389030 Keywords : elicitor * Brassica napus * Leptosphaeria maculans Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.986, year: 2016

  19. Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group

    Science.gov (United States)

    Rau, Rachel E.; Dreyer, ZoAnn; Choi, Mi Rim; Liang, Wei; Skowronski, Roman; Allamneni, Krishna P.; Devidas, Meenakshi; Raetz, Elizabeth A.; Adamson, Peter C.; Blaney, Susan M.; Loh, Mignon L; Hunger, Stephen P.

    2018-01-01

    Background Erwinia asparaginase is a Food and Drug Administration approved agent for the treatment of acute lymphoblastic leukemia (ALL) for patients who develop hypersensitivity to Escherichia coli derived asparaginases. Erwinia asparaginase is efficacious, but has a short half-life, requiring six doses to replace one dose of the most commonly used first-line asparaginase, pegaspargase, a polyethylene glycol (PEG) conjugated E. coli asparaginase. Pegcristantaspase, a recombinant PEGylated Erwinia asparaginase with improved pharmacokinetics, was developed for patients with hypersensitivity to pegaspargase. Here, we report a series of patients treated on a pediatric phase 2 trial of pegcrisantaspase. Procedure Pediatric patients with ALL or lymphoblastic lymphoma and hypersensitivity to pegaspargase enrolled on Children's Oncology Group trial AALL1421 (Jazz 13-011) and received intravenous pegcrisantaspase. Serum asparaginase activity (SAA) was monitored before and after dosing; immunogenicity assays were performed for antiasparaginase and anti-PEG antibodies and complement activation was evaluated. Results Three of the four treated patients experienced hypersensitivity to pegcrisantaspase manifested as clinical hypersensitivity reactions or rapid clearance of SAA. Immunogenicity assays demonstrated the presence of anti-PEG immunoglobulin G antibodies in all three hypersensitive patients, indicating a PEG-mediated immune response. Conclusions This small series of patients, nonetheless, provides data, suggesting preexisting immunogenicity against the PEG moiety of pegaspargase and poses the question as to whether PEGylation may be an effective strategy to optimize Erwinia asparaginase administration. Further study of larger cohorts is needed to determine the incidence of preexisting antibodies against PEG-mediated hypersensitivity to pegaspargase. PMID:29090524

  20. Novel Rosaceae plant elicitor peptides as sustainable tools to control Xanthomonas arboricola pv. pruni in Prunus spp.

    Science.gov (United States)

    Ruiz, Cristina; Nadal, Anna; Montesinos, Emilio; Pla, Maria

    2018-02-01

    Fruit crops are regarded as important health promoters and constitute a major part of global agricultural production, and Rosaceae species are of high economic impact. Their culture is threatened by bacterial diseases, whose control is based on preventative treatments using compounds of limited efficacy and negative environmental impact. One of the most economically relevant examples is the pathogen Xanthomonas arboricola pv. pruni (Xap) affecting Prunus spp. The plant immune response against pathogens can be triggered and amplified by plant elicitor peptides (Peps), perceived by specific receptors (PEPRs). Although they have been described in various angiosperms, scarce information is available on Rosaceae species. Here, we identified the Pep precursor (PROPEP), Pep and PEPR orthologues of 10 Rosaceae species and confirmed the presence of the Pep/PEPR system in this family. We showed the perception and elicitor activity of Rosaceae Peps using the Prunus-Xap pathosystem as proof-of-concept. Treatment with nanomolar doses of Peps induced the corresponding PROPEP and a set of defence-related genes in Prunus leaves, and enhanced resistance against Xap. Peps from the same species had the highest efficiencies. Rosaceae Peps could potentially be used to develop natural, targeted and environmentally friendly strategies to enhance the resistance of Prunus species against biotic attackers. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  1. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila

    Science.gov (United States)

    Shapiro, Lori R.; Scully, Erin D.; Straub, Timothy J.; Park, Jihye; Stephenson, Andrew G.; Beattie, Gwyn A.; Gleason, Mark L.; Kolter, Roberto; Coelho, Miguel C.; De Moraes, Consuelo M.; Mescher, Mark C.; Zhaxybayeva, Olga

    2016-01-01

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. PMID:26992913

  2. Production of isomaltulose obtained by Erwinia sp. cells submitted to different treatments and immobilized in calcium alginate

    Directory of Open Access Journals (Sweden)

    Haroldo Yukio Kawaguti

    2011-03-01

    Full Text Available In recent decades, there has been an increase in the studies of isomaltulose obtainment, due to its physicochemical properties and physiological health benefits. These properties, which include low cariogenicity, low glycemic index and greater stability, allow the use of this sweetener as a substitute for sucrose in foods; besides the fact that it can be converted to isomalt, a dietary non-cariogenic sugar alcohol used in pharmaceuticals as well as in the food industry. Isomaltulose (6-O-α-D-glucopyronosyl-1-6-D-fructofuranose is a disaccharide reducer obtained by the enzymatic conversion of sucrose - the α-glucosyltransferase enzyme. Different treatments were performed for the preparation of whole cells; lysed cells; and crude enzyme extract of Erwinia sp. D12 strain immobilized in calcium alginate. The packed bed column of granules, containing Erwinia sp. cells sonicated and immobilized in calcium alginate (CSI, reached a maximum conversion of 53-59% sucrose into isomaltulose and it presented activity for 480 hours. The converted syrup was purified and the isomaltulose crystallization was performed through the lowering of temperature. The isomaltulose crystals presented purity of 96.5%.

  3. Efecto de la aplicación de elicitores sobre la producción de 4-hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L.

    OpenAIRE

    Piñeros-Castro, Yineth; Programa de Ingeniería de Alimentos, Facultad de Ciencias Naturales, Universidad Jorge Tadeo Lozano. Carrera 4 # 22-60. Bogotá; Otálvaro-Álvarez, Ángela; Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia. Carrera 30 # 45-03. Bogotá; Velásquez-Lozano, Mario; Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia. Carrera 30 # 45-03. Bogotá

    2009-01-01

    Efecto de la aplicación de elicitores sobre la producción de 4b- hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L.  Objetivo: Estudiar la producción del metabolito  4b-hidroxiwithanólido E,  mediante el cultivo in vitro de raíces transformadas de uchuva (Physalis peruviana L.) y evaluar el efecto de la influencia de la aplicación de diferentes elicitores sobre la producción de dicho metabolito.  Materiales y métodos: Se obtuvieron raíces transformadas de Physalis peruvian...

  4. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Angela Casillo

    2017-03-01

    Full Text Available Erwinia amylovora (E. amylovora is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core, wabH and wabG (outer-LPS core mutants. The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR mass spectrometry.

  5. [Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG`s) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined by isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.

  6. [Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG's) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined by isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.

  7. CorA, the magnesium/nickel/cobalt transporter, affects virulence and extracellular enzyme production in the soft rot pathogen Pectobacterium carotovorum.

    Science.gov (United States)

    Kersey, Caleb M; Agyemang, Paul A; Dumenyo, C Korsi

    2012-01-01

    Pectobacterium carotovorum (formerly Erwinia carotovora ssp. carotovora) is a phytopathogenic bacterium that causes soft rot disease, characterized by water-soaked soft decay, resulting from the action of cell wall-degrading exoenzymes secreted by the pathogen. Virulence in soft rot bacteria is regulated by environmental factors, host and bacterial chemical signals, and a network of global and gene-specific bacterial regulators. We isolated a mini-Tn5 mutant of P. carotovorum that is reduced in the production of extracellular pectate lyase, protease, polygalacturonase and cellulase. The mutant is also decreased in virulence as it macerates less host tissues than its parent and is severely impaired in multiplication in planta. The inactivated gene responsible for the reduced virulent phenotype was identified as corA. CorA, a magnesium/nickel/cobalt membrane transporter, is the primary magnesium transporter for many bacteria. Compared with the parent, the CorA(-) mutant is cobalt resistant. The mutant phenotype was confirmed in parental strain P. carotovorum by marker exchange inactivation of corA. A functional corA(+) DNA from P. carotovorum restored exoenzyme production and pathogenicity to the mutants. The P. carotovorum corA(+) clone also restored motility and cobalt sensitivity to a CorA(-) mutant of Salmonella enterica. These data indicate that CorA is required for exoenzyme production and virulence in P. carotovorum. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  8. CONTROl.. DE ERWINIA UREDOVORA CON MICROORGANISMOS ANTAGÓNICOS EN CUI..TIVOS DE PYRUS SP~ (PERO)

    OpenAIRE

    De Rico, Myriam E.; Departamento de Microbiología Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá; Parra, Diana P.; Departamento de Microbiología Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá; Baquero, Sandra L.; Departamento de Microbiología Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá

    2013-01-01

    In order to dirninish the use of high doses of the chemical substances employed for the control of fire blight (Erwinia uredovora) in pear crops (Pyrus sp.), antagonistic microorganisms were isolated from the soil near healthy trees, from the rhizosphere, leaves, and stems of the sarne trees. To determine the antagonism in vitro, of these microorganisms against Erwinza uredovora, methods were used: channel, disk and strip. The best results were obtained with the disk method. The microorganism...

  9. Bacteria of the genus Erwinia found in the spermatheca of the laurel psyllid Trioza alacris.

    Science.gov (United States)

    Marchini, Daniela; Ciolfi, Silvia; Gottardo, Marco; Marri, Laura

    2014-12-01

    Psylloidea are economically important insects causing serious damage to plants by direct feeding and/or vectoring bacterial pathogens. Results reported here indicate the presence of extracellular bacteria in the spermatheca of egg-laying Trioza alacris females. One phylotype, sharing 99 % identity with the non-phytopathogenic bacterium Erwinia tasmaniensis, was identified regardless of methods applied or insect sampling year and location. This is the first study, achieved by ultrastructural, cultural, and 16S rRNA gene-based analysis, of an insect spermatheca microbiota.

  10. The Perfect Match: Simultaneous Strawberry Pollination and Bio-Sampling of the Plant Pathogenic Bacterium Erwinia pyrifoliae by Honey Bees Apis mellifera

    NARCIS (Netherlands)

    Steen, van der Sjef; Bergsma-Vlami, M.; Wenneker, M.

    2018-01-01

    In this study we show that honey bee colonies placed in a greenhouse for pollination of strawberry can simultaneously be used to indicate the presence of the plant pathogenic bacterium Erwinia pyrifoliae. This was demonstrated by using two methods of qualitative sacrificial and non-sacrificial bio

  11. The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Mohamed E. I. Badawy

    2016-01-01

    Full Text Available This study focuses on the biological activities of eleven chitosan products with a viscosity-average molecular weight ranging from 22 to 846 kDa in combination with the most active monoterpenes (geraniol and thymol, out of 10 tested, against four plant pathogenic bacteria, Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium fascians, and Pseudomonas solanacearum. The antibacterial activity was evaluated in vitro by the agar dilution technique as a minimum inhibitory concentration (MIC that was found to be dependent on the type of the microorganism tested. The most active product of chitosan was used for biofilm production enriched with geraniol and thymol (0.1 and 0.5% and the films were also evaluated against the tested bacteria. The biological bioactivities summarized here may provide novel insights into the functions of chitosan and some monoterpenes and potentially allow their use for food protection from microbial attack.

  12. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco.

    Science.gov (United States)

    Senthilkumar, Rajendran; Cheng, Chiu-Ping; Yeh, Kai-Wun

    2010-01-01

    Protease inhibitors provide a promising means of engineering plant resistance against attack by insects and pathogens. Sporamin (trypsin inhibitor) from sweet potato and CeCPI (phytocystatin) from taro were stacked in a binary vector, using pMSPOA (a modified sporamin promoter) to drive both genes. Transgenic tobacco lines of T0 and T1 generation with varied inhibitory activity against trypsin and papain showed resistance to both insects and phytopathogens. Larvae of Helicoverpa armigera that ingested tobacco leaves either died or showed delayed growth and development relative to control larvae. Transgenic tobacco-overexpressing the stacked genes also exhibited strong resistance against bacterial soft rot disease caused by Erwinia carotovora and damping-off disease caused by Pythium aphanidermatum. Thus, stacking protease-inhibitor genes, driven by the wound and pathogen responsive pMSPOA promoter, is an effective strategy for engineering crops to resistance against insects and phytopathogens.

  13. Monitoring of Erwinia amylovora in Montenegro

    Directory of Open Access Journals (Sweden)

    Dragana Radunović

    2015-09-01

    Full Text Available Recent studies of Erwinia amylovora in Montenegro, conducted from 2012 to 2014, indicated that the bacterium was widespread in the northern, continental part of the country, where the most important fruit-growing regions are situated. The presence of the bacterium was confirmed on quince, pear, apple, medlar and hawthorn. Pathogenic, cultural and biochemical characteristics of E. amylovora strains sampled from pome fruit species and indigenous flora in Montenegro had been studied previously. In the present study, serological tests were used for identification of E. amylovora strains originating from pome fruit trees and indigenous plants. Monitoring of E. amylovora and collection of samples with symptoms of bacterial fire blight from different hosts and locations were performed in Montenegro from 2012 to 2014. Isolation of the bacterium on nutrient medium produced a large number of isolates, whose pathogenicity was confirmed on immature pear fruits. Twenty-seven strains of the bacterium, originating from three pome fruit species (quince, pear and apple and one indigenous species (hawthorn were selected for serological analyses. Two applied serological methods, ELISA and IF test, enabled rapid detection of the bacterium and simultaneous examination of a large number of samples over a short period of time. Serological analyses showed high homogeneity in antigenic structure of the studied E. amylovora strains sampled from quince, pear, apple and hawthorn from nine locations in Montenegro.

  14. Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves

    Directory of Open Access Journals (Sweden)

    VanDoorn Arjen

    2010-08-01

    Full Text Available Abstract Background Some plants distinguish mechanical wounding from herbivore attack by recognizing specific constituents of larval oral secretions (OS which are introduced into plant wounds during feeding. Fatty acid-amino acid conjugates (FACs are major constituents of Manduca sexta OS and strong elicitors of herbivore-induced defense responses in Nicotiana attenuata plants. Results The metabolism of one of the major FACs in M. sexta OS, N-linolenoyl-glutamic acid (18:3-Glu, was analyzed on N. attenuata wounded leaf surfaces. Between 50 to 70% of the 18:3-Glu in the OS or of synthetic 18:3-Glu were metabolized within 30 seconds of application to leaf wounds. This heat-labile process did not result in free α-linolenic acid (18:3 and glutamate but in the biogenesis of metabolites both more and less polar than 18:3-Glu. Identification of the major modified forms of this FAC showed that they corresponded to 13-hydroxy-18:3-Glu, 13-hydroperoxy-18:3-Glu and 13-oxo-13:2-Glu. The formation of these metabolites occurred on the wounded leaf surface and it was dependent on lipoxygenase (LOX activity; plants silenced in the expression of NaLOX2 and NaLOX3 genes showed more than 50% reduced rates of 18:3-Glu conversion and accumulated smaller amounts of the oxygenated derivatives compared to wild-type plants. Similar to 18:3-Glu, 13-oxo-13:2-Glu activated the enhanced accumulation of jasmonic acid (JA in N. attenuata leaves whereas 13-hydroxy-18:3-Glu did not. Moreover, compared to 18:3-Glu elicitation, 13-oxo-13:2-Glu induced the differential emission of two monoterpene volatiles (β-pinene and an unidentified monoterpene in irlox2 plants. Conclusions The metabolism of one of the major elicitors of herbivore-specific responses in N. attenuata plants, 18:3-Glu, results in the formation of oxidized forms of this FAC by a LOX-dependent mechanism. One of these derivatives, 13-oxo-13:2-Glu, is an active elicitor of JA biosynthesis and differential

  15. Biology of the fire blight pathogen Erwinia amylovora in oligotrophic environments: survival responses and virulence

    OpenAIRE

    Delgado Santander, Ricardo

    2016-01-01

    Erwinia amylovora es una bacteria fitopatógena de la familia Enterobacteriaceae, responsable del fuego bacteriano de las rosáceas. Los efectos destructivos de este patógeno sobre frutos, flores y prácticamente todos los órganos de las plantas hospedadoras afectadas constituyen una amenaza importante para la producción de pera y manzana, y suponen graves pérdidas económicas anuales en todo el mundo. E. amylovora está clasificada como un organismo de cuarentena en la Unión Europea y en otros pa...

  16. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees.

    Science.gov (United States)

    Llop, Pablo; Barbé, Silvia; López, María M

    The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees ( E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae , which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.

  17. Análise de crescimento de duas cultivares de cevada após tratamentos com elicitores e fungicidas

    Directory of Open Access Journals (Sweden)

    Antoniazzi Noemir

    2006-01-01

    Full Text Available Para o controle da mancha marrom da cevada, causada pelo fungo Bipolaris sorokiniana, têm sido utilizados fungicidas e mais recentemente foi proposto o uso de elicitores. O objetivo deste trabalho foi avaliar o desenvolvimento de duas cultivares de cevada cervejeira, "BRS 195" e "BRS 225", em resposta à aplicação de elicitores goma xantana e alicina e do fungicida epoxiconazole + pyraclostrobin, comparativamente a plantas não tratadas. O experimento foi conduzido na Fundação Agrária de Pesquisa Agropecuária (FAPA, Guarapuava - PR, no delineamento de blocos completos casualizados. Na análise de crescimento, foram determinados o índice de área foliar (IAF, a taxa de crescimento relativo (TCR e a taxa assimilatória líquida (TAL. Observou-se desenvolvimento semelhante das cultivares em todos os tratamentos. A cultivar "BRS 225" registrou maior acúmulo de matéria seca no período de avaliação por apresentar um ciclo vegetativo mais curto. O IAF aumentou até a fase de emborrachamento das plantas, com posterior decréscimo. A TCR diminuiu da primeira para a última coleta. A TAL diminuiu até 57 dias após a emergência, seguindo aumento no decorrer das avaliações.

  18. Produção de isomaltulose a partir da transformação enzimática da sacarose, utilizando-se Erwinia sp D12 imobilizada com alginato de cálcio Production of isomaltulose from enzymatic transformation of sucrose, using Erwinia sp D12 immobilized with calcium alginate

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leite Moraes

    2005-03-01

    Full Text Available A glicosiltransferase de Erwinia sp D12 é capaz de converter a sacarose em isomaltulose (6-o-alfa-glicopiranosil D-frutofuranose, um açúcar alternativo que apresenta baixo potencial cariogênico, e que pode ser utilizado em chocolates, gomas de mascar e balas. A isomaltulose é também utilizada na produção de isomalte, uma mistura de açúcar álcool, de baixo valor calórico e baixo potencial cariogênico. No estudo da influência dos componentes do meio de cultivo, na produção de glicosiltransferase, em frascos agitados, foi obtido maior atividade da enzima (12,8 unidades de atividade/mL do meio de cultura em meio de cultura A constituído de melaço 12% (p/v de sólidos solúveis totais, peptona 4% (p/v e extrato de carne 0,4% (p/v. No estudo do efeito do tempo e da temperatura na fermentação da linhagem de Erwinia sp D12, em fermentador New Brunswick de 3L, contendo meio de cultura A, foi obtida maior atividade de glicosiltransferase (15,6 unidades de atividade/ mL de meio de cultura na fase exponencial de crescimento após 8 horas de fermentação a 30ºC. Na produção de isomaltulose a partir da sacarose utilizando-se células de Erwinia sp D12 imobilizadas em alginato de cálcio, estudou-se o efeito da temperatura (25 - 35ºC e da concentração de substrato (12,5 - 60% p/v. Foi obtido um rendimento em torno de 50% de isomaltulose, com soluções de sacarose entre 20-30% (p/v a 35ºC. Concentrações em excesso de sacarose (ao redor de 40% p/v afetaram a atividade da célula imobilizada, diminuindo a conversão de sacarose em isomaltulose. O xarope de isomaltulose foi purificado através de cromatografia de troca iônica e o eluato cristalizado por abaixamento de temperatura. Os cristais apresentaram 91,39% de isomaltulose.The glucosyltransferase of Erwinia sp D12 is able to convert sucrose into isomaltulose (6-0-alpha-D-glucopyranosyl-D-fructofuranose, an alternative sugar which presents low cariogenic potential, and can be

  19. Genetic Characterization Of Syrian Erwinia Amylovora Strains By Amplified Fragment Length Polymorphism Technique

    International Nuclear Information System (INIS)

    Ammouneh, H.; Arabi, M.; Shoaib, A.

    2011-01-01

    Thirty Erwinia amylovora strains, collected from the main rosaceous crop-growing regions in Syria, were chosen as representatives of all major pathogenicity groups and were genetically studied by AFLP. Eight primer combinations were utilized and approximately 300 scorable bands in total were generated. Based on similarity coefficient, E. amylovora strains were placed into a main cluster containing two sub clusters, indicating very low genetic variations among the studied pathogen. The existence of two plasmids, pEA29 (present in nearly all E. amylovora isolates) and pEL60 (present mainly in Lebanese strains), was confirmed using multiplex PCR in all tested Syrian E. amylovora strains, indicating that Lebanese and Syrian isolates may share a common origin.(author)

  20. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors

    Directory of Open Access Journals (Sweden)

    Eva Liñeiro

    2016-06-01

    Full Text Available Phosphorylation is one of the main post-translational modification (PTM involved in signaling network in the ascomycete Botrytis cinerea, one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW. A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099. Further interpretation and discussion of these data are provided in our research article entitled “Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors” (Liñeiro et al., 2016 [1].

  1. COMPLEX OF PATHOGENES ON VEGETABLE CROPS IN CONDITION OF CENTRAL REGION OF RUSSIA

    Directory of Open Access Journals (Sweden)

    L. T. Timina

    2015-01-01

    Full Text Available As a result of monitoring of causative agents of diseases of vegetable crops and studying of its species specification, the genus and species of fungi and bacteria, were found. Previously unknown in the Central region of Russia pathogens of carrot were identified: Sclerotinia nevales, Gleocladium roseum, Verticillium spp, Trichotecium roseum, Streptomyces scabies, F. nivale, F. chlamidosporum, F. equiseti, F. proliferatum, Chaetomium spp., Erysiphe umbelliferum, Erwinia carotovora. Main causative agents of diseases  of carrot during storage were also described: Alternaria infectoria, A. alternatа, A. arborescens, A. radicina, A. cheiranthi, A. corotiincultae, A. cinerariae, Embellisia spp., Nimbia spp., Cladosporium spp. It was found new pathogen for onion (Aspergillus niger, garlic (Fusarium semitectum, F. subglutinans, F. proliferatum, F.avenacium, red beet (Typhula ishikariensis, and radish (Drechslera Bondartseva.

  2. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

    Directory of Open Access Journals (Sweden)

    Andrea eNesler

    2015-09-01

    Full Text Available Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB, against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  3. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

    Science.gov (United States)

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  4. Biochemical and morphological responses to abiotc elicitor chitin in suspension-cultured sugarcane cells

    Directory of Open Access Journals (Sweden)

    Maria Izabel Gallão

    2010-04-01

    Full Text Available Cells of Saccharum officinarum submitted to hydrolyzated chitin for 1 to 8h produced phenolic compounds. These alterations were observed through cytochemical methods using Toluidine Blue and Phloroglucinol/HCl. After 4 h, besides cell wall change, there was a change in nuclear pattern of chitin treated cells. There was a 96% increase in nuclear area in 6 h chitin treated material, as observed by Feulgen reaction. The treated cells showed chromatin compacted regions and a degeneration process of nucleoli. In the outer areas of cell wall, there was a polysaccharide desagregation, confirming results obtained for different plants with the use of other elicitors. Peroxidase activity was maximal after 4 h and decreased progressively. PAL activity started to increase at 4 h of incubation. These results showed that chitin hydrolyzate stimulated a defense response in sugarcane cells.Células de Saccharum officinarum quando submetidas a quitina hidrolisada por 1 a 8h produziram material fenólico. Essas alterações foram observadas por meio de métodos citoquímicos como o Azul de Toluidina e Floroglucinol/HCl. Após 4 h, além das mudanças nas paredes celulares houve uma mudança no padrão nuclear das células tratadas com quitina. Por observação da reação de Feulgen, houve um aumento de 96% na área nuclear no material em 6h. Para as células tratadas foram observadas regiões de cromatina compactada e um processo de degeneração do nucléolo. Nas áreas externas da parede celular existia uma desagregação dos polisacarídios confirmando os resultados obtidos para diferentes plantas com o uso de outros elicitores. A atividade da peroxidase foi maxima após 4 h e então decresceu progressivamente. A atividade da PAL aumentou a partir de 4 h de incubação. Estes resultados mostram que o hidrolisado de quitina estimula as respostas de defesa em células de cana.

  5. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium derived elicitors.

    Science.gov (United States)

    Patel, Miral; Kothari, I L; Mohan, J S S

    2004-07-01

    Perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used fungal components of Fusarium under in vitro condition and checked the rise in signal molecule, salicylic acid (SA), and marker enzymes in defense reactions against the pathogen. SA level increased by 21 folds in elicitor treated plantlets as compared to that of control plantlets and there was marked increase in phenylalanine ammonia-lyase(PAL), peroxidase(POX), polyphenol oxidase(PPO) along with higher total phenolic content. Present results indicated that use of fungal components had successfully induced systemic resistance in in vitro cultured banana plantlets.

  6. PecS Is a Global Regulator of the Symptomatic Phase in the Phytopathogenic Bacterium Erwinia chrysanthemi 3937▿ †

    OpenAIRE

    Hommais, Florence; Oger-Desfeux, Christine; Van Gijsegem, Frédérique; Castang, Sandra; Ligori, Sandrine; Expert, Dominique; Nasser, William; Reverchon, Sylvie

    2008-01-01

    Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to path...

  7. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    OpenAIRE

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-01-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-c...

  8. The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight.

    Science.gov (United States)

    Meczker, Katalin; Dömötör, Dóra; Vass, János; Rákhely, Gábor; Schneider, György; Kovács, Tamás

    2014-01-01

    The enterobacterium Erwinia amylovora is the causal agent of fire blight. This study presents the analysis of the complete genome of phage PhiEaH1, isolated from the soil surrounding an E. amylovora-infected apple tree in Hungary. Its genome is 218 kb in size, containing 244 ORFs. PhiEaH1 is the second E. amylovora infecting phage from the Siphoviridae family whose complete genome sequence was determined. Beside PhiEaH2, PhiEaH1 is the other active component of Erwiphage, the first bacteriophage-based pesticide on the market against E. amylovora. Comparative genome analysis in this study has revealed that PhiEaH1 not only differs from the 10 formerly sequenced E. amylovora bacteriophages belonging to other phage families, but also from PhiEaH2. Sequencing of more Siphoviridae phage genomes might reveal further diversity, providing opportunities for the development of even more effective biological control agents, phage cocktails against Erwinia fire blight disease of commercial fruit crops.

  9. Effects of ozone water on growth of Lactuca sativa var. ramosa Hort and Erwinia carotovora subsp. carotovora

    OpenAIRE

    Guo Zhenghong; Wang Zuoming; Yin Lijun; Zhao Xuejun; Wang Wenjia; Wang Quanxi

    2017-01-01

    Research on pathogenic bacteria growth of purple lettuce (Lactuca sativa var. ramosa) and its photosynthetic physiology by being sprayed ozone water on the surface of the purple lettuce with different concentration during the reproductive stage. However,little is known regarding its concentration effect. In this study,we found that ozone water in a low concentration such as 2 mg/L did not inhibit the growth of pathogenic bacteria that originate from purple lettuce and also not affect the phot...

  10. Study of Chemical Treatment Combined with Radiation to Prepare Biotic Elicitor for Utilization in Agriculture

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien

    2010-01-01

    Chitosan was prepared from shrimp shell (alpha chitosan) and from squid pen (beta chitosan) with degree of deacetylation of about 70%. Degradation of chitosan in flake form by combined treatment with H 2 O 2 and gamma Co-60 radiation was carried out. Results showed that combined treatment was highly effective for degradation of chitosan to obtain low molecular weight of 1-2 × 10 5 . Oligochitosan was prepared by irradiation of chitosan solution of 50g/l (5%, w/v). The dose required for oligochitosan with water soluble content of more than 70% was of 32kGy and 48kGy for beta and alpha chitosan, respectively. Synergic effect of degradation of chitosan in solution with H 2 O 2 and gamma Co-60 radiation was also investigated. The dose to obtain oligochitosan was reduced from 32kGy to 4kGy for beta chitosan and from 48kGy to 8kGy for alpha chitosan. The elicitation and growth promotion effect of oligochiotsan for sugarcane and rice were investigated. Results showed that oligochitosan with water soluble content of 70-80% (Mw~5,000-10,000) exhibited the most effective elicitation and growth promotion for plant. The optimum oligochitosan concentration by spraying was of 30 and 15ppm for sugarcane and rice, respectively. The disease index of Ustilgo scitaminea and Collectotrichum falcatum on sugarcane were reduced to 44.5 and 72.3% compared to control (100%). The productivity of sugarcane was increased about 13% (8tons/ha). The disease index of Pyricularia grisea on rice was reduced to 53.0% for leaf and 34.1% for neck of bloom compared to control (100%). The productivity of rice was increased for 11-26% (0.6-1.4 tons/ha). The obtained results indicated that oligochitosan is promising to use as a biotic elicitor for plant particularly for sugarcane and rice. The procedure for production of oligochitosan elicitor by γ- irradiation method was described. (author)

  11. Detection of bacteriocins produced by plant pathogenic bacteria from the general Erwinia, Pseudomonas and Xanthomonas

    International Nuclear Information System (INIS)

    Biagi, C.M.R. de

    1992-01-01

    Detection of bacteriocin production was studied under distinct conditions using strains of plant pathogenic bacteria from the genera Erwinia, Pseudomonas and Xanthomonas. 58.06%, 79.31% and 40.00% of producing strains were found respectively in the three groups of bacteria using the 523 medium which was the best for the detection of bacteriocin production. Increasing agar concentrations added to the medium up to 1,5% improved the detection. The amount of medium added to the Petri dishes did not affect bacteriocin production. The longest incubation time (72 h.) improved the detection of haloes production. Ultra-violet irradiation in low dosages seems to improve the visualization of haloes production but this is dependent on the tested strains. (author)

  12. Recognition of Cladosporium fulvum Ecp2 elicitor by non-host Nicotiana spp. is mediated by a single dominant gene that is not homologous to known Cf-genes

    NARCIS (Netherlands)

    Kock, de M.J.D.; Iskandar, H.M.; Brandwagt, B.F.; Laugé, R.; Wit, de P.J.G.M.; Lindhout, W.H.

    2004-01-01

    Cladosporium fulvum is a fungal pathogen of tomato that grows exclusively in the intercellular spaces of leaves. Ecp2 is one of the elicitor proteins that is secreted by C. fulvum and is specifically recognized by tomato plants containing the resistance gene Cf-Ecp2. Recognition is followed by a

  13. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2011-11-01

    Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.

  14. Virulence Factors of Erwinia amylovora: A Review

    Directory of Open Access Journals (Sweden)

    Núria Piqué

    2015-06-01

    Full Text Available Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS, the exopolysaccharide (EPS amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3′-5′-cyclic di-GMP (c-di-GMP and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus, have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  15. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors

    DEFF Research Database (Denmark)

    Majdi, Mohammad; Malekzadeh-Mashhady, Atefe; Maroufi, Asad

    2017-01-01

    of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare...

  16. Fatty acid analysis of Erwinia amylovora from Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Milan Ivanović

    2011-01-01

    Full Text Available Automated method of fatty acid analysis was used to identify and study heterogeneity of 41 Erwinia amylovora strains, originating from 8 plant species grown in 13 locations in Serbia and one in Montenegro. All strains contained 14:0 3OH fatty acid,characteristic for the “amylovora” group. According to fatty acid composition 39 strains were identified as E. amylovora as the first choice from the database. Due to their specific fatty acid composition, two strains were identified as E. amylovora, but as a second choice. Fatty acid analysis also showed that E. amylovora population from Serbia could be differentiated in three groups, designated in this study as α, β and γ. All strains originating from central or south Serbia, as well as four strains from north Serbia clustered into group α. Group β and γ contained only strains isolated in northern Serbia (Vojvodina. The results show that E. amylovora population in this area is heterogeneous and indicate pathogen introduction from different directions. Fatty acid analysis enabled identificationat species level, as well as new insights of heterogeneity of E. amylovora population.

  17. Analysis of the pelE promoter in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Gold, S; Nishio, S; Tsuyumu, S; Keen, N T

    1992-01-01

    The pelE gene of Erwinia chrysanthemi strain EC16 encodes an extracellular pectate lyase protein that is important in virulence on plants. Control of pelE expression is complex, because the gene is regulated by catabolite repression, substrate induction, and growth-phase inhibition. A Tn7-lux reporter gene system was employed to define DNA sequences comprising the pelE promoter. When EC16 cells were grown on medium containing sodium polypectate, pelE transcriptional start sites were observed only at 95 and 96 bases upstream of the translational start site. However, DNA sequences required for pelE expression were also shown by deletion analysis to reside between 196 and 215 base pairs upstream of the translational start site. In addition to these upstream elements, two putative operator sequences that interact with negative regulatory factors occurred downstream of the transcriptional start. Finally, deletion of three bases from a putative catabolite gene activator protein binding site in the pelE promoter eliminated activity. The data demonstrate that the pelE promoter is complex and suggest that it interacts with several regulatory proteins.

  18. Síntese de trans-resveratrol e controle de podridão em maçãs com uso de elicitores em pós-colheita Synthesis of trans-resveratrol and rotting control in apples with use of elicitors in post-harvest

    Directory of Open Access Journals (Sweden)

    Cláudia Kaehler Sautter

    2008-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da aplicação de elicitores abióticos na biossíntese de resveratrol e na indução de resistência à podridão póscolheita de maçãs 'Gala' e 'Fuji'. Foram realizados os tratamentos: radiação ultravioleta, fosfito e acibenzolar-Smetil - aplicados antes do armazenamento - e ozônio - aplicado intermitente durante o armazenamento. As condições de armazenamento foram: 'Gala', 1,5 kPa de O2 e 2,5 kPa de CO2, a 0,5±0,1ºC, por oito meses, e 'Fuji', 1,0 kPa de O2 e fosfito> irradiação UV-C> ozônio. Na maçã 'Gala', o fosfito reduz a ocorrência de podridão, porém, em ambas as cultivares, não há correlação entre síntese de trans-resveratrol e controle de podridão.The objective of this study was evaluate the effect of the application of abiotic elicitors of resveratrol in 'Gala' and 'Fuji' apples, and rotting control. The treatment was with ultraviolet irradiation, phosphite and acibenzolar-Smethyl, applied before controlled atmosphere storage and ozone, applied so intermittently during storage. The storage conditions were: 'Gala' (1.5 kPa O2 and 2.5 kPa CO2, at 0.5±0.1°C by eight months and 'Fuji' (1.0 kPa O2 and phosphite>UV-C irradiation>ozone. There isn't correlation between synthesis of trans-resveratrol and rotting control, but the phosphite controlled rot in 'Gala'.

  19. Whole-genome sequence of Pseudomonas fluorescens EK007-RG4, a promising biocontrol agent against a broad range of bacteria, including the fire blight bacterium Erwinia amylovora

    DEFF Research Database (Denmark)

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad

    2017-01-01

    Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several...

  20. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.

    Science.gov (United States)

    Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A

    2016-07-01

    Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.

  1. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae

    Directory of Open Access Journals (Sweden)

    Kuhl Heiner

    2010-06-01

    Full Text Available Abstract Background The genus Erwinia includes plant-associated pathogenic and non-pathogenic Enterobacteria. Important pathogens such as Erwinia amylovora, the causative agent of fire blight and E. pyrifoliae causing bacterial shoot blight of pear in Asia belong to this genus. The species E. tasmaniensis and E. billingiae are epiphytic bacteria and may represent antagonists for biocontrol of fire blight. The presence of genes that are putatively involved in virulence in E. amylovora and E. pyrifoliae is of special interest for these species in consequence. Results Here we provide the complete genome sequences of the pathogenic E. pyrifoliae strain Ep1/96 with a size of 4.1 Mb and of the non-pathogenic species E. billingiae strain Eb661 with a size of 5.4 Mb, de novo determined by conventional Sanger sequencing and next generation sequencing techniques. Genome comparison reveals large inversions resulting from homologous recombination events. Furthermore, comparison of deduced proteins highlights a relation of E. billingiae strain Eb661 to E. tasmaniensis strain Et1/99 and a distance to E. pyrifoliae for the overall gene content as well as for the presence of encoded proteins representing virulence factors for the pathogenic species. Pathogenicity of E. pyrifoliae is supposed to have evolved by accumulation of potential virulence factors. E. pyrifoliae carries factors for type III secretion and cell invasion. Other genes described as virulence factors for E. amylovora are involved in the production of exopolysaccharides, the utilization of plant metabolites such as sorbitol and sucrose. Some virulence-associated genes of the pathogenic species are present in E. tasmaniensis but mostly absent in E. billingiae. Conclusion The data of the genome analyses correspond to the pathogenic lifestyle of E. pyrifoliae and underlines the epiphytic localization of E. tasmaniensis and E. billingiae as a saprophyte.

  2. The suitability of Finnish climate for fire blight (Erwinia amylovora epidemics on apple

    Directory of Open Access Journals (Sweden)

    Mariela Marinova-Todorova

    2015-03-01

    Full Text Available Fire blight, which is an important disease of apples and pears, has never been detected in continental Finland. In this study the suitability of the Finnish climate for apple blossom blight infections by Erwinia amylovora was evaluated with the epidemiological model MaryblytTM. This was done in fourteen locations, and for two apple cultivars differing in flowering times. Climatic conditions were predicted to be suitable for blossom infections in 18 - 51% of the years, and the annual period of suitable conditions was predicted to last up to two to five days, depending on the location and apple cultivar. The suitable period was predicted to be longer in some locations in central Finland than in those in the southernmost parts of the country. Based on these results the official surveys that are carried out to confirm the absence of fire blight in Finland cannot be targeted only to some parts of the country.

  3. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis.

    Directory of Open Access Journals (Sweden)

    Bo G Lindberg

    2018-03-01

    Full Text Available Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB, JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic

  4. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  5. Partial purification of elicitors from Lentinula edodes basidiocarps protecting cucumber seedlings against Colletotrichum lagenarium

    Directory of Open Access Journals (Sweden)

    Di Piero Robson M.

    2006-01-01

    Full Text Available The shiitake mushroom (Lentinula edodes has been used in research involving the prevention and the control of human and plant diseases. In cucumber plants, treated with aqueous extracts from mushroom basidiocarps, there was a reduction in anthracnose severity caused by Colletotrichum lagenarium, and an increase in peroxidase activity in the leaves. With the aim of obtaining molecules of agronomic interest, the crude aqueous extract from L. edodes basidiocarp was fractioned with ammonium sulfate. The fraction corresponding to 40-80% of saturation (p40-80, the most effective in reducing anthracnose on cucumber cotyledons, was submitted to anion exchange chromatography (AEC. After AEC, six protein peaks were obtained and the peak V, containing 34% of the proteins present in p40-80, induced peroxidase increase in the cucumber cotyledons besides reducing anthracnose severity. Separation of peak V proteins by SDS-gel electrophoresis revealed the presence of more than one band in the gel. Thus, a partial purification of elicitors present in the L. edodes basidiocarp was achieved.

  6. Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection.

    Science.gov (United States)

    Showalter, A M; Bell, J N; Cramer, C L; Bailey, J A; Varner, J E; Lamb, C J

    1985-10-01

    Hydroxyproline-rich glycoproteins (HRGPs) are important structural components of plant cell walls and also accumulate in response to infection as an apparent defense mechanism. Accumulation of HRGP mRNA in biologically stressed bean (Phaseolus vulgaris L.) cells was monitored by blot hybridization with (32)P-labeled tomato genomic HRGP sequences. Elicitor treatment of suspension-cultured cells caused a marked increase in hybridizable HRGP mRNA. The response was less rapid but more prolonged than that observed for mRNAs encoding enzymes of phytoalexin biosynthesis. HRGP mRNA also accumulated during race:cultivar-specific interactions between bean hypocotyls and the partially biotrophic fungus Colletotrichum lindemuthianum, the causal agent of anthracnose. In an incompatible interaction (host resistant) there was an early increase in HRGP mRNA correlated with expression of hypersensitive resistance; whereas, in a compatible interaction (host susceptible), marked accumulation of HRGP mRNA occurred as a delayed response at the onset of lesion formation. In both interactions, mRNA accumulation was observed in uninfected cells distant from the site of fungal inoculation, indicating intercellular transmission of an elicitation signal.

  7. Substituted N-Phenylpyrazine-2-carboxamides, Their Synthesis and Evaluation as Herbicides and Abiotic Elicitors

    Directory of Open Access Journals (Sweden)

    Katarína Kráľová

    2007-12-01

    Full Text Available The condensation of substituted pyrazine-2-carboxylic acid chlorides with ring-substituted anilines yielded five substituted pyrazine-2-carboxylic acid amides. Thesynthesis, and analytical, lipophilicity and biological data of the newly synthesizedcompounds are presented in this paper. The photosynthesis inhibition, antialgal activityand the effect of a series of pyrazine derivatives as abiotic elicitors on the accumulation offlavonoids in a callus culture of Ononis arvensis (L. were investigated. The most activeinhibitor of the oxygen evolution rate in spinach chloroplasts was 6-chloro-pyrazine-2-carboxylic acid (3-iodo-4-methylphenyl-amide (2, IC50 = 51.0 μmol·L-1. The highestreduction of chlorophyll content in Chlorella vulgaris was found for 5-tert-butyl-N-(4-chloro-3-methylphenyl-pyrazine-2-carboxamide (3, IC50 = 44.0 μmol·L-1. The maximalflavonoid production (about 900% was reached after a twelve-hour elicitation processwith 6-chloropyrazine-2-carboxylic acid (3-iodo-4-methylphenyl-amide (2.

  8. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains.

    Science.gov (United States)

    Rodríguez, H; Gonzalez, T; Selman, G

    2001-11-30

    A genetic construction was carried out using the broad host range vector pKT230 and plasmid pMCG898, which encodes the Erwinia herbicola pyrroloquinoline quinone (PQQ) synthase, a gene involved in mineral phosphate solubilization (mps). The final construction was transformed and expressed in Escherichia coli MC1061, and the recombinant plasmids were transferred to Burkholderia cepacia IS-16 and Pseudomonas sp. PSS recipient cells by conjugation. Clones containing recombinant plasmids produced higher clearing halos in plates with insoluble phosphate as the unique (P) source, in comparison with those of strains without plasmids, demonstrating the heterologous expression of the E. herbicola gene in the recipient strains. This genetic manipulation allowed the increase in mps ability of both strains, enhancing their potentialities as growth promoters of agricultural crops. These results represent the first report on the application of the recombinant DNA methodology for the obtaining of improved phosphate solubilizing ability from rhizobacterial strains for biofertilization purposes.

  9. The Status of Erwinia amylovora in the Former Yugoslav Republics over the Past Two Decades

    Directory of Open Access Journals (Sweden)

    Mila Grahovac

    2013-01-01

    Full Text Available Erwinia amylovora, the causal agent of fire blight (FB on fruit trees and ornamentalplants, rapidly spread across eastern Mediterranean countries in the early 1980s. This quarantinebacterium probably arrived in the southern parts of the former Yugoslavia (nowFYR Macedonia from Greece. Based on symptoms, and isolation and identification data, itwas concluded that Erwinia amylovora was the causal agent of pear drying in Macedonia(1989. It was the first experimental confirmation of a presence of E. amylovora in the territoryof the former Yugoslavia. The presence of E. amylovora was also proved in Serbia thatsame year. In Bosnia and Herzegovina, FB was detected during 1990. Based on an officialreport filed with the Federal Ministry of Agriculture in Belgrade, the presence of E. amylovorain Yugoslavia was confirmed (EPPO – Reporting Service, 1991. Therefore, the presenceof the bacterium E. amylovora in the territory of Yugoslavia was officially confirmedin 1990. In Croatia, FB was first observed in villages near the border on Serbia in 1995.In Montenegro, FB was first detected in 1996. In Slovenia, FB appeared as late as in 2001.E. amylovora is now present on 10 hosts (pear, wild pear, apple, quince, medlar, mountainash,hawthorn, firethorn, cotoneaster and Japanese quince in the territory ofthe former Yugoslav republics. Based on literature data, losses caused by FB in theformer Yugoslav republics in the period 1989-1992 were estimated at about12,000,000 DEM (mostly in Macedonia and in the period 1992–1996 at 6,000,000 DEM.Total damage in a more recent epiphytotic year in Slovenia (2003 was estimated atabout 474,200 EUR.Conventional and up-to-date rapid methods (PCR, ELISA and IF, BIOLOG and API System,FAME and SDS-PAGE have been used to identify E. amylovora. Mainly preventive measures have been used to control E. amylovora in the former Yugoslav republics. Spraying withcopper products has been practiced during the dormant period and in early

  10. Preharvest Application of Methyl Jasmonate as an Elicitor Improves the Yield and Phenolic Content of Artichoke.

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Valero, Daniel; Martínez-Romero, Domingo; Castillo, Salvador; Giménez, María José; García-Pastor, Maria Emma; Serrano, María; Zapata, Pedro Javier

    2017-10-25

    The effects of methyl jasmonate (MeJa) treatment as an elicitor of artichoke plants [Cynara cardunculus var. scolymus (L.) Fiori] on the yield and quality attributes of artichokes, especially those related to individual phenolic content and antioxidant activity, at two harvest dates and along storage were analyzed in this research. Plants treated gave a higher yield of artichokes in comparison to control plants, with 0.55 kg more per plant. MeJa treatment also increased artichoke quality and phenolic content in the edible fraction at harvest and during storage at 2 °C for 28 days as a result of the accumulation of hydroxycinnamic acids and luteolin derivatives. In addition, antioxidant activity was enhanced by MeJa treatment and correlated with the total phenolic content. Results suggest that MeJa foliar application could be a simple and practical tool to improve the yield and phytochemical content on artichokes, with elicitation being a cheap and environmentally friendly procedure to improve the health-beneficial effects of artichoke consumption.

  11. Improved health-relevant functionality in dark germinated Mucuna pruriens sprouts by elicitation with peptide and phytochemical elicitors.

    Science.gov (United States)

    Randhir, Reena; Kwon, Young-In; Shetty, Kalidas

    2009-10-01

    The health-relevant functionality of Mucuna pruriens was improved by priming the seeds with elicitors of the pentose phosphate pathway (PPP) such as fish protein hydrolysates (FPHs), lactoferrin (LF) and oregano extract (OE) followed by dark germination. FPH elicited the highest phenolic content of 19 mg/g FW on day 1, which was 38% higher than control sprouts. OE enhanced Parkinson's disease-relevant L-DOPA content by 33% on day 1 compared to control sprouts. Anti-diabetes-relevant alpha-amylase inhibition percent (AIP) and alpha-glucosidase inhibition percent (GIP) were high in the cotyledons and decreased following elicitation and sprouting. For potential anti-diabetic applications, low AIP and high GIP with moderate L-DOPA content on day 4 of dark germination could be optimal. Improved L-DOPA concentrations in a soluble phenolic and antioxidant-rich M. pruriens background on day 1 sprouts have potential for Parkinson's disease management.

  12. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  13. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2008-12-01

    Full Text Available Abstract Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE or methyl jasmonate (MJ. From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2 and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.

  14. Effects on grape amino acid concentration through foliar application of three different elicitors.

    Science.gov (United States)

    Gutiérrez-Gamboa, G; Portu, J; Santamaría, P; López, R; Garde-Cerdán, T

    2017-09-01

    Elicitors play an important role in the defense against pathogens as an alternative to chemical pesticides by increasing secondary metabolites. Their effect on grape amino acid has been little investigated. Thus, the aim of this research was to study the influence of methyl jasmonate (MeJ), chitosan (CHT), and a yeast extract (YE) on grape amino acid composition, through foliar applications to grapevines. The must amino acid concentration was analyzed by HPLC. The results showed that CHT and YE treatments decreased the must concentration of several amino acids, affecting total amino acid content (from 2364 to 1961, and 1818mg/L, respectively). However, MeJ treatment had a slight effect on grape amino acid content, increasing the concentration of Met (from 8.95 to 12.13mg/L) and Phe (from 7.96 to 9.29mg/L). It seems to be that, the resistance induction through CHT and YE treatments results in physiological costs to grapevines associated with a decrease on grape amino acid concentration. Consequently, MeJ applications, as a viticultural practice, could be a better tool than CHT and YE treatments, because did not affect grape amino acid concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Azadirachtin biosynthesis induction in Azadirachta indica A. Juss cotyledonary calli with elicitor agents

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-04-01

    Full Text Available The use of cell and plant tissues culture techniques to produce economically important active metabolites has been growing. Among these substances, azadirachtin (AZA, produced by the neem tree (Azadirachta indica, has received considerable attention due to its bioinsecticide action. The main goal of this work was to analyze the AZA levels in neem cotyledonary calli. The calli were grown in agitated Woody Plant Medium (WPM liquid medium, supplemented with glucose (Gl, hydrolyzed casein (HC and methyl jasmonate (MeJ as elicitor agent. An interaction was observed between these substances, depending on in vitro cultivation time with orbital agitation. The highest concentrations (average of 0.2470 µg g-1 of AZA were produced in the first and second weeks of culture when the cell mass was grown in a medium with 2% Gl v/v, 500 mg L-1 HC and 100 µM of MeJ. This corresponded to approximately 57% of the AZA content stored in the donor plants seeds, used as a source of explants to induce in vitro callus formation. It was concluded that the nutrition, as well as the concentration of MeJ as signal transduction of secondary metabolism in neem cells, might influence the AZA content produced in vitro.

  16. Two novel antimicrobial defensins from rice identified by gene coexpression network analyses.

    Science.gov (United States)

    Tantong, Supaluk; Pringsulaka, Onanong; Weerawanich, Kamonwan; Meeprasert, Arthitaya; Rungrotmongkol, Thanyada; Sarnthima, Rakrudee; Roytrakul, Sittiruk; Sirikantaramas, Supaart

    2016-10-01

    Defensins form an antimicrobial peptides (AMP) family, and have been widely studied in various plants because of their considerable inhibitory functions. However, their roles in rice (Oryza sativa L.) have not been characterized, even though rice is one of the most important staple crops that is susceptible to damaging infections. Additionally, a previous study identified 598 rice genes encoding cysteine-rich peptides, suggesting there are several uncharacterized AMPs in rice. We performed in silico gene expression and coexpression network analyses of all genes encoding defensin and defensin-like peptides, and determined that OsDEF7 and OsDEF8 are coexpressed with pathogen-responsive genes. Recombinant OsDEF7 and OsDEF8 could form homodimers. They inhibited the growth of the bacteria Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Erwinia carotovora subsp. atroseptica with minimum inhibitory concentration (MIC) ranging from 0.6 to 63μg/mL. However, these OsDEFs are weakly active against the phytopathogenic fungi Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense. This study describes a useful method for identifying potential plant AMPs with biological activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.

    Science.gov (United States)

    Osusky, Milan; Osuska, Lubica; Kay, William; Misra, Santosh

    2005-08-01

    Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.

  18. Definition of the Common and Divergent Steps in Carbapenem β-Lactam Antibiotic Biosynthesis

    Science.gov (United States)

    Bodner, Micah J.; Li, Rongfeng; Phelan, Ryan M.; Freeman, Michael F.; Moshos, Kristos A.; Lloyd, Evan P.

    2012-01-01

    Approximately 50 naturally occurring carbapenem β-lactam antibiotics are known. All but one of these have been isolated from Streptomyces species and are disubstituted structural variants of a simple core that is synthesized by Pectobacterium carotovorum (Erwinia carotovora), a phylogenetically distant plant pathogen. While the biosynthesis of the simple carbapenem, (5R)-carbapen-2-em-3-carboxylic acid, is impressively efficient requiring only three enzymes, CarA, CarB and CarC, the formation of thienamycin, one of the former group of metabolites from Streptomyces, is markedly more complex. Despite their phylogenetic separation, bioinformatic analysis of the encoding gene clusters suggests that the two pathways could be related. Here we demonstrate with gene swapping, stereochemical and kinetics experiments that CarB and CarA and their S. cattleya orthologues, ThnE and ThnM, respectively, are functionally and stereochemically equivalent, although their catalytic efficiencies differ. The biosynthetic pathways, therefore, to thienamycin, and likely to the other disubstituted carbapenems, and to the simplest carbapenem, (5R)-carbapen-2-em-3-carboxylic acid, are initiated in the same manner, but share only two common steps before diverging. PMID:21913298

  19. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  20. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  1. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems.

    Science.gov (United States)

    Lee, Jae Hoon; Ancona, Veronica; Zhao, Youfu

    2018-04-01

    Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  2. Seca dos ponteiros da goiabeira causada por Erwinia psidii: níveis de incidência e aspectos epidemiológicos Guava bacterial blight due to Erwinia psidii: incidence levels and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Abi Soares Anjos Marques

    2007-01-01

    Full Text Available Um dos fatores limitantes ao cultivo da goiabeira no Brasil é a 'seca dos ponteiros', causada por Erwinia psidii, presente nas regiões Sudeste e Centro-Oeste, onde se concentram grandes áreas produtoras. Considerando a pequena disponibilidade de informações sobre a epidemiologia e níveis de incidência dessa bacteriose, este estudo teve como objetivos: confirmar a distribuição e verificar a dispersão da seca dos ponteiros da goiabeira no Distrito Federal; investigar o efeito da temperatura sobre a multiplicação in vitro de E. psidii; desenvolver um teste de patogenicidade prático e eficiente e avaliar a sobrevivência in vitro da bactéria em diferentes substratos. A doença foi identificada em 56% das propriedades produtoras avaliadas no DF, com 81,9% de correlação entre a presença de sintomas e o diagnóstico laboratorial. A melhor faixa de temperatura para multiplicação de E. psidii foi de 24 a 33 ºC, e a bactéria permaneceu viável por até 120 dias em suspensão em água. A inoculação da bactéria em folhas ou hastes destacadas levou ao aparecimento de sintomas a partir do sétimo dia e mostrou-se eficiente como um teste rápido para se avaliar a patogenicidade de isolados.A major disease that affects guava is 'bacterial blight', caused by Erwinia psidii, which has been reported in Southeastern and Central Regions of Brazil where the major producing areas are located. Considering the lack of information on epidemiology and incidence levels of this disease, the objectives of this study were to confirm the presence and to verify the spread of the disease in Distrito Federal (DF; to determine optimal temperature for in vitro multiplication of E. psidii; to develop a simple and effective method for pathogenicity testing and to evaluate in vitro bacterial survival on different substrates. The disease was detected in 56% of producing orchards evaluated in DF, with a correlation of 81, 9% between presence of symptoms and

  3. Perspectives de lutte contre les maladies des arbres fruitiers à pépins au moyen de substances naturelles inductrices d'une résistance systémique

    Directory of Open Access Journals (Sweden)

    Lateur M.

    2002-01-01

    Full Text Available Natural compounds used as elicitors of systemic induced resistance offer new prospects to control pome fruit tree diseases. This review presents a new way of plant protection for pome fruit tree diseases as a potential response to the very high use of pesticides in commercial production with the view to reduce their negative side-effects on environment and human health. Work is focused on examples of use of elicitors from natural origin which induce systemic resistance for controlling two important diseases as apple scab (Venturia inaequalis and fire blight (Erwinia amylovora. Many factors limit today their practical use: their efficacy is only partial and in interaction with plants and environment; much work has to be done to improve the formulation and to determine doses and rates of application, the right phenologic application times, and finally they are often submitted to the normal high standards of Plant Protection Products Regulations which are long, very expensive and not adapted to compounds which can have a very complex composition. In other hands, this new way of plant protection presents many potential advantages: using relatively simple, not expensive, non toxic natural compounds with a good image; polyvalent and broad field of action; non-specific and multi-side action which offer a good durability of action; systemic action in the plants during a relative long period of time and the possibility to control difficult bacterial diseases and more surprisingly viral diseases. The multiple advantages presented offer valuable prospects for a better friend-environmentally way to control pome fruit diseases in the next future.

  4. Genetic analysis of the pelA-pelE cluster encoding the acidic and basic pectate lyases in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Barras, F; Chatterjee, A K

    1987-10-01

    In Erwinia chrysanthemi (EC16) the clustered pelA and pelE genes encode an acidic (pI 4.2) and a basic (pI 10.0) pectate lyase (Pel), respectively. The pelA gene has been isolated on a 1.2 kb restriction fragment and the direction of transcription determined. DNA hybridization analysis showed that the pelE sequence shares DNA homology with pelA but not with pelB or pelC, two genes encoding other Pel species in EC16. Since Pel A and Pel E enzymes showed little similarity in terms of catalytic properties, it is proposed that pelA and pelE are duplicates which have highly diverged.

  5. fektivitas Penambahan Elisitor Asam Jasmonik dalam Peningkatan Sintesis Senyawa Bioaktif Andrografolid pada Kultur Suspensi Sel Sambiloto (Effectiveness of Jasmonic Acid Elicitor Addition for Andrographolide Synthesis Induction of Sambiloto Culture

    Directory of Open Access Journals (Sweden)

    Noor Aini Habibah

    2009-03-01

    Full Text Available In this research, we have studied synthesis of improvement of andrographolid bioactive compound on cell culture of sambiloto by addition of jasmonic acid. The essential problems in this research are firstly, the effects of addition of jasmonic acid either can induce or not andrographolide synthesis improvement of cell culture of sambiloto and secondly, to observe the largest content of andrographolide in jasmonic acid concentrations. Meanwhile, the purpose of this research are to observe the functions of jasmonic acid elicitor for induction of andrographolide synthesis improvement of cell culture of sambiloto and to optimize jasmonic acid concentrations which can produce the largest andrographolide content. The independent variable is concentration of addition of jasmonic acid on cell culture and the dependent variable are the growth of cell suspension culture and andrographolide bioactive content. Experiment result show that the optimum medium of sambiloto cell consist of Murashige & Skoog (1962 medium supplemented by 0,5 ppm kinetin and 2,4-D 5 ppm. The cell growth phases are the followings : lag phase at age of 0-5 days, exponential phase of 5-15 days, and stationary phase at age of longer than 15 days. The highest andrographolide was 4,66 x 10-2 reached in cell culture was supplemented with 10 µM jasmonic acid. Keywords : andrographolide, sambiloto cell suspension culture, jasmonic acid elicitor.

  6. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  7. Kinetic Properties of α-Galactosidase and the Localization of Total Proteins in Erwinia chrysanthemi

    Directory of Open Access Journals (Sweden)

    John Morgan Brand

    2004-01-01

    Full Text Available Erwinia chrysanthemi is an enterobacterium that causes soft-rot in plants in general, resulting in enormous economic losses annually. For the pathogen to survive in the host plant, it has to use the readily assimilable compounds from the host fluids and degrade the host tissue. To accomplish this, E. chrysanthemi produces several extracellular and intracellular enzymes. Among the intracellular enzymes there is a special digestive class, the galactosidases, which can be either periplasmic or cytoplasmic. α-Galactosidase is known to degrade melibiose and raffinose into glucose and galactose, and into galactose and sucrose respectively. The aim of the present study was to investigate the kinetic properties of α-galactosidase in E. chrysanthemi, and the localization of total proteins, after culturing it in the presence of raffinose and melibiose. The α-galactosidase that degrades melibiose seems to be the same enzyme that is also responsible for the breakdown of raffinose in E. chrysanthemi. It is localized mainly in the cytoplasm with a fraction of between 2.4 and 5.4 % localized in the periplasm. The majority of E. chrysanthemi proteins have cytoplasmic localization.

  8. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  9. Carboxymethyl-cellulase from Erwinia chrysanthemi. II. Purification and partial characterization of an endo-. beta. -1,4-glucanase

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M.H.; Chambost, J.P.; Magnan, M.; Cattaneo, J.

    1984-01-01

    The extracellular carboxymethyl-cellulase of Erwinia chrysanthemi, strain 3665, had a marked tendency to form aggregates when concentration and/or storage time of culture supernatant were increased. In submitting an unconcentrated glycerol culture supernatant to ion exchange chromatography, one major endo-..beta..-1,4,-glucanase could be isolated with a high degree of purity and partially characterized. The molecular size was 45 kd. The pI was 4.3. The enzyme rapidly decreased the viscosity of carboxymethyl-cellulose with a slow increase in the reducing sugars produced. It displayed its highest activity towards carboxymethyl-cellulose at a pH between 6.2 and 7.5. It had a significant capacity to hydrolyze amorphous cellulose such as phosphoric acid-swollen cellulose. The major products of this degradation were cellobiose and cellotriose. It exhibited a very low activity on microcrystalline cellulose. Glucose and cellobiose did not affect significantly its activity against carboxymethyl-cellulose. 21 references.

  10. Diversity of plant defense elicitor peptides within the Rosaceae.

    Science.gov (United States)

    Ruiz, Cristina; Nadal, Anna; Foix, Laura; Montesinos, Laura; Montesinos, Emilio; Pla, Maria

    2018-01-23

    Plant elicitor peptides (Peps) are endogenous molecules that induce and amplify the first line of inducible plant defense, known as pattern-triggered immunity, contributing to protect plants against attack by bacteria, fungi and herbivores. Pep topic application and transgenic expression have been found to enhance disease resistance in a small number of model plant-pathogen systems. The action of Peps relies on perception by specific receptors, so displaying a family-specific activity. Recently, the presence and activity of Peps within the Rosaceae has been demonstrated. Here we characterized the population of Pep sequences within the economically important plant family of Rosaceae, with special emphasis on the Amygdaleae and Pyreae tribes, which include the most relevant edible species such as apple, pear and peach, and numerous ornamental and wild species (e.g. photinia, firethorn and hawthorn). The systematic experimental search for Pep and the corresponding precursor PROPEP sequences within 36 Amygdaleae and Pyreae species, and 100 cultivars had a highly homogeneous pattern, with two tribe-specific Pep types per plant, i.e. Pep1 and Pep2 (Amygdaleae) or Pep3 and Pep4 (Pyreae). Pep2 and Pep3 are highly conserved, reaching identity percentages similar to those of genes used in plant phylogenetic analyses, while Pep1 and Pep4 are somewhat more variable, with similar values to the corresponding PROPEPs. In contrast to Pep3 and Pep4, Pep1 and Pep2 sequences of different species paralleled their phylogenetic relationships, and putative ancestor sequences were identified. The large amount of sequences allowed refining of a C-terminal consensus sequence that would support the protective activity of Pep1-4 in a Prunus spp. and Xanthomonas arboricola pv. pruni system. Moreover, tribe-specific consensus sequences were deduced at the center and C-terminal regions of Peps, which might explain the higher protection efficiencies described upon topic treatments with Peps from

  11. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    International Nuclear Information System (INIS)

    Lim, Hyoun-Sub; Nam, Jiryun; Seo, Eun-Young; Nam, Moon; Vaira, Anna Maria; Bae, Hanhong; Jang, Chan-Yong; Lee, Cheol Ho; Kim, Hong Gi; Roh, Mark; Hammond, John

    2014-01-01

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP SP ) with that from AltMV-Po (CP Po ) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP Po [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP SP but not CP Po interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP SP than CP Po in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein

  12. Efecto de la aplicación de elicitores sobre la producción de 4β-hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L.

    OpenAIRE

    Piñeros-Castro, Yineth; Otálvaro-Álvarez, Ángela; Velásquez-Lozano, Mario

    2009-01-01

    Objetivo: Estudiar la producción del metabolito 4β-hidroxiwithanólido E, mediante el cultivo in vitro de raíces transformadas de uchuva (Physalis peruviana L.) y evaluar el efecto de la influencia de la aplicación de diferentes elicitores sobre la producción de dicho metabolito. Materiales y métodos: Se obtuvieron raíces transformadas de Physalis peruviana L. mediante infección con Agrobacterium rhizogenes C106. Se cultivaron las raíces transformadas en medio líquido Murashige & Skoog, durant...

  13. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-07-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.

  14. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  15. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence

    Directory of Open Access Journals (Sweden)

    Kay eGully

    2015-01-01

    Full Text Available Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type plants showed a Pep-triggered early onset of chlorophyll breakdown and leaf yellowing whereas pepr1 pepr2 double mutant plants were insensitive. In addition, this response was dependent on ethylene signaling and inhibited by the addition of cytokinins. Notably, addition of the bacterial elicitors flg22 or elf18, both potent inducers of pattern-triggered immunity, did not provoke an early onset of leaf senescence.Continuous darkness leads to energy deprivation and starvation and therewith promotes leaf senescence. We found that continuous darkness also strongly induced PROPEP3 transcription. Moreover, Pep-perception led to a rapid induction of PAO, APG7 and APG8a, genes indispensable for chlorophyll degradation as well as autophagy, respectively, and all three hallmarks of starvation and senescence. Notably, addition of sucrose as a source of energy inhibited the Pep-triggered early onset of senescence. In conclusion, we report that Pep-perception accelerates dark/starvation-induced senescence via an early induction of chlorophyll degradation and autophagy. This represents a novel and unique characteristic of PEPR signaling, unrelated to pattern-triggered immunity.

  16. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    Science.gov (United States)

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2018-01-01

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf' lettuce.

    Science.gov (United States)

    Allende, Ana; McEvoy, James L; Luo, Yaguang; Artes, Francisco; Wang, Chien Y

    2006-05-01

    The use of UV-C radiation treatments to inhibit the microbial growth and extend the shelf-life of minimally processed 'Red Oak Leaf' lettuce was investigated. Initially, UV-C resistance of 20 bacterial strains from different genera often associated with fresh produce (Enterobacter, Erwinia, Escherichia, Leuconostoc, Pantoea, Pseudomonas, Rahnela, Salmonella, Serratia and Yersinia) were tested in vitro. Most of the bacterial strains were inhibited with the minimum dose (30 J m(-2)). Erwinia carotovora, Leuconostoc carnosum, Salmonella typhimurium, and Yersinia aldovae were the most resistant strains requiring a UV-C dose of 85 J m(-2) to completely inhibit growth. An in vivo study consisted of treating minimally processed 'Red Oak Leaf' lettuce (Lactuca sativa) with UV-C at three radiation doses (1.18, 2.37 and 7.11 kJ m(-2)) on each side of the leaves and storing the product under passive MAP conditions at 5 degrees C for up to 10 days. The gas composition inside packages varied significantly among the treatments, with CO2 concentrations positively and O2 concentrations negatively correlating with the radiation dose. All the radiation doses were effective in reducing the natural microflora of the product, although the highest doses showed the greatest microbial inhibitions. Taking into account the microbial limit set by Spanish legislation [Boletín Oficial del Estado (BOE), 2001. Normas de higiene para la elaboración, distribución y comercio de comidas preparadas, Madrid, Spain, Real Decreto 3484/2000, pp. 1435-1441], all UV-C treatments extended the shelf-life of the product. However, the 7.11 kJ m(-2) dose induced tissue softening and browning after 7 days of storage at 5 degrees C. Therefore, the use of two sided UV-C radiation, at the proper dose, is effective in reducing the natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf' lettuce.

  18. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Science.gov (United States)

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  19. Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses.

    Science.gov (United States)

    Yang, Ming-Hua; Lin, Yi-Ju; Kuo, Chang-Hsin; Ku, Kuo-Lung

    2010-09-08

    Phytoalexins t-resveratrol and t-piceatannol, the well-known health-promoting active components in plants, are secondary metabolites generated upon biotic or abiotic stresses. We have reported UV-irradiated peanut callus is a potent means to produce these compounds (J. Agric. Food Chem. 2005, 53, 3877). In this work, the effects of fungi and chemical elicitors on induction of t-resveratrol and t-piceatannol were examined. Results showed the investigated fungi Botryodiplodia theobromae and Reishi Ganoderma lucidum were generally more effective than chemical stress methyl jasmonate, salicylic acid, and sucrose. As high as 15.46+/-9.85 microg of t-resveratrol and 6.93+/-2.03 microg of t-piceatannol could be elicited in each gram of callus by sterilized G. lucidum mycelium (80 mg). Although much more sterilized G. ludicum mycelia was required to induce similar level of t-resveratrol and t-piceatannol in comparison to the sterilized B. theobromae mycelia (1 mg), uptake of the G. ludicum mycelium may provide a variety of health-promoting effects. Our findings suggest G. ludicum mycelium-treated peanut callus is a good source of bioactive components.

  20. Quantifying key parameters as elicitors for alternate fruit bearing in cv. 'Elstar' apple trees.

    Science.gov (United States)

    Krasniqi, Anne-Lena; Damerow, Lutz; Kunz, Achim; Blanke, Michael M

    2013-11-01

    The commonly known alternate bearing, i.e. year-to-year change of large and small yields of fruit tree crops worldwide, is often induced by abiotic stress such as late frost, which will eliminate flowers or fruitlets. This study presents an alternative form, biotic biennial bearing, i.e. change of large and small yields of the same trees within the same tree row in the same year. Three methods were developed or modified for the analysis of the number of flower clusters and yield of 2086 apple (Malus domestica Borkh.) cv. 'Elstar' trees. The first method, i.e., based on intersect between yield in year x and year x+1 and flower clusters in year x, yielded 91-106 flower clusters, whereas the second method, i.e., mean yield in year x and year x+1, resulted in a range of 72-133 flower clusters, or 9.6kg/tree necessary for sustainable cultivation of apple cv. 'Elstar'. The third 'biennial bearing index' (BBI), was calculated in three ways as the ratio of differences in tree yields to cumulative tree yield, for individual trees (rather than orchard average) to demonstrate the tree-to-tree alternation. A scheme for the possible underlying regulatory mechanisms was developed, which includes potential elicitors such as light deprivation and subsequent lack of flower initiation, are discussed as a possible result of polar basipetal GA7 transport, cytokinin level in the xylem and phloem and down-regulation of the gene expression of the flowering gene. Suggested countermeasures included early chemical or mechanical thinning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Abscisic Acid Negatively Regulates Elicitor-Induced Synthesis of Capsidiol in Wild Tobacco1[W

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-01-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8′-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8′-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants. PMID:19420326

  2. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea

    Science.gov (United States)

    Chen, Fei; Ren, Cheng-Gang; Zhou, Tong; Wei, Yu-Jia; Dai, Chuan-Chao

    2016-10-01

    Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26-42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants.

  3. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-01-01

    Full Text Available Green leaf volatiles (GLV prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA. In maize this response is specifically linked to insect elicitor (IE-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA, caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA.

  4. PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Shevchik, Vladimir E; Hugouvieux-Cotte-Pattat, Nicole

    2003-05-01

    Erwinia chrysanthemi causes soft-rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. Pectin is a complex polysaccharide. The main chain is constituted of galacturonate residues, and some of them are modified by methyl and/or acetyl esterification. Esterases are necessary to remove these modifications and, thus, to facilitate the further degradation of the polysaccharidic chain. In addition to PaeY, the first pectin acetylesterase identified in the E. chrysanthemi strain 3937, we showed that this bacterium produces a second pectin acetylesterase encoded by the gene paeX. The paeX open reading frame encodes a 322-residue precursor protein of 34,940 Da, including a 21-amino-acid signal peptide. Analysis of paeX transcription, by using gene fusions, revealed that it is induced by pectic catabolic products and affected by catabolite repression. The expression of paeX is regulated by the repressor KdgR, which controls all the steps of pectin catabolism; by the repressor PecS, which controls most of the pectinase genes; and by catabolite regulatory protein, the global activator of sugar catabolism. The paeX gene is situated in a cluster of genes involved in the catabolism and transport of pectic oligomers. In induced conditions, the two contiguous genes kdgM, encoding an oligogalacturonate-specific porin, and paeX are both transcribed as an operon from a promoter proximal to kdgM, but transcription of paeX can also be uncoupled from that of kdgM in noninduced conditions. PaeX is homologous to the C-terminal domain of the Butyrivibrio fibriosolvens xylanase XynB and to a few bacterial esterases. PaeX contains the typical box (GxSxG) corresponding to the active site of the large family of serine hydrolases. Purified PaeX releases acetate from various synthetic substrates and from sugar beet pectin. The PaeX activity increased after previous depolymerization and demethylation of pectin, indicating that its preferred substrates are

  5. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Directory of Open Access Journals (Sweden)

    Rachel A Mann

    Full Text Available The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus and strains infecting Rubus (raspberries and blackberries. Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains, the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  6. Development of a method for testing the susceptibility of Salix alba to Erwinia salicis

    Energy Technology Data Exchange (ETDEWEB)

    Dingjan-Versteegh, A M; de Kam, M [Institute for Forestry and Urban Ecology, Wageningen (Netherlands)

    1990-01-01

    Salix is one of the faster growing tree species that has potential for biomass plantations in Europe. This potential, however, is limited by the occurrence of a vascular disease caused by the bacterium Erwinia salicis (Day) Chester. Selection and breeding of disease resistance is hampered by insufficient knowledge of the infection biology and ecology of the pathogen. The availability of specific antisera is of vital importance in the study of the infection biology and in monitoring bacterial populations inside the host. Therefore, one of the aims of the research was to improve the antisera. The composition of the soluble antigens of E. salicis was studied by enzyme-linked immunosorbent assay (ELISA), polyacrylamide gel electrophoresis (PAGE) and electro-immunoblotting. Antiserum prepared to whole cells of E. salicis mainly contains antibodies to bacterial surface antigens or to soluble antigens. ELISA demonstrated the presence of bacterial soluble antigens in leaves of diseased willow trees and also in leaves of willow shoots which were placed in a solution of bacterial soluble antigens. An inoculation experiment was carried out to ascertain if there is a statistically significant correlation between plant water potential and response to artificial inoculation with E. salicis. To elucidate the mechanisms involved in pathogenicity and virulence of E. salicis, attempts were made to isolate the plasmids of the bacterium, however, it appears that E. salicis does not have plasmids. In collaboration with Ch. Maceau (21), the E. salicis genome was isolated and a genomic library was constructed in E. coli. 28 refs., 10 figs., 4 tabs.

  7. Indução de resistência à podridão-parda em pêssegos pelo uso de eliciadores em pós-colheita Induction of resistance to brown-rot on peaches by elicitors use in post-harvest

    Directory of Open Access Journals (Sweden)

    Moeses Andrigo Danner

    2008-07-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito dos eliciadores acibenzolar-S-metil e proteína harpina, aplicados em pós-colheita, na indução de resistência sistêmica à podridão-parda em pêssegos. O delineamento experimental foi inteiramente casualizado, com quatro repetições, em parcelas subdivididas - com e sem ferimentos provocados aos frutos -, e os tratamentos foram constituídos por: acibenzolar-S-metil (50 mg do i.a. L-1, dois produtos comerciais com proteína harpina (80 mg do i.a. L-1 e uma testemunha (água destilada. Os frutos foram pulverizados, individualmente, com 1 mL de solução aquosa com os tratamentos e, após 12 horas, efetuou-se a inoculação com Monilinia fructicola (0,2 mL da suspensão com concentração de 10(5 esporos mL-1, em cada lado do fruto. Após 60 horas da inoculação, avaliaram-se: a área lesionada, a esporulação e o percentual de controle. Determinaram-se os teores de proteínas totais, açúcares redutores e totais, fenóis, além da atividade da enzima fenilalanina amônia-liase (FAL. Os eliciadores induziram resistência dos frutos a M. fructicola, com redução do desenvolvimento do fungo. O uso dos eliciadores aumentou os teores dos parâmetros bioquímicos avaliados e a atividade da FAL, que esteve relacionada à redução da área lesionada em pêssegos. Os indutores podem contribuir para o manejo integrado da podridão-parda em pêssegos, em pós-colheita.The objective of this work was to evaluate the effects of acibenzolar-S-methyl and harpin protein elicitors, applied in post-harvest, in systemic resistance induction to brown-rot, on peaches. A completely randomized design was utilized, with four replicates, in a split plot scheme - injured or noninjured peaches -, and treatments were constituted of : acibenzolar-S-methyl (50 mg of a.i. L-1, two commercial products with harpin protein (80 mg of a.i. L-1; and control (distilled water. Peaches were sprayed individually with 1 mL of

  8. Expression of the dspA/E gene of Erwinia amylovora in non-host plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hasan Murat Aksoy

    2017-01-01

    Full Text Available In the Erwinia amylovora genome, the hrp gene cluster containing the dspA/E/EB/F operon plays a crucial role in mediating the pathogenicity and the hypersensitive response (HR in the host plant. The role of the dspA/E gene derived from E. amylovora was investigated by monitoring the expression of the β-glucuronidase (GUS reporter system in transgenic Arabidopsis thaliana cv. Pri-Gus seedlings. A mutant ΔdspA/E strain of E. amylovora was generated to contain a deletion of the dspA/E gene for the purpose of this study. Two-week-old seedlings of GUS transgenic Arabidopsis were vacuum-infiltrated with the wild-type and the mutant (ΔdspA/E E. amylovora strains. The Arabidopsis seedlings were fixed and stained for GUS activity after 3–5 days following infiltration. The appearance of dense spots with blue staining on the Arabidopsis leaves indicated the typical characteristic of GUS activity. This observation indicated that the wild-type E. amylovora strain had induced a successful and efficient infection on the A. thaliana Pri-Gus leaves. In contrast, there was no visible GUS expression on leaf tissues which were inoculated with the ΔdspA/E mutant E. amylovora strain. These results indicate that the dspA/E gene is required by the bacterial cells to induce HR in non-host plants.

  9. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    Science.gov (United States)

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Estudio por HPLC de la acción de dos elicitores bióticos sobre la producción in vitro de metabolitos secundarios en células de clavel (Dianthus canophyilus L

    Directory of Open Access Journals (Sweden)

    Blanca Ligia Higuera M.

    2010-09-01

    Full Text Available Como parte de la investigación que busca contribuir al estudio de los mecanismos de defensa que operan en la interacción clavel (Dianthus caryophyllus L. - Fusarium oxysporum f. sp. dianthi, se evaluó la producción in vitro de metabolitos secundarios asociados con resistencia del clavel. Para ello se usaron cultivos de células en suspensión de variedades de clavel resistente (var. Candy y susceptible (var. Rosana, elicitadas durante 3 y 15 días con dos elicitores bióticos, ácido fusárico y filtrado de medio de cultivo del hongo.

  11. Genetic and virulence variability among Erwinia tracheiphila strains recovered from different cucurbit hosts.

    Science.gov (United States)

    Rojas, E Saalau; Dixon, P M; Batzer, J C; Gleason, M L

    2013-09-01

    The causal agent of cucurbit bacterial wilt, Erwinia tracheiphila, has a wide host range in the family Cucurbitaceae, including economically important crops such as muskmelon (Cucumis melo), cucumber (C. sativus), and squash (Cucurbita spp.). Genetic variability of 69 E. tracheiphila strains was investigated by repetitive-element polymerase chain reaction (rep-PCR) using BOXA1R and ERIC1-2 primers. Fingerprint profiles revealed significant variability associated with crop host; strains isolated from Cucumis spp. were clearly distinguishable from Cucurbita spp.-isolated strains regardless of geographic origin. Twelve E. tracheiphila strains isolated from muskmelon, cucumber, or summer squash were inoculated onto muskmelon and summer squash seedlings, followed by incubation in a growth chamber. Wilt symptoms were assessed over 3 weeks, strains were reisolated, and rep-PCR profiles were compared with the inoculated strains. Wilting occurred significantly faster when seedlings were inoculated with strains that originated from the same crop host genus (P<0.001). In the first run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon seedlings at a median of 7.8 and 5.6 days after inoculation (dai), respectively. Summer squash seedlings wilted 18.0, 15.7, and 5.7 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. In a second run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon at 7.0 and 6.9 dai, respectively, whereas summer squash seedlings wilted at 23.6, 29.0 and 9.0 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. Our results provide the first evidence of genetic diversity within E. tracheiphila and suggest that strain specificity is associated with plant host. This advance is a first step toward understanding the genetic and population structure of E. tracheiphila.

  12. Crystal structure of salt-tolerant glutaminase from Micrococcus luteus K-3 in the presence and absence of its product L-glutamate and its activator Tris.

    Science.gov (United States)

    Yoshimune, Kazuaki; Shirakihara, Yasuo; Wakayama, Mamoru; Yumoto, Isao

    2010-02-01

    Glutaminase from Micrococcus luteus K-3 [Micrococcus glutaminase (Mglu); 456 amino acid residues (aa); 48 kDa] is a salt-tolerant enzyme. Our previous study determined the structure of its major 42-kDa fragment. Here, using new crystallization conditions, we determined the structures of the intact enzyme in the presence and absence of its product L-glutamate and its activator Tris, which activates the enzyme by sixfold. With the exception of a 'lid' part (26-29 aa) and a few other short stretches, the structures were all very similar over the entire polypeptide chain. However, the presence of the ligands significantly reduced the length of the disordered regions: 41 aa in the unliganded structure (N), 21 aa for L-glutamate (G), 8 aa for Tris (T) and 6 aa for both L-glutamate and Tris (TG). L-glutamate was identified in both the G and TG structures, whereas Tris was only identified in the TG structure. Comparison of the glutamate-binding site between Mglu and salt-labile glutaminase (YbgJ) from Bacillus subtilis showed significantly smaller structural changes of the protein part in Mglu. A comparison of the substrate-binding pocket of Mglu, which is highly specific for L-glutamine, with that of Erwinia carotovora asparaginase, which has substrates other than L-glutamine, shows that Mglu has a larger substrate-binding pocket that prevents the binding of L-asparagine with proper interactions.

  13. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis.

    Science.gov (United States)

    Ouyang, L J; Li, L M

    2016-08-01

    N-acyl-homoserine lactones (AHLs) are metabolites of mostly gram-negative bacteria and are critical signaling molecules in bacterial quorum-sensing systems. At threshold concentrations, AHLs can activate the expression of pathogenic genes and induce diseases. Therefore, reducing AHL concentrations is a key point of disease control in plants. AHL-lactonase, which is expressed by aiiA, is widespread in Bacillus sp and can hydrolyze AHLs. In the present study, we cloned aiiA from Bacillus subtilis by PCR. A plant expression vector of aiiA was constructed and name Pcam-PPP3-aiiA, in which expression of aiiA was controlled by the pathogen-inducible plant promoter PPP3. The recombinant plasmid was transferred into Eucalyptus × urophylla × E. grandis by an Agrobacterium-mediated transformation. PCR and Southern blotting showed that aiiA was successfully integrated into the E. urophylla × E. grandis genome and its expression was induced by Ralstonia solanacearum 12 h after inoculation, as shown by reverse transcription-PCR. The transcription efficacy of aiiA increased 43.88-, 30.65-, and 18.95-fold after inoculation with R. solanacearum, Erwinia carotovora ssp. zeae (Sabet) and Cylindrocladium quinqueseptatum, respectively as shown by RT-real-time PCR. Transgenic E.urophylla × E.grandis expressing the AIIA protein exhibited significantly enhanced disease resistance compared to non-transgenic plants by delaying the onset of wilting and reducing the disease index.

  14. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ].

    Science.gov (United States)

    Romanovskaia, V A; Stoliar, S M; Malashenko, Iu R; Dodatko, T N

    2001-01-01

    The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacterium are indespensible inhabitants of the plant phyllosphere. Using maize Zea mays as a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicum APR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicum APR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicum cells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicum or M. extorquens did exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas camprestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense, and Agrobacterium tumifaciens). Neither epiphytic and soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, and M. fujisawaense catalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacterium can protect plants against adverse environmental factors.

  15. Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2010-05-01

    Full Text Available Abstract Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i. Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii.

  16. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis of two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.

  17. Reduction in bacterial ooze formation on immature fruitlets after preventive treatments of Fosethyl-Al against fire blight Erwinia amylovora.

    Science.gov (United States)

    Deckers, T; Schoofs, H; Verjans, W; De Maeyer, L

    2010-01-01

    Fire blight, caused by the bacterium Erwinia amylovora (Burill Winslow et al.), is a very important bacterial disease on apple and pear orchards with devastating effects in some production area and in some years. Fire blight control consists in a whole strategy of measures that should start with control measures in and around the fruit tree nurseries. Only the use of Vacciplant (Laminarin), an inducer of the self-defence mechanism, is registered in Belgium since 2009. In other European countries Fosethyl-Al has been registered for fire blight control. Recently, research trials have been done at Pcfruit research station for several years on the activity of ALiette (fosethyl-Al) against fire blight. Fosethyl-Al, also a plant defence enhancing molecule, applied preventively 3 times at a dose of 3.75 kg/ha standard orchard (3 x 3000 g a.i./ha standard orchard), showed a reduction in the host susceptibility and decreased the disease development on artificial inoculated flower clusters and shoots. Also a clear reduction in the ooze droplet formation on artificially inoculated immature fruitlets has been observed with this molecule. This reduction in the bacterial ooze formation is considered as a very important factor in the spread of the disease in the orchard.

  18. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Nasser, William; Reverchon, Sylvie; Vedel, Regine; Boccara, Martine

    2005-11-01

    Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases play a key role in soft rot symptoms; however, the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include HrpN (harpin), a heat-stable, glycine-rich hydrophilic protein, which is secreted by the type III secretion system. We investigated the expression of hrpN in E. chrysanthemi 3937 in various environmental conditions and different regulatory backgrounds. Using lacZ fusions, hrpN expression was markedly influenced by the carbon source, osmolarity, growth phase, and growth substrate. hrpN was repressed when pectinolysis started and negatively regulated by the repressors of pectate lyase synthesis, PecS and PecT. Primer extension data and in vitro DNA-protein interaction experiments support a model whereby PecS represses hrpN expression by binding to the hrpN regulatory region and inhibiting transcript elongation. The results suggest coordinated regulation of HrpN and pectate lyases by PecS and PecT. A putative model of the synthesis of these two virulence factors in E. chrysanthemi during pathogenesis is presented.

  20. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937).

    Science.gov (United States)

    Antúnez-Lamas, María; Cabrera-Ordóñez, Ezequiel; López-Solanilla, Emilia; Raposo, Rosa; Trelles-Salazar, Oswaldo; Rodríguez-Moreno, Andrés; Rodríguez-Palenzuela, Pablo

    2009-02-01

    Dickeya dadantii 3937 (ex Erwinia chrysanthemi), a member of the Enterobacteriaceae, causes soft rot in many economically important crops. A successful pathogen has to reach the interior of the plant in order to cause disease. To study the role of motility and chemotaxis in the pathogenicity of D. dadantii 3937, genes involved in the chemotactic signal transduction system (cheW, cheB, cheY and cheZ) and in the structure of the flagellar motor (motA) were mutagenized. All the mutant strains grew like the wild-type in culture media, and the production and secretion of pectolytic enzymes was not affected. As expected, the swimming ability of the mutant strains was reduced with respect to the wild-type: motA (94%), cheY (80%), cheW (74%), cheB (54%) and cheZ (48%). The virulence of the mutant strains was analysed in chicory, Saintpaulia and potato. The mutant strains were also tested for their capability to enter into Arabidopsis leaves. All the mutants showed a significant decrease of virulence in certain hosts; however, the degree of virulence reduction varied depending on the virulence assay. The ability to penetrate Arabidopsis leaves was impaired in all the mutants, whereas the capacity to colonize potato tubers after artificial inoculation was affected in only two mutant strains. In general, the virulence of the mutants could be ranked as motA

  1. The chills as a psychological construct: content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences.

    Science.gov (United States)

    Maruskin, Laura A; Thrash, Todd M; Elliot, Andrew J

    2012-07-01

    We examined the content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences of "the chills." In Study 1, participants described what it means to get the chills. A second sample sorted all references to physical sensations based on similarity. Cluster analysis identified 4 lower order clusters (goosebumps, tingling, coldness, shivers) and 2 higher order clusters ("goosetingles," "coldshivers"). In Study 2, factor analysis of questionnaire data supported a model with lower and higher order factors that corresponded to the Study 1 clusters. Goosetingles and coldshivers were predicted by approach-related traits (e.g., extraversion) and avoidance-related traits (e.g., neuroticism), respectively. In Study 3, analysis of narrative data replicated the goosetingles-coldshivers structure. Relative to coldshivers, goosetingles involved greater awe, surprise, and enjoyment and less disgust, fear, and sadness. In Study 4, analysis of diary data extended the goosetingles-coldshivers structure to between- and within-person levels of analysis. Goosetingles involved positive affects and was elicited by approach-related stimuli, whereas coldshivers involved negative affects and was elicited by avoidance-related stimuli. In Study 5, manipulation of exposure to self-actualization and self-annihilation elicited goosetingles and coldshivers, respectively. Goosetingles and coldshivers had positive and negative effects, respectively, on interpersonal closeness. In sum, diverse forms of evidence converge to indicate that the chills encompasses distinct approach- and avoidance-related constructs. Failure to distinguish these constructs explains null and inconsistent findings in the nascent literature. Goosetingles and coldshivers are posited to serve the function of signaling that an event in the environment is pertinent to one's most deep-seated hopes or fears. PsycINFO Database Record (c) 2012 APA, all rights reserved

  2. A complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Salomone-Stagni, Marco; Bartho, Joseph D; Polsinelli, Ivan; Bellini, Dom; Walsh, Martin A; Demitri, Nicola; Benini, Stefano

    2018-02-08

    The Gram-negative bacterium Erwinia amylovora is the etiological agent of fire blight, a devastating disease which affects Rosaceae such as apple, pear and quince. The siderophore desferrioxamine E plays an important role in bacterial pathogenesis by scavenging iron from the host. DfoJ, DfoA and DfoC are the enzymes responsible for desferrioxamine production starting from lysine. We have determined the crystal structures of each enzyme in the desferrioxamine E pathway and demonstrate that the biosynthesis involves the concerted action of DfoJ, followed by DfoA and lastly DfoC. These data provide the first crystal structures of a Group II pyridoxal-dependent lysine decarboxylase, a cadaverine monooxygenase and a desferrioxamine synthetase. DfoJ is a homodimer made up of three domains. Each monomer contributes to the completion of the active site, which is positioned at the dimer interface. DfoA is the first structure of a cadaverine monooxygenase. It forms homotetramers whose subunits are built by two domains: one for FAD and one for NADP + binding, the latter of which is formed by two subdomains. We propose a model for substrate binding and the role of residues 43-47 as gate keepers for FAD binding and the role of Arg97 in cofactors turnover. DfoC is the first structure of a desferrioxamine synthetase and the first of a multi-enzyme siderophore synthetase coupling an acyltransferase domain with a Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore domain (NIS). Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    KAUST Repository

    Lori, M.

    2015-05-22

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were also identified and characterized in more detail. Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility.

  4. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis.

    Science.gov (United States)

    Facey, Paul D; Méric, Guillaume; Hitchings, Matthew D; Pachebat, Justin A; Hegarty, Matt J; Chen, Xiaorui; Morgan, Laura V A; Hoeppner, James E; Whitten, Miranda M A; Kirk, William D J; Dyson, Paul J; Sheppard, Sam K; Del Sol, Ricardo

    2015-07-15

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. © The Author(s) 2015. Published by

  5. The pectin lyase-encoding gene (pnl) family from Glomerella cingulata: characterization of pnlA and its expression in yeast.

    Science.gov (United States)

    Templeton, M D; Sharrock, K R; Bowen, J K; Crowhurst, R N; Rikkerink, E H

    1994-05-03

    Oligodeoxyribonucleotide primers were designed from conserved amino acid (aa) sequences between pectin lyase D (PNLD) from Aspergillus niger and pectate lyases A and E (PELA/E) from Erwinia chrysanthemi. The polymerase chain reaction (PCR) was used with these primers to amplify genomic DNA from the plant pathogenic fungus Glomerella cingulata. Three different 220-bp fragments with homology to PNL-encoding genes from A. niger, and a 320-bp fragment with homology to PEL-encoding genes from Nicotiana tabacum and E. carotovora were cloned. One of the 220-bp PCR products (designated pnlA) was used as a probe to isolate a PNL-encoding gene from a lambda genomic DNA library prepared from G. cingulata. Nucleotide (nt) sequence data revealed that this gene has seven exons and codes for a putative 380-aa protein. The nt sequence of a cDNA clone, prepared using PCR, confirmed the presence of the six introns. The positions of the introns were different from the sites of the five introns present in the three PNL-encoding genes previously sequenced from A. niger. PNLA was synthesised in yeast by cloning the cDNA into the expression vector, pEMBLYex-4, and enzymatically active protein was secreted into the culture medium. Significantly higher expression was achieved when the context of the start codon, CACCATG, was mutated to CAAAATG, a consensus sequence commonly found in highly expressed yeast genes. The produced protein had an isoelectric point (pI) of 9.4, the same as that for the G. cingulata pnlA product.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Effect of oxygen on the growth and biofilm formation of Xylella fastidiosa in liquid media.

    Science.gov (United States)

    Shriner, Anthony D; Andersen, Peter C

    2014-12-01

    Xylella fastidiosa is a xylem-limited bacterial pathogen, and is the causative agent of Pierce's disease of grapevines and scorch diseases of many other plant species. The disease symptoms are putatively due to blocking of the transpiration stream by bacterial-induced biofilm formation and/or by the formation of plant-generated tylosis. Xylella fastidiosa has been classified as an obligate aerobe, which appears unusual given that dissolved O2 levels in the xylem during the growing season are often hypoxic (20-60 μmol L(-1)). We examined the growth and biofilm formation of three strains of X. fastidiosa under variable O2 conditions (21, 2.1, 0.21 and 0 % O2), in comparison to that of Pseudomonas syringae (obligate aerobe) and Erwinia carotovora (facultative anaerobe) under similar conditions. The growth of X. fastidiosa more closely resembled that of the facultative anaerobe, and not the obligate aerobe. Xanthomonas campestris, the closest genetic relative of X. fastidiosa, exhibited no growth in an N2 environment, whereas X. fastidiosa was capable of growing in an N2 environment in PW(+), CHARDS, and XDM2-PR media. The magnitude of growth and biofilm formation in the N2 (0 % O2) treatment was dependent on the specific medium. Additional studies involving the metabolism of X. fastidiosa in response to low O2 are warranted. Whether X. fastidiosa is classified as an obligate aerobe or a facultative anaerobe should be confirmed by gene activation and/or the quantification of the metabolic profiles under hypoxic conditions.

  7. MICROORGANISMOS BENÉFICOS EN EL CONTROL DE ENFERMEDADES EN JENGIBRE

    Directory of Open Access Journals (Sweden)

    Marena Chavarría

    2005-01-01

    Full Text Available En Peñas Blanca, San Ramón de Alajuela, se evaluó la acción supresora de las cepas de Trichoderma viride 2C-PR, Bacillus subtilis 002R y Streptomyces griseus 001, en el combate de Fusarium solani, Rhizoctonia solani, Pseudomonas sp y Erwinia carotovora, en plantas de jengibre, en comparación con fungicidas y bactericidas usados por el agricultor. Las aplicaciones se realizaron cada 15 días durante un periodo de 9 meses y cada semana cuando se presentó algún foco de infección. La duración del trabajo fue de 11 meses (febrero-diciembre. Se evaluó la sobrevivencia de los patógenos y los biocontroladores, para lo cual se realizaron análisis microbiológicos a los 4 y 9 meses de edad de cultivo; se evaluó además producción. En términos generales, se observó una tendencia a la disminución del inóculo de los patógenos en el tratamiento biológico, en comparación con el tratamiento químico en ambos muestreos, a excepción de F. solani en el primer muestreo. Al final del ensayo se pudo determinar la presencia de la cepa de Trichoderma con poblaciones de 4,5x108 conidios g-1, Bacillus con 6,1x1010 UFC ml-1 y Streptomyces fue la cepa que menos persistió en el campo, con una poblacion 2x101 ml-1.

  8. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae

    Directory of Open Access Journals (Sweden)

    Rita S. Valente

    2017-05-01

    Full Text Available Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora, two signaling networks—the N-acyl homoserine lactone (AHL quorum-sensing system and the Gac/Rsm signal transduction pathway—control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources.

  9. Gas chromatography coupled with mass spectrometric characterization of Curcuma longa: Protection against pathogenic microbes and lipid peroxidation in rat's tissue homogenate.

    Science.gov (United States)

    Hassan, Waseem; Gul, Shehnaz; Rehman, Shakilla; Kanwal, Farina; Afridi, Muhammad Siddique; Fazal, Hina; Shah, Ziarat; Rahman, Ataur; da Rocha, Joao B T

    2016-03-01

    The present study was designed to investigate the mineral content and antimicrobial activity of Curcuma Longa extracts and its essential oil. We also determined the lipid peroxidation inhibition activity of the ethanolic extract against sodium nitroprusside (SNP) induced thiobarbituric acid reactive species (TBARS) formation in rat's brain, kidney and liver homogenates. Major constituents of essential oil identified by gas chromatography and mass spectrometry (GCMS) were beta-sesquiphellandrene (38.69%), alpha-curcumene (18.44%) and p-mentha-1,4 (8)-diene (16.29%). Atomic absorption spectroscopy (AAS) was used for the quantitative estimation of Calcium (Ca), Magnesium (Mg), Iron (Fe), Copper (Cu), Zinc (Zn), Chromium (Cr), Nickel (Ni) and Manganese (Mn). The extract showed highest Mg (49.4 mg/l) concentration followed by Ca (35.42 mg/l) and Fe (1.27 mg/l). Our data revealed that the ethanolic extract of Curcuma Longa at 1-10 mg/kg significantly inhibited TBARS production in all tested homogenates. Crude extracts and essential oil were tested against three gram positive bacteria i.e. Bacillus subtilis, Bacillus atrophoeus, Staphylococcus aureus, six gram negative bacteria i.e. Escherichia coli, Klebsiella pneumonias, Salmonella typhi, Pseudomonas aeruginosa, Erwinia carotovora, Agrobacterium tumefaciens and one fungal strain namely Candida albicans by disc diffusion assay. Essential oil showed highest anti-microbial activity as compared to the crude extracts. The present study confirms the significant antimicrobial and antioxidant potential of the studied plant, which can be considered as a diet supplement for a variety of oxidative stress induced or infectious diseases.

  10. Transcriptional profiling of rice treated with MoHrip1 reveal the function of protein elicitor in enhancement of disease resistance and plant growth

    Directory of Open Access Journals (Sweden)

    Shun Lv

    2016-12-01

    Full Text Available MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS-based digital gene expression (DGE profiling was performed to collect the transcriptional data of differentially expressed genes induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA pathway, phytoalexin, transcription factors and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA pathway were activated, while the jasmonic acid (JA signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  11. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth.

    Science.gov (United States)

    Lv, Shun; Wang, Zhenzhen; Yang, Xiufen; Guo, Lihua; Qiu, Dewen; Zeng, Hongmei

    2016-01-01

    MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  12. The cinnamyl alcohol dehydrogenase (CAD gene family in flax (Linum usitatissimum L.: Insight from expression profiling of cads induced by elicitors in cultured flax cells

    Directory of Open Access Journals (Sweden)

    Eom Hee Seung

    2016-01-01

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD is a key enzyme in the biosynthesis of lignin and lignans as it catalyzes the final step of monolignol biosynthesis, using NADPH as a cofactor. In higher plants, CAD is encoded by a multigene family consisting of three major classes. Based on the recently released flax (Linum usitatissimum L. whole-genome sequences, in this study we identified six CAD family genes that contain an ADH_N domain and an ADH_zinc_N domain, which suggests that the putative flax CADs (LuCADs are zinc-dependent alcohol dehydrogenases and members of the plant CAD family. In addition, expression analysis using quantitative real-time PCR revealed spatial variations in the expression of LuCADs in different organs. Comparative analysis between LuCAD enzymatic activity and LuCAD transcripts indicates that the variation of LuCAD enzymatic activities by elicitors is reflected by transcription of LuCADs in flax suspension-cultured cells. Taken together, our genome-wide analysis of CAD genes and the expression profiling of these genes provide valuable information for understanding the function of CADs, and will assist future studies on the physiological role of monolignols associated with plant defense.

  13. Exploring new roles for the rpoS gene in the survival and virulence of the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Santander, Ricardo D; Monte-Serrano, Mercedes; Rodríguez-Herva, José J; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo; Biosca, Elena G

    2014-12-01

    Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Hommais, Florence; Oger-Desfeux, Christine; Van Gijsegem, Frédérique; Castang, Sandra; Ligori, Sandrine; Expert, Dominique; Nasser, William; Reverchon, Sylvie

    2008-11-01

    Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to pathogenicity and to a group of genes concerned with evading host defenses. Among the targets are the genes encoding plant cell wall-degrading enzymes and secretion systems and the genes involved in flagellar biosynthesis, biosurfactant production, and the oxidative stress response, as well as genes encoding toxin-like factors such as NipE and hemolysin-coregulated proteins. In vitro experiments demonstrated that PecS interacts with the regulatory regions of five new targets: an oxidative stress response gene (ahpC), a biosurfactant synthesis gene (rhlA), and genes encoding exported proteins related to other plant-associated bacterial proteins (nipE, virK, and avrL). The pecS mutant provokes symptoms more rapidly and with more efficiency than the wild-type strain, indicating that PecS plays a critical role in the switch from the asymptomatic phase to the symptomatic phase. Based on this, we propose that the temporal regulation of the different groups of genes required for the asymptomatic phase and the symptomatic phase is, in part, the result of a gradual modulation of PecS activity triggered during infection in response to changes in environmental conditions emerging from the interaction between both partners.

  15. DAF-fluorescence without NO: elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol.

    Science.gov (United States)

    Rümer, Stefan; Krischke, Markus; Fekete, Agnes; Mueller, Martin J; Kaiser, Werner M

    2012-08-15

    Diaminofluorescein-dyes (DAFs) are widely used for visualizing NO· production in biological systems. Here it was examined whether DAF-fluorescence could be evoked by other means than nitrosation. Tobacco (Nicotiana tabacum) suspension cells treated with the fungal elicitor cryptogein released compound(s) which gave a fluorescence increase in the cell-free filtrate after addition of DAF-2 or DAF-FM or DAR-4M. DAF-reactive compounds were relatively stable and identified as reaction products of H(2)O(2) plus apoplastic peroxidase (PO). CPTIO prevented formation of these products. Horseradish-peroxidase (HR-PO) plus H(2)O(2) also generated DAF-fluorescence in vitro. Using RP-HPLC with fluorescence detection, DAF derivatives were further analyzed. In filtrates from cryptogein-treated cells, fluorescence originated from two novel DAF-derivatives also obtained in vitro with DAF-2+HR-PO+H(2)O(2). DAF-2T was only detected when an NO donor (DEA-NO) was present. Using high resolution mass spectrometry, the two above-described novel DAF-reaction products were tentatively identified as dimers. In cells preloaded with DAF-2 DA and incubated with or without cryptogein, DAF-fluorescence originated from a complex pattern of multiple products different from those obtained in vitro. One specific peak was responsive to exogenous H(2)O(2), and another, minor peak eluted at or close to DAF-2T. Thus, in contrast to the prevailing opinion, DAF-2 can be enzymatically converted into a variety of highly fluorescing derivatives, both inside and outside cells, of which none (outside) or only a minor part (inside) appeared NO· dependent. Accordingly, DAF-fluorescence and its prevention by cPTIO do not necessarily indicate NO· production. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Ectopic Expression of Hrf1 Enhances Bacterial Resistance via Regulation of Diterpene Phytoalexins, Silicon and Reactive Oxygen Species Burst in Rice

    Science.gov (United States)

    Zhong, Weigong; Yang, Jie; Okada, Kazunori; Yamane, Hisakazu; Zhang, Lei; Wang, Guang; Wang, Dong; Xiao, Shanshan; Chang, Shanshan; Qian, Guoliang; Liu, Fengquan

    2012-01-01

    Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpinXoo protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H2O2) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H2O2, silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens. PMID:22970151

  17. Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo, Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2O(2 concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM and energy-dispersive X-ray spectrometer (EDS. Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2O(2, silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens.

  18. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Rezzonico, Fabio; Smits, Theo H M; Duffy, Brion

    2011-06-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system.

  19. Enhanced production of L-DOPA in cell cultures of Mucuna pruriens L. and Mucuna prurita H.

    Science.gov (United States)

    Raghavendra, S; Kumar, V; Ramesh, C K; Khan, M H Moinuddin

    2012-01-01

    A comparative study on the production of 3,4-dihydroxyphenylalanine (L-DOPA) was carried out in cell cultures of two Mucuna species by elicitor treatment and precursor feeding. The influence of elicitors and the precursor molecule on L-DOPA production, polyphenol oxidase (PPO) and tyrosinase activities was also studied. Callus cultures were initiated in Mucuna pruriens L. and Mucuna prurita H. on MS medium supplemented with BAP and IAA at different concentrations. Suspension cultures were established in MS liquid medium supplemented with BAP, IAA, the elicitors methyl jasmonate, chitin and pectin or the precursor L-tyrosine at different concentrations for L-DOPA production. Compared to the controls, several-fold increases in L-DOPA concentration were observed in elicitor-treated and precursor-fed suspension cultures of both plant species. L-DOPA concentrations were comparatively higher in precursor-fed cultures than those receiving elicitor treatments. A parallel increase in tyrosinase and PPO levels was also observed. Loss of cell viability was observed at high concentrations of elicitor-treated cultures, whereas L-tyrosine did not cause any cell death. Compared to elicitor treatments, precursor feeding resulted in higher concentrations of L-DOPA production and tyrosinase activity. The efficacy of L-DOPA production was found to be higher for suspension cultures of M. pruriens compared to M. prurita in all treatments.

  20. Regulation of expression of pectate lyase genes pelA, pelD, and pelE in Erwinia chrysanthemi.

    Science.gov (United States)

    Reverchon, S; Robert-Baudouy, J

    1987-06-01

    The regulation of pelA, pelD, and pelE genes encoding three of the five major pectate lyase isoenzymes (PLa, PLd, and PLe) in Erwinia chrysanthemi B374 was analyzed by using genetic fusions to lacZ. These three genes are clustered on a 5-kilobase DNA fragment in the order pelD-pelE-pelA and constitute three independent transcriptional units. We localized the pelDEA cluster near the pro-1 marker on the genetic map of B374 by chromosomal mobilization with RP4::mini-Mu plasmid pULB110. Three classes of regulatory mutations responsible for constitutive pectate lyase synthesis have been described (kdgR, gpiR, and cri). We studied the effects of each mutation on pelE, pelD, and pelA expression independently. The mutations kdgR and gpiR mainly affect the expression of pelE and pelD, although PLa synthesis is slightly increased. The cri mutation results in a low level of constitutive expression of the three pel genes, but it is a pleiotropic mutation since other genes not involved in pectinolysis are also affected. In addition, we demonstrated that exuR, a negative regulatory gene governing the catabolism of hexuronates, does not modify the expression of pel genes. The frequency of gpiR or cri mutations (about 10(-8)) and the resulting constitutivity of pectate lyase synthesis suggest that these genes act as negative regulatory genes in addition to kdgR, which is already known to encode a repressor. Moreover, we found that expression of pel-lac fusions carried on pBR322 derivatives was higher in E. chrysanthemi than in Escherichia coli; this fact suggests the existence of positive regulation of pectate lyase synthesis in E. chrysanthemi.

  1. Ultraviolet-B (UV-B) radiation as an elicitor of flavonoid production in callus cultures of jatropha (Jatropha curcas L.)

    International Nuclear Information System (INIS)

    Alvero-Bascos, E.M.; Ungson, L.B.

    2012-01-01

    Callus cultures of jatropha (Jatropha curcas L.) grown in Murashige and Skoog's (MS) medium supplemented with naphthalene-acetic acid (NAA, 20 microM) and 6-furfurylaminopurine (kinetin, 20 microM) were exposed to ultraviolet-B (UV-B) radiation to investigate its potential as an abiotic elicitor of flavonoid production. Prior to irradiation, the levels of the flavonoids, apigenin, vitexin and isovitexin in the leaf and callus extracts were determined through high performance liquid chromatography (HPLC). Results showed that vitexin and isovitexin were the dominant flavonoids in the leaves while only apigenin was detected in the calli, suggesting a correlation between the degree of differentiation and biosynthesis of flavonoids in plant tissues. Irradiation of callus cultures for 7 d using two UV-B doses (12.6 and 25.3 kJ/sq m) induced synthesis of all three flavonoids (up to 780 micro g/g dw increase) to levels similar to or higher than those found in whole leaves. The combined levels of the three flavonoids in the cultures treated with the higher UV-B dose were 20-fold higher than the control and were comparable to concentrations found in leaves while a 10-fold increase in combined flavonoid levels was observed in calli irradiated with the lower UV-B dose. Furthermore, random amplified polymorphic DNA (RAPD) analyses of DNA extracts from the leaves and calli revealed that UV-B irradiation enhanced flavonoid synthesis without altering DNA sequence. These results further support the supposed involvement of UV-B in the transcriptional regulation of the expression of flavonoid biosysnthetic genes. Overall, the findings showed that elicitation through UV-B irradiation is an effective strategy to induce flavonoid production in dedifferentiated J. curcas cultures that have lost their capacity to produce the flavonoids normally synthesized in intact organs. (author)

  2. ORF Alignment: NC_004547 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... carotovora subsp. atroseptica SCRI1043] ... Length = 148 ... Query: 4 ... IGIFVGTVYGNALLVAEEAENILKDRGHEVKVFEDATLESWL...DYREHAILVVTSTTGQGQ 63 ... IGIFVGTVYGNALLVAEEAENILKDRGHEVKVFEDATLESWL...DYREHAILVVTSTTGQGQ Sbjct: 1 ... IGIFVGTVYGNALLVAEEAENILKDRGHEVKVFEDATLESWLDYREHAILVVTSTTGQGQ 60

  3. Analysis of Erwinia chrysanthemi EC16 pelE::uidA, pelL::uidA, and hrpN::uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system.

    Science.gov (United States)

    Ham, Jong Hyun; Cui, Yaya; Alfano, James R; Rodríguez-Palenzuela, Pablo; Rojas, Clemencia M; Chatterjee, Arun K; Collmer, Alan

    2004-02-01

    The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E. chrysanthemi EC16 with respect to the effects of medium composition and growth phase on gene expression (as determined with uidA fusions and Northern analyses) and effects on virulence. pelE was induced by polygalacturonic acid, but pelL was not, and hrpN was expressed unexpectedly in nutrient-rich King's medium B and in minimal salts medium at neutral pH. In contrast, the effect of medium composition on hrp expression in E. chrysanthemi CUCPB1237 and 3937 was like that of many other phytopathogenic bacteria in being repressed in complex media and induced in acidic pH minimal medium. Northern blot analysis of hrpN and hrpL expression by the wild-type and hrpL::omegaCmr and hrpS::omegaCmr mutants revealed that hrpN expression was dependent on the HrpL alternative sigma factor, whose expression, in turn, was dependent on the HrpS putative sigma54 enhancer binding protein. The expression of pelE and hrpN increased strongly in late logarithmic growth phase. To test the possible role of quorum sensing in this expression pattern, the expI/expR locus was cloned in Escherichia coli on the basis of its ability to direct production of acyl-homoserine lactone and then used to construct expI mutations in pelE::uidA, pelL::uidA, and hrpN::uidA Erwinia chrysanthemi strains. Mutation of expI had no apparent effect on the growth-phase-dependent expression of hrpN and pelE, or on the virulence of E. chrysanthemi in witloof chicory leaves. Overexpression of hrpN in E. chrysanthemi resulted in approximately 50% reduction of lesion size on chicory leaves without an

  4. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  5. Engineering of Bacteriophages Y2::dpoL1-C and Y2::luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora.

    Science.gov (United States)

    Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion; Loessner, Martin J

    2017-06-15

    Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 ( dpoL1-C ) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68 , under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2:: dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2:: luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora , is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance

  6. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    Science.gov (United States)

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016. © 2015 American Institute of Chemical Engineers.

  7. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway.

    Directory of Open Access Journals (Sweden)

    Eun Jo Du

    2016-01-01

    Full Text Available Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS, hypochlorous acid (HOCl in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A transcript spliced with exon10b (TrpA1(A10b that is present in a subset of midgut enteroendocrine cells (EECs is critical for uracil-dependent defecation. TRPA1(A10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A10a isoform. Consistent with TrpA1's role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A10b, thereby minimizing the chances that bacteria adapt to survive host defense systems.

  8. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity.

    Science.gov (United States)

    Reverchon, Sylvie; Rouanet, Carine; Expert, Dominique; Nasser, William

    2002-02-01

    In the plant-pathogenic bacterium Erwinia chrysanthemi production of pectate lyases, the main virulence determinant, is modulated by a complex network involving several regulatory proteins. One of these regulators, PecS, also controls the synthesis of a blue pigment identified as indigoidine. Since production of this pigment is cryptic in the wild-type strain, E. chrysanthemi ind mutants deficient in indigoidine synthesis were isolated by screening a library of Tn5-B21 insertions in a pecS mutant. These ind mutations were localized close to the regulatory pecS-pecM locus, immediately downstream of pecM. Sequence analysis of this DNA region revealed three open reading frames, indA, indB, and indC, involved in indigoidine biosynthesis. No specific function could be assigned to IndA. In contrast, IndB displays similarity to various phosphatases involved in antibiotic synthesis and IndC reveals significant homology with many nonribosomal peptide synthetases (NRPS). The IndC product contains an adenylation domain showing the signature sequence DAWCFGLI for glutamine recognition and an oxidation domain similar to that found in various thiazole-forming NRPS. These data suggest that glutamine is the precursor of indigoidine. We assume that indigoidine results from the condensation of two glutamine molecules that have been previously cyclized by intramolecular amide bond formation and then dehydrogenated. Expression of ind genes is strongly derepressed in the pecS background, indicating that PecS is the main regulator of this secondary metabolite synthesis. DNA band shift assays support a model whereby the PecS protein represses indA and indC expression by binding to indA and indC promoter regions. The regulatory link, via pecS, between indigoidine and virulence factor production led us to explore a potential role of indigoidine in E. chrysanthemi pathogenicity. Mutants impaired in indigoidine production were unable to cause systemic invasion of potted Saintpaulia ionantha

  9. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees.

    Directory of Open Access Journals (Sweden)

    Doris Pester

    Full Text Available BACKGROUND: Pathogen entry through host blossoms is the predominant infection pathway of the gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24-48 h post inoculation (hpi. This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4 in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7. CONCLUSION/SIGNIFICANCE: The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight

  10. Nucleotide sequences of the Erwinia chrysanthemi ogl and pelE genes negatively regulated by the kdgR gene product.

    Science.gov (United States)

    Reverchon, S; Huang, Y; Bourson, C; Robert-Baudouy, J

    1989-12-21

    The nucleotide sequences of the coding and regulatory regions of the genes encoding oligoglacturonate lyase (OGL) and pectate lyase e isoenzyme (PLe) from Erwinia chrysanthemi 3937 were determined. The ogl sequence contains an open reading frame (ORF) of 1164 bp coding for a 388-amino acid (aa) polypeptide with a predicted Mr of 44,124. A possible transcriptional start signal showing homology with the Escherichia coli promoter consensus sequence was detected. In addition, a sequence 3' to the coding region was found to be able to form a secondary structure which may function as an Rho-independent transcriptional termination signal. For the pelE sequence, a long ORF of 1212 bp coding for a 404-aa polypeptide was detected. PLe is secreted into the external medium by E. chrysanthemi, and a potential signal peptide sequence was identified in the pelE gene. In the 5' upstream pelE coding region, a putative promoter resembling E. coli promoter consensus sequences was detected. Furthermore, the region immediately 3' to the pelE translational stop codon may function as an Rho-independent translational termination signal. In strain 3937, the synthesis of OGL and PLe, as well as the other enzymes involved in the pectin-degradative pathway (particularly the kdgT product), are known to be regulated by the KdgR repressor, which mediates galacturonate and polygalacturonate induction. Synthesis of these enzymes is also regulated by the CRP-cAMP complex which mediates catabolite repression. Analysis of the regulatory regions of ogl and pelE allowed us to identify possible CRP-binding sites for these two genes.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora.

    Science.gov (United States)

    Dugé De Bernonville, Thomas; Gaucher, Matthieu; Flors, Victor; Gaillard, Sylvain; Paulin, Jean-Pierre; Dat, James F; Brisset, Marie-Noëlle

    2012-06-01

    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects.

    Science.gov (United States)

    Yoshinaga, Naoko

    2016-07-01

    In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant-microbe interaction system. Fatty acid-amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.

  13. The crystal structure of Erwinia amylovora AmyR, a member of the YbjN protein family, shows similarity to type III secretion chaperones but suggests different cellular functions.

    Science.gov (United States)

    Bartho, Joseph D; Bellini, Dom; Wuerges, Jochen; Demitri, Nicola; Toccafondi, Mirco; Schmitt, Armin O; Zhao, Youfu; Walsh, Martin A; Benini, Stefano

    2017-01-01

    AmyR is a stress and virulence associated protein from the plant pathogenic Enterobacteriaceae species Erwinia amylovora, and is a functionally conserved ortholog of YbjN from Escherichia coli. The crystal structure of E. amylovora AmyR reveals a class I type III secretion chaperone-like fold, despite the lack of sequence similarity between these two classes of protein and lacking any evidence of a secretion-associated role. The results indicate that AmyR, and YbjN proteins in general, function through protein-protein interactions without any enzymatic action. The YbjN proteins of Enterobacteriaceae show remarkably low sequence similarity with other members of the YbjN protein family in Eubacteria, yet a high level of structural conservation is observed. Across the YbjN protein family sequence conservation is limited to residues stabilising the protein core and dimerization interface, while interacting regions are only conserved between closely related species. This study presents the first structure of a YbjN protein from Enterobacteriaceae, the most highly divergent and well-studied subgroup of YbjN proteins, and an in-depth sequence and structural analysis of this important but poorly understood protein family.

  14. Local mechanical stimulation induces components of the pathogen defense response in parsley

    Science.gov (United States)

    Gus-Mayer, Sabine; Naton, Beatrix; Hahlbrock, Klaus; Schmelzer, Elmon

    1998-01-01

    Cell suspension cultures of parsley (Petroselinum crispum) have previously been used as a suitable system for studies of the nonhost resistance response to Phytophthora sojae. In this study, we replaced the penetrating fungus by local mechanical stimulation by using a needle of the same diameter as a fungal hypha, by local application of a structurally defined fungus-derived elicitor, or by a combination of the two stimuli. Similar to the fungal infection hypha, the local mechanical stimulus alone induced the translocation of cytoplasm and nucleus to the site of stimulation, the generation of intracellular reactive oxygen intermediates (ROI), and the expression of some, but not all, elicitor-responsive genes. When the elicitor was applied locally to the cell surface without mechanical stimulation, intracellular ROI also accumulated rapidly, but morphological changes were not detected. A combination of the mechanical stimulus with simultaneous application of low doses of elicitor closely simulated early reactions to fungal infection, including cytoplasmic aggregation, nuclear migration, and ROI accumulation. By contrast, cytoplasmic rearrangements were impaired at high elicitor concentrations. Neither papilla formation nor hypersensitive cell death occurred under the conditions tested. These results suggest that mechanical stimulation by the invading fungus is responsible for the observed intracellular rearrangements and may trigger some of the previously demonstrated changes in the activity of elicitor-responsive genes, whereas chemical stimulation is required for additional biochemical processes. As yet unidentified signals may be involved in papilla formation and hypersensitive cell death. PMID:9653198

  15. Phylogenetic analysis of PR genes in some pome fruit species with the emphasis on transcriptional analysis and ROS response under Erwinia amylovora inoculation in apple.

    Science.gov (United States)

    Hassani, Maryam; Salami, Seyed Alireza; Nasiri, Jaber; Abdollahi, Hamid; Ghahremani, Zahra

    2016-02-01

    Attempts were made to identify eight pathogenesis related (PR) genes (i.e., PR-1a, PR3-ch1, PR3-Ch2, PR3-Ch3, PR3-Ch4, PR3-Ch5, PR-5 and PR-8) from 27 genotypes of apple, quince and pear, which are induced in response to inoculation with the pathogen Erwinia amylovora, the causal agent of fire blight. Totally, 32 PR genes of different families were obtained, excepting PR3-Ch2 (amplified only in apple) and PR3-Ch4 (amplified only in apple and pear), the others were successfully amplified in all the genotypes of apple, quince and pear. Evolutionary, the genes of each family exhibited significant homology with each other, as the corresponded phylogenetic neighbor-joining-based dendrograms were taken into consideration. Meanwhile, according to the expression assay, it was deduced that the pathogen activity can significantly affect the expression levels of some selected PR genes of PR3-Ch2, PR3-Ch4, PR3-Ch5 and particularly Cat I in both resistant (MM-111) and semi-susceptible (MM-106) apple rootstocks. Lastly, it was concluded that the pathogen E. amylovora is able to stimulate ROS response, particularly using generation of hydrogen peroxide (H2O2) in both aforementioned apple rootstock.

  16. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1.

    Science.gov (United States)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter; Vidal-Melgosa, Silvia; Yan, Kok-Phen; Fangel, Jonatan Ulrik; Meyer, Anne S; Kirpekar, Finn; Willats, William G; Mikkelsen, Jørn D

    2014-12-01

    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.

  17. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections.

    Science.gov (United States)

    Lee, Seung-Bum; Li, Baichuan; Jin, Shuangxia; Daniell, Henry

    2011-01-01

    Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%-38% and 17%∼26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa-like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6-fold higher yield of RC101 than purification by affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.

  18. MICROBIOLOGICAL QUALITY ASSESSMENT OF DRIED YAM CHIPS (Dioscorea rotundata DURING STORAGE

    Directory of Open Access Journals (Sweden)

    Patricia F. Omojasola

    2013-12-01

    Full Text Available Microbiological and physico-chemical analyses of dried yam chips (gbodo retailed in four markets in Ilorin and its environs alongside a laboratory – prepared control were carried out over a six month period. Microbiological assay consisted of total viable and coliform counts as well as microbial isolation. A total of 11 fungi and 5 bacteria were isolated from the different samples which included Acremonium sp., Aspergillus fumigatus., A. niger, A. ochraceus, Fusarium solani, Mucor hiemalis, Mucor racemosus, Penicillum notatum, Rhizopus oryzae, Rhizopus stolonifer, Syncephalastrum racemosum and Bacillus cereus, Bacillus subtilis, Erwinia carotovora, Escherichia coli and Staphylococcus aureus respectively. Total Viable Counts ranged from 3.0-120.0 cfu g-1 and coliform counts ranged from 0.00 - 18.80 cfu g-1 pre-storage to 0.10-219 cfu g-1 and 0.0-31.0 cfu g-1 post storage respectively. The physico-chemical parameters analysed were moisture content which ranged between 14.38-17.10% pre-storage to 13.43-24.96% post-storage; crude protein: 5.81-7.53% and 2.11-6.75%; crude fat: 0.35-0.71% and 0.07-0.61%; ash content: 3.30-5.18% and 1.17-4.77%; crude fibre: 0.77-1.45%; carbohydrate: 70.18-74.00% and 70.93-75.17% pre-storage and post-storage content respectively. Levels of Aflatoxin B1 were also monitored throughout the storage period. Insect infestation of the samples occurred during the storage period. Four species were identified; these were Tribolium casteneum, Dinoderus porcellus, Rhyzopertha dominica and Sitophilus zeamais. The traditional practice of open air sun-drying of yam chips should be discouraged, rather oven drying is recommended to minmize microbial contamination. In addition, sorting to exclude extreneous material and minimize mouldiness and insect infestation is suggested.

  19. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

    Directory of Open Access Journals (Sweden)

    Sveta Chakrabarti

    2014-09-01

    Full Text Available The p38 mitogen-activated protein (MAP kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c.

  20. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

    Science.gov (United States)

    Chakrabarti, Sveta; Poidevin, Mickaël; Lemaitre, Bruno

    2014-09-01

    The p38 mitogen-activated protein (MAP) kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c.

  1. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge

    DEFF Research Database (Denmark)

    Aslam, Shazia N.; Erbs, Gitte; Morrissey, Kate L.

    2009-01-01

    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidops...

  2. Effect of washing on the plasma membrane and on stress reactions of cultured rose cells

    International Nuclear Information System (INIS)

    Qian, Y.C.; Nguyen, T.; Murphy, T.M.

    1993-01-01

    Cultured cells of Rosa damascena have been used as a model for studies of responses of plant cells to various stresses, including UV radiation, protein-synthesis inhibitors, and elicitors from pathogens. Many of the responses involve reactions at the plasma membrane: efflux of K + , changes in the acid balance between cytoplasm and external medium, synthesis of H 2 O 2 , and inhibition of ferricyanide reduction. In previous studies, the cells have typically been washed with a solution of low ionic strength. We now show that this washing procedure results in changes in the protein composition of the plasma membrane, in the labeling of the proteins in the plasma membrane, and in the specific activity of ATPase in purified plasma membrane vesicles. Also, compared to the unwashed cells, the washed cells show less net K + efflux after UV-C and Phytophthora elicitor treatments; more synthesis of H 2 O 2 after UV-C and a pattern of accumulation of H 2 O 2 after elicitor treatment that shows a delayed but higher peak; and more inhibition of ferricyanide reduction after UV-C, but not after elicitor treatment. The results suggest that washing has differential effects on the mechanisms by which cultured plant cells perceive or respond to two stresses, UV-C and elicitor

  3. Hedonic "adaptation"

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2008-02-01

    Full Text Available People live in a world in which they are surrounded by potential disgust elicitors such as ``used'' chairs, air, silverware, and money as well as excretory activities. People function in this world by ignoring most of these, by active avoidance, reframing, or adaptation. The issue is particularly striking for professions, such as morticians, surgeons, or sanitation workers, in which there is frequent contact with major disgust elicitors. In this study, we study the ``adaptation'' process to dead bodies as disgust elicitors, by measuring specific types of disgust sensitivity in medical students before and after they have spent a few months dissecting a cadaver. Using the Disgust Scale, we find a significant reduction in disgust responses to death and body envelope violation elicitors, but no significant change in any other specific type of disgust. There is a clear reduction in discomfort at touching a cold dead body, but not in touching a human body which is still warm after death.

  4. Regulation of pelD and pelE, encoding major alkaline pectate lyases in Erwinia chrysanthemi: involvement of the main transcriptional factors.

    Science.gov (United States)

    Rouanet, C; Nomura, K; Tsuyumu, S; Nasser, W

    1999-10-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases which attack pectin, the major constituent of the plant cell wall. Of these enzymes, the alkaline isoenzyme named PelD in strain 3937 and PelE in strain EC16 has been described as being particularly important, based on virulence studies of plants. Expression of the pelD and pelE genes is tightly modulated by various regulators, including the KdgR repressor and the cyclic AMP-cyclic AMP receptor protein (CRP) activator complex. The use of a lacZ reporter gene allowed us to quantify the repression of E. chrysanthemi 3937 pelD expression exerted by PecS, another repressor of pectinase synthesis. In vitro DNA-protein interaction experiments, centered on the pelD and pelE wild-type or pelE mutated promoter regions, allowed us to define precisely the sequences involved in the binding of these three regulators and of RNA polymerase (RNAP). These studies revealed an unusual binding of the KdgR repressor and suggested the presence of a UP (upstream) element in the pelD and pelE genes. Investigation of the simultaneous binding of CRP, KdgR, PecS, and the RNAP to the regulatory region of the pelD and pelE genes showed that (i) CRP and RNAP bind cooperatively, (ii) PecS partially inhibits binding of the CRP activator and of the CRP-RNAP complex, and (iii) KdgR stabilizes the binding of PecS and prevents transcriptional initiation by RNAP. Taken together, our data suggest that PecS attenuates pelD and pelE expression rather than acting as a true repressor like KdgR. Overall, control of the pelD and pelE genes of E. chrysanthemi appears to be both complex and novel.

  5. The bile acid deoxycholate elicits defences in Arabidopsis and reduces bacterial infection.

    Science.gov (United States)

    Zarattini, Marco; Launay, Alban; Farjad, Mahsa; Wénès, Estelle; Taconnat, Ludivine; Boutet, Stéphanie; Bernacchia, Giovanni; Fagard, Mathilde

    2017-05-01

    Disease has an effect on crop yields, causing significant losses. As the worldwide demand for agricultural products increases, there is a need to pursue the development of new methods to protect crops from disease. One mechanism of plant protection is through the activation of the plant immune system. By exogenous application, 'plant activator molecules' with elicitor properties can be used to activate the plant immune system. These defence-inducing molecules represent a powerful and often environmentally friendly tool to fight pathogens. We show that the secondary bile acid deoxycholic acid (DCA) induces defence in Arabidopsis and reduces the proliferation of two bacterial phytopathogens: Erwinia amylovora and Pseudomonas syringae pv. tomato. We describe the global defence response triggered by this new plant activator in Arabidopsis at the transcriptional level. Several induced genes were selected for further analysis by quantitative reverse transcription-polymerase chain reaction. We describe the kinetics of their induction and show that abiotic stress, such as moderate drought or nitrogen limitation, does not impede DCA induction of defence. Finally, we investigate the role in the activation of defence by this bile acid of the salicylic acid biosynthesis gene SID2, of the receptor-like kinase family genes WAK1-3 and of the NADPH oxidase-encoding RbohD gene. Altogether, we show that DCA constitutes a promising molecule for plant protection which can induce complementary lines of defence, such as callose deposition, reactive oxygen species accumulation and the jasmonic acid and salicylic acid signalling pathways. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  6. Induction of phenolics, lignin and key defense enzymes in eggplant ...

    African Journals Online (AJOL)

    Elicitors are capable of mimicking the perception of a pathogen by a plant, thereby triggering induction of a sophisticated defense response in plants. In this study, we investigated an induced resistance in eggplant in respect to cell wall strengthening and defense enzyme activation affected by four elicitors such as, chitosan ...

  7. Recombinant deamidated mutants of Erwinia chrysanthemi L-asparaginase have similar or increased activity compared to wild-type enzyme.

    Science.gov (United States)

    Gervais, David; Foote, Nicholas

    2014-10-01

    The enzyme Erwinia chrysanthemi L-asparaginase (ErA) is an important biopharmaceutical product used in the treatment of acute lymphoblastic leukaemia. Like all proteins, certain asparagine (Asn) residues of ErA are susceptible to deamidation to aspartic acid (Asp), which may be a concern with respect to enzyme activity and potentially to pharmaceutical efficacy. Recombinant ErA mutants containing Asn to Asp changes were expressed, purified and characterised. Two mutants with single deamidation sites (N41D and N281D) were found to have approximately the same specific activity (1,062 and 924 U/mg, respectively) as the wild-type (908 U/mg). However, a double mutant (N41D N281D) had an increased specific activity (1261 U/mg). The N41D mutation conferred a slight increase in the catalytic constant (k cat 657 s(-1)) when compared to the WT (k cat 565 s(-1)), which was further increased in the double mutant, with a k cat of 798 s(-1). Structural analyses showed that the slight changes caused by point mutation of Asn41 to Asp may have reduced the number of hydrogen bonds in this α-helical part of the protein structure, resulting in subtle changes in enzyme turnover, both structurally and catalytically. The increased α-helical content observed with the N41D mutation by circular dichroism spectroscopy correlates with the difference in k cat, but not K m. The N281D mutation resulted in a lower glutaminase activity compared with WT and the N41D mutant, however the N281D mutation also imparted less stability to the enzyme at elevated temperatures. Taken as a whole, these data suggest that ErA deamidation at the Asn41 and Asn281 sites does not affect enzyme activity and should not be a concern during processing, storage or clinical use. The production of recombinant deamidated variants has proven an effective and powerful means of studying the effect of these changes and may be a useful strategy for other biopharmaceutical products.

  8. Chitosan application in maize ( Zea mays ) to counteract the effects ...

    African Journals Online (AJOL)

    There are several strategies for managing the problem, but in the future, people will prefer the cleaner and cheaper technology. The use of elicitors for protection of corn can be considered a cheap and clean technology. Chitosan elicitor is a linear polysaccharide produced commercially by deacetylation of chitin. It has been ...

  9. Criteria for efficient prevention of dissemination and successful eradication of Erwinia amylovora (the cause of fire blight in Aragón, Spain

    Directory of Open Access Journals (Sweden)

    Ana PALACIO-BIELSA

    2013-01-01

    Full Text Available Erwinia amylovora was detected on pome fruits in the Aragón region (North-Eastern Spain, in a ca. 5 km radius area located in the mid Jalón river (mid Ebro Valley in the province of Zaragoza, during 2000‒2003. Eight years have now passed since this pathogen was last detected, without new infections being reported in the same area. The bases for surveys and rapid eradication performed have been analyzed in detail to understand the reasons for the success in removing fireblight. The results demonstrate that intensive surveillance, risk assessment, plant analyses using accurate identification methods, and, especially, rapid total or selective eradication of infected trees in the plots have been very effective in preventing the generalized spread of fireblight and in delaying economic losses associated with this disease. Eradication and compensation to growers, estimated to cost approx. € 467,000, were clearly counterbalanced by the economic value of apple and pear production in the 2000‒2003 period (approx. € 368 million. Fire blight risk-assessment, using the MARYBLYT system, showed that climatic conditions in the studied area were favourable to infections during the analyzed period (1997‒2006. Molecular characterization of E. amylovora strains had revealed their homogeneity, suggesting that these fire blight episodes could have been caused by just one inoculum source, supporting the hypothesis that there was a unique introduction of E. amylovora in the studied area. Spatial spread of E. amylovora to trees was analyzed within six orchards, indicating an aggregated distribution model. This Spanish experience demonstrates the success of scientifically-based prevention methods that lead to the deployment of a fast and strict containment strategy, useful for other Mediterranean areas.

  10. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    Science.gov (United States)

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  11. Surfactin Protects Wheat against Zymoseptoria tritici and Activates Both Salicylic Acid- and Jasmonic Acid-Dependent Defense Responses

    Directory of Open Access Journals (Sweden)

    Geraldine Le Mire

    2018-01-01

    Full Text Available Natural elicitors induce plant resistance against a broad spectrum of diseases, and are currently among the most promising biocontrol tools. The present study focuses on the elicitor properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse trials. Surfactin protected wheat by 70% against Z. tritici, similarly to the chemical reference elicitor Bion®50WG. In vitro biocidal assays revealed no antifungal activities of surfactin towards the pathogen. A biomolecular RT-qPCR based low-density microarray tool was used to study the relative expression of 23 wheat defense genes. Surfactin significantly induced wheat natural defenses by stimulating both salicylic acid- and jasmonic acid-dependent signaling pathways. Surfactin was successfully tested as an elicitor on the pathosystem wheat–Z. tritici. These results promote further sustainable agricultural practices and the reduction of chemical inputs.

  12. INDUCCIÓN DE LA ACTIVIDAD DE LA ENZIMA FENILALANINA AMONIO LIASA EN CLAVEL (Dianthus caryophyllus L POR ELICITORES DEL HONGO Fusarium oxysporum f. sp. Dianthi raza 2

    Directory of Open Access Journals (Sweden)

    Harold Ardila

    2008-04-01

    Full Text Available Con el fin de evaluar el comportamiento a nivel del tallo de la enzima fenilalanina amonio liasa (PAL, por su nombre en inglés phenylalanine ammonia liase, durante la interacción clavel-Fusarium oxysporum f. sp. dianthi raza 2, se seleccionaron las condiciones para su extracción y cuantificación de la actividad. Para la extracción a partir de tallos y raíces se seleccionó un tratamiento previo del material vegetal con acetona y posterior extracción con buffer borato pH 8,8 con EDTA 2mMy -mercaptoetanol 18 mM. Para su cuantificación a nivel del tallo se debe realizar un ensayo discontinuo por 10 min, a 37 oC, pH 8,0 y a una concentración de sustrato de 35 mM. Adicionalmente se muestra mediante un ensayo in vivo el efecto que tiene, como inductor de esta enzima, la aplicación de un extracto crudo del patógeno. Los resultados observados indican que esta enzima se induce significativamente en tallos de claveles de la variedad tolerante “Kiss” durante el tratamiento por aspersión con el extracto crudo del patógeno, mientras que dicha inducción fue inexistente para la infección directamente con el patógeno. La inducción en esta variedad indica que en este extracto del patógeno se presentan elicitores potenciales para la inducción de esta enzima y por ende de la ruta fenilpropanoide.

  13. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  14. Fire blight in Georgia

    Directory of Open Access Journals (Sweden)

    Dali L. Gaganidze

    2018-03-01

    Full Text Available Fire blight is distinguished among the fruit tree diseases by harmfulness. Fire blight damages about 180 cultural and wild plants belonging to the Rosaceae family. Quince, apple and pear are the most susceptible to the disease. At present, the disease occurs in over 40 countries of Europe and Asia. Economic damage caused by fire blight is expressed not only in crop losses, but also, it poses threat of eradication to entire fruit tree gardens. Erwinia amylovora, causative bacteria of fire blight in fruit trees, is included in the A2 list of quarantine organisms. In 2016, the employees of the Plant Pest Diagnostic Department of the Laboratory of the Georgian Ministry of Agriculture have detected Erwinia amylovora in apple seedlings from Mtskheta district. National Food Agency, Ministry of Agriculture of Georgia informed FAO on pathogen detection. The aim of the study is detection of the bacterium Erwinia amylovora by molecular method (PCR in the samples of fruit trees, suspicious on fire blight collected in the regions of Eastern (Kvemo Kartli, Shida Kartli and Kakheti and Western Georgia (Imereti.The bacterium Erwinia amylovora was detected by real time and conventional PCR methods using specific primers and thus the fire blight disease confirmed in 23 samples of plant material from Shida Kartli (11 apples, 6 pear and 6 quince samples, in 5 samples from Kvemo Kartli (1 quince and 4 apple samples, in 2 samples of apples from Kakheti region and 1 sample of pear collected in Imereti (Zestafoni. Keywords: Fire blight, Erwinia amylovora, Conventional PCR, Real time PCR, DNA, Bacterium

  15. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures.

    Science.gov (United States)

    Facchini, P J; Johnson, A G; Poupart, J; de Luca, V

    1996-01-01

    Treatment of opium poppy (Papaver somniferum L.) cell cultures with autoclaved mycelial homogenates of Botrytis sp. resulted in the accumulation of sanguinarine. Elicitor treatment also caused a rapid and transient induction in the activity of tyrosine/dopa decarboxylase (TYDC, EC 4.1.1.25), which catalyzes the conversion of L-tyrosine and L-dopa to tyramine and dopamine, respectively, the first steps in sanguinarine biosynthesis. TYDC genes were differentially expressed in response to elicitor treatment. TYDC1-like mRNA levels were induced rapidly but declined to near baseline levels within 5 h. In contrast, TYDC2-like transcript levels increased more slowly but were sustained for an extended period. Induction of TYDC mRNAs preceded that of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) mRNAs. An elicitor preparation from Pythium aphanidermatum was less effective in the induction of TYDC mRNA levels and alkaloid accumulation; however, both elicitors equally induced accumulation of PAL transcripts. In contrast, treatment with methyl jasmonate resulted in an induction of TYDC but not PAL mRNAs. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and the protein kinase inhibitor staurosporine partially blocked the fungal elicitor-induced accumulation of sanguinarine. However, only staurosporine and okadaic acid, an inhibitor of protein phosphatases 1 and 2A, blocked the induction of TYDC1-like transcript levels, but they did not block the induction of TYDC2-like or PAL transcript levels. These data suggest that activation mechanisms for PAL, TYDC, and some later sanguinarine biosynthetic enzymes are uncoupled. PMID:8754678

  16. Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses

    OpenAIRE

    Le Mire, Géraldine; Siah, Ali; Brisset, Marie-Noëlle; Gaucher, Matthieu; Deleu, Magali; Jijakli, Haissam

    2018-01-01

    Natural elicitors induce plant resistance against a broad spectrum of diseases, and are currently among the most promising biocontrol tools. The present study focuses on the elicitor properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse trials. Su...

  17. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    OpenAIRE

    Pengyong Zhou; Xiaochang Mo; Wanwan Wang; Xia Chen; Yonggen Lou

    2018-01-01

    Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), ethylene and H2O2 but not salicylic acid. These activated signaling pathways ...

  18. Control of fire blight (Erwinia amylovora on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes

    Directory of Open Access Journals (Sweden)

    Srđan G. Aćimović

    2015-02-01

    Full Text Available Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1-2 apple tree injections of either streptomycin, potassium phosphites (PH or acibenzolar-S-methyl (ASM, significant reduction of blossom and shoot blight symptoms was observed compared to water- or non-injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2 and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.

  19. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  20. Surface survival and internalization of salmonella through natural cracks on developing cantaloupe fruits, alone or in the presence of the melon wilt pathogen Erwinia tracheiphila.

    Directory of Open Access Journals (Sweden)

    Dhiraj Gautam

    Full Text Available Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI. Even at 24 DPI (fruit maturity S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types.

  1. Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes.

    Science.gov (United States)

    Llama-Palacios, Arancha; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo

    2005-03-01

    Erwinia chrysanthemi is a phytopathogenic bacterium that causes soft-rot diseases in a broad number of crops. The PhoP-PhoQ system is a key factor in pathogenicity of several bacteria and is involved in the bacterial resistance to different factors, including acid stress. Since E. chrysanthemi is confronted by acid pH during pathogenesis, we have studied the role of this system in the virulence of this bacterium. In this work, we have isolated and characterized the phoP and phoQ mutants of E. chrysanthemi strain 3937. It was found that: (i) they were not altered in their growth at acid pH; (ii) the phoQ mutant showed diminished ability to survive at acid pH; (iii) susceptibility to the antimicrobial peptide thionin was increased; (iv) the virulence of the phoQ mutant was diminished at low and high magnesium concentrations, whereas the virulence of the phoP was diminished only at low magnesium concentrations; (v) in planta Pel activity of both mutant strains was drastically reduced; and (vi) both mutants lagged behind the wild type in their capacity to change the apoplastic pH. These results suggest that the PhoP-PhoQ system plays a role in the virulence of this bacterium in plant tissues, although it does not contribute to bacterial growth at acid pH.

  2. Proteins from Erwinia asparaginase Erwinase ® and E. coli asparaginase 2 MEDAC ® for treatment of human leukemia, show a multitude of modifications for which the consequences are completely unclear.

    Science.gov (United States)

    Bae, Narkhyun; Pollak, Arnold; Lubec, Gert

    2011-07-01

    L-Asparaginase from Erwinia chrysanthemi (ASPG_ERWCH; UniProtKB accession number P06608 (Erwinase(®))) and L-asparaginase 2 from Escherichia coli (ASPG2_ECOLI; UniProtKB accession number P00805 (Medac(®))), both L-asparagine amidohydrolases, are widely used for the treatment of acute lymphoblastic leukemia. A series of serious side effects have been reported and this warrants studies into the protein chemistry of the medical products sold. Mass spectrometry (MS) data on ASPG_ERWCH and ASPG2_ECOLI have not been published so far and herein a gel-based proteomics study was performed to provide information about sequence and modifications of the commercially available medical products. ASPG_ERWCH and ASPG2_ECOLI were applied onto two-dimensional gel electrophoresis, spots were in-gel digested with several proteases and resulting peptides and protein modifications were analysed by nano-ESI-LC-MS/MS. Four spots were observed for ASPG_ERWCH, six spots were observed for ASPG2_ECOLI and the identified proteins showed high sequence coverage without sequence conflicts. Several protein modifications including technical and posttranslational modifications were demonstrated. Protein modifications are known to change physicochemical, immunochemical, biological and pharmacological properties and results from this work may challenge re-designing of the product including possible removal of the modifications by the manufacturer because it is not known whether they are contributing to the serious adverse effects of the protein drug. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Animals as disgust elicitors

    DEFF Research Database (Denmark)

    Kasperbauer, Tyler Joshua

    2015-01-01

    This paper attempts to explain how and why nonhuman animals elicit disgust in human beings. I argue that animals elicit disgust in two ways. One is by triggering disease–protection mechanisms, and the other is by eliciting mortality salience, or thoughts of death. I discuss how these two types...... of disgust operate and defend their conceptual and theoretical coherence against common objections. I also outline an explanatory challenge for disgust researchers. Both types of disgust indicate that a wide variety of animals produce aversive and avoidant reactions in human beings. This seems somewhat odd......, given the prominence of animals in human lives. The challenge, then, is explaining how humans cope with the presence of animals. I propose, as a hypothesis for further exploration, that we cope with animals, and our disgust responses to them, by attributing mental states that mark them as inferior...

  4. Botanicals to Control Soft Rot Bacteria of Potato

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2012-01-01

    Full Text Available Extracts from eleven different plant species such as jute (Corchorus capsularis L., cheerota (Swertia chiraita Ham., chatim (Alstonia scholaris L., mander (Erythrina variegata, bael (Aegle marmelos L., marigold (Tagetes erecta, onion (Allium cepa, garlic (Allium sativum L., neem (Azadiracta indica, lime (Citrus aurantifolia, and turmeric (Curcuma longa L. were tested for antibacterial activity against potato soft rot bacteria, E. carotovora subsp. carotovora (Ecc P-138, under in vitro and storage conditions. Previously, Ecc P-138 was identified as the most aggressive soft rot bacterium in Bangladeshi potatoes. Of the 11 different plant extracts, only extracts from dried jute leaves and cheerota significantly inhibited growth of Ecc P-138 in vitro. Finally, both plant extracts were tested to control the soft rot disease of potato tuber under storage conditions. In a 22-week storage condition, the treated potatoes were significantly more protected against the soft rot infection than those of untreated samples in terms of infection rate and weight loss. The jute leaf extracts showed more pronounced inhibitory effects on Ecc-138 growth both in in vitro and storage experiments.

  5. Biological control of botrytis cinerea growth on apples stored in modified atmospheres

    DEFF Research Database (Denmark)

    Dock, Lise Lotte; Nielsen, Per Væggemose; Floros, John D.

    1998-01-01

    The combined effect of modified-atmosphere packaging and theapplication of a bacterial antagonist (Erwinia sp.) on Botrytiscinerea growth on apples (cv. 'Golden Delicious') was investigated.Inoculated apples were stored in polyethylene bags at 5 degrees C. Theinitial gas composition in each bag...... by about 6days at low levels of CO2. However, at high CO2 levels, O2 had noeffect. The strongest antagonistic effect was observed under ambientconditions. Overall, results showed that high CO2 atmospheres can slowthe growth of B. cinerea and that Erwinia sp. was an effectiveantagonist against B. cinerea...

  6. Enhancement of β-Glucan Content in the Cultivation of Cauliflower Mushroom (Sparassis latifolia) by Elicitation.

    Science.gov (United States)

    Park, Hyun; Ka, Kang-Hyeon; Ryu, Sung-Ryul

    2014-03-01

    The effectiveness of three kinds of enzymes (chitinase, β-glucuronidase, and lysing enzyme complex), employed as elicitors to enhance the β-glucan content in the sawdust-based cultivation of cauliflower mushroom (Sparassis latifolia), was examined. The elicitors were applied to the cauliflower mushroom after primordium formation, by spraying the enzyme solutions at three different levels on the sawdust-based medium. Mycelial growth was fully accomplished by the treatments, but the metabolic process during the growth of fruiting bodies was affected. The application of a lysing enzyme resulted in an increase in the β-glucan concentration by up to 31% compared to that of the control. However, the treatment resulted in a decrease in mushroom yield, which necessitated the need to evaluate its economic efficiency. Although we still need to develop a more efficient way for using elicitors to enhance functional metabolites in mushroom cultivation, the results indicate that the elicitation technique can be applied in the cultivation of medicinal/edible mushrooms.

  7. Elicitation: A Tool for Enriching the Bioactive Composition of Foods

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2014-09-01

    Full Text Available Elicitation is a good strategy to induce physiological changes and stimulate defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been widely investigated as bioactive compounds responsible of plant cell adaptation to the environment, specific organoleptic properties of foods, and protective effects in human cells against oxidative processes in the development of neurodegenerative and cardiovascular diseases and certain types of cancer. Biotic (biological origin, abiotic (chemical or physical origin elicitors and phytohormones have been applied alone or in combinations, in hydroponic solutions or sprays, and in different selected time points of the plant growth or during post-harvest. Understanding how plant tissues and their specific secondary metabolic pathways respond to specific treatments with elicitors would be the basis for designing protocols to enhance the production of secondary metabolites, in order to produce quality and healthy fresh foods.

  8. Elicitation: a tool for enriching the bioactive composition of foods.

    Science.gov (United States)

    Baenas, Nieves; García-Viguera, Cristina; Moreno, Diego A

    2014-09-01

    Elicitation is a good strategy to induce physiological changes and stimulate defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been widely investigated as bioactive compounds responsible of plant cell adaptation to the environment, specific organoleptic properties of foods, and protective effects in human cells against oxidative processes in the development of neurodegenerative and cardiovascular diseases and certain types of cancer. Biotic (biological origin), abiotic (chemical or physical origin) elicitors and phytohormones have been applied alone or in combinations, in hydroponic solutions or sprays, and in different selected time points of the plant growth or during post-harvest. Understanding how plant tissues and their specific secondary metabolic pathways respond to specific treatments with elicitors would be the basis for designing protocols to enhance the production of secondary metabolites, in order to produce quality and healthy fresh foods.

  9. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    Science.gov (United States)

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Potency of Gamma ray, Electric Current and Elicitor Application, as a Novel Practical Technique, to Improve Biomass Production and Glycoside Quality for Digitalis purpurea L. Grown in Sandy Soil Irrigated with Brackish Water

    International Nuclear Information System (INIS)

    Bosila, H.A.; Afifi, L.M.A.; Ahmed, T.E.S.

    2012-01-01

    Digitalis purpurea L seeds were treated before sowing with gamma ray (G:0, 2.5, 5, 7.5 KR, and electric current (E:O, 100, 150, 200 mA) then grown in sandy soil irrigated with brackish water (900 ppm) , in splite-splite plot design for 3 replicat (R) at two subsequent seasons , through surface drip irrigation system. Plants at 4- month old and monthly until before flowering were foliar sprayed with MnSO 4 as abiotic elicitor (M :O, 3 ppm). Biomass/ Feddan, percentage of total glycosides and percentage of bioactive glycosides, digitoxin and gitoxin were quantitated. Statistical analysis for the obtained data revealed that G, E and M achieved significant in biomass yield and its quality traits. Moreover, interactions ; GE, GM, EM and GEM achieved synergistic and significant increment for this traits. At such G dose the trait was increased by increasing E dose and M concentration. Hence, G 2.5, 5,7.5 KR E200 mA M3 ppm achieved significant increment, as percent over that of control, in biomass production / Feddan by 22, 29, 32%, total glycoside by 27, 40, 30%, digitoxin 27, 40, 30% for both first and second seasons, respectively. Whereas, increment for gitoxin were 27, 41, 30% at first season and 26, 38, 30% at second season, respectively. Overall, these finding strongly confirm the reliability of GEM as a novel practical technique for overproduction biomass/Fed. and quality improvement bioactive cardiac glycosides, digitoxin and gitoxin in Digitalis purpurea L.

  11. Eliciting Patients’ Health Concerns in Consulting Rooms and Wards in Vietnamese Public Hospitals

    Directory of Open Access Journals (Sweden)

    Huong Thi Linh Nguyen

    2018-03-01

    Full Text Available This article examines the doctor’s elicitation of the patient’s presenting health concern in two clinical settings in the Vietnamese public hospital system: the consulting room and the ward. The data were taken from 66 audio-recorded consultations. Our analysis shows that the elicitors used by the doctor in the consulting room often communicate a weak epistemic stance towards the patient’s health issue, while those used in the ward tend to signal a strong epistemic stance. In addition, this contrast between the elicitors employed in the consulting room and the ward is evident in our data regardless of whether the consultation is a first visit or a same follow-up (in which the doctor is the same one that treated the patient on their last visit, though the contrast is less clear for different follow-ups (in which the doctor has not treated the patient before. An additional finding is that the clinical setting has some bearing on the use of inappropriate elicitation formats (in which the doctor opens the visit with an elicitor which is more appropriate for another type of visit. The precise way in which each of the consulting room and the ward operates is, of course, a feature of the Vietnamese public hospital system itself. Hence, the overall contrast between the elicitors and elicitation formats used in these two settings illustrates how, on a more general level, the institutional context can have an impact on doctor-patient communication.

  12. Molecular And Radiation Studies On Improving The Ajmalicine Production In Catharanthus roseus

    International Nuclear Information System (INIS)

    EL-SAYED, I.M.S.

    2013-01-01

    Elicitations are considered to be an important strategy towards improve in vitro production of secondary metabolites. In seedling cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cultures to low dose of Gamma irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (TDC) and strictosidine synthase (STR). In the present study, the signaling pathway mediating Gamma irradiation -induced catharanthine accumulation in C. roseus seedling cultures were investigated. Catharanthus roseus seedling cultures were exposed to different low dose of Gamma irradiation in order to induce alkaloid metabolism. The exposure to Gamma irradiation elicitors resulted in the transcriptional activation of tryptophan decarboxylase and in the accumulation of the monoterpenoid indole alkaloids ajmalicine and catharanthine but not of vindoline. The inability of the seedling cultures to produce vindoline was related to a lack of expression of the tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes.

  13. Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Scott, Ian M; Samara, R; Renaud, J B; Sumarah, M W

    2017-09-01

    Plant elicitors can be biological or chemical-derived stimulators of jasmonic acid (JA) or salicylic acid (SA) pathways shown to prime the defenses in many crops. Examples of chemical elicitors of the JA and SA pathways include methyl-jasmonate and 1,2,3-benzothiadiazole-7-carbothioate (BTH or the commercial plant activator Actigard 50WG, respectively). The use of specific elicitors has been observed to affect the normal interaction between JA and SA pathways causing one to be upregulated and the other to be suppressed, often, but not always, at the expense of the plant's herbivore or pathogen defenses. The objective of this study was to determine whether insects feeding on Brassica crops might be negatively affected by SA inducible defenses combined with an inhibitor of detoxification and anti-oxidant enzymes that regulate the insect response to the plant's defenses. The relative growth rate of cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae) fed induced cabbage Brassica oleraceae leaves with the inhibitor, quercetin, was significantly less than those fed control cabbage with and without the inhibitor. The reduced growth was related to the reduction of glutathione S-transferases (GSTs) by the combination of quercetin and increased levels of indole glucosinolates in the cabbage treated with BTH at 2.6× the recommended application rate. These findings may offer a novel combination of elicitor and synergist that can provide protection from plant disease and herbivores in cabbage and other Brassica crops. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  14. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    VERA A D POIATTI

    2009-01-01

    Full Text Available The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO and peroxidase (POX were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in

  15. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae.

    Science.gov (United States)

    Valente, Rita S; Xavier, Karina B

    2016-01-15

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the

  16. Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L.

    Science.gov (United States)

    Tamayo-Ordóñez, M C; Rodriguez-Zapata, L C; Narváez-Zapata, J A; Tamayo-Ordóñez, Y J; Ayil-Gutiérrez, B A; Barredo-Pool, F; Sánchez-Teyer, L F

    2016-05-20

    Polyploidy has been widely described in many Agave L. species, but its influence on environmental response to stress is still unknown. With the objective of knowing the morphological adaptations and regulation responses of genes related to biotic (LEA) and abiotic (NBS-LRR) stress in species of Agave with different levels of ploidy, and how these factors contribute to major response of Agave against environmental stresses, we analyzed 16 morphological trials on five accessions of three species (Agave tequilana Weber, Agave angustifolia Haw. and Agave fourcroydes Lem.) with different ploidy levels (2n=2x=60 2n=3x=90, 2n=5x=150, 2n=6x=180) and evaluated the expression of NBS-LRR and LEA genes regulated by biotic and abiotic stress. It was possible to associate some morphological traits (spines, nuclei, and stomata) to ploidy level. The genetic characterization of stress-related genes NBS-LRR induced by pathogenic infection and LEA by heat or saline stresses indicated that amino acid sequence analysis in these genes showed more substitutions in higher ploidy level accessions of A. fourcroydes Lem. 'Sac Ki' (2n=5x=150) and A. angustifolia Haw. 'Chelem Ki' (2n=6x=180), and a higher LEA and NBS-LRR representativeness when compared to their diploid and triploid counterparts. In all studied Agave accessions expression of LEA and NBS-LRR genes was induced by saline or heat stresses or by infection with Erwinia carotovora, respectively. The transcriptional activation was also higher in A. angustifolia Haw. 'Chelem Ki' (2n=6x=180) and A. fourcroydes 'Sac Ki' (2n=5x=150) than in their diploid and triploid counterparts, which suggests higher adaptation to stress. Finally, the diploid accession A. tequilana Weber 'Azul' showed a differentiated genetic profile relative to other Agave accessions. The differences include similar or higher genetic representativeness and transcript accumulation of LEA and NBS-LRR genes than in polyploid (2n=5x=150 and 2n=6x=180) Agave accessions

  17. Proceedings of the 1998 Scientific Conference on Obscuration and Aerosol Research

    National Research Council Canada - National Science Library

    Coverstone, Amy

    1999-01-01

    ...: Aerosol Particle Generation and Dynamics, Aerosol Characterization Methods-Aerosol Samplers and Collectors, Preparing, Aerosolizing and Characterizing Erwinia Herbicola, and Optical Properties of Aerosols...

  18. Identificarea izolatului bacterian P5 obţinut din plante de măr

    Directory of Open Access Journals (Sweden)

    MAGHER Maria

    2016-06-01

    Full Text Available The phytopathogen Erwinia amylovora (Burrill Winslow et al. is a bacterium having a major impact on pome fruit species causing identification problems at some development phenophases of trees. The aim of this paper was to identify the bacterial isolate P5 obtained from apple tree samples using classical and modern methods recommended for the bacterium E. amylovora (API 20E test, gas chromatography, PCR, DASELISA and indirect immunofluorescence. As a result of our investigations, the bacterium Erwinia amylovora was clearly identified. Taking into consideration the quarantine status of the phytopathogen E. amylovora, it is necessary to carry out the phytosanitary test sin order to monitor the presence of fire blight on pome fruit species as well as to implement timely the required preventive and curative control measures. Rezumat. Fitopatogenul Erwinia amylovora (Burrill Winslow et al. este o bacterie cu un impact deosebit asupra speciilor pomicole sămânţoase, care prezintă probleme de identificare la anumite fenofaze de dezvoltare a pomilor. Scopul acestei lucrări a fost de a identifica izolatul bacterian P5, obţinut din probe de măr, prin metode clasice şi contemporane recomandate pentru bacteria E. amylovora (testul API 20E, gaz-cromatografie, PCR, DAS-ELISA, imunofluorescenţă indirectă. În rezultatul cercetărilor a fost identificată bacteria Erwinia amylovora. Având în vedere statutul de carantină al fitopatogenului E. amylovora, se impune necesitatea efectuării obligatorii a sondajelor fitosanitare pentru monitorizarea prezenţei focului bacterian la culturile pomicole sămânţoase şi efectuarea la timp a măsurilor preventive şi curative de combatere.

  19. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    Science.gov (United States)

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  20. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  1. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    Directory of Open Access Journals (Sweden)

    Pengyong Zhou

    2018-04-01

    Full Text Available Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA, jasmonoyl-isoleucine conjugate (JA-Ile, ethylene and H2O2 but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants. White-backed planthopper (WBPH, Sogatella furcifera nymphs and gravid females showed a preference for feeding and/or oviposition on control plants: survival rates were better and more eggs were laid than on bismerthiazol-treated plants. Moreover, bismerthiazol treatment also increased both the parasitism rate of WBPH eggs laid on plants in the field by Anagrus nilaparvatae, and also the resistance of rice to the brown planthopper (BPH Nilaparvata lugens and the striped stem borer (SSB Chilo suppressalis. These findings suggest that the bactericide bismerthiazol can induce the direct and/or indirect resistance of rice to multiple insect pests, and so can be used as a broad-spectrum chemical elicitor.

  2. The Immunogenicity of a Biological Simulant: Strategies for the Improvement of Antibody-Based Detection

    National Research Council Canada - National Science Library

    Grahame, David A; Gencic, Simonida; Bronk, Burt V

    2005-01-01

    .... The bacterium Pantoea agglomerans (formerly Erwinia herbicola, Eh) presently is used to simulate vegetative biological agents, however, anti-Eh antibodies of high affinity and specificity are needed...

  3. 75 FR 16102 - Kasugamycin; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Science.gov (United States)

    2010-03-31

    ... pesticide manufacturer. Potentially affected entities may include, but are not limited to: Crop production... control streptomycin-resistant strains of Erwinia amylovora, the causal pathogen of fire blight, due to...

  4. 77 FR 791 - Kasugamycin; Receipt of Application for Emergency Exemption for Use on Apples in Michigan...

    Science.gov (United States)

    2012-01-06

    ..., or pesticide manufacturer. Potentially affected entities may include, but are not limited to: Crop... kasugamycin is needed to control streptomycin-resistant strains of Erwinia amylovora, the causal pathogen of...

  5. Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29.

    Science.gov (United States)

    Barionovi, D; Giorgi, S; Stoeger, A R; Ruppitsch, W; Scortichini, M

    2006-05-01

    The three main aims of the study were the assessment of the genetic relationship between a deviating Erwinia amylovora strain isolated from Amelanchier sp. (Maloideae) grown in Canada and other strains from Maloideae and Rosoideae, the investigation of the variability of the PstI fragment of the pEA29 plasmid using restriction fragment length polymorphism (RFLP) analysis and the determination of the number of short-sequence DNA repeats (SSR) by DNA sequence analysis in representative strains. Ninety-three strains obtained from 12 plant genera and different geographical locations were examined by repetitive-sequences PCR using Enterobacterial Repetitive Intergenic Consensus, BOX and Repetitive Extragenic Palindromic primer sets. Upon the unweighted pair group method with arithmetic mean analysis, a deviating strain from Amelanchier sp. was analysed using amplified ribosomal DNA restriction analysis (ARDRA) analysis and the sequencing of the 16S rDNA gene. This strain showed 99% similarity to other E. amylovora strains in the 16S gene and the same banding pattern with ARDRA. The RFLP analysis of pEA29 plasmid using MspI and Sau3A restriction enzymes showed a higher variability than that previously observed and no clear-cut grouping of the strains was possible. The number of SSR units reiterated two to 12 times. The strains obtained from pear orchards showing for the first time symptoms of fire blight had a low number of SSR units. The strains from Maloideae exhibit a wider genetic variability than previously thought. The RFLP analysis of a fragment of the pEA29 plasmid would not seem a reliable method for typing E. amylovora strains. A low number of SSR units was observed with first epidemics of fire blight. The current detection techniques are mainly based on the genetic similarities observed within the strains from the cultivated tree-fruit crops. For a more reliable detection of the fire blight pathogen also in wild and ornamentals Rosaceous plants the genetic

  6. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    Science.gov (United States)

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  7. 76 FR 11454 - Kasugamycin; Receipt of Application for Emergency Exemption for Use on Apples in Michigan...

    Science.gov (United States)

    2011-03-02

    ..., or pesticide manufacturer. Potentially affected entities may include, but are not limited to: Crop...-resistant strains of Erwinia amylovora, the causal pathogen of fire blight, due to the lack of available...

  8. The effects of cellulase on capsaicin production in freely suspended cells and immobilized cell cultures of capsicum annuum

    International Nuclear Information System (INIS)

    Islek, C.

    2014-01-01

    The effect of different concentrations of cellulase on the production of capsaicin in freely suspended cell and immobilized cell cultures of Kahramanmara pepper seeds (Capsicum annuum L.) were studied. Calluses were obtained from in vitro germinated hypocotyl explants of pepper seedlings and cell suspensions were prepared from these calluses. Immobilized cell suspension cultures with calcium alginate and free cell suspension cultures were obtained by using cell suspensions. Elicitor such as cellulase (5-30 micro g/ml), was applied both for the free and immobilized cell suspensions and control group without elicitor was prepared. The concentration of capsaicin in freely suspended cells, immobilized cells and their filtrates were identified by HPLC after extraction with ethyl acetate. It was found that the immobilization process had an increasing effect on the capsaicin accumulation. The concentration of capsaicin in the immobilized cells for both control groups and elicitor added samples was higher than the free cells. In general, capsaicin concentration in the filtrate for free cells was higher than the immobilized cells. When all the cellulase and the sampling hours were compared, the highest capsaicin concentration for the immobilized cells was determined as 362,91 micro g/ml f.w. at the 24th hour for 30 micro g/ml cellulase applied samples. (author)

  9. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    Science.gov (United States)

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  10. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures.

    Science.gov (United States)

    Srivastava, Mrinalini; Sharma, Swati; Misra, Pratibha

    2016-05-01

    Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of NaCl. Ajmaline content was also stimulated 2.9-fold at 100 mg/l dose of mannan

  11. Het effect van het calciumgehalte van pootgoed op de ziektegevoeligheid

    NARCIS (Netherlands)

    Velema, R.; Griend, van de P.; Velvis, H.

    2001-01-01

    Het onderzoek dat in dit verslag is beschreven heeft betrekking op de relatie tussen het calciumgehalte in de knol en het optreden van de ziekten Fusarium spp, Helminthosporium solani, Phytophthora infestans en Erwinia spp.

  12. Erwinia amylovora Enfeksiyonu Sonrası Elma, Armut ve Ayva Çeşitlerinde Konukçu Protein Miktarlarının Belirlenmesi

    Directory of Open Access Journals (Sweden)

    Şerife Çetin

    2014-11-01

    Full Text Available Ateş yanıklığı hastalığına neden olan Erwinia amylovora, Rosaceae familyasından başta armut, elma ve ayvalarda zararlı bakteriyel bir patojendir. Bu çalışmada, E. amylovora’ nın 2 virülent izolatının (Ea234-1 ve Ea240-3 farklı elma (Braeburn, Fuji, Gala ve Golden Delicious, armut (Santa Maria ve Williams ve ayva (Eşme ve Ekmek çeşitlerinde enfeksiyonu sonucu zamana bağlı olarak toplam protein miktarlarının belirlenmesi amaçlanmıştır. E. amylovora (108 hücre ml-1 ile yaprak inokulasyonundan sonraki 24, 36 ve 72. saatlerde örnekler alınmıştır. Enfeksiyonların doğrulanması için, bakteri inokule edilen bitkilerden re-izolasyonlar yapılmış ve etmen biyokimyasal ve moleküler testlerle E. amylovora olarak tanılanmıştır. Toplam protein miktarlarının belirlenmesinde Bradford yöntemi ve SDS-PAGE analizleri için Laemmli yöntemleri kullanılmış, protein ekstraktlarının 595 nm’ de absorbans değerleri elde edilmiştir. Elde edilen bulgulara göre, elma çeşitlerinde E. amylovora enfeksiyonu sonrası kontrole kıyasla 24. saatte toplam protein miktarının arttığı, 36. ve 72. saatte miktarın azaldığı, Braeburn çeşidinin en yüksek protein miktarına sahip olduğu belirlenmiştir. Armut çeşitlerinde, 24. ve 36. saatlerde toplam protein miktarı artarken, 72. saatte protein miktarının azaldığı ve Santa Maria çeşidinin en yüksek protein miktarına sahip olduğu tespit edilmiştir. Ayva çeşitlerinde, toplam protein miktarının 72. saatte arttığı ve Eşme çeşidinin en yüksek protein miktarına sahip olduğu belirlenmiştir. SDS-PAGE analizi sonucunda, farklı molekül ağırlıklarına sahip protein fraksiyonları elde edilmiştir. Elma ve ayva çeşitlerinde sırasıyla yaklaşık 55-70 ve 35-55 kDa, armut çeşitlerinde ise yaklaşık 55-70 kDa molekül ağırlığında protein bantları belirlenmiştir.

  13. Stress responses in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Kessmann, H.; Edwards, R.; Dixon, R.A.; Geno, P.W.

    1990-01-01

    The isoflavonoid conjugates medicarpin-3-O-glucoside-6 double-prime-O-malonate (MGM), afrormosin-7-O-glucoside (AG), and afrormosin-7-O-glucoside-6 double-prime-O-malonate (AGM) were isolated and characterized from cell suspension cultures of alfalfa (Medicago sativa L.), where they were the major constitutive secondary metabolites. They were also found in alfalfa roots but not in other parts of the plant. The phytoalexin medicarpin accumulated rapidly in suspension cultured cells treated with elicitor from Colletotrichum lindemuthianum, and this was subsequently accompanied by an increase in the levels of MGM. In contrast, net accumulation of afrormosin conjugates was not affected by elicitor treatment. Labeling studies with [ 14 C]phenylalanine indicated that afrormosin conjugates were the major de novo synthesized isoflavonoid products in unelicited cells. During elicitation, [ 14 C]phenylalanine was incorporated predominantly into medicarpin, although a significant proportion of the newly synthesized medicarpin was also conjugated. Treatment of 14 C-labeled, elicited cells with L-α-aminooxy-β-phenylpropionic acid, a potent inhibitor of PAL activity in vivo, resulted in the initial appearance of labeled medicarpin of very low specific activity, suggesting that the phytoalexin could be released from a preformed conjugate under these conditions. Our data draw attention to the involvement of isoflavone hydroxylases during the constitutive and elicitor-induced accumulation of isoflavonoids and their conjugates in alfalfa cell cultures

  14. Enhanced Mulberroside A Production from Cell Suspension and Root Cultures of Morus alba Using Elicitation.

    Science.gov (United States)

    Komaikul, Jukrapun; Kitisripanya, Tharita; Tanaka, Hiroyuki; Sritularak, Boonchoo; Putalun, Waraporn

    2015-07-01

    Morus alba L. has been used in Asian traditional medicine as an anti-inflammatory, anti-asthmatic, anthelmintic and as a whitening agent in cosmetic products. Mulberroside A is the major active compound from M. alba root bark. In this study, cell suspension and root cultures of M. alba were established, and the effect of the elicitors on the enhancement of mulberroside A production in M. alba was investigated. The cell suspension and root cultures of M. alba were exposed to elicitors and then mulberroside A contents were determined by an indirect competitive ELISA method. High levels of mulberroside A were obtained by addition of 100 and 200 μM salicylic acid with 24 h exposure time in cell suspension cultures (37.9 ± 1.5 and 34.0 ± 4.7 mg/g dry wt., respectively). Furthermore, addition of yeast extract at 2 mg/mL with 24 h exposure time can significantly increase mulberroside A contents from both cell suspension (3.2-fold) and root cultures (6.6-fold). Mulberroside A contents from both cell suspension and root cultures after treatment with elicitors are similar or higher than those found in the intact root and root bark of several years old M. alba. These results indicate that mulberry tissue cultures using the elicitation method are interesting alternative sources for mulberroside A production.

  15. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Złotek, Urszula; Świeca, Michał; Jakubczyk, Anna

    2014-04-01

    The study presents changes in the phytochemical levels, antiradical activity and quality of lettuce caused by different chemical elicitors: arachidonic acid (AA), jasmonic acid (JA), and abscisic acid (ABA). The application of 1 μM and 100 μM JA induced an increase in the concentration of phenolic compounds, including flavonoids and phenolic acids. Flavonoid levels were also increased after treatment with 100 μM AA and ABA. Some of the elicitor concentrations used also caused an increase in the levels of other phytochemicals, such as chlorophyll a (1 μM and 100 μM AA, 50 μM ABA); chlorophyll b (100 μM AA); carotenoids (100 μM AA, 1 μM JA and 100 μM ABA) and vitamin C (100 μM AA, 100 μM JA). The highest antiradical activity was noted after treatment with 100 μM AA, 100 μM JA. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability was positively and significantly correlated with flavonoid, chlorophyll and carotenoid levels. These results may suggest that the antiradical activity of lettuce was determined not only by phenolics, but also by other bioactive compounds. Elicitation did not change the sensory quality of lettuce. Therefore, treatment with elicitors could be a useful tool for improving the health-promoting qualities of lettuce without the loss of sensory quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Sesquiterpene volatile organic compounds (VOCs are markers of elicitation by sulfated laminarine in grapevine

    Directory of Open Access Journals (Sweden)

    Malik eChalal

    2015-05-01

    Full Text Available Inducing resistance in plants by application of elicitors of defense reactions is an attractive plant protection strategy, especially for grapevine (Vitis vinifera which is susceptible to severe fungal diseases. Though induced resistance (IR can be successful in controlled conditions, under outdoor conditions IR is in most cases not effective enough for practical disease control. Progress in the application of IR requires a better understanding of grapevine defense mechanisms and the ability to monitor defense markers in order to identify factors (physiological, environmental… that can impact IR in the vineyard.Volatile organic compounds (VOCs are well-known plant defenses compounds that have only received little or no attention in the case of grape-pathogen interactions to date. This prompted us to investigate whether an elicitor, the sulfated laminarin (PS3, actually induces the production of VOCs in grapevine. Online analysis (PTR-QMS of VOC emissions in dynamic cuvettes and passive sampling in gas tight bags with solid phase micro extraction (SPME-GC-MS under greenhouse conditions showed that PS3 elicited emission of VOCs. Some of them (as (E,E-α-farnesene might be good candidates as biomarkers of elicitor-IR whereas methyl salicylate appears to be rather a biomarker of downy mildew infection. A negative correlation between VOC emission and disease severity suggests a positive role of VOCs in grape defense against diseases.

  17. Nicotinic acid and nicotinamide on pear and apple flowers are not limiting factors for Erwinia amylovora growth when these chemicals are considered in relation to cultivar and flower age

    Directory of Open Access Journals (Sweden)

    Thomas PATERNOSTER

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Fire blight, caused by Erwinia amylovora, is a devastating disease of pear (Pyrus communis and apple (Malus × domestica in many areas of the world. The disease is often initiated by epiphytic populations that multiply on flowers and colonize the hypanthia. In vitro, E. amylovora requires nicotinic acid (NicAc and/or nicotinamide (NicNH2 as essential growth factors. The amount of NicAc on pear hypanthia was positively correlated with the altitude of the growing site and was inversely correlated with the sum of the maximum temperatures in the 30 days before flowering. The sum of the amounts of NicAc and NicNH2 on the hypanthia was about 6 to 23 times higher in pear, and about 1.2 to 3.5 times higher in apple, than the amounts of NicAc or NicNH2 necessary to support maximum E. amylovora growth  in vitro. No correlation was found between the amounts of NicAc and NicNH2 on the hypanthia of different pear and apple cultivars and at different growth stages and the growth of E. amylovora after experimental inoculation. In conclusion, NicAc and NicNH2 are essential for E. amylovora growth but the amounts of these chemicals on pear and apple flowers do not limit the establishment of the pathogen when competing bacteria

  18. Elicitation of Jerusalem artichoke (Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisation.

    Science.gov (United States)

    Ma, Chunquan; Zhou, Dong; Wang, Haitao; Han, Dongming; Wang, Yang; Yan, Xiufeng

    2017-01-01

    Plant cell suspension cultures have emerged as a potential source of secondary metabolites for food additives and pharmaceuticals. In this study inulin accumulation and its degree of polymerisation (DP) in the treated cells in the same medium were investigated after treatment with six types of elicitors. An in vitro cell suspension culture of Jerusalem artichoke (Helianthus tuberosus L.) was optimised by adding an extra nitrogen source. According to the growth kinetics, a maximum biomass of 5.48 g L -1 was obtained from the optimal cell suspension medium consisted of Murashige and Skoog basic medium (MS) + 1.0 mg L -1 α-naphthalene acetic acid (NAA) + 1.0 mg L -1 6-benzylaminopurine (6-BA) + 0.5 mg L -1 proline + 1.0 mg L -1 glutamine. Methyl jasmonate (MeJA, 250 µmol L -1 ) treatment for 15 days led to the highest levels of inulin (2955.27 ± 9.81 mg L -1 compared to control of 1217.46 ± 0.26 mg L -1 ). The elicited effect of five elicitors to the suspension cells of Jerusalem artichoke is as follows: AgNO 3 (Ag, 10 µmol L -1 ), salicylic acid (SA, 75 µmol L -1 ), chitosan (KJT, 40 mg L -1 ), Trichoderma viride (Tv, 90 mg L -1 ), yeast extract (YE, 0.25 mg L -1 ), and the corresponding content of inulin is increased by 2.05-, 1.93-, 1.76-, 1.44- and 1.18-fold compared to control, respectively. The obvious effect on the percentage of lower DP in inulin was observed in cells treated with 40 mg L -1 KJT, 0.25 mg L -1 YE and 10 µmol L -1 Ag. Among the six types of elicitors, the descending order of inulin content is MeJA > Ag > SA > KJT > Tv > YE. For the purpose inulin with lower DP and its application to prebiotic food, three elicitors, including KJT, YE and Ag, can be used for the elicitation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  20. Plagas Frutales: Manzana

    OpenAIRE

    Murray, Marion; Alston, Diane

    2013-01-01

    El fuego bacteriano es causado por una bacteria llamada Erwinia amylovora. Algunas variedades de manzanas son muy susceptibles a esta enfermedad, como Jonathan, Jonagold y Gala. Flores, ramitas terminales, y a veces ramas enteras o árboles mueren.

  1. Fungitoxicidade, atividade elicitora de fitoalexinas e proteção de alface em sistema de cultivo orgânico contra Sclerotinia sclerotiorum pelo extrato de gengibre Fungitoxicity, phytoalexins elicitor activity and protection of grown against Sclerotinia sclerotiorum by ginger extract

    Directory of Open Access Journals (Sweden)

    Edvirgem Rodrigues

    2007-06-01

    Full Text Available O patógeno Sclerotinia sclerotiorum é um fungo que sobrevive no solo e causa a doença conhecida como mofo branco ou podridão de esclerotínia na cultura da alface (Lactuca sativa e outras culturas. A doença é considerada de difícil controle, uma vez que o fungo é muito agressivo e produzem estruturas de resistência, os escleródios. Na busca de novos métodos de controle de doenças, os extratos de plantas com propriedades terapêuticas surgem como opção. Neste trabalho avaliou-se o efeito do extrato bruto aquoso (EBA de gengibre (Zingiber officinalis nas concentrações de 1, 5, 10, 15, 20 e 25% sobre o crescimento micelial e produção de escleródios de S. sclerotiorum, in vitro. Também foi verificada a eficiência do gengibre na proteção de plantas de alface cultivadas organicamente e inoculadas com o patógeno. Além da incidência da doença, foi analisado o rendimento da cultura e a atividade de peroxidase nos tecidos da planta. Água e o indutor de resistência acibenzolar-S-metil foram utilizados como tratamentos controle. Adicionalmente, a capacidade elicitora do EBA de gengibre em proporcionar o acúmulo das fitoalexinas deoxiantocianidina e gliceolina foi avaliada em bioensaios com sorgo e soja, respectivamente. Os resultados indicaram a atividade antimicrobiana dos EBA de gengibre, com inibição do crescimento micelial e da produção de escleródios. Na cultura da alface, verificou-se que a aplicação de massa de gengibre na base da planta aumentou a atividade da enzima peroxidase e reduziu a incidência da doença. A presença de compostos elicitores no EBA de gengibre foi observada pela indução da produção de fitoalexinas em sorgo e soja, que ocorreu de maneira dose-dependente. Estes resultados indicam o potencial de Z. officinalis para o controle de S. sclerotiorum em alface, o qual pode ocorrer tanto por atividade antimicrobiana direta quanto pela ativação de mecanismos de defesa das plantas

  2. Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon.

    Science.gov (United States)

    Rouanet, Carine; Reverchon, Sylvie; Rodionov, Dmitry A; Nasser, William

    2004-07-16

    In Erwinia chrysanthemi, production of pectic enzymes is modulated by a complex network involving several regulators. One of them, PecS, which belongs to the MarR family, also controls the synthesis of various other virulence factors, such as cellulases and indigoidine. Here, the PecS consensus-binding site is defined by combining a systematic evolution of ligands by an exponential enrichment approach and mutational analyses. The consensus consists of a 23-base pair palindromic-like sequence (C(-11)G(-10)A(-9)N(-8)W(-7)T(-6)C(-5)G(-4)T(-3)A(-2))T(-1)A(0)T(1)(T(2)A(3)C(4)G(5)A(6)N(7)N(8)N(9)C(10)G(11)). Mutational experiments revealed that (i) the palindromic organization is required for the binding of PecS, (ii) the very conserved part of the consensus (-6 to 6) allows for a specific interaction with PecS, but the presence of the relatively degenerated bases located apart significantly increases PecS affinity, (iii) the four bases G, A, T, and C are required for efficient binding of PecS, and (iv) the presence of several binding sites on the same promoter increases the affinity of PecS. This consensus is detected in the regions involved in PecS binding on the previously characterized target genes. This variable consensus is in agreement with the observation that the members of the MarR family are able to bind various DNA targets as dimers by means of a winged helix DNA-binding motif. Binding of PecS on a promoter region containing the defined consensus results in a repression of gene transcription in vitro. Preliminary scanning of the E. chrysanthemi genome sequence with the consensus revealed the presence of strong PecS-binding sites in the intergenic region between fliE and fliFGHIJKLMNOPQR which encode proteins involved in the biogenesis of flagellum. Accordingly, PecS directly represses fliE expression. Thus, PecS seems to control the synthesis of virulence factors required for the key steps of plant infection.

  3. Draft Genome Sequences of 17 Isolates of the Plant Pathogenic Bacterium Dickeya

    OpenAIRE

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S.; Elphinstone, John G.; Pirhonen, Minna; Toth, Ian K.

    2013-01-01

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  4. Draft genome sequences of 17 isolates of the plant pathogenic bacterium dickeya.

    Science.gov (United States)

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S; Elphinstone, John G; Pirhonen, Minna; Toth, Ian K

    2013-11-21

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  5. Cost-analysis of treatment of childhood acute lymphoblastic leukemia with asparaginase preparations: The impact of expensive chemotherapy

    NARCIS (Netherlands)

    W.H. Tong (Wing); I.M. van der Sluis (Inge); C.J.M. Alleman (Cathelijne); R.R. van Litsenburg (Raphaële ); G.J. Kaspers (Gertjan); R. Pieters (Rob); C.A. Uyl-de Groot (Carin)

    2013-01-01

    markdownabstract__Abstract__ Asparaginase is an expensive drug, but important in childhood acute lymphoblastic leukemia. In order to compare costs of PEGasparaginase, Erwinia asparaginase and native E. coli asparaginase, we performed a cost-analysis in the Dutch Childhood Oncology Group ALL-10

  6. Revelation and cloning of valinomycin synthetase genes in Streptomyces lavendulae ACR-DA1 and their expression analysis under different fermentation and elicitation conditions.

    Science.gov (United States)

    Sharma, Richa; Jamwal, Vijaylakshmi; Singh, Varun P; Wazir, Priya; Awasthi, Praveen; Singh, Deepika; Vishwakarma, Ram A; Gandhi, Sumit G; Chaubey, Asha

    2017-07-10

    Streptomyces species are amongst the most exploited microorganisms due to their ability to produce a plethora of secondary metabolites with bioactive potential, including several well known drugs. They are endowed with immense unexplored potential and substantial efforts are required for their isolation as well as characterization for their bioactive potential. Unexplored niches and extreme environments are host to diverse microbial species. In this study, we report Streptomyces lavendulae ACR-DA1, isolated from extreme cold deserts of the North Western Himalayas, which produces a macrolactone antibiotic, valinomycin. Valinomycin is a K + ionophoric non-ribosomal cyclodepsipeptide with a broad range of bioactivities including antibacterial, antifungal, antiviral and cytotoxic/anticancer activities. Production of valinomycin by the strain S. lavendulae ACR-DA1 was studied under different fermentation conditions like fermentation medium, temperature and addition of biosynthetic precursors. Synthetic medium at 10°C in the presence of precursors i.e. valine and pyruvate showed enhanced valinomycin production. In order to assess the impact of various elicitors, expression of the two genes viz. vlm1 and vlm2 that encode components of heterodimeric valinomycin synthetase, was analyzed using RT-PCR and correlated with quantity of valinomycin using LC-MS/MS. Annelid, bacterial and yeast elicitors increased valinomycin production whereas addition of fungal and plant elicitors down regulated the biosynthetic genes and reduced valinomycin production. This study is also the first report of valinomycin biosynthesis by Streptomyces lavendulae. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7.

    Directory of Open Access Journals (Sweden)

    Shuguo Hou

    2014-09-01

    Full Text Available In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs and endogenous damage-associated molecular patterns (DAMPs. Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7 functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides.

  8. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    Science.gov (United States)

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  9. Methyl jasmonate-induction of cotton: a field test of the “attract and reward” strategy of conservation biological control

    Science.gov (United States)

    Natural or synthetic elicitors can affect plant physiology by stimulating direct and indirect defense responses to herbivores. For example, increased production of plant secondary metabolites, a direct response, can negatively impact herbivore survival, development, and fecundity. Indirect respons...

  10. Chlorogenic acids biosynthesis in Centella asiatica cells is not stimulated by salicylic acid manipulation

    CSIR Research Space (South Africa)

    Ncube, EN

    2016-07-01

    Full Text Available Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been...

  11. Fire blight resistance in wild accessions of Malus sieversii

    Science.gov (United States)

    Fire blight (Erwinia amylovora) is a devastating bacterial disease in apple that results in severe economic losses. Epidemics are becoming more common as susceptible cultivars and rootstocks are being planted, and control is becoming more difficult as antibiotic-resistant strains develop. Resistan...

  12. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review

    NARCIS (Netherlands)

    Czajkowski, R.L.; Pérombelon, M.C.M.; Jafra, S.; Lojkowska, E.; Potrykus, M.; Wolf, van der J.M.; Sledz, W.

    2015-01-01

    The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in

  13. Integrated Control of Fire Blight with Antagonists and Oxytetracycline

    Science.gov (United States)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory activity of o...

  14. Integrated Control of Fire Blight with Bacterial Antagonists and Oxytetracycline

    Science.gov (United States)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora were prevalent. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory acti...

  15. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes

  16. Bodemindicatoren

    NARCIS (Netherlands)

    Overbeek, van L.S.; Schoen, C.D.; Bonants, P.J.M.

    2010-01-01

    Bij de zoektocht naar een geschikt bestrijdingsmiddel voor Erwinia amylovora in de fruitteelt is van 2006 t/m 2008 een Craft-onderzoeksproject uitgevoerd waarbij gekeken is of Bacillus sp. gebruikt kunnen worden voor het bestrijden van deze ziekteverwekker. De uitkomst was dat er inderdaad

  17. Western Flower Thrips (Thysanoptera: Thripidae) preference for thrips-damaged leaves over fresh leaves enables uptake of symbiotic gut bacteria

    NARCIS (Netherlands)

    de Vries, E.J.; Vos, R.A.; Jacobs, G.; Breeuwer, J.A.J.

    2006-01-01

    To understand the evolution of insect gut symbionts it is important to determine how they are passed on to the next generation. We studied this process in Erwinia species bacteria that inhabit the gut of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). This is

  18. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight

    Science.gov (United States)

    Microencapsulation and controlled release of Pantoea agglomerans strain E325 (E325), which is an antagonist to bacterial pathogen (Erwinia amylovora) of fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 µm in diamet...

  19. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  20. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional

  1. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Glied, Stephan; Crocoll, Christoph

    2017-01-01

    BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors...

  2. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes

    Directory of Open Access Journals (Sweden)

    Anton P. Tyurin

    2018-06-01

    Full Text Available Whole genome sequencing of actinomycetes has uncovered a new immense realm of microbial chemistry and biology. Most biosynthetic gene clusters present in genomes were found to remain “silent” under standard cultivation conditions. Some small molecules—chemical elicitors—can be used to induce the biosynthesis of antibiotics in actinobacteria and to expand the chemical diversity of secondary metabolites. Here, we outline a brief account of the basic principles of the search for regulators of this type and their application.

  3. Dickeya species: an emerging problem for potato production in Europe

    NARCIS (Netherlands)

    Toth, I.K.; Wolf, van der J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror, L.; Elphinstone, J.G.

    2011-01-01

    Dickeya species (formerly Erwinia chrysanthemi) cause diseases on numerous crop and ornamental plants world-wide. Dickeya spp. (probably D. dianthicola) were first reported on potato in the Netherlands in the 1970s and have since been detected in many other European countries. However, since 2004–5

  4. A study on bacterial softrot in witloof chicory

    NARCIS (Netherlands)

    Schober, B.M.

    1998-01-01

    The production process of witloof chicory, which consists of the root production stage, the storage of the roots and the forcing of the chicory heads, was monitored for the presence of softrot bacteria. In the Netherlands, bacterial softrot in chicory is caused by Erwinia

  5. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy

    DEFF Research Database (Denmark)

    Hinrichsen, Rebecca; Hansen, A.H.; Haunsø, S.

    2008-01-01

    /6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4...

  6. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices.

    Science.gov (United States)

    Marolleau, Brice; Gaucher, Matthieu; Heintz, Christelle; Degrave, Alexandre; Warneys, Romain; Orain, Gilles; Lemarquand, Arnaud; Brisset, Marie-Noëlle

    2017-01-01

    Plant resistance inducers, also called elicitors, could be useful to reduce the use of pesticides. However, their performance in controlling diseases in the field remains unsatisfactory due to lack of specific knowledge of how they can integrate crop protection practices. In this work, we focused on apple crop and acibenzolar- S -methyl (ASM), a well-known SAR (systemic acquired resistance) inducer of numerous plant species. We provide a protocol for orchard-effective control of apple scab due to the ascomycete fungus Venturia inaequalis , by applying ASM in combination with a light integrated pest management program. Besides we pave the way for future optimization levers by demonstrating in controlled conditions (i) the high influence of apple genotypes, (ii) the ability of ASM to prime defenses in newly formed leaves, (iii) the positive effect of repeated elicitor applications, (iv) the additive effect of a thinning fruit agent.

  7. Vigna radiata as a New Source for Biotransformation of Hydroquinone to Arbutin

    Directory of Open Access Journals (Sweden)

    Zahra Tofighi, Mohsen Amini, Mahzad Shirzadi, Hamideh Mirhabibi, Negar Ghazi Saeedi, Narguess Yassa

    2016-06-01

    Full Text Available Background: The suspension culture of Vigna radiata was selected for biotransformation of hydroquinone to its β-D-glucoside form (arbutin as an important therapeutic and cosmetic compound. Methods: The biotransformation efficiency of a Vigna radiata cell culture in addition to different concentrations of hydroquinone (6-20 mg/100 ml was investigated after 24 hours in comparison to an Echinacea purpurea cell culture and attempts were made to increase the efficacy of the process by adding elicitors. Results: Arbutin was accumulated in cells and found in the media only in insignificant amounts. The arbutin content of the biomass extracts of V. radiata and E. purpurea was different, ranging from 0.78 to 1.89% and 2.00 to 3.55% of dry weight, respectively. V. radiata demonstrated a bioconversion efficiency of 55.82% after adding 8 mg/100 ml precursor, which was comparable with result of 69.53% for E. purpurea cells after adding 10 mg/100 ml hydroquinone (P>0.05. In both cultures, adding hydroquinone in two portions with a 24-hour interval increased the biotransformation efficiency. Different concentrations of methyl jasmonate (25, 50, and 100 µM and chitosan (50 and 100 µg/ml as elicitors increased the bio-efficiency percentage of the V. radiata culture in comparison with the flask containing only hydroquinone. Conclusion: This is the first report of the biotransformation possibility of V. radiata cultures. It was observed the bioconversion capacity increased by adding hydroquinone in two portions, which was comparable to adding an elicitor.

  8. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    Science.gov (United States)

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  9. Optimization, purification and characterization of recombinant L ...

    African Journals Online (AJOL)

    We studied optimal L-asparaginase sequence from GenBank accession number X12746 encoding for Lasparaginase from Erwinia chrysanthemi NCPPB1125. The expression level of recombinant Lasparaginase was determined as 78% of the total proteins. The purified L-asparaginase had a molecular mass of 37 kDa with ...

  10. Relative Susceptibility of Quince, Pear, and Apple Cultivars to Fire Blight Following Greenhouse Inoculation

    Science.gov (United States)

    Fire blight caused by Erwinia amylovora (EA) is one of the most serious diseases of plants in the family Rosaceae, and Quince (Cydonia oblonga Mill.) is considered one of the most susceptible host genera. Apple (Malus sp.) and pear (Pyrus sp.) cultivars ranging from most susceptible to most resistan...

  11. Bio-based resistance inducers for sustainable plant protection against pathogens

    Czech Academy of Sciences Publication Activity Database

    Burketová, Lenka; Trdá, Lucie; Ott, P.G.; Valentová, O.

    2015-01-01

    Roč. 33, č. 6 (2015), s. 994-1004 ISSN 0734-9750 R&D Projects: GA MŠk(CZ) LD14056 Institutional support: RVO:61389030 Keywords : Induced resistance * Elicitor * Chitosan Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 9.848, year: 2015

  12. Purification, crystallization and preliminary X-ray diffraction analysis of an oomycete-derived Nep1-like protein

    NARCIS (Netherlands)

    Luberacki, B.; Weyand, M.; Seitz, H.U.; Koch, W.; Oecking, C.; Ottmann, C.

    2008-01-01

    The elicitor protein Nep1-like protein from the plant pathogen Pythium aphanidermatum was purified and crystallized using the hanging-drop vapour-diffusion method. A native data set was collected to 1.35 angstrom resolution at 100 K using synchrotron radiation. Since selenomethionine-labelled

  13. Effect of foliar application of salicylic acid, hydrogen peroxide and a ...

    Indian Academy of Sciences (India)

    A Y Zunun-Pérez

    2017-04-20

    Apr 20, 2017 ... Keywords. Capsinoids; elicitors; gene regulation; nutraceuticals; secondary metabolites ... nificantly increased production of capsiate and gene expression associated .... of capsiate in fruits ofC. .... rats. J. Nutr. Sci. Vitaminol. 50 351–355. Tierranegra-Garcia N, Salinas-Soto P, Torres-Pacheco I, Ocampo-.

  14. Appa Rao Podile | Speakers | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In the past decade, domain shuf- fling/swapping of recombinant bacterial chitinases, bioprocess development for production of chitooligosaccharides by enzymatic methods, mechanism of elicitor (harpin) induced cell death, nanotechnology for crop protection, and non-host resistance have been his major areas of research ...

  15. Toprak Solucanlarından Elde Edilen Vermikompostun Bazı Bitki Patojenleri Üzerindeki Antimikrobiyal Aktivitelerinin Araştırılması

    Directory of Open Access Journals (Sweden)

    Uğur Tutar

    2012-12-01

    Full Text Available Toprak solucanlarının, organik atıkları biyolojik olarak parçalayarak ayrıştırmaları ile oluşturdukları “vemikompost” un, bazı patojen bakteri ve funguslara karşı etkili oldukları yapılan çeşitli araştırmalarla saptanmıştır. Bu çalışmada, Eisenia fetida türü toprak solucanlarından elde edilen vermikompostun; etanol ve kloroform solventleri kullanılarak elde edilen ekstrelerinin, bitkilerde hastalıklara neden olan toprak kaynaklı patojen 9 adet bakteri ve 9 adet fungusa karşı etkinliklerinin belirlenmesi amacıyla “disk difüzyon” ve “MIC” testleri uygulanmıştır. Çalışma sonuçlarına göre, toprak solucanlarından elde edilen vermikompostun kloroform ile elde edilen ekstrelerinin Pseudomonas syringae, Xhantomonas carotae, Sclerotinia sclerotiorum, Fusarim oxysporum, Aspergillus humicola ve Aspergillus fumigatus’ a karşı etkileri güçlü olurken Erwinia chrysanthemi, Pseudomonas fluorescens, ve Penicillium brevicompactum’ a karşı etkilerinin daha zayıf olduğu görülmüştür. Vermikompostun etanol ile elde edilen ekstrelerinin ise Pseudomonas syringae, Xhantomonas campestris ve Aspergillus fumigatus’ a karşı etkilerinin güçlü olduğu, Erwinia herbicola, Erwinia chrysanthemi ve Sclerotinia sclerotiorum’ a  karşı ise daha zayıf bir etki gösterdiği saptanmıştır.

  16. AcEST: DK949268 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 7|CEBIP_ORYSJ Chitin elicitor-binding protein OS=Oryza s... 52 2e-06 sp|Q9P403|CIH1_COLLN Intracellular hyphae...03|CIH1_COLLN Intracellular hyphae protein 1 OS=Colletotrichum lindemuthianum GN=CIH1 PE=1 SV=1 Length = 230

  17. The high molecular weight dipeptidyl peptidase IV Pol d 3 is a major allergen of Polistes dominula venom

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Hilger, Christiane; Eberlein, Bernadette

    2018-01-01

    Hymenoptera venom allergy can cause severe anaphylaxis in untreated patients. Polistes dominula is an important elicitor of venom allergy in Southern Europe as well as in the United States. Due to its increased spreading to more moderate climate zones, Polistes venom allergy is likely to gain imp...

  18. Chitosan oligosaccharides-triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum

    DEFF Research Database (Denmark)

    Yin, Heng; Yan, Li; HongYan, Zhang

    2013-01-01

    Chitosan oligosaccharides (collectively, oligochitosan, or COS) are considered to be potent plant immunity elicitors. In this article, the induction of resistance to Sclerotinia sclerotiorum in Brassica napus L. var. Huyou 15 by COS is studied. Even though COS (50 mg mL1) did not affect radial...

  19. Toxin- and cadmium-induced cell death events in tomato suspension cells resemble features of hypersensitive response

    NARCIS (Netherlands)

    Iakimova, E.T.; Woltering, E.J.; Yordanova, Z.P.

    2007-01-01

    Elicitors of different origin (fumonisin B1, fungal toxin), camptothecin (alkaloid from Camptotheca acuminata), mastoparan (wasp venom) and the heavy metal (cadmium) were tested for their ability to induce programmed cell death (PCD) in a model system of tomato cell culture, line MsK8. By employing

  20. Effects of gastrointestinal digestion and heating on the allergenicity of the kiwi allergens Act d 1, actinidin, and Act d 2, a thaumatin-like protein

    NARCIS (Netherlands)

    Bublin, Merima; Radauer, Christian; Knulst, Andre; Wagner, Stefan; Scheiner, Otto; Mackie, Alan R.; Mills, E. N. Clare; Breiteneder, Heimo

    2008-01-01

    Kiwifruit is a significant elicitor of allergy both in children and adults. Digestibility of two kiwifruit allergens, actinidin (Act d 1) and thaumatin-like protein (Act d 2), was assessed using an in vitro digestion system that approximates physiological conditions with respect to the passage of

  1. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    Science.gov (United States)

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chemical and visual sensory systems in feeding behaviour of the Antarctic fish Ophthalmolycus amberensis (Zoarcidae

    Directory of Open Access Journals (Sweden)

    Edith Fanta

    2001-03-01

    Full Text Available The Antarctic eelpout Ophthalmolycus amberensis occurs in Admiralty Bay (King George Island, South Shetlands, at 140-200m depth, where light intensity is low. To assess behavioural and sensory adaptations for feeding under these conditions, laboratory tests were undertaken. Dead krill, fish fillet, and live amphipods were the preferred food items. Feeding responses were mainly induced by chemical stimuli. Visual stimuli were weak elicitors, leading to a long delay in the initiation of feeding behaviour. These fishes present a large olfactory epithelium, a high density of taste buds on the snout and close to the nostrils, and a retina that contained long rods, but no cones. Food selection was observed. Varied types of taste buds were present on the lips and in the oro-pharyngeal cavity. The capacity to use a chemo-sensory system as first elicitor for food detection, either in the absence or presence of light, allows O. amberensis to efficiently exploit different habitats at the sea bottom, in all Antarctic seasons.

  3. Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato[C][W][OA

    Science.gov (United States)

    El Oirdi, Mohamed; El Rahman, Taha Abd; Rigano, Luciano; El Hadrami, Abdelbasset; Rodriguez, María Cecilia; Daayf, Fouad; Vojnov, Adrian; Bouarab, Kamal

    2011-01-01

    Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant’s defense system and to spread within the host. PMID:21665999

  4. Effect of low-temperature plasma treatment on the growth and reproduction rate of some plant pathogenic bacteria

    Czech Academy of Sciences Publication Activity Database

    Mráz, Ivan; Beran, P.; Šerá, Božena; Gavril, B.; Hnatiuc, E.

    2014-01-01

    Roč. 96, č. 1 (2014), s. 63-67 ISSN 1125-4653 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 ; RVO:67179843 Keywords : LTAPP * bacterial growth * Clavibacter michigannsis subsp michiganensis * Escherichia coli * Erwinia amylovora Subject RIV: EE - Microbiology, Virology; BO - Biophysics (UEK-B) Impact factor: 1.043, year: 2014

  5. Water relations of Pseudomonas solanacearum

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... pathogens of plants, especially, Erwinia chrysanthemi. (Mildenhall et al., 1988; Prior et al., 1994; Gouesbet et al., 1995; Gouesbet et al., 1996). This helps to determine how they survive in dry soil for long periods as saprophytes. Experiments undertaken here on P. solanacearum give a glimpse of what may ...

  6. Children's Physical Attractiveness and Sex as Determinants of Adult Punitiveness

    Science.gov (United States)

    Dion, Karen K.

    1974-01-01

    Two studies investigated the influence of a child's physical attractiveness and sex as potential elicitors of differential adult punitiveness. Assessed were the reactions of 40 women and 44 men. Results reveal differences in men's and women's reactions and suggest differences in their orientation towards children's task behavior. (Author/SDH)

  7. Against the odds : Human values arising in unfavourable circumstances elicit the feeling of being moved

    NARCIS (Netherlands)

    Strick, M.A.; Van Soolingen, Jantine

    2017-01-01

    People sometimes say they are ‘moved’ or ‘touched’ by something. Although the experience is familiar to most, systematic research on being moved has just begun. The current research aims to advance our understanding of the prototypical elicitors of being moved. We tested the hypothesis that being

  8. Molecular characterization of Api g 2, a novel allergenic member of the lipid-transfer protein 1 family from celery stalks

    NARCIS (Netherlands)

    Gadermaier, Gabriele; Egger, Matthias; Girbl, Tamara; Erler, Anja; Harrer, Andrea; Vejvar, Eva; Liso, Marina; Richter, Klaus; Zuidmeer, Laurian; Mari, Adriano; Ferreira, Fatima

    2011-01-01

    Celery represents a relevant cross-reactive food allergen source in the adult population. As the currently known allergens are not typical elicitors of severe symptoms, we aimed to identify and characterize a non-specific lipid transfer protein (nsLTP). MS and cDNA cloning were applied to obtain the

  9. Host induced changes in plasmid profile of Xanthomonas ...

    African Journals Online (AJOL)

    Based on known facts about genome rearrangement, we speculate this as an adaptation strategy for Xam to increase copy number of genes involved in pathogen aggressiveness which are otherwise present as single copy in bacterial chromosome and this possibly occurred by induction from host elicitors present in leaf ...

  10. Elicitation of Valerenic Acid in the Hairy Root Cultures of Valeriana ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of magnesium and calcium as abiotic elicitors on Valeriana officinalis hairy roots for scale-up production of valerenic acid. Methods: Hairy roots were established in different explants of Valeriana officinalis via a mikimopine type strain of Agrobacterium rhizogenes 'A13'. Transgenic status of ...

  11. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae.

    Science.gov (United States)

    Valente, Rita S; Nadal-Jimenez, Pol; Carvalho, André F P; Vieira, Filipe J D; Xavier, Karina B

    2017-05-23

    Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora ), two signaling networks-the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway-control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone

  12. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    Directory of Open Access Journals (Sweden)

    Bas ter Braak

    Full Text Available Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  13. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application

    Directory of Open Access Journals (Sweden)

    Vibha Pandey

    2017-08-01

    Full Text Available Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc. or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.

  14. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea

    NARCIS (Netherlands)

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M.; Joosten, Matthieu H.A.J.; Laxalt, Ana María

    2016-01-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5

  15. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Hála, Michal; Kulich, I.; Kocourková, Daniela; Drdová, Edita; Fendrych, Matyáš; Toupalová, Hana; Žárský, Viktor

    2011-01-01

    Roč. 62, č. 6 (2011), s. 2107-2116 ISSN 0022-0957 R&D Projects: GA ČR GAP501/10/2081; GA AV ČR KJB600380802 Institutional research plan: CEZ:AV0Z50380511 Keywords : elicitor * exocyst * immunity Subject RIV: EF - Botanics Impact factor: 5.364, year: 2011

  16. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    Science.gov (United States)

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  17. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability.

    NARCIS (Netherlands)

    Burg, van den H.A.; Westerink, N.; Francoijs, C.J.J.; Roth, R.; Woestenenk, E.A.; Boeren, J.A.; Wit, de P.J.G.M.; Joosten, M.H.A.J.; Vervoort, J.J.M.

    2003-01-01

    The extracellular AVR4 elicitor of the pathogenic fungus Cladosporium fulvum induces defense responses in the tomato genotype Cf-4. Here, the four disulfide bonds of AVR4 were identified as Cys-11-41, Cys-21-27, Cys-35-80, and Cys-57-72 by partial reduction with Tris-(2-carboxyethyl)-phosphine

  18. Cell Wall Components of Leptosphaeria maculans Enhance Resistance of Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Kim, P.D.; Šašek, Vladimír; Burketová, Lenka; Čopíková, J.; Synytsya, A.; Jindřichová, Barbora; Valentová, O.

    2013-01-01

    Roč. 61, č. 22 (2013), s. 5207-5214 ISSN 0021-8561 R&D Projects: GA ČR GA522/08/1581; GA MZe QH81201 Institutional research plan: CEZ:AV0Z50380511 Keywords : elicitor * oligosaccharide * Leptosphaeria maculans Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 3.107, year: 2013

  19. Cloning and expression analysis of chalcone synthase gene from ...

    Indian Academy of Sciences (India)

    Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate ... Journal of Genetics, DOI 10.1007/s12041-016-0680-8, Vol. 95, No. ... leaf of C. forskohlii. Quantitative real time RT-PCR was used ..... SGG acknowledges the financial support for this work from CSIR. 12th FYP project ...

  20. Establishment and characterization of American elm cell suspension cultures

    Science.gov (United States)

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy

    2000-01-01

    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  1. Effect of abiotic stress under light and dark conditions on carotenoid ...

    African Journals Online (AJOL)

    The aim of this study was to observe the effect of abiotic stress under light and dark conditions on pumpkin calluses carotenoid. Plant elicitors used to create abiotic stress in this study were Polyethylene Glycol 4000 for drought stress, Jasmonic Acid and Salicylic Acid for hormones stress and Murashige and Skoog Salt for ...

  2. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  3. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata.

    Science.gov (United States)

    Gandi, Suryakala; Rao, Kiranmayee; Chodisetti, Bhuvaneswari; Giri, Archana

    2012-12-01

    Andrographis paniculata belonging to the family Acanthaceae produces a group of diterpene lactones, one of which is the pharmaceutically important-andrographolide. It is known to possess various important biological properties like anticancer, anti-HIV, anti-inflammatory, etc. This is the first report on the production of andrographolide in the cell suspension cultures of Andrographis paniculata by 'elicitation'. Elicitation was attempted to enhance the andrographolide content in the suspension cultures of Andrographis paniculata and also to ascertain its stimulation under stress conditions or in response to pathogen attack. The maximum andrographolide production was found to be 1.53 mg/g dry cell weight (DCW) at the end of stationary phase during the growth curve. The biotic elicitors (yeast, Escherichia coli, Bacillus subtilis, Agrobacterium rhizogenes 532 and Agrobacterium tumefaciens C 58) were more effective in eliciting the response when compared to the abiotic elicitors (CdCl(2), AgNO(3), CuCl(2) and HgCl(2)). Yeast has shown to stimulate maximum accumulation of 13.5 mg/g DCW andrographolide, which was found to be 8.82-fold higher than the untreated cultures.

  4. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  5. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    Directory of Open Access Journals (Sweden)

    Heli Salmela

    2015-07-01

    Full Text Available Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

  6. Recommended conservation of the names Streptococcus sanguis, Streptococcus rattus, Streptococcus cricetus, and seven other names included in the Approved Lists of Bacterial Names. Request for an opinion

    DEFF Research Database (Denmark)

    Kilian, Mogens

    2001-01-01

    With reference to the first Principle of the International Code of Nomenclature of Bacteria, which emphasizes stability of names, it is proposed that the original names Streptococcus sanguis, Streptococcus rattus, Streptococcus cricetus, Erwinia ananas, Eubacterium tarantellus, Lactobacillus sake......, Nitrosococcus oceanus, Pseudomonas betle, Rickettsia canada and Streptomyces rangoon, all included in the Approved Lists of Bacterial Names, be conserved. Request for an Opinion...

  7. Incidencia de enfermedades en pejibaye (bactris gasipaes kunth para palmito

    Directory of Open Access Journals (Sweden)

    Carlos Arroyo

    2004-01-01

    Full Text Available Incidencia de enfermedades en pejibaye (Bactris gasipaes Kunth para palmito. Se determinó la incidencia de enfermedades en cuatro variedades de palmito de pejibaye (Bactris gasipaes Kunth, durante los 12 primeros meses de desarrollo. Tres de ellas sin espinas (Diamantes-1, Diamantes- 10 y Diamantes-20 y una con espinas (Utilis-Tucurrique. El ensayo se efectuó en la región de Guápiles, Costa Rica, de mayo del 2000 a abril del 2001. Los patógenos que se encontraron en las plantas de pejibaye fueron: Colletotrichum sp., (mancha negra de las hojas; Phytophthora palmivora, (pudrición cogollo u hoja guía; Drechslera setariae, (mancha de anillo; Lasiodiplodia theobromae (hoja deshilachada y Erwinia sp., (pudrición del tallo, quema de hojas y hoja guía. La variedad Utilis-Tucurrique, presentó la mayor susceptibilidad a todas las enfermedades, pero en ningún caso éstas llegaron a un nivel de importancia económica. La incidencia de Erwinia sp. y Phytophothora palmivora mostró mayor relación con la precipitación y alta temperatura.

  8. Erwinia resistentie in Zantedeschia : eindverslag juni 2003

    NARCIS (Netherlands)

    Snijder, R.C.; Tuyl, van J.M.

    2003-01-01

    Het gewas Zantedeschia heeft zich de afgelopen jaren razendsnel ontwikkeld als nieuw siergewas. De veredeling van Zantedeschia staat echter nog in de kinderschoenen. De ontwikkeling van kennis, technieken en materiaal op het gebied van Zantedeschia is van belang met het oog op de positie die het

  9. The deterioration during transport and storage of tomato fruits by microorganisms contaminating the surface and latent infected tissue

    OpenAIRE

    河野, 又四; 寺下, 隆夫

    1988-01-01

    [Author abstract]Deterioration during transport and storage of tomato fruits is generally thought to be caused by microorganisms contaminating the surface and latent infected tissue of apparently healthy fruit. Counts of viable airborne microorganisms showed that there were more in plastic greenhouses than in open culure of tomatoes. Altemaria, Aspergillus niger, Asp. oryzae, Cladosporium, Fusarium, Mucor, Penicillium, Trichoderma, Trichothecium, Bacillus, Erwinia and Pseudomonas were among t...

  10. Isoxazole derivatives as new nitric oxide elicitors in plants

    Directory of Open Access Journals (Sweden)

    Anca Oancea

    2017-04-01

    Full Text Available Several 3,5-disubstituted isoxazoles were obtained in good yields by regiospecific 1,3-dipolar cycloaddition reactions between aromatic nitrile oxides, generated in situ from the corresponding hydroxyimidoyl chlorides, with non-symmetrical activated alkynes in the presence of catalytic amounts of copper(I iodide. Effects of 3,5-disubstituted isoxazoles on nitric oxide and reactive oxygen species generation in Arabidopsis tissues was studied using specific diaminofluoresceine dyes as fluorescence indicators.

  11. Visual cue-specific craving is diminished in stressed smokers.

    Science.gov (United States)

    Cochran, Justinn R; Consedine, Nathan S; Lee, John M J; Pandit, Chinmay; Sollers, John J; Kydd, Robert R

    2017-09-01

    Craving among smokers is increased by stress and exposure to smoking-related visual cues. However, few experimental studies have tested both elicitors concurrently and considered how exposures may interact to influence craving. The current study examined craving in response to stress and visual cue exposure, separately and in succession, in order to better understand the relationship between craving elicitation and the elicitor. Thirty-nine smokers (21 males) who forwent smoking for 30 minutes were randomized to complete a stress task and a visual cue task in counterbalanced orders (creating the experimental groups); for the cue task, counterbalanced blocks of neutral, motivational control, and smoking images were presented. Self-reported craving was assessed after each block of visual stimuli and stress task, and after a recovery period following each task. As expected, the stress and smoking images generated greater craving than neutral or motivational control images (p smokers are stressed, visual cues have little additive effect on craving, and different types of visual cues elicit comparable craving. These findings may imply that once stressed, smokers will crave cigarettes comparably notwithstanding whether they are exposed to smoking image cues.

  12. Structured plant metabolomics for the simultaneous exploration of multiple factors.

    Science.gov (United States)

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-11-17

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.

  13. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum

    OpenAIRE

    Costechareyre, Denis; Balmand, Severine; Condemine, Guy; Rahbé, Yves

    2012-01-01

    International audience; Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the ...

  14. Environmental Assessment: For Joint Biological Point Detection System (JBPDS) at Multiple Test Ranges, Eglin Air Force Base, Florida

    Science.gov (United States)

    2003-06-01

    found in orchards and is a common microflora on fruits and vegetables. Information is limited regarding this microorganism, although it is being...are expected. Erwinia herbicola reclassified as Pantoea agglomerans (EH) EH is found in orchards and is a common micro flora on fruits and...may over time develop a resistance to BT. Soil microbiota may be affected by the persistence of BT in soils (ECOTOXNET, 1996). Fish in Holley

  15. Carboxymethyl-cellulase from Erwina chrysanthemi. I. Production and regulation of extracellular carboxymethyl-cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M.H.; Chambost, J.P.; Magnan, M.; Cattaneo, J.

    1984-01-01

    Erwinia chrysanthemi strain 3665 growing aerobically in a mineral salts medium containing various carbon sources constitutively secreted low levels of carboxymethyl-cellulase activity. Increased production of this activity was triggered by conditions which reduced the growth rate. The results obtained with continuous culture suggested that this production was controlled by a mechanism similar to catabolite repression. However, other factors might be implicated in the regulation of cellulase production.

  16. Dicty_cDB: Contig-U11114-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ...........................done Score E Sequences producing significant alignments: (bits) Value N ( BJ424127 ) Dictyostelium disc...dqs*erihhsfntlelqpvqpemvylnigsrpakriaaksfglehlraipwvfsfsq nrlnlpvwlgiedaileaktkgwgsdinemykewpffsstidlvemvll...; 5,674,871 total letters Score E Sequences producing significant alignments: (bits) Value C...........................................done Score E Sequences producing significant alignments: (bits) Valu...pn... 137 2e-59 CU468135_133( CU468135 |pid:none) Erwinia tasmaniensis strain ET1/... 142 2e-59 (B6EMN4) Rec

  17. Growing technology earthy Tribulus terrestris (Tribulus terrestris L.) and its use

    OpenAIRE

    HUDSKÁ, Miluše

    2015-01-01

    This bachelor thesis deals with Puncturevine (Tribulus terrestris) as for planting, content substances, pharmacological use and with influences of planting technology or elicitors upon the active substance contents. Saponines, flavonoids, and phytosterols are the main active substances of Puncturevine. The saponines act as aphrodisiacs, the flavonoids treat with heart diseases and the phytosterols decrease the cholesterol concentration in blood plasma. The active substance contents depend on ...

  18. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures.

    Science.gov (United States)

    Desgagné-Penix, Isabel; Khan, Morgan F; Schriemer, David C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2010-11-18

    Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates

  19. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Directory of Open Access Journals (Sweden)

    Xuejian eYu

    2015-08-01

    Full Text Available The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3 % and Erwinia (7.2 % dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages.

  20. Effect of freeze-thaw repetitions upon the supercooling release ability of ice-nucleating bacteria

    International Nuclear Information System (INIS)

    Tsuchiya, Yooko; Hasegawa, Hiromi; Sasaki, Kazuhiro

    2004-01-01

    We have studied the durability of ice-nucleating bacteria with a potent supercooling release capacity through repeated freeze-thaw cycles. Through experiment, we confirmed that UV sterilized Erwinia ananas maintains a superior supercooling release capacity at around -1degC through 2000 freeze-thaw cycles. We also found that γ-ray sterilization, which is more suitable than UV for large-scale sterilization treatment, has a similar effect at appropriately selected doses. (author)

  1. Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides

    OpenAIRE

    Ferre, Rafael; Badosa, Esther; Feliu, Lidia; Planas, Marta; Montesinos, Emili; Bardají, Eduard

    2006-01-01

    Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH2). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED50) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation wer...

  2. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22.

    Directory of Open Access Journals (Sweden)

    Msizi I Mhlongo

    Full Text Available Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP molecules, namely lipopolysaccharides (LPS, chitosan (CHT and flagellin-22 (FLG22. Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids, shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA, methyljasmonic acid (MJ and abscisic acid (ABA resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.

  3. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  4. EVALUATING THE ACCUMULATION TREND OF L-DOPA IN DARK-GERMINATED SEEDS AND SUSPENSION CULTURES OF Phaseolus vulgaris L. BY AN EFFICIENT UV-SPECTROPHOTOMETRIC METHOD

    Directory of Open Access Journals (Sweden)

    Samira Rahmani-Nezhad

    Full Text Available Seed germination and plant cell cultures provide an alternative mean for producing secondary metabolites. The present study is an attempt to evaluate the effect of seed dark germination and some elicitors and precursors on the production of L-DOPA in Phaseolus vulgaris L. Callus cultured on Murashige and Skoog medium supplemented with various concentrations of different plant growth regulators. L-DOPA produced was quantified by UV-spectrophotometric method. In this study, a user-friendly, quick, and economical UV-spectrophotometric method was described to determine L-DOPA content in extracts from 33 biotypes of Phaseolus vulgaris L. The method is based on the nitrosation of L-DOPA to form a yellow solution and then formation of a red solution by adding base which is measurable at 470 nm. According to our statistical studies, this method showed high efficiency and selectivity for quantitative determination of L-DOPA in herbal extracts from dried plant seeds, dark-germinated seeds and callus cultures. L-DOPA content in dark-germinated seeds and suspension cultures increased significantly to approximately several-fold compared to the control. The implication from this study is that elicitor treatment and precursor feeding of Phaseolus vulgaris L. can significantly improve the parkinson’s relevant L-DOPA content.

  5. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture

    Directory of Open Access Journals (Sweden)

    Xiaolin Song

    2017-05-01

    Full Text Available Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g−1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1. The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL−1.

  6. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    Directory of Open Access Journals (Sweden)

    Camila Cramer Filgueiras

    Full Text Available Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.

  7. Potential biochemical markers for selection of disease resistance in Vigna radiata

    International Nuclear Information System (INIS)

    Badere, R.S.; Koche, D.K.; Choudhary, A.D.; Pawar, S.E.

    2001-01-01

    The Vigna radiata (L.) Wilczek (Green gram), a major pulse crop is prone to damaging diseases caused by Erysiphe polygoni, Cercospora canescens and Rhizoctonia sp. Therefore, the development of multiple resistance is a major breeding objective in green gram. Resistance to powdery mildew has already been developed, however, there are no reports on the development of resistance to Cercospora in green gram. Owing to limitation of conventional screening methods, the improvement for multiple disease resistance is inadequate, in this crop. It needs an efficient and quick selection method, for screening the plant population at an early stage. It is well established that the resistant interaction, in plants, involves accumulation of antibiotic compound phytoalexin (Genestein in Vigna radiata) and induction of enzymes such as β-1,3 gulcanase and Chitinases. These compounds are not only induced by pathogens but also pathogen-derived elicitors. These biochemical compounds can be used as resistance indicative biochemical markers for screening the natural or mutagen induced genetic diversity in populations of Vigna radiata in non-destructive manner. It, however, needs a systematic study of plant defense response. This paper deals with the response of resistant and susceptible cultivars of vigna radiata to Cercospora elicitor and development of non-destructive selection method for disease resistance. (author)

  8. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  9. Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study

    OpenAIRE

    Balan, Bipin; Marra, Francesco Paolo; Caruso, Tiziano; Martinelli, Federico

    2018-01-01

    RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an...

  10. 2005 USSOCOM Chemical, Biological, Radiological Conference and Exhibition

    Science.gov (United States)

    2005-12-08

    communicate with/through building control system ► Output compatible with most building HVAC communication/ control standards (LON, BACNet, etc...curves” indicated sensitivity ranges are expected: ► Bg spores : 1000-3000 cfu/l ► Erwinia cells: 100-1000 cfu/l ► Ovalbumin: 0.1-10 ng/l ► MS2 virus...anthrax, the most lethal form of illness in humans caused by the Bacillus anthracis bacterium Confidential PHARMATHENE, INC. Current Response Mark I

  11. Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2015-01-01

    Full Text Available In the autumn of 1976 bacteria of the genera Bacillus, Pseudomonas, Flavobacterium, Erwinia and Cellulomonas were isolated from the bark surface of poplars growing in protective belts around several industrial plants. It was found that the qualitative and quantitative composition of the surface bacterial microflora changes in dependence on the degree of resistance of the poplars to the action of the dust emitted by the industrial establishment and containing high amounts of heavy metals.

  12. Measuring aesthetic emotions: A review of the literature and a new assessment tool

    OpenAIRE

    Schindler, I.; Hosoya, G.; Menninghaus, W.; Beermann, U.; Wagner, V.; Eid, M.; Scherer, K.

    2017-01-01

    Aesthetic perception and judgement are not merely cognitive processes, but also involve feelings. Therefore, the empirical study of these experiences requires conceptualization and measurement of aesthetic emotions. Despite the long-standing interest in such emotions, we still lack an assessment tool to capture the broad range of emotions that occur in response to the perceived aesthetic appeal of stimuli. Elicitors of aesthetic emotions are not limited to the arts in the strict sense, but ex...

  13. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    OpenAIRE

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2016-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunizat...

  14. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    Science.gov (United States)

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Growth promotion and elicitor activity of salicylic acid in Achillea ...

    African Journals Online (AJOL)

    Usuario

    2016-04-20

    Apr 20, 2016 ... in the literature on the exogenous application of SA in. Achillea milefolium so far. Thus, the aim of this study was to evaluate the effect of different concentrations of SA in. A. millefolium in order to promote growth and simultaneously increase the synthesis of secondary compounds in this medicinal species.

  16. Growth promotion and elicitor activity of salicylic acid in Achillea ...

    African Journals Online (AJOL)

    The effect of SA on the metabolism of yarrow plants was evaluated through biometric parameters of growth and biochemical parameters. The SA at 0.50 mM resulted in linear increases in biomass accumulation of roots, total dry mass, ratio root/shoot and chlorophyll a and chlorophyll a+b content in yarrow plants.

  17. Grape marc extract acts as elicitor of plant defence responses.

    Science.gov (United States)

    Goupil, Pascale; Benouaret, Razik; Charrier, Olivia; Ter Halle, Alexandra; Richard, Claire; Eyheraguibel, Boris; Thiery, Denis; Ledoigt, Gérard

    2012-07-01

    Plant protection based on novel alternative strategies is a major concern in agriculture to sustain pest management. The marc extract of red grape cultivars reveals plant defence inducer properties. Treatment with grape marc extract efficiently induced hypersensitive reaction-like lesions with cell death evidenced by Evans Blue staining of tobacco leaves. Examination of the infiltration zone and the surrounding areas under UV light revealed the accumulation of autofluorescent compounds. Both leaf infiltration and a foliar spray of the red grape extract on tobacco leaves induced defence gene expression. The PR1 and PR2 target genes were upregulated locally and systemically in tobacco plants following grape marc extract treatment. The grape extract elicited an array of plant defence responses making this natural compound a potential phytosanitary product with a challenging issue and a rather attractive option for sustainable agriculture and environmentally friendly practices.

  18. Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study.

    Science.gov (United States)

    Balan, Bipin; Marra, Francesco Paolo; Caruso, Tiziano; Martinelli, Federico

    2018-01-31

    RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed that the bacterial infection enhanced specifically genes involved in sugar alcohol metabolism. Brassinosteroids were upregulated by fungal pathogens while ethylene was highly affected by Erwinia amylovora. Gibberellins and jasmonates were strongly repressed by fungal and viral infections. The protein-protein interaction network highlighted the role of WRKYs in responses to the studied pathogens. In summary, our meta-analysis provides a better understanding of the Malus X domestica transcriptome responses to different biotic stress conditions; we anticipate that these insights will assist in the development of genetic resistance and acute therapeutic strategies. This work would be an example for next meta-analysis works aiming at identifying specific common molecular features linked with biotic stress responses in other specialty crops.

  19. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  20. In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, Gaurav; Das, Ram; Kumar, Ravindra; Agrawal, Veena

    2018-03-01

    In vitro elicitation of an important compound conessine has been done in the bark-derived callus culture of Holarrhena antidysenterica (L.) Wall. employing different elicitors. For induction of callus, green bark explants excised from field-grown plants were cultured on MS medium augmented with different concentrations (0, 1, 2.5, 5, and 10 μM) of various growth regulators such as BA, IBA, NAA, and 2,4-D either alone or in combinations. The maximum amount of conessine (458.18 ± 0.89 d μg/g dry wt.) was achieved in callus developed on MS medium supplemented with 5 μM BA and 5 μM 2,4-D through HPLC analysis. Elicitation in conessine content in the above callus was achieved employing a variety of organic (phenylalanine, tyrosine, chitosan, tryptophan, casein hydrolysate, proline, sucrose, and yeast extract) as well as inorganic elicitors (Pb(NO 3 ) 2 , As 2 O 3 , CuSO 4 , NaCl, and CdCl 2 ) in different concentrations. The optimum enhancement in conessine content (3518.58 ± 0.28 g  μg/g dry wt.) was seen at the highest concentration (200 mg/L) of phenylalanine. The enhancement was elicitor specific and dose dependent. The overall increment of the conessine content was seen in the order of phenylalanine > tryptophan > Pb(NO 3 ) 2 > sucrose > NaCl > As 2 O 3 > casein hydrolysate > CdCl 2 > chitosan > proline > yeast extract > CuSO 4 > tyrosine. The isolation and purification of conessine was done using methanol as a solvent system through column chromatography (CC) and TLC. The isolated compound was characterized by FT-IR, 1 H-NMR, and HRMS which confirmed with the structure of conessine. The bioassays conducted with the isolated compound revealed a strong larvicidal activity against Anopheles stephensi Liston with LC 50 and LC 90 values being 1.93 and 5.67 ppm, respectively, without harming the nontarget organism, Mesocyclops thermocyclopoides Harada, after 48 h of treatment. This is our first report for the isolation and elicitation of conessine